

Python Data
Cleaning Cookbook

Modern techniques and Python tools to detect and
remove dirty data and extract key insights

Michael Walker

BIRMINGHAM—MUMBAI

Python Data Cleaning Cookbook
Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Ali Abidi
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Sean Lobo
Technical Editor: Manikandan Kurup
Copy Editor: Safis Editing
Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Nilesh Mohite

First published: December 2020
Production reference: 1091220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-566-1
www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

Contributors

About the author
Michael Walker has worked as a data analyst for over 30 years at a variety of educational
institutions. He has also taught data science, research methods, statistics, and computer
programming to undergraduates since 2006. He generates public sector and foundation
reports and conducts analyses for publication in academic journals.

About the reviewers
Meng-Chieh Ling has a Ph.D. in theoretical condensed matter physics from Karlsruhe
Institute of Technology in Germany. He switched from physics to data science to pursue a
successful career. After working for AGT International in Darmstadt for 2 years, he joined
CHECK24 Fashion as a data scientist in Düsseldorf. His responsibilities include applying
machine learning to improve the efficiency of data cleansing, automatic attributes tagging
with deep learning, and developing image-based recommendation systems.

Sébastien Celles is a professor of applied physics at Poitiers Institute of Technology
(the thermal science department). He has used Python for numerical simulations,
data plotting, data predictions, and various other tasks since the early 2000s. He was a
technical reviewer of the books Mastering Python for data science and Julia for Data
Science: Explore data science from scratch with Julia

He is also the author of some Python packages available on PyPi, including
openweathermap_requests, pandas_degreedays, pandas_confusion,
python-constraint, python-server, and python-windrose.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

Table of Contents
Preface

1
Anticipating Data Cleaning Issues when Importing Tabular
Data into pandas

Technical requirements� 2
Importing CSV files� 2
Getting ready� 3
How to do it…� 3
How it works...� 6
There's more...� 7
See also� 8

Importing Excel files� 9
Getting ready� 9
How to do it…� 10
How it works…� 15
There's more…� 16
See also� 16

Importing data from SQL
databases� 17
Getting ready� 17
How to do it...� 18
How it works…� 23
There's more…� 24
See also� 25

Importing SPSS, Stata, and SAS
data� 25
Getting ready� 25
How to do it...� 26
How it works...� 33
There's more…� 34
See also� 35

Importing R data� 35
Getting ready� 35
How to do it…� 36
How it works…� 39
There's more…� 40
See also� 40

Persisting tabular data� 41
Getting ready� 42
How to do it…� 43
How it works...� 45
There's more...� 45

ii Table of Contents

2
Anticipating Data Cleaning Issues when Importing HTML and
JSON into pandas

Technical requirements� 48
Importing simple JSON data� 48
Getting ready� 48
How to do it…� 49
How it works…� 55
There's more…� 55

Importing more complicated
JSON data from an API� 56
Getting ready� 57
How to do it...� 58
How it works…� 61
There's more…� 62

See also� 62

Importing data from web pages� 62
Getting ready� 63
How to do it…� 63
How it works…� 67
There's more…� 68

Persisting JSON data� 68
Getting ready� 69
How to do it...� 70
How it works…� 72
There's more…� 73

3
Taking the Measure of Your Data

Technical requirements � 76
Getting a first look at your data� 77
Getting ready…� 77
How to do it...� 77
How it works…� 81
There's more...� 82
See also� 82

Selecting and organizing columns�82
Getting ready…� 83
How to do it…� 83
How it works…� 89
There's more…� 89
See also� 90

Selecting rows� 91
Getting ready...� 91

How to do it...� 91
How it works…� 102
There's more…� 103
See also� 103

Generating frequencies for
categorical variables� 103
Getting ready…� 103
How to do it…� 104
How it works…� 108
There's more…� 108

Generating summary statistics
for continuous variables� 109
Getting ready…� 109
How to do it…� 110
How it works…� 113
See also� 114

Table of Contents iii

4
Identifying Missing Values and Outliers in Subsets of Data

Technical requirements� 116
Finding missing values� 116
Getting ready� 116
How to do it…� 117
How it works...� 120
See also� 121

Identifying outliers with one
variable� 121
Getting ready� 121
How to do it...� 122
How it works…� 131
There's more…� 131
See also� 132

Identifying outliers and
unexpected values in bivariate
relationships� 132
Getting ready� 133
How to do it...� 134
How it works…� 141
There's more…� 142
See also� 142

Using subsetting to examine
logical inconsistencies in
variable relationships� 142
Getting ready� 143

How to do it…� 143
How it works…� 151
See also� 151

Using linear regression to
identify data points with
significant influence� 151
Getting ready� 151
How to do it…� 152
How it works...� 155
There's more…� 155

Using k-nearest neighbor to
find outliers� 156
Getting ready� 156
How to do it…� 156
How it works...� 159
There's more...� 160
See also� 160

Using Isolation Forest to find
anomalies� 160
Getting ready� 161
How to do it...� 161
How it works…� 165
There's more…� 165
See also� 165

5
Using Visualizations for the Identification of Unexpected
Values

Technical requirements � 168 Using histograms to examine
the distribution of continuous
variables� 168

iv Table of Contents

Getting ready� 169
How to do it…� 169
How it works…� 175
There's more...� 176

Using boxplots to identify
outliers for continuous
variables� 177
Getting ready� 177
How to do it…� 177
How it works...� 183
There's more...� 184
See also� 184

Using grouped boxplots to
uncover unexpected values in
a particular group� 184
Getting ready� 185
How to do it...� 185
How it works...� 191
There's more…� 192
See also� 192

Examining both the distribution
shape and outliers with violin
plots� 192
Getting ready� 193
How to do it…� 193

How it works…� 198
There's more…� 199
See also� 200

Using scatter plots to view
bivariate relationships� 201
Getting ready� 201
How to do it...� 201
How it works…� 208
There's more...� 208
See also� 209

Using line plots to examine
trends in continuous variables� 209
Getting ready� 209
How to do it…� 209
How it works...� 215
There's more…� 215
See also� 216

Generating a heat map based
on a correlation matrix� 216
Getting ready� 216
How to do it…� 216
How it works…� 219
There's more…� 220
See also� 220

6
Cleaning and Exploring Data with Series Operations

Technical requirements� 222
Getting values from a pandas
series� 222
Getting ready� 223
How to do it…� 223
How it works...� 227

Showing summary statistics for
a pandas series� 227

Getting ready� 227
How to do it...� 228
How it works…� 231
There's more…� 232
See also� 232

Changing series values� 232
Getting ready� 232
How to do it…� 233

Table of Contents v

How it works…� 236
There's more…� 236
See also� 237

Changing series values
conditionally� 237
Getting ready� 237
How to do it…� 238
How it works…� 242
There's more…� 243
See also� 244

Evaluating and cleaning string
series data� 245
Getting ready� 245
How to do it...� 245
How it works...� 250
There's more…� 250

Working with dates� 251

Getting ready� 251
How to do it…� 251
How it works…� 256
See also� 257

Identifying and cleaning
missing data� 257
Getting ready� 257
How to do it…� 258
How it works…� 262
There's more...� 263
See also� 263

Missing value imputation with
K-nearest neighbor� 263
Getting ready� 263
How to do it…� 264
How it works…� 266
There's more...� 266
See also� 266

7
Fixing Messy Data when Aggregating

Technical requirements� 268
Looping through data with
itertuples
(an anti-pattern)� 268
Getting ready� 269
How to do it…� 269
How it works...� 272
There's more...� 273

Calculating summaries by
group with NumPy arrays� 274
Getting ready� 274
How to do it…� 274
How it works…� 277
There's more…� 277

See also� 277

Using groupby to organize data
by groups� 277
Getting ready� 278
How to do it…� 278
How it works...� 281
There's more...� 281

Using more complicated
aggregation functions with
groupby� 282
Getting ready� 282
How to do it…� 282
How it works…� 288
There's more…� 289
See also� 289

vi Table of Contents

Using user-defined functions
and apply with groupby� 289
Getting ready� 289
How to do it…� 290
How it works...� 293
There's more...� 294

See also� 294

Using groupby to change the
unit of analysis of a DataFrame� 294
Getting ready� 295
How to do it...� 295
How it works…� 297

8
Addressing Data Issues When Combining DataFrames

Technical requirements� 300
Combining DataFrames
vertically� 300
Getting ready� 301
How to do it…� 301
How it works...� 305
See also� 306

Doing one-to-one merges� 306
Getting ready� 308
How to do it...� 308
How it works...� 313
There's more...� 314

Using multiple merge-by
columns� 314
Getting ready� 314
How to do it...� 315
How it works...� 317

There's more...� 318

Doing one-to-many merges� 318
Getting ready� 319
How to do it…� 319
How it works...� 324
There's more…� 324
See also� 324

Doing many-to-many merges� 325
Getting ready� 325
How to do it...� 326
How it works...� 331
There's more...� 332

Developing a merge routine� 332
Getting ready� 333
How to do it…� 333
How it works...� 335
See also� 335

9
Tidying and Reshaping Data

Technical requirements� 338
Removing duplicated rows� 338
Getting ready...� 339

How to do it…� 339
How it works...� 342
There's more...� 343
See also...� 343

Table of Contents vii

Fixing many-to-many
relationships� 343
Getting ready...� 344
How to do it…� 344
How it works...� 349
There's more...� 350
See also...� 351

Using stack and melt to
reshape data from wide
to long format� 351
Getting ready...� 352
How to do it…� 352
How it works...� 356

Melting multiple groups of
columns� 356
Getting ready...� 357
How to do it…� 357
How it works...� 359
There's more...� 359

Using unstack and pivot
to reshape data from long
to wide� 360
Getting ready...� 360
How to do it…� 360
How it works...� 363

10
User-Defined Functions and Classes to Automate Data
Cleaning

Technical requirements � 366
Functions for getting a first
look at our data� 366
Getting ready...� 366
How to do it...� 367
How it works...� 371
There's more...� 371

Functions for displaying
summary statistics and
frequencies� 372
Getting ready� 372
How to do it...� 372
How it works...� 378
There's more...� 378
See also...� 378

Functions for identifying
outliers and unexpected
values� 379
Getting ready� 379

How to do it...� 380
How it works...� 385
There's more...� 385
See also� 386

Functions for aggregating or
combining data� 386
Getting ready� 386
How to do it...� 387
How it works...� 393
There's more...� 393
See also� 393

Classes that contain the logic
for updating series values� 394
Getting ready� 394
How to do it...� 394
How it works...� 399
There's more...� 400
See also� 400

viii Table of Contents

Classes that handle non-tabular
data structures� 400
Getting ready� 401

How to do it...� 402
How it works...� 406
There's more...� 406

Other Books You May Enjoy
Index

Preface
This book is a practical guide to data cleaning, broadly defined as all tasks necessary to
prepare data for analysis. It is organized by the tasks usually completed during the data
cleaning process: importing data, viewing data diagnostically, identifying outliers and
unexpected values, imputing values, tidying data, and so on. Each recipe walks the reader
from raw data through the completion of a specific data cleaning task.

There are already a number of very good pandas books. Unsurprisingly, there is some
overlap between those texts and this one. However, the emphasis here is different. I focus
as much on the why as on the how in this book.

Since pandas is still relatively new, the lessons I have learned about cleaning data have
been shaped by my experiences with other tools. Before settling into my current work
routine with Python and R about 8 years ago, I relied mostly on C# and T-SQL in the
early 2000s, SAS and Stata in the 90s, and FORTRAN and Pascal in the 80s. Most readers
of this text probably have experience with a variety of data cleaning and analysis tools.
In many ways the specific tool is less significant than the data preparation task and the
attributes of the data. I would have covered pretty much the same topics if I had been
asked to write The SAS Data Cleaning Cookbook or The R Data Cleaning Cookbook. I just
take a Python/pandas specific approach to the same data cleaning challenges that analysts
have faced for decades.

I start each chapter with how to think about the particular data cleaning task at hand
before discussing how to approach it with a tool from the Python ecosystem - pandas,
NumPy, matplotlib, SciPy, and so on. This is reinforced in each recipe by a discussion of
the implications of what we are uncovering in the data. I try to connect tool to purpose.
For example, concepts like skew and kurtosis matter as much for handling outliers as does
knowing how to update pandas series values.

x Preface

Who this book is for
This book is for anyone looking for ways to handle messy, duplicate, and poor data using
different Python tools and techniques. The book takes a recipe-based approach to help
you to learn how to clean and manage data. Working knowledge of Python programming
is all you need to get the most out of the book.

What this book covers
Chapter 1, Anticipating Data Cleaning Issues when Importing Tabular Data into pandas,
explores tools for loading CSV files, Excel files, relational database tables, SAS, SPSS, and
Stata files, and R files into pandas DataFrames.

Chapter 2, Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas,
discusses techniques for reading and normalizing JSON data, and for web scraping.

Chapter 3, Taking the Measure of Your Data, introduces common techniques for navigating
around a DataFrame, selecting columns and rows, and generating summary statistics.

Chapter 4, Identifying Missing Values and Outliers in Subsets of Data, explores a wide range
of strategies to identify missing values and outliers across a whole DataFrame and by
selected groups.

Chapter 5, Using Visualizations for the Identification of Unexpected Values, demonstrates
the use of matplotlib and seaborn tools to visualize how key variables are distributed,
including with histograms, boxplots, scatter plots, line plots, and violin plots.

Chapter 6, Cleaning and Exploring Data with Series Operations, discusses updating pandas
series with scalars, arithmetic operations, and conditional statements based on the values
of one or more series.

Chapter 7, Fixing Messy Data when Aggregating, demonstrates multiple approaches to
aggregating data by group, and discusses when to choose one approach over the others.

Chapter 8, Addressing Data Issues when Combining DataFrames, examines different
strategies for concatenating and merging data, and how to anticipate common data
challenges when combining data.

Chapter 9, Tidying and Reshaping Data, introduces several strategies for de-duplicating,
stacking, melting, and pivoting data.

Chapter 10, User-Defined Functions and Classes to Automate Data Cleaning, examines how
to turn many of the techniques from the first nine chapters into reusable code.

Preface xi

To get the most out of this book
Working knowledge of Python programming is all you need to get the most out of this
book. System requirements are mentioned in the following table. Alternatively, you can
use Google Colab as well.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800565661_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "Define a getcases function that returns a series for total_cases_pm
for the countries of a region."

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800565661_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800565661_ColorImages.pdf

xii Preface

A block of code is set as follows:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

Any command-line input or output is written as follows:

$ pip install pyarrow

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"We will work with cumulative data on coronavirus cases and deaths by country, and the
National Longitudinal Survey (NLS) data."

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

Preface xiii

There's more…
This section consists of additional information about the recipe in order to make you
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

1
Anticipating Data

Cleaning Issues when
Importing Tabular
Data into pandas

Scientific distributions of Python (Anaconda, WinPython, Canopy, and so on) provide
analysts with an impressive range of data manipulation, exploration, and visualization
tools. One important tool is pandas. Developed by Wes McKinney in 2008, but really
gaining in popularity after 2012, pandas is now an essential library for data analysis in
Python. We work with pandas extensively in this book, along with popular packages such
as numpy, matplotlib, and scipy.

A key pandas object is the data frame, which represents data as a tabular structure,
with rows and columns. In this way, it is similar to the other data stores we discuss in
this chapter. However, a pandas data frame also has indexing functionality that makes
selecting, combining, and transforming data relatively straightforward, as the recipes in
this book will demonstrate.

2 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

Before we can make use of this great functionality, we have to get our data into pandas.
Data comes to us in a wide variety of formats: as CSV or Excel files, as tables from
SQL databases, from statistical analysis packages such as SPSS, Stata, SAS, or R, from
non-tabular sources such as JSON, and from web pages.

We examine tools for importing tabular data in this recipe. Specifically, we cover the
following topics:

•	 Importing CSV files

•	 Importing Excel files

•	 Importing data from SQL databases

•	 Importing SPSS, Stata, and SAS data

•	 Importing R data

•	 Persisting tabular data

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Importing CSV files
The read_csv method of the pandas library can be used to read a file with comma
separated values (CSV) and load it into memory as a pandas data frame. In this recipe,
we read a CSV file and address some common issues: creating column names that make
sense to us, parsing dates, and dropping rows with critical missing data.

Raw data is often stored as CSV files. These files have a carriage return at the end of
each line of data to demarcate a row, and a comma between each data value to delineate
columns. Something other than a comma can be used as the delimiter, such as a tab.
Quotation marks may be placed around values, which can be helpful when the delimiter
occurs naturally within certain values, which sometimes happens with commas.

All data in a CSV file are characters, regardless of the logical data type. This is why it
is easy to view a CSV file, presuming it is not too large, in a text editor. The pandas
read_csv method will make an educated guess about the data type of each column, but
you will need to help it along to ensure that these guesses are on the mark.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Importing CSV files 3

Getting ready
Create a folder for this chapter and create a new Python script or Jupyter Notebook file
in that folder. Create a data subfolder and place the landtempssample.csv file in
that subfolder. Alternatively, you could retrieve all of the files from the GitHub repository.
Here is a code sample from the beginning of the CSV file:

locationid,year,month,temp,latitude,longitude,stnelev,station,
countryid,country

USS0010K01S,2000,4,5.27,39.9,-110.75,2773.7,INDIAN_
CANYON,US,United States

CI000085406,1940,5,18.04,-18.35,-70.333,58.0,ARICA,CI,Chile

USC00036376,2013,12,6.22,34.3703,-91.1242,61.0,SAINT_
CHARLES,US,United States

ASN00024002,1963,2,22.93,-34.2833,140.6,65.5,BERRI_
IRRIGATION,AS,Australia

ASN00028007,2001,11,,-14.7803,143.5036,79.4,MUSGRAVE,AS,Austra
lia

Note
This dataset, taken from the Global Historical Climatology Network integrated
database, is made available for public use by the United States National Oceanic
and Atmospheric Administration at https://www.ncdc.noaa.gov/
data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-
monthly-version-4. This is just a 100,000-row sample of the full dataset,
which is also available in the repository.

How to do it…
We will import a CSV file into pandas, taking advantage of some very useful
read_csv options:

1.	 Import the pandas library and set up the environment to make viewing the
output easier:

>>> import pandas as pd

>>> pd.options.display.float_format = '{:,.2f}'.format

>>> pd.set_option('display.width', 85)

>>> pd.set_option('display.max_columns', 8)

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4

4 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

2.	 Read the data file, set new names for the headings, and parse the date column.

Pass an argument of 1 to the skiprows parameter to skip the first row, pass a
list of columns to parse_dates to create a pandas datetime column from those
columns, and set low_memory to False to reduce the usage of memory during
the import process:

>>> landtemps = pd.read_csv('data/landtempssample.csv',

...
names=['stationid','year','month','avgtemp','latitude',

...
'longitude','elevation','station','countryid','country'],

... skiprows=1,

... parse_dates=[['month','year']],

... low_memory=False)

>>> type(landtemps)

<class 'pandas.core.frame.DataFrame'>

3.	 Get a quick glimpse of the data.

View the first few rows. Show the data type for all columns, as well as the number of
rows and columns:

>>> landtemps.head(7)

 month_year stationid ... countryid country

0 2000-04-01 USS0010K01S ... US United States

1 1940-05-01 CI000085406 ... CI Chile

2 2013-12-01 USC00036376 ... US United States

3 1963-02-01 ASN00024002 ... AS Australia

4 2001-11-01 ASN00028007 ... AS Australia

5 1991-04-01 USW00024151 ... US United States

6 1993-12-01 RSM00022641 ... RS Russia

[7 rows x 9 columns]

>>> landtemps.dtypes

month_year datetime64[ns]

stationid object

avgtemp float64

Importing CSV files 5

latitude float64

longitude float64

elevation float64

station object

countryid object

country object

dtype: object

>>> landtemps.shape

(100000, 9)

4.	 Give the date column a better name and view the summary statistics for average
monthly temperature:

>>> landtemps.rename(columns={'month_
year':'measuredate'}, inplace=True)

>>> landtemps.dtypes

measuredate datetime64[ns]

stationid object

avgtemp float64

latitude float64

longitude float64

elevation float64

station object

countryid object

country object

dtype: object

>>> landtemps.avgtemp.describe()

count 85,554.00

mean 10.92

std 11.52

min -70.70

25% 3.46

50% 12.22

75% 19.57

max 39.95

Name: avgtemp, dtype: float64

5.	 Look for missing values for each column.

6 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

Use isnull, which returns True for each value that is missing for each column,
and False when not missing. Chain this with sum to count the missings for each
column. (When working with Boolean values, sum treats True as 1 and False as
0. I will discuss method chaining in the There's more... section of this recipe):

>>> landtemps.isnull().sum()

measuredate 0

stationid 0

avgtemp 14446

latitude 0

longitude 0

elevation 0

station 0

countryid 0

country 5

dtype: int64

6.	 Remove rows with missing data for avgtemp.

Use the subset parameter to tell dropna to drop rows where avgtemp is
missing. Set inplace to True. Leaving inplace at its default value of False
would display the data frame, but the changes we have made would not be retained.
Use the shape attribute of the data frame to get the number of rows and columns:

>>> landtemps.dropna(subset=['avgtemp'], inplace=True)

>>> landtemps.shape

(85554, 9)

That's it! Importing CSV files into pandas is as simple as that.

How it works...
Almost all of the recipes in this book use the pandas library. We refer to it as pd to make
it easier to reference later. This is customary. We also use float_format to display float
values in a readable way and set_option to make the terminal output wide enough to
accommodate the number of variables.

Importing CSV files 7

Much of the work is done by the first line in step 2. We use read_csv to load a pandas
data frame in memory and call it landtemps. In addition to passing a filename, we set
the names parameter to a list of our preferred column headings. We also tell read_csv
to skip the first row, by setting skiprows to 1, since the original column headings are in
the first row of the CSV file. If we do not tell it to skip the first row, read_csv will treat
the header row in the file as actual data.

read_csv also solves a date conversion issue for us. We use the parse_dates
parameter to ask it to convert the month and year columns to a date value.

Step 3 runs through a few standard data checks. We use head(7) to print out all columns
for the first 7 rows. We use the dtypes attribute of the data frame to show the data type
of all columns. Each column has the expected data type. In pandas, character data has the
object data type, a data type that allows for mixed values. shape returns a tuple, whose
first element is the number of rows in the data frame (100,000 in this case) and whose
second element is the number of columns (9).

When we used read_csv to parse the month and year columns, it gave the resulting
column the name month_year. We use the rename method in step 4 to give that
column a better name. We need to specify inplace=True to replace the old column
name with the new column name in memory. The describe method provides summary
statistics on the avgtemp column.

Notice that the count for avgtemp indicates that there are 85,554 rows that have
valid values for avgtemp. This is out of 100,000 rows for the whole data frame, as
provided by the shape attribute. The listing of missing values for each column in step 5
(landtemps.isnull().sum()) confirms this: 100,000 – 85,554 = 14,446.

Step 6 drops all rows where avgtemp is NaN. (The NaN value, not a number, is the pandas
representation of missing values.) subset is used to indicate which column to check for
missings. The shape attribute for landtemps now indicates that there are 85,554 rows,
which is what we would expect given the previous count from describe.

There's more...
If the file you are reading uses a delimiter other than a comma, such as a tab, this can be
specified in the sep parameter of read_csv. When creating the pandas data frame, an
index was also created. The numbers to the far left of the output when head and sample
were run are index values. Any number of rows can be specified for head or sample. The
default value is 5.

8 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

Setting low_memory to False causes read_csv to parse data in chunks. This is easier
on systems with lower memory when working with larger files. However, the full data
frame will still be loaded into memory once read_csv completes successfully.

The landtemps.isnull().sum() statement is an example of chaining methods.
First, isnull returns a data frame of True and False values, resulting from testing
whether each column value is null. sum takes that data frame and sums the True values
for each column, interpreting the True values as 1 and the False values as 0. We would
have obtained the same result if we had used the following two steps:

>>> checknull = landtemps.isnull()

>>> checknull.sum()

There is no hard and fast rule for when to chain methods and when not to. I find it helpful
to chain when I really think of something I am doing as being a single step, but only two
or more steps, mechanically speaking. Chaining also has the side benefit of not creating
extra objects that I might not need.

The dataset used in this recipe is just a sample from the full land temperatures database
with almost 17 million records. You can run the larger file if your machine can handle it,
with the following code:

>>> landtemps = pd.read_csv('data/landtemps.zip',
compression='zip',

... names=['stationid','year','month','avgtemp','latitude',

...
'longitude','elevation','station','countryid','country'],

... skiprows=1,

... parse_dates=[['month','year']],

... low_memory=False)

read_csv can read a compressed ZIP file. We get it to do this by passing the name of the
ZIP file and the type of compression.

See also
Subsequent recipes in this chapter, and in other chapters, set indexes to improve
navigation over rows and merging.

A significant amount of reshaping of the Global Historical Climatology Network raw data
was done before using it in this recipe. We demonstrate this in Chapter 8, Addressing Data
Issues when Combining DataFrames. That recipe also shows how to read a text file that is
not delimited, one that is fixed, by using read_fwf.

Importing Excel files 9

Importing Excel files
The read_excel method of the pandas library can be used to import data from an
Excel file and load it into memory as a pandas data frame. In this recipe, we import an
Excel file and handle some common issues when working with Excel files: extraneous
header and footer information, selecting specific columns, removing rows with no data,
and connecting to particular sheets.

Despite the tabular structure of Excel, which invites the organization of data into rows
and columns, spreadsheets are not datasets and do not require people to store data in
that way. Even when some data conforms to those expectations, there is often additional
information in rows or columns before or after the data to be imported. Data types are
not always as clear as they are to the person who created the spreadsheet. This will be all
too familiar to anyone who has ever battled with importing leading zeros. Moreover, Excel
does not insist that all data in a column be of the same type, or that column headings be
appropriate for use with a programming language such as Python.

Fortunately, read_excel has a number of options for handling messiness in Excel data.
These options make it relatively easy to skip rows and select particular columns, and to
pull data from a particular sheet or sheets.

Getting ready
You can download the GDPpercapita.xlsx file, as well as the code for this recipe,
from the GitHub repository for this book. The code assumes that the Excel file is in a data
subfolder. Here is a view of the beginning of the file:

Figure 1.1 – View of the dataset

And here is a view of the end of the file:

Figure 1.2 – View of the dataset

10 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

Note
This dataset, from the Organisation for Economic Co-operation and
Development, is available for public use at https://stats.oecd.org/.

How to do it…
We import an Excel file into pandas and do some initial data cleaning:

1.	 Import the pandas library:

>>> import pandas as pd

2.	 Read the Excel per capita GDP data.

Select the sheet with the data we need, but skip the columns and rows that we do
not want. Use the sheet_name parameter to specify the sheet. Set skiprows to
4 and skipfooter to 1 to skip the first four rows (the first row is hidden) and the
last row. We provide values for usecols to get data from column A and columns C
through T (column B is blank). Use head to view the first few rows:

>>> percapitaGDP = pd.read_excel("data/GDPpercapita.
xlsx",

... sheet_name="OECD.Stat export",

... skiprows=4,

... skipfooter=1,

... usecols="A,C:T")

>>> percapitaGDP.head()

 Year 2001 ... 2017 2018

0 Metropolitan areas NaN ... NaN NaN

1 AUS: Australia

2 AUS01: Greater Sydney 43313 ... 50578 49860

3 AUS02: Greater Melbourne 40125 ... 43025 42674

4 AUS03: Greater Brisbane 37580 ... 46876 46640

[5 rows x 19 columns]

3.	 Use the info method of the data frame to view data types and the non-null count:

>>> percapitaGDP.info()

<class 'pandas.core.frame.DataFrame'>

https://stats.oecd.org/

Importing Excel files 11

RangeIndex: 702 entries, 0 to 701

Data columns (total 19 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Year 702 non-null object

 1 2001 701 non-null object

 2 2002 701 non-null object

 3 2003 701 non-null object

 4 2004 701 non-null object

 5 2005 701 non-null object

 6 2006 701 non-null object

 7 2007 701 non-null object

 8 2008 701 non-null object

 9 2009 701 non-null object

 10 2010 701 non-null object

 11 2011 701 non-null object

 12 2012 701 non-null object

 13 2013 701 non-null object

 14 2014 701 non-null object

 15 2015 701 non-null object

 16 2016 701 non-null object

 17 2017 701 non-null object

 18 2018 701 non-null object

dtypes: object(19)

memory usage: 104.3+ KB

4.	 Rename the Year column to metro and remove the leading spaces.

Give an appropriate name to the metropolitan area column. There are extra spaces
before the metro values in some cases, and extra spaces after the metro values in
others. We can test for leading spaces with startswith(' ') and then use any
to establish whether there are one or more occasions when the first character is
blank. We can use endswith(' ') to examine trailing spaces. We use strip to
remove both leading and trailing spaces:

>>> percapitaGDP.rename(columns={'Year':'metro'},
inplace=True)

>>> percapitaGDP.metro.str.startswith(' ').any()

True

12 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

>>> percapitaGDP.metro.str.endswith(' ').any()

True

>>> percapitaGDP.metro = percapitaGDP.metro.str.strip()

5.	 Convert the data columns to numeric.

Iterate over all of the GDP year columns (2001-2018) and convert the data type
from object to float. Coerce the conversion even when there is character data
– the .. in this example. We want character values in those columns to become
missing, which is what happens. Rename the year columns to better reflect the data
in those columns:

>>> for col in percapitaGDP.columns[1:]:

... percapitaGDP[col] = pd.to_numeric(percapitaGDP[col],
errors='coerce')

... percapitaGDP.rename(columns={col:'pcGDP'+col},
inplace=True)

...

>>> percapitaGDP.head()

 metro pcGDP2001 ... pcGDP2017
pcGDP2018

0 Metropolitan areas nan ... nan
nan

1 AUS: Australia nan ... nan
nan

2 AUS01: Greater Sydney 43313 ... 50578
49860

3 AUS02: Greater Melbourne 40125 ... 43025
42674

4 AUS03: Greater Brisbane 37580 ... 46876
46640

>>> percapitaGDP.dtypes

metro object

pcGDP2001 float64

pcGDP2002 float64

abbreviated to save space

Importing Excel files 13

pcGDP2017 float64

pcGDP2018 float64

dtype: object

6.	 Use the describe method to generate summary statistics for all numeric data in
the data frame:

>>> percapitaGDP.describe()

 pcGDP2001 pcGDP2002 ... pcGDP2017 pcGDP2018

count 424 440 ... 445 441

mean 41264 41015 ... 47489 48033

std 11878 12537 ... 15464 15720

min 10988 11435 ... 2745 2832

25% 33139 32636 ... 37316 37908

50% 39544 39684 ... 45385 46057

75% 47972 48611 ... 56023 56638

max 91488 93566 ... 122242 127468

[8 rows x 18 columns]

7.	 Remove rows where all of the per capita GDP values are missing.

Use the subset parameter of dropna to inspect all columns, starting with the
second column (it is zero-based) through the last column. Use how to specify that
we want to drop rows only if all of the columns specified in subset are missing.
Use shape to show the number of rows and columns in the resulting data frame:

>>> percapitaGDP.dropna(subset=percapitaGDP.columns[1:],
how="all", inplace=True)

>>> percapitaGDP.describe()

 pcGDP2001 pcGDP2002 ... pcGDP2017 pcGDP2018

count 424 440 ... 445 441

mean 41264 41015 ... 47489 48033

std 11878 12537 ... 15464 15720

min 10988 11435 ... 2745 2832

25% 33139 32636 ... 37316 37908

50% 39544 39684 ... 45385 46057

75% 47972 48611 ... 56023 56638

14 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

max 91488 93566 ... 122242 127468

[8 rows x 18 columns]

>>> percapitaGDP.head()

 metro pcGDP2001 ... pcGDP2017
pcGDP2018

2 AUS01: Greater Sydney 43313 ... 50578
49860

3 AUS02: Greater Melbourne 40125 ... 43025
42674

4 AUS03: Greater Brisbane 37580 ... 46876
46640

5 AUS04: Greater Perth 45713 ... 66424
70390

6 AUS05: Greater Adelaide 36505 ... 40115
39924

[5 rows x 19 columns]

>>> percapitaGDP.shape

(480, 19)

8.	 Set the index for the data frame using the metropolitan area column.

Confirm that there are 480 valid values for metro and that there are 480 unique
values, before setting the index:

>>> percapitaGDP.metro.count()

480

>>> percapitaGDP.metro.nunique()

480

>>> percapitaGDP.set_index('metro', inplace=True)

>>> percapitaGDP.head()

 pcGDP2001 pcGDP2002 ... pcGDP2017
pcGDP2018

metro ...

AUS01: Greater Sydney 43313 44008 ... 50578
49860

Importing Excel files 15

AUS02: Greater Melbourne 40125 40894 ... 43025
42674

AUS03: Greater Brisbane 37580 37564 ... 46876
46640

AUS04: Greater Perth 45713 47371 ... 66424
70390

AUS05: Greater Adelaide 36505 37194 ... 40115
39924

[5 rows x 18 columns]

>>> percapitaGDP.loc['AUS02: Greater Melbourne']

pcGDP2001 40125

pcGDP2002 40894

...

pcGDP2017 43025

pcGDP2018 42674

Name: AUS02: Greater Melbourne, dtype: float64

We have now imported the Excel data into a pandas data frame and cleaned up some of
the messiness in the spreadsheet.

How it works…
We mostly manage to get the data we want in step 2 by skipping rows and columns we
do not want, but there are still a number of issues: read_excel interprets all of the
GDP data as character data, many rows are loaded with no useful data, and the column
names do not represent the data well. In addition, the metropolitan area column might be
useful as an index, but there are leading and trailing blanks and there may be missing or
duplicated values.

read_excel interprets Year as the column name for the metropolitan area data
because it looks for a header above the data for that Excel column and finds Year there.
We rename that column metro in step 4. We also use strip to fix the problem with
leading and trailing blanks. If there had only been leading blanks, we could have used
lstrip, or rstrip if there had only been trailing blanks. It is a good idea to assume
that there might be leading or trailing blanks in any character data and clean that data
shortly after the initial import.

16 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

The spreadsheet authors used .. to represent missing data. Since this is actually valid
character data, those columns get the object data type (how pandas treats columns with
character or mixed data). We coerce a conversion to numeric in step 5. This also results
in the original values of .. being replaced with NaN (not a number), pandas' value for
missing numbers. This is what we want.

We can fix all of the per capita GDP columns with just a few lines because pandas makes
it easy to iterate over the columns of a data frame. By specifying [1:], we iterate from the
second column to the last column. We can then change those columns to numeric and
rename them to something more appropriate.

There are several reasons why it is a good idea to clean up the column headings for the
annual GDP columns: it helps us to remember what the data actually is; if we merge
it with other data by metropolitan area, we will not have to worry about conflicting
variable names; and we can use attribute access to work with pandas series based on those
columns, which I will discuss in more detail in the There's more… section of this recipe.

describe in step 6 shows us that only between 420 and 480 rows have valid data for
per capita GDP. When we drop all rows that have missing values for all per capita GDP
columns in step 7, we end up with 480 rows in the data frame, which is what we expected.

There's more…
Once we have a pandas data frame, we have the ability to treat columns as more than
just columns. We can use attribute access (such as percapitaGPA.metro) or bracket
notation (percapitaGPA['metro']) to get the functionality of a pandas data
series. Either method makes it possible to use data series string-inspecting methods
such as str.startswith, and counting methods such as nunique. Note that
the original column names of 20## did not allow for attribute access because they
started with a number, so percapitaGDP.pcGDP2001.count() works, but
percapitaGDP.2001.count() returns a syntax error because 2001 is not a valid
Python identifier (since it starts with a number).

Pandas is rich with features for string manipulation and for data series operations. We will
try many of them out in subsequent recipes. This recipe showed those I find most useful
when importing Excel data.

See also
There are good reasons to consider reshaping this data. Instead of 18 columns of GDP
per capita data for each metropolitan area, we should have 18 rows of data for each
metropolitan area, with columns for year and GDP per capita. Recipes for reshaping data
can be found in Chapter 9, Tidying and Reshaping Data.

Importing data from SQL databases 17

Importing data from SQL databases
In this recipe, we will use pymssql and mysql apis to read data from Microsoft SQL
Server and MySQL (now owned by Oracle) databases, respectively. Data from sources
such as these tends to be well structured since it is designed to facilitate simultaneous
transactions by members of organizations, and those who interact with them. Each
transaction is also likely related to some other organizational transaction.

This means that although data tables from enterprise systems are more reliably structured
than data from CSV files and Excel files, their logic is less likely to be self-contained.
You need to know how the data from one table relates to data from another table to
understand its full meaning. These relationships need to be preserved, including the
integrity of primary and foreign keys, when pulling data. Moreover, well-structured data
tables are not necessarily uncomplicated data tables. There are often sophisticated coding
schemes that determine data values, and these coding schemes can change over time. For
example, codes for staff ethnicity at a retail store chain might be different in 1998 than
they are in 2020. Similarly, frequently there are codes for missing values, such as 99999,
that pandas will understand as valid values.

Since much of this logic is business logic, and implemented in stored procedures or other
applications, it is lost when pulled out of this larger system. Some of what is lost will
eventually have to be reconstructed when preparing data for analysis. This almost always
involves combining data from multiple tables, so it is important to preserve the ability to
do that. But it also may involve adding some of the coding logic back after loading the
SQL table into a pandas data frame. We explore how to do that in this recipe.

Getting ready
This recipe assumes you have the pymssql and mysql APIs installed. If you do not,
it is relatively straightforward to install them with pip. From the terminal, or PowerShell
(in Windows), enter pip install pymssql or pip install mysql-
connector-python.

Note
The dataset used in this recipe is available for public use at
https://archive.ics.uci.edu/ml/machine-learning-
databases/00320/.

https://archive.ics.uci.edu/ml/machine-learning-databases/00320/
https://archive.ics.uci.edu/ml/machine-learning-databases/00320/

18 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

How to do it...
We import SQL Server and MySQL data tables into a pandas data frame as follows:

1.	 Import pandas, numpy, pymssql, and mysql.

This step assumes that you have installed the pymssql and mysql APIs:
>>> import pandas as pd

>>> import numpy as np

>>> import pymssql

>>> import mysql.connector

2.	 Use the pymssql API and read_sql to retrieve and load data from a SQL
Server instance.

Select the columns we want from the SQL Server data and use SQL aliases to
improve column names (for example, fedu AS fathereducation). Create a
connection to the SQL Server data by passing database credentials to the pymssql
connect function. Create a pandas data frame by passing the select statement
and connection object to read_sql. Close the connection to return it to the
pool on the server:

>>> query = "SELECT studentid, school, sex, age,
famsize,\

... medu AS mothereducation, fedu AS fathereducation,\

... traveltime, studytime, failures, famrel, freetime,\

... goout, g1 AS gradeperiod1, g2 AS gradeperiod2,\

... g3 AS gradeperiod3 From studentmath"

>>>

>>> server = "pdcc.c9sqqzd5fulv.us-west-2.rds.amazonaws.
com"

>>> user = "pdccuser"

>>> password = "pdccpass"

>>> database = "pdcctest"

>>>

>>> conn = pymssql.connect(server=server,

... user=user, password=password, database=database)

>>>

>>> studentmath = pd.read_sql(query,conn)

>>> conn.close()

Importing data from SQL databases 19

3.	 Check the data types and the first few rows:

>>> studentmath.dtypes

studentid object

school object

sex object

age int64

famsize object

mothereducation int64

fathereducation int64

traveltime int64

studytime int64

failures int64

famrel int64

freetime int64

goout int64

gradeperiod1 int64

gradeperiod2 int64

gradeperiod3 int64

dtype: object

>>> studentmath.head()

 studentid school ... gradeperiod2 gradeperiod3

0 001 GP ... 6 6

1 002 GP ... 5 6

2 003 GP ... 8 10

3 004 GP ... 14 15

4 005 GP ... 10 10

[5 rows x 16 columns]

4.	 (Alternative) Use the mysql connector and read_sql to get data from MySQL.

Create a connection to the mysql data and pass that connection to read_sql to
retrieve the data and load it into a pandas data frame. (The same data file on student
math scores was uploaded to SQL Server and MySQL, so we can use the same SQL
SELECT statement we used in the previous step.):

>>> host = "pdccmysql.c9sqqzd5fulv.us-west-2.rds.
amazonaws.com"

20 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

>>> user = "pdccuser"

>>> password = "pdccpass"

>>> database = "pdccschema"

>>> connmysql = mysql.connector.connect(host=host,

... database=database,user=user,password=password)

>>> studentmath = pd.read_sql(sqlselect,connmysql)

>>> connmysql.close()

5.	 Rearrange the columns, set an index, and check for missing values.

Move the grade data to the left of the data frame, just after studentid. Also
move the freetime column to the right after traveltime and studytime.
Confirm that each row has an ID and that the IDs are unique, and set studentid
as the index:

>>> newcolorder = ['studentid', 'gradeperiod1',
'gradeperiod2',

... 'gradeperiod3', 'school', 'sex', 'age', 'famsize',

... 'mothereducation', 'fathereducation', 'traveltime',

... 'studytime', 'freetime', 'failures', 'famrel',

... 'goout']

>>> studentmath = studentmath[newcolorder]

>>> studentmath.studentid.count()

395

>>> studentmath.studentid.nunique()

395

>>> studentmath.set_index('studentid', inplace=True)

6.	 Use the data frame's count function to check for missing values:

>>> studentmath.count()

gradeperiod1 395

gradeperiod2 395

gradeperiod3 395

school 395

sex 395

age 395

Importing data from SQL databases 21

famsize 395

mothereducation 395

fathereducation 395

traveltime 395

studytime 395

freetime 395

failures 395

famrel 395

goout 395

dtype: int64

7.	 Replace coded data values with more informative values.

Create a dictionary with the replacement values for the columns, and then use
replace to set those values:

>>> setvalues={"famrel":{1:"1:very
bad",2:"2:bad",3:"3:neutral",

... 4:"4:good",5:"5:excellent"},

... "freetime":{1:"1:very low",2:"2:low",3:"3:neutral",

... 4:"4:high",5:"5:very high"},

... "goout":{1:"1:very low",2:"2:low",3:"3:neutral",

... 4:"4:high",5:"5:very high"},

... "mothereducation":{0:np.nan,1:"1:k-4",2:"2:5-9",

... 3:"3:secondary ed",4:"4:higher ed"},

... "fathereducation":{0:np.nan,1:"1:k-4",2:"2:5-9",

... 3:"3:secondary ed",4:"4:higher ed"}}

>>> studentmath.replace(setvalues, inplace=True)

>>> setvalueskeys = [k for k in setvalues]

8.	 Change the type for columns with the changed data to category.

Check for any changes in memory usage:
>>> studentmath[setvalueskeys].memory_usage(index=False)

famrel 3160

freetime 3160

goout 3160

mothereducation 3160

22 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

fathereducation 3160

dtype: int64

>>> for col in studentmath[setvalueskeys].columns:

... studentmath[col] = studentmath[col].
astype('category')

...

>>> studentmath[setvalueskeys].memory_usage(index=False)

famrel 595

freetime 595

goout 595

mothereducation 587

fathereducation 587

dtype: int64

9.	 Calculate percentages for values in the famrel column.

Run value_counts and set normalize to True to generate percentages:
>>> studentmath['famrel'].value_counts(sort=False,
normalize=True)

1:very bad 0.02

2:bad 0.05

3:neutral 0.17

4:good 0.49

5:excellent 0.27

Name: famrel, dtype: float64

10.	 Use apply to calculate percentages for multiple columns:

>>> studentmath[['freetime','goout']].\

... apply(pd.Series.value_counts, sort=False,
normalize=True)

 freetime goout

1:very low 0.05 0.06

2:low 0.16 0.26

3:neutral 0.40 0.33

4:high 0.29 0.22

5:very high 0.10 0.13

Importing data from SQL databases 23

>>>

>>> studentmath[['mothereducation','fathereducation']].\

... apply(pd.Series.value_counts, sort=False,
normalize=True)

 mothereducation fathereducation

1:k-4 0.15 0.21

2:5-9 0.26 0.29

3:secondary ed 0.25 0.25

4:higher ed 0.33 0.24

The preceding steps retrieved a data table from a SQL database, loaded that data into
pandas, and did some initial data checking and cleaning.

How it works…
Since data from enterprise systems is typically better structured than CSV or Excel files,
we do not need to do things such as skip rows or deal with different logical data types in
a column. But some massaging is still usually required before we can begin exploratory
analysis. There are often more columns than we need, and some column names are not
intuitive or not ordered in the best way for analysis. The meaningfulness of many data
values is not stored in the data table, to avoid entry errors and save on storage space. For
example, 3 is stored for mother's education rather than secondary education.
It is a good idea to reconstruct that coding as early in the cleaning process as possible.

To pull data from a SQL database server, we need a connection object to authenticate us
on the server, and a SQL select string. These can be passed to read_sql to retrieve the
data and load it into a pandas data frame. I usually use the SQL SELECT statement to do
a bit of cleanup of column names at this point. I sometimes also reorder columns, but I do
that later in this recipe.

We set the index in step 5, first confirming that every row has a value for studentid and
that it is unique. This is often more important when working with enterprise data because
we will almost always need to merge the retrieved data with other data files on the system.
Although an index is not required for this merging, the discipline of setting one prepares
us for the tricky business of merging data down the road. It will also likely improve the
speed of the merge.

We use the data frame's count function to check for missing values and there are no
missing values – non-missing values is 395 (the number of rows) for every column. This
is almost too good to be true. There may be values that are logically missing; that is, valid
numbers that nonetheless connote missing values, such as -1, 0, 9, or 99. We address this
possibility in the next step.

24 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

Step 7 demonstrates a useful technique for replacing data values for multiple columns. We
create a dictionary to map original values to new values for each column, and then run
it using replace. To reduce the amount of storage space taken up by the new verbose
values, we convert the data type of those columns to category. We do this by generating
a list of the keys of our setvalues dictionary – setvalueskeys = [k for k
in setvalues] generates [famrel, freetime, goout, mothereducation, and
fathereducation]. We then iterate over those five columns and use the astype
method to change the data type to category. Notice that the memory usage for those
columns is reduced substantially.

Finally, we check the assignment of new values by using value_counts to view relative
frequencies. We use apply because we want to run value_counts on multiple
columns. To avoid value_counts sorting by frequency, we set sort to False.

The data frame replace method is also a handy tool for dealing with logical missing
values that will not be recognized as missing when retrieved by read_sql. 0 values
for mothereducation and fathereducation seem to fall into that category.
We fix this problem in the setvalues dictionary by indicating that 0 values for
mothereducation and fathereducation should be replaced with NaN. It is
important to address these kinds of missing values shortly after the initial import because
they are not always obvious and can significantly impact all subsequent work.

Users of packages such as SPPS, SAS, and R will notice the difference between this
approach and value labels in SPSS and R, and proc format in SAS. In pandas, we need
to change the actual data to get more informative values. However, we reduce how much
data is actually stored by giving the column a category data type, similar to factors in R.

There's more…
I moved the grade data to near the beginning of the data frame. I find it helpful to have
potential target or dependent variables in the leftmost columns, to keep them at the
forefront of my thinking. It is also helpful to keep similar columns together. In this
example, personal demographic variables (sex, age) are next to one another, as are family
variables (mothereducation, fathereducation), and how students spend their
time (traveltime, studytime, and freetime).

You could have used map instead of replace in step 7. Prior to version 19.2 of pandas,
map was significantly more efficient. Since then, the difference in efficiency has been much
smaller. If you are working with a very large dataset, the difference may still be enough to
consider using map.

Importing SPSS, Stata, and SAS data 25

See also
The recipes in Chapter 8, Addressing Data Issues when Combining DataFrames, go
into detail on merging data. We will take a closer look at bivariate and multivariate
relationships between variables in Chapter 4, Identifying Missing Values and Outliers in
Subsets of Data. We demonstrate how to use some of these same approaches in packages
such as SPSS, SAS, and R in subsequent recipes in this chapter.

Importing SPSS, Stata, and SAS data
We will use pyreadstat to read data from three popular statistical packages into
pandas. The key advantage of pyreadstat is that it allows data analysts to import data
from these packages without losing metadata, such as variable and value labels.

The SPSS, Stata, and SAS data files we receive often come to us with the data issues of
CSV and Excel files and SQL databases having been resolved. We do not typically have the
invalid column names, changes in data types, and unclear missing values that we can get
with CSV or Excel files, nor do we usually get the detachment of data from business logic,
such as the meaning of data codes, that we often get with SQL data. When someone or
some organization shares a data file from one of these packages with us, they have often
added variable labels and value labels for categorical data. For example, a hypothetical
data column called presentsat has the variable label overall satisfaction
with presentation and value labels 1-5, with 1 being not at all satisfied and 5 being
highly satisfied.

The challenge is retaining that metadata when importing data from those systems into
pandas. There is no precise equivalent to variable and value labels in pandas, and built-in
tools for importing SAS, Stata, and SAS data lose the metadata. In this recipe, we will use
pyreadstat to load variable and value label information and use a couple of techniques
for representing that information in pandas.

Getting ready
This recipe assumes you have installed the pyreadstat package. If it is not installed,
you can install it with pip. From the terminal, or PowerShell (in Windows), enter pip
install pyreadstat. You will need the SPSS, Stata, and SAS data files for this recipe
to run the code.

We will work with data from the United States National Longitudinal Survey of
Youth (NLS).

26 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

Note
The National Longitudinal Survey of Youth is conducted by the United States
Bureau of Labor Statistics. This survey started with a cohort of individuals in
1997 who were born between 1980 and 1985, with annual follow-ups each year
through 2017. For this recipe, I pulled 42 variables on grades, employment,
income, and attitudes toward government, from the hundreds of data items on
the survey. Separate files for SPSS, Stata, and SAS can be downloaded from the
repository. NLS data can be downloaded from https://www.nlsinfo.
org/investigator/pages/search.

How to do it...
We will import data from SPSS, Stata, and SAS, retaining metadata such as value labels:

1.	 Import pandas, numpy, and pyreadstat.

This step assumes that you have installed pyreadstat:
>>> import pandas as pd

>>> import numpy as np

>>> import pyreadstat

2.	 Retrieve the SPSS data.

Pass a path and filename to the read_sav method of pyreadstat. Display the
first few rows and a frequency distribution. Notice that the column names and value
labels are non-descriptive, and that read_sav creates both a pandas data frame
and a meta object:

>>> nls97spss, metaspss = pyreadstat.read_sav('data/
nls97.sav')

>>> nls97spss.dtypes

R0000100 float64

R0536300 float64

R0536401 float64

...

U2962900 float64

U2963000 float64

Z9063900 float64

dtype: object

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search

Importing SPSS, Stata, and SAS data 27

>>> nls97spss.head()

 R0000100 R0536300 ... U2963000 Z9063900

0 1 2 ... nan 52

1 2 1 ... 6 0

2 3 2 ... 6 0

3 4 2 ... 6 4

4 5 1 ... 5 12

[5 rows x 42 columns]

>>> nls97spss['R0536300'].value_counts(normalize=True)

1.00 0.51

2.00 0.49

Name: R0536300, dtype: float64

3.	 Grab the metadata to improve column labels and value labels.

The metaspss object created when we called read_sav has the column labels
and the value labels from the SPSS file. Use the variable_value_labels
dictionary to map values to value labels for one column (R0536300). (This does
not change the data. It only improves our display when we run value_counts.)
Use the set_value_labels method to actually apply the value labels to the
data frame:

>>> metaspss.variable_value_labels['R0536300']

{0.0: 'No Information', 1.0: 'Male', 2.0: 'Female'}

>>> nls97spss['R0536300'].\

... map(metaspss.variable_value_labels['R0536300']).\

... value_counts(normalize=True)

Male 0.51

Female 0.49

Name: R0536300, dtype: float64

>>> nls97spss = pyreadstat.set_value_labels(nls97spss,
metaspss, formats_as_category=True)

28 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

4.	 Use column labels in the metadata to rename the columns.

To use the column labels from metaspss in our data frame, we can simply assign
the column labels in metaspss to our data frame's column names. Clean up the
column names a bit by changing them to lowercase, changing spaces to underscores,
and removing all remaining non-alphanumeric characters:

>>> nls97spss.columns = metaspss.column_labels

>>> nls97spss['KEY!SEX (SYMBOL) 1997'].value_
counts(normalize=True)

Male 0.51

Female 0.49

Name: KEY!SEX (SYMBOL) 1997, dtype: float64

>>> nls97spss.dtypes

PUBID - YTH ID CODE 1997 float64

KEY!SEX (SYMBOL) 1997 category

KEY!BDATE M/Y (SYMBOL) 1997 float64

KEY!BDATE M/Y (SYMBOL) 1997 float64

CV_SAMPLE_TYPE 1997 category

KEY!RACE_ETHNICITY (SYMBOL) 1997 category

...

HRS/WK R WATCHES TELEVISION 2017 category

HRS/NIGHT R SLEEPS 2017 float64

CVC_WKSWK_YR_ALL L99 float64

dtype: object

>>> nls97spss.columns = nls97spss.columns.\

... str.lower().\

... str.replace(' ','_').\

... str.replace('[^a-z0-9_]', '')

>>> nls97spss.set_index('pubid__yth_id_code_1997',
inplace=True)

Importing SPSS, Stata, and SAS data 29

5.	 Simplify the process by applying the value labels from the beginning.

The data values can actually be applied in the initial call to read_sav by setting
apply_value_formats to True. This eliminates the need to call the set_
value_labels function later:

>>> nls97spss, metaspss = pyreadstat.read_sav('data/
nls97.sav', apply_value_formats=True, formats_as_
category=True)

>>> nls97spss.columns = metaspss.column_labels

>>> nls97spss.columns = nls97spss.columns.\

... str.lower().\

... str.replace(' ','_').\

... str.replace('[^a-z0-9_]', '')

6.	 Show the columns and a few rows:

>>> nls97spss.dtypes

pubid__yth_id_code_1997 float64

keysex_symbol_1997 category

keybdate_my_symbol_1997 float64

keybdate_my_symbol_1997 float64

...

hrsnight_r_sleeps_2017 float64

cvc_wkswk_yr_all_l99 float64

dtype: object

>>> nls97spss.head()

 pubid__yth_id_code_1997 keysex_symbol_1997 ... \

0 1 Female ...

1 2 Male ...

2 3 Female ...

3 4 Female ...

4 5 Male ...

 hrsnight_r_sleeps_2017 cvc_wkswk_yr_all_l99

0 nan 52

1 6 0

2 6 0

30 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

3 6 4

4 5 12

[5 rows x 42 columns]

7.	 Run frequencies on one of the columns and set the index:

>>> nls97spss.govt_responsibility__provide_jobs_2006.\

... value_counts(sort=False)

Definitely should be 454

Definitely should not be 300

Probably should be 617

Probably should not be 462

Name: govt_responsibility__provide_jobs_2006, dtype:
int64

>>> nls97spss.set_index('pubid__yth_id_code_1997',
inplace=True)

8.	 Import the Stata data, apply value labels, and improve the column headings.

Use the same methods for the Stata data that we use for the SPSS data:
>>> nls97stata, metastata = pyreadstat.read_dta('data/
nls97.dta', apply_value_formats=True, formats_as_
category=True)

>>> nls97stata.columns = metastata.column_labels

>>> nls97stata.columns = nls97stata.columns.\

... str.lower().\

... str.replace(' ','_').\

... str.replace('[^a-z0-9_]', '')

>>> nls97stata.dtypes

pubid__yth_id_code_1997 float64

keysex_symbol_1997 category

keybdate_my_symbol_1997 float64

keybdate_my_symbol_1997 float64

...

hrsnight_r_sleeps_2017 float64

cvc_wkswk_yr_all_l99 float64

dtype: object

Importing SPSS, Stata, and SAS data 31

9.	 View a few rows of the data and run frequency:

>>> nls97stata.head()

 pubid__yth_id_code_1997 keysex_symbol_1997 ... \

0 1 Female ...

1 2 Male ...

2 3 Female ...

3 4 Female ...

4 5 Male ...

 hrsnight_r_sleeps_2017 cvc_wkswk_yr_all_l99

0 -5 52

1 6 0

2 6 0

3 6 4

4 5 12

[5 rows x 42 columns]

>>> nls97stata.govt_responsibility__provide_jobs_2006.\

... value_counts(sort=False)

-5.0 1425

-4.0 5665

-2.0 56

-1.0 5

Definitely should be 454

Definitely should not be 300

Probably should be 617

Probably should not be 462

Name: govt_responsibility__provide_jobs_2006, dtype:
int64

10.	 Fix the logical missing values that show up with the Stata data and set an index:

>>> nls97stata.min()

pubid__yth_id_code_1997 1

keysex_symbol_1997 Female

keybdate_my_symbol_1997 1

keybdate_my_symbol_1997 1,980

32 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

...

cv_bio_child_hh_2017 -5

cv_bio_child_nr_2017 -5

hrsnight_r_sleeps_2017 -5

cvc_wkswk_yr_all_l99 -4

dtype: object

>>> nls97stata.replace(list(range(-9,0)), np.nan,
inplace=True)

>>> nls97stata.min()

pubid__yth_id_code_1997 1

keysex_symbol_1997 Female

keybdate_my_symbol_1997 1

keybdate_my_symbol_1997 1,980

...

cv_bio_child_hh_2017 0

cv_bio_child_nr_2017 0

hrsnight_r_sleeps_2017 0

cvc_wkswk_yr_all_l99 0

dtype: object

>>> nls97stata.set_index('pubid__yth_id_code_1997',
inplace=True)

11.	 Retrieve the SAS data, using the SAS catalog file for value labels:

The data values for SAS are stored in a catalog file. Setting the catalog file path and
filename retrieves the value labels and applies them:

>>> nls97sas, metasas = pyreadstat.read_sas7bdat('data/
nls97.sas7bdat', catalog_file='data/nlsformats3.
sas7bcat', formats_as_category=True)

>>> nls97sas.columns = metasas.column_labels

>>>

>>> nls97sas.columns = nls97sas.columns.\

... str.lower().\

... str.replace(' ','_').\

... str.replace('[^a-z0-9_]', '')

>>>

Importing SPSS, Stata, and SAS data 33

>>> nls97sas.head()

 pubid__yth_id_code_1997 keysex_symbol_1997 ... \

0 1 Female ...

1 2 Male ...

2 3 Female ...

3 4 Female ...

4 5 Male ...

 hrsnight_r_sleeps_2017 cvc_wkswk_yr_all_l99

0 nan 52

1 6 0

2 6 0

3 6 4

4 5 12

[5 rows x 42 columns]

>>> nls97sas.keysex_symbol_1997.value_counts()

Male 4599

Female 4385

Name: keysex_symbol_1997, dtype: int64

>>> nls97sas.set_index('pubid__yth_id_code_1997',
inplace=True)

This demonstrates how to import SPSS, SAS, and Stata data without losing important
metadata.

How it works...
The read_sav, read_dta, and read_sas7bdat methods of pyreadstat, for
SPSS, Stata, and SAS data files, respectively, work in a similar manner. Value labels can be
applied when reading in the data by setting apply_value_formats to True for SPSS
and Stata files (steps 5 and 8), or by providing a catalog file path and filename for SAS (step
11). We can set formats_as_category to True to change the data type to category
for those columns where the data values will change. The meta object has the column
names and the column labels from the statistical package, so metadata column labels can
be assigned to pandas data frame column names at any point (nls97spss.columns =
metaspss.column_labels). We can even revert to the original column headings after
assigning meta column labels to them by setting pandas column names to the metadata
column names (nls97spss.columns = metaspss.column_names).

34 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

In step 3, we read the SPSS data without applying value labels. We looked at the dictionary
for one variable (metaspss.variable_value_labels['R0536300']), but we
could have viewed it for all variables (metaspss.variable_value_labels). When
we are satisfied that the labels make sense, we can set them by calling the set_value_
labels function. This is a good approach when you do not know the data well and want
to inspect the labels before applying them.

The column labels from the meta object are often a better choice than the original column
headings. Column headings can be quite cryptic, particularly when the SPSS, Stata,
or SAS file is based on a large survey, as in this example. But the labels are not usually
ideal for column headings either. They sometimes have spaces, capitalization that is not
helpful, and non-alphanumeric characters. We chain some string operations to switch to
lowercase, replace spaces with underscores, and remove non-alphanumeric characters.

Handling missing values is not always straightforward with these data files, since there
are often many reasons why data is missing. If the file is from a survey, the missing value
may be because of a survey skip pattern, or a respondent failed to respond, or the response
was invalid, and so on. The NLS has 9 possible values for missing, from -1 to -9. The SPSS
import automatically set those values to NaN, while the Stata import retained the original
values. (We could have gotten the SPSS import to retain those values by setting user_
missing to True.) For the Stata data, we need to tell it to replace all values from -1 to -9
with NaN. We do this by using the data frame's replace function and passing it a list of
integers from -9 to -1 (list(range(-9,0))).

There's more…
You may have noticed similarities between this recipe and the previous one in terms
of how value labels are set. The set_value_labels function is like the data frame
replace operation we used to set value labels in that recipe. We passed a dictionary
to replace that mapped columns to value labels. The set_value_labels function
in this recipe essentially does the same thing, using the variable_value_labels
property of the meta object as the dictionary.

Data from statistical packages is often not as well structured as SQL databases tend to
be in one significant way. Since they are designed to facilitate analysis, they often violate
database normalization rules. There is often an implied relational structure that might
have to be unflattened at some point. For example, the data combines individual and event
level data – person and hospital visits, brown bear and date emerged from hibernation.
Often, this data will need to be reshaped for some aspects of the analysis.

Importing R data 35

See also
The pyreadstat package is nicely documented at https://github.com/Roche/
pyreadstat. The package has many useful options for selecting columns and handling
missing data that space did not permit me to demonstrate in this recipe.

Importing R data
We will use pyreadr to read an R data file into pandas. Since pyreadr cannot capture
the metadata, we will write code to reconstruct value labels (analogous to R factors)
and column headings. This is similar to what we did in the Importing data from SQL
databases recipe.

The R statistical package is, in many ways, similar to the combination of Python and
pandas, at least in its scope. Both have strong tools across a range of data preparation and
data analysis tasks. Some data scientists work with both R and Python, perhaps doing data
manipulation in Python and statistical analysis in R, or vice-versa, depending on their
preferred packages. But there is currently a scarcity of tools for reading data saved in R,
as rds or rdata files, into Python. The analyst often saves the data as a CSV file first,
and then loads the CSV file into Python. We will use pyreadr, from the same author as
pyreadstat, because it does not require an installation of R.

When we receive an R file, or work with one we have created ourselves, we can count on it
being fairly well structured, at least compared to CSV or Excel files. Each column will have
only one data type, column headings will have appropriate names for Python variables,
and all rows will have the same structure. However, we may need to restore some of the
coding logic, as we did when working with SQL data.

Getting ready
This recipe assumes you have installed the pyreadr package. If it is not installed, you
can install it with pip. From the terminal, or powershell (in Windows), enter pip
install pyreadr. You will need the R rds file for this recipe in order to run the code.

We will again work with the National Longitudinal Survey in this recipe.

https://github.com/Roche/pyreadstat
https://github.com/Roche/pyreadstat

36 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

How to do it…
We will import data from R without losing important metadata:

1.	 Load pandas, numpy, pprint, and the pyreadr package:

>>> import pandas as pd

>>> import numpy as np

>>> import pyreadr

>>> import pprint

2.	 Get the R data.

Pass the path and filename to the read_r method to retrieve the R data and load
it into memory as a pandas data frame. read_r can return one or more objects.
When reading an rds file (as opposed to an rdata file), it will return one object,
having the key None. We indicate None to get the pandas data frame:

>>> nls97r = pyreadr.read_r('data/nls97.rds')[None]

>>> nls97r.dtypes

R0000100 int32

R0536300 int32

...

U2962800 int32

U2962900 int32

U2963000 int32

Z9063900 int32

dtype: object

>>> nls97r.head(10)

 R0000100 R0536300 R0536401 ... U2962900 U2963000
Z9063900

0 1 2 9 ... -5 -5
52

1 2 1 7 ... 2 6
0

2 3 2 9 ... 2 6
0

3 4 2 2 ... 2 6
4

Importing R data 37

4 5 1 10 ... 2 5
12

5 6 2 1 ... 2 6
6

6 7 1 4 ... -5 -5
0

7 8 2 6 ... -5 -5
39

8 9 1 10 ... 2 4
0

9 10 1 3 ... 2 6
0

[10 rows x 42 columns]

3.	 Set up dictionaries for value labels and column headings.

Load a dictionary that maps columns to the value labels and create a list of preferred
column names as follows:

>>> with open('data/nlscodes.txt', 'r') as reader:

... setvalues = eval(reader.read())

...

>>> pprint.pprint(setvalues)

{'R0536300': {0.0: 'No Information', 1.0: 'Male', 2.0:
'Female'},

 'R1235800': {0.0: 'Oversample', 1.0: 'Cross-sectional'},

 'S8646900': {1.0: '1. Definitely',

 2.0: '2. Probably ',

 3.0: '3. Probably not',

 4.0: '4. Definitely not'}}

...

>>> newcols =
['personid','gender','birthmonth','birthyear',

... 'sampletype', 'category','satverbal','satmath',

...
'gpaoverall','gpaeng','gpamath','gpascience','govjobs',

...
'govprices','govhealth','goveld','govind','govunemp',

38 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

... 'govinc','govcollege','govhousing','govenvironment',

...
'bacredits','coltype1','coltype2','coltype3','coltype4',

...
'coltype5','coltype6','highestgrade','maritalstatus',

... 'childnumhome','childnumaway','degreecol1',

... 'degreecol2','degreecol3','degreecol4','wageincome',

... 'weeklyhrscomputer','weeklyhrstv',

... 'nightlyhrssleep','weeksworkedlastyear']

4.	 Set value labels and missing values, and change selected columns to category
data type.

Use the setvalues dictionary to replace existing values with value labels.
Replace all values from -9 to -1 with NaN:

>>> nls97r.replace(setvalues, inplace=True)

>>> nls97r.head()

 R0000100 R0536300 ... U2963000 Z9063900

0 1 Female ... -5 52

1 2 Male ... 6 0

2 3 Female ... 6 0

3 4 Female ... 6 4

4 5 Male ... 5 12

[5 rows x 42 columns]

>>> nls97r.replace(list(range(-9,0)), np.nan,
inplace=True)

>>> for col in nls97r[[k for k in setvalues]].columns:

... nls97r[col] = nls97r[col].astype('category')

...

>>> nls97r.dtypes

R0000100 int64

R0536300 category

R0536401 int64

R0536402 int64

R1235800 category

Importing R data 39

 ...

U2857300 category

U2962800 category

U2962900 category

U2963000 float64

Z9063900 float64

Length: 42, dtype: object

5.	 Set meaningful column headings:

>>> nls97r.columns = newcols

>>> nls97r.dtypes

personid int64

gender category

birthmonth int64

birthyear int64

sampletype category

 ...

wageincome category

weeklyhrscomputer category

weeklyhrstv category

nightlyhrssleep float64

weeksworkedlastyear float64

Length: 42, dtype: object

This shows how R data files can be imported into pandas and value labels assigned.

How it works…
Reading R data into pandas with pyreadr is fairly straightforward. Passing a filename
to the read_r function is all that is required. Since read_r can return multiple objects
with one call, we need to specify which object. When reading an rds file (as opposed to
an rdata file), only one object is returned. It has the key None.

In step 3, we load a dictionary that maps our variables to value labels, and a list for our
preferred column headings. In step 4 we apply the value labels. We also change the data
type to category for the columns where we applied the values. We do this by generating
a list of the keys of our setvalues dictionary with [k for k in setvalues] and
then iterating over those columns.

40 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

We change the column headings in step 5 to ones that are more intuitive. Note that the
order matters here. We need to set the value labels before changing the column names,
since the setvalues dictionary is based on the original column headings.

The main advantage of using pyreadr to read R files directly into pandas is that we do
not have to convert the R data into a CSV file first. Once we have written our Python
code to read the file, we can just rerun it whenever the R data changes. This is particularly
helpful when we do not have R on the machine where we are working.

There's more…
pyreadr is able to return multiple data frames. This is useful when we save several data
objects in R as an rdata file. We can return all of them with one call.

print is a handy tool for improving the display of Python dictionaries.

See also
Clear instructions and examples for pyreadr are available at https://github.com/
ofajardo/pyreadr.

Feather files, a relatively new format, can be read by both R and Python. I discuss those
files in the next recipe.

We could have used rpy2 instead of pyreadr to import R data. rpy2 requires that
R also be installed, but it is more powerful than pyreadr. It will read R factors and
automatically set them to pandas data frame values. See the following code:

>>> import rpy2.robjects as robjects

>>> from rpy2.robjects import pandas2ri

>>> pandas2ri.activate()

>>> readRDS = robjects.r['readRDS']

>>> nls97withvalues = readRDS('data/nls97withvalues.rds')

>>> nls97withvalues

R0000100 R0536300 R0536401 ... U2962900
U2963000

1 1 Female 9 ... NaN
-2147483648

2 2 Male 7 ... 3 to 10 hours a week
6

https://github.com/ofajardo/pyreadr
https://github.com/ofajardo/pyreadr

Persisting tabular data 41

3 3 Female 9 ... 3 to 10 hours a week
6

4 4 Female 2 ... 3 to 10 hours a week
6

5 5 Male 10 ... 3 to 10 hours a week
5

...

...

8980 9018 Female 3 ... 3 to 10 hours a week
4

8981 9019 Male 9 ... 3 to 10 hours a week
6

8982 9020 Male 7 ... NaN
-2147483648

8983 9021 Male 7 ... 3 to 10 hours a week
7

8984 9022 Female 1 ...Less than 2 hours per week
7

[8984 rows x 42 columns]

This generates an unusual -2147483648 values. This is what happened when readRDS
interpreted missing data in numeric columns. A global replace of that number with NaN,
after confirming that that is not a valid value, would be a good next step.

Persisting tabular data
We persist data, copy it from memory to local or remote storage, for several reasons: to be
able to access the data without having to repeat the steps we used to generate it; to share
the data with others; or to make it available for use with different software. In this recipe,
we save data that we have loaded into a pandas data frame as different file types (CSV,
Excel, pickle, and feather).

Another important, but sometimes overlooked, reason to persist data is to preserve
some segment of our data that needs to be examined more closely; perhaps it needs to be
scrutinized by others before our analysis can be completed. For analysts who work with
operational data in medium- to large-sized organizations, this process is part of the daily
data cleaning workflow.

42 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

In addition to these reasons for persisting data, our decisions about when and how to
serialize data are shaped by several other factors: where we are in terms of our data
analysis projects, the hardware and software resources of the machine(s) saving and
reloading the data, and the size of our dataset. Analysts end up having to be much
more intentional when saving data than they are when pressing Ctrl + S in their word
processing applications.

Once we persist data, it is stored separately from the logic that we used to create it. I find
this to be one of the most important threats to the integrity of our analysis. Often, we end
up loading data that we saved some time in the past (a week ago? a month ago? a year
ago?) and forget how a variable was defined and how it relates to other variables. If we
are in the middle of a data cleaning task, it is best not to persist our data, so long as our
workstation and network can easily handle the burden of regenerating the data. It is a
good idea to persist data only once we have reached milestones in our work.

Beyond the question of when to persist data, there is the question of how. If we are
persisting it for our own reuse with the same software, it is best to save it in a binary
format native to that software. That is pretty straightforward for tools such as SPSS,
SAS, Stata, and R, but not so much for pandas. But that is good news in a way. We have
lots of choices, from CSV and Excel to pickle and feather. We save to all these file types
in this recipe.

Getting ready
You will need to install feather if you do not have it on your system. You can do that
by entering pip install pyarrow in a terminal window or powershell (in
Windows). If you do not already have a subfolder named Views in your chapter 1
folder, you will need to create it in order to run the code for this recipe.

Note
This dataset, taken from the Global Historical Climatology Network integrated
database, is made available for public use by the United States National Oceanic
and Atmospheric Administration at https://www.ncdc.noaa.gov/
data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-
monthly-version-4. This is just a 100,000-row sample of the full dataset,
which is also available in the repository.

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4

Persisting tabular data 43

How to do it…
We will load a CSV file into pandas and then save it as a pickle file and as a feather file. We
will also save subsets of the data in CSV and Excel formats:

1.	 Import pandas and pyarrow and adjust the display.

Pyarrow needs to be imported in order to save pandas to feather:
>>> import pandas as pd

>>> import pyarrow

2.	 Load the land temperatures CSV file into pandas, drop rows with missing data, and
set an index:

>>> landtemps = pd.read_csv('data/landtempssample.csv',

...
names=['stationid','year','month','avgtemp','latitude',

...
'longitude','elevation','station','countryid','country'],

... skiprows=1,

... parse_dates=[['month','year']],

... low_memory=False)

>>>

>>> landtemps.rename(columns={'month_
year':'measuredate'}, inplace=True)

>>> landtemps.dropna(subset=['avgtemp'], inplace=True)

>>> landtemps.dtypes

measuredate datetime64[ns]

stationid object

avgtemp float64

latitude float64

longitude float64

elevation float64

station object

countryid object

country object

dtype: object

>>> landtemps.set_index(['measuredate','stationid'],
inplace=True)

44 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

3.	 Write extreme values for temperature to CSV and Excel files.

Use the quantile method to select outlier rows, those at the 1-in-1,000 level at
each end of the distribution:

>>> extremevals = landtemps[(landtemps.avgtemp <
landtemps.avgtemp.quantile(.001)) | (landtemps.avgtemp >
landtemps.avgtemp.quantile(.999))]

>>> extremevals.shape

(171, 7)

>>> extremevals.sample(7)

 avgtemp ... country

measuredate stationid ...

2013-08-01 QAM00041170 35.30 ... Qatar

2005-01-01 RSM00024966 -40.09 ... Russia

1973-03-01 CA002401200 -40.26 ... Canada

2007-06-01 KU000405820 37.35 ... Kuwait

1987-07-01 SUM00062700 35.50 ... Sudan

1998-02-01 RSM00025325 -35.71 ... Russia

1968-12-01 RSM00024329 -43.20 ... Russia

[7 rows x 7 columns]

>>> extremevals.to_excel('views/tempext.xlsx')

>>> extremevals.to_csv('views/tempext.csv')

4.	 Save to pickle and feather files.

The index needs to be reset in order to save a feather file:
>>> landtemps.to_pickle('data/landtemps.pkl')

>>> landtemps.reset_index(inplace=True)

>>> landtemps.to_feather("data/landtemps.ftr")

5.	 Load the pickle and feather files we just saved.

Notice that our index was preserved when saving and loading the pickle file:
>>> landtemps = pd.read_pickle('data/landtemps.pkl')

>>> landtemps.head(2).T

measuredate 2000-04-01 1940-05-01

stationid USS0010K01S CI000085406

Persisting tabular data 45

avgtemp 5.27 18.04

latitude 39.90 -18.35

longitude -110.75 -70.33

elevation 2,773.70 58.00

station INDIAN_CANYON ARICA

countryid US CI

country United States Chile

>>> landtemps = pd.read_feather("data/landtemps.ftr")

>>> landtemps.head(2).T

 0 1

measuredate 2000-04-01 00:00:00 1940-05-01 00:00:00

stationid USS0010K01S CI000085406

avgtemp 5.27 18.04

latitude 39.90 -18.35

longitude -110.75 -70.33

elevation 2,773.70 58.00

station INDIAN_CANYON ARICA

countryid US CI

country United States Chile

The previous steps demonstrate how to serialize pandas data frames using two different
formats, pickle and feather.

How it works...
Persisting pandas data is fairly straightforward. Data frames have to_csv, to_excel,
to_pickle, and to_feather methods. Pickling preserves our index.

There's more...
The advantage of storing data in CSV files is that saving it uses up very little additional
memory. The disadvantage is that writing CSV files is quite slow and we lose important
metadata, such as data types. (read_csv can often figure out the data type when we
reload the file, but not always.) Pickle files keep that data, but can burden a system that is
low on resources when serializing. Feather is easier on resources, and can be easily loaded
in R as well as Python, but we have to sacrifice our index in order to serialize. Also, the
authors of feather make no promises regarding long-term support.

46 Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

You may have noticed that I do not make a recommendation about what to use for data
serialization – other than to limit your persistence of full datasets to project milestones.
This is definitely one of those "right tools for the right job" kind of situations. I use CSV
or Excel files when I want to share a segment of a file with colleagues for discussion. I use
feather for ongoing Python projects, particularly when I am using a machine with sub-par
RAM and an outdated chip, and I am also using R. When I am wrapping up a project, I
pickle the data frames.

2
Anticipating Data

Cleaning Issues
when Importing
HTML and JSON

into pandas
This chapter continues our work on importing data from a variety of sources, and the initial
checks we should do on the data after importing it. Gradually, over the last 25 years, data
analysts have found that they increasingly need to work with data in non-tabular, semi-
structured forms. Sometimes they even create and persist data in those forms themselves.
We work with a common alternative to traditional tabular datasets in this chapter,
JSON, but the general concepts can be extended to XML and NoSQL data stores such as
MongoDB. We also go over common issues that occur when scraping data from websites.

48 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

In this chapter, we will work through the following recipes:

•	 Importing simple JSON data

•	 Importing more complicated JSON data from an API

•	 Importing data from web pages

•	 Persisting JSON data

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Importing simple JSON data
JavaScript Object Notation (JSON) has turned out to be an incredibly useful standard
for transferring data from one machine, process, or node to another. Often a client sends
a data request to a server, upon which that server queries the data in the local storage and
then converts it from something like a SQL Server table or tables into JSON, which the
client can consume. This is sometimes complicated further by the first server (say, a web
server) forwarding the request to a database server. JSON facilitates this, as does XML, by
doing the following:

•	 Being readable by humans

•	 Being consumable by most client devices

•	 Not being limited in structure

JSON is quite flexible, which means that it can accommodate just about anything. The
structure can even change within a JSON file, so different keys might be present at different
points. For example, the file might begin with some explanatory keys that have a very different
structure than the remaining data keys. Or some keys might be present in some cases, but not
others. We go over some approaches for dealing with that messiness (uh, I mean flexibility).

Getting ready
We are going to work with data on news stories about political candidates in this recipe.
This data is made available for public use at dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/0ZLHOK. I have combined the JSON
files there into one file and randomly selected 60,000 news stories from the combined
data. This sample (allcandidatenewssample.json) is available in the GitHub
repository of this book.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
http://dataverse.harvard.edu/dataset.xhtml?persistentId=doi
http://dataverse.harvard.edu/dataset.xhtml?persistentId=doi

Importing simple JSON data 49

We will do a little work with list and dictionary comprehensions in this recipe.
DataCamp has good guides to list comprehensions (https://www.datacamp.
com/community/tutorials/python-list-comprehension) and dictionary
comprehensions (https://www.datacamp.com/community/tutorials/
python-dictionary-comprehension) if you are feeling a little rusty.

How to do it…
We will import a JSON file into pandas after doing some data checking and cleaning:

1.	 Import the json and pprint libraries.

pprint improves the display of the lists and dictionaries that are returned when we
load JSON data:

>>> import pandas as pd

>>> import numpy as np

>>> import json

>>> import pprint

>>> from collections import Counter

2.	 Load the JSON data and look for potential issues.

Use the json load method to return data on news stories about political
candidates. load returns a list of dictionaries. Use len to get the size of the list,
which is the total number of news stories in this case. (Each list item is a dictionary
with keys for the title, source, and so on, and their respective values.) Use pprint
to display the first two dictionaries. Get the value from the source key for the first
list item:

>>> with open('data/allcandidatenewssample.json') as f:

... candidatenews = json.load(f)

...

>>> len(candidatenews)

60000

>>> pprint.pprint(candidatenews[0:2])

[{'date': '2019-12-25 10:00:00',

 'domain': 'www.nbcnews.com',

 'panel_position': 1,

https://www.datacamp.com/community/tutorials/python-list-comprehension
https://www.datacamp.com/community/tutorials/python-list-comprehension
https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
https://www.datacamp.com/community/tutorials/python-dictionary-comprehension

50 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

 'query': 'Michael Bloomberg',

 'source': 'NBC News',

 'story_position': 6,

 'time': '18 hours ago',

 'title': 'Bloomberg cuts ties with company using prison
inmates to make '

 'campaign calls',

 'url': 'https://www.nbcnews.com/politics/2020-election/
bloomberg-cuts-ties-company-using-prison-inmates-make-
campaign-calls-n1106971'},

 {'date': '2019-11-09 08:00:00',

 'domain': 'www.townandcountrymag.com',

 'panel_position': 1,

 'query': 'Amy Klobuchar',

 'source': 'Town & Country Magazine',

 'story_position': 3,

 'time': '18 hours ago',

 'title': "Democratic Candidates React to Michael
Bloomberg's Potential Run",

 'url': 'https://www.townandcountrymag.com/society/
politics/a29739854/michael-bloomberg-democratic-
candidates-campaign-reactions/'}]

>>> pprint.pprint(candidatenews[0]['source'])

'NBC News'

3.	 Check for differences in the structure of the dictionaries.

Use Counter to check for any dictionaries in the list with fewer than, or more
than, the nine keys that is normal. Look at a few of the dictionaries with almost no
data (those with just two keys) before removing them. Confirm that the remaining
list of dictionaries has the expected length – 60000-2382=57618:

>>> Counter([len(item) for item in candidatenews])

Counter({9: 57202, 2: 2382, 10: 416})

>>> pprint.pprint(next(item for item in candidatenews if
len(item)<9))

{'date': '2019-09-11 18:00:00', 'reason': 'Not
collected'}

Importing simple JSON data 51

>>> pprint.pprint(next(item for item in candidatenews if
len(item)>9))

{'category': 'Satire',

 'date': '2019-08-21 04:00:00',

 'domain': 'politics.theonion.com',

 'panel_position': 1,

 'query': 'John Hickenlooper',

 'source': 'Politics | The Onion',

 'story_position': 8,

 'time': '4 days ago',

 'title': ''And Then There Were 23,' Says Wayne Messam
Crossing Out '

 'Hickenlooper Photo \n'

 'In Elaborate Grid Of Rivals',

 'url': 'https://politics.theonion.com/and-then-there-
were-23-says-wayne-messam-crossing-ou-1837311060'}

>>> pprint.pprint([item for item in candidatenews if
len(item)==2][0:10])

[{'date': '2019-09-11 18:00:00', 'reason': 'Not
collected'},

 {'date': '2019-07-24 00:00:00', 'reason': 'No Top
stories'},

...

 {'date': '2019-01-03 00:00:00', 'reason': 'No Top
stories'}]

>>> candidatenews = [item for item in candidatenews if
len(item)>2]

>>> len(candidatenews)

57618

4.	 Generate counts from the JSON data.

Get the dictionaries just for Politico (a website that covers political news) and
display a couple of dictionaries:

>>> politico = [item for item in candidatenews if
item["source"] == "Politico"]

>>> len(politico)

2732

>>> pprint.pprint(politico[0:2])

52 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

[{'date': '2019-05-18 18:00:00',

 'domain': 'www.politico.com',

 'panel_position': 1,

 'query': 'Marianne Williamson',

 'source': 'Politico',

 'story_position': 7,

 'time': '1 week ago',

 'title': 'Marianne Williamson reaches donor threshold
for Dem debates',

 'url': 'https://www.politico.com/story/2019/05/09/
marianne-williamson-2020-election-1315133'},

 {'date': '2018-12-27 06:00:00',

 'domain': 'www.politico.com',

 'panel_position': 1,

 'query': 'Julian Castro',

 'source': 'Politico',

 'story_position': 1,

 'time': '1 hour ago',

 'title': "O'Rourke and Castro on collision course in
Texas",

 'url': 'https://www.politico.com/story/2018/12/27/
orourke-julian-castro-collision-texas-election-1073720'}]

5.	 Get the source data and confirm that it has the anticipated length.

Show the first few items in the new sources list. Generate a count of news stories
by source and display the 10 most popular sources. Notice that stories from The Hill
can have TheHill (without a space) or The Hill as the value for source:

>>> sources = [item.get('source') for item in
candidatenews]

>>> type(sources)

<class 'list'>

>>> len(sources)

57618

>>> sources[0:5]

['NBC News', 'Town & Country Magazine', 'TheHill', 'CNBC.
com', 'Fox News']

Importing simple JSON data 53

>>> pprint.pprint(Counter(sources).most_common(10))

[('Fox News', 3530),

 ('CNN.com', 2750),

 ('Politico', 2732),

 ('TheHill', 2383),

 ('The New York Times', 1804),

 ('Washington Post', 1770),

 ('Washington Examiner', 1655),

 ('The Hill', 1342),

 ('New York Post', 1275),

 ('Vox', 941)]

6.	 Fix any errors in the values in the dictionary.

Fix the source values for The Hill. Notice that The Hill is now the most
frequent source for news stories:

>>> for newsdict in candidatenews:

... newsdict.update((k, "The Hill") for k, v in
newsdict.items()

... if k == "source" and v == "TheHill")

...

>>> sources = [item.get('source') for item in
candidatenews]

>>> pprint.pprint(Counter(sources).most_common(10))

[('The Hill', 3725),

 ('Fox News', 3530),

 ('CNN.com', 2750),

 ('Politico', 2732),

 ('The New York Times', 1804),

 ('Washington Post', 1770),

 ('Washington Examiner', 1655),

 ('New York Post', 1275),

 ('Vox', 941),

 ('Breitbart', 799)]

54 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

7.	 Create a pandas DataFrame.

Pass the JSON data to the pandas DataFrame method. Convert the date column
to a datetime data type:

>>> candidatenewsdf = pd.DataFrame(candidatenews)

>>> candidatenewsdf.dtypes

title object

url object

source object

time object

date object

query object

story_position int64

panel_position object

domain object

category object

dtype: object

8.	 Confirm that we are getting the expected values for source.

Also, rename the date column:
>>> candidatenewsdf.rename(columns={'date':'storydate'},
inplace=True)

>>> candidatenewsdf.storydate = candidatenewsdf.
storydate.astype('datetime64[ns]')

>>> candidatenewsdf.shape

(57618, 10)

>>> candidatenewsdf.source.value_counts(sort=True).
head(10)

The Hill 3725

Fox News 3530

CNN.com 2750

Politico 2732

The New York Times 1804

Washington Post 1770

Washington Examiner 1655

New York Post 1275

Importing simple JSON data 55

Vox 941

Breitbart 799

Name: source, dtype: int64

We now have a pandas DataFrame with only the news stories where there is meaningful
data, and with the values for source fixed.

How it works…
The json.load method returns a list of dictionaries. This makes it possible to use
a number of familiar tools when working with this data: list methods, slicing, list
comprehensions, dictionary updates, and so on. There are times, maybe when you just
have to populate a list or count the number of individuals in a given category, when there
is no need to use pandas.

In steps 2 to 6, we use list methods to do many of the same checks we have done with
pandas in previous recipes. In step 3 we use Counter with a list comprehension
(Counter([len(item) for item in candidatenews])) to get the number of
keys in each dictionary. This tells us that there are 2,382 dictionaries with just 2 keys and
416 with 10. We use next to look for an example of dictionaries with fewer than 9 keys or
more than 9 keys to get a sense of the structure of those items. We use slicing to show 10
dictionaries with 2 keys to see if there is any data in those dictionaries. We then select only
those dictionaries with more than 2 keys.

In step 4 we create a subset of the list of dictionaries, one that just has source equal to
Politico, and take a look at a couple of items. We then create a list with just the source
data and use Counter to list the 10 most common sources in step 5.

Step 6 demonstrates how to replace key values conditionally in a list of dictionaries. In this
case, we update the key value to The Hill whenever key (k) is source and value
(v) is TheHill. The for k, v in newsdict.items() section is the unsung hero of
this line. It loops through all key/value pairs for all dictionaries in candidatenews.

It is easy to create a pandas DataFrame by passing the list of dictionaries to the pandas
DataFrame method. We do this in step 7. The main complication is that we need to
convert the date column from a string to a date, since dates are just strings in JSON.

There's more…
In steps 5 and 6 we use item.get('source') instead of item['source']. This is
handy when there might be missing keys in a dictionary. get returns None when the key
is missing, but we can use an optional second argument to specify a value to return.

56 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

I renamed the date column to storydate in step 8. This is not necessary, but is a good
idea. Not only does date not tell you anything about what the dates actually represent, it
is also so generic a column name that it is bound to cause problems at some point.

The news stories data fits nicely into a tabular structure. It makes sense to represent each
list item as one row, and the key/value pairs as columns and column values for that row.
There are no significant complications, such as key values that are themselves lists of
dictionaries. Imagine an authors key for each story with a list item for each author as
the key value, and that list item is a dictionary of information about the author. This is
not at all unusual when working with JSON data in Python. The next recipe shows how to
work with data structured in this way.

Importing more complicated JSON data from
an API
In the previous recipe, we discussed one significant advantage (and challenge) of working
with JSON data – its flexibility. A JSON file can have just about any structure its authors
can imagine. This often means that this data does not have the tabular structure of the
data sources we have discussed so far, and that pandas DataFrames have. Often, analysts
and application developers use JSON precisely because it does not insist on a tabular
structure. I know I do!

Retrieving data from multiple tables often requires us to do a one-to-many merge. Saving
that data to one table or file means duplicating data on the "one" side of the one-to-many
relationship. For example, student demographic data is merged with data on the courses
studied, and the demographic data is repeated for each course. With JSON, duplication
is not required to capture these items of data in one file. We can have data on the courses
studied nested within the data for each student.

But doing analysis with JSON structured in this way will eventually require us to either:
1) manipulate the data in a very different way than we are used to doing; or 2) convert
the JSON to a tabular form. We examine the first approach in the Classes that handle
non-tabular data structures recipe in Chapter 10, User-Defined Functions and Classes to
Automate Data Cleaning. This recipe takes the second approach. It uses a very handy tool
for converting selected nodes of JSON to a tabular structure – json_normalize.

We first use an API to get JSON data because that is how JSON is frequently consumed.
One advantage of retrieving the data with an API, rather than working from a file we have
saved locally, is that it is easier to rerun our code when the source data is refreshed.

Importing more complicated JSON data from an API 57

Getting ready
This recipe assumes you have the requests and pprint libraries already installed. If
they are not installed, you can install them with pip. From the terminal (or PowerShell in
Windows), enter pip install requests and pip install pprint.

The following is the structure of the JSON file that is created when using the collections
API of the Cleveland Museum of Art. There is a helpful info section at the beginning,
but we are interested in the data section. This data does not fit nicely into a tabular data
structure. There may be several citations objects and several creators objects for
each collection object. I have abbreviated the JSON file to save space:

{"info": { "total": 778, "parameters": {"african_american_
artists": "" }},

"data": [

{

"id": 165157,

"accession_number": "2007.158",

"title": "Fulton and Nostrand",

"creation_date": "1958",

"citations": [

 {

 "citation": "Annual Exhibition: Sculpture, Paintings...",

 "page_number": "Unpaginated, [8],[12]",

 "url": null

 },

 {

 "citation": "\"Moscow to See Modern U.S. Art,\" New
York...",

 "page_number": "P. 60",

 "url": null

 }]

"creators": [

 {

 "description": "Jacob Lawrence (American, 1917-2000)",

 "extent": null,

 "qualifier": null,

 "role": "artist",

58 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

 "birth_year": "1917",

 "death_year": "2000"

 }

]

 }

Note
The API used in this recipe is provided by the Cleveland Museum of
Art. It is available for public use at https://openaccess-api.
clevelandart.org/.

How to do it...
Create a DataFrame from the museum's collections data with one row for each
citation, and the title and creation_date duplicated:

1.	 Import the json, requests, and pprint libraries.

We need the requests library to use an API to retrieve JSON data. pprint
improves the display of lists and dictionaries:

>>> import pandas as pd

>>> import numpy as np

>>> import json

>>> import pprint

>>> import requests

2.	 Use an API to load the JSON data.

Make a get request to the collections API of the Cleveland Museum of Art. Use
the query string to indicate that you just want collections from African-American
artists. Display the first collection item. I have truncated the output for the first item
to save space:

>>> response = requests.get("https://openaccess-api.
clevelandart.org/api/artworks/?african_american_artists")

>>> camcollections = json.loads(response.text)

>>> print(len(camcollections['data']))

778

>>> pprint.pprint(camcollections['data'][0])

{'accession_number': '2007.158',

https://openaccess-api.clevelandart.org/
https://openaccess-api.clevelandart.org/

Importing more complicated JSON data from an API 59

 'catalogue_raisonne': None,

 'citations': [{'citation': 'Annual Exhibition:
Sculpture...',

 'page_number': 'Unpaginated, [8],[12]',

 'url': None},

 {'citation': '"Moscow to See Modern
U.S....',

 'page_number': 'P. 60',

 'url': None}]

 'collection': 'American - Painting',

 'creation_date': '1958',

 'creators': [{'biography': 'Jacob Lawrence (born
1917)...',

 'birth_year': '1917',

 'description': 'Jacob Lawrence
(American...)',

 'role': 'artist'}],

 'type': 'Painting'}

3.	 Flatten the JSON data.

Create a DataFrame from the JSON data using the json_normalize method.
Indicate that the number of citations will determine the number of rows, and that
accession_number, title, creation_date, collection, creators, and
type will be repeated. Observe that the data has been flattened by displaying the
first two observations, transposing them with the .T option to make it easier to view:

>>> camcollectionsdf=pd.json_
normalize(camcollections['data'],/

 'citations',['accession_number','title','creation_
date',/

 'collection','creators','type'])

>>> camcollectionsdf.head(2).T

 0 1

citation Annual Exhibiti... "Moscow to See
Modern...

page_number Unpaginated, P.
60

url None
None

60 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

accession_number 2007.158
2007.158

title Fulton and No... Fulton and
No...

creation_date 1958
1958

collection American - Pa... American -
Pa...

creators [{'description': 'J... [{'description':
'J...

type Painting
Painting

4.	 Pull the birth_year value from creators:

>>> creator = camcollectionsdf[:1].creators[0]

>>> type(creator[0])

<class 'dict'>

>>> pprint.pprint(creator)

[{'biography': 'Jacob Lawrence (born 1917) has been a
prominent art...',

 'birth_year': '1917',

 'death_year': '2000',

 'description': 'Jacob Lawrence (American, 1917-2000)',

 'extent': None,

 'name_in_original_language': None,

 'qualifier': None,

 'role': 'artist'}]

>>> camcollectionsdf['birthyear'] = camcollectionsdf.\

... creators.apply(lambda x: x[0]['birth_year'])

>>> camcollectionsdf.birthyear.value_counts().\

... sort_index().head()

1821 18

1886 2

1888 1

1892 13

1899 17

Name: birthyear, dtype: int64

Importing more complicated JSON data from an API 61

This gives us a pandas DataFrame with one row for each citation for each collection
item, with the collection information (title, creation_date, and so on) duplicated.

How it works…
We work with a much more interesting JSON file in this recipe than in the previous one.
Each object in the JSON file is an item in the collection of the Cleveland Museum of Art.
Nested within each collection item are one or more citations. The only way to capture this
information in a tabular DataFrame is to flatten it. There are also one or more dictionaries
for creators of the collection item (the artist or artists). That dictionary (or dictionaries)
contains the birth_year value that we want.

We want one row for every citation for all collection items. To understand this, imagine
that we are working with relational data and have a collections table and a citations
table, and that we are doing a one-to-many merge from collections to citations. We do
something similar with json_normalize by using citations as the second parameter.
That tells json_normalize to create one row for each citation and use the key values in
each citation dictionary – for citation, page_number, and url – as data values.

The third parameter in the call to json_normalize has the list of column names for
the data that will be repeated with each citation. Notice that access_number, title,
creation_date, collection, creators, and type are repeated in observations
one and two. Citation and page_number change. (url is the same value for the first
and second citations. Otherwise, it would also change.)

This still leaves us with the problem of the creators dictionaries (there can be more than
one creator). When we ran json_normalize it grabbed the value for each key we
indicated (in the third parameter) and stored it in the data for that column and row,
whether that value was simple text or a list of dictionaries, as is the case for creators.
We take a look at the first (and in this case, only) creators item for the first collections
row in step 10, naming it creator. (Note that the creators list is duplicated across all
citations for a collection item, just as the values for title, creation_date, and
so on are.)

We want the birth year for the first creator for each collection item, which can be found
at creator[0]['birth_year']. To create a birthyear series using this, we use
apply and a lambda function:

>>> camcollectionsdf['birthyear'] = camcollectionsdf.\

... creators.apply(lambda x: x[0]['birth_year'])

62 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

We take a closer look at lambda functions in Chapter 6, Cleaning and Exploring Data
with Series Operations. Here, it is helpful to think of the x as representing the creators
series, so x[0] gives us the list item we want, creators[0]. We grab the value from the
birth_year key.

There's more…
You may have noticed that we left out some of the JSON returned by the API in our call
to json_normalize. The first parameter that we passed to json_normalize was
camcollections['data']. Effectively, we ignore the info object at the beginning
of the JSON data. The information we want does not start until the data object. This is
not very different conceptually from the skiprows parameter in the second recipe of the
previous chapter. There is sometimes metadata like this at the beginning of JSON files.

See also
The preceding recipe demonstrates some useful techniques for doing data integrity checks
without pandas, including list operations and comprehensions. Those are all relevant for
the data in this recipe as well.

Importing data from web pages
We use Beautiful Soup in this recipe to scrape data from a web page and load that data
into pandas. Web scraping is very useful when there is data at a website that is updated
regularly, but there is no API. We can rerun our code to generate new data whenever the
page is updated.

Unfortunately, the web scrapers we build can be broken when the structure of the targeted
page changes. That is less likely to happen with APIs because they are designed for
data exchange, and carefully curated with that end in mind. The priority for most web
designers is the quality of the display of information, not the reliability and ease of data
exchange. This causes data cleaning challenges unique to web scraping, including HTML
elements that house the data being in surprising and changing locations, formatting tags
that obfuscate the underlying data, and explanatory text that aid data interpretation being
difficult to retrieve. In addition to these challenges, scraping presents data cleaning issues
that are familiar, such as changing data types in columns, less than ideal headings, and
missing values. We deal with data issues that occur most frequently in this recipe.

Importing data from web pages 63

Getting ready
You will need Beautiful Soup installed to run the code in this recipe. You can install it with
pip by entering pip install beautifulsoup4 in a terminal window or Windows
PowerShell.

We will scrape data from a web page, find the following table in that page, and load it into
a pandas DataFrame:

Figure 2.1 – COVID-19 data from six countries

Note
I created this web page, http://www.alrb.org/datacleaning/
covidcaseoutliers.html, based on COVID-19 data for public use
from Our World in Data, available at https://ourworldindata.
org/coronavirus-source-data.

How to do it…
We scrape the COVID data from the website and do some routine data checks:

1.	 Import the pprint, requests, and BeautifulSoup libraries:

>>> import pandas as pd

>>> import numpy as np

>>> import json

>>> import pprint

>>> import requests

>>> from bs4 import BeautifulSoup

http://www.alrb.org/datacleaning/covidcaseoutliers.html
http://www.alrb.org/datacleaning/covidcaseoutliers.html
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data

64 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

2.	 Parse the web page and get the header row of the table.

Use Beautiful Soup's find method to get the table we want and then use
find_all to retrieve the elements nested within the th elements for that table.
Create a list of column labels based on the text of the th rows:

>>> webpage = requests.get("http://www.alrb.org/
datacleaning/covidcaseoutliers.html")

>>> bs = BeautifulSoup(webpage.text, 'html.parser')

>>> theadrows = bs.find('table', {'id':'tblDeaths'}).
thead.find_all('th')

>>> type(theadrows)

<class 'bs4.element.ResultSet'>

>>> labelcols = [j.get_text() for j in theadrows]

>>> labelcols[0] = "rowheadings"

>>> labelcols

['rowheadings', 'Cases', 'Deaths', 'Cases per Million',
'Deaths per Million', 'population', 'population_density',
'median_age', 'gdp_per_capita', 'hospital_beds_per_100k']

3.	 Get the data from the table cells.

Find all of the table rows for the table we want. For each table row, find the th element
and retrieve the text. We will use that text for our row labels. Also, for each row, find
all the td elements (the table cells with the data) and save text from all of them in a
list. This gives us datarows, which has all the numeric data in the table. (You can
confirm that it matches the table from the web page.) We then insert the labelrows
list (which has the row headings) at the beginning of each list in datarows:

>>> rows = bs.find('table', {'id':'tblDeaths'}).tbody.
find_all('tr')

>>> datarows = []

>>> labelrows = []

>>> for row in rows:

... rowlabels = row.find('th').get_text()

... cells = row.find_all('td', {'class':'data'})

... if (len(rowlabels)>3):

... labelrows.append(rowlabels)

Importing data from web pages 65

... if (len(cells)>0):

... cellvalues = [j.get_text() for j in cells]

... datarows.append(cellvalues)

...

>>> pprint.pprint(datarows[0:2])

[['9,394', '653', '214', '15', '43,851,043', '17', '29',
'13,914', '1.9'],

 ['16,642', '668', '1848', '74', '9,006,400', '107',
'44', '45,437', '7.4']]

>>> pprint.pprint(labelrows[0:2])

['Algeria', 'Austria']

>>>

>>> for i in range(len(datarows)):

... datarows[i].insert(0, labelrows[i])

...

>>> pprint.pprint(datarows[0:1])

[['Algeria','9,394','653','214','15','43,851,043','17','2
9','13,914','1.9']]

4.	 Load the data into pandas.

Pass the datarows list to the DataFrame method of pandas. Notice that all data
is read into pandas with the object data type, and that some data has values that
cannot be converted into numeric values in their current form (due to the commas):

>>> totaldeaths = pd.DataFrame(datarows,
columns=labelcols)

>>> totaldeaths.head()

 rowheadings Cases Deaths ... median_age gdp_per_
capita \

0 Algeria 9,394 653 ... 29
13,914

1 Austria 16,642 668 ... 44
45,437

2 Bangladesh 47,153 650 ... 28
3,524

3 Belgium 58,381 9467 ... 42
42,659

66 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

4 Brazil 514,849 29314 ... 34
14,103

>>> totaldeaths.dtypes

rowheadings object

Cases object

Deaths object

Cases per Million object

Deaths per Million object

population object

population_density object

median_age object

gdp_per_capita object

hospital_beds_per_100k object

dtype: object

5.	 Fix the column names and convert the data to numeric values.

Remove spaces from column names. Remove all non-numeric data from the first
columns with data, including the commas (str.replace("[^0-9]","").
Convert to numeric values, except for the rowheadings column:

>>> totaldeaths.columns = totaldeaths.columns.str.
replace(" ", "_").str.lower()

>>> for col in totaldeaths.columns[1:-1]:

... totaldeaths[col] = totaldeaths[col].\

... str.replace("[^0-9]","").astype('int64')

...

>>> totaldeaths['hospital_beds_per_100k'] =
totaldeaths['hospital_beds_per_100k'].astype('float')

>>> totaldeaths.head()

 rowheadings cases deaths ... median_age gdp_per_
capita \

0 Algeria 9394 653 ... 29
13914

1 Austria 16642 668 ... 44
45437

2 Bangladesh 47153 650 ... 28
3524

Importing data from web pages 67

3 Belgium 58381 9467 ... 42
42659

4 Brazil 514849 29314 ... 34
14103

>>> totaldeaths.dtypes

rowheadings object

cases int64

deaths int64

cases_per_million int64

deaths_per_million int64

population int64

population_density int64

median_age int64

gdp_per_capita int64

hospital_beds_per_100k float64

dtype: object

We have now created a pandas DataFrame from an html table.

How it works…
Beautiful Soup is a very useful tool for finding specific HTML elements in a web page
and retrieving text from them. You can get one HTML element with find and get one or
more with find_all. The first argument for both find and find_all is the HTML
element to get. The second argument takes a Python dictionary of attributes. You can
retrieve text from all of the HTML elements you find with get_text.

Some amount of looping is usually necessary to process the elements and text, as with
step 2 and step 3. These two statements in step 2 are fairly typical:

>>> theadrows = bs.find('table', {'id':'tblDeaths'}).thead.
find_all('th')

>>> labelcols = [j.get_text() for j in theadrows]

The first statement finds all the th elements we want and creates a Beautiful Soup result
set called theadrows from the elements it found. The second statement iterates over the
theadrows Beautiful Soup result set using the get_text method to get the text from
each element, and stores it in the labelcols list.

68 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

Step 3 is a little more involved, but makes use of the same Beautiful Soup methods.
We find all of the table rows (tr) in the target table (rows = bs.find('table',
{'id':'tblDeaths'}).tbody.find_all('tr')). We then iterate over each of
those rows, finding the th element and getting the text in that element (rowlabels =
row.find('th').get_text()). We also find all of the table cells (td) for each row
(cells = row.find_all('td', {'class':'data'}) and get the text from all
table cells (cellvalues = [j.get_text() for j in cells]). Note that this
code is dependent on the class of the td elements being data. Finally, we insert the row
labels we get from the th elements at the beginning of each list in datarows:

>>> for i in range(len(datarows)):

... datarows[i].insert(0, labelrows[i])

In step 4, we use the DataFrame method to load the list we created in steps 2 and 3 into
pandas. We then do some cleaning similar to what we have done in previous recipes in
this chapter. We use string replace to remove spaces from column names and to
remove all non-numeric data, including commas, from what are otherwise valid numeric
values. We convert all columns, except for the rowheadings column, to numeric.

There's more…
Our scraping code is dependent on several aspects of the web page's structure not
changing: the ID of the main table, the presence of th tags with column and row labels,
and the td elements continuing to have their class equal to data. The good news is that if
the structure of the web page does change, this will likely only affect the find and find_
all calls. The rest of the code would not need to change.

Persisting JSON data
There are several reasons why we might want to serialize a JSON file:

•	 We may have retrieved the data with an API, but need to keep a snapshot of
the data.

•	 The data in the JSON file is relatively static and informs our data cleaning and
analysis over multiple phases of a project.

•	 We might decide that the flexibility of a schema-less format such as JSON helps us
solve many data cleaning and analysis problems.

Persisting JSON data 69

It is worth highlighting this last reason to use JSON – that it can solve many data problems.
Although tabular data structures clearly have many benefits, particularly for operational
data, they are often not the best way to store data for analysis purposes. In preparing data
for analysis, a substantial amount of time is spent either merging data from different tables
or dealing with data redundancy when working with flat files. Not only are these processes
time consuming, but every merge or reshaping leaves the door open to a data error of broad
scope. This can also mean that we end up paying too much attention to the mechanics of
manipulating data and too little to the conceptual issues at the core of our work.

We return to the Cleveland Museum of Art collections data in this recipe. There are
at least three possible units of analysis for this data file – the collection item level, the
creator level, and the citation level. JSON allows us to nest citations and creators within
collections. (You can examine the structure of the JSON file in the Getting ready section of
this recipe.) This data cannot be persisted in a tabular structure without flattening the file,
which we did in an earlier recipe in this chapter. In this recipe, we will use two different
methods to persist JSON data, each with its own advantages and disadvantages.

Getting ready
We will be working with data on the Cleveland Museum of Art's collection of works by
African-American artists. The following is the structure of the JSON data returned by the
API. It has been abbreviated to save space:

{"info": { "total": 778, "parameters": {"african_american_
artists": "" }},

"data": [

{

"id": 165157,

"accession_number": "2007.158",

"title": "Fulton and Nostrand",

"creation_date": "1958",

"citations": [

 {

 "citation": "Annual Exhibition: Sculpture, Paintings...",

 "page_number": "Unpaginated, [8],[12]",

 "url": null

 },

 {

70 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

 "citation": "\"Moscow to See Modern U.S. Art,\" New
York...",

 "page_number": "P. 60",

 "url": null

 }]

"creators": [

 {

 "description": "Jacob Lawrence (American, 1917-2000)",

 "extent": null,

 "qualifier": null,

 "role": "artist",

 "birth_year": "1917",

 "death_year": "2000"

 }

]

 }

How to do it...
We will serialize the JSON data using two different methods:

1.	 Load the pandas, json, pprint, requests, and msgpack libraries:

>>> import pandas as pd

>>> import json

>>> import pprint

>>> import requests

>>> import msgpack

2.	 Load the JSON data from an API. I have abbreviated the JSON output:

>>> response = requests.get("https://openaccess-api.
clevelandart.org/api/artworks/?african_american_artists")

>>> camcollections = json.loads(response.text)

>>> print(len(camcollections['data']))

778

>>> pprint.pprint(camcollections['data'][0])

{'accession_number': '2007.158',

Persisting JSON data 71

 'catalogue_raisonne': None,

 'citations': [{'citation': 'Annual Exhibition:
Sculpture...',

 'page_number': 'Unpaginated, [8],[12]',

 'url': None},

 {'citation': '"Moscow to See Modern
U.S....',

 'page_number': 'P. 60',

 'url': None}]

 'collection': 'American - Painting',

 'creation_date': '1958',

 'creators': [{'biography': 'Jacob Lawrence (born
1917)...',

 'birth_year': '1917',

 'description': 'Jacob Lawrence
(American...',

 'role': 'artist'}],

 'type': 'Painting'}

3.	 Save and reload the JSON file using Python's json library.

Persist the JSON data in human-readable form. Reload it from the saved file
and confirm that it worked by retrieving the creators data from the first
collections item:

>>> with open("data/camcollections.json","w") as f:

... json.dump(camcollections, f)

...

>>> with open("data/camcollections.json","r") as f:

... camcollections = json.load(f)

...

>>> pprint.pprint(camcollections['data'][0]['creators'])

[{'biography': 'Jacob Lawrence (born 1917) has been a
prominent artist since...'

 'birth_year': '1917',

 'description': 'Jacob Lawrence (American, 1917-2000)',

 'role': 'artist'}]

72 Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas

4.	 Save and reload the JSON file using msgpack:

>>> with open("data/camcollections.msgpack", "wb") as
outfile:

... packed = msgpack.packb(camcollections)

... outfile.write(packed)

...

1586507

>>> with open("data/camcollections.msgpack", "rb") as
data_file:

... msgbytes = data_file.read()

...

>>> camcollections = msgpack.unpackb(msgbytes)

>>> pprint.pprint(camcollections['data'][0]['creators'])

[{'biography': 'Jacob Lawrence (born 1917) has been a
prominent...',

 'birth_year': '1917',

 'death_year': '2000',

 'description': 'Jacob Lawrence (American, 1917-2000)',

 'role': 'artist'}]

How it works…
We use the Cleveland Museum of Art's collections API to retrieve collections items. The
african_american_artists flag in the query string indicates that we just want
collections for those creators. json.loads returns a dictionary called info and a list of
dictionaries called data. We check the length of the data list. This tells us that there are
778 items in collections. We then display the first item of collections to get a better look at
the structure of the data. (I have abbreviated the JSON output.)

We save and then reload the data using Python's JSON library in step 3. The advantage
of persisting the data in this way is that it keeps the data in human-readable form.
Unfortunately, it has two disadvantages: saving takes longer than alternative serialization
methods, and it uses more storage space.

In step 4, we use msgpack to persist our data. This is faster than Python's json library,
and the saved file uses less space. Of course, the disadvantage is that the resulting JSON is
binary rather than text-based.

Persisting JSON data 73

There's more…
I use both methods for persisting JSON data in my work. When I am working with small
amounts of data, and that data is relatively static, I prefer human-readable JSON. A great use
case for this is the recipes in the previous chapter where we needed to create value labels.

I use msgpack when I am working with large amounts of data, where that data changes
regularly. msgpack files are also great when you want to take regular snapshots of key
tables in enterprise databases.

The Cleveland Museum of Art's collections data is similar in at least one important
way to the data we work with every day. The unit of analysis frequently changes. Here
we are looking at collections, citations, and creators. In our work, we might have to
simultaneously look at students and courses, or households and deposits. An enterprise
database system for the museum data would likely have separate collections, citations, and
creators tables that we would eventually need to merge. The resulting merged file would
have data redundancy issues that we would need to account for whenever we changed the
unit of analysis.

When we alter our data cleaning process to work directly from JSON or parts of it, we
end up eliminating a major source of errors. We do more data cleaning with JSON in
the Classes that handle non-tabular data structures recipe in Chapter 10, User-Defined
Functions and Classes to Automate Data Cleaning.

3
Taking the Measure

of Your Data
Within a week of receiving a new dataset, at least one person is likely to ask us a familiar
question: "so, how does it look?" This is not always asked in a relaxed tone, and others
are not usually excited to hear about all of the red flags we have already found. There
might be a sense of urgency to declare the data ready for analysis. Of course, if we sign
it off too soon, this can create much larger problems; the presentation of invalid results,
the misinterpretation of variable relationships, and having to redo major chunks of our
analysis. The key is sorting out what we need to know about the data before we explore
anything else in the data. The recipes in this chapter offer techniques for determining
if the data is in good enough shape to begin the analysis, so that even if we cannot say,
"it looks fine," we can at least say, "I'm pretty sure I have identified the main issues, and
here they are."

Often our domain knowledge is quite limited, or at least not nearly as good as those
who created the data. We have to quickly get a sense of what we are looking at even when
we have little substantive understanding of the individuals or events reflected in the data.
Many times (for some of us, most of the time) there is not anything like a data dictionary
or codebook accompanying the receipt of the data.

76 Taking the Measure of Your Data

Quick. Ask yourself what the first few things you try to find out in this situation are; that
is, when you first get data about which you know little. It is probably something like this:

•	 How are the rows of the dataset uniquely identified? (What is the unit of analysis?)

•	 How many rows and columns are in the dataset?

•	 What are the key categorical variables and the frequencies of each value?

•	 How are important continuous variables distributed?

•	 How might variables be related to each other – for example, how might the
distribution of continuous variables vary according to categories in the data?

•	 What variable values are out of expected ranges, and how are missing values
distributed?

We go over essential tools and strategies for answering the first four questions in this
chapter. We look into the last two questions in the following chapter.

I should point out that this first take on our data is important even when the structure of
the data is familiar; when, for example, we receive data for a new month or year with the
same column names and data types as in previous periods. It is hard to guard against the
sense that we can just rerun our old programs; to be as vigilant as we were the first few
times we prepared the data for analysis. Most of us have probably been in situations where
we receive new data with a familiar structure, but the answers to the preceding questions
are meaningfully different: new valid values for key categorical variables; rare values
that have always been permissible but that have not been seen for several periods; and
unexpected changes in the status of clients/students/customers. It is important to build
routines for understanding our data that we follow regardless of our familiarity with it.

Specifically, we will cover the following topics in this chapter:

•	 Getting a first look at your data

•	 Selecting and organizing columns

•	 Selecting rows

•	 Generating frequencies for categorical variables

•	 Generating statistics for continuous variables

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Getting a first look at your data 77

Getting a first look at your data
We will work with two datasets in this chapter: The National Longitudinal Survey of Youth
for 1997, a survey conducted by the United States government that surveyed the same
group of individuals from 1997 through 2017; and the counts of COVID cases and deaths
by country from Our World in Data.

Getting ready…
We will mainly be using the pandas library for this recipe. We will use pandas tools to take
a closer look at the National Longitudinal Survey (NLS) and COVID-19 case data.

Note
The NLS of Youth was conducted by the United States Bureau of Labor
Statistics. This survey started with a cohort of individuals in 1997 who were
born between 1980 and 1985, with annual follow-ups each year through 2017.
For this recipe, I pulled 89 variables on grades, employment, income, and
attitudes toward government from the hundreds of data items on the survey.
Separate files for SPSS, Stata, and SAS can be downloaded from the repository.
NLS data can be downloaded from https://www.nlsinfo.org/
investigator/pages/search.

Our World in Data provides COVID-19 public use data at https://
ourworldindata.org/coronavirus-source-data.

How to do it...
We will get an initial look at the NLS and COVID data, including the number of rows and
columns, and the data types:

1.	 Import the libraries and load the DataFrames:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>>

>>> covidtotals = pd.read_csv("data/covidtotals.csv",

... parse_dates=['lastdate'])

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data

78 Taking the Measure of Your Data

2.	 Set and show the index and the size of the nls97 data.

Also, check to see whether the index values are unique:
>>> nls97.set_index("personid", inplace=True)

>>> nls97.index

Int64Index([100061, 100139, 100284, 100292, 100583,
100833, 		 ...

 999543, 999698, 999963],

 dtype='int64', name='personid', length=8984)

>>> nls97.shape

(8984, 88)

>>> nls97.index.nunique()

8984

3.	 Show the data types and non-null value counts:

>>> nls97.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 88 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 gender 8984 non-null object

 1 birthmonth 8984 non-null int64

 2 birthyear 8984 non-null int64

 3 highestgradecompleted 6663 non-null float64

 4 maritalstatus 6672 non-null object

 5 childathome 4791 non-null float64

 6 childnotathome 4791 non-null float64

 7 wageincome 5091 non-null float64

 8 weeklyhrscomputer 6710 non-null object

 9 weeklyhrstv 6711 non-null object

 10 nightlyhrssleep 6706 non-null float64

 11 satverbal 1406 non-null float64

 12 satmath 1407 non-null float64

...

 83 colenroct15 7469 non-null object

Getting a first look at your data 79

 84 colenrfeb16 7036 non-null object

 85 colenroct16 6733 non-null object

 86 colenrfeb17 6733 non-null object

 87 colenroct17 6734 non-null object

dtypes: float64(29), int64(2), object(57)

memory usage: 6.1+ MB

4.	 Show the first row of the nls97 data.

Use transpose to show a little more of the output:
>>> nls97.head(2).T

personid 100061 100139

gender Female Male

birthmonth 5 9

birthyear 1980 1983

highestgradecompleted 13 12

maritalstatus Married Married

...

colenroct15 1. Not enrolled 1. Not enrolled

colenrfeb16 1. Not enrolled 1. Not enrolled

colenroct16 1. Not enrolled 1. Not enrolled

colenrfeb17 1. Not enrolled 1. Not enrolled

colenroct17 1. Not enrolled 1. Not enrolled

5.	 Set and show the index and size for the COVID data.

Also, check to see whether index values are unqiue:
>>> covidtotals.set_index("iso_code", inplace=True)

>>> covidtotals.index

Index(['AFG', 'ALB', 'DZA', 'AND', 'AGO', 'AIA', 'ATG',
'ARG', 	 ...

 'UZB', 'VAT', 'VEN', 'VNM', 'ESH', 'YEM',
'ZMB','ZWE'],

 dtype='object', name='iso_code', length=210)

>>> covidtotals.shape

(210, 11)

>>> covidtotals.index.nunique()

210

80 Taking the Measure of Your Data

6.	 Show the data types and non-null value counts:

>>> covidtotals.info()

<class 'pandas.core.frame.DataFrame'>

Index: 210 entries, AFG to ZWE

Data columns (total 11 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 lastdate 210 non-null datetime64[ns]

 1 location 210 non-null object

 2 total_cases 210 non-null int64

 3 total_deaths 210 non-null int64

 4 total_cases_pm 209 non-null float64

 5 total_deaths_pm 209 non-null float64

 6 population 210 non-null float64

 7 pop_density 198 non-null float64

 8 median_age 186 non-null float64

 9 gdp_per_capita 182 non-null float64

 10 hosp_beds 164 non-null float64

dtypes: datetime64[ns](1), float64(7), int64(2),
object(1)

memory usage: 19.7+ KB

7.	 Show a sample of a few rows of the COVID case data:

>>> covidtotals.sample(2, random_state=1).T

iso_code COG THA

lastdate 2020-06-01 00:00:00 2020-06-01 00:00:00

location Congo Thailand

total_cases 611 3081

total_deaths 20 57

total_cases_pm 110.727 44.14

total_deaths_pm 3.624 0.817

population 5.51809e+06 6.98e+07

pop_density 15.405 135.132

median_age 19 40.1

gdp_per_capita 4881.41 16277.7

hosp_beds NaN 2.1

Getting a first look at your data 81

This has given us a good foundation for understanding our DataFrames, including their
size and column data types.

How it works…
We set and display the index of the nls97 DataFrame, which is called personid, in
step 2. It is a more meaningful index than the default pandas RangeIndex, which is
essentially the row numbers with zero base. Often, there is a unique identifier when
working with individuals as the unit of analysis. This is a good candidate for an index.
It makes selecting a row by that identifier easier. Rather than using the statement nls97.
loc[personid==1000061] to get the row for that person, we can use nls97.
loc[1000061]. We try this out in the next recipe.

Pandas makes it easy to view the number of rows and columns, the data type and number
of non-missing values for each column, and the values for the columns for a few rows of
your data. This can be accomplished by using the shape attribute and calling the info
and head, or sample, methods. Using the head(2) method shows the first two rows,
but sometimes it is helpful to grab a row from anywhere in the DataFrame, in which case
we would use sample (We set the seed when we call sample (random_state=1)
to get the same results whenever we run the code). We can chain our call to head or
sample with a T to transpose it. This reverses the display of rows and columns. That is
helpful when there are more columns than can be shown horizontally and you want to
be able to see all of them. By transposing the rows and columns we are able to see all of
the columns.

The shape attribute of the nls97 DataFrame tells us that there are 8,984 rows and 88
non-index columns. Since personid is the index, it is not included in the column count.
The info method shows us that many of the columns have object data types and that
some have a large number of missing values. satverbal and satmath have only about
1,400 valid values.

The shape attribute of the covidtotals DataFrame tells us that there are 210 rows and
11 columns, which does not include the country iso_code column used for the index
(iso_code is a unique three-digit identifier for each country). The key variables for most
analyses we would do are total_cases, total_deaths, total_cases_pm, and
total_deaths_pm. total_cases and total_deaths are present for each country,
but total_cases_pm and total_deaths_pm are missing for one country.

82 Taking the Measure of Your Data

There's more...
I find that thinking through the index when working with a data file can remind me of
the unit of analysis. That is not actually obvious with the NLS data, as it is actually panel
data disguised as person-level data. Panel, or longitudinal, datasets have data for the same
individuals over some regular duration. In this case, data was collected for each person
over a 21-year span, from 1997 till 2017. The administrators of the survey have flattened
it for analysis purposes by creating columns for certain responses over the years, such as
college enrollment (colenroct15 through colenroct17). This is a fairly standard
practice, but it is likely that we will need to do some reshaping for some analyses.

One thing I pay careful attention to when receiving any panel data is drop-off in responses
to key variables over time. Notice the drop off in valid values from colenroct15 to
colenroct17. By October of 2017, only 75% of respondents provided a valid response
(6,734/8,984). That is definitely worth keeping in mind during subsequent analysis, since
the 6,734 remaining respondents may be different in important ways from the overall
sample of 8,984.

See also
A recipe in Chapter 1, Anticipating Data Cleaning Issues when Importing Tabular Data into
pandas, shows how to persist pandas DataFrames as feather or pickle files. In later recipes
in this chapter, we will look at descriptives and frequencies for these two DataFrames.

We reshape the NLS data in Chapter 9, Tidying and Reshaping Data, recovering some of
its actual structure as panel data. This is necessary for statistical methods such as survival
analysis, and is closer to tidy data ideals.

Selecting and organizing columns
We explore several ways to select one or more columns from your DataFrame in this
recipe. We can select columns by passing a list of column names to the [] bracket
operator, or by using the pandas-specific data accessors loc and iloc.

When cleaning data or doing exploratory or statistical analyses, it is helpful to focus on
the variables that are relevant to the issue or analysis at hand. This makes it important to
group columns according to their substantive or statistical relationships with each other,
or to limit the columns we are investigating at any one time. How many times have
we said to ourselves something like, "Why does variable A have a value of x when variable
B has a value of y?" We can only do that when the amount of data we are viewing at a
given moment does not exceed our perceptive abilities at that moment.

Selecting and organizing columns 83

Getting ready…
We will continue working with the NLS data in this recipe.

How to do it…
We will explore several ways to select columns:

1.	 Import the pandas library and load the NLS data into pandas.

Also, convert all columns with object data type in the NLS data to category data
type. Do this by selecting object data type columns with select_dtypes and
using apply plus a lambda function to change the data type to category:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> nls97.loc[:, nls97.dtypes == 'object'] = \

... nls97.select_dtypes(['object']). \

... apply(lambda x: x.astype('category'))

2.	 Select a column using the pandas [] bracket operator, and the loc and
iloc accessors.

We pass a string matching a column name to the bracket operator to return
a pandas series. If we pass a list of one element with that column name
(nls97[['gender']]), a DataFrame is returned. We can also use the loc and
iloc accessors to select columns:

>>> analysisdemo = nls97['gender']

>>> type(analysisdemo)

<class 'pandas.core.series.Series'>

>>> analysisdemo = nls97[['gender']]

>>> type(analysisdemo)

<class 'pandas.core.frame.DataFrame'>

>>> analysisdemo = nls97.loc[:,['gender']]

>>> type(analysisdemo)

<class 'pandas.core.frame.DataFrame'>

84 Taking the Measure of Your Data

>>> analysisdemo = nls97.iloc[:,[0]]

>>> type(analysisdemo)

<class 'pandas.core.frame.DataFrame'>

3.	 Select multiple columns from a pandas DataFrame.

Use the bracket operator and loc to select a few columns:
>>> analysisdemo = nls97[['gender','maritalstatus',

... 'highestgradecompleted']]

>>> analysisdemo.shape

(8984, 3)

>>> analysisdemo.head()

 	gender maritalstatus highestgradecompleted

personid

100061 	Female Married 13

100139 Male Married 12

100284 Male Never-married 7

100292 Male NaN nan

100583 Male Married 13

>>> analysisdemo = nls97.loc[:,['gender','maritalstatus',

... 'highestgradecompleted']]

>>> analysisdemo.shape

(8984, 3)

>>> analysisdemo.head()

 	 gender 	 maritalstatus
highestgradecompleted

personid

100061 		 Female 	 Married
13

100139 	 Male 	 Married
12

100284 	 Male 	 Never-married
7

100292 	 Male NaN
nan

100583 	 Male 	 Married
13

Selecting and organizing columns 85

4.	 Select multiple columns based on a list of columns.

If you are selecting more than a few columns, it is helpful to create the list of column
names separately. Here, we create a keyvars list of key variables for analysis:

>>> keyvars = ['gender','maritalstatus',

... 'highestgradecompleted','wageincome',

... 'gpaoverall','weeksworked17','colenroct17']

>>> analysiskeys = nls97[keyvars]

>>> analysiskeys.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 7 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 gender 8984 non-null category

 1 maritalstatus 6672 non-null category

 2 highestgradecompleted 6663 non-null float64

 3 wageincome 5091 non-null float64

 4 gpaoverall 6004 non-null float64

 5 weeksworked17 6670 non-null float64

 6 colenroct17 6734 non-null category

dtypes: category(3), float64(4)

memory usage: 377.7 KB

5.	 Select one or more columns by filtering on column name.

Select all of the weeksworked## columns using the filter operator:
>>> analysiswork = nls97.filter(like="weeksworked")

>>> analysiswork.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 18 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 weeksworked00 8603 non-null float64

 1 weeksworked01 8564 non-null float64

 2 weeksworked02 8556 non-null float64

 3 weeksworked03 8490 non-null float64

86 Taking the Measure of Your Data

 4 weeksworked04 8458 non-null float64

 5 weeksworked05 8403 non-null float64

 6 weeksworked06 8340 non-null float64

 7 weeksworked07 8272 non-null float64

 8 weeksworked08 8186 non-null float64

 9 weeksworked09 8146 non-null float64

 10 weeksworked10 8054 non-null float64

 11 weeksworked11 7968 non-null float64

 12 weeksworked12 7747 non-null float64

 13 weeksworked13 7680 non-null float64

 14 weeksworked14 7612 non-null float64

 15 weeksworked15 7389 non-null float64

 16 weeksworked16 7068 non-null float64

 17 weeksworked17 6670 non-null float64

dtypes: float64(18)

memory usage: 1.3 MB

6.	 Select all columns with the category data type.

Use the select_dtypes method to select columns by data type:
>>> analysiscats = nls97.select_
dtypes(include=["category"])

>>> analysiscats.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 57 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 gender 8984 non-null category

 1 maritalstatus 6672 non-null category

 2 weeklyhrscomputer 6710 non-null category

 3 weeklyhrstv 6711 non-null category

 4 highestdegree 8953 non-null category

...

 49 colenrfeb14 7624 non-null category

 50 colenroct14 7469 non-null category

 51 colenrfeb15 7469 non-null category

 52 colenroct15 7469 non-null category

Selecting and organizing columns 87

 53 colenrfeb16 7036 non-null category

 54 colenroct16 6733 non-null category

 55 colenrfeb17 6733 non-null category

 56 colenroct17 6734 non-null category

dtypes: category(57)

memory usage: 580.0 KB

7.	 Select all columns with numeric data types:
>>> analysisnums = nls97.select_dtypes(include=["number"])

>>> analysisnums.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 31 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 birthmonth 8984 non-null int64

 1 birthyear 8984 non-null int64

 2 highestgradecompleted 6663 non-null float64

...

 23 weeksworked10 8054 non-null float64

 24 weeksworked11 7968 non-null float64

 25 weeksworked12 7747 non-null float64

 26 weeksworked13 7680 non-null float64

 27 weeksworked14 7612 non-null float64

 28 weeksworked15 7389 non-null float64

 29 weeksworked16 7068 non-null float64

 30 weeksworked17 6670 non-null float64

dtypes: float64(29), int64(2)

memory usage: 2.2 MB

8.	 Organize columns using lists of column names.

Use lists to organize the columns in your DataFrame. You can easily change the
order of columns or exclude some columns in this way. Here, we move the columns
in the demoadult list to the front:

>>> demo = ['gender','birthmonth','birthyear']

>>> highschoolrecord =
['satverbal','satmath','gpaoverall',

88 Taking the Measure of Your Data

... 'gpaenglish','gpamath','gpascience']

>>> govresp = ['govprovidejobs','govpricecontrols',

... 'govhealthcare','govelderliving','govindhelp',

... 'govunemp','govincomediff','govcollegefinance',

... 'govdecenthousing','govprotectenvironment']

>>> demoadult = ['highestgradecompleted','maritalstatus',

... 'childathome','childnotathome','wageincome',

... 'weeklyhrscomputer','weeklyhrstv','nightlyhrssleep',

... 'highestdegree']

>>> weeksworked = ['weeksworked00','weeksworked01',

... 'weeksworked02','weeksworked03','weeksworked04',

... 'weeksworked14','weeksworked15','weeksworked16',

... 'weeksworked17']

>>> colenr = ['colenrfeb97','colenroct97','colenrfeb98',

... 'colenroct98','colenrfeb99','colenroct99',

 ...

... 'colenrfeb15','colenroct15','colenrfeb16',

... 'colenroct16','colenrfeb17','colenroct17']

9.	 Create the new, reorganized DataFrame:

>>> nls97 = nls97[demoadult + demo + highschoolrecord + \

... govresp + weeksworked + colenr]

>>> nls97.dtypes

highestgradecompleted float64

maritalstatus category

childathome float64

childnotathome float64

wageincome float64

 ...

colenroct15 category

colenrfeb16 category

colenroct16 category

colenrfeb17 category

colenroct17 category

Length: 88, dtype: object

Selecting and organizing columns 89

The preceding steps showed how to select columns and change the order of columns in
a pandas DataFrame.

How it works…
Both the [] bracket operator and the loc data accessor are very handy for selecting and
organizing columns. Each returns a DataFrame when passed a list of names of columns.
The columns will be ordered according to the passed list of column names.

In step 1, we use nls97.select_dtypes(['object']) to select columns with
object data type and chain that with apply and a lambda function (apply(lambda
x: x.astype('category'))) to change those columns to category. We use the
loc accessor to only update columns with object data type (nls97.loc[:, nls97.
dtypes == 'object']) . We go into much more detail on apply and lambda
functions in Chapter 6, Cleaning and Exploring Data with Series Operations.

We also select columns by data type in steps 6 and 7. select_dtypes becomes quite
useful when passing columns to methods such as describe or value_counts and
you want to limit the analysis to continuous or categorical variables.

In step 9, we concatenate six different lists when using the bracket operator. This moves
the column names in demoadult to the front and organizes all of the columns by those
six groups. There are now clear high school record and weeks worked sections in our
DataFrame's columns.

There's more…
We can also use select_dtypes to exclude data types. Also, if we are just interested in
the info results, we can chain the select_dtypes call with the info method:

>>> nls97.select_dtypes(exclude=["category"]).info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 31 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 highestgradecompleted 6663 non-null float64

 1 childathome 4791 non-null float64

 2 childnotathome 4791 non-null float64

 3 wageincome 5091 non-null float64

90 Taking the Measure of Your Data

 4 nightlyhrssleep 6706 non-null float64

 5 birthmonth 8984 non-null int64

 6 birthyear 8984 non-null int64

...

 25 weeksworked12 7747 non-null float64

 26 weeksworked13 7680 non-null float64

 27 weeksworked14 7612 non-null float64

 28 weeksworked15 7389 non-null float64

 29 weeksworked16 7068 non-null float64

 30 weeksworked17 6670 non-null float64

dtypes: float64(29), int64(2)

memory usage: 2.2 MB

The filter operator can also take a regular expression. For example, you can return the
columns that have income in their names:

>>> nls97.filter(regex='income')

>>> nls97.filter(regex='income')

 wageincome govincomediff

personid

100061 12,500 NaN

100139 120,000 NaN

100284 58,000 NaN

100292 nan NaN

100583 30,000 NaN

...

999291 35,000 NaN

999406 116,000 NaN

999543 nan NaN

999698 nan NaN

999963 50,000 NaN

See also
Many of these techniques can be used to create pandas series as well as DataFrames. We
demonstrate this in Chapter 6, Cleaning and Exploring Data With Series Operations.

Selecting rows 91

Selecting rows
When we are taking the measure of our data and otherwise answering the question,
"How does it look?", we are constantly zooming in and out. We are looking at aggregated
numbers and particular rows. But there are also important data issues that are only
obvious at an intermediate zoom level, issues that we only notice when looking at some
subset of rows. This recipe demonstrates how to use the pandas tools for detecting data
issues in subsets of our data.

Getting ready...
We will continue working with the NLS data in this recipe.

How to do it...
We will go over several techniques for selecting rows in a pandas DataFrame.

1.	 Import pandas and numpy, and load the nls97 data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Use slicing to start at the 1001st row and go to the 1004th row:

nls97[1000:1004] selects every row starting from the row indicated by the
integer to the left of the colon (1000, in this case) to, but not including, the row
indicated by the integer to the right of the colon (1004). The row at 1000 is
actually the 1001st row because of zero-based indexing. Each row appears as
a column in the output since we have transposed the resulting DataFrame:

>>> nls97[1000:1004].T

personid 195884 195891 195970
195996

gender Male Male Female
Female

birthmonth 12 9 3
9

birthyear 1981 1980 1982
1980

highestgradecompleted NaN 12 17
NaN

92 Taking the Measure of Your Data

maritalstatus NaN Never-married Never-married
NaN

...

...

colenroct15 NaN 1. Not enrolled 1. Not enrolled
NaN

colenrfeb16 NaN 1. Not enrolled 1. Not enrolled
NaN

colenroct16 NaN 1. Not enrolled 1. Not enrolled
NaN

colenrfeb17 NaN 1. Not enrolled 1. Not enrolled
NaN

colenroct17 NaN 1. Not enrolled 1. Not enrolled
NaN

3.	 Use slicing to start at the 1001st row and go to the 1004th row, skipping every
other row.

The integer after the second colon (2 in this case) indicates the size of the step.
When the step is excluded it is assumed to be 1. Notice that by setting the value of
the step to 2, we are skipping every other row:

>>> nls97[1000:1004:2].T

personid 195884 195970

gender Male Female

birthmonth 12 3

birthyear 1981 1982

highestgradecompleted NaN 17

maritalstatus NaN Never-married

...

colenroct15 NaN 1. Not enrolled

colenrfeb16 NaN 1. Not enrolled

colenroct16 NaN 1. Not enrolled

colenrfeb17 NaN 1. Not enrolled

colenroct17 NaN 1. Not enrolled

Selecting rows 93

4.	 Select the first three rows using head and [] operator slicing.

Note that nls97[:3] returns the same DataFrame as nls97.head(3). By not
providing a value to the left of the colon in [:3], we are telling the operator to get
rows from the start of the DataFrame:

>>> nls97.head(3).T

personid 100061 100139
100284

gender Female Male
Male

birthmonth 5 9
11

birthyear 1980 1983
1984

...

...

colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

>>> nls97[:3].T

personid 100061 100139
100284

gender Female Male
Male

birthmonth 5 9
11

birthyear 1980 1983
1984

...

...

colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled

94 Taking the Measure of Your Data

colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

5.	 Select the last three rows using tail and [] operator slicing.

Note that nls97.tail(3) returns the same DataFrame as nls97[-3:]:
>>> nls97.tail(3).T
personid 999543 999698
999963
gender Female Female
Female
birthmonth 8 5
9
birthyear 1984 1983
1982
...
...
colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled
>>> nls97[-3:].T
personid 999543 999698
999963
gender Female Female
Female
birthmonth 8 5
9
birthyear 1984 1983
1982

Selecting rows 95

...

...
colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled
colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

6.	 Select a few rows using the loc data accessor.

Use the loc accessor to select by index label. We can pass a list of index labels
or we can specify a range of labels. (Recall that we have set personid as the
index.) Note that nls97.loc[[195884,195891,195970]] and nls97.
loc[195884:195970] return the same DataFrame:

>>> nls97.loc[[195884,195891,195970]].T

personid 195884 195891
195970

gender Male Male
Female

birthmonth 12 9
3

birthyear 1981 1980
1982

highestgradecompleted NaN 12
17

maritalstatus NaN Never-married Never-
married

...

...

colenroct15 NaN 1. Not enrolled 1. Not
enrolled

colenrfeb16 NaN 1. Not enrolled 1. Not
enrolled

colenroct16 NaN 1. Not enrolled 1. Not
enrolled

colenrfeb17 NaN 1. Not enrolled 1. Not
enrolled

96 Taking the Measure of Your Data

colenroct17 NaN 1. Not enrolled 1. Not
enrolled

>>> nls97.loc[195884:195970].T

personid 195884 195891
195970

gender Male Male
Female

birthmonth 12 9
3

birthyear 1981 1980
1982

highestgradecompleted NaN 12
17

maritalstatus NaN Never-married Never-
married

...

...

colenroct15 NaN 1. Not enrolled 1. Not
enrolled

colenrfeb16 NaN 1. Not enrolled 1. Not
enrolled

colenroct16 NaN 1. Not enrolled 1. Not
enrolled

colenrfeb17 NaN 1. Not enrolled 1. Not
enrolled

colenroct17 NaN 1. Not enrolled 1. Not
enrolled

7.	 Select a row from the beginning of the DataFrame with the iloc data accessor.

iloc differs from loc in that it takes a list of row position integers, rather than
index labels. For that reason, it works similarly to bracket operator slicing. In this
step, we first pass a one-item list with the value of 0. That returns a DataFrame with
the first row:

>>> nls97.iloc[[0]].T

personid 100061

gender Female

birthmonth 5

birthyear 1980

Selecting rows 97

highestgradecompleted 13

maritalstatus Married

... ...

colenroct15 1. Not enrolled

colenrfeb16 1. Not enrolled

colenroct16 1. Not enrolled

colenrfeb17 1. Not enrolled

colenroct17 1. Not enrolled

8.	 Select a few rows from the beginning of the DataFrame with the iloc data accessor.

We pass a three-item list, [0,1,2], to return a DataFrame of the first three rows of
nls97. We would get the same result if we passed [0:3] to the accessor:

>>> nls97.iloc[[0,1,2]].T

personid 100061 100139
100284

gender Female Male
Male

birthmonth 5 9
11

birthyear 1980 1983
1984

...

...

colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

>>> nls97.iloc[0:3].T

personid 100061 100139
100284

gender Female Male
Male

98 Taking the Measure of Your Data

birthmonth 5 9
11

birthyear 1980 1983
1984

...

...

colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

9.	 Select a few rows from the end of the DataFrame with the iloc data accessor.

Use nls97.iloc[[-3,-2,-1]], and nls97.iloc[-3:] to retrieve the last
three rows of the DataFrame. By not providing a value to the right of the colon in
[-3:], we are telling the accessor to get all rows from the third-to-last row to the
end of the DataFrame:

>>> nls97.iloc[[-3,-2,-1]].T

personid 999543 999698
999963

gender Female Female
Female

birthmonth 8 5
9

birthyear 1984 1983
1982

...

...

colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

Selecting rows 99

colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

>>> nls97.iloc[-3:].T

personid 999543 999698
999963

gender Female Female
Female

birthmonth 8 5
9

birthyear 1984 1983
1982

...

...

colenroct15 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct16 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct17 1. Not enrolled 1. Not enrolled 1. Not
enrolled

10.	 Select multiple rows conditionally using boolean indexing.

Create a DataFrame of just individuals receiving very little sleep. About 5% of
survey respondents got 4 or fewer hours' sleep per night, of the 6,706 individuals
who responded to that question. Test who is getting 4 or fewer hours of sleep with
nls97.nightlyhrssleep<=4, which generates a pandas series of True and
False values that we assign to sleepcheckbool. Pass that series to the loc
accessor to create a lowsleep DataFrame. lowsleep has approximately the
number of rows we are expecting. We do not need to do the extra step of assigning
the boolean series to a variable. This is done here only for explanatory purposes:

>>> nls97.nightlyhrssleep.quantile(0.05)

4.0

>>> nls97.nightlyhrssleep.count()

6706

100 Taking the Measure of Your Data

>>> sleepcheckbool = nls97.nightlyhrssleep<=4

>>> sleepcheckbool

personid

100061 False

100139 False

100284 False

100292 False

100583 False

 ...

999291 False

999406 False

999543 False

999698 False

999963 False

Name: nightlyhrssleep, Length: 8984, dtype: bool

>>> lowsleep = nls97.loc[sleepcheckbool]

>>> lowsleep.shape

(364, 88)

11.	 Select rows based on multiple conditions.

It may be that folks who are not getting a lot of sleep also have a fair number of
children who live with them. Use describe to get a sense of the distribution
of the number of children for those who have lowsleep. About a quarter have
three or more children. Create a new DataFrame with individuals who have
nightlyhrssleep of 4 or less and the number of children at home of 3 or more.
The & is the logical and operator in pandas and indicates that both conditions
have to be true for the row to be selected (We would have gotten the same result
if we worked from the lowsleep DataFrame – lowsleep3pluschildren =
lowsleep.loc[lowsleep.childathome>=3] – but then we would not have
been able to demonstrate testing multiple conditions):

>>> lowsleep.childathome.describe()

count 293.00

mean 1.79

std 1.40

min 0.00

25% 1.00

Selecting rows 101

50% 2.00

75% 3.00

max 9.00

>>> lowsleep3pluschildren = nls97.loc[(nls97.
nightlyhrssleep<=4) & (nls97.childathome>=3)]

>>> lowsleep3pluschildren.shape

(82, 88)

12.	 Select rows and columns based on multiple conditions.

Pass the condition to the loc accessor to select rows. Also, pass a list of column
names to select:

>>> lowsleep3pluschildren = nls97.loc[(nls97.
nightlyhrssleep<=4) & (nls97.childathome>=3),
['nightlyhrssleep','childathome']]

>>> lowsleep3pluschildren

 nightlyhrssleep childathome

personid

119754 4 4

141531 4 5

152706 4 4

156823 1 3

158355 4 4

...

905774 4 3

907315 4 3

955166 3 3

956100 4 6

991756 4 3

The preceding steps demonstrated the key techniques for selecting rows in pandas.

102 Taking the Measure of Your Data

How it works…
We used the [] bracket operator in steps 2 through 5 to do standard Python-like slicing to
select rows. That operator allows us to easily select rows based on a list or a range of values
indicated with slice notation. This notation takes the form of [start:end:step],
where a value of 1 for step is assumed if no value is provided. When a negative number
is used for start, it represents the number of rows from the end of the DataFrame.

The loc accessor, used in step 6, selects rows based on row index labels. Since personid
is the index for the DataFrame, we can pass a list of one or more personid values to
the loc accessor to get a DataFrame with rows for those index labels. We can also pass
a range of index labels to the accessor, which will return a DataFrame with all rows having
index labels between the label to the left of the colon and the label to the right (inclusive);
so, nls97.loc[195884:195970] returns a DataFrame for rows with personid
between 195884 and 195970, including those two values.

The iloc accessor works very much like the bracket operator. We see this in steps 7
through 9. We can pass either a list of integers or a range using slicing notation.

One of the most valuable pandas capabilities is boolean indexing. It makes it easy to
select rows conditionally. We see this in step 10. A test returns a boolean series. The
loc accessor selects all rows for which the test is True. We actually didn't need to
assign the boolean data series to the variable that we then passed to the loc operator
in. We could have just passed the test to the loc accessor with nls97.loc[nls97.
nightlyhrssleep<=4].

We should take a closer look at how we used the loc accessor to select rows in step 11.
Each condition in nls97.loc[(nls97.nightlyhrssleep<=4) & (nls97.
childathome>=3)] is placed in parentheses. An error will be generated if the
parentheses are excluded. The & operator is the equivalent of and in standard Python,
meaning that both conditions have to be True for the row to be selected. We would have
used | for or if we had wanted to select the row if either condition was True.

Finally, step 12 demonstrates how to select both rows and columns in one call to the loc
accessor. The criteria for rows appear before the comma, and the columns to select appear
after the comma, as in the following statement:

nls97.loc[(nls97.nightlyhrssleep<=4) & (nls97.childathome>=3),
['nightlyhrssleep','childathome']]

Generating frequencies for categorical variables 103

This returns the nightlyhrssleep and childathome columns for all rows where the
individual has nightlyhrssleep of less than or equal to 4, and childathome greater
than or equal to 3.

There's more…
We used three different tools to select rows from a pandas DataFrame in this recipe: the
[] bracket operator, and two pandas-specific accessors, loc and iloc. This is a little
confusing if you are new to pandas, but it becomes clear which tool to use in which
situation after just a few months. If you came to pandas with a fair bit of Python and
NumPy experience, you likely find the [] operator most familiar. However, the pandas
documentation recommends against using the [] operator for production code. I have
settled on a routine of using that operator only for selecting columns from a DataFrame.
I use the loc accessor when selecting rows by boolean indexing or by index label, and the
iloc accessor for selecting rows by row number. Since my workflow has me using a fair
bit of boolean indexing, I use loc much more than the other methods.

See also
The recipe immediately preceding this one has a more detailed discussion on selecting
columns.

Generating frequencies for categorical
variables
Many years ago, a very seasoned researcher said to me, "90% of what we're going to find,
we'll see in the frequency distributions." That message has stayed with me. The more
one-way and two-way frequency distributions (crosstabs) I do on a DataFrame, the
better I understand it. We will do one-way distributions in this recipe, and crosstabs in
subsequent recipes.

Getting ready…
We continue our work with the NLS. We will also be doing a fair bit of column selection
using filter methods. It is not necessary to review the recipe in this chapter on column
selection, but it might be helpful.

104 Taking the Measure of Your Data

How to do it…
We use pandas tools to generate frequencies, particularly the very handy
value_counts:

1.	 Load the pandas library and the nls97 file.

Also, convert the columns with object data type to category data type:
>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> nls97.loc[:, nls97.dtypes == 'object'] = \

... nls97.select_dtypes(['object']). \

... apply(lambda x: x.astype('category'))

2.	 Show the names for columns with the category data type and check for the number
of missing values.

Notice that there are no missing values for gender and few for highestdegree,
but many for maritalstatus and other columns:

>>> catcols = nls97.select_dtypes(include=["category"]).
columns

>>> nls97[catcols].isnull().sum()

gender 0

maritalstatus 2312

weeklyhrscomputer 2274

weeklyhrstv 2273

highestdegree 31

 ...

colenroct15 1515

colenrfeb16 1948

colenroct16 2251

colenrfeb17 2251

colenroct17 2250

Length: 57, dtype: int64

3.	 Show the frequencies for marital status:

>>> nls97.maritalstatus.value_counts()

Married 3066

Generating frequencies for categorical variables 105

Never-married 2766

Divorced 663

Separated 154

Widowed 23

Name: maritalstatus, dtype: int64

4.	 Turn off sorting by frequency:

>>> nls97.maritalstatus.value_counts(sort=False)

Divorced 663

Married 3066

Never-married 2766

Separated 154

Widowed 23

Name: maritalstatus, dtype: int64

5.	 Show percentages instead of counts:

>>> nls97.maritalstatus.value_counts(sort=False,
normalize=True)

Divorced 0.10

Married 0.46

Never-married 0.41

Separated 0.02

Widowed 0.00

Name: maritalstatus, dtype: float64

6.	 Show the percentages for all government responsibility columns.

Filter the DataFrame for just the government responsibility columns, then use
apply to run value_counts on all columns in that DataFrame:

>>> nls97.filter(like="gov").apply(pd.value_counts,
normalize=True)

 govprovidejobs govpricecontrols ...
\

1. Definitely 0.25 0.54 ...

2. Probably 0.34 0.33 ...

3. Probably not 0.25 0.09 ...

106 Taking the Measure of Your Data

4. Definitely not 0.16 0.04 ...

 govdecenthousing
govprotectenvironment

1. Definitely 0.44
0.67

2. Probably 0.43
0.29

3. Probably not 0.10
0.03

4. Definitely not 0.02
0.02

7.	 Find the percentages for all government responsibility columns of people
who are married.

Do what we did in step 6, but first select only rows with marital status equal
to Married:

>>> nls97[nls97.maritalstatus=="Married"].\

... filter(like="gov").\

... apply(pd.value_counts, normalize=True)

 govprovidejobs govpricecontrols ...
\

1. Definitely 0.17 0.46 ...

2. Probably 0.33 0.38 ...

3. Probably not 0.31 0.11 ...

4. Definitely not 0.18 0.05 ...

 govdecenthousing
govprotectenvironment

1. Definitely 0.36
0.64

2. Probably 0.49
0.31

3. Probably not 0.12
0.03

4. Definitely not 0.03
0.01

Generating frequencies for categorical variables 107

8.	 Find the frequencies and percentages for all category columns in the DataFrame.

First, open a file to write out the frequencies:
>>> freqout = open('views/frequencies.txt', 'w')

>>>

>>> for col in nls97.select_dtypes(include=["category"]):

... print(col, "----------------------", "frequencies",

... nls97[col].value_counts(sort=False),"percentages",

... nls97[col].value_counts(normalize=True,
sort=False),

... sep="\n\n", end="\n\n\n", file=freqout)

...

>>> freqout.close()

This generates a file, the beginning of which looks like this:
gender

frequencies

Female 4385

Male 4599

Name: gender, dtype: int64

percentages

Female 0.49

Male 0.51

Name: gender, dtype: float64

As these steps demonstrate, value_counts is quite useful when we need to generate
frequencies for one or more columns of a DataFrame.

108 Taking the Measure of Your Data

How it works…
Most of the columns in the nls97 DataFrame (57 out of 88) have the object data type.
If we are working with data that is logically categorical, but does not have a category data
type in pandas, there are good reasons to convert it to the category type. Not only does
this save memory, it also makes data cleaning a little easier, as we saw in this recipe.

The star of the show for this recipe is the value_counts method. It can generate
frequencies for a series, as we do with nls97.maritalstatus.value_counts. It
can also be run on a whole DataFrame as we do with nls97.filter(like="gov").
apply(pd.value_counts, normalize=True). We first create a DataFrame with
just the government responsibility columns and then pass the resulting DataFrame to
value_counts with apply.

You probably noticed that in step 7, I split the chaining over several lines to make it easier
to read. There is no rule about when it makes sense to do that. I generally try to do that
whenever the chaining involves three or more operations.

In step 8, we iterate over all of the columns with the category data type: for col in
nls97.select_dtypes(include=["category"]). For each of those columns,
we run value_counts to get frequencies and value_counts again to get percentages.
We use a print function so that we can generate the carriage returns necessary to make
the output readable. All of this is saved to the frequencies.txt file in the views
subfolder. I find it handy to have a bunch of one-way frequencies around just to check
before doing any work with categorical variables. Step 8 accomplishes that.

There's more…
Frequency distributions may be the most important statistical tool for discovering
potential data issues with categorical data. The one-way frequencies we generate in this
recipe are a good foundation for further insights.

However, we often only detect problems once we examine the relationships between
categorical variables and other variables, categorical or continuous. Although we stop
short of doing two-way frequencies in this recipe, we do start the process of splitting up
the data for investigation in step 7. In that step, we look at government responsibility
responses for married individuals and see that those responses differ from those for the
sample overall.

Generating summary statistics for continuous variables 109

This raises several questions about our data that we need to explore. Are there important
differences in response rates by marital status, and might this matter for the distribution
of the government responsibility variables? We also want to be careful about drawing
conclusions before considering potential confounding variables. Are married respondents
likely to be older or to have more children, and are those more important factors in their
government responsibility answers?

I am using the marital status variable as an example of the kind of queries that producing
one-way frequencies, like the ones in this recipe, are likely to generate. It is always good to
have some bivariate analyses (a correlation matrix, some crosstabs, or a few scatter plots)
at the ready should questions like these come up. We will generate those in the next two
chapters.

Generating summary statistics for continuous
variables
Pandas has a good number of tools we can use to get a sense of the distribution of
continuous variables. We will focus on the splendid functionality of describe in this
recipe and demonstrate the usefulness of histograms for visualizing variable distributions.

Before doing any analysis with a continuous variable it is important to have a good
understanding of how it is distributed – its central tendency, its spread, and its skewness.
This understanding greatly informs our efforts to identify outliers and unexpected values.
But it is also crucial information in and of itself. I do not think it overstates the case to
say that we understand a particular variable well if we have a good understanding of how
it is distributed, and any interpretation without that understanding will be incomplete
or flawed in some way.

Getting ready…
We will work with the COVID totals data in this recipe. You will need Matplotlib to run
this. If it is not installed on your machine already, you can install it at the terminal by
entering pip install matplotlib.

110 Taking the Measure of Your Data

How to do it…
We take a look at the distribution of a few key continuous variables:

1.	 Import pandas, numpy, and matplotlib, and load the COVID case totals data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> covidtotals = pd.read_csv("data/covidtotals.csv",

... parse_dates=['lastdate'])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Let's remind ourselves of the structure of the data:

>>> covidtotals.shape

(210, 11)

>>> covidtotals.sample(2, random_state=1).T

iso_code COG THA

lastdate 2020-06-01 00:00:00 2020-06-01 00:00:00

location Congo Thailand

total_cases 611 3081

total_deaths 20 57

total_cases_pm 110.73 44.14

total_deaths_pm 3.62 0.82

population 5,518,092.00 69,799,978.00

pop_density 15.40 135.13

median_age 19.00 40.10

gdp_per_capita 4,881.41 16,277.67

hosp_beds NaN 2.10

>>> covidtotals.dtypes

lastdate datetime64[ns]

location object

total_cases int64

total_deaths int64

total_cases_pm float64

total_deaths_pm float64

population float64

pop_density float64

Generating summary statistics for continuous variables 111

median_age float64

gdp_per_capita float64

hosp_beds float64

dtype: object

3.	 Get the descriptive statistics on the COVID totals and demographic columns:

>>> covidtotals.describe()

 total_cases total_deaths total_cases_pm ...
median_age

count 210 210 209 ...
186

mean 29,216 1,771 1,362 ...
31

std 136,398 8,706 2,630 ...
9

min 0 0 1 ...
15

25% 176 4 97 ...
22

50% 1,242 26 282 ...
30

75% 10,117 241 1,803 ...
39

max 1,790,191 104,383 19,771 ...
48

 gdp_per_capita hosp_beds

count 182 164

mean 19,539 3

std 19,862 2

min 661 0

25% 4,485 1

50% 13,183 2

75% 28,557 4

max 116,936 14

112 Taking the Measure of Your Data

4.	 Take a closer look at the distribution of values for the cases and deaths columns.

Use NumPy's arange method to pass a list of floats from 0 to 1.0 to the quantile
method of the DataFrame:

>>> totvars = ['location','total_cases','total_deaths',

... 'total_cases_pm','total_deaths_pm']

>>> covidtotals[totvars].quantile(np.arange(0.0, 1.1,
0.1))

 total_cases total_deaths total_cases_pm total_
deaths_pm

0.00 0.00 0.00 0.89
0.00

0.10 22.90 0.00 18.49
0.00

0.20 105.20 2.00 56.74
0.40

0.30 302.00 6.70 118.23
1.73

0.40 762.00 12.00 214.92
3.97

0.50 1,242.50 25.50 282.00
6.21

0.60 2,514.60 54.60 546.05
12.56

0.70 6,959.80 137.20 1,074.03
26.06

0.80 16,847.20 323.20 2,208.74
50.29

0.90 46,513.10 1,616.90 3,772.00
139.53

1.00 1,790,191.00 104,383.00 19,771.35
1,237.55

5.	 View the distribution of total cases:

>>> plt.hist(covidtotals['total_cases']/1000, bins=12)

>>> plt.title("Total Covid Cases")

>>> plt.xlabel('Cases')

>>> plt.ylabel("Number of Countries")

>>> plt.show()

Generating summary statistics for continuous variables 113

Figure 3.1 – Total COVID Cases

The preceding steps demonstrated the use of describe and Matplotlib's hist method,
which are essential tools when working with continuous variables.

How it works…
We use the describe method in step 3 to examine some summary statistics and the
distribution of the key variables. It is often a red flag when the mean and median (50%)
have dramatically different values. Cases and deaths are heavily skewed to the right
(reflected in the mean being much higher than the median). This alerts us to the presence
of outliers at the upper end. This is true even with the adjustment for population size, as
both total_cases_pm and total_deaths_pm show this same skew. We do more
analysis of outliers in the next chapter.

The more detailed percentile data in step 4 further supports this sense of skewness. For
instance, the gap between the 90th-percentile and 100th-percentile values for cases and
deaths is substantial. These are good first indicators that we are not dealing with normally
distributed data here. Even if this is not due to errors, this matters for the statistical testing
we will do down the road. On the list of things we want to note when asked, "How does the
data look?" this is one of the first things we want to say.

114 Taking the Measure of Your Data

We should also note the large number of zero values for total deaths, over 10%. This will
also matter for statistical testing when we get to that point.

The histogram of total cases confirms that much of the distribution is between 0 and
150,000, with a few outliers and 1S extreme outlier. Visually, the distribution looks much
more log-normal than normal. Log-normal distributions have fatter tails and do not have
negative values.

See also
We take a closer look at outliers and unexpected values in the next chapter. We do
much more with visualizations in Chapter 5, Using Visualizations for the Identification of
Unexpected Values.

4
Identifying Missing

Values and Outliers
in Subsets of Data

Outliers and unexpected values may not be errors. They often are not. Individuals and
events are complicated and surprise the analyst. Some people really are 7'4" tall and some
really have $50 million salaries. Sometimes, data is messy because people and situations
are messy; however, extreme values can have an outsized impact on our analysis,
particularly when we are using parametric techniques that assume a normal distribution.

These issues may become even more apparent when working with subsets of data. That is
not just because extreme or unexpected values have more weight in smaller samples. It is
also because they may make less sense when bivariate and multivariate relationships are
considered. When the 7'4" person, or the person making $50 million, is 10 years old, the
red flag gets even redder. We take these complications into account in this chapter when
considering strategies for detecting outliers, unexpected values, and missing values.

Specifically, the recipes in this chapter examine the following:

•	 Finding missing values

•	 Identifying outliers with one variable

116 Identifying Missing Values and Outliers in Subsets of Data

•	 Identifying outliers and unexpected values in bivariate relationships

•	 Using subsetting to examine logical inconsistencies in variable relationships

•	 Using linear regression to identify data points with significant influence

•	 Using k-nearest neighbor to find outliers

•	 Using Isolation Forest to find anomalies

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Finding missing values
Before starting any analysis, we need to have a good sense of the number of missing values
for each variable, and why those values are missing. We also want to know which rows in
our data frame are missing values for several key variables. We can get this information
with just a couple of statements in pandas.

We also need good strategies for dealing with missing values before we begin statistical
modeling, since those models do not typically handle missing values flexibly. We
introduce imputation strategies in this recipe and go into more detail in subsequent
recipes in this chapter.

Getting ready
We will work with cumulative data on coronavirus cases and deaths by country. The
DataFrame has other relevant information, including population density, age, and GDP.

Note
Our World in Data provides COVID-19 public use data at https://
ourworldindata.org/coronavirus-source-data. The data
used in this recipe was downloaded on June 1, 2020. The Covid case and death
data were missing for Hong Kong as of this date, but this problem was rectified
in files after that.

We will also be doing some routine plotting with Matplotlib in this recipe to help us
visualize the distributions of Covid cases and deaths. You can install Matplotlib using
pip install matplotlib.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data

Finding missing values 117

How to do it…
We make good use of the isnull and sum functions to count the number of missing
values for selected columns and the number of rows that have missing values for several
key variables. We then use the very handy data frame fillna method to impute
missing values:

1.	 Load the pandas, numpy, and matplotlib libraries, along with the Covid
case data file.

Also, set up the Covid case and demographic columns:
>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> covidtotals = pd.read_csv("data/
covidtotalswithmissings.csv")

>>> totvars = ['location','total_cases','total_
deaths','total_cases_pm',

... 'total_deaths_pm']

>>>

>>> demovars = ['population','pop_density','median_
age','gdp_per_capita',

... 'hosp_beds']

2.	 Check the demographic columns for missing data.

Set the axis to 0 (the default) to check for the count of countries that are missing
values for each of the demographic variables (missing values down columns).
Notice that 46 out of 210 countries, more than 20 percent of countries, are missing
hosp_beds. Set the axis to 1 to check for the number of demographic variables
that are missing for each country (missing values across rows). Next, get value_
counts on the resulting demovarsmisscnt series to see whether some countries
have missing values for much of the demographic data. Notice that 10 countries
are missing values for 3 out of the 5 demographic variables, while 8 countries are
missing values for 4 out of 5 demographic variables:

>>> covidtotals[demovars].isnull().sum(axis=0)

population 0

pop_density 12

median_age 24

118 Identifying Missing Values and Outliers in Subsets of Data

gdp_per_capita 28

hosp_beds 46

dtype: int64

>>> demovarsmisscnt = covidtotals[demovars].isnull().
sum(axis=1)

>>> demovarsmisscnt.value_counts()

0 156

1 24

2 12

3 10

4 8

dtype: int64

3.	 List the countries with three or more missing values for the demographic data.

Index alignment and Boolean indexing allow us to use the count of missing values
(demovarsmisscnt) to select rows. Append the location to the demovars list to
see the country. (We only show the first five of these countries here.):

>>> covidtotals.loc[demovarsmisscnt>=3, ['location'] +
demovars].head(5).T

iso_code AND AIA
BES \

location Andorra Anguilla Bonaire Sint
...

population 77,265 15,002
26,221

pop_density 164 NaN
NaN

median_age NaN NaN
NaN

gdp_per_capita NaN NaN
NaN

hosp_beds NaN NaN
NaN

iso_code VGB FRO

Finding missing values 119

location British Virgin Islands Faeroe Islands

population 30,237 48,865

pop_density 208 35

median_age NaN NaN

gdp_per_capita NaN NaN

hosp_beds NaN NaN

>>> type(demovarsmisscnt)

<class 'pandas.core.series.Series'>

4.	 Check the Covid case data for missing values.

Notice that only one country has missing values for any of this data:
>>> covidtotals[totvars].isnull().sum(axis=0)

location 0

total_cases 0

total_deaths 0

total_cases_pm 1

total_deaths_pm 1

dtype: int64

>>> totvarsmisscnt = covidtotals[totvars].isnull().
sum(axis=1)

>>> totvarsmisscnt.value_counts()

0 209

2 1

dtype: int64

>>> covidtotals.loc[totvarsmisscnt>0].T

iso_code HKG

lastdate 2020-05-26 00:00:00

location Hong Kong

total_cases 0

total_deaths 0

total_cases_pm NaN

total_deaths_pm NaN

population 7,496,988

pop_density 7,040

120 Identifying Missing Values and Outliers in Subsets of Data

median_age 45

gdp_per_capita 56,055

hosp_beds NaN

5.	 Use the fillna method to fix the missing cases data for the one country affected
(Hong Kong).

We could just set the values to 0, since the numerator is 0 in both cases. However, it
is helpful in terms of code reuse to use the correct logic:

>>> covidtotals.total_cases_pm.fillna(covidtotals.total_
cases/

... (covidtotals.population/1000000), inplace=True)

>>> covidtotals.total_deaths_pm.fillna(covidtotals.total_
deaths/

... (covidtotals.population/1000000), inplace=True)

>>> covidtotals[totvars].isnull().sum(axis=0)

location 0

total_cases 0

total_deaths 0

total_cases_pm 0

total_deaths_pm 0

dtype: int64

These steps give us a good sense of the number of missing values that we have for each
column, and which countries have many missing values.

How it works...
Step 2 shows that there is a fair bit of missing data for the demographic variables,
particularly for the number of hospital beds. 18 countries have at least 3 of the 5
demographic variables missing. We will either have to exclude those variables from any
multivariate analyses we will do in the future or impute values for those variables. We
make no attempt to fix those values here. We look more at fixing missing values, including
by imputing values, in subsequent chapters.

The key Covid case data is relatively free of missing values. We have one country with
missing cases or death data, which we resolve in step 5. We use fillna to fix the missing
value. We could have also used fillna to set the missing value to 0.

Identifying outliers with one variable 121

We should not gloss over the little bit of pandas magic in steps 2 and 3. We create a series,
demovarsmisscnt, which has the count of demographic columns that have missing
values for each country. We are able to use that series, along with the three or more test
series (demovarsmisscnt>=3), because of pandas index alignment and Boolean
indexing. That's magic I say!

See also
We examine other pandas techniques for fixing missing values in Chapter 6, Cleaning and
Exploring Data with Series Operations.

Identifying outliers with one variable
The concept of an outlier is somewhat subjective but is closely tied to the properties of a
particular distribution; to its central tendency, spread, and shape. We make assumptions
about whether a value is expected or unexpected based on how likely we are to get that
value given the variable's distribution. We are more inclined to view a value as an outlier
if it is multiple standard deviations away from the mean and it is from a distribution that
is approximately normal; one that is symmetrical (has low skew) and has relatively skinny
tails (low kurtosis).

This becomes clear if we imagine trying to identify outliers from a uniform distribution.
There is no central tendency and there are no tails. Each value is equally likely. If, for
example, Covid cases per country were uniformly distributed, with a minimum of 1 and a
maximum of 10,000,000, neither 1 nor 10,000,000 would be considered an outlier.

We need to understand how a variable is distributed, then, before we can identify outliers.
Several Python libraries provide tools to help us understand how variables of interest are
distributed. We use a couple of them in this recipe to identify when a value is sufficiently
out of range to be of concern.

Getting ready
You will need the matplotlib, statsmodels, and scipy libraries, in addition
to pandas and numpy, to run the code in this recipe. You can install matplotlib,
statsmodels, and scipy by entering pip install matplotlib, pip install
statsmodels, and pip install scipy in a terminal client or PowerShell
(in Windows).

We continue to work with the Covid case data.

122 Identifying Missing Values and Outliers in Subsets of Data

How to do it...
We take a good look at the distribution of some of the key continuous variables in the
Covid data. We examine the central tendency and shape of the distribution, generating
measures and visualizations of normality:

1.	 Load the pandas, numpy, matplotlib, statsmodels, and scipy libraries,
and the Covid case data file.

Also, set up the Covid case and demographic columns:
>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

>>> import scipy.stats as scistat

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

>>> totvars = ['location','total_cases','total_
deaths','total_cases_pm',

... 'total_deaths_pm']

>>> demovars = ['population','pop_density','median_
age','gdp_per_capita',

... 'hosp_beds']

2.	 Get descriptive statistics for the Covid case data.

Create a data frame with just the key case data:
>>> covidtotalsonly = covidtotals.loc[:, totvars]

>>> covidtotalsonly.describe()

 total_cases total_deaths total_cases_pm total_
deaths_pm

count 210 210 210
210

mean 29,216 1,771 1,355
56

std 136,398 8,706 2,625
145

min 0 0 0
0

Identifying outliers with one variable 123

25% 176 4 93
1

50% 1,242 26 281
6

75% 10,117 241 1,801
32

max 1,790,191 104,383 19,771
1,238

3.	 Show more detailed percentile data.

Also show skewness and kurtosis. Skewness and kurtosis describe how symmetrical
the distribution is and how fat the tails of the distribution are, respectively. Both
measures are significantly higher than we would expect if our variables were
distributed normally:

>>> covidtotalsonly.quantile(np.arange(0.0, 1.1, 0.1))

 total_cases total_deaths total_cases_pm total_
deaths_pm

0.00 0.00 0.00 0.00
0.00

0.10 22.90 0.00 18.00
0.00

0.20 105.20 2.00 56.29
0.38

0.30 302.00 6.70 115.43
1.72

0.40 762.00 12.00 213.97
3.96

0.50 1,242.50 25.50 280.93
6.15

0.60 2,514.60 54.60 543.96
12.25

0.70 6,959.80 137.20 1,071.24
25.95

0.80 16,847.20 323.20 2,206.30
49.97

0.90 46,513.10 1,616.90 3,765.14
138.90

124 Identifying Missing Values and Outliers in Subsets of Data

1.00 1,790,191.00 104,383.00 19,771.35
1,237.55

>>> covidtotalsonly.skew()

total_cases 10.80

total_deaths 8.93

total_cases_pm 4.40

total_deaths_pm 4.67

dtype: float64

>>> covidtotalsonly.kurtosis()

total_cases 134.98

total_deaths 95.74

total_cases_pm 25.24

total_deaths_pm 27.24

dtype: float64

4.	 Test the Covid data for normality.

Use the Shapiro-Wilk test from the scipy library. Print out the p-value from the
test. (The null hypothesis of a normal distribution can be rejected at the 95% level
at any p-value below 0.05.):

>>> def testnorm(var, df):

... stat, p = scistat.shapiro(df[var])

... return p

...

>>> testnorm("total_cases", covidtotalsonly)

3.753789128593843e-29

>>> testnorm("total_deaths", covidtotalsonly)

4.3427896631016077e-29

>>> testnorm("total_cases_pm", covidtotalsonly)

1.3972683006509067e-23

>>> testnorm("total_deaths_pm", covidtotalsonly)

1.361060423265974e-25

Identifying outliers with one variable 125

5.	 Show normal quantile-quantile plots (qqplots) of total cases and total cases
per million.

The straight lines show what the distributions would look like if they were normal:
>>> sm.qqplot(covidtotalsonly[['total_cases']]. \

... sort_values(['total_cases']), line='s')

>>> plt.title("QQ Plot of Total Cases")

>>> sm.qqplot(covidtotals[['total_cases_pm']]. \

... sort_values(['total_cases_pm']), line='s')

>>> plt.title("QQ Plot of Total Cases Per Million")

>>> plt.show()

This results in the following scatter plots:

Figure 4.1 – Distribution of Covid cases compared with a normal distribution

126 Identifying Missing Values and Outliers in Subsets of Data

Even when adjusted by population with the total cases per million column, the
distribution is substantially different from normal:

Figure 4.2 – Distribution of Covid cases per million compared with a normal distribution

6.	 Show the outlier range for total cases.

One way to define an outlier for a continuous variable is by distance above the
third quartile or below the first quartile. If that distance is more than 1.5 times the
interquartile range (the distance between the first and third quartiles), that value is
considered an outlier. In this case, since only 0 or positive values are possible, any
total cases value above 25,028 is considered an outlier:

>>> thirdq, firstq = covidtotalsonly.total_cases.
quantile(0.75), covidtotalsonly.total_cases.
quantile(0.25)

>>> interquartilerange = 1.5*(thirdq-firstq)

>>> outlierhigh, outlierlow = interquartilerange+thirdq,
firstq-interquartilerange

>>> print(outlierlow, outlierhigh, sep=" <--> ")

-14736.125 <--> 25028.875

Identifying outliers with one variable 127

7.	 Generate a data frame of outliers and write it to Excel.

Iterate over the four Covid case columns. Calculate the outlier thresholds for each
column as we did in the previous step. Select from the data frame those rows above
the high threshold or below the low threshold. Add columns that indicate the
variable examined (varname) for outliers and the threshold levels:

>>> def getoutliers():

... dfout = pd.DataFrame(columns=covidtotals.columns,
data=None)

... for col in covidtotalsonly.columns[1:]:

... thirdq, firstq = covidtotalsonly[col].
quantile(0.75),\

... covidtotalsonly[col].quantile(0.25)

... interquartilerange = 1.5*(thirdq-firstq)

... outlierhigh, outlierlow =
 interquartilerange+thirdq,\

... firstq-interquartilerange

... df = covidtotals.
loc[(covidtotals[col]>outlierhigh) | \

... (covidtotals[col]<outlierlow)]

... df = df.assign(varname = col,
 threshlow = outlierlow,\

... threshhigh = outlierhigh)

... dfout = pd.concat([dfout, df])

... return dfout

...

>>> outliers = getoutliers()

>>> outliers.varname.value_counts()

total_deaths 36

total_cases 33

total_deaths_pm 28

total_cases_pm 17

Name: varname, dtype: int64

>>> outliers.to_excel("views/outlierscases.xlsx")

128 Identifying Missing Values and Outliers in Subsets of Data

8.	 Look a little more closely at outliers for cases per million.

Use the varname column we created in the previous step to select the outliers
for total_cases_pm. Also show columns (pop_density and gdp_per_
capita) that might help to explain the extreme values and the interquartile range
for those columns:

>>> outliers.loc[outliers.varname=="total_cases_pm",\

... ['location','total_cases_pm','pop_density','gdp_
per_capita']].\

... sort_values(['total_cases_pm'], ascending=False)

 location total_cases_pm pop_density gdp_per_
capita

SMR San Marino 19,771.35 556.67
56,861.47

QAT Qatar 19,753.15 227.32
116,935.60

VAT Vatican 14,833.13 nan
nan

AND Andorra 9,888.05 163.75
nan

BHR Bahrain 6,698.47 1,935.91
43,290.71

LUX Luxembourg 6,418.78 231.45
94,277.96

KWT Kuwait 6,332.42 232.13
65,530.54

SGP Singapore 5,962.73 7,915.73
85,535.38

USA United States 5,408.39 35.61
54,225.45

ISL Iceland 5,292.31 3.40
46,482.96

CHL Chile 5,214.84 24.28
22,767.04

ESP Spain 5,120.95 93.11
34,272.36

IRL Ireland 5,060.96 69.87
67,335.29

BEL Belgium 5,037.35 375.56
42,658.58

Identifying outliers with one variable 129

GIB Gibraltar 5,016.18 3,457.10
nan

PER Peru 4,988.38 25.13
12,236.71

BLR Belarus 4,503.60 46.86
17,167.97

>>> covidtotals[['pop_density','gdp_per_capita']].
quantile([0.25,0.5,0.75])

 pop_density gdp_per_capita

0.25 37.42 4,485.33

0.50 87.25 13,183.08

0.75 214.12 28,556.53

9.	 Show a histogram of total cases:

>>> plt.hist(covidtotalsonly['total_cases']/1000, bins=7)

>>> plt.title("Total Covid Cases (thousands)")

>>> plt.xlabel('Cases')

>>> plt.ylabel("Number of Countries")

>>> plt.show()

This code produces the following plot:

Figure 4.3 – Histogram of total Covid cases

130 Identifying Missing Values and Outliers in Subsets of Data

10.	 Perform a log transformation of the Covid data. Show a histogram of the log
transformation of total cases:

>>> covidlogs = covidtotalsonly.copy()

>>> for col in covidtotalsonly.columns[1:]:

... covidlogs[col] = np.log1p(covidlogs[col])

>>> plt.hist(covidlogs['total_cases'], bins=7)

>>> plt.title("Total Covid Cases (log)")

>>> plt.xlabel('Cases')

>>> plt.ylabel("Number of Countries")

>>> plt.show()

This code produces the following:

Figure 4.4 – Histogram of total Covid cases with log transformation

The tools we used in the preceding steps tell us a fair bit about how Covid cases and deaths
are distributed, and about where outliers are located.

Identifying outliers with one variable 131

How it works…
The percentile data shown in step 3 reflects the skewness of the cases and deaths data. If,
for example, we look at the range of values between the 20th and 30th percentiles, and
compare it with the range from the 70th to the 80th percentiles, we see that the range is
much greater in the higher percentiles for each variable. This is confirmed by the very
high values for skewness and kurtosis, compared with normal distribution values of 0
and 3, respectively. We run formal tests of normality in step 4, which indicate that the
distributions of the Covid variables are not normal at high levels of significance.

This is consistent with the qqplots we run in step 5. The distributions of both total
cases and total cases per million differ significantly from normal, as represented by the
straight line. Many cases hover around zero, and there is a dramatic increase in slope at
the right tail.

We identify outliers in steps 6 and 7. Using 1.5 times the interquartile range to determine
outliers is a reasonable rule of thumb. I like to output those values to an Excel file, along
with associated data, to see what patterns I can detect in the data. This often leads to
more questions, of course. We will try to answer some of them in the next recipe, but
one question we can consider now is what accounts for the countries with high cases per
million, displayed in step 8. Some of the countries with extreme values are very small, in
terms of land mass, so perhaps population density matters. But half of the countries on
this list are near or below the 75th percentile in population density. On the other hand,
most countries on this list are above the 75th percentile in GDP per capita. It is worth
exploring these bivariate relationships further, which we do in subsequent recipes.

Our identification of outliers in step 7 assumes a normal distribution, an assumption that
we have shown to be unwarranted. Looking again at the distribution in step 9, it seems
much more like a log-normal distribution, with values clustered around 0 and a right
skew. We transform the data in step 10 and plot the results of the transformation.

There's more…
We could have also used standard deviation, rather than interquartile ranges, to identify
outliers in steps 6 and 7.

I should add here that outliers are not necessarily data collection or measurement errors,
and we may or may not need to make adjustments to the data. However, extreme values
can have a meaningful and persistent impact on our analysis, particularly with small
datasets like this one.

132 Identifying Missing Values and Outliers in Subsets of Data

The overall impression we should have of the Covid case data is that it is relatively clean;
that is, there are not many invalid values, narrowly defined. Looking at each variable
independently of how it moves with other variables does not identify much that screams
out as a clear data error. However, the distribution of the variables is quite problematic
statistically. Building statistical models dependent on these variables will be complicated,
as we might have to rule out parametric tests.

It is also worth remembering that our sense of what constitutes an outlier is shaped by our
assumption of a normal distribution. If, instead, we allow our expectations to be guided by
the actual distribution of the data, we have a different understanding of extreme values. If
our data reflects a social, or biological, or physical process that is inherently not normally
distributed (uniform, logarithmic, exponential, Weibull, Poisson, and so on), our sense of
what constitutes an outlier should adjust accordingly.

See also
Box plots might have also been illuminating here. We do a few box plots on this data in
Chapter 5, Using Visualizations for the Identification of Unexpected Values.

We explore bivariate relationships in this same dataset in the next recipe for any insights
they might provide about outliers and unexpected values. In subsequent chapters, we
consider strategies for imputing values for missing data and for making adjustments to
extreme values.

Identifying outliers and unexpected values in
bivariate relationships
A value might be unexpected, even if it is not an extreme value, when it does not deviate
significantly from the distribution mean. Some values for a variable are unexpected
when a second variable has certain values. This is easy to illustrate when one variable is
categorical and the other is continuous.

The following diagram illustrates the number of bird sightings per day over a several
year period, but shows different distributions for each of the two sites. One site has a
mean sightings per day of 33, and the other 52. (This is fictional data.) The overall mean
(not shown) is 42. What should we make of a value of 58 for daily sightings? Is that an
outlier? That clearly depends on which of the two sites was being observed. If there were
58 sightings on a day at site A, 58 would be an unusually high number. Not so for site B,
where 58 sightings would not be very different from the mean for that site:

Identifying outliers and unexpected values in bivariate relationships 133

Figure 4.5 – Daily bird sightings by site

This hints at useful rule of thumb: whenever a variable of interest is significantly
correlated with another variable, we should take that relationship into account when
trying to identify outliers (or any statistical analysis with that variable actually). It is
helpful to state this a little more precisely, and extend it to cases where both variables are
continuous. If we assume a linear relationship between variable x and variable y, we can
describe that relationship with the familiar y = mx + b equation, where m is the slope and
b is the y-intercept. We can then expect for y to increase by m for every 1 unit increase in
x. Unexpected values are those that deviate substantially from this relationship, where the
value of y is much higher or lower than what would be predicted given the value of x. This
can be extended to multiple x, or predictor, variables.

In this recipe, we demonstrate how to identify outliers and unexpected values by
examining the relationship of a variable to one other variable. In subsequent recipes in
this chapter, we use multivariate techniques to make additional improvements in our
outlier detection.

Getting ready
We use the matplotlib and seaborn libraries in this recipe. You can install them with
pip by entering pip install matplotlib and pip install seaborn with a
terminal client or powershell (in Windows).

134 Identifying Missing Values and Outliers in Subsets of Data

How to do it...
We examine the relationship between total cases and total deaths. We take a closer look at
those countries where deaths are higher or lower than expected given the number of cases:

1.	 Load pandas, numpy, matplotlib, seaborn, and the Covid cumulative data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

>>> totvars = ['location','total_cases','total_
deaths','total_cases_pm',

... 'total_deaths_pm']

>>> demovars = ['population','pop_density','median_
age','gdp_per_capita',

... 'hosp_beds']

2.	 Generate a correlation matrix for the cumulative and demographic columns.

Unsurprisingly, there is a very high correlation (0.93) between total cases and total
deaths, and a smaller (0.59) but still substantial one between total cases per million
and total deaths per million. There is a strong (0.65) relationship between GDP per
capita and cases per million:

>>> covidtotals.corr(method="pearson")

 total_cases total_deaths total_cases_pm
total_deaths_pm

total_cases 1.00 0.93 0.18
0.25

total_deaths 0.93 1.00 0.18
0.39

total_cases_pm 0.18 0.18 1.00
0.59

total_deaths_pm 0.25 0.39 0.59
1.00

population 0.27 0.21 -0.06
-0.01

pop_density -0.03 -0.03 0.11
0.03

Identifying outliers and unexpected values in bivariate relationships 135

median_age 0.16 0.21 0.31
0.39

gdp_per_capita 0.19 0.20 0.65
0.38

hosp_beds 0.03 0.02 0.08
0.12

 population pop_density median_age gdp_per_
capita hosp_beds

total_cases 0.27 -0.03 0.16
0.19 0.03

total_deaths 0.21 -0.03 0.21
0.20 0.02

total_cases_pm -0.06 0.11 0.31
0.65 0.08

total_deaths_pm -0.01 0.03 0.39
0.38 0.12

population 1.00 -0.02 0.02
-0.06 -0.04

pop_density -0.02 1.00 0.18
0.32 0.31

median_age 0.02 0.18 1.00
0.65 0.66

gdp_per_capita -0.06 0.32 0.65
1.00 0.30

hosp_beds -0.04 0.31 0.66
0.30 1.00

3.	 Check to see whether some countries have unexpectedly high or low total deaths,
given total cases.

First create a data frame with only the cases and deaths columns. Use qcut to
create a column that breaks the data into quantiles. Show a crosstab of total cases
quantiles by total deaths quantiles:

>>> covidtotalsonly = covidtotals.loc[:, totvars]

>>> covidtotalsonly['total_cases_q'] = pd.\

... qcut(covidtotalsonly['total_cases'],

... labels=['very low','low','medium',

... 'high','very high'], q=5, precision=0)

>>> covidtotalsonly['total_deaths_q'] = pd.\

136 Identifying Missing Values and Outliers in Subsets of Data

... qcut(covidtotalsonly['total_deaths'],

... labels=['very low','low','medium',

... 'high','very high'], q=5, precision=0)

>>> pd.crosstab(covidtotalsonly.total_cases_q,

... covidtotalsonly.total_deaths_q)

total_deaths_q very low low medium high very high

total_cases_q

very low 34 7 1 0 0

low 12 19 10 1 0

medium 1 13 15 13 0

high 0 0 12 24 6

very high 0 0 2 4 36

4.	 Take a look at countries that do not fit along the diagonal.

These are countries with very high total cases but medium total deaths. (There
are no countries with high total cases and low or very low deaths.) Also, look
at countries with low cases but high deaths. (Since the covidtotals and
covidtotalsonly data frames have the same index, we can use Boolean series
created from the latter to return selected rows from the former.):

>>> covidtotals.loc[(covidtotalsonly.total_cases_q=="very
high") & (covidtotalsonly.total_deaths_q=="medium")].T

iso_code QAT SGP

lastdate 2020-06-01 00:00:00 2020-06-01 00:00:00

location Qatar Singapore

total_cases 56910 34884

total_deaths 38 23

total_cases_pm 19,753.15 5,962.73

total_deaths_pm 13.19 3.93

population 2,881,060.00 5,850,343.00

pop_density 227.32 7,915.73

median_age 31.90 42.40

gdp_per_capita 116,935.60 85,535.38

hosp_beds 1.20 2.40

>>> covidtotals.loc[(covidtotalsonly.total_cases_
q=="low") & (covidtotalsonly.total_deaths_q=="high")].T

iso_code YEM

lastdate 2020-06-01 00:00:00

Identifying outliers and unexpected values in bivariate relationships 137

location Yemen

total_cases 323

total_deaths 80

total_cases_pm 10.83

total_deaths_pm 2.68

population 29,825,968.00

pop_density 53.51

median_age 20.30

gdp_per_capita 1,479.15

hosp_beds 0.70

>>> covidtotals.hosp_beds.mean()

3.012670731707318

5.	 Do a scatter plot of total cases by total deaths.

Use Seaborn's regplot method to generate a linear regression line in addition to
the scatter plot:

>>> ax = sns.regplot(x="total_cases", y="total_deaths",
data=covidtotals)

>>> ax.set(xlabel="Cases", ylabel="Deaths", title="Total
Covid Cases and Deaths by Country")

>>> plt.show()

This produces the following scatter plot:

Figure 4.6 – Scatter plot of total cases and deaths with a linear regression line

138 Identifying Missing Values and Outliers in Subsets of Data

6.	 Examine unexpected values above the regression line.

It is good to take a closer look at countries with cases and deaths coordinates that
are noticeably above or below the regression line through the data. There are four
countries with fewer than 300,000 cases and more than 20,000 deaths:

>>> covidtotals.loc[(covidtotals.total_cases<300000) &
(covidtotals.total_deaths>20000)].T

iso_code FRA ITA
\

lastdate 2020-06-01 00:00:00 2020-06-01 00:00:00

location France Italy

total_cases 151753 233019

total_deaths 28802 33415

total_cases_pm 2,324.88 3,853.99

total_deaths_pm 441.25 552.66

population 65,273,512.00 60,461,828.00

pop_density 122.58 205.86

median_age 42.00 47.90

gdp_per_capita 38,605.67 35,220.08

hosp_beds 5.98 3.18

iso_code ESP GBR

lastdate 2020-05-31 00:00:00 2020-06-01 00:00:00

location Spain United Kingdom

total_cases 239429 274762

total_deaths 27127 38489

total_cases_pm 5,120.95 4,047.40

total_deaths_pm 580.20 566.97

population 46,754,783.00 67,886,004.00

pop_density 93.11 272.90

median_age 45.50 40.80

gdp_per_capita 34,272.36 39,753.24

hosp_beds 2.97 2.54

7.	 Examine unexpected values below the regression line.

There is one country with more than 300,000 cases but fewer than 10,000 deaths:
>>> covidtotals.loc[(covidtotals.total_cases>300000) &
(covidtotals.total_deaths<10000)].T

Identifying outliers and unexpected values in bivariate relationships 139

iso_code RUS

lastdate 2020-06-01 00:00:00

location Russia

total_cases 405843

total_deaths 4693

total_cases_pm 2,780.99

total_deaths_pm 32.16

population 145,934,460.00

pop_density 8.82

median_age 39.60

gdp_per_capita 24,765.95

hosp_beds 8.05

8.	 Do a scatter plot of total cases per million by total deaths per million:

>>> ax = sns.regplot(x="total_cases_pm", y="total_deaths_
pm", data=covidtotals)

>>> ax.set(xlabel="Cases Per Million", ylabel="Deaths Per
Million", title="Total Covid Cases per Million and Deaths
per Million by Country")

>>> plt.show()

This produces the following scatter plot:

Figure 4.7 – Scatter plot of cases and deaths per million with a linear regression line

140 Identifying Missing Values and Outliers in Subsets of Data

9.	 Examine deaths per million above and below the regression line:

>>> covidtotals.loc[(covidtotals.total_cases_pm<7500) \

... & (covidtotals.total_deaths_pm>250),\

... ['location','total_cases_pm','total_deaths_pm']]

 location total_cases_pm
total_deaths_pm

iso_code

BEL Belgium 5,037
817

FRA France 2,325
441

IRL Ireland 5,061
335

IMN Isle of Man 3,951
282

ITA Italy 3,854
553

JEY Jersey 3,047
287

NLD Netherlands 2,710
348

SXM Sint Maarten (Dutch part) 1,796
350

ESP Spain 5,121
580

SWE Sweden 3,717
435

GBR United Kingdom 4,047
567

USA United States 5,408
315

>>> covidtotals.loc[(covidtotals.total_cases_pm>5000) \

... & (covidtotals.total_deaths_pm<=50), \

... ['location','total_cases_pm','total_deaths_pm']]

 location total_cases_pm total_deaths_pm

iso_code

BHR Bahrain 6,698 11

Identifying outliers and unexpected values in bivariate relationships 141

GIB Gibraltar 5,016 0

ISL Iceland 5,292 29

KWT Kuwait 6,332 50

QAT Qatar 19,753 13

SGP Singapore 5,963 4

VAT Vatican 14,833 0

The preceding steps examined the relationship between variables in order to identify outliers.

How it works…
A number of questions are raised by looking at the bivariate relationships that did not
surface in our univariate exploration in the previous recipe. There is confirmation
of anticipated relationships, such as with total cases and total deaths, but this makes
deviations from this all the more curious. There are possible substantive explanations for
unusually high death rates, given a certain number of cases, but measurement error or
poor reporting of cases cannot be ruled out either.

Step 2 shows a high correlation (0.93) between total cases and total deaths, but there is
variation even there. We divide the cases and deaths into quantiles in step 3 and then do a
crosstab of the quantile values. Most countries are along the diagonal or close to it. However,
two countries have a very high number of cases but medium deaths, Qatar and Singapore.
This is also a reminder that both countries have very high total cases per million, well into
the 90th percentile. It is reasonable to wonder if there are potential reporting issues.

One country, Yemen, had a low number of cases but a high number of deaths. This could
perhaps be seen as consistent with the very low number of hospital beds per 100,000
people in Yemen. But it could also mean that coronavirus cases have been under-reported.

We do a scatter plot in step 5 of total cases and deaths. The strong upward sloping
relationship between the two is confirmed, but there are a number of countries whose
deaths are above the regression line. We can see that four countries (France, Italy, Spain,
and Great Britain) have higher deaths than would be predicted by the number of cases.
One country (Russia) has a much lower number of deaths. It is at least worth wondering
about whether this is a reporting problem, or reflects differences in how countries define a
Covid death.

Not surprisingly, there is even more scatter around the regression line in the scatter plot of
cases per million and deaths per million. Countries such as Belgium, France, Ireland, Italy,
and the Netherlands have much higher deaths per million than the number of cases per
million would suggest. Countries such as Bahrain, Iceland, Kuwait, Qatar, and Singapore
have significantly lower rates.

142 Identifying Missing Values and Outliers in Subsets of Data

There's more…
We are beginning to get a good sense of what our data looks like, but the data in this form
does not enable us to examine how the univariate distributions and bivariate relationships
might change over time. For example, one reason why countries might have more deaths
per million than the number of cases per million would indicate could be that more
time has passed since the first confirmed cases. We are not able to explore that in the
cumulative data. We need the daily data for that, which we look at in subsequent chapters.

This recipe, and the previous one, show how much data cleaning can bleed into
exploratory data analysis, even when you are first starting to get a sense of your data. I
would definitely draw a distinction between data exploration and what we are doing here.
We are trying to get a sense of how the data hangs together, why certain variables take on
certain values in certain situations and not others. We want to get to the point where there
are not huge surprises when we begin to do the analysis.

I find it helpful to do small things to formalize this process. I use different naming
conventions for files that are not quite ready for analysis. If nothing else, this helps remind
me that any numbers produced at this point are far from ready for distribution.

See also
We still have not done much to examine possible data issues that only become apparent
when examining subsets of data; for example, positive wage income values for people who
say they are not working (both variables are on the National Longitudinal Survey). We do
that in the next recipe.

We do much more with Matplotlib and Seaborn in Chapter 5, Using Visualizations for the
Identification of Unexpected Values.

Using subsetting to examine logical
inconsistencies in variable relationships
At a certain point, data issues come down to deductive logic problems, such as variable
x has to be greater than some quantity a when variable y is less than some quantity
b. Once we are through some initial data cleaning, it is important to check for logical
inconsistencies. pandas makes this kind of error checking relatively straightforward with
subsetting tools such as loc and Boolean indexing. This can be combined with summary
methods on series and data frames to allow us to easily compare values for a particular row
to values for the whole dataset or some subset of rows. We can also easily aggregate over
columns. Just about any question we might have about the logical relationships between
variables can be answered with these tools. We work through some examples in this recipe.

Using subsetting to examine logical inconsistencies in variable relationships 143

Getting ready
We will work with the National Longitudinal Survey of Youth (NLS), mainly with data
on employment and education. We use apply and lambda functions several times in
this recipe, but go into more detail on their use in Chapter 7, Fixing Messy Data when
Aggregating. It is not necessary to review Chapter 7 to follow along, however, even if you
have no experience with those tools.

Data note
The NLS, administered by the United States Bureau of Labor Statistics, is a
longitudinal survey of individuals who were in high school in 1997 when the
survey started. Participants were surveyed each year through 2017.

How to do it…
We run a number of logical checks on the NLS data, such as individuals with post-
graduate enrollment but no undergraduate enrollment, or having wage income but no
weeks worked. We also check for large changes in key values for a given individual from
one period to the next:

1.	 Import pandas and numpy, and then load the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Look at some of the employment and education data.

The dataset has weeks worked each year from 2000 through 2017, and college
enrollment status each month from February 1997 through October 2017. We use
the ability of the loc accessor to choose all columns from the column indicated
on the left of the colon through the column indicated on the right; for example,
nls97.loc[:, "colenroct09":"colenrfeb14"]:

>>> nls97[['wageincome','highestgradecompleted',
'highestdegree']].head(3).T

personid 100061 100139
100284

wageincome 12,500 120,000
58,000

144 Identifying Missing Values and Outliers in Subsets of Data

highestgradecompleted 13 12
7

highestdegree 2. High School 2. High School 0.
None

>>> nls97.loc[:, "weeksworked12":"weeksworked17"].
head(3).T

personid 100061 100139 100284

weeksworked12 40 52 0

weeksworked13 52 52 nan

weeksworked14 52 52 11

weeksworked15 52 52 52

weeksworked16 48 53 47

weeksworked17 48 52 0

>>> nls97.loc[:, "colenroct09":"colenrfeb14"].head(3).T

 100061 100139
100284

colenroct09 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb10 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct10 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb11 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct11 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenrfeb12 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenroct12 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenrfeb13 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct13 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenrfeb14 1. Not enrolled 1. Not enrolled 1. Not
enrolled

Using subsetting to examine logical inconsistencies in variable relationships 145

3.	 Show individuals with wage income but no weeks worked.

The wage income variable reflects wage income for 2016:
>>> nls97.loc[(nls97.weeksworked16==0) & nls97.
wageincome>0, ['weeksworked16','wageincome']]
 weeksworked16 wageincome
personid
102625 0 1,200
109403 0 5,000
118704 0 25,000
130701 0 12,000
131151 0 65,000
...
957344 0 90,000
966697 0 65,000
969334 0 5,000
991756 0 9,000
992369 0 35,000

[145 rows x 2 columns]

4.	 Check for whether an individual was ever enrolled in a 4-year college course.

Chain several methods. First, create a data frame with columns that start with
colenr (nls97.filter(like="colenr")). These are the college enrollment
columns for October and February of each year. Then, use apply to run a
lambda function that examines the first character of each colenr column
(apply(lambda x: x.str[0:1]=='3')). This returns a value of True or
False for all of the college enrollment columns; True if the first value of the
string is 3, meaning enrollment at a 4-year college. Finally, use the any function
to test whether any of the values returned from the previous step has a value of
True (any(axis=1)). This will identify whether the individual was enrolled in a
4-year college course between February 1997 and October 2017. The first statement
here shows the results of the first two steps for explanatory purposes only. Only the
second statement needs to be run to get the desired results: whether the individual
was enrolled at a 4-year college course at some point:

>>> nls97.filter(like="colenr").apply(lambda x:
x.str[0:1]=='3').head(2).T

personid 100061 100139

...

146 Identifying Missing Values and Outliers in Subsets of Data

colenroct09 False False

colenrfeb10 False False

colenroct10 False False

colenrfeb11 False False

colenroct11 True False

colenrfeb12 True False

colenroct12 True False

colenrfeb13 False False

colenroct13 False False

colenrfeb14 False False

...

>>> nls97.filter(like="colenr").apply(lambda x:
x.str[0:1]=='3').\

... any(axis=1).head(2)

personid

100061 True

100139 False

dtype: bool

5.	 Show individuals with post-graduate enrollment but no bachelor's enrollment.

We can use what we tested in step 4 to do some checking. We want individuals who
have a 4 (graduate enrollment) as the first character for colenr any month, but
who never had a 3 (bachelor enrollment). Note the "~" before the second half of the
test, for negation. There are 22 individuals who fall into this category:

>>> nobach = nls97.loc[nls97.filter(like="colenr").\

... apply(lambda x: x.str[0:1]=='4').\

... any(axis=1) & ~nls97.filter(like="colenr").\

... apply(lambda x: x.str[0:1]=='3').\

... any(axis=1), "colenrfeb97":"colenroct17"]

>>> len(nobach)

22

>>> nobach.head(3).T

personid 153051 154535
184721

...

colenroct08 1. Not enrolled 1. Not enrolled
1. Not enrolled

Using subsetting to examine logical inconsistencies in variable relationships 147

colenrfeb09 1. Not enrolled 1. Not enrolled
1. Not enrolled

colenroct09 1. Not enrolled 1. Not enrolled
1. Not enrolled

colenrfeb10 1. Not enrolled 1. Not enrolled
1. Not enrolled

colenroct10 1. Not enrolled 4. Graduate program 4.
Graduate program

colenrfeb11 1. Not enrolled 4. Graduate program
NaN

colenroct11 1. Not enrolled 4. Graduate program
NaN

colenrfeb12 1. Not enrolled 4. Graduate program
NaN

colenroct12 1. Not enrolled 4. Graduate program
NaN

colenrfeb13 4. Graduate program 4. Graduate program
NaN

colenroct13 1. Not enrolled 4. Graduate program
NaN

colenrfeb14 4. Graduate program 4. Graduate program
NaN

6.	 Show individuals with bachelor's degrees or more, but no 4-year college enrollment.

Use isin to compare the first character in highestdegree with
all of the values in a list (nls97.highestdegree.str[0:1].
isin(['4','5','6','7'])):

>>> nls97.highestdegree.value_counts(sort=False)

0. None 953

1. GED 1146

2. High School 3667

3. Associates 737

4. Bachelors 1673

5. Masters 603

6. PhD 54

7. Professional 120

Name: highestdegree, dtype: int64

>>> no4yearenrollment = nls97.loc[nls97.highestdegree.
str[0:1].\

148 Identifying Missing Values and Outliers in Subsets of Data

... isin(['4','5','6','7']) & ~nls97.
filter(like="colenr").\

... apply(lambda x: x.str[0:1]=='3').\

... any(axis=1), "colenrfeb97":"colenroct17"]

>>> len(no4yearenrollment)

39

>>> no4yearenrollment.head(3).T

personid 113486 118749
124616

colenroct01 2. 2-year college 1. Not enrolled
1. Not enrolled

colenrfeb02 2. 2-year college 1. Not enrolled 2.
2-year college

colenroct02 2. 2-year college 1. Not enrolled 2.
2-year college

colenrfeb03 2. 2-year college 1. Not enrolled 2.
2-year college

colenroct03 2. 2-year college 1. Not enrolled 2.
2-year college

colenrfeb04 2. 2-year college 1. Not enrolled 2.
2-year college

colenroct04 1. Not enrolled 1. Not enrolled 2.
2-year college

colenrfeb05 1. Not enrolled 1. Not enrolled 2.
2-year college

colenroct05 1. Not enrolled 1. Not enrolled
1. Not enrolled

colenrfeb06 1. Not enrolled 1. Not enrolled
1. Not enrolled

colenroct06 1. Not enrolled 1. Not enrolled
1. Not enrolled

colenrfeb07 1. Not enrolled 2. 2-year college
1. Not enrolled

colenroct07 1. Not enrolled 2. 2-year college
1. Not enrolled

colenrfeb08 1. Not enrolled 1. Not enrolled
1. Not enrolled

...

Using subsetting to examine logical inconsistencies in variable relationships 149

7.	 Show individuals with a high wage income.

Define high wages as 3 standard deviations above the mean. It looks as though wage
income values have been truncated at $235,884:

>>> highwages = nls97.loc[nls97.wageincome >
nls97.wageincome.mean()+(nls97.wageincome.
std()*3),['wageincome']]

>>> highwages

 wageincome

personid

131858 235,884

133619 235,884

151863 235,884

164058 235,884

164897 235,884

... ...

964406 235,884

966024 235,884

976141 235,884

983819 235,884

989896 235,884

[121 rows x 1 columns]

8.	 Show individuals with large changes in weeks worked for the most recent year.

Calculate the average value for weeks worked between 2012 and 2016 for each
person (nls97.loc[:, "weeksworked12":"weeksworked16"].
mean(axis=1)). We indicate axis=1 to calculate the mean across columns
for each individual, rather than over individuals. We then check to see whether
the mean is either less than 50% of the weeks worked in 2017 value or more than
twice as much. We also indicate that we are not interested in rows that satisfy those
criteria by being null for weeks worked in 2017. There are 1,160 individuals with
sharp changes in weeks worked in 2017:

>>> workchanges = nls97.loc[~nls97.loc[:,

... "weeksworked12":"weeksworked16"].mean(axis=1).\

... between(nls97.weeksworked17*0.5,nls97.
weeksworked17*2) \

... & ~nls97.weeksworked17.isnull(),

150 Identifying Missing Values and Outliers in Subsets of Data

... "weeksworked12":"weeksworked17"]

>>> len(workchanges)

1160

>>> workchanges.head(7).T

personid 100284 101526 101718 101724 102228
102454 102625

weeksworked12 0 0 52 52 52
52 14

weeksworked13 nan 0 9 52 52
52 3

weeksworked14 11 0 0 52 17
7 52

weeksworked15 52 0 32 17 0
0 44

weeksworked16 47 0 0 0 0
0 0

weeksworked17 0 45 0 17 0
0 0

9.	 Show inconsistencies in the highest grade completed and the highest degree.

Use the crosstab function to show highestgradecompleted by
highestdegree for people with highestgradecompleted less than 12. A
good number of these individuals indicate that they have completed high school,
which is unusual in the United States if the highest grade completed is less than 12:

>>> ltgrade12 = nls97.loc[nls97.highestgradecompleted<12,
['highestgradecompleted','highestdegree']]

>>> pd.crosstab(ltgrade12.highestgradecompleted,
ltgrade12.highestdegree)

highestdegree 0. None 1. GED 2. High School

highestgradecompleted

5 0 0 1

6 11 5 0

7 24 6 1

8 113 78 7

9 112 169 8

10 111 204 13

11 120 200 41

These steps reveal a number of logical inconsistences in the NLS data.

Using linear regression to identify data points with significant influence 151

How it works…
The syntax required to do the kind of subsetting that we have done in this recipe may seem
a little complicated if you are seeing it for the first time. You do get used to it, however, and
it allows for quickly running any query against the data that you might imagine.

Some of the inconsistencies or unexpected values suggest either respondent or entry error,
so warrant further investigation. It is hard to explain positive values for wage income
when weeks worked is 0. Other unexpected values might not be data problems at all, but
suggest that we should be careful about how we use that data. For example, we might not
want to use the weeks worked in 2017 by itself. Instead, we might consider using three-
year averages in many analyses.

See also
The Selecting and organizing columns and Selecting rows recipes in Chapter 3, Taking
the Measure of Your Data, demonstrate some of the techniques for subsetting the data
used here. We examine apply functions in more detail in Chapter 7, Fixing Messy Data
when Aggregating.

Using linear regression to identify data points
with significant influence
The remaining recipes in this chapter use statistical modeling to identify outliers. The
advantage of these techniques is that they are less dependent on the distribution of the
variable of concern, and take more into account than can be revealed in either univariate
or bivariate analyses. This allows us to identify outliers that are not otherwise apparent.
On the other hand, by taking more factors into account, multivariate techniques may
provide evidence that a previously suspect value is actually within an expected range, and
provides meaningful information.

In this recipe, we use linear regression to identify observations (rows) that have an
outsized influence on models of a target or dependent variable. This can indicate that one
or more values for a few observations are so extreme that they compromise model fit for
all of the other observations.

Getting ready
The code in this recipe requires the matplotlib and statsmodels libraries. You can
install Matplotlib and Statsmodels by entering pip install matplotlib and pip
install statsmodels in a terminal window or powershell (in Windows).

We will be working with data on total COVID-19 cases and deaths per country.

152 Identifying Missing Values and Outliers in Subsets of Data

How to do it…
We will use the statsmodels OLS method to fit a linear regression model of total cases
per million of the population. We then identify those countries that have the greatest
influence on that model:

1.	 Import pandas, matplotlib, and statsmodels, and load the COVID case data:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Create an analysis file and generate descriptive statistics.

Get just the columns required for analysis. Drop any row with missing data for the
analysis columns:

>>> xvars = ['pop_density','median_age','gdp_per_capita']

>>> covidanalysis = covidtotals.loc[:,['total_cases_pm']
+ xvars].dropna()

>>> covidanalysis.describe()

 total_cases_pm pop_density median_age gdp_per_
capita

count 175 175 175
175

mean 1,134 247 31
19,008

std 2,101 822 9
19,673

min 0 2 15
661

25% 67 36 22
4,458

50% 263 82 30
12,952

75% 1,358 208 39
27,467

max 19,753 7,916 48
116,936

Using linear regression to identify data points with significant influence 153

3.	 Fit a linear regression model.

There are good conceptual reasons to believe that population density, median age,
and GDP per capita may be predictors of total cases per million. We use all three
variables in our model:

>>> def getlm(df):

... Y = df.total_cases_pm

... X = df[['pop_density','median_age','gdp_per_
capita']]

... X = sm.add_constant(X)

... return sm.OLS(Y, X).fit()

...

>>> lm = getlm(covidanalysis)

>>> lm.summary()

 coef std err t P>|t|
[0.025 0.975]

const 944.47 426.71 2.21 0.028
102.17 1786.77

pop_density -0.21 0.14 -1.45 0.150
-0.49 0.075

median_age -49.44 16.01 -3.09 0.002
-81.05 -17.832

gdp_per_capita 0.09 0.01 12.02 0.000
0.077 0.107

4.	 Identify those countries with an outsized influence on the model.

Cook's distance values of greater than 0.5 should be scrutinized closely:
>>> influence = lm.get_influence().summary_frame()

>>> influence.loc[influence.cooks_d>0.5, ['cooks_d']]

 cooks_d

iso_code

HKG 0.78

QAT 5.08

>>> covidanalysis.loc[influence.cooks_d>0.5]

154 Identifying Missing Values and Outliers in Subsets of Data

 total_cases_pm pop_density median_age gdp_
per_capita

iso_code

HKG 0.00 7,039.71 44.80
56,054.92

QAT 19,753.15 227.32 31.90
116,935.60

5.	 Do an influence plot.

Countries with higher Cook's Distance values have larger circles:
>>> fig, ax = plt.subplots(figsize=(10,6))

>>> sm.graphics.influence_plot(lm, ax = ax,
criterion="cooks")

>>> plt.show()

This produces the following plot:

Figure 4.8 – Influence plot, including countries with the highest Cook's Distance

6.	 Run the model without the two outliers.

Removing these outliers, particularly Qatar, has a dramatic effect on the model. The
estimates for median_age and for the constant are no longer significant:

>>> covidanalysisminusoutliers = covidanalysis.
loc[influence.cooks_d<0.5]

>>> lm = getlm(covidanalysisminusoutliers)

Using linear regression to identify data points with significant influence 155

>>> lm.summary()

 coef std err t P>|t|
[0.025 0.975]

const 44.09 349.92 0.13 0.900
-646.70 734.87

pop_density 0.24 0.15 1.67 0.098
-0.05 0.53

median_age -2.52 13.53 -0.19 0.853
-29.22 24.18

gdp_per_capita 0.06 0.01 7.88 0.000
0.04 0.07

This gives us a sense of the countries that are most unlike the others in terms of the
relationship between demographic variables and total cases per million in population.

How it works...
Cook's Distance is a measure of how much each observation influences the model. The
large impact of the two outliers is confirmed in step 6 when we rerun the model without
them. The question for the analyst is whether outliers such as these add important
information or distort the model and limit its applicability. The coefficient of -49 for
median age in the first regression results indicates that every one-year increase in median
age is associated with a 49 point reduction in cases per million people. But this seems
largely due to the model trying to fit a quite extreme total cases per million value for
Qatar. Without Qatar, the coefficient on age is no longer significant.

The P>|t| value in the regression output tells us whether the coefficient is significantly
different from 0. In the first regression, the coefficients for median_age and gdp_per_
capita are significant at the 99% level; that is, the P>|t| value is less than 0.01. Only
gdp_per_capita is significant when the model is run without the two outliers.

There's more…
We run a linear regression model in this recipe, not so much because we are interested in
the parameter estimates of the model, but because we want to determine whether there
are observations with potential outsized influence on any multivariate analysis we might
conduct. That definitely seems to be true in this case.

156 Identifying Missing Values and Outliers in Subsets of Data

Often, it makes sense to remove the outliers, as we have done here, but that is not always
true. When we have independent variables that do a good job of capturing what makes
outliers different, then the parameter estimates for the other independent variables are
less vulnerable to distortion. We also might consider transformations, such as the log
transformation we did in a previous recipe, and the scaling we will do in the next two
recipes. An appropriate transformation, given your data, can reduce the influence of
outliers by limiting the size of residuals at the extremes.

Using k-nearest neighbor to find outliers
Unsupervised machine learning tools can help us identify observations that are unlike
others when we have unlabeled data; that is, when there is no target or dependent variable.
(In the previous recipe, we used total cases per million as the dependent variable.) Even
when selecting targets and factors is relatively straightforward, it might be helpful to identify
outliers without making any assumptions about relationships between variables. We can use
k-nearest neighbor to find observations that are most unlike others, those where there is the
greatest difference between their values and their nearest neighbors' values.

Getting ready
You will need PyOD (Python outlier detection) and scikit-learn to run the code in this
recipe. You can install both by entering pip install pyod and pip install
sklearn in the terminal or powershell (in Windows).

How to do it…
We will use k-nearest neighbor to identify countries whose attributes indicate that they are
most anomalous:

1.	 Load pandas, pyod, and scikit-learn, along with the Covid case data:

>>> import pandas as pd

>>> from pyod.models.knn import KNN

>>> from sklearn.preprocessing import StandardScaler

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

Using k-nearest neighbor to find outliers 157

2.	 Create a standardized data frame of the analysis columns:

>>> standardizer = StandardScaler()

>>> analysisvars = ['location','total_cases_pm','total_
deaths_pm',\

... 'pop_density','median_age','gdp_per_capita']

>>> covidanalysis = covidtotals.loc[:, analysisvars].
dropna()

>>> covidanalysisstand = standardizer.fit_
transform(covidanalysis.iloc[:, 1:])

3.	 Run the KNN model and generate anomaly scores.

We create an arbitrary number of outliers by setting the contamination parameter
to 0.1:

>>> clf_name = 'KNN'

>>> clf = KNN(contamination=0.1)

>>> clf.fit(covidanalysisstand)

KNN(algorithm='auto', contamination=0.1, leaf_size=30,
method='largest',

 metric='minkowski', metric_params=None, n_jobs=1, n_
neighbors=5, p=2,

 radius=1.0)

>>> y_pred = clf.labels_

>>> y_scores = clf.decision_scores_

4.	 Show the predictions from the model.

Create a data frame from the y_pred and y_scores NumPy arrays. Set the index
to the covidanalysis data frame index so that we can easily combine it with that
data frame later. Notice that the decision scores for outliers are all higher than those
for the inliers (outlier = 0):

>>> pred = pd.DataFrame(zip(y_pred, y_scores),

... columns=['outlier','scores'],

... index=covidanalysis.index)

>>>

>>> pred.sample(10, random_state=1)

 outlier scores

iso_code

158 Identifying Missing Values and Outliers in Subsets of Data

LBY 0 0.37

NLD 1 1.56

BTN 0 0.19

HTI 0 0.43

EST 0 0.46

LCA 0 0.43

PER 0 1.41

BRB 0 0.77

MDA 0 0.91

NAM 0 0.31

>>> pred.outlier.value_counts()

0 157

1 18

Name: outlier, dtype: int64

>>> pred.groupby(['outlier'])[['scores']].
agg(['min','median','max'])

 scores

 min median max

outlier

0 0.08 0.36 1.52

1 1.55 2.10 9.48

5.	 Show the COVID data for the outliers.

First, merge the covidanalysis and pred data frames:
>>> covidanalysis.join(pred).loc[pred.outlier==1,\

... ['location','total_cases_pm','total_deaths_
pm','scores']].\

... sort_values(['scores'], ascending=False)

 location total_cases_pm total_
deaths_pm scores

iso_code

SGP Singapore 5,962.73
3.93 9.48

QAT Qatar 19,753.15
13.19 8.00

HKG Hong Kong 0.00
0.00 7.77

Using k-nearest neighbor to find outliers 159

BEL Belgium 5,037.35
816.85 3.54

BHR Bahrain 6,698.47
11.17 2.84

LUX Luxembourg 6,418.78
175.73 2.44

ESP Spain 5,120.95
580.20 2.18

KWT Kuwait 6,332.42
49.64 2.13

GBR United Kingdom 4,047.40
566.97 2.10

ITA Italy 3,853.99
552.66 2.09

IRL Ireland 5,060.96
334.56 2.07

BRN Brunei 322.30
4.57 1.92

USA United States 5,408.39
315.35 1.89

FRA France 2,324.88
441.25 1.86

MDV Maldives 3,280.04
9.25 1.82

ISL Iceland 5,292.31
29.30 1.58

NLD Netherlands 2,710.38
347.60 1.56

ARE United Arab Emirates 3,493.99
26.69 1.55

These steps show how we can use k-nearest neighbor to identify outliers based on
multivariate relationships.

How it works...
PyOD is a package of Python outlier detection tools. We use it here as a wrapper around
scikit-learn's KNN package. This simplifies some tasks.

160 Identifying Missing Values and Outliers in Subsets of Data

Our focus in this recipe is not on building a model, but on getting a quick sense of which
observations (countries) are significant outliers once we take all the data we have into
account. This analysis supports our developing sense that Singapore, Qatar, and Hong
Kong are very different observations than the others in our dataset. They have very high
decision scores. (The table in step 5 is sorted in descending order of score.)

Countries such as Belgium, Bahrain, and Luxembourg might also be considered outliers,
though that is less clear cut. The previous recipe did not indicate that they had an
overwhelming influence on a regression model. But that model did not take both cases per
million and deaths per million into account at the same time. That could also explain why
Singapore is even more of an outlier than Qatar here. It has both high cases per million
and below-average deaths per million.

Scikit-learn makes scaling very easy. We use the standard scaler in step 2, which returns
the z-score for each value in the data frame. The z-score subtracts the variable mean
from each variable value and divides it by the standard deviation for the variable. Many
machine learning tools require standardized data to run well.

There's more...
K-nearest neighbor is a very popular machine learning algorithm. It is easy to run and
interpret. Its main limitation is that it will run slowly on large datasets.

We have skipped steps we might usually take when building machine learning models.
We did not create separate training and test datasets, for example. PyOD allows this to be
done easily, but this is not necessary for our purposes here.

See also
The PyOD toolkit has a large number of supervised and unsupervised learning
techniques for detecting anomalies in data. You can get the documentation for this at
https://pyod.readthedocs.io/en/latest/.

Using Isolation Forest to find anomalies
Isolation Forest is a relatively new machine learning technique for identifying anomalies.
It has quickly become popular, partly because its algorithm is optimized to find anomalies,
rather than normal values. It finds outliers by successive partitioning of the data until a
data point has been isolated. Points that require fewer partitions to be isolated receive
higher anomaly scores. This process turns out to be fairly easy on system resources. In this
recipe, we demonstrate how to use it to detect outlier COVID-19 cases and deaths.

https://pyod.readthedocs.io/en/latest/

Using Isolation Forest to find anomalies 161

Getting ready
You will need scikit-learn and Matplotlib to run the code in this recipe. You can install
them by entering pip install sklearn and pip install matplotlib in the
terminal or powershell (in Windows).

How to do it...
We will use Isolation Forest to find the countries whose attributes indicate that they are
most anomalous:

1.	 Load pandas, matplotlib, and the StandardScaler and
IsolationForest modules from scikit-learn:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> from sklearn.preprocessing import StandardScaler

>>> from sklearn.ensemble import IsolationForest

>>> from mpl_toolkits.mplot3d import Axes3D

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Create a standardized analysis data frame.

First, remove all rows with missing data:
>>> analysisvars = ['location','total_cases_pm','total_
deaths_pm',

... 'pop_density','median_age','gdp_per_capita']

>>> standardizer = StandardScaler()

>>> covidtotals.isnull().sum()

lastdate 0

location 0

total_cases 0

total_deaths 0

total_cases_pm 0

total_deaths_pm 0

population 0

pop_density 12

median_age 24

gdp_per_capita 28

162 Identifying Missing Values and Outliers in Subsets of Data

hosp_beds 46

dtype: int64

>>> covidanalysis = covidtotals.loc[:, analysisvars].
dropna()

>>> covidanalysisstand = standardizer.fit_
transform(covidanalysis.iloc[:, 1:])

3.	 Run an Isolation Forest model to detect outliers.

Pass the standardized data to the fit method. 18 countries are identified as
outliers. (These countries have anomaly values of -1.) This is determined by the
contamination number of 0.1:

>>> clf=IsolationForest(n_estimators=100, max_
samples='auto',

... contamination=.1, max_features=1.0)

>>> clf.fit(covidanalysisstand)

IsolationForest(behaviour='deprecated', bootstrap=False,
contamination=0.1,

 max_features=1.0, max_samples='auto',
 n_estimators=100,

 n_jobs=None, random_state=None,
verbose=0, warm_start=False)

>>> covidanalysis['anomaly'] = clf.
predict(covidanalysisstand)

>>> covidanalysis['scores'] = clf.decision_
function(covidanalysisstand)

>>> covidanalysis.anomaly.value_counts()

 1 157

-1 18

Name: anomaly, dtype: int64

4.	 Create outlier and inlier data frames.

List the top 10 outliers according to anomaly score:
>>> inlier, outlier = covidanalysis.loc[covidanalysis.
anomaly==1],\

... covidanalysis.loc[covidanalysis.anomaly==-1]

Using Isolation Forest to find anomalies 163

>>> outlier[['location','total_cases_pm','total_deaths_
pm',\

... 'median_age','gdp_per_capita','scores']].\

... sort_values(['scores']).\

... head(10)

 location total_cases_pm total_deaths_pm
median_age \

iso_code

SGP Singapore 5,962.73 3.93
42.40

QAT Qatar 19,753.15 13.19
31.90

HKG Hong Kong 0.00 0.00
44.80

BEL Belgium 5,037.35 816.85
41.80

BHR Bahrain 6,698.47 11.17
32.40

LUX Luxembourg 6,418.78 175.73
39.70

ITA Italy 3,853.99 552.66
47.90

ESP Spain 5,120.95 580.20
45.50

NLD Netherlands 2,710.38 347.60
43.20

MDV Maldives 3,280.04 9.25
30.60

 gdp_per_capita scores

iso_code

SGP 85,535.38 -0.23

QAT 116,935.60 -0.21

HKG 56,054.92 -0.18

BEL 42,658.58 -0.14

BHR 43,290.71 -0.09

LUX 94,277.96 -0.09

164 Identifying Missing Values and Outliers in Subsets of Data

ITA 35,220.08 -0.08

ESP 34,272.36 -0.06

NLD 48,472.54 -0.03

MDV 15,183.62 -0.03	

5.	 Plot the outliers and inliers:

>>> ax = plt.axes(projection='3d')

>>> ax.set_title('Isolation Forest Anomaly Detection')

>>> ax.set_zlabel("Cases Per Million")

>>> ax.set_xlabel("GDP Per Capita")

>>> ax.set_ylabel("Median Age")

>>> ax.scatter3D(inlier.gdp_per_capita, inlier.median_
age, inlier.total_cases_pm, label="inliers", c="blue")

>>> ax.scatter3D(outlier.gdp_per_capita, outlier.median_
age, outlier.total_cases_pm, label="outliers", c="red")

>>> ax.legend()

>>> plt.tight_layout()

>>> plt.show()

This produces the following plot:

Figure 4.9 – Inlier and outlier countries by GDP, median age, and cases per million

Using Isolation Forest to find anomalies 165

The preceding steps demonstrate the use of Isolation Forest as an alternative to k-nearest
neighbor for anomaly detection.

How it works…
We use Isolation Forest in this recipe much like we used k-nearest neighbor in the
previous recipe. In step 3, we pass a standardized dataset to the Isolation Forest fit
method, and then use its predict and decision_function methods to get the
anomaly flag and score, respectively. We use the anomaly flag in step 4 to separate the data
into inliers and outliers.

We plot the inliers and outliers in step 5. Since there are only three dimensions in the plot,
it does not quite capture all of the features in our Isolation Forest model, but the outliers
(the red dots) clearly have higher GDP per capita and median age; these are typically to
the right of, and behind, the inliers.

The results from Isolation Forest are quite similar to the k-nearest neighbor results. Qatar,
Singapore, and Hong Kong have the highest (most negative) anomaly scores. Belgium is
not far behind, just as with the KNN model. This is most likely due to an exceptionally
high total of deaths per million for Belgium, the highest in the dataset. We should
consider removing these four observations from any multivariate analyses we conduct.

There's more…
Isolation Forest is a good alternative to k-nearest neighbor, particularly when working
with large datasets. The efficiency of its algorithm allows it to handle large samples and a
high number of features (variables).

The anomaly detection techniques we have used in the last three recipes were designed
to improve multivariate analyses and the training of machine learning models. However,
we might want to exclude the outliers they help us identify much earlier in the analysis
process. For example, if it makes sense to exclude Qatar from our modeling, it might also
make sense to exclude Qatar from some descriptive statistics.

See also
In addition to being useful for anomaly detection, the Isolation Forest algorithm is quite
satisfying intuitively. (I think the same could be said about k-nearest neighbor.) You can
read more about Isolation Forest here: https://cs.nju.edu.cn/zhouzh/zhouzh.
files/publication/icdm08b.pdf.

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf

5
Using Visualizations

for the Identification
of Unexpected

Values
We dipped our toes in the water with visualizations in several recipes in the previous
chapter. We used histograms and QQ plots to examine the distribution of a single variable,
and scatter plots to view how two variables are related. But we were just scratching the
surface of the rich visualization tools available in the Matplotlib and Seaborn libraries.
Getting comfortable with these tools, and their seemingly inexhaustible capabilities, can
help us uncover patterns and oddities that are not obvious when we run the standard
battery of descriptives.

Boxplots, for example, are a great tool for visualizing values outside of a certain range.
These can be extended with grouped boxplots or violin plots that allow us to compare
distributions across subsets of data. We can also do much more with scatter plots than
we did in the last chapter, including getting some sense of multivariate relationships.
Histograms, too, can sometimes offer additional insight if we display several histograms on
one plot or create a stacked histogram. We explore all of these capabilities in this chapter.

168 Using Visualizations for the Identification of Unexpected Values

Specifically, the recipes in this chapter demonstrate the following topics:

•	 Using histograms to examine the distribution of continuous variables

•	 Using boxplots to identify outliers for continuous variables

•	 Using grouped boxplots to uncover unexpected values in a particular group

•	 Examining both the distribution shape and outliers with violin plots

•	 Using scatter plots to view bivariate relationships

•	 Using line plots to examine trends in continuous variables

•	 Generating a heat map based on a correlation matrix

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Using histograms to examine the distribution
of continuous variables
The go-to visualization tool for statisticians trying to understand how single variables are
distributed is the histogram. Histograms plot a continuous variable on the x axis, in bins
determined by the researcher, and the frequency of occurrence on the y axis.

Histograms provide a clear and meaningful illustration of the shape of a distribution,
including central tendency, skewness (symmetry), excess kurtosis (relatively fat tails),
and spread. This matters for statistical testing, as many tests make assumptions about a
variable's distribution. Moreover, our expectation of what data values to expect should be
guided by our understanding of the distribution's shape. For example, a value at the 90th
percentile has very different implications when it comes from a normal distribution rather
than from a uniform distribution.

One of the first tasks I ask introductory statistics students to do is construct a histogram
manually from a small sample. We do boxplots in the following class. Together, histograms
and boxplots provide a solid foundation for subsequent analysis. In my data science work,
I try to remember to construct histograms and boxplots on all continuous variables of
interest shortly after the initial importing and cleaning of data. We create histograms in
this recipe, and boxplots in the following two recipes.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Using histograms to examine the distribution of continuous variables 169

Getting ready
We will use the Matplotlib library to generate histograms. Some tasks can be done quickly
and straightforwardly in Matplotlib. Histograms are one of those tasks. We will switch
between Matplotlib and Seaborn (which is built on Matplotlib) in this chapter, based on
which tool gets us to the required graphic more easily.

We will also use the statsmodels library. You can install Matplotlib and statsmodels with
pip using pip install matplotlib and pip install statsmodels.

We will work with data on land temperature and on coronavirus cases in this recipe. The
land temperature DataFrame has one row per weather station. The coronavirus data frame
has one row per country and reflects totals as of July 18, 2020.

Data note
The land temperature DataFrame has the average temperature reading (in °C)
in 2019 from over 12,000 stations across the world, though a majority of the
stations are in the United States. The raw data was retrieved from the Global
Historical Climatology Network integrated database. It is made available for public
use by the United States National Oceanic and Atmospheric Administration at
https://www.ncdc.noaa.gov/data-access/land-based-
station-data/land-based-datasets/global-historical-
climatology-network-monthly-version-4.

Our World in Data provides Covid-19 public use data at https://
ourworldindata.org/coronavirus-source-data. The data
used in this recipe was downloaded on June 1, 2020. Some of the data was
missing for Hong Kong as of this date, but this problem was fixed in files
after that.

How to do it…
We take a close look at the distribution of land temperatures by weather station in 2019
and total coronavirus cases per million of the population for each country. We start with a
few descriptive statistics before doing a QQ plot, histograms, and stacked histograms.

1.	 Import the pandas, matplotlib, and statsmodels libraries.

Also, load the data on land temperatures and COVID cases:
>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

>>> landtemps = pd.read_csv("data/landtemps2019avgs.csv")

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data

170 Using Visualizations for the Identification of Unexpected Values

>>> covidtotals = pd.read_csv("data/covidtotals.csv",
parse_dates=["lastdate"])
>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Show some of the station temperature rows.

The latabs column is the value of latitude without the North or South indicators;
so, Cairo, Egypt at approximately 30 degrees north, and Porto Alegre, Brazil at
about 30 degrees south have the same value:

>>> landtemps[['station','country','latabs','elevation',
'avgtemp']].\
... sample(10, random_state=1)
 station country latabs
elevation avgtemp
10526 NEW_FORK_LAKE United States 43
2,542 2
1416 NEIR_AGDM Canada 51
1,145 2
2230 CURICO Chile 35
225 16
6002 LIFTON_PUMPING_STN United States 42
1,809 4
2106 HUAILAI China 40
538 11
2090 MUDANJIANG China 45
242 6
7781 CHEYENNE_6SW_MESONET United States 36
694 15
10502 SHARKSTOOTH United States 38
3,268 4
11049 CHALLIS_AP United States 45
1,534 7
2820 METHONI Greece 37
52 18

3.	 Show some descriptive statistics.

Also, look at the skew and the kurtosis:
>>> landtemps.describe()
 latabs elevation avgtemp
count 12,095 12,095 12,095
mean 40 589 11
std 13 762 9

Using histograms to examine the distribution of continuous variables 171

min 0 -350 -61
25% 35 78 5
50% 41 271 10
75% 47 818 17
max 90 9,999 34
>>> landtemps.avgtemp.skew()
-0.2678382583481769
>>> landtemps.avgtemp.kurtosis()
2.1698313707061074

4.	 Do a histogram of average temperatures.

Also, draw a line at the overall mean:
>>> plt.hist(landtemps.avgtemp)
>>> plt.axvline(landtemps.avgtemp.mean(), color='red',
linestyle='dashed', linewidth=1)
>>> plt.title("Histogram of Average Temperatures
(Celsius)")
>>> plt.xlabel("Average Temperature")
>>> plt.ylabel("Frequency")
>>> plt.show()

This results in the following histogram:

Figure 5.1 – Histogram of average temperatures across weather stations in 2019

172 Using Visualizations for the Identification of Unexpected Values

5.	 Run a QQ plot to examine where the distribution deviates from a normal
distribution.

Notice that much of the distribution of temperatures falls along the red line (all dots
would fall on the red line if the distribution were perfectly normal, but the tails fall
off dramatically from the normal):

>>> sm.qqplot(landtemps[['avgtemp']].sort_
values(['avgtemp']), line='s')

>>> plt.title("QQ Plot of Average Temperatures")

>>> plt.show()

This results in the following QQ plot:

Figure 5.2 – Plot of average temperature by station compared with the normal distribution

Using histograms to examine the distribution of continuous variables 173

6.	 Show the skewness and kurtosis for total Covid cases per million.

This is from the COVID-19 data frame, which has one row for each country:
>>> covidtotals.total_cases_pm.skew()

4.284484653881833

>>> covidtotals.total_cases_pm.kurtosis()

26.137524276840452

7.	 Do a stacked histogram of the Covid case data.

Select data from four of the regions. (Stacked histograms can get messy with any
more categories than that.) Define a getcases function that returns a series for
total_cases_pm for the countries of a region. Pass those series to the hist
method ([getcases(k) for k in showregions]) to create the stacked
histogram. Notice that much of the distribution—almost 40 countries out of the 65
countries in these regions—has cases per million below 2,000:

>>> showregions = ['Oceania / Aus','East Asia','Southern
Africa', 'Western Europe']

>>>

>>> def getcases(regiondesc):

... return covidtotals.loc[covidtotals.
region==regiondesc,

... 'total_cases_pm']

...

>>> plt.hist([getcases(k) for k in showregions],\

... color=['blue','mediumslateblue','plum',
'mediumvioletred'],\

... label=showregions,\

... stacked=True)

>>>

>>> plt.title("Stacked Histogram of Cases Per Million for
Selected Regions")

>>> plt.xlabel("Cases Per Million")

>>> plt.ylabel("Frequency")

>>> plt.xticks(np.arange(0, 22500, step=2500))

>>> plt.legend()

>>> plt.show()

174 Using Visualizations for the Identification of Unexpected Values

This results in the following stacked histogram:

Figure 5.3 – Stacked histogram of number of countries per region at different cases per million levels

8.	 Show multiple histograms on one figure.

This allows different x and y axis values. We need to loop through each axis and
select a different region from showregions for each subplot:

>>> fig, axes = plt.subplots(2, 2)

>>> fig.subtitle("Histograms of Covid Cases Per Million
by Selected Regions")

>>> axes = axes.ravel()

>>> for j, ax in enumerate(axes):

... ax.hist(covidtotals.loc[covidtotals.
region==showregions[j]].\

... total_cases_pm, bins=5)

... ax.set_title(showregions[j], fontsize=10)

... for tick in ax.get_xticklabels():

Using histograms to examine the distribution of continuous variables 175

... tick.set_rotation(45)

...

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.88)

>>> plt.show()

This results in the following histograms:

Figure 5.4 – Histograms by region with numbers of countries at different cases per million levels

The preceding steps demonstrated how to visualize the distribution of a continuous
variable using histograms and QQ plots.

How it works…
Step 4 shows how easy it is to display a histogram. This can be done by passing a series
to the hist method of Matplotlib's pyplot module. (We use an alias of plt for
matplotlib.) We could have also passed any ndarray, or even a list of data series.

176 Using Visualizations for the Identification of Unexpected Values

We also get great access to the attributes of the figure and its axes. We can set the labels for
each axis, as well as the tick marks and tick labels. We can also specify the content and look
and feel of the legend. We will be taking advantage of this functionality often in this chapter.

We pass multiple series to the hist method in Step 7 to produce the stacked histogram.
Each series is the total_cases_pm (cases per million of population) value for the
countries in a region. To get the series for each region, we call the getcases function for
each item in showregions. We choose colors for each series rather than allowing that to
happen automatically. We also use the showregions list to select labels for the legend.

In Step 8, we start by indicating that we want four subplots, in two rows and two columns.
That is what we get with plt.subplots(2, 2), which returns both a figure and the
four axes. We loop through the axes with for j, ax in enumerate(axes). Within
each loop, we select a different region for the histogram from showregions. Within
each axis, we loop through the tick labels and change the rotation. We also adjust the
start of the subplots to make enough room for the figure title. Note that we need to use
suptitle to add a title in this case. Using title would add the title to a subplot.

There's more...
The land temperature data is not quite normally distributed, as the histograms and the
skew and kurtosis measures show. It is skewed to the left (skew of -0.26) and actually has
somewhat skinnier tails than normal (kurtosis of 2.17, compared with 3). Although there
are some extreme values, there are not that many of them relative to the overall size of the
dataset. While it is not perfectly bell-shaped, the land temperature data frame is a fair bit
easier to deal with than the Covid case data.

The skew and kurtosis of the Covid cases per million variable show that it is some
distance from normal. The skew of 4 and kurtosis of 26 indicates a high positive skew and
much fatter tails than with a normal distribution. This is also reflected in the histograms,
even when we look at the numbers by region. There are a number of countries at very
low levels of cases per million in most regions, and just a few countries with high levels of
cases. The Using grouped boxplots to uncover unexpected values in a particular group recipe
in this chapter shows that there are outliers in almost every region.

If you work through all of the recipes in this chapter, and you are relatively new to
Matplotlib and Seaborn, you will find those libraries either usefully flexible or confusingly
flexible. It is difficult to even pick one strategy and stick with it because you might need
to set up your figure and axes in a particular way to get the visualization you want. It is
helpful to keep two things in mind when working through these recipes: first, you will
generally need to create a figure and one or more subplots; and second, the main plotting
functions work similarly regardless, so plt.hist and ax.hist will both often work.

Using boxplots to identify outliers for continuous variables 177

Using boxplots to identify outliers for
continuous variables
Boxplots are essentially a graphical representation of our work in the Identifying outliers with
one variable recipe in Chapter 4, Identifying Missing Values and Outliers in Subsets of Data.
There, we used the concept of interquartile range (IQR)—the distance between the value at
the first quartile and the value at the third quartile—to determine outliers. Any value greater
than (1.5 * IQR) + the third quartile value, or less than the first quartile value – (1.5 *
IQR), was considered an outlier. That is precisely what is revealed in a boxplot.

Getting ready
We will work with cumulative data on coronavirus cases and deaths by country, and the
National Longitudinal Surveys (NLS) data. You will need the Matplotlib library to run
the code on your computer.

How to do it…
We use boxplots to show the shape and spread of Scholastic Assessment Test (SAT)
scores, weeks worked, and Covid cases and deaths:

1.	 Load the pandas and matplotlib libraries.

Also, load the NLS and Covid data:
>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals.csv",
parse_dates=["lastdate"])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Do a boxplot of SAT verbal scores.

Produce some descriptives first. The boxplot method produces a rectangle that
represents the IQR, the values between the first and third quartile. The whiskers go
from that rectangle to 1.5 times the IQR. Any values above or below the whiskers (what
we have labeled the outlier threshold) are considered outliers (we use annotate to
point to the first and third quartile points, the median, and to the outlier thresholds):

>>> nls97.satverbal.describe()

count 1,406

178 Using Visualizations for the Identification of Unexpected Values

mean 500

std 112

min 14

25% 430

50% 500

75% 570

max 800

Name: satverbal, dtype: float64

>>> plt.boxplot(nls97.satverbal.dropna(), labels=['SAT
Verbal'])

>>> plt.annotate('outlier threshold',
xy=(1.05,780), xytext=(1.15,780), size=7,
arrowprops=dict(facecolor='black', headwidth=2,
width=0.5, shrink=0.02))

>>> plt.annotate('3rd quartile',
xy=(1.08,570), xytext=(1.15,570), size=7,
arrowprops=dict(facecolor='black', headwidth=2,
width=0.5, shrink=0.02))

>>> plt.annotate('median', xy=(1.08,500),
xytext=(1.15,500), size=7,
arrowprops=dict(facecolor='black', headwidth=2,
width=0.5, shrink=0.02))

>>> plt.annotate('1st quartile',
xy=(1.08,430), xytext=(1.15,430), size=7,
arrowprops=dict(facecolor='black', headwidth=2,
width=0.5, shrink=0.02))

>>> plt.annotate('outlier threshold',
xy=(1.05,220), xytext=(1.15,220), size=7,
arrowprops=dict(facecolor='black', headwidth=2,
width=0.5, shrink=0.02))

>>> #plt.annotate('outlier threshold',
xy=(1.95,15), xytext=(1.55,15), size=7,
arrowprops=dict(facecolor='black', headwidth=2,
width=0.5, shrink=0.02))

>>> plt.show()

Using boxplots to identify outliers for continuous variables 179

This results in the following boxplot:

Figure 5.5 – Boxplot of SAT verbal scores with labels for quartile range and outliers

3.	 Show some descriptives on weeks worked:

>>> weeksworked = nls97.loc[:,
['highestdegree','weeksworked16', 'weeksworked17']]

>>>

>>> weeksworked.describe()

 weeksworked16 weeksworked17

count 7,068 6,670

mean 39 39

std 21 19

min 0 0

25% 23 37

50% 53 49

75% 53 52

max 53 52

180 Using Visualizations for the Identification of Unexpected Values

4.	 Do boxplots of weeks worked:

>>> plt.boxplot([weeksworked.weeksworked16.dropna(),

... weeksworked.weeksworked17.dropna()],

... labels=['Weeks Worked 2016','Weeks Worked 2017'])

>>> plt.title("Boxplots of Weeks Worked")

>>> plt.tight_layout()

>>> plt.show()

This results in the following boxplots:

Figure 5.6 – Boxplots of two variables side by side

Using boxplots to identify outliers for continuous variables 181

5.	 Show some descriptives for the Covid data.

Create a list of labels (totvarslabels) for columns to use in a later step:
>>> totvars = ['total_cases','total_deaths','total_cases_
pm', 'total_deaths_pm']

>>> totvarslabels = ['cases','deaths','cases per
million','deaths per million']

>>> covidtotalsonly = covidtotals[totvars]

>>> covidtotalsonly.describe()

 total_cases total_deaths total_cases_pm total_
deaths_pm

count 209 209 209
209

mean 60,757 2,703 2,297
74

std 272,440 11,895 4,040
156

min 3 0 1
0

25% 342 9 203
3

50% 2,820 53 869
15

75% 25,611 386 2,785
58

max 3,247,684 134,814 35,795
1,238

6.	 Do boxplots of cases and deaths per million:

>>> fig, ax = plt.subplots()

>>> plt.title("Boxplots of Covid Cases and Deaths Per
Million")

>>> ax.boxplot([covidtotalsonly.total_cases_
pm,covidtotalsonly.total_deaths_pm],\

... labels=['cases per million','deaths per million'])

>>> plt.tight_layout()

>>> plt.show()

182 Using Visualizations for the Identification of Unexpected Values

This results in the following boxplots:

Figure 5.7 – Boxplots of two variables side by side

7.	 Show the boxplots as separate subplots on one figure.

It is hard to view multiple boxplots on one figure when the variable values are very
different, as is true for Covid cases and deaths. Fortunately, matplotlib allows us to
create multiple subplots on each figure, each of which can use different x and y axes:

>>> fig, axes = plt.subplots(2, 2)

>>> fig.suptitle("Boxplots of Covid Cases and Deaths")

>>> axes = axes.ravel()

>>> for j, ax in enumerate(axes):

... ax.boxplot(covidtotalsonly.iloc[:, j],
labels=[totvarslabels[j]])

...

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.94)

>>> plt.show()

Using boxplots to identify outliers for continuous variables 183

This results in the following boxplots:

Figure 5.8 – Boxplots with different y axes

Boxplots are a relatively straightforward but exceedingly useful way to view how variables
are distributed. They make it easy to visualize spread, central tendency, and outliers, all in
one graphic.

How it works...
It is fairly easy to create a boxplot with matplotlib, as Step 2 shows. Passing a series to
pyplot is all that is required (we use the plt alias). We call the show method of pyplot
to show the figure. This step also demonstrates how to use annotations to add text and
symbols to your figure. We show multiple boxplots in Step 4 by passing multiple series
to pyplot.

184 Using Visualizations for the Identification of Unexpected Values

It can be difficult to show multiple boxplots in a single figure when the scales are very
different, as is the case with the Covid outcome data (cases, deaths, cases per million, and
deaths per million). Step 7 shows one way to deal with that. We can create several subplots
on one plot. We start by indicating that we want four subplots, in two columns and two
rows. That is what we get with plt.subplots(2, 2), which returns both a figure and
the four axes. We can then loop through the axes, calling boxplot on each one. Nifty!

However, it is still hard to see the IQR for cases and deaths because of some of the extreme
values. In the next recipe, we remove some of the extreme values to give us a better
visualization of the remaining data.

There's more...
The boxplot of SAT verbal scores in Step 2 suggests a relatively normal distribution. The
median is close to the center of the IQR. This is not surprising given that the descriptives
we ran show that mean and median have the same value. There is, however, substantially
more room for outliers at the lower end than at the upper end. (Indeed, the very low SAT
verbal scores seem implausible and should be checked.)

The boxplots of weeks worked in 2016 and 2017 in Step 4 show variables that are
distributed much differently than SAT scores. The medians are near the top of the IQR
and are much greater than the means. This suggests a negative skew. Also, notice that
there are no whiskers or outliers at the upper end of the distribution as the median value
is at, or near, the maximum.

See also
Some of these boxplots suggest that the data we are examining is not normally distributed.
The Identifying outliers with one variable recipe in Chapter 4, Identifying Missing Values and
Outliers in Subsets of Data, covers some normal distribution tests. It also shows how to take
a closer look at the values outside of the outlier thresholds: the circles in the boxplots.

Using grouped boxplots to uncover
unexpected values in a particular group
We saw in the previous recipe that boxplots are a great tool for examining the distribution
of continuous variables. They can also be useful when we want to see if those variables are
distributed differently for parts of our dataset: salaries for different age groups; number
of children by marital status; litter size for different mammal species. Grouped boxplots
are a handy and intuitive way to view differences in variable distribution by categories in
our data.

Using grouped boxplots to uncover unexpected values in a particular group 185

Getting ready
We will work with the NLS and the Covid case data. You will need Matplotlib and Seaborn
installed on your computer to run the code in this recipe.

How to do it...
We generate descriptive statistics of weeks worked by highest degree earned. We then use
grouped boxplots to visualize the spread of the weeks worked distribution by degree, and
of Covid cases by region:

1.	 Import the pandas, matplotlib, and seaborn libraries:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals.csv",
parse_dates=["lastdate"])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 View the median, and first and third quartile values for weeks worked for each
degree attainment level.

First, define a function that returns those values as a series, then use apply to call
it for each group:

>>> def gettots(x):

... out = {}

... out['min'] = x.min()

... out['qr1'] = x.quantile(0.25)

... out['med'] = x.median()

... out['qr3'] = x.quantile(0.75)

... out['max'] = x.max()

... out['count'] = x.count()

... return pd.Series(out)

...

>>> nls97.groupby(['highestdegree'])['weeksworked17'].\

... apply(gettots).unstack()

186 Using Visualizations for the Identification of Unexpected Values

 min qr1 med qr3 max count

highestdegree

0. None 0 0 40 52 52 510

1. GED 0 8 47 52 52 848

2. High School 0 31 49 52 52 2,665

3. Associates 0 42 49 52 52 593

4. Bachelors 0 45 50 52 52 1,342

5. Masters 0 46 50 52 52 538

6. PhD 0 46 50 52 52 51

7. Professional 0 47 50 52 52 97

3.	 Do a boxplot of weeks worked by highest degree earned.

Use Seaborn for these boxplots. First, create a subplot and name it myplt. This
makes it easier to access subplot attributes later. Use the order parameter of
boxplot to order by highest degree earned. Notice that there are no outliers or
whiskers at the lower end for individuals with no degree ever received. This is
because the IQR for those individuals covers the whole range of values; that is, the
value at the 25th percentile is 0 and the value at the 75th percentile is 52:

>>> myplt = sns.boxplot('highestdegree','weeksworked17',
data=nls97,

... order=sorted(nls97.highestdegree.dropna().
unique()))

>>> myplt.set_title("Boxplots of Weeks Worked by Highest
Degree")

>>> myplt.set_xlabel('Highest Degree Attained')

>>> myplt.set_ylabel('Weeks Worked 2017')

>>> myplt.set_xticklabels(myplt.get_xticklabels(),
rotation=60, horizontalalignment='right')

>>> plt.tight_layout()

>>> plt.show()

Using grouped boxplots to uncover unexpected values in a particular group 187

This results in the following boxplots:

Figure 5.9 – Boxplots of weeks worked with IQR and outliers by highest degree

4.	 View the minimum, maximum, median, and first and third quartile values for total
cases per million by region.

Use the gettots function defined in Step 2:
>>> covidtotals.groupby(['region'])['total_cases_pm'].\

... apply(gettots).unstack()

 min qr1 med qr3 max count

region

Caribbean 95 252 339 1,726 4,435 22

Central Africa 15 71 368 1,538 3,317 11

Central America 93 925 1,448 2,191 10,274 7

188 Using Visualizations for the Identification of Unexpected Values

Central Asia 374 919 1,974 2,907 10,594 6

East Africa 9 65 190 269 5,015 13

East Asia 3 16 65 269 7,826 16

Eastern Europe 347 883 1,190 2,317 6,854 22

North Africa 105 202 421 427 793 5

North America 2,290 2,567 2,844 6,328 9,812 3

Oceania / Aus 1 61 234 424 1,849 8

South America 284 395 2,857 4,044 16,323 13

South Asia 106 574 885 1,127 19,082 9

Southern Africa 36 86 118 263 4,454 9

West Africa 26 114 203 780 2,862 17

West Asia 23 273 2,191 5,777 35,795 16

Western Europe 200 2,193 3,769 5,357 21,038 32

5.	 Do boxplots of cases per million by region.

Flip the axes since there are a large number of regions. Also, do a swarm plot to give
some sense of the number of countries by region. The swarm plot displays a dot
for each country in each region. Some of the IQRs are hard to see because of the
extreme values:

>>> sns.boxplot('total_cases_pm', 'region',
data=covidtotals)

>>> sns.swarmplot(y="region", x="total_cases_pm",
data=covidtotals, size=2, color=".3", linewidth=0)

>>> plt.title("Boxplots of Total Cases Per Million by
Region")

>>> plt.xlabel("Cases Per Million")

>>> plt.ylabel("Region")

>>> plt.tight_layout()

>>> plt.show()

Using grouped boxplots to uncover unexpected values in a particular group 189

This results in the following boxplots:

Figure 5.10 – Boxplots and swarm plots of cases per million by region, with IQR and outliers

6.	 Show the most extreme values for cases per million:

>>> covidtotals.loc[covidtotals.total_cases_pm>=14000,\

... ['location','total_cases_pm']]

 location total_cases_pm

iso_code

BHR Bahrain 19,082

CHL Chile 16,323

QAT Qatar 35,795

SMR San Marino 21,038

VAT Vatican 14,833

190 Using Visualizations for the Identification of Unexpected Values

7.	 Redo the boxplots without the extreme values:

>>> sns.boxplot('total_cases_pm', 'region',
data=covidtotals.loc[covidtotals.total_cases_pm<14000])

>>> sns.swarmplot(y="region", x="total_cases_pm",
data=covidtotals.loc[covidtotals.total_cases_pm<14000],
size=3, color=".3", linewidth=0)

>>> plt.title("Total Cases Without Extreme Values")

>>> plt.xlabel("Cases Per Million")

>>> plt.ylabel("Region")

>>> plt.tight_layout()

>>> plt.show()

This results in the following boxplots:

Figure 5.11 – Boxplots of cases per million by region without the extreme values

These grouped boxplots reveal how much the distribution of cases, adjusted by
population, varies by region.

Using grouped boxplots to uncover unexpected values in a particular group 191

How it works...
We use Seaborn for the figures we create in this recipe. We could have also used
Matplotlib. Seaborn is actually built on top of Matplotlib, extending it in some areas, and
making some things easier. It sometimes produces more aesthetically pleasing figures with
the default settings than Matplotlib does.

It is a good idea to have some descriptives in front of us before creating figures with
multiple boxplots. In Step 2, we get the first and third quartile values, and the median,
for each degree attainment level. We do this by first creating a function called gettots,
which returns a series with those values. We apply gettots to each group in the data
frame with the following statement:

nls97.groupby(['highestdegree'])['weeksworked17'].
apply(gettots).unstack()

The groupby method creates a data frame with grouping information, which is passed to
the apply function. gettots then calculates summary values for each group. unstack
reshapes the returned rows, from multiple rows per group (one for each summary
statistic) to one row per group, with columns for each summary statistic.

In Step 3, we generate a boxplot for each degree attainment level. We do not normally
need to name the subplot object we create when we use Seaborn's boxplot method. We
do so in this step, naming it myplt, so that we can easily change attributes—such as tick
labels—later. We rotate the labels on the x axis using set_xticklabels so that the
labels do not run into each other.

We flip the axes for the boxplots in Step 5 since there are more group levels (regions)
than there are ticks for the continuous variable, cases per million. We do that by making
total_cases_pm the value for the first argument, rather than the second. We also do a
swarm plot to give some sense of the number of observations (countries) in each region.

Extreme values can sometimes make it difficult to view a boxplot. Boxplots show both the
outliers and the IQR, but the IQR rectangle will be so small that it is not viewable when
outliers are several times the third or first quartile value. In Step 5, we remove all values
of total_cases_pm greater than or equal to 14,000. This improves the presentation of
each IQR.

192 Using Visualizations for the Identification of Unexpected Values

There's more…
The boxplots of weeks worked by educational attainment in Step 3 reveal high variation
in weeks worked, something that is not obvious in univariate analysis. The lower the
educational attainment level, the greater the spread in weeks worked. There is substantial
variability in weeks worked in 2017 for individuals with less than a high school degree,
and very little variability for individuals with college degrees.

This is quite relevant, of course, to our understanding of what is an outlier in terms of
weeks worked. For example, someone with a college degree who worked 20 weeks is an
outlier, but they would not be an outlier if they had less than a high school diploma.

The Cases Per Million boxplots also invite us to think more flexibly about what
an outlier is. For example, none of the outliers for cases per million in East Africa would
have been identified as an outlier in the dataset as a whole. In addition, those values are all
lower than the third quartile value for North America. But they definitely are outliers for
East Africa.

One of the first things I notice when looking at a boxplot is where the median is in the
IQR. When the median is not at all close to the center, I know I am not dealing with a
normally distributed variable. It also gives me a good sense of the direction of the skew.
If it is near the bottom of the IQR, meaning that the median is much closer to the first
quartile than the third, then there is positive skew. Compare the boxplot for the Caribbean
to that of Western Europe. A large number of low values and a few high values brings the
median close to the first quartile value for the Caribbean.

See also
We work much more with groupby in Chapter 7, Fixing Messy Data when Aggregating.
We work more with stack and unstack in Chapter 9, Tidying and Reshaping Data.

Examining both the distribution shape and
outliers with violin plots
Violin plots combine histograms and boxplots in one plot. They show the IQR, median,
and whiskers, as well as the frequency of observations at all ranges of values. It is hard to
visualize how that is possible without seeing an actual violin plot. We generate a few violin
plots on the same data we used for boxplots in the previous recipe, to make it easier to
grasp how they work.

Examining both the distribution shape and outliers with violin plots 193

Getting ready
We will work with the NLS and the Covid case data. You need Matplotlib and Seaborn
installed on your computer to run the code in this recipe.

How to do it…
We do violin plots to view both the spread and shape of the distribution on the same
graphic. We then do violin plots by groups:

1.	 Load pandas, matplotlib, and seaborn, and the Covid case and NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals.csv",
parse_dates=["lastdate"])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Do a violin plot of the SAT verbal score:

>>> sns.violinplot(nls97.satverbal, color="wheat",
orient="v")

>>> plt.title("Violin Plot of SAT Verbal Score")

>>> plt.ylabel("SAT Verbal")

>>> plt.text(0.08, 780, "outlier threshold",
horizontalalignment='center', size='x-small')

>>> plt.text(0.065, nls97.satverbal.quantile(0.75), "3rd
quartile", horizontalalignment='center', size='x-small')

>>> plt.text(0.05, nls97.satverbal.median(), "Median",
horizontalalignment='center', size='x-small')

>>> plt.text(0.065, nls97.satverbal.quantile(0.25), "1st
quartile", horizontalalignment='center', size='x-small')

>>> plt.text(0.08, 210, "outlier threshold",
horizontalalignment='center', size='x-small')

>>> plt.text(-0.4, 500, "frequency",
horizontalalignment='center', size='x-small')

>>> plt.show()

194 Using Visualizations for the Identification of Unexpected Values

This results in the following violin plot:

Figure 5.12 – Violin plot of SAT verbal score with labels for the IQR and outlier threshold

3.	 Get some descriptives for weeks worked:

>>> nls97.loc[:, ['weeksworked16','weeksworked17']].
describe()

 weeksworked16 weeksworked17

count 7,068 6,670

mean 39 39

std 21 19

min 0 0

25% 23 37

50% 53 49

75% 53 52

max 53 52

Examining both the distribution shape and outliers with violin plots 195

4.	 Show weeks worked for 2016 and 2017.

Use a more object-oriented approach to make it easier to access some axes'
attributes. Notice that the weeksworked distributions are bimodal, with bulges
near the top and the bottom of the distribution. Also, note the very different IQR for
2016 and 2017:

>>> myplt = sns.violinplot(data=nls97.loc[:, ['weeksworke
d16','weeksworked17']])

>>> myplt.set_title("Violin Plots of Weeks Worked")

>>> myplt.set_xticklabels(["Weeks Worked 2016","Weeks
Worked 2017"])

>>> plt.show()

This results in the following violin plots:

Figure 5.13 – Violin plots showing the spread and shape of the distribution for two variables side by side

196 Using Visualizations for the Identification of Unexpected Values

5.	 Do a violin plot of wage income by gender and marital status.

First, create a collapsed marital status column. Specify gender for the x axis,
salary for the y axis, and a new collapsed marital status column for hue. The hue
parameter is used for grouping, which will be added to any grouping already used
for the x axis. We also indicate scale="count" to generate violin plots sized
according to the number of observations in each category:

>>> nls97["maritalstatuscollapsed"] = nls97.
maritalstatus.\

... replace(['Married','Never-married','Divorced','Sepa
rated','Widowed'],\

... ['Married','Never Married','Not Married','Not
Married','Not Married'])

>>> sns.violinplot(nls97.gender, nls97.wageincome,
hue=nls97.maritalstatuscollapsed, scale="count")

>>> plt.title("Violin Plots of Wage Income by Gender and
Marital Status")

>>> plt.xlabel('Gender')

>>> plt.ylabel('Wage Income 2017')

>>> plt.legend(title="", loc="upper center",
framealpha=0, fontsize=8)

>>> plt.tight_layout()

>>> plt.show()

This results in the following violin plots:

Examining both the distribution shape and outliers with violin plots 197

Figure 5.14 – Violin plots showing the spread and shape of the distribution by two different groups

6.	 Do violin plots of weeks worked by highest degree attained:

>>> myplt = sns.
violinplot('highestdegree','weeksworked17', data=nls97,
rotation=40)

>>> myplt.set_xticklabels(myplt.get_xticklabels(),
rotation=60, horizontalalignment='right')

>>> myplt.set_title("Violin Plots of Weeks Worked by
Highest Degree")

>>> myplt.set_xlabel('Highest Degree Attained')

>>> myplt.set_ylabel('Weeks Worked 2017')

>>> plt.tight_layout()

>>> plt.show()

198 Using Visualizations for the Identification of Unexpected Values

This results in the following violin plots:

Figure 5.15 – Violin plots showing the spread and shape of the distribution by group

These steps show just how much violin plots can tell us about how continuous variables in
our data frame are distributed, and how that might vary by group.

How it works…
Similar to boxplots, violin plots show the median, first and third quartiles, and the
whiskers. They also show the relative frequency of variable values. (When the violin plot
is displayed vertically, the relative frequency is the width at a given point.) The violin plot
produced in Step 2, and the associated annotations, provide a good illustration. We can tell
from the violin plot that the distribution of SAT verbal scores is not dramatically different
from the normal, other than the extreme values at the lower end. The greatest bulge
(greatest width) is at the median, declining fairly symmetrically from there. The median is
relatively equidistant from the first and third quartiles.

Examining both the distribution shape and outliers with violin plots 199

We can create a violin plot in Seaborn by passing one or more data series to the
violinplot method. We can also pass a whole data frame of one or more columns. We
do that in Step 4 because we want to plot more than one continuous variable.

We sometimes need to experiment with the legend a bit to get it to be both informative
and unobtrusive. In Step 5, we used the following command to remove the legend title
(since it is clear from the values), locate it in the best place in the figure, and make the box
transparent (framealpha=0):

plt.legend(title="", loc="upper center", framealpha=0,
fontsize=8)

We can pass data series to violinplot in a variety of ways. If you do not indicate an
axis with "x=" or "y=", or grouping with "hue=", Seaborn will figure that out based on
order. For example, in Step 5, we did the following:

sns.violinplot(nls97.gender, nls97.wageincome, hue=nls97.
maritalstatuscollapsed, scale="count")

We would have got the same results if we had done the following:

sns.violinplot(x=nls97.gender, y=nls97.wageincome, hue=nls97.
maritalstatuscollapsed, scale="count")

We could have also done this to obtain the same result:

sns.violinplot(y=nls97.wageincome, x=nls97.gender, hue=nls97.
maritalstatuscollapsed, scale="count")

Although I have highlighted this flexibility in this recipe, these techniques for sending
data to Matplotlib and Seaborn apply to all of the plotting methods discussed in this
chapter (though not all of them have a hue parameter).

There's more…
Once you get the hang of violin plots, you will appreciate the enormous amount of
information they make available on one figure. We get a sense of the shape of the
distribution, its central tendency, and its spread. We can also easily show that information
for different subsets of our data.

200 Using Visualizations for the Identification of Unexpected Values

The distribution of weeks worked in 2016 is different enough from weeks worked in 2017
to give the careful analyst pause. The IQR is quite different—30 for 2016 (23 to 53), and 15
for 2017 (37 to 52).

An unusual fact about the distribution of wage income is revealed when examining
the violin plots produced in Step 5. There is a bunching-up of incomes at the top of the
distribution for married males, and somewhat for married females. That is quite unusual
for a wage income distribution. As it turns out, it looks like there is a ceiling on wage
income of $235,884. This is something that we definitely want to take into account in
future analyses that include wage income.

The income distributions have a similar shape across gender and marital status, with
bulges slightly below the median and extended positive tails. The IQRs have relatively
similar lengths. However, the distribution for married males is noticeably higher (or to the
right, depending on chosen orientation) than that for the other groups.

The violin plots of weeks worked by degree attained show very different distributions
by group, as we also discovered in the boxplots of the same data in the previous recipe.
What is more clear here, though, is the bimodal nature of the distribution at lower levels
of education. There is a bunching at low levels of weeks worked for individuals without
college degrees. Individuals without high school diplomas or a GED (a Graduate
Equivalency Diploma) were nearly as likely to work 5 or fewer weeks in 2017 as they were
to work 50 or more weeks.

We used Seaborn exclusively to produce violin plots in this recipe. Violin plots can also
be produced with Matplotlib. However, the default graphics in Matplotlib for violin plots
look very different from those for Seaborn.

See also
It might be helpful to compare the violin plots in this recipe to the histograms, boxplots,
and grouped boxplots in the previous recipes in this chapter.

Using scatter plots to view bivariate relationships 201

Using scatter plots to view bivariate
relationships
My sense is that there are few plots that data analysts rely more on than scatter plots,
with the possible exception of histograms. We are all very used to looking at relationships
that can be illustrated in two dimensions. Scatter plots capture important real-world
phenomena (the relationship between variables) and are quite intuitive for most people.
This makes them a valuable addition to our visualization toolkit.

Getting ready
You will need Matplotlib and Seaborn for this recipe. We will be working with the
landtemps dataset, which provides the average temperature in 2019 for 12,095 weather
stations across the world.

How to do it...
We level up our scatter plot skills from the previous chapter and visualize more
complicated relationships. We display the relationship between average temperature,
latitude, and elevation by showing multiple scatter plots on one chart, creating 3D scatter
plots, and showing multiple regression lines:

1.	 Load pandas, numpy, matplotlib, the Axes3D module, and seaborn:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> from mpl_toolkits.mplot3d import Axes3D

>>> import seaborn as sns

>>> landtemps = pd.read_csv("data/landtemps2019avgs.csv")

2.	 Run a scatter plot of latitude (latabs) by average temperature:

>>> plt.scatter(x="latabs", y="avgtemp", data=landtemps)

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature (Celsius)")

>>> plt.yticks(np.arange(-60, 40, step=20))

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.show()

202 Using Visualizations for the Identification of Unexpected Values

This results in the following scatter plot:

Figure 5.16 – Scatter plot of latitude by average temperature

3.	 Show the high elevation points in red.

Create low and high elevation data frames. Notice that the high elevation points are
generally lower (that is, cooler) on the figure at each latitude:

>>> low, high = landtemps.loc[landtemps.elevation<=1000],
landtemps.loc[landtemps.elevation>1000]

>>> plt.scatter(x="latabs", y="avgtemp", c="blue",
data=low)

>>> plt.scatter(x="latabs", y="avgtemp", c="red",
data=high)

>>> plt.legend(('low elevation', 'high elevation'))

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature (Celsius)")

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.show()

Using scatter plots to view bivariate relationships 203

This results in the following scatter plot:

Figure 5.17 – Scatter plot of latitude by average temperature and elevation

4.	 View a three-dimensional plot of temperature, latitude, and elevation.

It looks like there is a somewhat steeper decline in temperature, with increases in
latitude for high elevation stations:

>>> fig = plt.figure()

>>> plt.suptitle("Latitude, Temperature, and Elevation in
2019")

>>> ax.set_title('Three D')

>>> ax = plt.axes(projection='3d')

>>> ax.set_xlabel("Elevation")

>>> ax.set_ylabel("Latitude")

>>> ax.set_zlabel("Avg Temp")

>>> ax.scatter3D(low.elevation, low.latabs, low.avgtemp,
label="low elevation", c="blue")

204 Using Visualizations for the Identification of Unexpected Values

>>> ax.scatter3D(high.elevation, high.latabs, high.
avgtemp, label="high elevation", c="red")

>>> ax.legend()

>>> plt.show()

This results in the following scatter plot:

Figure 5.18 – 3D scatter plot of latitude and elevation by average temperature

5.	 Show a regression line of latitude on the temperature data.

Use regplot to get a regression line:
>>> sns.regplot(x="latabs", y="avgtemp", color="blue",
data=landtemps)

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature")

>>> plt.show()

Using scatter plots to view bivariate relationships 205

This results in the following scatter plot:

Figure 5.19 – Scatter plot of latitude by average temperature with regression line

6.	 Show separate regression lines for low and high elevation stations.

We use lmplot this time instead of regplot. The two methods have similar
functionality. Unsurprisingly, high elevation stations appear to have both lower
intercepts (where the line crosses the y axis) and steeper negative slopes:

>>> landtemps['elevation_group'] = np.where(landtemps.
elevation<=1000,'low','high')

>>> sns.lmplot(x="latabs", y="avgtemp", hue="elevation_
group", palette=dict(low="blue", high="red"), legend_
out=False, data=landtemps)

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature")

>>> plt.legend(('low elevation', 'high elevation'),
loc='lower left')

>>> plt.yticks(np.arange(-60, 40, step=20))

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.tight_layout()

>>> plt.show()

206 Using Visualizations for the Identification of Unexpected Values

This results in the following scatter plot:

Figure 5.20 – Scatter plot of latitude by temperature with separate regression lines for elevation

7.	 Show some stations above the low and high elevation regression lines:

>>> high.loc[(high.latabs>38) & (high.avgtemp>=18),\

...
['station','country','latabs','elevation','avgtemp']]

 station country latabs elevation
avgtemp

3985 LAJES_AB Portugal 39 1,016
18

5870 WILD_HORSE_6N United States 39 1,439
23

>>> low.loc[(low.latabs>47) & (low.avgtemp>=14),

...
['station','country','latabs','elevation','avgtemp']]

 station country latabs
elevation avgtemp

Using scatter plots to view bivariate relationships 207

1062 SAANICHTON_CDA Canada 49
61 18

1160 CLOVERDALE_EAST Canada 49
50 15

6917 WINNIBIGOSHISH_DAM United States 47
401 18

7220 WINIFRED United States 48
988 16

8.	 Show some stations below the low and high elevation regression lines:

>>> high.loc[(high.latabs<5) & (high.avgtemp<18),\

...
['station','country','latabs','elevation','avgtemp']]

 station country latabs elevation
avgtemp

2273 BOGOTA_ELDORADO Colombia 5 2,548
15

2296 SAN_LUIS Colombia 1 2,976
11

2327 IZOBAMBA Ecuador 0 3,058
13

2331 CANAR Ecuador 3 3,083
13

2332 LOJA_LA_ARGELIA Ecuador 4 2,160
17

>>> low.loc[(low.latabs<50) & (low.avgtemp<-9),

...
['station','country','latabs','elevation','avgtemp']]

 station country latabs
elevation avgtemp

1204 FT_STEELE_DANDY_CRK Canada 50
856 -12

1563 BALDUR Canada 49
450 -11

1852 POINTE_CLAVEAU Canada 48
4 -11

1881 CHUTE_DES_PASSES Canada 50
398 -13

6627 PRESQUE_ISLE United States 47
183 -10

208 Using Visualizations for the Identification of Unexpected Values

Scatter plots are a great way to view the relationship between two variables. These steps
also show how we can display that relationship for different subsets of our data.

How it works…
We can run a scatter plot by just providing column names for x and y and a data frame.
Nothing more is required. We get the same access to the attributes of the figure and its
axes that we get when we run histograms and boxplots—titles, axis labels, tick marks and
labels, and so on. Note that to access attributes such as labels on an axis (rather than on
the figure), we use set_xlabels or set_ylabels, not xlabels or ylabels.

3D plots are a little more complicated. First, we need to have imported the Axes3D module.
Then, we set the projection of our axes to 3d—plt.axes(projection='3d'), as we
do in Step 4. We can then use the scatter3D method for each subplot.

Since scatter plots are designed to illustrate the relationship between a regressor (the x
variable) and a dependent variable, it is quite helpful to see a least-squares regression line
on the scatter plot. Seaborn provides two methods for doing that: regplot and lmplot.
I use regplot typically, since it is less resource-intensive. But sometimes, I need the
features of lmplot. We use lmplot and its hue attribute in Step 6 to generate separate
regression lines for each elevation level.

In Steps 7 and 8, we view some of the outliers: those stations with temperatures much
higher or lower than the regression line for their group. We would want to investigate
the data for the LAJES_AB station in Portugal and the WILD_HORSE_6N station in
the United States ((high.latabs>38) & (high.avgtemp>=18)). The average
temperatures are higher than would be predicted at the latitude and elevation level.
Similarly, there are four stations in Canada and one in the United States that are at
low elevation and have lower average temperatures than would be expected (low.
latabs<50) & (low.avgtemp<-9)).

There's more...
We see the expected relationship between latitude and average temperatures.
Temperatures fall as latitude increases. But elevation is another important factor. Being
able to visualize all three variables at once helps us identify outliers more easily. Of course,
there are additional factors that matter for temperatures, such as warm ocean currents.
That data is not in this dataset, unfortunately.

Using line plots to examine trends in continuous variables 209

Scatter plots are great for visualizing the relationship between two continuous variables.
With some tweaking, Matplotlib's and Seaborn's scatter plot tools can also provide some
sense of relationships between three variables—by adding a third dimension, creative
use of colors (when the third dimension is categorical), or changing the size of the dots
(the Using linear regression to identify data points with high influence recipe in Chapter 4,
Identifying Missing Values and Outliers in Subsets of Data, provides an example of that).

See also
This is a chapter on visualization, and identifying unexpected values through visualizations.
But these figures also scream out for the kind of multivariate analyses we did in Chapter 4,
Identifying Missing Values and Outliers in Subsets of Data. In particular, linear regression
analysis, and a close look at the residuals, would be useful for identifying outliers.

Using line plots to examine trends in
continuous variables
A typical way to visualize values for a continuous variable over regular intervals of time is
through a line plot, though sometimes bar charts are used for small numbers of intervals.
We will use line plots in this recipe to display variable trends, and examine sudden
deviations in trends and differences in values over time by groups.

Getting ready
We will work with daily Covid case data in this recipe. In previous recipes, we have used
totals by country. The daily data provides us with the number of new cases and new deaths
each day by country, in addition to the same demographic variables we used in other
recipes. You will need Matplotlib installed to run the code in this recipe.

How to do it…
We use line plots to visualize trends in daily coronavirus cases and deaths. We create line
plots by region, and stacked plots to get a better sense of how much one country can drive
the number of cases for a whole region:

1.	 Import pandas, matplotlib, and the matplotlib dates and date
formatting utilities:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

210 Using Visualizations for the Identification of Unexpected Values

>>> import matplotlib.dates as mdates

>>> from matplotlib.dates import DateFormatter

>>> coviddaily = pd.read_csv("data/coviddaily720.csv",
parse_dates=["casedate"])

2.	 View a couple of rows of the Covid daily data:

>>> coviddaily.sample(2, random_state=1).T
 2478 9526
iso_code BRB FRA
casedate 2020-06-11 2020-02-16
location Barbados France
continent North America Europe
new_cases 4 0
new_deaths 0 0
population 287,371 65,273,512
pop_density 664 123
median_age 40 42
gdp_per_capita 16,978 38,606
hosp_beds 6 6
region Caribbean Western Europe

3.	 Calculate new cases and deaths by day.

Select dates between 2020-02-01 and 2020-07-12, and then use groupby to
summarize cases and deaths across all countries for each day:

>>> coviddailytotals = coviddaily.loc[coviddaily.
casedate.between('2020-02-01','2020-07-12')].\
... groupby(['casedate'])[['new_cases','new_deaths']].\
... sum().\
... reset_index()
>>>
>>> coviddailytotals.sample(7, random_state=1)
 casedate new_cases new_deaths
44 2020-03-16 12,386 757
47 2020-03-19 20,130 961
94 2020-05-05 77,474 3,998
78 2020-04-19 80,127 6,005
160 2020-07-10 228,608 5,441
11 2020-02-12 2,033 97
117 2020-05-28 102,619 5,168

Using line plots to examine trends in continuous variables 211

4.	 Show line plots for new cases and new deaths by day.

Show cases and deaths on different subplots:
>>> fig = plt.figure()

>>> plt.suptitle("New Covid Cases and Deaths By Day
Worldwide in 2020")

>>> ax1 = plt.subplot(2,1,1)

>>> ax1.plot(coviddailytotals.casedate, coviddailytotals.
new_cases)

>>> ax1.xaxis.set_major_formatter(DateFormatter("%b"))

>>> ax1.set_xlabel("New Cases")

>>> ax2 = plt.subplot(2,1,2)

>>> ax2.plot(coviddailytotals.casedate, coviddailytotals.
new_deaths)

>>> ax2.xaxis.set_major_formatter(DateFormatter("%b"))

>>> ax2.set_xlabel("New Deaths")

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.88)

>>> plt.show()

This results in the following line plots:

Figure 5.21 – Daily trend lines of worldwide Covid cases and deaths

212 Using Visualizations for the Identification of Unexpected Values

5.	 Calculate new cases and deaths by day and region:

>>> regiontotals = coviddaily.loc[coviddaily.casedate.
between('2020-02-01','2020-07-12')].\
... groupby(['casedate','region'])[['new_cases','new_
deaths']].\
... sum().\
... reset_index()
>>>
>>> regiontotals.sample(7, random_state=1)
 casedate region new_cases new_deaths
1518 2020-05-16 North Africa 634 28
2410 2020-07-11 Central Asia 3,873 26
870 2020-04-05 Western Europe 30,090 4,079
1894 2020-06-08 Western Europe 3,712 180
790 2020-03-31 Western Europe 30,180 2,970
2270 2020-07-02 North Africa 2,006 89
306 2020-02-26 Oceania / Aus 0 0

6.	 Show line plots of new cases by selected regions.

Loop through the regions in showregions. Do a line plot of the total new_cases
by day for each region. Use the gca method to get the x axis and set the date format:

>>> showregions = ['East Asia','Southern Africa','North
America',

... 'Western Europe']

>>>

>>> for j in range(len(showregions)):

... rt = regiontotals.loc[regiontotals.
region==showregions[j],

... ['casedate','new_cases']]

... plt.plot(rt.casedate, rt.new_cases,
label=showregions[j])

...

>>> plt.title("New Covid Cases By Day and Region in
2020")

>>> plt.gca().get_xaxis().set_major_
formatter(DateFormatter("%b"))

>>> plt.ylabel("New Cases")

>>> plt.legend()

>>> plt.show()

Using line plots to examine trends in continuous variables 213

This results in the following line plots:

Figure 5.22 – Daily trend lines of Covid cases by region

7.	 Use a stacked plot to examine the uptick in Southern Africa more closely.

See whether one country (South Africa) in Southern Africa is driving the trend line.
Create a data frame (af) for new_cases by day for Southern Africa (the region).
Add a series for new_cases in South Africa (the country) to the af data frame.
Then, create a new series in the af data frame for Southern Africa cases minus
South African cases (afcasesnosa). Select only data from April or later, since
that is when we start to see an increase in new cases:

>>> af = regiontotals.loc[regiontotals.region=='Southern
Africa',

... ['casedate','new_cases']].rename(columns={'new_
cases':'afcases'})

>>> sa = coviddaily.loc[coviddaily.location=='South
Africa',

... ['casedate','new_cases']].rename(columns={'new_
cases':'sacases'})

>>> af = pd.merge(af, sa, left_on=['casedate'], right_
on=['casedate'], how="left")

214 Using Visualizations for the Identification of Unexpected Values

>>> af.sacases.fillna(0, inplace=True)

>>> af['afcasesnosa'] = af.afcases-af.sacases

>>> afabb = af.loc[af.casedate.between('2020-04-
01','2020-07-12')]

>>> fig = plt.figure()

>>> ax = plt.subplot()

>>> ax.stackplot(afabb.casedate, afabb.sacases, afabb.
afcasesnosa, labels=['South Africa','Other Southern
Africa'])

>>> ax.xaxis.set_major_formatter(DateFormatter("%m-%d"))

>>> plt.title("New Covid Cases in Southern Africa")

>>> plt.tight_layout()

>>> plt.legend(loc="upper left")

>>> plt.show()

This results in the following stacked plot:

Figure 5.23 – Stacked daily trends of cases in South Africa and the rest of that region (Southern Africa)

These steps show how to use line plots to examine trends in a variable over time, and how
to display trends for different groups on one figure.

Using line plots to examine trends in continuous variables 215

How it works...
We need to do some manipulation of the daily Covid data before we do the line charts. We
use groupby in Step 3 to summarize new cases and deaths over all countries for each day.
We use groupby in Step 5 to summarize cases and deaths for each region and day.

In Step 4, we set up our first subplot with plt.subplot(2,1,1). That will give us a
figure with two rows and one column. The 1 for the third argument indicates that this
subplot will be the first, or top, subplot. We can pass a data series for date and for the values
for the y axis. So far, this is pretty much what we have done with the hist, scatterplot,
boxplot, and violinplot methods. But since we are working with dates here, we take
advantage of Matplotlib's utilities for date formatting and indicate that we want only the
month to show, with xaxis.set_major_formatter(DateFormatter("%b")).
Since we are working with subplots, we use set_xlabel rather than xlabel to indicate
the label we want for the x axis.

We show line plots for four selected regions in Step 6. We do this by calling plot for each
region that we want plotted. We could have done it for all of the regions, but it would have
been too difficult to view.

We have to do some additional manipulation in Step 7 to pull the South African (the
country) cases out of the cases for Southern Africa (the region). Once we do that, we can
do a stacked plot with the Southern Africa cases (minus South Africa) and South Africa.
This figure suggests that the increase in cases in Southern Africa is almost completely
driven by increases in South Africa.

There's more…
The figure produced in Step 6 reveals a couple of potential data issues. There are unusual
spikes in mid-February in East Asia and in late April in North America. It is important to
examine these anomalies to see if there is a data collection error.

It is difficult to miss how much the trends differ by region. There are substantive reasons
for this, of course. The different lines reflect what we know to be reality about different
rates of spread by country and region. However, it is worth exploring any significant
change in the direction or slope of trend lines to make sure that we can confirm that the
data is accurate. We want to be able to explain what happened in Western Europe in early
April and in North America and Southern Africa in early June. One question is whether
the trends reflect changes in the whole region (such as with the decline in Western Europe
in early April) or for one or two large countries in the region (the United States in North
America and South Africa in Southern Africa).

216 Using Visualizations for the Identification of Unexpected Values

See also
We cover groupby in more detail in Chapter 7, Fixing Messy Data When Aggregating.
We go over merging data, as we did in Step 7, in Chapter 8, Addressing Data Issues when
Combining DataFrames.

Generating a heat map based on a correlation
matrix
The correlation between two variables is a measure of how much they move together. A
correlation of 1 means that the two variables are perfectly positively correlated. As one
variable increases in size, so does the other. A value of -1 means that they are perfectly
negatively correlated. As one variable increases in size, the other decreases. Correlations
of 1 or -1 only rarely happen, but correlations above 0.5 or below -0.5 might still be
meaningful. There are several tests that can tell us whether the relationship is statistically
significant (such as Pearson, Spearman, and Kendall). Since this is a chapter on
visualizations, we will focus on viewing important correlations.

Getting ready
You will need Matplotlib and Seaborn installed to run the code in this recipe. Both can
be installed by using pip, with the pip install matplotlib and pip install
seaborn commands.

How to do it…
We first show part of a correlation matrix of the Covid data, and the scatter plots of some
key relationships. We then show a heat map of the correlation matrix to visualize the
correlations between all variables:

1.	 Import matplotlib and seaborn, and load the Covid totals data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> covidtotals = pd.read_csv("data/covidtotals.csv",
parse_dates=["lastdate"])

Generating a heat map based on a correlation matrix 217

2.	 Generate a correlation matrix.

View part of the matrix:
>>> corr = covidtotals.corr()

>>> corr[['total_cases','total_deaths','total_cases_
pm','total_deaths_pm']]

 total_cases total_deaths total_cases_
pm total_deaths_pm

total_cases 1.00 0.93
0.23 0.26

total_deaths 0.93 1.00
0.20 0.41

total_cases_pm 0.23 0.20
1.00 0.49

total_deaths_pm 0.26 0.41
0.49 1.00

population 0.34 0.28
-0.04 -0.00

pop_density -0.03 -0.03
0.08 0.02

median_age 0.12 0.17
0.22 0.38

gdp_per_capita 0.13 0.16
0.58 0.37

hosp_beds -0.01 -0.01
0.02 0.09

3.	 Show scatter plots of median age and gross domestic product (GDP) per capita by
cases per million.

Indicate that we want the subplots to share y axis values with sharey=True:
>>> fig, axes = plt.subplots(1,2, sharey=True)

>>> sns.regplot(covidtotals.median_age, covidtotals.
total_cases_pm, ax=axes[0])

>>> sns.regplot(covidtotals.gdp_per_capita, covidtotals.
total_cases_pm, ax=axes[1])

>>> axes[0].set_xlabel("Median Age")

>>> axes[0].set_ylabel("Cases Per Million")

>>> axes[1].set_xlabel("GDP Per Capita")

218 Using Visualizations for the Identification of Unexpected Values

>>> axes[1].set_ylabel("")

>>> plt.suptitle("Scatter Plots of Age and GDP with Cases
Per Million")

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.92)

>>> plt.show()

This results in the following scatter plots:

Figure 5.24 – Scatter plots of median age and GDP by cases per million side by side

4.	 Generate a heat map of the correlation matrix:

>>> sns.heatmap(corr, xticklabels=corr.columns,
yticklabels=corr.columns, cmap="coolwarm")

>>> plt.title('Heat Map of Correlation Matrix')

>>> plt.tight_layout()

>>> plt.show()

Generating a heat map based on a correlation matrix 219

This results in the following heat map:

Figure 5.25 – Heat map of Covid data, with strongest correlations in red and peach

Heat maps are a great way to visualize how all key variables in our data frame are
correlated with one another.

How it works…
The corr method of a data frame generates correlation coefficients of all numeric
variables by all other numeric variables. We display part of that matrix in Step 2. In Step
3, we do scatter plots of median age by cases per million, and GDP per capita by cases per
million. These plots give a sense of what it looks like when the correlation is 0.22 (median
age and cases per million) and when it is 0.58 (GDP per capita and cases per million).
There is not much of a relationship between median age and cases per million. There is
more of a relationship between GDP per capita and cases per million.

220 Using Visualizations for the Identification of Unexpected Values

The heat map provides a visualization of the correlation matrix we created in Step 2. All of
the red squares are correlations of 1.0 (which is the correlation of the variable with itself).
The slightly lighter red squares are between total_cases and total_deaths (0.93).
The peach squares (those with correlations between 0.55 and 0.65) are also interesting.
GDP per capita, median age, and hospital beds per 1,000 people are positively correlated
with each other, and GDP per capita is positively correlated with cases per million.

There's more…
I find it helpful to always have a correlation matrix or heat map close by when I am doing
exploratory analysis or statistical modeling. I understand the data much better when I am
able to keep these bivariate relationships in mind.

See also
We go over tools for examining the relationship between two variables in more detail in
the Identifying outliers and unexpected values in bivariate relationships recipe in Chapter 4,
Identifying Missing Values and Outliers in Subsets of Data.

6
Cleaning and

Exploring Data with
Series Operations

We can view the recipes in the first few chapters of this book as, essentially, diagnostic.
We imported some raw data and then generated descriptive statistics about key variables.
This gave us a sense of how the values for those variables were distributed and helped us
identify outliers and unexpected values. We then examined the relationships between
variables to look for patterns, and deviations from those patterns, including logical
inconsistencies. In short, our primary goal so far has been to figure out what is going on
with our data.

The recipes in this chapter demonstrate how to use pandas methods to update series
values once we have figured out what needs to be done. Ideally, we need to take the
time to carefully examine our data before manipulating the values of our variables. We
should have measures of central tendency, indicators of distribution shape and spread,
correlations, and visualizations in front of us before we update the variable's values, or
before creating new variables based on them. We should also have a good sense of outliers
and missing values, understand how they affect summary statistics, and have preliminary
plans for imputing new values or otherwise adjusting them.

222 Cleaning and Exploring Data with Series Operations

Having done that, we will be ready to perform some data cleaning tasks. These tasks
usually involve working directly with a pandas series object, regardless of whether we
are changing values for an existing series or creating a new one. This often involves
changing values conditionally, altering only those values that meet specific criteria, or
assigning multiple possible values based on existing values for that series, or values for
another series.

How we assign such values varies significantly by the series' data type, either for the series to
be changed or a criterion series. Querying and cleaning string data bears little resemblance
to those tasks containing date or numeric data. With strings, we often need to evaluate
whether some string fragment does or does not have a certain value, strip the string of some
meaningless characters, or convert the value into a numeric or date value. With dates, we
might need to look for invalid or out-of-range dates, or even calculate date intervals.

Fortunately, pandas series have an enormous number of tools for manipulating string,
numeric, and date values. We will explore many of the most useful tools in this chapter.
Specifically, we will cover the following recipes:

•	 Getting values from a pandas series

•	 Showing summary statistics for a pandas series

•	 Changing series values

•	 Changing series values conditionally

•	 Evaluating and cleaning string series data

•	 Working with dates

•	 Identifying and cleaning missing data

•	 Missing value imputation with k-nearest neighbor

Let's get started!

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Getting values from a pandas series
A pandas series is a one-dimensional array-like structure that takes a NumPy data type.
Each series also has an index; that is, an array of data labels. If an index is not specified
when the series is created, it will be the default index of 0 through N-1.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Getting values from a pandas series 223

There are several ways to create a pandas series, including from a list,
dictionary, NumPy array, or a scalar. In our data cleaning work, we will most
frequently be accessing data series that contain columns of data frames, using
either attribute access (dataframename.columname) or bracket notation
(dataframename['columnname']). Attribute access cannot be used to set values for
series, but bracket notation will work for all series operations.

In this recipe, we'll explore several ways we can get values from a pandas series. These
techniques are very similar to the methods we used to get rows from a pandas DataFrame,
which we covered in the Selecting rows recipe of Chapter 3, Taking the Measure of Your Data.

Getting ready
We will be working with data from the National Longitudinal Survey (NLS) in this
recipe – primarily with data about each respondent's overall high school Grade Point
Average (GPA).

Data note
The National Longitudinal Survey of Youth is conducted by the United States
Bureau of Labor Statistics. This survey started with a cohort of individuals in
1997 who were born between 1980 and 1985, with annual follow-ups each year
until 2017. Survey data is available for public use at nlsinfo.org.

How to do it…
For this recipe, we must select series values using the bracket operator and the loc and
iloc accessors. Let's get started:

1.	 Import pandas and the required NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Create a series from the GPA overall column.

Show the first few values and associated index labels using head. The default
number of values shown for head is 5. The index for the series is the same as the
DataFrame's index, which is personid:

>>> gpaoverall = nls97.gpaoverall

>>> type(gpaoverall)

http://nlsinfo.org

224 Cleaning and Exploring Data with Series Operations

<class 'pandas.core.series.Series'>

>>> gpaoverall.head()

personid

100061 3.06

100139 nan

100284 nan

100292 3.45

100583 2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.index

Int64Index([100061, 100139, 100284, 100292, 100583,
100833, 100931, 101089,

 101122, 101132,

 ...

 998997, 999031, 999053, 999087, 999103,
999291, 999406, 999543,

 999698, 999963],

 dtype='int64', name='personid', length=8984)

3.	 Select GPA values using the bracket operator.

Use slicing to create a series with every value from the first value to the fifth.
Notice that we get the same values that we got with the head method in step 2. Not
including a value to the left of the colon in gpaoverall[:5] means that it must
start from the beginning. gpaoverall[0:5] will give the same results. Similarly,
gpaoverall[-5:] shows the values from the fifth to the last position. This
produces the same results as gpaoverall.tail():

>>> gpaoverall[:5]

personid

100061 3.06

100139 nan

100284 nan

100292 3.45

100583 2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.tail()

personid

999291 3.11

Getting values from a pandas series 225

999406 2.17

999543 nan

999698 nan

999963 3.78

Name: gpaoverall, dtype: float64

>>> gpaoverall[-5:]

personid

999291 3.11

999406 2.17

999543 nan

999698 nan

999963 3.78

Name: gpaoverall, dtype: float64

4.	 Select values using the loc accessor.

We pass an index label (a value for personid) to the loc accessor to return a
scalar. We get a series if we pass a list of index labels, regardless of whether there's
one or more. We can even pass a range, separated by a colon. We'll do this here with
gpaoverall.loc[100061:100833]:

>>> gpaoverall.loc[100061]

3.06

>>> gpaoverall.loc[[100061]]

personid

100061 3.06

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[[100061,100139,100284]]

personid

100061 3.06

100139 nan

100284 nan

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[100061:100833]

personid

100061 3.06

100139 nan

100284 nan

226 Cleaning and Exploring Data with Series Operations

100292 3.45

100583 2.91

100833 2.46

Name: gpaoverall, dtype: float64

5.	 Select values using the iloc accessor.

iloc differs from loc in that it takes a list of row numbers rather than labels.
It works similarly to bracket operator slicing. In this step, we pass a one-item
list with the value of 0. We then pass a five-item list, [0,1,2,3,4], to return a
series containing the first five values. We get the same result if we pass [:5] to the
accessor:

>>> gpaoverall.iloc[[0]]

personid

100061 3.06

Name: gpaoverall, dtype: float64

>>> gpaoverall.iloc[[0,1,2,3,4]]

personid

100061 3.06

100139 nan

100284 nan

100292 3.45

100583 2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.iloc[:5]

personid

100061 3.06

100139 nan

100284 nan

100292 3.45

100583 2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.iloc[-5:]

personid

999291 3.11

999406 2.17

999543 nan

Showing summary statistics for a pandas series 227

999698 nan

999963 3.78

Name: gpaoverall, dtype: float64

Each of these ways of accessing pandas series values – the bracket operator, the loc
accessor, and the iloc accessor – have many use cases, particularly the loc accessor.

How it works...
We used the [] bracket operator in step 3 to perform standard Python-like slicing to create a
series. This operator allows us to easily select data based on position using a list, or a range of
values indicated with slice notation. This notation takes the form of [start:end:step], where 1
is assumed for step if no value is provided. When a negative number is used for start, it
represents the number of rows from the end of the original series.

The loc accessor, used in step 4, selects data by index labels. Since personid is the index
for the series, we can pass a list of one or more personid values to the loc accessor
to get a series with those labels and associated GPA values. We can also pass a range of
labels to the accessor, which will return a series with GPA values from the index label to
the left of the colon and the index label to the right inclusive. So, here, gpaoverall.
loc[100061:100833] returns a series with GPA values for personid between
100061 and 100833, including those two values.

As shown in step 5, the iloc accessor takes row positions rather than index labels. We
can pass either a list of integers or a range using slicing notation.

Showing summary statistics for a pandas
series
There are a large number of pandas series methods for generating summary statistics.
We can easily get the mean, median, maximum, or minimum values for a series with the
mean, median, max, and min methods, respectively. The incredibly handy describe
method will return all of these statistics, as well as several others. We can also get the
series value at any percentile using quantile. These methods can be used across all
values for a series, or just for selected values. This will be demonstrated in this recipe.

Getting ready
We will continue working with the overall GPA column from the NLS.

228 Cleaning and Exploring Data with Series Operations

How to do it...
Let's take a good look at the distribution of the overall GPA for the DataFrame and for the
selected rows. To do this, follow these steps:

1.	 Import pandas and numpy and load the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Gather some descriptive statistics:

>>> gpaoverall = nls97.gpaoverall

>>> gpaoverall.mean()

2.8184077281812145

>>> gpaoverall.describe()

count 6,004.00

mean 2.82

std 0.62

min 0.10

25% 2.43

50% 2.86

75% 3.26

max 4.17

Name: gpaoverall, dtype: float64

>>> gpaoverall.quantile(np.arange(0.1,1.1,0.1))

0.10 2.02

0.20 2.31

0.30 2.52

0.40 2.70

0.50 2.86

0.60 3.01

0.70 3.17

0.80 3.36

0.90 3.60

1.00 4.17

Name: gpaoverall, dtype: float64

Showing summary statistics for a pandas series 229

3.	 Show descriptives for a subset of the series:

>>> gpaoverall.loc[gpaoverall.between(3,3.5)].head(5)

personid

100061 3.06

100292 3.45

101526 3.37

101527 3.26

102125 3.14

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[gpaoverall.between(3,3.5)].sum()

1679

>>> gpaoverall.loc[(gpaoverall<2) | (gpaoverall>4)].
sample(5, random_state=2)

personid

932782 1.90

561335 1.82

850001 4.10

292455 1.97

644271 1.97

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[gpaoverall>gpaoverall.
quantile(0.99)].\

... agg(['count','min','max'])

count 60.00

min 3.98

max 4.17

Name: gpaoverall, dtype: float64

4.	 Test for a condition across all values.

Check whether any GPA values are above 4 and if all the values are above or equal
to 0. Also, count how many values are missing:

>>> (gpaoverall>4).any() # any person has GPA greater
than 4

True

>>> (gpaoverall>=0).all() # all people have GPA greater
than or equal 0

False

230 Cleaning and Exploring Data with Series Operations

>>> (gpaoverall>=0).sum() # of people with GPA greater
than or equal 0

6004

>>> (gpaoverall==0).sum() # of people with GPA equal to 0

0

>>> gpaoverall.isnull().sum() # of people with missing
value for GPA

2980

5.	 Show descriptives for a subset of the series based on values in a different column.

Show the mean high school GPA for individuals with a wage income in 2016 that's
above the 75th percentile, as well as for those with a wage income that's below the
25th percentile:

>>> nls97.loc[nls97.wageincome > nls97.wageincome.
quantile(0.75),'gpaoverall'].mean()

3.0804171011470256

>>> nls97.loc[nls97.wageincome < nls97.wageincome.
quantile(0.25),'gpaoverall'].mean()

2.720143415906124

6.	 Show descriptives and frequencies for a series containing categorical data:

>>> nls97.maritalstatus.describe()

count 6672

unique 5

top Married

freq 3066

Name: maritalstatus, dtype: object

>>> nls97.maritalstatus.value_counts()

Married 3066

Never-married 2766

Divorced 663

Separated 154

Widowed 23

Name: maritalstatus, dtype: int64

Once we have a series, we can use a wide variety of pandas tools to calculate descriptive
statistics for all or part of that series.

Showing summary statistics for a pandas series 231

How it works…
The series describe method is quite useful as it gives us a good sense of the central
tendency and spread of continuous variables. It is also often helpful to see the value at
each decile. We obtained this in step 2 by passing a list of values ranging from 0.1 to 1.1 to
the quantile method of the series.

We can use these methods on subsets of a series. In step 3, we obtained the count of
GPA values between 3 and 3.5. We can also select values based on their relationship to
a summary statistic; for example, gpaoverall>gpaoverall.quantile(0.99)
selects values from the GPA that are greater than the 99th percentile value. We then pass
the resulting series to the agg method using method chaining, which returns multiple
summary statistics (agg(['count','min','max'])).

Sometimes, all we need to do is test whether some condition is true across all the values
in a series. The any and all methods are useful for this. any returns True when at least
one value in the series satisfies the condition (such as (gpaoverall>4).any()). all
returns True when all the values in the series satisfy the condition. When we chain the
test condition with sum ((gpaoverall>=0).sum()), we get a count of all the True
values since pandas interprets True values as 1 when performing numeric operations.

(gpaoverall>4) is a shorthand for creating a Boolean series with the same index
as gpaoverall. It has a value of True when gpaoverall is greater than 4, and
False otherwise:

>>> (gpaoverall>4)

personid

100061 False

100139 False

100284 False

100292 False

100583 False

 ...

999291 False

999406 False

999543 False

999698 False

999963 False

Name: gpaoverall, Length: 8984, dtype: bool

232 Cleaning and Exploring Data with Series Operations

We often need to generate summary statistics for a series that has been filtered by another
series. We did this in step 5 by calculating the mean high school GPA for individuals
with a wage income that's above the third quartile, as well as for individuals with a wage
income that's below the first quartile.

The describe method is most useful with continuous variables, such as gpaoverall;,
but it also provides useful information when used with categorical variables, such
as maritalstatus (see step 6). This returns the count of non-missing values, the
number of different values, the category that occurs most frequently, and the frequency
of that category.

However, when working with categorical data, the value_counts method is more
frequently used. It provides the frequency of each category in the series.

There's more…
Working with series is so fundamental to pandas data cleaning tasks that data analysts
quickly find that the tools that were used in this recipe are part of their daily data cleaning
workflow. Typically, not much time elapses between the initial data import stage and using
series methods such as describe, mean, sum, isnull, all, and any.

See also
This chapter is just an introduction to how to generate statistics and test for conditions
with series. The recipes in Chapter 3, Taking the Measure of Your Data, go into this in more
detail. We are also only scratching the surface on aggregating data in this chapter. We'll go
through this more thoroughly in Chapter 7, Fixing Messy Data when Aggregating.

Changing series values
During the data cleaning process, we often need to change the values in a data series or
create a new one. We can change all the values in a series, or just the values in a subset
of our data. Most of the techniques we have been using to get values from a series can be
used to update series values, though some minor modifications are necessary.

Getting ready
We will work with the overall high school GPA column from the National Longitudinal
Survey in this recipe.

Changing series values 233

How to do it…
We can change the values in a pandas series for all rows, as well as for selected rows. We
can update a series with scalars, by performing arithmetic operations on other series, and
by using summary statistics. Let's take a look at this:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Edit all the values based on a scalar.

Multiply gpaoverall by 100:
>>> nls97.gpaoverall.head()

personid

100061 3.06

100139 nan

100284 nan

100292 3.45

100583 2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall100 = nls97['gpaoverall'] * 100

>>> gpaoverall100.head()

personid

100061 306.00

100139 nan

100284 nan

100292 345.00

100583 291.00

Name: gpaoverall, dtype: float64

3.	 Set values using index labels.

Use the loc accessor to specify which values to change by index label:
>>> nls97.loc[[100061], 'gpaoverall'] = 3

>>> nls97.loc[[100139,100284,100292],'gpaoverall'] = 0

>>> nls97.gpaoverall.head()

personid

234 Cleaning and Exploring Data with Series Operations

100061 3.00

100139 0.00

100284 0.00

100292 0.00

100583 2.91

Name: gpaoverall, dtype: float64

4.	 Set values using an operator on more than one series.

Use the + operator to calculate the number of children, which is the sum of children
who live at home and children who do not live at home:

>>> nls97['childnum'] = nls97.childathome + nls97.
childnotathome

>>> nls97.childnum.value_counts().sort_index()

0.00 23

1.00 1364

2.00 1729

3.00 1020

4.00 420

5.00 149

6.00 55

7.00 21

8.00 7

9.00 1

12.00 2

Name: childnum, dtype: int64

5.	 Set the values for a summary statistic using index labels.

Use the loc accessor to select personid values from 100061 to 100292:
>>> nls97.loc[100061:100292,'gpaoverall'] = nls97.
gpaoverall.mean()

>>> nls97.gpaoverall.head()

personid

100061 2.82

100139 2.82

100284 2.82

Changing series values 235

100292 2.82

100583 2.91

Name: gpaoverall, dtype: float64

6.	 Set the values using position.

Use the iloc accessor to select by position. An integer, or slice notation
(start:end:step), can be used to the left of the comma to indicate the rows
where the values should be changed. An integer is used to the right of the comma
to select the column. The gpaoverall column is in the 14th position (which is 13
since the column index is zero-based):

>>> nls97.iloc[0, 13] = 2

>>> nls97.iloc[1:4, 13] = 1

>>> nls97.gpaoverall.head()

personid

100061 2.00

100139 1.00

100284 1.00

100292 1.00

100583 2.91

Name: gpaoverall, dtype: float64

7.	 Set the GPA values after filtering.

Change all GPA values over 4 to 4:
>>> nls97.gpaoverall.nlargest()

personid

312410 4.17

639701 4.11

850001 4.10

279096 4.08

620216 4.07

Name: gpaoverall, dtype: float64

>>> nls97.loc[nls97.gpaoverall>4, 'gpaoverall'] = 4

>>> nls97.gpaoverall.nlargest()

personid

112756 4.00

236 Cleaning and Exploring Data with Series Operations

119784 4.00

160193 4.00

250666 4.00

271961 4.00

Name: gpaoverall, dtype: float64

The preceding steps showed us how to update series values with scalars, arithmetic
operations, and summary statistics values.

How it works…
The first thing to observe is that, in step 2, pandas vectorizes the division by a scalar. It
knows that we want to apply the scalar to all rows. nls97['gpaoverall'] * 100
essentially creates a temporary series with all values set to 100, and with the same index as
the gpaoverall series. It then multiplies gpaoverall by that series of 100 values. This
is known as broadcasting.

We can use a lot of what we learned in the first recipe of this chapter, about how to
get values from a series, to select particular values to update. The main difference
here is that we use the loc and iloc accessors of the DataFrame (nls97.loc)
rather than the series (nls97.gpaoverall.loc). This is to avoid the dreaded
SettingwithCopyWarning, which warns us about setting values on a copy of a
DataFrame. nls97.gpaoverall.loc[[100061]] = 3 triggers that warning, while
nls97.loc[[100061], 'gpaoverall'] = 3 does not.

In step 4, we saw how pandas handles numeric operations with two or more series.
Operations such as addition, subtraction, multiplication, and division are very much like
the operations performed on scalars in standard Python, only with vectorization. (This is
made possible by pandas' index alignment. Remember that a series in a DataFrame will
have the same index.) If you are familiar with NumPy, then you already have a good idea
of how this works.

There's more…
It is useful to notice that nls97.loc[[100061], 'gpaoverall'] returns a series,
while nls97.loc[[100061], ['gpaoverall']] returns a DataFrame:

>>> type(nls97.loc[[100061], 'gpaoverall'])

<class 'pandas.core.series.Series'>

>>> type(nls97.loc[[100061], ['gpaoverall']])

<class 'pandas.core.frame.DataFrame'>

Changing series values conditionally 237

If the second argument of the loc accessor is a string, it will return a series. If it is a list,
even if the list contains only one item, it will return a DataFrame.

For any of the operations we discussed in this recipe, it is good to be mindful of
how pandas treats missing values. For example, in step 3, if either childathome or
childnotathome is missing, then the operation will return missing. We'll discuss
how to handle situations like this in the Identifying and cleaning missing data recipe in
this chapter.

See also
Chapter 3, Taking the Measure of Your Data, goes into greater detail on the use of the
loc and iloc accessors, particularly in the Selecting rows and Selecting and organizing
columns recipes.

Changing series values conditionally
So, changing series values is often more complicated than the previous recipe suggests.
We often need to set series values based on the values of one or more other series for that
row of data. This is complicated further when we need to set series values based on values
from other rows; say, a previous value for an individual, or the mean for a subset. We will
deal with these complications in this and the next recipe.

Getting ready
We will work with land temperature data and the National Longitudinal Survey data in
this recipe.

Data note
The land temperature dataset contains the average temperature readings
(in Celsius) in 2019 from over 12,000 stations across the world, though the
majority of the stations are in the United States. The raw data was retrieved
from the Global Historical Climatology Network integrated database. It has
been made available for public use by the United States National Oceanic and
Atmospheric Administration at https://www.ncdc.noaa.gov/
data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-
monthly-version-4.

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4

238 Cleaning and Exploring Data with Series Operations

How to do it…
We will use NumPy's where and select methods to assign series values based on the
values of that series, the values of other series, and summary statistics. We'll then use the
lambda and apply functions to construct more complicated criteria for assignment.
Let's get started:

1.	 Import pandas and numpy, and then load the NLS and land temperatures data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

>>> landtemps = pd.read_csv("data/landtemps2019avgs.csv")

2.	 Use NumPy's where function to create a categorical series containing two values.

First, do a quick check of the distribution of elevation values:
>>> landtemps.elevation.quantile(np.arange(0.2,1.1,0.2))

0.20 48.00

0.40 190.50

0.60 393.20

0.80 1,066.80

1.00 9,999.00

Name: elevation, dtype: float64

>>> landtemps['elevation_group'] = np.where(landtemps.
elevation>landtemps.elevation.quantile(0.8),'High','Low')

>>> landtemps.elevation_group = landtemps.elevation_
group.astype('category')

>>> landtemps.groupby(['elevation_group'])['elevation'].\

agg(['count','min','max'])

 count min max

elevation_group

High 2409 1,067.00 9,999.00

Low 9686 -350.00 1,066.80

3.	 Use NumPy's where method to create a categorical series containing three values.

Changing series values conditionally 239

Set values above the 80th percentile to 'High', values above the median and up to
the 80th percentile to 'Medium', and the remaining values to 'Low':

>>> landtemps.elevation.median()

271.3

>>> landtemps['elevation_group'] = np.where(landtemps.
elevation>

... landtemps.elevation.quantile(0.8),'High',np.
where(landtemps.elevation>

... landtemps.elevation.median(),'Medium','Low'))

>>> landtemps.elevation_group = landtemps.elevation_
group.astype('category')

>>> landtemps.groupby(['elevation_group'])['elevation'].
agg(['count','min','max'])

 count min max

elevation_group

High 2409 1,067.00 9,999.00

Low 6056 -350.00 271.30

Medium 3630 271.40 1,066.80

4.	 Use NumPy's select method to evaluate a list of conditions.

First, set up a list of test conditions and another list for the result. We want
individuals with a GPA less than 2 and no degree earned to be in one category,
individuals with no degree but with a higher GPA to be in a second category,
individuals with a degree but a low GPA in a third category, and the remaining
individuals in a fourth category:

>>> test = [(nls97.gpaoverall<2) & (nls97.
highestdegree=='0. None'), nls97.highestdegree=='0.
None', nls97.gpaoverall<2]

>>> result = ['1. Low GPA and No Diploma','2. No
Diploma','3. Low GPA']

>>> nls97['hsachieve'] = np.select(test, result, '4. Did
Okay')

>>> nls97[['hsachieve','gpaoverall','highestdegree']].
head()

 hsachieve gpaoverall highestdegree

personid

100061 4. Did Okay 3.06 2. High School

100139 4. Did Okay nan 2. High School

240 Cleaning and Exploring Data with Series Operations

100284 2. No Diploma nan 0. None

100292 4. Did Okay 3.45 4. Bachelors

100583 4. Did Okay 2.91 2. High School

>>> nls97.hsachieve.value_counts().sort_index()

1. Low GPA and No Diploma 95

2. No Diploma 858

3. Low GPA 459

4. Did Okay 7572

Name: hsachieve, dtype: int64

5.	 Use lambda to test several columns in one statement.

The colenr columns have the enrollment status in February and October of each
year for each person. We want to test whether any of the college enrollment columns
have a value of 3. 4-year college. Use filter to create a DataFrame of the
colenr columns. Then, use apply to call a lambda function that tests the first
character of each colenr column. (We can just look at the first character and see
whether it has a value of 3.) That is then passed to any to evaluate whether any
(one or more) of the columns has a 3 as its first character. (We only show values
for college enrollment between 2000 and 2004 due to space considerations, but we
check all the values for the college college enrollment columns between 1997 and
2017.) This can be seen in the following code:

>>> nls97.loc[[100292,100583,100139],
'colenrfeb00':'colenroct04'].T

personid 100292 100583
100139

colenrfeb00 1. Not enrolled 1. Not enrolled 1. Not
enrolled

colenroct00 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenrfeb01 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenroct01 3. 4-year college 3. 4-year college 1. Not
enrolled

colenrfeb02 3. 4-year college 3. 4-year college 1. Not
enrolled

colenroct02 3. 4-year college 1. Not enrolled 1. Not
enrolled

Changing series values conditionally 241

colenrfeb03 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenroct03 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenrfeb04 3. 4-year college 1. Not enrolled 1. Not
enrolled

colenroct04 1. Not enrolled 1. Not enrolled 1. Not
enrolled

>>> nls97['baenrollment'] = nls97.filter(like="colenr").\

... apply(lambda x: x.str[0:1]=='3').\

... any(axis=1)

>>>

>>> nls97.loc[[100292,100583,100139], ['baenrollment']].T

personid 100292 100583 100139

baenrollment True True False

>>> nls97.baenrollment.value_counts()

False 5085

True 3899

Name: baenrollment, dtype: int64

6.	 Create a function that assigns a value based on the value of several series.

The getsleepdeprivedreason function creates a variable that categorizes
survey respondents by the possible reasons why they might get fewer than 6
hours of sleep a night. We base this on NLS survey responses about a respondent's
employment status, the number of children who live with the respondent, wage
income, and highest grade completed:

>>> def getsleepdeprivedreason(row):

... sleepdeprivedreason = "Unknown"

... if (row.nightlyhrssleep>=6):

... sleepdeprivedreason = "Not Sleep Deprived"

... elif (row.nightlyhrssleep>0):

... if (row.weeksworked16+row.weeksworked17 < 80):

... if (row.childathome>2):

... sleepdeprivedreason = "Child Rearing"

... else:

... sleepdeprivedreason = "Other Reasons"

... else:

242 Cleaning and Exploring Data with Series Operations

... if (row.wageincome>=62000 or row.
highestgradecompleted>=16):

... sleepdeprivedreason = "Work Pressure"

... else:

... sleepdeprivedreason = "Income Pressure"

... else:

... sleepdeprivedreason = "Unknown"

... return sleepdeprivedreason

...

7.	 Use apply to run the function for all rows:

>>> nls97['sleepdeprivedreason'] = nls97.
apply(getsleepdeprivedreason, axis=1)

>>> nls97.sleepdeprivedreason = nls97.
sleepdeprivedreason.astype('category')

>>> nls97.sleepdeprivedreason.value_counts()

Not Sleep Deprived 5595

Unknown 2286

Income Pressure 462

Work Pressure 281

Other Reasons 272

Child Rearing 88

Name: sleepdeprivedreason, dtype: int64

The preceding steps demonstrate several techniques we can use to set the values for a
series conditionally.

How it works…
If you have used if-then-else statements in SQL or Microsoft Excel, then NumPy's
where should be familiar to you. It follows the form of where (test condition, clause if
True, clause if False). In step 2, we tested whether the value of elevation for each row
is greater than the value at the 80th percentile. If True, we return 'High'. We return
'Low' otherwise. This is a basic if-then-else construction.

Sometimes, we need to nest a test within a test. We did this in step 3 to create three
elevation groups; high, medium, and low. Instead of a simple statement in the False
section (after the second comma), we used another where statement. This changes it
from an else clause to an else if clause. It takes the form of where(test condition,
statement if True, where(test condition, statement if True, statement if False)).

Changing series values conditionally 243

It is possible to add many more nested where statements, though that is not advisable.
When we need to evaluate a slightly more complicated test, NumPy's select method
comes in handy. In step 4, we passed a list of tests, as well as a list of results of that test, to
select. We also provided a default value of "4. Did Okay" for any case where none
of the tests was True. When multiple tests are True, the first one that is True is used.

Once the logic becomes even more complicated, we can use apply. The DataFrame
apply method can be used to send each row of a DataFrame to a function by specifying
axis=1. In step 5, we used apply to call a lambda function that tests whether the first
character of each college enrollment value is 3. But first, we used the filter DataFrame
method to select all the college enrollment columns. We explored how to select columns
from a DataFrame in Chapter 3, Taking the Measure of Your Data.

In steps 6 and 7, we created a series that categorizes reasons for being sleep deprived based
on weeks worked, the number of children living with the respondent, wage income, and
highest grade completed. If the respondent did not work most of 2016 and 2017, and if
more than two children lived with them, sleepdeprivedreason is set to "Child
Rearing". If the respondent did not work most of 2016 and 2017 and two or fewer
children lived with them, sleepdeprivedreason is set to "Other Reasons". If they
worked most of 2016 and 2017, then sleepdeprivedreason is "Work Pressure" if
she had either a high salary or completed 4 years of college, and is "Income Pressure"
otherwise. Of course, these categories are somewhat contrived, but they do illustrate how to
use a function to create a series based on complicated relationships between other series.

You may have noticed that we changed the data type of the new series we created to
category. The new series was an object data type initially. We reduced memory usage
by changing the type to category.

We used another incredibly useful method in step 2, somewhat incidentally. landtemps.
groupby(['elevation_group']) creates a DataFrame groupby object that we pass
to an aggregate (agg) function. This gives us a count, min, and max for each elevation_
group, allowing us to confirm that our group classification works as expected.

There's more…
It has been a long time since I have had a data cleaning project that did not involve a
NumPy where or select statement, nor a lambda or apply statement. At some point,
we need to create or update a series based on values from one or more other series. It is a
good idea to get comfortable with these techniques.

244 Cleaning and Exploring Data with Series Operations

Whenever there is a built-in pandas function that does what we need, it is better to use
that than apply. The great advantage of apply is that it is quite generic and flexible, but
that is also why it is more resource-intensive than the optimized functions. However, it is
a great tool when we want to create a series based on complicated relationships between
existing series.

Another way to perform steps 6 and 7 is to add a lambda function to apply. This
produces the same results:

>>> def getsleepdeprivedreason(childathome,
nightlyhrssleep, wageincome, weeksworked16, weeksworked17,
highestgradecompleted):

... sleepdeprivedreason = "Unknown"

... if (nightlyhrssleep>=6):

... sleepdeprivedreason = "Not Sleep Deprived"

... elif (nightlyhrssleep>0):

... if (weeksworked16+weeksworked17 < 80):

... if (childathome>2):

... sleepdeprivedreason = "Child Rearing"

... else:

... sleepdeprivedreason = "Other Reasons"

... else:

... if (wageincome>=62000 or highestgradecompleted>=16):

... sleepdeprivedreason = "Work Pressure"

... else:

... sleepdeprivedreason = "Income Pressure"

... else:

... sleepdeprivedreason = "Unknown"

... return sleepdeprivedreason

...

>>> nls97['sleepdeprivedreason'] = nls97.apply(lambda x:
getsleepdeprivedreason(x.childathome, x.nightlyhrssleep,
x.wageincome, x.weeksworked16, x.weeksworked17,
x.highestgradecompleted), axis=1)

See also
We'll go over DataFrame groupby objects in detail in Chapter 7, Fixing Messy Data
when Aggregating. We examined various techniques we can use to select columns from a
DataFrame, including filter, in Chapter 3, Taking the Measure of Your Data.

Evaluating and cleaning string series data 245

Evaluating and cleaning string series data
There are many string cleaning methods in Python and pandas. This is a good thing.
Given the great variety of data stored in strings, it is important to have a wide range of
tools to call upon when performing string evaluation and manipulation: when selecting
fragments of a string by position, when checking whether a string contains a pattern,
when splitting a string, when testing a string's length, when joining two or more strings,
when changing the case of a string, and so on. We'll explore some of the methods that are
used most frequently for string evaluation and cleaning in this recipe.

Getting ready
We will work with the National Longitudinal Survey data in this recipe. (The NLS data
was actually a little too clean for this recipe. To illustrate working with strings with trailing
spaces, I added trailing spaces to the maritalstatus column values.)

How to do it...
In this recipe, we will perform some common string evaluation and cleaning tasks. We'll
use contains, endswith, and findall to search for patterns, trailing blanks, and
more complicated patterns, respectively. We will also create a function for processing
string values before assigning values to a new series and then use replace for simpler
processing. Let's get started:

1.	 Import pandas and numpy, and then load the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Test whether a pattern exists in a string.

Use contains to examine the govprovidejobs (whether the government
should provide jobs) responses for the "Definitely not" and "Probably not" values. In
the where call, handle missing values first to make sure that they do not end up in
the first else clause (the section after the second comma):

>>> nls97.govprovidejobs.value_counts()

2. Probably 617

3. Probably not 462

1. Definitely 454

246 Cleaning and Exploring Data with Series Operations

4. Definitely not 300

Name: govprovidejobs, dtype: int64

>>> nls97['govprovidejobsdefprob'] = np.where(nls97.
govprovidejobs.isnull(),

... np.nan,np.where(nls97.govprovidejobs.str.
contains("not"),"No","Yes"))

>>> pd.crosstab(nls97.govprovidejobs, nls97.
govprovidejobsdefprob)

govprovidejobsdefprob No Yes

govprovidejobs

1. Definitely 0 454

2. Probably 0 617

3. Probably not 462 0

4. Definitely not 300 0

3.	 Handle leading or trailing spaces in a string.

Create an ever-married series. First, examine the values of maritalstatus. Notice
that there are two stray values, indicating married. Those two are "Married " with
an extra space at the end, unlike the other values of "Married" with no trailing
spaces. Use startswith and endswith to test for a leading or trailing space,
respectively. Use strip to remove the trailing space before testing for ever-married.
strip removes leading and trailing spaces (lstrip removes leading spaces,
while rstrip removes trailing spaces, so rstrip would have also worked in
this example):

>>> nls97.maritalstatus.value_counts()

Married 3064

Never-married 2766

Divorced 663

Separated 154

Widowed 23

Married 2

Name: maritalstatus, dtype: int64

>>> nls97.maritalstatus.str.startswith(' ').any()

False

>>> nls97.maritalstatus.str.endswith(' ').any()

True

Evaluating and cleaning string series data 247

>>> nls97['evermarried'] = np.where(nls97.maritalstatus.
isnull(),np.nan,np.where(nls97.maritalstatus.str.
strip()=="Never-married","No","Yes"))

>>> pd.crosstab(nls97.maritalstatus, nls97.evermarried)

evermarried No Yes

maritalstatus

Divorced 0 663

Married 0 3064

Married 0 2

Never-married 2766 0

Separated 0 154

Widowed 0 23

4.	 Use isin to compare a string value to a list of values:

>>> nls97['receivedba'] = np.where(nls97.highestdegree.
isnull(),np.nan,np.where(nls97.highestdegree.str[0:1].
isin(['4','5','6','7']),"Yes","No"))

>>> pd.crosstab(nls97.highestdegree, nls97.receivedba)

receivedba No Yes

highestdegree

0. None 953 0

1. GED 1146 0

2. High School 3667 0

3. Associates 737 0

4. Bachelors 0 1673

5. Masters 0 603

6. PhD 0 54

7. Professional 0 120

5.	 Use findall to extract numeric values from a text string.

Use findall to create a list of all numbers in the weeklyhrstv (hours spent
each week watching television) string. The "\d+" regular expression that's passed
to findall indicates that we just want numbers:

>>> pd.concat([nls97.weeklyhrstv.head(),\

... nls97.weeklyhrstv.str.findall("\d+").head()],
axis=1)

 weeklyhrstv weeklyhrstv

248 Cleaning and Exploring Data with Series Operations

personid

100061 11 to 20 hours a week [11, 20]

100139 3 to 10 hours a week [3, 10]

100284 11 to 20 hours a week [11, 20]

100292 NaN NaN

100583 3 to 10 hours a week [3, 10]

6.	 Use the list created by findall to create a numeric series from the weeklyhrstv
text.

First, define a function that retrieves the last element in the list created by findall
for each value of weeklyhrstv. The getnum function also adjusts that number
so that it's closer to the midpoint of the two numbers, where there is more than
one number. We then use apply to call this function, passing it the list created
by findall for each value. crosstab shows that the new weeklyhrstvnum
column does what we want it to do:

>>> def getnum(numlist):

... highval = 0

... if (type(numlist) is list):

... lastval = int(numlist[-1])

... if (numlist[0]=='40'):

... highval = 45

... elif (lastval==2):

... highval = 1

... else:

... highval = lastval - 5

... else:

... highval = np.nan

... return highval

...

>>> nls97['weeklyhrstvnum'] = nls97.weeklyhrstv.str.\

... findall("\d+").apply(getnum)

>>>

>>> pd.crosstab(nls97.weeklyhrstv, nls97.weeklyhrstvnum)

weeklyhrstvnum 1.00 5.00 15.00 25.00
35.00 45.00

weeklyhrstv

Evaluating and cleaning string series data 249

11 to 20 hours a week 0 0 1145 0
0 0

21 to 30 hours a week 0 0 0 299
0 0

3 to 10 hours a week 0 3625 0 0
0 0

31 to 40 hours a week 0 0 0 0
116 0

Less than 2 hours per week 1350 0 0 0
0 0

More than 40 hours a week 0 0 0 0
0 176

7.	 Replace the values in a series with alternative values.

The weeklyhrscomputer (hours spent each week on a computer) series does
not sort nicely with its current values. We can fix this by replacing the values
with letters that indicate order. We'll start by creating a list containing the old
values and another list containing the new values that we want. We then use the
series replace method to replace the old values with the new values. Whenever
replace finds a value from the old values list, it replaces it with a value from the
same list position in the new list:

>>> comphrsold = ['None','Less than 1 hour a week',

... '1 to 3 hours a week','4 to 6 hours a week',

... '7 to 9 hours a week','10 hours or more a week']

>>>

>>> comphrsnew = ['A. None','B. Less than 1 hour a week',

... 'C. 1 to 3 hours a week','D. 4 to 6 hours a week',

... 'E. 7 to 9 hours a week','F. 10 hours or more a
week']

>>>

>>> nls97.weeklyhrscomputer.value_counts().sort_index()

1 to 3 hours a week 733

10 hours or more a week 3669

4 to 6 hours a week 726

7 to 9 hours a week 368

Less than 1 hour a week 296

None 918

Name: weeklyhrscomputer, dtype: int64

250 Cleaning and Exploring Data with Series Operations

>>> nls97.weeklyhrscomputer.replace(comphrsold,
comphrsnew, inplace=True)

>>> nls97.weeklyhrscomputer.value_counts().sort_index()

A. None 918

B. Less than 1 hour a week 296

C. 1 to 3 hours a week 733

D. 4 to 6 hours a week 726

E. 7 to 9 hours a week 368

F. 10 hours or more a week 3669

Name: weeklyhrscomputer, dtype: int64

The steps in this recipe demonstrate some of the common string evaluation and
manipulation tasks we can perform in pandas.

How it works...
We frequently need to examine a string to see whether a pattern is there. We can use the
string contains method to do this. If we know exactly where the expected pattern will
be, we can use standard slice notation, [start:stop:step], to select text from start
through stop-1. (The default value for step is 1.) For example, in step 4, we got the first
character from highestdegree with nls97.highestdegree.str[0:1]. We then
used isin to test whether the first string appears in a list of values. (isin works for both
character and numeric data.)

Sometimes, we need to pull multiple values from a string that satisfy a condition.
findall is helpful in those situations as it returns a list of all values satisfying the
condition. It can be paired with a regular expression when we are looking for something
more general than a literal. In steps 5 and 6, we were looking for any number.

There's more…
It is important to be deliberate when we're handling missing values when creating a
series based on values for another series. Missing values may satisfy the else condition
in a where call when that is not our intention. In steps 2, 3, and 4, we made sure that
we handled the missing values appropriately by testing for them at the beginning of the
where call.

We also need to be careful about case when making string comparisons. For example,
"Probably" and "probably" are not equal. One way to get around this is to use the upper
or lower methods when doing comparisons when a potential difference in case is not
meaningful. upper("Probably") == upper("PROBABLY") is actually True.

Working with dates 251

Working with dates
Working with dates is rarely straightforward. Data analysts need to successfully parse
date values, identify invalid or out-of-range dates, impute dates when they're missing,
and calculate time intervals. There are surprising hurdles at each of these steps, but we
are halfway there once we've parsed the date value and have a datetime value in pandas.
We will start by parsing date values in this recipe before working our way through the
other challenges.

Getting ready
We will work with the National Longitudinal Survey and COVID case daily data in this
recipe. The COVID daily data contains one row for each reporting day for each country.
(The NLS data was actually a little too clean for this purpose. To illustrate working with
missing date values, I set one of the values for birth month to missing.)

Data note
Our World in Data provides COVID-19 public use data at
https://ourworldindata.org/coronavirus-source-data.
The data that will be used in this recipe was downloaded on July 18, 2020.

How to do it…
In this recipe, we will convert numeric data into datetime data, first by confirming that
the data has valid date values and then by using fillna to replace missing dates. We will
then calculate some date intervals; that is, the age of respondents for the NLS data and the
days since the first COVID case for the COVID daily data. Let's get started:

1.	 Import pandas, numpy, and the datetime module, and then load the NLS and
COVID case daily data:

>>> import pandas as pd

>>> import numpy as np

>>> from datetime import datetime

>>> covidcases = pd.read_csv("data/covidcases720.csv")

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

https://ourworldindata.org/coronavirus-source-data

252 Cleaning and Exploring Data with Series Operations

2.	 Show the birth month and year values.

Notice that there is one missing value for birth month. Other than that, the data that
we will use to create the birthdate series look pretty clean:

>>> nls97[['birthmonth','birthyear']].isnull().sum()

birthmonth 1

birthyear 0

dtype: int64

>>> nls97.birthmonth.value_counts().sort_index()

1 815

2 693

3 760

4 659

5 689

6 720

7 762

8 782

9 839

10 765

11 763

12 736

Name: birthmonth, dtype: int64

>>> nls97.birthyear.value_counts().sort_index()

1980 1691

1981 1874

1982 1841

1983 1807

1984 1771

Name: birthyear, dtype: int64

3.	 Use the series fillna method to set a value for the missing birth month.

Pass the average of birthmonth, rounded to the nearest integer, to fillna. This
will replace the missing value for birthmonth with the mean of birthmonth.
Notice that one more person now has a value of 6 for birthmonth:

>>> nls97.birthmonth.fillna(int(nls97.birthmonth.mean()),
inplace=True)

>>> nls97.birthmonth.value_counts().sort_index()

Working with dates 253

1 815

2 693

3 760

4 659

5 689

6 721

7 762

8 782

9 839

10 765

11 763

12 736

4.	 Use month and date integers to create a datetime column.

We can pass a dictionary to the pandas to_datetime function. The dictionary
needs to contain a key for year, month, and day. Notice that there are no missing
values for birthmonth, birthyear, and birthdate:

>>> nls97['birthdate'] = pd.to_datetime(dict(year=nls97.
birthyear, month=nls97.birthmonth, day=15))

>>> nls97[['birthmonth','birthyear','birthdate']].head()

 birthmonth birthyear birthdate

personid

100061 5 1980 1980-05-15

100139 9 1983 1983-09-15

100284 11 1984 1984-11-15

100292 4 1982 1982-04-15

100583 6 1980 1980-06-15

>>> nls97[['birthmonth','birthyear','birthdate']].
isnull().sum()

birthmonth 0

birthyear 0

birthdate 0

dtype: int64

254 Cleaning and Exploring Data with Series Operations

5.	 Calculate age values using a datetime column.

First, define a function that will calculate age values when given a start date and an
end date:

>>> def calcage(startdate, enddate):

... age = enddate.year - startdate.year

... if (enddate.month<startdate.month or (enddate.
month==startdate.month and enddate.day<startdate.day)):

... age = age -1

... return age

...

>>> rundate = pd.to_datetime('2020-07-20')

>>> nls97["age"] = nls97.apply(lambda x: calcage(x.
birthdate, rundate), axis=1)

>>> nls97.loc[100061:100583, ['age','birthdate']]

 age birthdate

personid

100061 40 1980-05-15

100139 36 1983-09-15

100284 35 1984-11-15

100292 38 1982-04-15

100583 40 1980-06-15

6.	 Convert a string column into a datetime column.

The casedate column is an object data type, not a datetime data type:
>>> covidcases.iloc[:, 0:6].dtypes

iso_code object

continent object

location object

casedate object

total_cases float64

new_cases float64

dtype: object

>>> covidcases.iloc[:, 0:6].sample(2, random_state=1).T

 13482 2445

iso_code IMN BRB

continent Europe North America

Working with dates 255

location Isle of Man Barbados

casedate 2020-06-20 2020-04-28

total_cases 336 80

new_cases 0 1

>>> covidcases['casedate'] = pd.to_datetime(covidcases.
casedate, format='%Y-%m-%d')

>>> covidcases.iloc[:, 0:6].dtypes

iso_code object

continent object

location object

casedate datetime64[ns]

total_cases float64

new_cases float64

dtype: object

7.	 Show descriptive statistics on the datetime column:

>>> covidcases.casedate.describe()

count 29529

unique 195

top 2020-05-23 00:00:00

freq 209

first 2019-12-31 00:00:00

last 2020-07-12 00:00:00

Name: casedate, dtype: object

8.	 Create a timedelta object to capture a date interval.

For each day, calculate the number of days since the first case was reported for
each country. First, create a DataFrame that shows the first day of new cases for
each country and then merge it with the full COVID cases data. Then, for each day,
calculate the number of days from firstcasedate to casedate. Notice that
one country started reporting data 62 days before its first case:

>>> firstcase = covidcases.loc[covidcases.new_
cases>0,['location','casedate']].\

... sort_values(['location','casedate']).\

... drop_duplicates(['location'], keep='first').\

... rename(columns={'casedate':'firstcasedate'})

>>>

256 Cleaning and Exploring Data with Series Operations

>>> covidcases = pd.merge(covidcases, firstcase, left_
on=['location'], right_on=['location'], how="left")

>>> covidcases['dayssincefirstcase'] = covidcases.
casedate - covidcases.firstcasedate

>>> covidcases.dayssincefirstcase.describe()

count 29529

mean 56 days 00:15:12.892410

std 47 days 00:35:41.813685

min -62 days +00:00:00

25% 21 days 00:00:00

50% 57 days 00:00:00

75% 92 days 00:00:00

max 194 days 00:00:00

Name: dayssincefirstcase, dtype: object

This recipe showed how it's possible to parse date values and create a datetime series, as
well as how to calculate time intervals.

How it works…
The first task when working with dates in pandas is converting them properly into a
pandas datetime series. We tackled a couple of the most common issues in steps 3, 4, and
6: missing values, date conversion from integer parts, and date conversion from strings.
birthmonth and birthyear are integers in the NLS data. We confirmed that those
values are valid values for dates of months and years. If, for example, there were month
values of 0 or 20, the conversion to pandas datetime would fail.

Missing values for birthmonth or birthyear will just result in a missing
birthdate. We used fillna for the missing value for birthmonth, assigning it to the
mean value of birthmonth. In step 5, we calculated an age for each person as of July 20,
2020 using the new birthdate column. The calcage function that we created adjusts
for individuals whose birth dates come later in the year than July 20.

Data analysts often receive data files containing date values as strings. The to_datetime
function is the analyst's key ally when this happens. It is often smart enough to figure
out the format of the string date data without us having to specify a format explicitly.
However, in step 6, we told to_datetime to use the "%Y-%m-%d" format with our data.

Step 7 told us that there were 195 unique days where COVID cases were reported and that
the most frequent day is May 23. The first reported day is Dec 31, 2019 and the last is July
12, 2020. This is what we expected.

Identifying and cleaning missing data 257

The first two statements in step 8 involved techniques (sorting and dropping duplicates)
that we will not explore in detail until Chapter 7, Fixing Messy Data when Aggregating,
and Chapter 8, Addressing Data Issues when Combining DataFrames. All you need to
understand here is the objective: creating a DataFrame with one row per location
(country), and with the date of the first reported COVID case. We did this by only
selecting rows from the full data where new_cases is greater than 0, before sorting
that by location and casedate and keeping the first row for each location. We
then changed the name of casedate to firstcasedate before merging the new
firstcase DataFrame with the COVID daily cases data.

Since both casedate and firstcasedate are datetime columns, subtracting the
latter from the former will result in a timedelta value. This gives us a series that is the
number of days before or after the first day of new_cases for each reporting day. So, if a
country started reporting on COVID cases 3 weeks before its first new case, it would have
-21 days for the value of dayssincefirstcase for that first day. This is useful if we
want to track trends by how long the virus has been obviously present in a country, rather
than by date.

See also
Instead of using sort_values and drop_duplicates in step 8, we could have used
groupby to achieve similar results. We'll explore groupby a fair bit in the next Chapter 7,
Fixing Messy Data when Aggregating. This is the first time we have done a merge in
this book, but it is far from the last time we will be combining DataFrames. Chapter 8,
Addressing Data Issues when Combining DataFrames, will be devoted to this topic. We'll
explore more strategies for handling missing data in the next two recipes.

Identifying and cleaning missing data
We have already explored some strategies for identifying and cleaning missing values,
particularly in Chapter 1, Anticipating Data Cleaning Issues when Importing Tabular Data
into pandas. We will polish up on those skills in this recipe. We will do this by exploring a
full range of strategies for handling missing data, including using DataFrame means and
group means, as well as forward filling with nearby values. In the next recipe, we impute
values using k-nearest neighbor.

Getting ready
We will continue working with the National Longitudinal Survey data in this recipe.

258 Cleaning and Exploring Data with Series Operations

How to do it…
In this recipe, we will check key demographic and school record columns for missing
values. We'll then use several strategies to impute values for missing data: assigning the
overall mean for that column, assigning a group mean, and assigning the value of the
nearest preceding non-missing value. Let's get started:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Set up school record and demographic DataFrames from the NLS data:

>>> schoolrecordlist =
['satverbal','satmath','gpaoverall','gpaenglish',

... 'gpamath','gpascience','highestdegree',
'highestgradecompleted']

>>> demolist =
['maritalstatus','childathome','childnotathome',

... 'wageincome','weeklyhrscomputer','weeklyhrstv',
'nightlyhrssleep']

>>> schoolrecord = nls97[schoolrecordlist]

>>> demo = nls97[demolist]

>>> schoolrecord.shape

(8984, 8)

>>> demo.shape

(8984, 7)

3.	 Check data for missing values.

Check the number of missing values for each column in the schoolrecord
DataFrame. isnull returns a Boolean series with True when values for that column
are missing, and False otherwise. When chained with sum, a count of True values
is returned. By setting axis=1, we can check the number of missing values for each
row. 11 individuals have missing values for all 8 columns, and 946 have missing values
for 7 out of 8 columns. Upon taking a look at the data for a few of these individuals, it
looks like they mainly have highestdegree and no valid values for other columns:

>>> schoolrecord.isnull().sum(axis=0)

satverbal 7578

Identifying and cleaning missing data 259

satmath 7577

gpaoverall 2980

gpaenglish 3186

gpamath 3218

gpascience 3300

highestdegree 31

highestgradecompleted 2321

dtype: int64

>>> misscnt = schoolrecord.isnull().sum(axis=1)

>>> misscnt.value_counts().sort_index()

0 1087

1 312

2 3210

3 1102

4 176

5 101

6 2039

7 946

8 11

dtype: int64

>>> schoolrecord.loc[misscnt>=7].head(4).T

personid 101705 102061 102648 104627

satverbal NaN NaN NaN NaN

satmath NaN NaN NaN NaN

gpaoverall NaN NaN NaN NaN

gpaenglish NaN NaN NaN NaN

gpamath NaN NaN NaN NaN

gpascience NaN NaN NaN NaN

highestdegree 1. GED 0. None 1. GED 0. None

highestgradecompleted NaN NaN NaN NaN

4.	 Remove rows where nearly all the data is missing.

Here, we use the dropna DataFrame method with thresh set to 2. This removes
rows with less than two non-missing values (those with seven or eight missing values):

>>> schoolrecord = schoolrecord.dropna(thresh=2)

>>> schoolrecord.shape

260 Cleaning and Exploring Data with Series Operations

(8027, 8)

>>> schoolrecord.isnull().sum(axis=1).value_counts().
sort_index()

0 1087

1 312

2 3210

3 1102

4 176

5 101

6 2039

dtype: int64

5.	 Assign the mean of the GPA values where it's missing:

>>> int(schoolrecord.gpaoverall.mean())

2

>>> schoolrecord.gpaoverall.isnull().sum()

2023

>>> schoolrecord.gpaoverall.fillna(int(schoolrecord.
gpaoverall.mean()), inplace=True)

>>> schoolrecord.gpaoverall.isnull().sum()

0

6.	 Use forward fill to replace missing values.

Use the ffill option with fillna to replace missing values with the nearest
non-missing value preceding it in the data:

>>> demo.wageincome.head().T

personid

100061 12,500

100139 120,000

100284 58,000

100292 nan

100583 30,000

Name: wageincome, dtype: float64

>>> demo.wageincome.isnull().sum()

3893

Identifying and cleaning missing data 261

>>> nls97.wageincome.fillna(method='ffill', inplace=True)

>>> demo = nls97[demolist]

>>> demo.wageincome.head().T

personid

100061 12,500

100139 120,000

100284 58,000

100292 58,000

100583 30,000

Name: wageincome, dtype: float64

>>> demo.wageincome.isnull().sum()

0

7.	 Fill missing values with the mean by group.

Create a DataFrame containing the average value of weeks worked in 2017 by the
highest degree they've earned. Merge that with the NLS data, then use fillna to
replace the missing values for weeks worked with the mean for that individual's
highest degree earned group:

>>> nls97[['highestdegree','weeksworked17']].head()

 highestdegree weeksworked17

personid

100061 2. High School 48

100139 2. High School 52

100284 0. None 0

100292 4. Bachelors nan

100583 2. High School 52

>>>

>>> workbydegree = nls97.groupby(['highestdegree'])
['weeksworked17'].mean().\

... reset_index().
rename(columns={'weeksworked17':'meanweeksworked17'})

>>>

>>> nls97 = nls97.reset_index().\

... merge(workbydegree, left_on=['highestdegree'],
right_on=['highestdegree'], how='left').set_
index('personid')

262 Cleaning and Exploring Data with Series Operations

>>>

>>> nls97.weeksworked17.fillna(nls97.meanweeksworked17,
inplace=True)

>>> nls97[['highestdegree','weeksworked17',
'meanweeksworked17']].head()

 highestdegree weeksworked17
meanweeksworked17

personid

100061 2. High School 48
38

100139 2. High School 52
38

100284 0. None 0
29

100292 4. Bachelors 44
44

100583 2. High School 52
38

The preceding steps demonstrated several different approaches we can use to replace
missing series values.

How it works…
By shifting the axis when using isnull, we can check for missing values column-wise
or row-wise. In the latter case, rows with almost all missing data are good candidates for
removal. In the former case, where there are particular columns that have missing values
but also a fair bit of good data, we can think about imputation strategies.

The very useful grouby DataFrame method is used once more in this recipe. By using it
in step 7 to create a DataFrame with a summary statistic by group (in this case, the group
mean for weeks worked), we can use those values to improve our data cleaning work. This
merge is a little more complicated because, usually, we would lose the index with this kind
of merge (we are not merging by the index). We reset the index and then set it again so
that it is still available to us in the subsequent statements in that step.

Missing value imputation with K-nearest neighbor 263

There's more...
We explored several imputation strategies in this recipe, such as setting missing values
to the overall mean, setting them to the mean for a particular group, and forward filling
values. Which one is appropriate for a given data cleaning task is, of course, determined
by your data.

Forward filling makes the most sense with time series data, with the assumption being
that the missing value is most likely to be near the value of the immediately preceding
time period. But forward filling may also make sense when missing values are rare and
spread somewhat randomly throughout the data. When you have reason to believe that
the data values for rows near each other have more in common with each other than they
do with the overall mean, forward filling might be a better choice than the mean. For this
same reason, a group mean might be a better option than both, assuming that the variable
of interest varies significantly with group membership.

See also
This discussion leads us to another missing value imputation strategy: using machine
learning techniques such as k-nearest neighbor (KNN). The next recipe demonstrates the
use of KNN to clean missing data.

Missing value imputation with K-nearest
neighbor
KNN is a popular machine learning technique because it is intuitive and easy to run
and yields good results when there is not a large number of features (variables) and
observations. For the same reasons, it is often used to impute missing values. As its name
suggests, KNN identifies the k observations whose features are most similar to each
observation. When used to impute missing values, KNN uses the nearest neighbors to
determine what fill values to use.

Getting ready
We will work with the National Longitudinal Survey data again in this recipe, and then try
to impute reasonable values for the same school record data that we worked with in the
preceding recipe.

You will need scikit-learn to run the code in this recipe. You can install it by entering pip
install sklearn in a Terminal or Windows PowerShell.

264 Cleaning and Exploring Data with Series Operations

How to do it…
In this recipe, we will use scikit-learn's KNNImputer module to fill in missing values for
key NLS school record columns. Let's get started:

1.	 Import pandas and scikit-learn's KNNImputer module, and then load the
NLS data:

>>> import pandas as pd

>>> from sklearn.impute import KNNImputer

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Select the NLS school record data:

>>> schoolrecordlist =
['satverbal','satmath','gpaoverall','gpaenglish',

... 'gpamath','gpascience','highestgradecompleted']

>>> schoolrecord = nls97[schoolrecordlist]

3.	 Initialize a KNN imputation model and fill in the values:

>>> impKNN = KNNImputer(n_neighbors=5)

>>> newvalues = impKNN.fit_transform(schoolrecord)

>>> schoolrecordimp = pd.DataFrame(newvalues,
columns=schoolrecordlist, index=schoolrecord.index)

4.	 View the imputed values:

>>> schoolrecord.head().T

personid 100061 100139 100284 100292
100583

satverbal nan nan nan nan
nan

satmath nan nan nan nan
nan

gpaoverall 3.1 nan nan 3.5
2.9

gpaenglish 350.0 nan nan 345.0
283.0

gpamath 280.0 nan nan 370.0
285.0

Missing value imputation with K-nearest neighbor 265

gpascience 315.0 nan nan 300.0
240.0

highestgradecompleted 13.0 12.0 7.0 nan
13.0

>>> schoolrecordimp.head().T

personid 100061 100139 100284 100292
100583

satverbal 446.0 412.0 290.8 534.0
414.0

satmath 460.0 470.0 285.2 560.0
454.0

gpaoverall 3.1 2.3 2.5 3.5
2.9

gpaenglish 350.0 232.4 136.0 345.0
283.0

gpamath 280.0 218.0 244.6 370.0
285.0

gpascience 315.0 247.8 258.0 300.0
240.0

highestgradecompleted 13.0 12.0 7.0 9.8
13.0

5.	 Compare the summary statistics:

>>> schoolrecord[['gpaoverall','highestgradecompleted']].
agg(['mean','count'])

 gpaoverall highestgradecompleted

mean 2.8 14.1

count 6,004.0 6,663.0

>>>
schoolrecordimp[['gpaoverall','highestgradecompleted']].
agg(['mean','count'])

 gpaoverall highestgradecompleted

mean 2.8 13.5

count 8,984.0 8,984.0

This recipe showed us how to use KNN for missing values imputation.

266 Cleaning and Exploring Data with Series Operations

How it works…
Almost all the work in this recipe was done in step 3, where we initialized the KNN
imputer. The only decision we need to make here is what value the nearest neighbor will
have. We chose 5 here, a reasonable value for a DataFrame of this size. Then, we passed
the schoolrecord DataFrame to the fit_transform method, which returns an
array of new DataFrame values. The array retains the non-missing values but has imputed
values where they were missing. We then loaded the array into a new DataFrame, using
the column names and index from the original DataFrame.

We got a good look at the new values in steps 4 and 5. All of the missing values
have been replaced. There is also little change in the means for gpaoverall and
highestgradecompleted.

There's more...
We are probably asking KNN to do too much work here since a few rows of data have very
little information we can use for imputation. We should consider dropping rows from the
DataFrame that contain fewer than two or three non-missing values.

See also
KNN is also often used to detect outliers in data. The Using k-nearest neighbor to find
outliers recipe in Chapter 4, Identifying Missing Values and Outliers in Subsets of Data,
demonstrates this.

7
Fixing Messy Data
when Aggregating

Earlier chapters of this book introduced techniques for generating summary statistics on
a whole DataFrame. We used methods such as describe, mean, and quantile to do
that. This chapter covers more complicated aggregation tasks: aggregating by categorical
variables, and using aggregation to change the structure of DataFrames.

After the initial stages of data cleaning, analysts spend a substantial amount of their time
doing what Hadley Wickham has called splitting-applying-combining. That is, we subset
data by groups, apply some operation to those subsets, and then draw conclusions about
a dataset as a whole. In slightly more specific terms, this involves generating descriptive
statistics by key categorical variables. For the nls97 dataset, this might be gender, marital
status, and highest degree received. For the COVID-19 data, we might segment the data
by country or date.

Often, we need to aggregate data to prepare it for subsequent analysis. Sometimes, the
rows of a DataFrame are disaggregated beyond the desired unit of analysis, and some
aggregation has to be done before analysis can begin. For example, our DataFrame might
have bird sightings by species per day over the course of many years. Since those values
jump around, we might decide to smooth that out by working only with the total sightings
by species per month, or even per year. Another example is households and car repair
expenditures. We might need to summarize those expenditures over a year.

268 Fixing Messy Data when Aggregating

There are several ways to aggregate data using NumPy and pandas, each with particular
strengths. We explore the most useful approaches in this chapter; from looping with
itertuples, to navigating over NumPy arrays, to several techniques using the
DataFrame groupby method. It is helpful to have a good understanding of the full range
of tools available in pandas and NumPy since: almost all data analysis projects require
some aggregation; aggregation is among the most consequential steps we take in the data
cleaning process; and the best tool for the job is determined more by the attributes of the
data than by our personal preferences.

Specifically, the recipes in this chapter examine the following:

•	 Looping through data with itertuples (an anti-pattern)

•	 Calculating summaries by group with NumPy arrays

•	 Using groupby to organize data by groups

•	 Using more complicated aggregation functions with groupby

•	 Using user-defined functions and apply with groupby

•	 Using groupby to change the unit of analysis of a DataFrame

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Looping through data with itertuples
(an anti-pattern)
In this recipe, we will iterate over the rows of a DataFrame and generate our own totals for
a variable. In subsequent recipes in this chapter we will use NumPy arrays, and then some
pandas-specific techniques, for accomplishing the same tasks.

It may seem odd to begin this chapter with a technique that we are often cautioned against
using. But I used to do the equivalent of looping every day 30 years ago in SAS, and on select
occasions as recently as 7 years ago in R. That is why I still find myself thinking conceptually
about iterating over rows of data, sometimes sorted by groups, even though I rarely
implement my code in this manner. I think it is good to hold onto that conceptualization,
even when using other pandas methods that work for us more efficiently.

I do not want to leave the impression that pandas-specific techniques are always markedly
more efficient either. pandas users probably find themselves using apply more than they
would like, an approach that is only somewhat faster than looping.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Looping through data with itertuples (an anti-pattern) 269

Finally, I should add that if your DataFrame has fewer than 10,000 rows then the
efficiency gains from using pandas-specific techniques, rather than looping, are likely to
be minimal. In that case, analysts should choose the approach that is most intuitive and
resistant to errors.

Getting ready
We will work with the COVID-19 case daily data in this recipe. It has one row per day per
country, each row having the number of new cases and new deaths for that day. It reflects
the totals as of July 18, 2020.

We will also be working with land temperature data from 87 weather stations in Brazil in
2019. Most weather stations had one temperature reading for each month.

Data note
Our World in Data provides Covid-19 public use data at https://
ourworldindata.org/coronavirus-source-data.

The land temperature data is taken from the Global Historical Climatology
Network integrated database, which is made available for public use by
the United States National Oceanic and Atmospheric Administration
at https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/global-
historical-climatology-network-monthly-version-4.
Only data for Brazil in 2019 is used in this recipe.

How to do it…
We will use the itertuples DataFrame method to loop over the rows of the COVID-
19 daily data and the monthly land temperature data for Brazil. We add logic for handling
missing data and unexpected changes in key variable values from one period to the next:

1.	 Import pandas and numpy, and load the COVID-19 and land temperature data:

>>> import pandas as pd

>>> import numpy as np

>>> coviddaily = pd.read_csv("data/coviddaily720.csv",
parse_dates=["casedate"])

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4

270 Fixing Messy Data when Aggregating

2.	 Sort data by location and date:

>>> coviddaily = coviddaily.sort_
values(['location','casedate'])

3.	 Iterate over rows with itertuples.

Use itertuples, which allows us to iterate over all rows as named tuples. Sum
new cases over all dates for each country. With each change of country (location)
append the running total to rowlist, and then set the count to 0: (Note that
rowlist is a list and we are appending a dictionary to rowlist with each change
of country. A list of dictionaries is a good place to temporarily store data you might
eventually want to convert to a DataFrame.):

>>> prevloc = 'ZZZ'

>>> rowlist = []

>>>

>>> for row in coviddaily.itertuples():

... if (prevloc!=row.location):

... if (prevloc!='ZZZ'):

... rowlist.append({'location':prevloc,
 'casecnt':casecnt})

... casecnt = 0

... prevloc = row.location

... casecnt += row.new_cases

...

>>> rowlist.append({'location':prevloc,
'casecnt':casecnt})

>>> len(rowlist)

209

>>> rowlist[0:4]

[{'location': 'Afghanistan', 'casecnt': 34451.0},
{'location': 'Albania', 'casecnt': 3371.0}, {'location':
'Algeria', 'casecnt': 18712.0}, {'location': 'Andorra',
'casecnt': 855.0}]

4.	 Create a DataFrame from the list of summary values, rowlist.

Pass the list we created in the previous step to the pandas DataFrame method:
>>> covidtotals = pd.DataFrame(rowlist)

>>> covidtotals.head()

Looping through data with itertuples (an anti-pattern) 271

 location casecnt

0 Afghanistan 34,451

1 Albania 3,371

2 Algeria 18,712

3 Andorra 855

4 Angola 483

5.	 Sort the land temperature data.

Also, drop rows with missing values for temperatures:
>>> ltbrazil = ltbrazil.sort_values(['station','month'])

>>> ltbrazil = ltbrazil.dropna(subset=['temperature'])

6.	 Exclude rows where there is a large change from one period to the next.

Calculate the average temperature for the year, excluding values for a temperature
more than 3°C greater than or less than the temperature for the previous month:

>>> prevstation = 'ZZZ'

>>> prevtemp = 0

>>> rowlist = []

>>>

>>> for row in ltbrazil.itertuples():

... if (prevstation!=row.station):

... if (prevstation!='ZZZ'):

... rowlist.append({'station':prevstation,
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})

... tempcnt = 0

... stationcnt = 0

... prevstation = row.station

... # choose only rows that are within 3 degrees of the
previous temperature

... if ((0 <= abs(row.temperature-prevtemp) <= 3) or
(stationcnt==0)):

... tempcnt += row.temperature

... stationcnt += 1

... prevtemp = row.temperature

...

>>> rowlist.append({'station':prevstation,
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})

272 Fixing Messy Data when Aggregating

>>> rowlist[0:5]

[{'station': 'ALTAMIRA', 'avgtemp': 28.310000000000002,
'stationcnt': 5}, {'station': 'ALTA_FLORESTA_AERO',
'avgtemp': 29.433636363636367, 'stationcnt': 11},
{'station': 'ARAXA', 'avgtemp': 21.612499999999997,
'stationcnt': 4}, {'station': 'BACABAL', 'avgtemp':
29.75, 'stationcnt': 4}, {'station': 'BAGE', 'avgtemp':
20.366666666666664, 'stationcnt': 9}]

7.	 Create a DataFrame from the summary values.

Pass the list we created in the previous step to the pandas DataFrame method:
>>> ltbrazilavgs = pd.DataFrame(rowlist)

>>> ltbrazilavgs.head()

 station avgtemp stationcnt

0 ALTAMIRA 28.31 5

1 ALTA_FLORESTA_AERO 29.43 11

2 ARAXA 21.61 4

3 BACABAL 29.75 4

4 BAGE 20.37 9

This gives us a DataFrame with average temperatures for 2019 and the number of
observations for each station.

How it works...
After sorting the Covid daily data by location and casedate in Step 2, we loop
through our data one row at a time and do a running tally of new cases in Step 3. We set
that tally back to 0 when we get to a new country, and then resume counting. Notice that
we do not actually append our summary of new cases until we get to the next country.
This is because there is no way to tell that we are on the last row for any country until
we get to the next country. That is not a problem because we append the summary
to rowlist right before we reset the value to 0. That also means that we need to do
something special to output the totals for the last country since there is no next country
reached. We do this with a final append after the loop is complete. This is a fairly standard
approach to looping through data and outputting totals by group.

Looping through data with itertuples (an anti-pattern) 273

The summary DataFrame we create in Steps 3 and 4 can be created more efficiently, both
in terms of the analyst's time and our computer's workload, with other pandas techniques
that we cover in this chapter. But that becomes a more difficult call when we need to
do more complicated calculations, particularly those that involve comparing values
across rows.

Steps 6 and 7 provide an example of this. We want to calculate the average temperature for
each station for the year. Most stations have one reading per month. But we are concerned
that there might be some outlier values for temperature, defined here by a change of
more than 3°C from one month to the next. We want to exclude those readings from
the calculation of the mean for each station. It is fairly straightforward to do that while
iterating over the data by storing the previous value for temperature (prevtemp) and
comparing it to the current value.

There's more...
We could have used iterrows in Step 3 rather than itertuples, with almost exactly
the same syntax. Since we do not need the functionality of iterrows here, we use
itertuples. itertuples is easier on system resources than iterrows.

The hardest tasks to complete when working with tabular data involve calculations across
rows: summing data across rows, basing a calculation on values in a different row, and
generating running totals. Such calculations are complicated to implement and resource-
intensive, regardless of language. But it is hard to avoid having to do them, particularly
when working with panel data. Some values for variables in a given period might be
determined by values in a previous period. This is often more complicated than the
running totals we have done in this recipe.

For decades, data analysts have tried to address these data-cleaning challenges by looping
through rows, carefully inspecting categorical and summary variables for data problems,
and then handling the summation accordingly. Although this continues to be the
approach that provides the most flexibility, pandas provides a number of data aggregation
tools that run more efficiently and are easier to code. The challenge is to match the ability
of looping solutions to adjust for invalid, incomplete, or atypical data. We explore these
tools later in this chapter.

274 Fixing Messy Data when Aggregating

Calculating summaries by group with NumPy
arrays
We can accomplish much of what we did in the previous recipe with itertuples using
NumPy arrays. We can also use NumPy arrays to get summary values for subsets of
our data.

Getting ready
We will work again with the COVID-19 case daily data and the Brazil land
temperature data.

How to do it…
We copy DataFrame values to a NumPy array. We then navigate over the array, calculating
totals by group and checking for unexpected changes in values:

1.	 Import pandas and numpy, and load the Covid and land temperature data:

>>> import pandas as pd

>>> import numpy as np

>>> coviddaily = pd.read_csv("data/coviddaily720.csv",
parse_dates=["casedate"])

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

2.	 Create a list of locations:

>>> loclist = coviddaily.location.unique().tolist()

3.	 Use a NumPy array to calculate sums by location.

Create a NumPy array of the location and new cases data. We then can iterate
over the location list we created in the previous step, and select all new case values
(casevalues[j][1]) for each location (casevalues[j][0]). We then sum
the new case values for that location:

>>> rowlist = []

>>> casevalues = coviddaily[['location','new_cases']].
to_numpy()

>>>

>>> for locitem in loclist:

... cases = [casevalues[j][1] for j in
range(len(casevalues))\

Calculating summaries by group with NumPy arrays 275

... if casevalues[j][0]==locitem]

... rowlist.append(sum(cases))

...

>>> len(rowlist)

209

>>> len(loclist)

209

>>> rowlist[0:5]

[34451.0, 3371.0, 18712.0, 855.0, 483.0]

>>> casetotals = pd.DataFrame(zip(loclist,rowlist),
columns=(['location','casetotals']))

>>> casetotals.head()

 location casetotals

0 Afghanistan 34,451.00

1 Albania 3,371.00

2 Algeria 18,712.00

3 Andorra 855.00

4 Angola 483.00

4.	 Sort the land temperature data and drop rows with missing values for temperature:

>>> ltbrazil = ltbrazil.sort_values(['station','month'])

>>> ltbrazil = ltbrazil.dropna(subset=['temperature'])

5.	 Use a NumPy array to calculate average temperature for the year.

Exclude rows where there is a large change from one period to the next:
>>> prevstation = 'ZZZ'

>>> prevtemp = 0

>>> rowlist = []

>>> tempvalues = ltbrazil[['station','temperature']].to_
numpy()

>>>

>>> for j in range(len(tempvalues)):

... station = tempvalues[j][0]

... temperature = tempvalues[j][1]

... if (prevstation!=station):

... if (prevstation!='ZZZ'):

276 Fixing Messy Data when Aggregating

... rowlist.append({'station':prevstation,
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})

... tempcnt = 0

... stationcnt = 0

... prevstation = station

... if ((0 <= abs(temperature-prevtemp) <= 3) or
(stationcnt==0)):

... tempcnt += temperature

... stationcnt += 1

... prevtemp = temperature

...

>>> rowlist.append({'station':prevstation,
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})

>>> rowlist[0:5]

[{'station': 'ALTAMIRA', 'avgtemp': 28.310000000000002,
'stationcnt': 5}, {'station': 'ALTA_FLORESTA_AERO',
'avgtemp': 29.433636363636367, 'stationcnt': 11},
{'station': 'ARAXA', 'avgtemp': 21.612499999999997,
'stationcnt': 4}, {'station': 'BACABAL', 'avgtemp':
29.75, 'stationcnt': 4}, {'station': 'BAGE', 'avgtemp':
20.366666666666664, 'stationcnt': 9}]

6.	 Create a DataFrame of the land temperature averages:

>>> ltbrazilavgs = pd.DataFrame(rowlist)

>>> ltbrazilavgs.head()

 station avgtemp stationcnt

0 ALTAMIRA 28.31 5

1 ALTA_FLORESTA_AERO 29.43 11

2 ARAXA 21.61 4

3 BACABAL 29.75 4

4 BAGE 20.37 9

This gives us a DataFrame with average temperature and number of observations per
station. Notice that we get the same results as in the final step of the previous recipe.

Using groupby to organize data by groups 277

How it works…
NumPy arrays can be quite useful when we are working with tabular data but need to do
some calculations across rows. This is because accessing items over the equivalent of rows
is not really that different from accessing items over the equivalent of columns in an array.
For example, casevalues[5][0] (the sixth "row" and first "column" of the array) is
accessed in the same way as casevalues[20][1]. Navigating over a NumPy array is
also faster than iterating over a pandas DataFrame.

We take advantage of this in Step 3. We get all of the array rows for a given location
(if casevalues[j][0]==locitem) with a list comprehension. Since we also need
the location list in the DataFrame we will create of summary values, we use zip to
combine the two lists.

We start working with the land temperature data in Step 4, first sorting it by station and
month, and then dropping rows with missing values for temperature. The logic in Step
5 is almost identical to the logic in Step 6 in the previous recipe. The main difference is
that we need to refer to the locations of station (tempvalues[j][0]) and temperature
(tempvalues[j][1]) in the array.

There's more…
When you need to iterate over data, NumPy arrays will generally be faster than iterating
over a pandas DataFrame with itertuples or iterrows. Also, if you tried to run the
list comprehension in Step 3 using itertuples, which is possible, you would be waiting
some time for it to finish. In general, if you want to do a quick summary of values for
some segment of your data, using NumPy arrays is a reasonable choice.

See also
The remaining recipes in this chapter rely on the powerful groupby method of pandas
DataFrames to generate group totals.

Using groupby to organize data by groups
At a certain point in most data analysis projects, we have to generate summary statistics by
groups. While this can be done using the approaches in the previous recipe, in most cases
the pandas DataFrame groupby method is a better choice. If groupby can handle an
aggregation task—and it usually can—it is likely the most efficient way to accomplish that
task. We make good use of groupby in the remaining recipes in this chapter. We go over
the basics in this recipe.

278 Fixing Messy Data when Aggregating

Getting ready
We will work with the COVID-19 daily data in this recipe.

How to do it…
We will create a pandas groupby DataFrame and use it to generate summary statistics
by group:

1.	 Import pandas and numpy, and load the Covid case daily data:

>>> import pandas as pd

>>> import numpy as np

>>> coviddaily = pd.read_csv("data/coviddaily720.csv",
parse_dates=["casedate"])

2.	 Create a pandas groupby DataFrame:

>>> countrytots = coviddaily.groupby(['location'])

>>> type(countrytots)

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

3.	 Create DataFrames for the first and last rows of each country:

>>> countrytots.first().iloc[0:5, 0:5]

 iso_code casedate continent new_cases
new_deaths

location

Afghanistan AFG 2019-12-31 Asia 0
0

Albania ALB 2020-03-09 Europe 2
0

Algeria DZA 2019-12-31 Africa 0
0

Andorra AND 2020-03-03 Europe 1
0

Angola AGO 2020-03-22 Africa 2
0

>>> countrytots.last().iloc[0:5, 0:5]

 iso_code casedate continent new_cases
new_deaths

location

Using groupby to organize data by groups 279

Afghanistan AFG 2020-07-12 Asia 85
16

Albania ALB 2020-07-12 Europe 93
4

Algeria DZA 2020-07-12 Africa 904
16

Andorra AND 2020-07-12 Europe 0
0

Angola AGO 2020-07-12 Africa 25
2

>>> type(countrytots.last())

<class 'pandas.core.frame.DataFrame'>

4.	 Get all the rows for a country:

>>> countrytots.get_group('Zimbabwe').iloc[0:5, 0:5]

 iso_code casedate continent new_cases new_
deaths

29099 ZWE 2020-03-21 Africa 1
0

29100 ZWE 2020-03-22 Africa 1
0

29101 ZWE 2020-03-23 Africa 0
0

29102 ZWE 2020-03-24 Africa 0
1

29103 ZWE 2020-03-25 Africa 0
0

5.	 Loop through the groups:

>>> for name, group in countrytots:

... if (name in ['Malta','Kuwait']):

... print(group.iloc[0:5, 0:5])

...

 iso_code casedate location continent new_cases

14707 KWT 2019-12-31 Kuwait Asia 0

14708 KWT 2020-01-01 Kuwait Asia 0

14709 KWT 2020-01-02 Kuwait Asia 0

280 Fixing Messy Data when Aggregating

14710 KWT 2020-01-03 Kuwait Asia 0

14711 KWT 2020-01-04 Kuwait Asia 0

 iso_code casedate location continent new_cases

17057 MLT 2020-03-07 Malta Europe 1

17058 MLT 2020-03-08 Malta Europe 2

17059 MLT 2020-03-09 Malta Europe 0

17060 MLT 2020-03-10 Malta Europe 2

17061 MLT 2020-03-11 Malta Europe 1

6.	 Show the number of rows for each country:

>>> countrytots.size()

location

Afghanistan 185

Albania 126

Algeria 190

Andorra 121

Angola 113

 ...

Vietnam 191

Western Sahara 78

Yemen 94

Zambia 116

Zimbabwe 114

Length: 209, dtype: int64

7.	 Show the summary statistics by country:

>>> countrytots.new_cases.describe().head()

 count mean std min 25% 50% 75% max

location

Afghanistan 185 186 257 0 0 37 302 1,063

Albania 126 27 25 0 9 17 36 93

Algeria 190 98 124 0 0 88 150 904

Andorra 121 7 13 0 0 1 9 79

Angola 113 4 9 0 0 1 5 62

>>> countrytots.new_cases.sum().head()

location

Using groupby to organize data by groups 281

Afghanistan 34,451

Albania 3,371

Algeria 18,712

Andorra 855

Angola 483

Name: new_cases, dtype: float64

These steps demonstrate how remarkably useful the groupby DataFrame object is when
we want to generate summary statistics by categorical variables.

How it works...
In Step 2, we create a pandas DataFrame groupby object using the pandas DataFrame
groupby method, passing it a column or list of columns for the grouping. Once we have
a groupby DataFrame, we can generate statistics by group with the same tools that we
use to generate summary statistics for the whole DataFrame. describe, mean, sum,
and similar methods work on the groupby DataFrame—or series created from it—as
expected, except the summary is run for each group.

In Step 3, we use first and last to create DataFrames with the first and last occurrence
of each group. We use get_group to get all the rows for a particular group in Step 4. We
can also loop over the groups and use size to count the number of rows for each group.

In Step 7, we create a series groupby object from the DataFrame groupby object. Using
the resulting object's aggregation methods gives us summary statistics for a series by
group. One thing is clear about the distribution of new_cases from this output: it varies
quite a bit by country. For example, we can see right away that the interquartile range is
quite different, even for the first five countries.

There's more...
The output from Step 7 is quite useful. It is worth saving output such as that for each
important continuous variable where the distribution is meaningfully different by group.

Pandas groupby DataFrames are extraordinarily powerful and easy to use. Step 7 shows
just how easy it is to create the summaries by groups that we created in the first two
recipes in this chapter. Unless the DataFrame we are working with is small, or the task
involves very complicated calculations across rows, the groupby method is a superior
choice to looping.

282 Fixing Messy Data when Aggregating

Using more complicated aggregation functions
with groupby
In the previous recipe, we created a groupby DataFrame object and used it to run
summary statistics by groups. We use chaining in this recipe to create the groups, choose
the aggregation variable(s), and select the aggregation function(s), all in one line. We also
take advantage of the flexibility of the groupby object, which allows us to choose the
aggregation columns and functions in a variety of ways.

Getting ready
We will work with the National Longitudinal Survey of Youth (NLS) data in
 this recipe.

Data note
The NLS, administered by the United States Bureau of Labor Statistics, are
longitudinal surveys of individuals who were in high school in 1997 when
the surveys started. Participants were surveyed each year through 2018. The
surveys are available for public use at nlsinfo.org.

How to do it…
We do more complicated aggregations with groupby than we did in the previous recipe,
taking advantage of its flexibility:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Review the structure of the data:

>>> nls97.iloc[:,0:7].info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 7 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

http://nlsinfo.org

Using more complicated aggregation functions with groupby 283

 0 gender 8984 non-null object

 1 birthmonth 8984 non-null int64

 2 birthyear 8984 non-null int64

 3 highestgradecompleted 6663 non-null float64

 4 maritalstatus 6672 non-null object

 5 childathome 4791 non-null float64

 6 childnotathome 4791 non-null float64

dtypes: float64(3), int64(2), object(2)

memory usage: 561.5+ KB

3.	 Review some of the categorical data:

>>> catvars = ['gender','maritalstatus','highestdegree']

>>>

>>> for col in catvars:

... print(col, nls97[col].value_counts().sort_index(),
sep="\n\n", end="\n\n\n")

...

gender

Female 4385

Male 4599

Name: gender, dtype: int64

maritalstatus

Divorced 663

Married 3066

Never-married 2766

Separated 154

Widowed 23

Name: maritalstatus, dtype: int64

highestdegree

0. None 953

1. GED 1146

2. High School 3667

3. Associates 737

4. Bachelors 1673

284 Fixing Messy Data when Aggregating

5. Masters 603

6. PhD 54

7. Professional 120

Name: highestdegree, dtype: int64

4.	 Review some descriptive statistics:

>>> contvars =
['satmath','satverbal','weeksworked06','gpaoverall',

... 'childathome']

>>>

>>> nls97[contvars].describe()

 satmath satverbal weeksworked06 gpaoverall
childathome

count 1,407.0 1,406.0 8,340.0 6,004.0
4,791.0

mean 500.6 499.7 38.4 2.8
1.9

std 115.0 112.2 18.9 0.6
1.3

min 7.0 14.0 0.0 0.1
0.0

25% 430.0 430.0 27.0 2.4
1.0

50% 500.0 500.0 51.0 2.9
2.0

75% 580.0 570.0 52.0 3.3
3.0

max 800.0 800.0 52.0 4.2
9.0

5.	 Look at Scholastic Assessment Test (SAT) math scores by gender.

We pass the column name to groupby to group by that column:
>>> nls97.groupby('gender')['satmath'].mean()

gender

Female 487

Male 517

Name: satmath, dtype: float64

Using more complicated aggregation functions with groupby 285

6.	 Look at the SAT math scores by gender and highest degree earned.

We can pass a list of column names to groupby to group by more than one column:
>> nls97.groupby(['gender','highestdegree'])['satmath'].
mean()

gender highestdegree

Female 0. None 333

 1. GED 405

 2. High School 431

 3. Associates 458

 4. Bachelors 502

 5. Masters 508

 6. PhD 575

 7. Professional 599

Male 0. None 540

 1. GED 320

 2. High School 468

 3. Associates 481

 4. Bachelors 542

 5. Masters 574

 6. PhD 621

 7. Professional 588

Name: satmath, dtype: float64

7.	 Look at the SAT math and verbal scores by gender and highest degree earned.

We can use a list to summarize values for more than one variable, in this case
satmath and satverbal:

>>> nls97.groupby(['gender','highestdegree'])
[['satmath','satverbal']].mean()

 satmath satverbal

gender highestdegree

Female 0. None 333 409

 1. GED 405 390

 2. High School 431 444

 3. Associates 458 466

 4. Bachelors 502 506

 5. Masters 508 534

286 Fixing Messy Data when Aggregating

 6. PhD 575 558

 7. Professional 599 587

Male 0. None 540 483

 1. GED 320 360

 2. High School 468 457

 3. Associates 481 462

 4. Bachelors 542 528

 5. Masters 574 545

 6. PhD 621 623

 7. Professional 588 592

8.	 Add columns for the count, max, and standard deviation.

Use the agg function to return several summary statistics:

>>> nls97.groupby(['gender','highestdegree'])
['gpaoverall'].agg(['count','mean','max','std'])

 count mean max std

gender highestdegree

Female 0. None 148 2.5 4.0 0.7

 1. GED 227 2.3 3.9 0.7

 2. High School 1212 2.8 4.2 0.5

 3. Associates 290 2.9 4.0 0.5

 4. Bachelors 734 3.2 4.1 0.5

 5. Masters 312 3.3 4.1 0.4

 6. PhD 22 3.5 4.0 0.5

 7. Professional 53 3.5 4.1 0.4

Male 0. None 193 2.2 4.0 0.6

 1. GED 345 2.2 4.0 0.6

 2. High School 1436 2.6 4.0 0.5

 3. Associates 236 2.7 3.8 0.5

 4. Bachelors 560 3.1 4.1 0.5

 5. Masters 170 3.3 4.0 0.4

 6. PhD 20 3.4 4.0 0.6

 7. Professional 38 3.4 4.0 0.3

Using more complicated aggregation functions with groupby 287

9.	 Use a dictionary for more complicated aggregations:

>>> pd.options.display.float_format = '{:,.1f}'.format

>>> aggdict = {'weeksworked06':['count', 'mean',
'max','std'], 'childathome':['count', 'mean', 'max',
'std']}

>>> nls97.groupby(['highestdegree']).agg(aggdict)

 weeksworked06 childathome

 count mean max std count
mean max std

highestdegree

0. None 703 29.7 52.0 21.6 439
1.8 8.0 1.6

1. GED 1104 33.2 52.0 20.6 693
1.7 9.0 1.5

2. High School 3368 39.4 52.0 18.6 1961
1.9 7.0 1.3

3. Associates 722 40.7 52.0 17.7 428
2.0 6.0 1.1

4. Bachelors 1642 42.2 52.0 16.1 827
1.9 8.0 1.0

5. Masters 601 42.2 52.0 16.1 333
1.9 5.0 0.9

6. PhD 53 38.2 52.0 18.6 32
2.1 6.0 1.1

7. Professional 117 27.1 52.0 20.4 57
1.8 4.0 0.8

>>> nls97.groupby(['maritalstatus']).agg(aggdict)

 weeksworked06 childathome

 count mean max std count
mean max std

maritalstatus

Divorced 660 37.5 52.0 19.1 524
1.5 5.0 1.2

Married 3033 40.3 52.0 17.9 2563
2.1 8.0 1.1

Never-married 2734 37.2 52.0 19.1 1502
1.6 9.0 1.3

Separated 153 33.8 52.0 20.2 137
1.5 8.0 1.4

288 Fixing Messy Data when Aggregating

Widowed 23 37.1 52.0 19.3 18
1.8 5.0 1.4

We display the same summary statistics for weeksworked06 and childathome, but
we could have specified different aggregation functions for each using the same syntax as
we used in Step 9.

How it works…
We first take a look at some summary statistics for key columns in the DataFrame. We
get frequencies for the categorical variables in Step 3, and some descriptives for the
continuous variables in Step 4. It is a good idea to have summary values for the DataFrame
as a whole in front of us before generating statistics by group.

We are then ready to create summary statistics using groupby. This involves three steps:

1.	 Creating a groupby DataFrame based on one or more categorical variables

2.	 Selecting the column(s) to be used for the summary statistics

3.	 Choosing the aggregation function(s)

We use chaining in this recipe to do all three in one line. So, nls97.
groupby('gender')['satmath'].mean() in Step 5 does three things: nls97.
groupby('gender') creates the groupby DataFrame object, ['satmath'] chooses
the aggregation column, and mean() is the aggregation function.

We can pass a column name (as in Step 5) or a list of column names (as in Step 6)
to groupby to create groupings by one or more columns. We can select multiple
variables for aggregation with a list of those variables, as we do in Step 7 with
[['satmath','satverbal']].

We can chain a specific summary function such as mean, count, or max. Or, we could
pass a list to agg to choose multiple aggregation functions, such as with agg(['coun
t','mean','max','std']) in Step 8. We can use the familiar pandas and NumPy
aggregation functions or a user-defined function, which we explore in the next recipe.

Another important takeaway from Step 8 is that agg sends the aggregation columns to
each function a group at a time. The calculations in each aggregation function are run
for each group in the groupby DataFrame. Another way to conceptualize this is that it
allows us to run the same functions we are used to running across a whole DataFrame for
one group at a time, accomplishing this by automating the process of sending the data for
each group to the aggregation functions.

Using user-defined functions and apply with groupby 289

There's more…
We first get a sense of how the categorical and continuous variables in the DataFrame
are distributed. Often, we group data to see how a distribution of a continuous variable,
such as weeks worked, differs by a categorical variable, such as marital status. Before doing
that, it is helpful to have a good idea of how those variables are distributed across the
whole dataset.

The nls97 dataset only has SAT scores for about 1,400 of 8,984 respondents, so we need
to be careful when examining SAT scores by different groups. This means that some of the
counts by gender and highest degree, especially for PhD recipients, are a little too small to
be reliable. There are outliers for SAT math and verbal scores (if we define outliers as 1.5
times the interquartile range above the third quartile or below the first quartile).

We have acceptable counts for weeks worked and number of children living at home for
all values of highest degree achieved, and values of marital status except for widowed.
The average weeks worked for folks who received a professional degree is unexpected. It
is lower than for any other group. A good next step would be to see how persistent this is
over the years. (We are just looking at 2006 weeks worked here, but there are 20 years' of
data on weeks worked.)

See also
The nls97 file is panel data masquerading as individual-level data. The panel data
structure can be recovered, facilitating analysis over time of areas such as employment and
school enrollment. We do this in the recipes in Chapter 9, Tidying and Reshaping Data.

Using user-defined functions and apply with
groupby
Despite the numerous aggregation functions available in pandas and NumPy, we
sometimes have to write our own to get the results we need. In some cases, this requires
the use of apply.

Getting ready
We will work with the NLS data in this recipe.

290 Fixing Messy Data when Aggregating

How to do it…
We will create our own functions to define the summary statistics we want by group:

1.	 Import pandas and the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Create a function for defining the interquartile range:

>>> def iqr(x):

... return x.quantile(0.75) - x.quantile(0.25)

...

3.	 Run the interquartile range function.

First, create a dictionary that specifies which aggregation functions to run on each
analysis variable:

>>> aggdict = {'weeksworked06':['count', 'mean', iqr],
'childathome':['count', 'mean', iqr]}

>>> nls97.groupby(['highestdegree']).agg(aggdict)

 weeksworked06 childathome

 count mean iqr count mean
iqr

highestdegree

0. None 703 29.7 47.0 439 1.8
3.0

1. GED 1104 33.2 39.0 693 1.7
3.0

2. High School 3368 39.4 21.0 1961 1.9
2.0

3. Associates 722 40.7 18.0 428 2.0
2.0

4. Bachelors 1642 42.2 14.0 827 1.9
1.0

5. Masters 601 42.2 13.0 333 1.9
1.0

6. PhD 53 38.2 23.0 32 2.1
2.0

Using user-defined functions and apply with groupby 291

7. Professional 117 27.1 45.0 57 1.8
1.0

4.	 Define a function to return selected summary statistics as a series:

>>> def gettots(x):

... out = {}

... out['qr1'] = x.quantile(0.25)

... out['med'] = x.median()

... out['qr3'] = x.quantile(0.75)

... out['count'] = x.count()

... return pd.Series(out)

...

5.	 Use apply to run the function.

This will create a series with a multi-index based on highestdegree values and
the desired summary statistics:

>>> pd.options.display.float_format = '{:,.0f}'.format

>>> nls97.groupby(['highestdegree'])['weeksworked06'].
apply(gettots)

highestdegree

0. None qr1 5

 med 34

 qr3 52

 count 703

1. GED qr1 13

 med 42

 qr3 52

 count 1,104

2. High School qr1 31

 med 52

 qr3 52

 count 3,368

3. Associates qr1 34

 med 52

 qr3 52

 count 722

292 Fixing Messy Data when Aggregating

..... abbreviated to save space

Name: weeksworked06, dtype: float64

6.	 Use reset_index to use the default index instead of the index created from the
groupby DataFrame:

>>> nls97.groupby(['highestdegree'])['weeksworked06'].
apply(gettots).reset_index()

 highestdegree level_1 weeksworked06

0 0. None qr1 5

1 0. None med 34

2 0. None qr3 52

3 0. None count 703

4 1. GED qr1 13

5 1. GED med 42

6 1. GED qr3 52

7 1. GED count 1,104

8 2. High School qr1 31

9 2. High School med 52

10 2. High School qr3 52

11 2. High School count 3,368

12 3. Associates qr1 34

13 3. Associates med 52

14 3. Associates qr3 52

15 3. Associates count 722

..... abbreviated to save space

7.	 Chain with unstack instead to create columns based on the summary variables.

This will create a DataFrame with the highestdegree values as the index, and
aggregation values in the columns:

>>> nlssums = nls97.groupby(['highestdegree'])
['weeksworked06'].apply(gettots).unstack()

>>> nlssums

 qr1 med qr3 count

highestdegree

0. None 5 34 52 703

1. GED 13 42 52 1,104

Using user-defined functions and apply with groupby 293

2. High School 31 52 52 3,368

3. Associates 34 52 52 722

4. Bachelors 38 52 52 1,642

5. Masters 39 52 52 601

6. PhD 29 50 52 53

7. Professional 4 29 49 117

>>> nlssums.info()

<class 'pandas.core.frame.DataFrame'>

Index: 8 entries, 0. None to 7. Professional

Data columns (total 4 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 qr1 8 non-null float64

 1 med 8 non-null float64

 2 qr3 8 non-null float64

 3 count 8 non-null float64

dtypes: float64(4)

memory usage: 320.0+ bytes

unstack is useful when we want to rotate parts of the index to the columns' axis.

How it works...
We define a very simple function to calculate interquartile ranges by group in Step 2. We
then include calls to that function in our list of aggregation functions in Step 3.

Steps 4 and 5 are a little more complicated. We define a function that calculates the first
and third quartiles and median, and counts the number of rows. It returns a series with
these values. By combining a groupby DataFrame with apply in Step 5, we get the
gettots function to return that series for each group.

Step 5 gives us the numbers we want, but maybe not in the best format. If, for example, we
want to use the data for another operation—say, a visualization—we need to chain some
additional methods. One possibility is to use reset_index. This will replace the multi-
index with the default index. Another option is to use unstack. This will create columns
from the second level of the index (having qr1, med, qr3, and count values).

294 Fixing Messy Data when Aggregating

There's more...
Interestingly, the interquartile ranges for weeks worked and number of children at home
drop substantially as education increases. There seems to be a higher variation in those
variables among groups with less education. This should be examined more closely and
has implications for statistical testing that assumes common variances across groups.

In Step 5, we could have set the groupby method's as_index parameter to False. If
we had done so, we would not have had to use reset_index or unstack to deal with
the multi-index created. The disadvantage of setting that parameter to False, as you
can see in the following code snippet, is that the groupby values are not reflected in the
returned DataFrame, either as an index or a column. This is because we use groupby
with apply and a user-defined function. When we use as_index=False with an agg
function, we get a column with the groupby values (we see a couple of examples of that
in the next recipe):

>>> nls97.groupby(['highestdegree'], as_index=False)
['weeksworked06'].apply(gettots)

 qr1 med qr3 count

0 5 34 52 703

1 13 42 52 1,104

2 31 52 52 3,368

3 34 52 52 722

4 38 52 52 1,642

5 39 52 52 601

6 29 50 52 53

7 4 29 49 117

See also
We do much more with stack and unstack in Chapter 9, Tidying and Reshaping Data.

Using groupby to change the unit of analysis
of a DataFrame
The DataFrame that we created in the last step of the previous recipe was something of
a fortunate by-product of our efforts to generate multiple summary statistics by groups.
There are times when we really do need to aggregate data to change the unit of analysis—
say, from monthly utility expenses per family to annual utility expenses per family, or
from students' grades per course to students' overall grade point average (GPA).

Using groupby to change the unit of analysis of a DataFrame 295

groupby is a good tool for collapsing the unit of analysis, particularly when summary
operations are required. When we only need to select unduplicated rows—perhaps
the first or last row for each individual over a given interval—then the combination of
sort_values and drop_duplicates will do the trick. But we often need to do some
calculation across the rows for each group before collapsing. That is when groupby
comes in very handy.

Getting ready
We will work with the COVID-19 case daily data, which has one row per country per day.
We will also work with the Brazil land temperature data, which has one row per month
per weather station.

How to do it...
We will use groupby to create a DataFrame of summary values by group:

1.	 Import pandas and load the Covid and land temperature data:

>>> import pandas as pd

>>> coviddaily = pd.read_csv("data/coviddaily720.csv",
parse_dates=["casedate"])

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

2.	 Convert Covid data from one country per day to summaries across all countries
by day:

>>> coviddailytotals = coviddaily.loc[coviddaily.
casedate.between('2020-02-01','2020-07-12')].\

... groupby(['casedate'], as_index=False)[['new_
cases','new_deaths']].\

... sum()

>>>

>>> coviddailytotals.head(10)

 casedate new_cases new_deaths

0 2020-02-01 2,120 46

1 2020-02-02 2,608 46

2 2020-02-03 2,818 57

3 2020-02-04 3,243 65

4 2020-02-05 3,897 66

296 Fixing Messy Data when Aggregating

5 2020-02-06 3,741 72

6 2020-02-07 3,177 73

7 2020-02-08 3,439 86

8 2020-02-09 2,619 89

9 2020-02-10 2,982 97

3.	 Create a DataFrame with average temperatures for each station in Brazil.

First, remove rows with missing temperature values, and show some data for
a few rows:

>>> ltbrazil = ltbrazil.dropna(subset=['temperature'])

>>> ltbrazil.loc[103508:104551,
['station','year','month','temperature','elevation',
'latabs']]

 station year month temperature
elevation latabs

103508 CRUZEIRO_DO_SUL 2019 1 26
194 8

103682 CUIABA 2019 1 29
151 16

103949 SANTAREM_AEROPORTO 2019 1 27
60 2

104051 ALTA_FLORESTA_AERO 2019 1 27
289 10

104551 UBERLANDIA 2019 1 25
943 19

>>>

>>> ltbrazilavgs = ltbrazil.groupby(['station'], as_
index=False).\

... agg({'latabs':'first','elevation':'first',
'temperature':'mean'})

>>>

>>> ltbrazilavgs.head(10)

 station latabs elevation temperature

0 ALTAMIRA 3 112 28

1 ALTA_FLORESTA_AERO 10 289 29

2 ARAXA 20 1,004 22

3 BACABAL 4 25 30

4 BAGE 31 242 19

Using groupby to change the unit of analysis of a DataFrame 297

5 BARBALHA 7 409 27

6 BARCELOS 1 34 28

7 BARRA_DO_CORDA 6 153 29

8 BARREIRAS 12 439 27

9 BARTOLOMEU_LISANDRO 22 17 26

Let's take a closer look at how the aggregation functions in these examples work.

How it works…
In Step 2, we first select the dates that we want (some countries started reporting COVID-
19 cases later than others). We create a DataFrame groupby object based on casedate,
choose new_cases and new_deaths as the aggregation variables, and select sum for
the aggregation function. This produces a sum for both new_cases and new_deaths
for each group (casedate). Depending on your purposes you may not want casedate
to be the index, which would happen if we did not set as_index to False.

We often need to use a different aggregation function with different aggregation variables.
We might want to take the first (or last) value for one variable, and get the mean of the
values of another variable by group. This is what we do in Step 3. We do this by passing
a dictionary to the agg function, with our aggregation variables as keys and the
aggregation function to use as values.

8
Addressing Data

Issues When
Combining

DataFrames
At some point during most data cleaning projects, the analyst will have to combine data
from different data tables. This involves either appending data with the same structure to
existing data rows or doing a merge to retrieve columns from a different data table. The
former is sometimes referred to as combining data vertically, or concatenating, while the
latter is referred to as combining data horizontally, or merging.

Merges can be categorized by the amount of duplication of merge-by column values. With
one-to-one merges, merge-by column values appear once on each data table. One-to-many
merges have unduplicated merge-by column values on one side of the merge and
duplicated merge-by column values on the other side. Many-to-many merges have
duplicated merge-by column values on both sides. Merging is further complicated by the
fact that there is often no perfect correspondence between merge-by values on the data
tables; each data table may have values in the merge-by column that are not present in the
other data table.

300 Addressing Data Issues When Combining DataFrames

New data issues can be introduced when data is combined. When data is appended, it may
have different logical values than the original data, even when the columns have the same
names and data types. For merges, whenever merge-by values are missing on one side of
a merge, the columns that are added will have missing values. For one-to-one or one-to-
many merges, there may be unexpected duplicates in merge-by values, resulting in values
for other columns being duplicated unintentionally.

In this chapter, we will combine DataFrames vertically and horizontally and consider
strategies for dealing with the data problems that often arise. Specifically, in this chapter,
we will cover the following recipes:

•	 Combining DataFrames vertically

•	 Doing one-to-one merges

•	 Doing one-to-one merges by multiple columns

•	 Doing one-to-many merges

•	 Doing many-to-many merges

•	 Developing a merge routine

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Combining DataFrames vertically
There are times when we need to append rows from one data table to another. This will
almost always be rows from data tables with similar structures, along with the same
columns and data types. For example, we might get a new CSV file containing hospital
patient outcomes each month and need to add that to our existing data. Alternatively,
we might end up working at a school district central office and receive data from many
different schools. We might want to combine this data before conducting analyses.

Even when the data structure across months and across schools (in these examples) is
theoretically the same, it may not be in practice. Business practices can change from one
period to another. This can be intentional or happen inadvertently due to staff turnover or
some external factor. One institution or department might implement practices somewhat
differently than another, and some data values might be different for some institutions or
missing altogether.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Combining DataFrames vertically 301

We are likely to come across a change in what seems like similar data when we let our
guard down, typically when we start to assume that the new data will look like the old
data. I try to remember this whenever I combine data vertically. I will be referring to
combining data vertically as concatenating or appending for the rest of this chapter.

In this recipe, we'll use the pandas concat function to append rows from a pandas
DataFrame to another DataFrame. We will also do a few common checks on the concat
operation to confirm that the resulting DataFrame is what we expected.

Getting ready
We will work with land temperature data from several countries in this recipe. This data
includes the monthly average temperature, latitude, longitude, and elevation at many
weather stations in each country during 2019. The data for each country is contained in
a CSV file.

Data note
The data for this recipe has been taken from the Global Historical Climatology
Network integrated database, which has been made available for public use
by the United States National Oceanic and Atmospheric Administration,
at https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/global-
historical-climatology-network-monthly-version-4.

How to do it…
In this recipe, we will combine similarly structured DataFrames vertically, check the
values in the concatenated data, and fix missing values. Let's get started:

1.	 Import pandas and NumPy, as well as the os module:

>>> import pandas as pd

>>> import numpy as np

>>> import os

2.	 Load the data from Cameroon and Poland:

>>> ltcameroon = pd.read_csv("data/ltcountry/ltcameroon.
csv")

>>> ltpoland = pd.read_csv("data/ltcountry/ltpoland.csv")

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4

302 Addressing Data Issues When Combining DataFrames

3.	 Concatenate the Cameroon and Poland data:

>>> ltcameroon.shape

(48, 11)

>>> ltpoland.shape

(120, 11)

>>> ltall = pd.concat([ltcameroon, ltpoland])

>>> ltall.country.value_counts()

Poland 120

Cameroon 48

Name: country, dtype: int64

4.	 Concatenate all the country data files.

Loop through all the filenames in the folder that contains the CSV files for each
country. Use the endswith method to check that the filename has a CSV file
extension. Use read_csv to create a new DataFrame and print out the number of
rows. Use concat to append the rows of the new DataFrame to the rows that have
already been appended. Finally, display any columns that are missing in the most
recent DataFrame, or that are in the most recent DataFrame but not the previous
ones. Notice that the ltoman DataFrame is missing the latabs column:

>>> directory = "data/ltcountry"

>>> ltall = pd.DataFrame()

>>>

>>> for filename in os.listdir(directory):

... if filename.endswith(".csv"):

... fileloc = os.path.join(directory, filename)

... # open the next file

... with open(fileloc) as f:

... ltnew = pd.read_csv(fileloc)

... print(filename + " has " + str(ltnew.shape[0])
+ " rows.")

... ltall = pd.concat([ltall, ltnew])

... # check for differences in columns

... columndiff = ltall.columns.symmetric_
difference(ltnew.columns)

... if (not columndiff.empty):

... print("", "Different column names for:",
filename,\

Combining DataFrames vertically 303

... columndiff, "", sep="\n")

...

ltpoland.csv has 120 rows.

ltjapan.csv has 1800 rows.

ltindia.csv has 1056 rows.

ltbrazil.csv has 1104 rows.

ltcameroon.csv has 48 rows.

ltoman.csv has 288 rows.

Different column names for:

ltoman.csv

Index(['latabs'], dtype='object')

ltmexico.csv has 852 rows.

5.	 Show some of the combined data:

>>> ltall[['country','station','month','temperature',
'latitude']].sample(5, random_state=1)

 country station month temperature latitude

597 Japan MIYAKO 4 24 25

937 India JHARSUGUDA 11 25 22

616 Mexico TUXPANVER 9 29 21

261 India MO_AMINI 3 29 11

231 Oman IBRA 10 29 23

6.	 Check the values in the concatenated data.

Notice that the values for latabs for Oman are all missing. This is because
latabs is missing in the DataFrame for Oman (latabs is the absolute value of
the latitude for each station):

>>> ltall.country.value_counts().sort_index()

Brazil 1104

Cameroon 48

India 1056

Japan 1800

Mexico 852

Oman 288

304 Addressing Data Issues When Combining DataFrames

Poland 120

Name: country, dtype: int64

>>>

>>> ltall.groupby(['country']).
agg({'temperature':['min','mean',\

... 'max','count'],'latabs':['min','mean','max','co
unt']})

 temperature latabs

 min mean max count min mean max count

country

Brazil 12 25 34 969 0 14 34 1104

Cameroon 22 27 36 34 4 8 10 48

India 2 26 37 1044 8 21 34 1056

Japan -7 15 30 1797 24 36 45 1800

Mexico 7 23 34 806 15 22 32 852

Oman 12 28 38 205 nan nan nan 0

Poland -4 10 23 120 50 52 55 120

7.	 Fix the missing values.

Set the value of latabs to the value of latitude for Oman. (All of the
latitude values for stations in Oman are above the equator and positive. In the
Global Historical Climatology Network integrated database, latitude values
above the equator are positive, while all the latitude values below the equator are
negative). Do this as follows:

>>> ltall['latabs'] = np.where(ltall.country=="Oman",
ltall.latitude, ltall.latabs)

>>>

>>> ltall.groupby(['country']).
agg({'temperature':['min','mean',\

... 'max','count'],'latabs':['min','mean','max','co
unt']})

 temperature latabs

 min mean max count min mean max count

country

Brazil 12 25 34 969 0 14 34 1104

Cameroon 22 27 36 34 4 8 10 48

Combining DataFrames vertically 305

India 2 26 37 1044 8 21 34 1056

Japan -7 15 30 1797 24 36 45 1800

Mexico 7 23 34 806 15 22 32 852

Oman 12 28 38 205 17 22 26 288

Poland -4 10 23 120 50 52 55 120

With that, we have combined the data for the seven CSV files we found in the selected
folder. We have also confirmed that we have appended the correct number of rows,
identified columns that are missing in some files, and fixed missing values.

How it works...
We passed a list of pandas DataFrames to the pandas concat function in step 3. The
rows from the second DataFrame were appended to the bottom of the first DataFrame. If
we had listed a third DataFrame, those rows would have been appended to the combined
rows of the first two DataFrames. Before concatenating, we used the shape attribute to
check the number of rows. We confirmed that the concatenated DataFrame contains the
expected number of rows for each country.

We could have concatenated data from all the CSV files in the ltcountry subfolder by
loading each file and then adding it to the list we passed to concat. However, this is not
always practical. If we want to load and then read more than a few files, we can get Python's
os module to find the files. In step 4, we looked for all the CSV files in a specified folder,
loaded each file that was found into memory, and then appended the rows of each file to a
DataFrame. We printed the number of rows for each data file we loaded so that we could
check those numbers against the totals in the concatenated data later. We also identified
any DataFrames with different columns compared to the others. We used value_counts
in step 6 to confirm that there was the right number of rows for each country.

The pandas groupby method can be used to check column values from each of the
original DataFrames. We group by country since that identifies the rows from each of the
original DataFrames – all the rows for each DataFrame have the same value for country.
(It is helpful to always have a column that identifies the original DataFrames in the
concatenated DataFrame, even if that information is not needed for subsequent analysis.)
In step 6, this helped us notice that there are no values for the latabs column for Oman.
We replaced the missing values for latabs for Oman in step 7.

306 Addressing Data Issues When Combining DataFrames

See also
We went over the powerful pandas groupby method in some detail in Chapter 7, Fixing
Messy Data when Aggregating.

We examined NumPy's where function in Chapter 6, Cleaning and Exploring Data with
Series Operations.

Doing one-to-one merges
The remainder of this chapter will explore combining data horizontally; that is, merging
columns from a data table with columns from another data table. Borrowing from SQL
development, we typically talk about such operations as join operations: left joins, right
joins, inner joins, and outer joins. This recipe examines one-to-one merges, where the
merge-by values are unduplicated in both files. Subsequent recipes will demonstrate
one-to-many merges, where the merge-by values are duplicated on the right data table;
and many-to-many merges, where merge-by values are duplicated on both the left and
right data tables.

We often speak of left and right sides of a merge, a convention that we will follow
throughout this chapter. But this is of no real consequence, other than for clarity of
exposition. We can accomplish exactly the same thing with a merge if A were the left data
table and B were the right data table and vice versa.

I am using the expressions merge-by column and merge-by value in this chapter, rather
than key column or index column. This avoids possible confusion with pandas index
alignment. An index may be used as the merge-by column, but other columns may also
be used. I also want to avoid relying on relational database concepts such as primary or
foreign keys in this discussion. It is helpful to be aware of which data columns function
as primary or foreign keys when we're extracting data from relational systems, and we
should take this into account when setting indexes in pandas. But the merging we do for
most data cleaning projects often goes beyond these keys.

In the straightforward case of a one-to-one merge, each row in the left data table is
matched with one – and only one – row on the right data table, according to the merge-by
value. What happens when a merge-by value appears on one, but not the other, data table
is determined by the type of join that's specified. The following diagram illustrates the four
different types of joins:

Doing one-to-one merges 307

Figure 8.1 – A diagram illustrating the four different types of joins

When two data tables are merged with an inner join, rows are retained when the merge-by
values appear in both the left and right data tables. This is the intersection of the left and
right data tables, represented by B in the preceding diagram. Outer joins return all rows;
that is, rows where the merge-by values appear in both data tables, rows where those
values appear in the left data table but not the right, and rows where those values appear
in the right but not the left – B, A, and C, respectively. This is known as the union. Left
joins return rows where the merge-by values are present on the left data table, regardless
of whether they are present on the right data table. This is A and B. Right joins return
rows where the merge-by values are present on the right data table, regardless of whether
they are present on the left data table.

Missing values may result from outer joins, left joins, or right joins. This is because the
returned merged data table will have missing values for columns when the merge-by value
is not found. For example, when performing a left join, there may be merge-by values
from the left dataset that do not appear on the right dataset. In this case, the columns from
the right dataset will all be missing. (I say may here because it is possible to do an outer,
left, or right join that returns the same results as an inner join because the same merge-by
values appear on both sides. Sometimes, a left join is done so that we're certain that all the
rows on the left dataset, and only those rows, are returned).

We will look at all four types of joins in this recipe.

308 Addressing Data Issues When Combining DataFrames

Getting ready
We will work with two files from the National Longitudinal Survey (NLS). Both files
contain one row per person. One contains employment, educational attainment, and
income data, while the other file contains data on the income and educational attainment
of the respondents' parents.

Data note
The NLS is conducted by the United States Bureau of Labor Statistics.
It is available for public use at https://www.nlsinfo.org/
investigator/pages/search. The survey started with a cohort
of individuals in 1997 who were born between 1980 and 1985, with annual
follow-ups each year through 2017. I extracted fewer than 100 variables from
the hundreds available from this rich data source.

How to do it...
In this recipe, we will perform left, right, inner, and outer joins on two DataFrames that
have one row for each merge-by value. Let's get started:

1.	 Import pandas and load the two NLS DataFrames:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index("personid", inplace=True)

>>> nls97add = pd.read_csv("data/nls97add.csv")

2.	 Look at some of the NLS data:

>>> nls97.head()

 gender birthmonth birthyear ...
colenrfeb17 \

personid ...

100061 Female 5 1980 ... 1. Not
enrolled

100139 Male 9 1983 ... 1. Not
enrolled

100284 Male 11 1984 ... 1. Not
enrolled

100292 Male 4 1982 ...
NaN

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search

Doing one-to-one merges 309

100583 Male 1 1980 ... 1. Not
enrolled

 colenroct17 originalid

personid

100061 1. Not enrolled 8245

100139 1. Not enrolled 3962

100284 1. Not enrolled 3571

100292 NaN 2979

100583 1. Not enrolled 8511

>>> nls97.shape

(8984, 89)

>>> nls97add.head()

 originalid motherage parentincome fatherhighgrade
motherhighgrade

0 1 26 -3 16
8

1 2 19 -4 17
15

2 3 26 63000 -3
12

3 4 33 11700 12
12

4 5 34 -3 12
12

>>> nls97add.shape

(8984, 5)

3.	 Check that the number of unique values for originalid is equal to the number
of rows.

4.	 We will use originalid for our merge-by column later:

>>> nls97.originalid.nunique()==nls97.shape[0]

True

>>> nls97add.originalid.nunique()==nls97add.shape[0]

True

310 Addressing Data Issues When Combining DataFrames

5.	 Create some mismatched IDs.

Unfortunately, the NLS data is a little too clean for our purposes. Due to this, we
will mess up a couple of values for originalid. originalid is the last column
in the nls97 file and the first column in the nls97add file:

>>> nls97 = nls97.sort_values('originalid')

>>> nls97add = nls97add.sort_values('originalid')

>>> nls97.iloc[0:2, -1] = nls97.originalid+10000

>>> nls97.originalid.head(2)

personid

135335 10001

999406 10002

Name: originalid, dtype: int64

>>> nls97add.iloc[0:2, 0] = nls97add.originalid+20000

>>> nls97add.originalid.head(2)

0 20001

1 20002

Name: originalid, dtype: int64

6.	 Use join to perform a left join.

nls97 is the left DataFrame and nls97add is the right DataFrame when we
use join in this way. Show the values for the mismatched IDs. Notice that the
values for the columns from the right DataFrame are all missing when there is
no matching ID on that DataFrame (the orignalid values 10001 and 10002
appear on the left DataFrame but not on the right DataFrame):

>>> nlsnew = nls97.join(nls97add.set_
index(['originalid']))

>>> nlsnew.loc[nlsnew.originalid>9999,
['originalid','gender','birthyear','motherage',
'parentincome']]

 originalid gender birthyear motherage
parentincome

personid

135335 10001 Female 1981 nan
nan

999406 10002 Male 1982 nan
nan

Doing one-to-one merges 311

7.	 Perform a left join with merge.

The first DataFrame is the left DataFrame, while the second DataFrame is the right
DataFrame. Use the on parameter to indicate the merge-by column. Set the value of
the how parameter to "left" to do a left join. We get the same results that we get
when using join, other than with the index:

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'],
how="left")

>>> nlsnew.loc[nlsnew.originalid>9999,
['originalid','gender','birthyear','motherage',
'parentincome']]

 originalid gender birthyear motherage parentincome

0 10001 Female 1981 nan nan

1 10002 Male 1982 nan nan

8.	 Perform a right join.

With a right join, the values from the left DataFrame are missing when there is no
matching ID on the left DataFrame:

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'],
how="right")

>>> nlsnew.loc[nlsnew.originalid>9999,
['originalid','gender','birthyear','motherage',
'parentincome']]

 originalid gender birthyear motherage
parentincome

8982 20001 NaN nan 26
-3

8983 20002 NaN nan 19
-4

9.	 Perform an inner join.

None of the mismatched IDs (that have values over 10000) appear after the inner
join. This is because they do not appear on both DataFrames:

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'],
how="inner")

>>> nlsnew.loc[nlsnew.originalid>9999,
['originalid','gender','birthyear','motherage',
'parentincome']]

Empty DataFrame

312 Addressing Data Issues When Combining DataFrames

Columns: [originalid, gender, birthyear, motherage,
parentincome]

Index: []

10.	 Perform an outer join.

This retains all the rows, so rows with merge-by values in the left DataFrame but
not in the right are retained (originalid values 10001 and 10002), and rows
with merge-by values in the right DataFrame but not in the left are also retained
(originalid values 20001 and 20002):

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'],
how="outer")

>>> nlsnew.loc[nlsnew.originalid>9999,
['originalid','gender','birthyear','motherage',
'parentincome']]

 originalid gender birthyear motherage
parentincome

0 10001 Female 1,981 nan
nan

1 10002 Male 1,982 nan
nan

8984 20001 NaN nan 26
-3

8985 20002 NaN nan 19
-4

11.	 Create a function to check for ID mismatches.

The function takes a left and right DataFrame, as well as a merge-by column. It
perform an outer join because we want to see which merge-by values are present in
either DataFrame, or both of them:

>>> def checkmerge(dfleft, dfright, idvar):

... dfleft['inleft'] = "Y"

... dfright['inright'] = "Y"

... dfboth = pd.merge(dfleft[[idvar,'inleft']],\

... dfright[[idvar,'inright']], on=[idvar],
how="outer")

... dfboth.fillna('N', inplace=True)

... print(pd.crosstab(dfboth.inleft, dfboth.inright))

...

Doing one-to-one merges 313

>>> checkmerge(nls97,nls97add, "originalid")

inright N Y

inleft

N 0 2

Y 2 8982

With that, we have demonstrated how to perform the four types of joins with a one-to-
one merge.

How it works...
One-to-one merges are fairly straightforward. The merge-by column(s) only appear once
on the left and right DataFrames. However, some merge-by column values may appear
on only one DataFrame. This is what makes the type of join important. If all merge-by
column values appeared on both DataFrames, then a left join, right join, inner join, or
outer join would return the same result. We took a look at the two DataFrames in the
first few steps. In step 3, we confirmed that the number of unique values for the merge-by
column (originalid) is equal to the number of rows in both DataFrames. This tells us
that we will be doing a one-to-one merge.

If the merge-by column is the index, then the easiest way to perform a left join is to use
the join DataFrame method. We did this in step 5. We passed the right DataFrame, after
setting the index, to the join method of the left DataFrame. (The index has already been
set for the left DataFrame). The same result was returned when we performed a left join
using the pandas merge function in step 6. We used the how parameter to specify a left
join and indicated the merge-by column using on. The value that we passed to on can be
any column(s) in the DataFrame.

In steps 7 to 9, we performed the right, inner, and outer joins, respectively. This is specified
by the how value, which is the only part of the code that is different across these steps.

The simple checkmerge function we created in step 10 counted the number of rows with
merge-by column values on one DataFrame but not the other, and the number of values
on both. Passing copies of the two DataFrames to this function tells us that two rows are
in the left DataFrame and not in the right, two rows are in the right DataFrame but not
the left, and 8,982 rows are in both.

314 Addressing Data Issues When Combining DataFrames

There's more...
You should run a function similar to the checkmerge function we created in step 10
before you do any non-trivial merge – which, in my opinion, is pretty much all merges.

The merge function is more flexible than the examples I have used in this recipe suggest.
For example, in step 6, we did not have to specify the left DataFrame as the first parameter.
I could have indicated the left and right DataFrames explicitly, like so:

>>> nlsnew = pd.merge(right=nls97add, left=nls97,
on=['originalid'], how="left")

We can also specify different merge-by columns for the left and right DataFrames by using
left_on and right_on instead of on:

>>> nlsnew = pd.merge(nls97, nls97add, left_on=['originalid'],
right_on=['originalid'], how="left")

The flexibility of the merge function makes it a great tool any time we need to combine
data horizontally.

Using multiple merge-by columns
The same logic we used to perform one-to-one merges with one merge-by column applies
to merges we perform with multiple merge-by columns. Inner, outer, left, and right joins
work the same way when you have two or more merge-by columns. We will demonstrate
this in this recipe.

Getting ready
We will work with the NLS data in this recipe, specifically weeks worked and college
enrollment from 2000 through 2004. Both the weeks worked and college enrollment files
contain one row per person, per year.

Using multiple merge-by columns 315

How to do it...
We will continue this recipe with one-to-one merges, but this time with multiple merge-by
columns on each DataFrame. Let's get started:

1.	 Import pandas and load the NLS weeks worked and college enrollment data:

>>> import pandas as pd

>>> nls97weeksworked = pd.read_csv("data/
nls97weeksworked.csv")

>>> nls97colenr = pd.read_csv("data/nls97colenr.csv")

2.	 Look at some of the NLS weeks worked data:

>>> nls97weeksworked.sample(10, random_state=1)

 originalid year weeksworked

32923 7199 2003 0.0

14214 4930 2001 52.0

2863 4727 2000 13.0

9746 6502 2001 0.0

2479 4036 2000 28.0

39435 1247 2004 52.0

36416 3481 2004 52.0

6145 8892 2000 19.0

5348 8411 2000 0.0

24193 4371 2002 34.0

>>> nls97weeksworked.shape

(44920, 3)

>>> nls97weeksworked.originalid.nunique()

8984

3.	 Look at some of the NLS college enrollment data:

>>> nls97colenr.sample(10, random_state=1)

 originalid year colenr

32923 7199 2003 1. Not enrolled

14214 4930 2001 1. Not enrolled

2863 4727 2000 NaN

9746 6502 2001 1. Not enrolled

2479 4036 2000 1. Not enrolled

316 Addressing Data Issues When Combining DataFrames

39435 1247 2004 3. 4-year college

36416 3481 2004 1. Not enrolled

6145 8892 2000 1. Not enrolled

5348 8411 2000 1. Not enrolled

24193 4371 2002 2. 2-year college

>>> nls97colenr.shape

(44920, 3)

>>> nls97colenr.originalid.nunique()

8984

4.	 Check for unique values in the merge-by columns.

We get the same number of merge-by column value combinations (44,920) as there
are number of rows in both DataFrames:

>>> nls97weeksworked.groupby(['originalid','year'])\

... ['originalid'].count().shape

(44920,)

>>>

>>> nls97colenr.groupby(['originalid','year'])\

... ['originalid'].count().shape

(44920,)

5.	 Check for mismatches in the merge-by columns:

>>> def checkmerge(dfleft, dfright, idvar):

... dfleft['inleft'] = "Y"

... dfright['inright'] = "Y"

... dfboth = pd.merge(dfleft[idvar + ['inleft']],\

... dfright[idvar + ['inright']], on=idvar,
how="outer")

... dfboth.fillna('N', inplace=True)

... print(pd.crosstab(dfboth.inleft, dfboth.inright))

...

>>> checkmerge(nls97weeksworked.copy(),nls97colenr.
copy(), ['originalid','year'])

inright Y

inleft

Y 44920

Using multiple merge-by columns 317

6.	 Perform a merge with multiple merge-by columns:

>>> nlsworkschool = pd.merge(nls97weeksworked,
nls97colenr, on=['originalid','year'], how="inner")

>>> nlsworkschool.shape

(44920, 4)

>>> nlsworkschool.sample(10, random_state=1)

 originalid year weeksworked colenr

32923 7199 2003 0 1. Not enrolled

14214 4930 2001 52 1. Not enrolled

2863 4727 2000 13 NaN

9746 6502 2001 0 1. Not enrolled

2479 4036 2000 28 1. Not enrolled

39435 1247 2004 52 3. 4-year college

36416 3481 2004 52 1. Not enrolled

6145 8892 2000 19 1. Not enrolled

5348 8411 2000 0 1. Not enrolled

24193 4371 2002 34 2. 2-year college

These steps demonstrate that the syntax for running merges changes very little when there
are multiple merge-by columns.

How it works...
Every person in the NLS data has five rows for both the weeks worked and college
enrollment DataFrames, with one for each year between 2000 and 2004. In step 3, we
saw that there is a row even when the colenr value is missing. Both files contain 44,920
rows with 8,984 unique individuals (indicated by originalid). This all makes sense
(8,984*5=44,920).

Step 4 confirmed that the combination of columns we will be using for the merge-by
columns will not be duplicated, even if individuals are duplicated. Each person has only
one row for each year. This means that merging the weeks worked and college enrollment
data will be a one-to-one merge. In step 5, we checked to see whether there were any
individual and year combinations that were in one DataFrame but not the other. There
were none.

318 Addressing Data Issues When Combining DataFrames

Finally, we were ready to do the merge in step 6. We set the on parameter to a list
(['originalid','year']) to tell the merge function to use both columns in the
merge. We specified an inner join, even though we would get the same results with any
join. This is because the same merge-by values are present in both files.

There's more...
All the logic and potential issues in merging data that we discussed in the previous recipe
apply, regardless of whether we are merging with one merge-by column or several. Inner,
outer, right, and left joins work the same way. We can still calculate the number of rows
that will be returned before doing the merge. However, we still need to check for the
number of unique merge-by values and for matches between the DataFrames.

If you have worked with recipes in earlier chapters that used the NLS weeks worked and
college enrollment data, you probably noticed that it is structured differently here. In
previous recipes, there was one row per person with multiple columns for weeks worked
and college enrollment, representing weeks worked and college enrollment for multiple
years. For example, weeksworked01 is the number of weeks worked in 2001. The
structure of the weeks worked and college enrollment DataFrames we used in this recipe
is considered tidier than the NLS DataFrame we used in earlier recipes. We'll learn how to
tidy data in Chapter 9, Tidying and Reshaping Data.

Doing one-to-many merges
In one-to-many merges, there are unduplicated values for the merge-by column or
columns on the left data table and duplicated values for those columns on the right data
table. For these merges, we usually do either an inner join or a left join. Which join we use
matters when merge-by values are missing on the right data table. When performing a left
join, all the rows that would be returned from an inner join will be returned, plus one row
for each merge-by value present on the left dataset, but not the right. For those additional
rows, values for all the columns on the right dataset will be missing in the resulting
merged data. This relatively straightforward fact ends up mattering a fair bit and should be
thought through carefully before you code a one-to-many merge.

This is where I start to get nervous, and where I think it makes sense to be a little nervous.
When I do workshops on data cleaning, I pause before starting this topic and say, "do not
start a one-to-many merge until you are able to bring a friend with you."

I am joking, of course… mostly. The point I am trying to make is that something should
cause us to pause before doing a non-trivial merge, and one-to-many merges are never
trivial. Too much about the structure of our data can change.

Doing one-to-many merges 319

Specifically, there are several things we want to know about the two DataFrames we will
be merging before starting. First, we should know what columns make sense as merge-by
columns on each DataFrame. They do not have to be the same columns. Indeed, one-to-
many merges are often used to recapture relationships from an enterprise database system,
and they are consistent with the primary keys and foreign keys used, which may have
different names. (The primary key on the left data table is often linked to the foreign key
on the right data table in a relational database.) Second, we should know what kind of join
we will be using and why.

Third, we should know how many rows are on both data tables. Fourth, we should have
a good idea of how many rows will be retained based on the type of join, the number of
rows in each dataset, and preliminary checks on how many of the merge-by values will
match. If all the merge-by values are present on both datasets or if we are doing an inner
join, then the number of rows will be equal to the number of rows of the right dataset of
a one-to-many merge. But it is often not as straightforward as that. We frequently perform
left joins with one-to-many merges. With these types of joins, the number of retained
rows will be equal to the number of rows in the right dataset with a matching merge-by
value, plus the number of rows in the left dataset with non-matching merge-by values.

This should be clearer once we've worked through the examples in this recipe.

Getting ready
We will be working with data based on weather stations from the Global Historical
Climatology Network integrated database for this recipe. One of the DataFrames contains
one row for each country. The other contains one row for each weather station. There are
typically many weather stations for each country.

How to do it…
In this recipe, we will do a one-to-many merge of data for countries, which contains
one row per country, and a merge for the weather station data, which contains multiple
stations for each country. Let's get started:

1.	 Import pandas and load the weather station and country data:

>>> import pandas as pd

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")

320 Addressing Data Issues When Combining DataFrames

2.	 Set the index for the weather station (locations) and country data.

Confirm that the merge-by values for the countries DataFrame are unique:
>>> countries.set_index(['countryid'], inplace=True)

>>> locations.set_index(['countryid'], inplace=True)

>>> countries.head()

 country

countryid

AC Antigua and Barbuda

AE United Arab Emirates

AF Afghanistan

AG Algeria

AJ Azerbaijan

>>> countries.index.nunique()==countries.shape[0]

True

>>> locations[['locationid','latitude','stnelev']].
head(10)

 locationid latitude stnelev

countryid

AC ACW00011604 58 18

AE AE000041196 25 34

AE AEM00041184 26 31

AE AEM00041194 25 10

AE AEM00041216 24 3

AE AEM00041217 24 27

AE AEM00041218 24 265

AF AF000040930 35 3,366

AF AFM00040911 37 378

AF AFM00040938 34 977	

3.	 Perform a left join of countries and locations using join:

>>> stations = countries.join(locations)

>>>
stations[['locationid','latitude','stnelev','country']].
head(10)

Doing one-to-many merges 321

 locationid latitude stnelev
country

countryid

AC ACW00011604 58 18 Antigua and
Barbuda

AE AE000041196 25 34 United Arab
Emirates

AE AEM00041184 26 31 United Arab
Emirates

AE AEM00041194 25 10 United Arab
Emirates

AE AEM00041216 24 3 United Arab
Emirates

AE AEM00041217 24 27 United Arab
Emirates

AE AEM00041218 24 265 United Arab
Emirates

AF AF000040930 35 3,366
Afghanistan

AF AFM00040911 37 378
Afghanistan

AF AFM00040938 34 977
Afghanistan

4.	 Check that the merge-by column matches.

First, reload the DataFrames since we have made some changes. The checkmerge
function shows that there are 27,472 rows with merge-by values (from
countryid) in both DataFrames and two in countries (the left DataFrame) but
not in locations. This indicates that an inner join would return 27,472 rows and
a left join would return 27,474 rows. The last statement in the function identifies the
countryid values that appear in one DataFrame but not the other:

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")

>>>

>>> def checkmerge(dfleft, dfright, idvar):

... dfleft['inleft'] = "Y"

... dfright['inright'] = "Y"

... dfboth = pd.merge(dfleft[[idvar,'inleft']],\

322 Addressing Data Issues When Combining DataFrames

... dfright[[idvar,'inright']], on=[idvar],
how="outer")

... dfboth.fillna('N', inplace=True)

... print(pd.crosstab(dfboth.inleft, dfboth.inright))

... print(dfboth.loc[(dfboth.inleft=='N') | (dfboth.
inright=='N')])

...

>>> checkmerge(countries.copy(), locations.copy(),
"countryid")

inright N Y

inleft

N 0 1

Y 2 27472

 countryid inleft inright

9715 LQ Y N

13103 ST Y N

27474 FO N Y

5.	 Show the rows in one file but not the other.

The last statement in the previous step displays the two values of countryid
in countries but not in locations, and the one in locations but not
in countries:

>>> countries.loc[countries.countryid.isin(["LQ","ST"])]

 countryid country

124 LQ Palmyra Atoll [United States]

195 ST Saint Lucia

>>> locations.loc[locations.countryid=="FO"]

 locationid latitude longitude stnelev station
countryid

7363 FOM00006009 61 -7 102 AKRABERG
FO

Doing one-to-many merges 323

6.	 Merge the locations and countries DataFrames.

Perform a left join. Also, count the number of missing values for each column,
where merge-by values are present in the countries data but not in the weather
station data:

>>> stations = pd.merge(countries, locations,
on=["countryid"], how="left")

>>>
stations[['locationid','latitude','stnelev','country']].
head(10)

 locationid latitude stnelev country

0 ACW00011604 58 18 Antigua and Barbuda

1 AE000041196 25 34 United Arab Emirates

2 AEM00041184 26 31 United Arab Emirates

3 AEM00041194 25 10 United Arab Emirates

4 AEM00041216 24 3 United Arab Emirates

5 AEM00041217 24 27 United Arab Emirates

6 AEM00041218 24 265 United Arab Emirates

7 AF000040930 35 3,366 Afghanistan

8 AFM00040911 37 378 Afghanistan

9 AFM00040938 34 977 Afghanistan

>>> stations.shape

(27474, 7)

>>> stations.loc[stations.countryid.isin(["LQ","ST"])].
isnull().sum()

countryid 0

country 0

locationid 2

latitude 2

longitude 2

stnelev 2

station 2

dtype: int64

The one-to-many merge returns the expected number of rows and new missing values.

324 Addressing Data Issues When Combining DataFrames

How it works...
In step 2, we used the join DataFrame method to perform a left join of the countries
and locations DataFrames. This is the easiest way to do a merge. Since the join
method uses the index of the DataFrames for the merge, we need to set the index first.
We then passed the right DataFrame to the join method of the left DataFrame.

Although join is a little more flexible than this example suggests (you can specify the
type of join, for example), I prefer the more verbose pandas merge function for all but the
simplest of merges. I can be confident when using the merge function that all the options
I need are available to me. Before we could do the merge, we had to do some checks. We
did this in step 4. This told us how many rows to expect in the merged DataFrame if we
were to do an inner or left join; there would be 27,472 or 27,474 rows, respectively.

We also displayed the rows with merge-by values in one DataFrame but not the other. If
we are going to do a left join, we need to decide what to do with the missing values that
will result from the right DataFrame. In this case, there were two merge-by values that
were not found on the right DataFrame, giving us two missing values for those columns.

There's more…
You may have noticed that in our call to checkmerge, we passed copies of the
countries and locations DataFrames:

>>> checkmerge(countries.copy(), locations.copy(), "countryid")

We use copy here because we do not want the checkmerge function to make any
changes to our original DataFrames.

See also
We discussed join types in detail in the Doing one-to-one merges recipe.

Doing many-to-many merges 325

Doing many-to-many merges
Many-to-many merges have duplicate merge-by values in both the left and right
DataFrames. We should only rarely need to do a many-to-many merge. Even when data
comes to us in that form, it is often because we are missing the central file in multiple
one-to-many relationships. For example, there are donor, donor contributions, and donor
contact information data tables, and the last two files contain multiple rows per donor.
However, in this case, we do not have access to the donor file, which has a one-to-many
relationship with both the contributions and contact information files. This happens more
frequently than you may think. People sometimes give us data with little awareness of the
underlying structure. When I do a many-to-many merge, it is typically because I am missing
some key information rather than because that was how the database was designed.

Many-to-many merges return the Cartesian product of the merge-by column values.
So, if a donor ID appears twice on the donor contact information file and five times
on the donor contributions file, then the merge will return 10 rows. The problem here
is there will be more rows in the returned data, but this does not make sense analytically.
In this example, a many-to-many merge will duplicate the donor contributions, once for
each address.

Often, when faced with a potential many-to-many merge situation, the solution is not
to do it. Instead, we can recover the implied one-to-many relationships. With the donor
example, we could remove all the rows except for the most recent contact information,
thus ensuring that there is one row per donor. We could then do a one-to-many merge
with the donor contributions file. But we are not always able to avoid doing a many-to-
many merge. Sometimes, we must produce an analytical or flat file that keeps all of the
data, without regard for duplication. This recipe demonstrates how to do those merges
when that is required.

Getting ready
We will work with data based on the Cleveland Museum of Art's collections. We will use
two CSV files: one containing each media citation for each item in the collection and
another containing the creator(s) of each item.

Tip
The Cleveland Museum of Art provides an API for public access to this data:
https://openaccess-api.clevelandart.org/. Much more
than the citations and creators data is available in the API.

https://openaccess-api.clevelandart.org/

326 Addressing Data Issues When Combining DataFrames

How to do it...
Follow these steps to complete this recipe:

1.	 Load pandas and the Cleveland Museum of Art (CMA) collections data:

>>> import pandas as pd

>>> cmacitations = pd.read_csv("data/cmacitations.csv")

>>> cmacreators = pd.read_csv("data/cmacreators.csv")

2.	 Look at the citations data:

>>> cmacitations.head(10)

 id
citation

0 92937 Milliken, William M. "The Second Exhibition
of...

1 92937 Glasier, Jessie C. "Museum Gets Prize-Winning
...

2 92937 "Cleveland Museum Acquires Typical Pictures
by...

3 92937 Milliken, William M. "Two Examples of Modern
P...

4 92937 Memorial Exhibition of the Work of George
...

5 92937 The Cleveland Museum of Art. Handbook of
t...

6 92937 Cortissoz, Royal. "Paintings and Prints by
Geo...

7 92937 Isham, Samuel, and Royal Cortissoz. The
Hi...

8 92937 Mather, Frank Jewett, Charles Rufus Morey,
and...

9 92937 "Un Artiste Americain."
L'illustration.</e...

>>> cmacitations.shape

(11642, 2)

>>> cmacitations.id.nunique()

935

Doing many-to-many merges 327

3.	 Look at the creators data:

>>> cmacreators.loc[:,['id','creator','birth_year']].
head(10)

 id creator
birth_year

0 92937 George Bellows (American, 1882-1925)
1882

1 94979 John Singleton Copley (American, 1738-1815)
1738

2 137259 Gustave Courbet (French, 1819-1877)
1819

3 141639 Frederic Edwin Church (American, 1826-1900)
1826

4 93014 Thomas Cole (American, 1801-1848)
1801

5 110180 Albert Pinkham Ryder (American, 1847-1917)
1847

6 135299 Vincent van Gogh (Dutch, 1853-1890)
1853

7 125249 Vincent van Gogh (Dutch, 1853-1890)
1853

8 126769 Henri Rousseau (French, 1844-1910)
1844

9 135382 Claude Monet (French, 1840-1926)
1840

>>> cmacreators.shape

(737, 8)

>>> cmacreators.id.nunique()

654

4.	 Show duplicates of merge-by values in the citations data.

5.	 There are 174 media citations for collection item 148758:

>>> cmacitations.id.value_counts().head(10)

148758 174

122351 116

92937 98

123168 94

328 Addressing Data Issues When Combining DataFrames

94979 93

149112 93

124245 87

128842 86

102578 84

93014 79

Name: id, dtype: int64

6.	 Show duplicates of the merge-by values in the creators data:

>>> cmacreators.id.value_counts().head(10)

140001 4

149386 4

114537 3

149041 3

93173 3

142752 3

114538 3

146795 3

146797 3

142753 3

Name: id, dtype: int64

7.	 Check the merge.

Use the checkmerge function we used in the Doing one-to-many merges recipe:
>>> def checkmerge(dfleft, dfright, idvar):

... dfleft['inleft'] = "Y"

... dfright['inright'] = "Y"

... dfboth = pd.merge(dfleft[[idvar,'inleft']],\

... dfright[[idvar,'inright']], on=[idvar],
how="outer")

... dfboth.fillna('N', inplace=True)

... print(pd.crosstab(dfboth.inleft, dfboth.inright))

...

>>> checkmerge(cmacitations.copy(), cmacreators.copy(),
"id")

inright N Y

Doing many-to-many merges 329

inleft

N 0 46

Y 2579 9701

8.	 Show a merge-by value duplicated in both DataFrames:

>>> cmacitations.loc[cmacitations.id==124733]

 id
citation

8963 124733 Weigel, J. A. G. Catalog einer Sammlung
vo...

8964 124733 Winkler, Friedrich. Die Zeichnungen
Albrec...

8965 124733 Francis, Henry S. "Drawing of a Dead Blue
Jay ...

8966 124733 Kurz, Otto. Fakes: A Handbook for
Collecto...

8967 124733 Minneapolis Institute of Arts.
Watercolors...

8968 124733 Pilz, Kurt. "Hans Hoffmann: Ein Nürnberger
Dür...

8969 124733 Koschatzky, Walter and Alice Strobl.
Düre...

8970 124733 Johnson, Mark M. Idea to Image:
Preparator...

8971 124733 Kaufmann, Thomas DaCosta. Drawings from
th...

8972 124733 Koreny, Fritz. Albrecht Dürer and the
ani...

8973 124733 Achilles-Syndram, Katrin. Die
Kunstsammlun...

8974 124733 Schoch, Rainer, Katrin Achilles-Syndram,
and B...

8975 124733 DeGrazia, Diane and Carter E. Foster.
Mast...

8976 124733 Dunbar, Burton L., et al. A Corpus of
Draw...

>>> cmacreators.loc[cmacreators.id==124733,
['id','creator','birth_year','title']]

330 Addressing Data Issues When Combining DataFrames

 id creator
birth_year \

449 124733 Albrecht Dürer (German, 1471-1528)
1471

450 124733 Hans Hoffmann (German, 1545/50-1591/92)
1545/50

 title

449 Dead Blue Roller

450 Dead Blue Roller

9.	 Do a many-to-many merge:

>>> cma = pd.merge(cmacitations, cmacreators, on=['id'],
how="outer")

>>> cma['citation'] = cma.citation.str[0:20]

>>> cma['creator'] = cma.creator.str[0:20]

>>> cma.loc[cma.id==124733, ['citation','creator','birth_
year']]

 citation creator birth_
year

9457 Weigel, J. A. G. <em Albrecht Dürer (Germ
1471

9458 Weigel, J. A. G. <em Hans Hoffmann (Germa
1545/50

9459 Winkler, Friedrich. Albrecht Dürer (Germ
1471

9460 Winkler, Friedrich. Hans Hoffmann (Germa
1545/50

9461 Francis, Henry S. "D Albrecht Dürer (Germ
1471

9462 Francis, Henry S. "D Hans Hoffmann (Germa
1545/50

9463 Kurz, Otto. Fake Albrecht Dürer (Germ
1471

9464 Kurz, Otto. Fake Hans Hoffmann (Germa
1545/50

9465 Minneapolis Institut Albrecht Dürer (Germ
1471

Doing many-to-many merges 331

9466 Minneapolis Institut Hans Hoffmann (Germa
1545/50

9467 Pilz, Kurt. "Hans Ho Albrecht Dürer (Germ
1471

9468 Pilz, Kurt. "Hans Ho Hans Hoffmann (Germa
1545/50

9469 Koschatzky, Walter a Albrecht Dürer (Germ
1471

9470 Koschatzky, Walter a Hans Hoffmann (Germa
1545/50

... last 14 rows removed to save space

Now that I have taken you through the messiness of a many-to-many merge, I'll say a little
more about how it works.

How it works...
Step 2 told us that there were 11,642 citations for 935 unique IDs. There is a unique ID
for each item in the museum's collection. On average, each item has 12 media citations
(11,642/935). Step 3 told us that there are 737 creators over 654 items, so there is only one
creator for the overwhelming majority of pieces. But the fact that there are duplicated IDs
(our merge-by value) on both the citations and creators DataFrames means that
our merge will be a many-to-many merge.

Step 4 gave us a sense of which IDs are duplicated on the citations DataFrame. Some
items in the museum's collection have more than 80 citations. It is worth taking a closer
look at the citations for those items to see whether they make sense. Step 5 showed us that
even when there is more than one creator, there are rarely more than three. In step 6, we
saw that most IDs have rows in both the citations file and the creators file, but
a fair number have citations rows but no creators rows. We will lose those 2,579
rows if we do an inner join or a right join, but not if we do a left join or an outer join.
(This assumes that the citations DataFrame is the left DataFrame and the creators
DataFrame is the right one.)

We looked at an ID that is in both DataFrames in step 7 – one that also has duplicate
IDs in both DataFrames. There are 14 rows for this collection item in the citations
DataFrame and two in the creators DataFrame. This will result in 28 rows (2 * 14) with
that ID in the merged DataFrame. The citations data will be repeated for each row
in creators.

332 Addressing Data Issues When Combining DataFrames

This was confirmed when we looked at the results of the merge in step 8. We performed
an outer join with id as the merge-by column. (We also shortened the citation and
creator descriptions to make them easier to view.) When we displayed the rows in the
merged file for the same ID we used in step 7, we got the 28 rows we were expecting
(I removed the last 14 rows of output to save space).

There's more...
It is good to understand what to expect when we do a many-to-many merge because
there are times when it cannot be avoided. But even in this case, we can tell that the
many-to-many relationship is really just two one-to-many relationships with the data file
missing from the one side. There is likely a data table that contains one row per collection
item that has a one-to-many relationship with both the citations data and the
creators data. When we do not have access to a file like that, it is probably best to try to
reproduce a file with that structure. With this data, we could have created a file containing
id and maybe title, and then done one-to-many merges with the citations and
creators data.

However, there are occasions when we must produce a flat file for subsequent analysis. We
might need to do that when we, or a colleague who is getting the cleaned data from us, are
using software that cannot handle relational data well. For example, someone in another
department might do a lot of data visualization work with Excel. As long as that person
knows which analyses require them to remove duplicated rows, a file with a structure like
the one we produced in step 8 might work fine.

Developing a merge routine
I find it helpful to think of merging data as the parking lot of the data cleaning process.
Merging data and parking may seem routine, but they are where a disproportionate
number of accidents occur. One approach to getting in and out of parking lots without an
incident occurring is to use a similar strategy each time you go to a particular lot. It could
be that you always go to a relatively low traffic area and you get to that area the same way
most of the time.

I think a similar approach can be applied to getting in and out of merges with our data
relatively unscathed. If we choose a general approach that works for us 80 to 90 percent of
the time, we can focus on what is most important – the data, rather than the techniques
for manipulating that data.

Developing a merge routine 333

In this recipe, I will demonstrate the general approach that works for me, but the
particular techniques I will use are not very important. I think it is just helpful to have an
approach that you understand well and that you become comfortable using.

Getting ready
We will return to the objectives we focused on in the Doing one-to-many merges recipe of
this chapter. We want to do a left join of the countries data with the locations data
from the Global Historical Climatology Network integrated database.

How to do it…
In this recipe, we will do a left join of the countries and locations data after
checking for merge-by value mismatches. Let's get started:

1.	 Import pandas and load the weather station and country data:

>>> import pandas as pd

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")

2.	 Check the merge-by column matches:

>>> def checkmerge(dfleft, dfright, mergebyleft,
mergebyright):

... dfleft['inleft'] = "Y"

... dfright['inright'] = "Y"

... dfboth = pd.merge(dfleft[[mergebyleft,'inleft']],\

... dfright[[mergebyright,'inright']], left_
on=[mergebyleft],\

... right_on=[mergebyright], how="outer")

... dfboth.fillna('N', inplace=True)

... print(pd.crosstab(dfboth.inleft, dfboth.inright))

... print(dfboth.loc[(dfboth.inleft=='N') | (dfboth.
inright=='N')].head(20))

...

>>> checkmerge(countries.copy(), locations.copy(),
"countryid", "countryid")

inright N Y

inleft

N 0 1

334 Addressing Data Issues When Combining DataFrames

Y 2 27472

 countryid inleft inright

9715 LQ Y N

13103 ST Y N

27474 FO N Y

3.	 Merge the country and location data:

>>> stations = pd.merge(countries, locations, left_
on=["countryid"], right_on=["countryid"], how="left")

>>>
stations[['locationid','latitude','stnelev','country']].
head(10)

 locationid latitude stnelev country

0 ACW00011604 58 18 Antigua and Barbuda

1 AE000041196 25 34 United Arab Emirates

2 AEM00041184 26 31 United Arab Emirates

3 AEM00041194 25 10 United Arab Emirates

4 AEM00041216 24 3 United Arab Emirates

5 AEM00041217 24 27 United Arab Emirates

6 AEM00041218 24 265 United Arab Emirates

7 AF000040930 35 3,366 Afghanistan

8 AFM00040911 37 378 Afghanistan

9 AFM00040938 34 977 Afghanistan

>>> stations.shape

(27474, 7)

Here, we got the expected number of rows from a left join; 27,472 rows with merge-by
values in both DataFrames and two rows with merge-by values in the left DataFrame, but
not the right.

Developing a merge routine 335

How it works...
For the overwhelming majority of merges I do, something like the logic used in steps 2
and 3 works well. We added a fourth argument to the checkmerge function we used in
the previous recipe. This allows us to specify different merge-by columns for the left and
right DataFrames. We do not need to recreate this function every time we do a merge. We
can just include it in a module that we import. (We'll go over adding helper functions to
modules in the final chapter of this book).

Calling the checkmerge function before running a merge gives us enough information
so that we know what to expect when running the merge with different join types. We
will know how many rows will be returned from an inner, outer, left, or right join. We will
also know where the new missing values will be generated before we run the actual merge.
Of course, this is a fairly expensive operation, requiring us to run a merge twice each
time – one diagnostic outer join followed by whatever join we subsequently choose. But
I would argue that it is usually worth it, if for no other reason than that it helps us to stop
and think about what we are doing.

Finally, we performed the merge in step 3. This is my preferred syntax. I always use the
left DataFrame for the first argument and the right DataFrame for the second argument,
though merge allows us to specify the left and right DataFrames in different ways. I also
set values for left_on and right_on, even if the merge-by column is the same and
I could use on instead (as we did in the previous recipe). This is so I will not have to
change the syntax in cases where the merge-by column is different, and I like it that it
makes the merge-by column explicit for both DataFrames.

A somewhat more controversial routine is that I default to a left join, setting the how
parameter to left initially. I make that my starting assumption and then ask myself if
there is any reason to do a different join. The rows in the left DataFrame often represent
my unit of analysis (students, patients, customers, and so on) and that I am adding
supplemental data (GPA, blood pressure, zip code, and so on). It may be problematic to
remove rows from the unit of analysis because the merge-by value is not present on the
right DataFrame, as would happen if I did an inner join instead. For example, in the Doing
one-to-one merges recipe of this chapter, it probably would not have made sense to remove
rows from the main NLS data because they do not appear on the supplemental data we
have for parents.

See also
We will create modules with useful data cleaning functions in Chapter 10, User-Defined
Functions and Classes to Automate Data Cleaning.

We have discussed the types of joins in the Doing one to one merges recipe in this chapter.

9
Tidying and

Reshaping Data
As Leo Tolstoy and Hadley Wickham tell us, all tidy data is fundamentally alike, but all
untidy data is messy in its own special way. How many times have we all stared at some
rows of data and thought, "what..... how...... why did they do that?" This overstates the case
somewhat. Although there are many ways that data can be poorly structured, there are
limits to human creativity in this regard. It is possible to categorize the most frequent ways
in which datasets deviate from normalized or tidy forms.

This was Hadley Wickham's observation in his seminal work on tidy data. We can
lean on that work, and our own experiences with oddly structured data, to prepare
for the reshaping we have to do. Untidy data often has one or more of the following
characteristics: a lack of clarity about merge-by column relationships; data redundancy
on the one side of one-to-many relationships; data redundancy due to many-to-many
relationships; values stored in column names; multiple values stored in one variable value;
and data not being structured at the unit of analysis. (Although the last category is not
necessarily a case of untidy data, some of the techniques we will review in the next few
recipes are applicable to common unit-of-analysis problems.)

338 Tidying and Reshaping Data

We use powerful tools in this chapter to deal with data cleaning challenges like the
preceding. Specifically, we'll go over the following:

•	 Removing duplicated rows

•	 Fixing many-to-many relationships

•	 Using stack and melt to reshape data from a wide to long format

•	 Melting multiple groups of columns

•	 Using unstack and pivot to reshape data from long to wide format

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Removing duplicated rows
There are several reasons why we might have data duplicated at the unit of analysis:

•	 The existing DataFrame may be the result of a one-to-many merge, and the one side
is the unit of analysis.

•	 The DataFrame is repeated measures or panel data collapsed into a flat file, which is
just a special case of the first situation.

•	 We may be working with an analysis file where multiple one-to-many relationships
have been flattened, creating many-to-many relationships.

When the one side is the unit of analysis, data on the many side may need to be collapsed
in some way. For example, if we are analyzing outcomes for a cohort of students at a
college, students are the unit of analysis; but we may also have course enrollment data for
each student. To prepare the data for analysis, we might need to first count the number
of courses, sum the total credits, or calculate the GPA for each student, before ending up
with one row per student. To generalize from this example, we often need to aggregate the
information on the many side before removing duplicated data.

In this recipe, we look at pandas techniques for removing duplicate rows, and consider
when we do and don't need to do aggregation during that process. We address duplication
in many-to-many relationships in the next recipe.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Removing duplicated rows 339

Getting ready...
We will work with the COVID-19 daily case data in this recipe. It has one row per day per
country, each row having the number of new cases and new deaths for that day. There are
also demographic data for each country, and running totals for cases and deaths, so the
last row for each country provides total cases and total deaths.

Note
Our World in Data provides COVID-19 public use data at https://
ourworldindata.org/coronavirus-source-data. The data
used in this recipe was downloaded on July 18, 2020.

How to do it…
We use drop_duplicates to remove duplicated demographic data for each country
in the COVID daily data. We explore groupby as an alternative to drop_duplicates
when we need to do some aggregation before removing duplicated data:

1.	 Import pandas and the COVID daily cases data:

>>> import pandas as pd

>>> covidcases = pd.read_csv("data/covidcases720.csv")

2.	 Create lists for the daily cases and deaths columns, the case total columns, and the
demographic columns:

>>> dailyvars = ['casedate','new_cases','new_deaths']

>>> totvars = ['location','total_cases','total_deaths']

>>> demovars = ['population','population_
density','median_age',

... 'gdp_per_capita','hospital_beds_per_
thousand','region']

>>>

>>> covidcases[dailyvars + totvars + demovars].head(3).T

 0 1
2

casedate 2019-12-31 2020-01-01
2020-01-02

new_cases 0.00 0.00
0.00

new_deaths 0.00 0.00
0.00

https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data

340 Tidying and Reshaping Data

location Afghanistan Afghanistan
Afghanistan

total_cases 0.00 0.00
0.00

total_deaths 0.00 0.00
0.00

population 38,928,341.00 38,928,341.00
38,928,341.00

population_density 54.42 54.42
54.42

median_age 18.60 18.60
18.60

gdp_per_capita 1,803.99 1,803.99
1,803.99

hospital_beds_per_thousand 0.50 0.50
0.50

region South Asia South Asia
South Asia

3.	 Create a DataFrame with just the daily data:

>>> coviddaily = covidcases[['location'] + dailyvars]

>>> coviddaily.shape

(29529, 4)

>>> coviddaily.head()

 location casedate new_cases new_deaths

0 Afghanistan 2019-12-31 0.00 0.00

1 Afghanistan 2020-01-01 0.00 0.00

2 Afghanistan 2020-01-02 0.00 0.00

3 Afghanistan 2020-01-03 0.00 0.00

4 Afghanistan 2020-01-04 0.00 0.00

4.	 Select one row per country.

Check to see how many countries (location) to expect by getting the number
of unique locations. Sort by location and casedate. Then use drop_
duplicates to select one row per location, and use the keep parameter to
indicate that we want the last row for each country:

>>> covidcases.location.nunique()

209

Removing duplicated rows 341

>>> coviddemo = covidcases[['casedate'] + totvars +
demovars].\

... sort_values(['location','casedate']).\

... drop_duplicates(['location'], keep='last').\

... rename(columns={'casedate':'lastdate'})

>>>

>>> coviddemo.shape

(209, 10)

>>> coviddemo.head(3).T

 184 310
500

lastdate 2020-07-12 2020-07-12
2020-07-12

location Afghanistan Albania
Algeria

total_cases 34,451.00 3,371.00
18,712.00

total_deaths 1,010.00 89.00
1,004.00

population 38,928,341.00 2,877,800.00
43,851,043.00

population_density 54.42 104.87
17.35

median_age 18.60 38.00
29.10

gdp_per_capita 1,803.99 11,803.43
13,913.84

hospital_beds_per_thousand 0.50 2.89
1.90

region South Asia Eastern Europe
North Africa

5.	 Sum the values for each group.

Use the pandas DataFrame groupby method to sum total cases and deaths for
each country. Also, get the last value for some of the columns that are duplicated
across all rows for each country: median_age, gdp_per_capita, region, and
casedate. (We select only a few columns from the DataFrame.) Notice that the
numbers match those from step 4:

>>> covidtotals = covidcases.groupby(['location'], as_
index=False).\

342 Tidying and Reshaping Data

... agg({'new_cases':'sum','new_deaths':'sum','median_
age':'last',

... 'gdp_per_
capita':'last','region':'last','casedate':'last',

... 'population':'last'}).\

... rename(columns={'new_cases':'total_cases',

... 'new_deaths':'total_
deaths','casedate':'lastdate'})

>>> covidtotals.head(3).T

 0 1
2

location Afghanistan Albania
Algeria

total_cases 34,451.00 3,371.00
18,712.00

total_deaths 1,010.00 89.00
1,004.00

median_age 18.60 38.00
29.10

gdp_per_capita 1,803.99 11,803.43
13,913.84

region South Asia Eastern Europe North
Africa

lastdate 2020-07-12 2020-07-12 2020-07-
12

population 38,928,341.00 2,877,800.00
43,851,043.00

The choice of drop_duplicates or groupby to eliminate data redundancy comes
down to whether we need to do any aggregation before collapsing the many side.

How it works...
The COVID data has one row per country per day, but very little of the data is actually daily
data. Only casedate, new_cases, and new_deaths can be considered daily data. The
other columns show cumulative cases and deaths, or demographic data. The cumulative
data is redundant since we have the actual values for new_cases and new_deaths. The
demographic data has the same values for each country across all days.

Fixing many-to-many relationships 343

There is an implied one-to-many relationship between country (and its associated
demographic data) on the one side and the daily data on the many side. We can recover
that structure by creating a DataFrame with the daily data, and another DataFrame with
the demographic data. We do that in steps 3 and 4. When we need totals across countries
we can generate those ourselves, rather than storing redundant data.

The running totals variables are not completely useless, however. We can use them
to check our calculations of total cases and total deaths. Step 5 shows how we can use
groupby to restructure data when we need to do more than drop duplicates. In this case,
we want to summarize new_cases and many-to-many relationships new_deaths for
each country.

There's more...
I can sometimes forget a small detail. When changing the structure of data, the meaning
of certain columns can change. In this example, casedate becomes the date for the last
row for each country. We rename that column lastdate.

See also...
We explore groupby in more detail in Chapter 7, Fixing Messy Data when Aggregating.
Hadley Wickham's Tidy Data paper is available at https://vita.had.co.nz/
papers/tidy-data.pdf.

Fixing many-to-many relationships
We sometimes have to work with a data table that was created from a many-to-many
merge. This is a merge where merge-by column values are duplicated on both the left and
right sides. As we discussed in the previous chapter, many-to-many relationships in a
data file often represent multiple one-to-many relationships where the one side has been
removed. There is a one-to-many relationship between dataset A and dataset B, and also
a one-to-many relationship between dataset A and dataset C. The problem we sometimes
have is that we receive a data file with B and C merged, but with A excluded.

The best way to work with data structured in this way is to recreate the implied
one-to-many relationships, if possible. We do this by first creating a dataset structured
like A; that is, how A is likely structured given the many-to-many relationship we see
between B and C. The key to being able to do this is in identifying a good merge-by
column for the data on both sides of the many-to-many relationship. This column or
column(s) will be duplicated in both the B and C datasets, but will be unduplicated in the
theoretical A dataset.

https://vita.had.co.nz/papers/tidy-data.pdf
https://vita.had.co.nz/papers/tidy-data.pdf

344 Tidying and Reshaping Data

The data we use in this recipe is a good example. We have data from the Cleveland
Museum of Art on its collections. We have two datasets: a creators file and a media
citations file. The creators file has the creator or creators of every item in the museum's
collections. There is one row for each creator, so there may be multiple rows for each
collection item. The citations file has citations (in newspapers, from news stations, in
journals, and so on) for every item. The citations file has a row for each citation, and so
often has multiple rows per collection item.

We do not have what we might expect – a collections file with one row (and a unique
identifier) for each item in the collection. This leaves us with just the many-to-many
relationship between the creators and citations datasets.

I should add that this situation is not the fault of the Cleveland Museum of Art, which
generously provides an API that returns collections data as a JSON file. It is possible
to extract the data needed from the JSON file to produce a collections DataFrame, in
addition to the creators and citations data that I have extracted. But we do not always have
access to data like that and it is good to have strategies for when we do not.

Getting ready...
We will work with data on the Cleveland Museum of Art's collections. The CSV file has
data on both creators and citations merged by an id column that identifies the collection
item. There are one or many rows for citations and creators for each item.

Note
The Cleveland Museum of Art provides an API for public access to this data:
https://openaccess-api.clevelandart.org. Much more
than the citations and creators data used in this recipe is available with the API.

How to do it…
We handle many-to-many relationships between DataFrames by recovering the multiple
implied one-to-many relationships in the data:

1.	 Import pandas and the museum's collections data:

>>> import pandas as pd

>>> cma = pd.read_csv("data/cmacollections.csv")

https://openaccess-api.clevelandart.org

Fixing many-to-many relationships 345

2.	 Show the museum's collections data.

Also show the number of unique id, citation, and creator values:
>>> cma.shape

(12326, 9)

>>> cma.head(2).T

 0 1

id 92937 92937

citation Milliken, William Glasier, Jessie C.

creator George Bellows (Am George Bellows (Am

title Stag at Sharkey's Stag at Sharkey's

birth_year 1882 1882

death_year 1925 1925

collection American - Painting American - Painting

type Painting Painting

creation_date 1909 1909

>>> cma.id.nunique()

972

>>> cma.drop_duplicates(['id','citation']).id.count()

9758

>>> cma.drop_duplicates(['id','creator']).id.count()

1055

3.	 Show a collection item with duplicated citations and creators.

Only show the first 14 rows (there are actually 28 in total):
>>> cma.set_index(['id'], inplace=True)

>>> cma.loc[124733, ['title','citation','creator','birth_
year']].head(14)

 title citation
creator birth_year

id

124733 Dead Blue Roller Weigel, J. A. G. Albrecht
Dürer(Ge 1471

124733 Dead Blue Roller Weigel, J. A. G. Hans
Hoffmann(Ger 1545/50

124733 Dead Blue Roller Winkler, Friedrich Albrecht
Dürer(Ge 1471

346 Tidying and Reshaping Data

124733 Dead Blue Roller Winkler, Friedrich Hans
Hoffmann(Ger 1545/50

124733 Dead Blue Roller Francis, Henry S. Albrecht
Dürer(Ge 1471

124733 Dead Blue Roller Francis, Henry S. Hans
Hoffmann(Ger 1545/50

124733 Dead Blue Roller Kurz, Otto. Fa Albrecht
Dürer(Ge 1471

124733 Dead Blue Roller Kurz, Otto. Fa Hans
Hoffmann(Ger 1545/50

124733 Dead Blue Roller Minneapolis Instit Albrecht
Dürer(Ge 1471

124733 Dead Blue Roller Minneapolis Instit Hans
Hoffmann(Ger 1545/50

124733 Dead Blue Roller Pilz, Kurt. "Hans Albrecht
Dürer(Ge 1471

124733 Dead Blue Roller Pilz, Kurt. "Hans Hans
Hoffmann(Ger 1545/50

124733 Dead Blue Roller Koschatzky, Walter Albrecht
Dürer(Ge 1471

124733 Dead Blue Roller Koschatzky, Walter Hans
Hoffmann(Ger 1545/50

4.	 Create a collections DataFrame:

>>> collectionsvars = ['title','collection','type']

>>> cmacollections = cma[collectionsvars].\

... reset_index().\

... drop_duplicates(['id']).\

... set_index(['id'])

>>>

>>> cmacollections.shape

(972, 3)

>>> cmacollections.head()

 title
collection type

id

92937 Stag at Sharkey's American -
Painting Painting

94979 Nathaniel Hurd American -
Painting Painting

Fixing many-to-many relationships 347

137259 Mme L... (Laure Borreau) Mod Euro -
Painting Painting

141639 Twilight in the Wilderness American -
Painting Painting

93014 View of Schroon Mountain, Esse American -
Painting Painting

>>> cmacollections.loc[124733]

title Dead Blue Roller

collection DR - German

type Drawing

Name: 124733, dtype: object

5.	 Create a citations DataFrame:

This will just have the id and the citation:
>>> cmacitations = cma[['citation']].\

... reset_index().\

... drop_duplicates(['id','citation']).\

... set_index(['id'])

>>>

>>> cmacitations.loc[124733]

 citation

id

124733 Weigel, J. A. G. <

124733 Winkler, Friedrich

124733 Francis, Henry S.

124733 Kurz, Otto. Fa

124733 Minneapolis Instit

124733 Pilz, Kurt. "Hans

124733 Koschatzky, Walter

124733 Johnson, Mark M<em

124733 Kaufmann, Thomas D

124733 Koreny, Fritz. <em

124733 Achilles-Syndram,

124733 Schoch, Rainer, Ka

124733 DeGrazia, Diane an

124733 Dunbar, Burton L.,

348 Tidying and Reshaping Data

6.	 Create a creators DataFrame:

>>> creatorsvars = ['creator','birth_year','death_year']

>>>

>>> cmacreators = cma[creatorsvars].\

... reset_index().\

... drop_duplicates(['id','creator']).\

... set_index(['id'])

>>>

>>> cmacreators.loc[124733]

 creator birth_year death_year

id

124733 Albrecht Dürer (Ge 1471 1528

124733 Hans Hoffmann (Ger 1545/50 1591/92

7.	 Count the number of collection items with a creator born after 1950.

First, convert the birth_year values from string to numeric. Then create
a DataFrame with just young artists. Finally, merge that DataFrame with the
collections DataFrame to create a flag for collection items that have at least one
creator born after 1950:

>>> cmacreators['birth_year'] = cmacreators.birth_year.
str.findall("\d+").str[0].astype(float)

>>> youngartists = cmacreators.loc[cmacreators.birth_
year>1950, ['creator']].assign(creatorbornafter1950='Y')

>>> youngartists.shape[0]==youngartists.index.nunique()

True

>>> youngartists

 creator creatorbornafter1950

id

371392 Belkis Ayón (Cuban Y

162624 Robert Gober (Amer Y

172588 Rachel Harrison (A Y

169335 Pae White (America Y

169862 Fred Wilson (Ameri Y

312739 Liu Jing (Chinese, Y

293323 Zeng Xiaojun (Chin Y

Fixing many-to-many relationships 349

172539 Fidencio Fifield-P Y

>>> cmacollections = pd.merge(cmacollections,
youngartists, left_on=['id'], right_on=['id'],
how='left')

>>> cmacollections.creatorbornafter1950.fillna("N",
inplace=True)

>>> cmacollections.shape

(972, 5)

>>> cmacollections.creatorbornafter1950.value_counts()

N 964

Y 8

Name: creatorbornafter1950, dtype: int64

We now we have three DataFrames – collection items (cmacollections), citations
(cmacitations), and creators (cmacreators) – instead of one. cmacollections
has a one-to-many relationship with both cmacitations and cmacreators.

How it works...
If you mainly work directly with enterprise data, you probably rarely see a file with this
kind of structure, but many of us are not so lucky. If we requested data from the museum
on both the media citations and creators of their collections, it would not be completely
surprising to get a data file similar to this one, with duplicated data for citations and
creators. But the presence of what looks like a unique identifier of collection items gives us
some hope of recovering the one-to-many relationships between a collection item and its
citations, and a collection item and its creators.

Step 2 shows that there are 972 unique id values. This suggests that there are probably
only 972 collection items represented in the 12,326 rows of the DataFrame. There are
9,758 unique id and citation pairs, or about 10 citations per collection item on
average. There are 1,055 id and creator pairs.

Step 3 shows the duplication of collection item values such as title. The number of rows
returned is equal to the Cartesian product of the merge-by values on the left and ride side
of the merge. For the Dead Blue Roller item, there are 14 citations (we only show half of
them in step 3) and 2 creators. The row for each creator is duplicated 14 times; once for
each citation. There are very few use cases for which it makes sense to leave the data in
this state.

350 Tidying and Reshaping Data

Our North Star to guide us in getting this data into better shape is the id column. We
use it to create a collections DataFrame in step 4. We keep only one row for each value
of id, and get other columns associated with a collection item, rather than a citation
or creator – title, collection, and type (since id is the index we need to first reset
the index before dropping duplicates).

We follow the same procedure to create citations and creators DataFrames in steps
5 and 6. We use drop_duplicates to keep unique combinations of id and citation,
and unique combinations of id and creator, respectively. This gives us the expected
number of rows in the example case: 14 citations rows and 2 creators rows.

Step 7 demonstrates how we can now work with these DataFrames to construct new
columns and do analysis. We want the number of collection items that have at least
one creator born after 1950. The unit of analysis is the collection items, but we need
information from the creators DataFrame for the calculation. Since the relationship
between cmacollections and cmacreators is one-to-many, we make sure that
we are only retrieving one row per id in the creators DataFrame, even if more than one
creator for an item was born after 1950:

youngartists.shape[0]==youngartists.index.nunique()

There's more...
The duplication that occurs with many-to-many merges is most problematic when we
are working with quantitative data. If the original file had the assessed value of each item
in the collection, it would be duplicated in much the same way as title is duplicated.
Any descriptive statistics we generated on the assessed value would be off by a fair bit. For
example, if the Dead Blue Roller item had an assessed value of $1,000,000, we would get
$28,000,000 when summarizing the assessed value, since there are 28 duplicated values.

This shows the importance of normalized and tidy data. If there were an assessed value
column, we would have included it in the cmacollections DataFrame we created
in step 4. This value would be unduplicated and we would be able to generate summary
statistics for collections.

I find it helpful to always return to the unit of analysis, which overlaps with the tidy data
concept, but is different in some ways. The approach in step 7 would have been very
different if we were just interested in the number of creators born after 1950, instead of the
number of collection items with a creator born after 1950. In that case, the unit of analysis
would be the creator and we would just use the creators DataFrame.

Using stack and melt to reshape data from wide to long format 351

See also...
We examine many-to-many merges in the Doing many-to-many merges recipe in Chapter 8,
Addressing Data Issues when Combining DataFrames.

We demonstrate a very different way to work with data structured in this way in Chapter 10,
User Defined Functions and Classes to Automate Data Cleaning, in the Classes that handle
non-tabular data structures recipe.

Using stack and melt to reshape data from
wide to long format
One type of untidiness that Wickham identified is variable values embedded in column
names. Although this rarely happens with enterprise or relational data, it is fairly common
with analytical or survey data. Variable names might have suffixes that indicate a time
period, such as a month or year. Another case is that similar variables on a survey might
have similar names, such as familymember1age, familymember2age, and so on,
because that is convenient and consistent with the survey designers' understanding of
the variable.

One reason why this messiness happens relatively frequently with survey data is that there
can be multiple units of analysis on one survey instrument. An example is the United
States decennial census, which asks both household and person questions. Survey data is
also sometimes made up of repeated measures or panel data, but nonetheless often has
only one row per respondent. When this is the case, new measurements or responses are
stored in new columns rather than new rows, and the column names will be similar to
column names for responses from earlier periods, except for a change in suffix.

The United States National Longitudinal Survey of Youth (NLS) is a good example of
this. It is panel data, where each individual is surveyed each year. However, there is just
one row of data per respondent in the analysis file provided. Responses to questions
such as the number of weeks worked in a given year are placed in new columns.
Tidying the NLS data means converting columns such as weeksworked00 through
weeksworked04 (for weeks worked in 2000 through 2004) to just one column for weeks
worked, another column for year, and five rows for each person (one for each year) rather
than one.

Amazingly, pandas has several functions that make transformations like this relatively
easy: stack, melt, and wide_to_long. We use stack and melt in this recipe, and
explore wide_to_long in the next.

352 Tidying and Reshaping Data

Getting ready...
We will work with the NLS data on the number of weeks worked and college enrollment
status for each year. The DataFrame has one row per survey respondent.

Note
The NLS is conducted by the United States Bureau of Labor Statistics.
It is available for public use at https://www.nlsinfo.org/
investigator/pages/search. The survey started with a cohort
of individuals in 1997 who were born between 1980 and 1985, with annual
follow-ups each year through 2017.

How to do it…
We will use stack and melt to transform the NLS' weeks worked data from wide to
long, pulling out year values from the column names as we do so:

1.	 Import pandas and the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

2.	 View some of the values for the number of weeks worked.

First, set the index:
>>> nls97.set_index(['originalid'], inplace=True)

>>>

>>> weeksworkedcols = ['weeksworked00','weeksworked01','w
eeksworked02',

... 'weeksworked03','weeksworked04']

>>> nls97[weeksworkedcols].head(2).T

originalid 8245 3962

weeksworked00 46 5

weeksworked01 52 49

weeksworked02 52 52

weeksworked03 48 52

weeksworked04 52 52

>>> nls97.shape

(8984, 89)

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search

Using stack and melt to reshape data from wide to long format 353

3.	 Use stack to transform the data from wide to long.

First, select only the weeksworked## columns. Use stack to move each column
name in the original DataFrame into the index and move the weeksworked##
values into the associated row. Reset the index so that the weeksworked##
column names become the values for the level_0 column (which we rename
year), and the weeksworked## values become the values for the 0 column
(which we rename weeksworked):

>>> weeksworked = nls97[weeksworkedcols].\

... stack(dropna=False).\

... reset_index().\

... rename(columns={'level_1':'year',0:'weeksworked'})

>>>

>>> weeksworked.head(10)

 originalid year weeksworked

0 8245 weeksworked00 46

1 8245 weeksworked01 52

2 8245 weeksworked02 52

3 8245 weeksworked03 48

4 8245 weeksworked04 52

5 3962 weeksworked00 5

6 3962 weeksworked01 49

7 3962 weeksworked02 52

8 3962 weeksworked03 52

9 3962 weeksworked04 52

4.	 Fix the year values.

Get the last digits of the year values, convert them to integers, and add 2000:
>>> weeksworked['year'] = weeksworked.year.str[-2:].
astype(int)+2000

>>> weeksworked.head(10)

 originalid year weeksworked

0 8245 2000 46

1 8245 2001 52

2 8245 2002 52

3 8245 2003 48

4 8245 2004 52

354 Tidying and Reshaping Data

5 3962 2000 5

6 3962 2001 49

7 3962 2002 52

8 3962 2003 52

9 3962 2004 52

>>> weeksworked.shape

(44920, 3)

5.	 Alternatively, use melt to transform the data from wide to long.

First, reset the index and select the originalid and weeksworked## columns.
Use the id_vars and value_vars parameters of melt to specify originalid
as the ID variable and the weeksworked## columns as the columns to be rotated,
or melted. Use the var_name and value_name parameters to rename the
columns to year and weeksworked respectively. The column names in
value_vars become the values for the new year column (which we convert
to an integer using the original suffix). The values for the value_vars columns
are assigned to the new weeksworked column for the associated row:

>>> weeksworked = nls97.reset_index().\

... loc[:,['originalid'] + weeksworkedcols].\

... melt(id_vars=['originalid'], value_
vars=weeksworkedcols,

... var_name='year', value_name='weeksworked')

>>>

>>> weeksworked['year'] = weeksworked.year.str[-2:].
astype(int)+2000

>>> weeksworked.set_index(['originalid'], inplace=True)

>>> weeksworked.loc[[8245,3962]]

 year weeksworked

originalid

8245 2000 46

8245 2001 52

8245 2002 52

8245 2003 48

8245 2004 52

3962 2000 5

3962 2001 49

3962 2002 52

Using stack and melt to reshape data from wide to long format 355

3962 2003 52

3962 2004 52

6.	 Reshape the college enrollment columns with melt.

This works the same way as the melt function for the weeks worked columns:
>>> colenrcols =
['colenroct00','colenroct01','colenroct02',

... 'colenroct03','colenroct04']

>>>

>>> colenr = nls97.reset_index().\

... loc[:,['originalid'] + colenrcols].\

... melt(id_vars=['originalid'], value_vars=colenrcols,

... var_name='year', value_name='colenr')

>>>

>>> colenr['year'] = colenr.year.str[-2:].
astype(int)+2000

>>> colenr.set_index(['originalid'], inplace=True)

>>> colenr.loc[[8245,3962]]

 year colenr

originalid

8245 2000 1. Not enrolled

8245 2001 1. Not enrolled

8245 2002 1. Not enrolled

8245 2003 1. Not enrolled

8245 2004 1. Not enrolled

3962 2000 1. Not enrolled

3962 2001 1. Not enrolled

3962 2002 1. Not enrolled

3962 2003 1. Not enrolled

3962 2004 1. Not enrolled

7.	 Merge the weeks worked and college enrollment data:

>>> workschool = pd.merge(weeksworked, colenr,
on=['originalid','year'], how="inner")

>>> workschool.shape

(44920, 4)

>>> workschool.loc[[8245,3962]]

356 Tidying and Reshaping Data

 year weeksworked colenr

originalid

8245 2000 46 1. Not enrolled

8245 2001 52 1. Not enrolled

8245 2002 52 1. Not enrolled

8245 2003 48 1. Not enrolled

8245 2004 52 1. Not enrolled

3962 2000 5 1. Not enrolled

3962 2001 49 1. Not enrolled

3962 2002 52 1. Not enrolled

3962 2003 52 1. Not enrolled

3962 2004 52 1. Not enrolled

This gives us one DataFrame from the melting of both the weeks worked and the college
enrollment columns.

How it works...
We can use stack or melt to reshape data from wide to long form, but melt provides
more flexibility. stack will move all of the column names into the index. We see in step
4 that we get the expected number of rows after stacking, 44920, which is 5*8,984, the
number of rows in the initial data.

With melt, we can rotate the column names and values based on an ID variable other
than the index. We do this with the id_vars parameter. We specify which variables to
melt by using the value_vars parameter.

In step 6, we also reshape the college enrollment columns. To create one DataFrame with
the reshaped weeks worked and college enrollment data, we merge the two DataFrames
we created in steps 5 and 6. We will see in the next recipe how to accomplish what we did
in steps 5 through 7 in one step.

Melting multiple groups of columns
When we needed to melt multiple groups of columns in the previous recipe, we used
melt twice and then merged the resulting DataFrames. That worked fine, but we can
accomplish the same tasks in one step with the wide_to_long function. wide_to_
long has more functionality than melt, but is a bit more complicated to use.

Melting multiple groups of columns 357

Getting ready...
We will work with the weeks worked and college enrollment data from the NLS in
this recipe.

How to do it…
We will transform multiple groups of columns at once using wide_to_long:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index('personid', inplace=True)

2.	 View some of the weeks worked and college enrollment data:

>>> weeksworkedcols = ['weeksworked00','weeksworked01','w
eeksworked02',

... 'weeksworked03','weeksworked04']

>>> colenrcols =
['colenroct00','colenroct01','colenroct02',

... 'colenroct03','colenroct04']

>>>

>>> nls97.loc[nls97.originalid.isin([1,2]),

... ['originalid'] + weeksworkedcols + colenrcols].T

personid 135335 999406

originalid 1 2

weeksworked00 53 51

weeksworked01 52 52

weeksworked02 NaN 44

weeksworked03 42 45

weeksworked04 52 52

colenroct00 3. 4-year college 3. 4-year college

colenroct01 3. 4-year college 2. 2-year college

colenroct02 3. 4-year college 3. 4-year college

colenroct03 1. Not enrolled 3. 4-year college

colenroct04 1. Not enrolled 3. 4-year college

358 Tidying and Reshaping Data

3.	 Run the wide_to_long function.

Pass a list to stubnames to indicate the column groups wanted. (All columns
starting with the same characters as each item in the list will be selected for
melting.) Use the i parameter to indicate the ID variable (originalid), and
use the j parameter to name the column (year) that is based on the column
suffixes – 00, 01, and so on:

>>> workschool = pd.wide_to_long(nls97[['originalid'] +
weeksworkedcols

... + colenrcols],
stubnames=['weeksworked','colenroct'],

... i=['originalid'], j='year').reset_index()

>>>

>>> workschool['year'] = workschool.year+2000

>>> workschool = workschool.sort_
values(['originalid','year'])

>>> workschool.set_index(['originalid'], inplace=True)

>>> workschool.head(10)

 year weeksworked colenroct

originalid

1 2000 53 3. 4-year college

1 2001 52 3. 4-year college

1 2002 nan 3. 4-year college

1 2003 42 1. Not enrolled

1 2004 52 1. Not enrolled

2 2000 51 3. 4-year college

2 2001 52 2. 2-year college

2 2002 44 3. 4-year college

2 2003 45 3. 4-year college

2 2004 52 3. 4-year college

wide_to_long accomplishes in one step what it took us several steps to accomplish in
the previous recipe using melt.

Melting multiple groups of columns 359

How it works...
The wide_to_long function does almost all of the work for us, though it takes more
effort to set it up than for stack or melt. We need to provide the function with the
characters (weeksworked and colenroct in this case) of the column groups. Since
our variables are named with suffixes indicating the year, wide_to_long translates the
suffixes into values that make sense and melts them into the column that is named with
the j parameter. It's almost magic!

There's more...
The suffixes of the stubnames columns in this recipe are the same: 00 through 04. But
that does not have to be the case. When suffixes are present for one column group, but not
for another, the values for the latter column group for that suffix will be missing. We can
see that if we exclude weeksworked03 from the DataFrame and add weeksworked05:

>>> weeksworkedcols = ['weeksworked00','weeksworked01','weeksw
orked02',

... 'weeksworked04','weeksworked05']

>>>

>>> workschool = pd.wide_to_long(nls97[['originalid'] +
weeksworkedcols

... + colenrcols], stubnames=['weeksworked','colenroct'],

... i=['originalid'], j='year').reset_index()

>>>

>>> workschool['year'] = workschool.year+2000

>>> workschool = workschool.sort_values(['originalid','year'])

>>> workschool.set_index(['originalid'], inplace=True)

>>> workschool.head(12)

 year weeksworked colenroct

originalid

1 2000 53 3. 4-year college

1 2001 52 3. 4-year college

1 2002 nan 3. 4-year college

1 2003 nan 1. Not enrolled

1 2004 52 1. Not enrolled

1 2005 53 NaN

2 2000 51 3. 4-year college

2 2001 52 2. 2-year college

360 Tidying and Reshaping Data

2 2002 44 3. 4-year college

2 2003 nan 3. 4-year college

2 2004 52 3. 4-year college

2 2005 53 NaN

The weeksworked values for 2003 are now missing, as are the colenroct values for
2005. (The weeksworked value for 2002 for originalid 1 was already missing.)

Using unstack and pivot to reshape data from
long to wide
Sometimes, we actually have to move data from a tidy to an untidy structure. This is often
because we need to prepare the data for analysis with software packages that do not handle
relational data well, or because we are submitting data to some external authority that has
requested it in an untidy format. unstack and pivot can be helpful when we need to
reshape data from long to wide format. unstack does the opposite of what we did with
stack, and pivot does the opposite of melt.

Getting ready...
We continue to work with the NLS data on weeks worked and college enrollment in
this recipe.

How to do it…
We use unstack and pivot to return the melted NLS DataFrame to its original state:

1.	 Import pandas and load the stacked and melted NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index(['originalid'], inplace=True)

2.	 Stack the data again.

This repeats the stack operation from an earlier recipe in this chapter:
>>> weeksworkedcols = ['weeksworked00','weeksworked01',

... 'weeksworked02','weeksworked03','weeksworked04']

>>> weeksworkedstacked = nls97[weeksworkedcols].\

... stack(dropna=False)

Using unstack and pivot to reshape data from long to wide 361

>>> weeksworkedstacked.loc[[1,2]]

originalid

1 weeksworked00 53

 weeksworked01 52

 weeksworked02 nan

 weeksworked03 42

 weeksworked04 52

2 weeksworked00 51

 weeksworked01 52

 weeksworked02 44

 weeksworked03 45

 weeksworked04 52

dtype: float64

3.	 Melt the data again.

This repeats the melt operation from an earlier recipe in this chapter:
>>> weeksworkedmelted = nls97.reset_index().\

... loc[:,['originalid'] + weeksworkedcols].\

... melt(id_vars=['originalid'], value_
vars=weeksworkedcols,

... var_name='year', value_name='weeksworked')

>>>

>>> weeksworkedmelted.loc[weeksworkedmelted.originalid.
isin([1,2])].\

... sort_values(['originalid','year'])

 originalid year weeksworked

377 1 weeksworked00 53

9361 1 weeksworked01 52

18345 1 weeksworked02 nan

27329 1 weeksworked03 42

36313 1 weeksworked04 52

8980 2 weeksworked00 51

17964 2 weeksworked01 52

26948 2 weeksworked02 44

35932 2 weeksworked03 45

44916 2 weeksworked04 52

362 Tidying and Reshaping Data

4.	 Use unstack to convert the stacked data from long to wide:

>>> weeksworked = weeksworkedstacked.unstack()

>>> weeksworked.loc[[1,2]]

weeksworked00 weeksworked01 weeksworked02
weeksworked03 weeksworked04

originalid

1 53 52 nan
42 52

2 51 52 44
45 52

5.	 Use pivot to convert the melted data from long to wide.

pivot is slightly more complicated than unstack. We need to pass arguments
to do the reverse of melt, telling pivot the column to use for the column
name suffixes (year) and where to grab the values to be unmelted (from the
weeksworked columns, in this case):

>>> weeksworked = weeksworkedmelted.
pivot(index='originalid', \

... columns='year', values=['weeksworked']).reset_
index()

>>>

>>> weeksworked.columns = ['originalid'] + \

... [col[1] for col in weeksworked.columns[1:]]

>>>

>>> weeksworked.loc[weeksworked.originalid.isin([1,2])].T

 0 1

originalid 1 2

weeksworked00 53 51

weeksworked01 52 52

weeksworked02 nan 44

weeksworked03 42 45

weeksworked04 52 52

This returns the NLS data back to its original untidy form.

Using unstack and pivot to reshape data from long to wide 363

How it works...
We first do a stack and a melt in steps 2 and 3 respectively. This rotates the DataFrames
from wide to long format. We then unstack (step 4) and pivot (step 5) those data frames to
rotate them back from long to wide.

unstack uses the multi-index that is created by the stack to figure out how to rotate
the data.

The pivot function needs for us to indicate the index column (originalid), the
column whose values will be appended to the column names (year), and the name of
the columns with the values to be unmelted (weeksworked). Pivot will return multilevel
column names. We fix that by pulling from the second level with [col[1] for col in
weeksworked.columns[1:]].

10
User-Defined

Functions and
Classes to Automate

Data Cleaning
There are a number of great reasons to write code that is reusable. When we step back from
the particular data cleaning problem at hand and consider its relationship to very similar
problems, we can actually improve our understanding of the key issues involved. We are
also more likely to address a task systematically when we set our sights more on solving
it for the long term than on the before-lunch solution. This has the additional benefit of
helping us to disentangle the substantive issues from the mechanics of data manipulation.

We will create several modules to accomplish routine data cleaning tasks in this chapter.
The functions and classes in these modules are examples of code that can be reused across
DataFrames, or for one DataFrame over an extended period of time. These functions
handle many of the tasks we discussed in the first nine chapters, but in a manner that
allows us to reuse our code.

366 User-Defined Functions and Classes to Automate Data Cleaning

Specifically, the recipes in this chapter cover the following:

•	 Functions for getting a first look at our data

•	 Functions for displaying summary statistics and frequencies

•	 Functions for identifying outliers and unexpected values

•	 Functions for aggregating or combining data

•	 Classes that contain the logic for updating series values

•	 Classes that handle non-tabular data structures

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Functions for getting a first look at our data
The first few steps we take after we import our data into a pandas DataFrame are pretty
much the same regardless of the characteristics of the data. We almost always want to
know the number of columns and rows and the column data types, and see the first few
rows. We also might want to view the index and check whether there is a unique identifier
for DataFrame rows. These discrete, easily repeatable tasks are good candidates for
a collection of functions we can organize into a module.

In this recipe, we will create a module with functions that give us a good first look at any
pandas DataFrame. A module is simply a collection of Python code that we can import
into another Python program. Modules are easy to reuse because they can be referenced
by any program with access to the folder where the module is saved.

Getting ready...
We create two files in this recipe: one with a function we will use to look at our data
and another to call that function. Let's call the file with the function we will use
basicdescriptives.py and place it in a subfolder called helperfunctions.

We work with the National Longitudinal Survey (NLS) data in this recipe.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Functions for getting a first look at our data 367

Note
The NLS is conducted by the United States Bureau of Labor Statistics.
It is available for public use at https://www.nlsinfo.org/
investigator/pages/search. The survey started with a cohort
of individuals in 1997 who were born between 1980 and 1985, with annual
follow-ups each year through 2017.

How to do it...
We will create a function to take an initial look at a DataFrame.

1.	 Create the basicdescriptives.py file with the function we want.

The getfirstlook function will return a dictionary with summary
information on a DataFrame. Save the file in the helperfunctions subfolder
as basicdescriptives.py. (You can also just download the code from the
GitHub repository). Also, create a function (displaydict) to pretty up the
display of a dictionary:

>>> import pandas as pd

>>> def getfirstlook(df, nrows=5, uniqueids=None):

... out = {}

... out['head'] = df.head(nrows)

... out['dtypes'] = df.dtypes

... out['nrows'] = df.shape[0]

... out['ncols'] = df.shape[1]

... out['index'] = df.index

... if (uniqueids is not None):

... out['uniqueids'] = df[uniqueids].nunique()

... return out

>>> def displaydict(dicttodisplay):

... print(*(': '.join(map(str, x)) \

... for x in dicttodisplay.items()), sep='\n\n')

2.	 Create a separate file, firstlook.py, to call the getfirstlook function.

Import the pandas, os, and sys libraries, and load the NLS data:
>>> import pandas as pd

>>> import os

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search

368 User-Defined Functions and Classes to Automate Data Cleaning

>>> import sys

>>> nls97 = pd.read_csv("data/nls97f.csv")

3.	 Import the basicdescriptives module.

First, append the helperfunctions subfolder to the Python path. We can then
import basicdescriptives. We use the same name as the name of the file to
import the module. We create an alias, bd, to make it easier to access the functions
in the module later. (We can use importlib, commented out here, if we need to
reload basicdescriptives because we have made some changes in the code in
that module).

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import basicdescriptives as bd

>>> # import importlib

>>> # importlib.reload(bd)

4.	 Take a first look at the NLS data.

We can just pass the DataFrame to the getfirstlook function in the
basicdescriptives module to get a quick summary of the NLS data. The
displaydict function gives us prettier printing of the dictionary:

>>> dfinfo = bd.getfirstlook(nls97)

>>> bd.displaydict(dfinfo)

head: gender birthmonth ... colenroct17
originalid

personid ...

100061 Female 5 ... 1. Not enrolled
8245

100139 Male 9 ... 1. Not enrolled
3962

100284 Male 11 ... 1. Not enrolled
3571

100292 Male 4 ... NaN
2979

100583 Male 1 ... 1. Not enrolled
8511

[5 rows x 89 columns]

dtypes: gender object

Functions for getting a first look at our data 369

birthmonth int64

birthyear int64

highestgradecompleted float64

maritalstatus object

 ...

colenrfeb16 object

colenroct16 object

colenrfeb17 object

colenroct17 object

originalid int64

Length: 89, dtype: object	

nrows: 8984

ncols: 89

index: Int64Index([100061, 100139, 100284, 100292,
100583, 100833, 100931,

 ...

 999543, 999698, 999963],

 dtype='int64', name='personid', length=8984)

5.	 Pass values to the nrows and uniqueids parameters of getfirstlook.

The two parameters default to values of 5 and None, unless we provide values:
>>> dfinfo = bd.getfirstlook(nls97,2,'originalid')

>>> bd.displaydict(dfinfo)

head: gender birthmonth ... colenroct17
originalid

personid ...

100061 Female 5 ... 1. Not enrolled
8245

100139 Male 9 ... 1. Not enrolled
3962

[2 rows x 89 columns]

dtypes: gender object

birthmonth int64

birthyear int64

highestgradecompleted float64

370 User-Defined Functions and Classes to Automate Data Cleaning

maritalstatus object

 ...

colenrfeb16 object

colenroct16 object

colenrfeb17 object

colenroct17 object

originalid int64

Length: 89, dtype: object

nrows: 8984

ncols: 89

index: Int64Index([100061, 100139, 100284, 100292,
100583, 100833, 100931,

 ...

 999543, 999698, 999963],

 dtype='int64', name='personid', length=8984)

uniqueids: 8984

6.	 Work with some of the returned dictionary keys and values.

We can also display selected key values from the dictionary returned from
getfirstlook. Show the number of rows and data types, and check to
see whether each row has a uniqueid instance (dfinfo['nrows'] ==
dfinfo['uniqueids']):

>>> dfinfo['nrows']

8984

>>> dfinfo['dtypes']

gender object

birthmonth int64

birthyear int64

highestgradecompleted float64

maritalstatus object

 ...

colenrfeb16 object

colenroct16 object

colenrfeb17 object

Functions for getting a first look at our data 371

colenroct17 object

originalid int64

Length: 89, dtype: object

>>> dfinfo['nrows'] == dfinfo['uniqueids']

True

Let's take a closer look at how the function works and how we call it.

How it works...
Almost all of the action in this recipe is in the getfirstlook function, which we
look at in step 1. We place the getfirstlook function in a separate file that we name
basicdescriptives.py, which we can import as a module with that name (minus
the extension).

We could have typed the function into the file we were using and called it from there. By
putting it in a module instead, we can call it from any file that has access to the folder where
the module is saved. When we import the basicdescriptives module in step 3, we load
all of the code in basicdescriptives, allowing us to call all functions in that module.

The getfirstlook function returns a dictionary with useful information about the
DataFrame that is passed to it. We see the first five rows, the number of columns and
rows, the data types, and the index. By passing a value to the uniqueid parameter, we
also get the number of unique values for the column.

By adding keyword parameters (nrows and uniqueid) with default values, we improve
the flexibility of getfirstlook, without increasing the amount of effort it takes to call
the function when we do not need the extra functionality. In the first call, in step 4, we do
not pass values for nrows or uniqueid, sticking with the default values. In step 5, we
indicate that we only want two rows displayed and that we want to examine unique values
for originalid.

There's more...
The point of this recipe, and the ones that follow it, is not to provide code that you
can download and run on your own data, though you are certainly welcome to do that.
I am mainly trying to demonstrate how you can collect your favorite approaches to data
cleaning in handy modules, and how this allows easy code reuse. The specific code here is
just a serving suggestion, if you will.

Whenever we use a combination of positional and keyword parameters, the positional
parameters must go first.

372 User-Defined Functions and Classes to Automate Data Cleaning

Functions for displaying summary statistics
and frequencies
During the first few days of working with a DataFrame, we try to get a good sense of the
distribution of continuous variables and counts for categorical variables. We also often
do counts by selected groups. Although pandas and NumPy have many built-in methods
for these purposes – describe, mean, valuecounts, crosstab, and so on – data
analysts often have preferences for how they work with these tools. If, for example, an
analyst finds that she usually needs to see more percentiles than those generated by
describe, she can use her own function instead. We will create user-defined functions
for displaying summary statistics and frequencies in this recipe.

Getting ready
We will be working with the basicdescriptives module again in this recipe. All
of the functions we will define are saved in that module. We continue to work with the
NLS data.

How to do it...
We will use functions we create to generate summary statistics and counts:

1.	 Create the gettots function in the basicdescriptives module.

The function takes a pandas DataFrame and creates a dictionary with selected
summary statistics. It returns a pandas DataFrame:

>>> def gettots(df):

... out = {}

... out['min'] = df.min()

... out['per15'] = df.quantile(0.15)

... out['qr1'] = df.quantile(0.25)

... out['med'] = df.median()

... out['qr3'] = df.quantile(0.75)

... out['per85'] = df.quantile(0.85)

... out['max'] = df.max()

... out['count'] = df.count()

... out['mean'] = df.mean()

... out['iqr'] = out['qr3']-out['qr1']

... return pd.DataFrame(out)

Functions for displaying summary statistics and frequencies 373

2.	 Import the pandas, os, and sys libraries.

Do this from a different file, which you can call taking_measure.py:
>>> import pandas as pd

>>> import os

>>> import sys

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index('personid', inplace=True)

3.	 Import the basicdescriptives module:

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import basicdescriptives as bd

4.	 Show summary statistics for continuous variables.

Use the gettots function from the basicdescriptives module that we
created in step 1:

>>> bd.gettots(nls97[['satverbal','satmath']]).T

 satverbal satmath

min 14.00000 7.000000

per15 390.00000 390.000000

qr1 430.00000 430.000000

med 500.00000 500.000000

qr3 570.00000 580.000000

per85 620.00000 621.000000

max 800.00000 800.000000

count 1406.00000 1407.000000

mean 499.72404 500.590618

iqr 140.00000 150.000000

>>> bd.gettots(nls97.filter(like="weeksworked"))

 min per15 qr1 ... count mean
iqr

weeksworked00 0.0 0.0 5.0 ... 8603 26.417761
45.0

weeksworked01 0.0 0.0 10.0 ... 8564 29.784096
41.0

weeksworked02 0.0 0.0 13.0 ... 8556 31.805400
39.0

374 User-Defined Functions and Classes to Automate Data Cleaning

weeksworked03 0.0 0.0 14.0 ... 8490 33.469611
38.0

weeksworked04 0.0 1.0 18.0 ... 8458 35.104635
34.0

...

weeksworked15 0.0 0.0 33.0 ... 7389 39.605630
19.0

weeksworked16 0.0 0.0 23.0 ... 7068 39.127476
30.0

weeksworked17 0.0 0.0 37.0 ... 6670 39.016642
15.0

5.	 Create a function to count missing values by columns and rows.

The getmissings function will take a DataFrame and a parameter for showing
percentages or counts. Return two series, one with the missing values for each
column and the other with missing values by row. Save the function in the
basicdescriptives module:

>>> def getmissings(df, byrowperc=False):

... return df.isnull().sum(),\

... df.isnull().sum(axis=1).value_
counts(normalize=byrowperc).sort_index()

6.	 Call the getmissings function.

Call it first with byrowperc (the second parameter) set to True. This will show
the percentage of rows with the associated number of missing values. For example,
the missingbyrows value shows that 73.9% of rows have 0 missing values for
weeksworked16 and weeksworked17. Call it again, leaving byrowperc at its
default value of False, to get counts instead:

>>> missingsbycols, missingsbyrows =
bd.getmissings(nls97[['weeksworked16','weeksworked17']],
True)

>>> missingsbycols

weeksworked16 1916

weeksworked17 2314

dtype: int64

>>> missingsbyrows

0 0.739203

1 0.050757

Functions for displaying summary statistics and frequencies 375

2 0.210040

dtype: float64

>>> missingsbycols, missingsbyrows =
bd.getmissings(nls97[['weeksworked16','weeksworked17']])

>>> missingsbyrows

0 6641

1 456

2 1887

dtype: int64

7.	 Create a function to calculate frequencies for all categorical variables.

The makefreqs function loops through all columns with the category data type in
the passed DataFrame, running value_counts on each one. The frequencies are
saved to the file indicated by outfile:

>>> def makefreqs(df, outfile):

... freqout = open(outfile, 'w')

... for col in df.select_dtypes(include=["category"]):

... print(col, "----------------------",
"frequencies",

... df[col].value_counts().sort_
index(),"percentages",

... df[col].value_counts(normalize=True).sort_
index(),

... sep="\n\n", end="\n\n\n", file=freqout)

... freqout.close()

8.	 Call the makefreqs function.

First change data type of each object column to category. This call runs
value_counts on category data columns in the NLS data frame and saves the
frequencies to nlsfreqs.txt in the views subfolder of the current folder.

>>> nls97.loc[:, nls97.dtypes == 'object'] = \

... nls97.select_dtypes(['object']). \

... apply(lambda x: x.astype('category'))

>>> bd.makefreqs(nls97, "views/nlsfreqs.txt")

376 User-Defined Functions and Classes to Automate Data Cleaning

9.	 Create a function to get counts by groups.

The getcnts function counts the number of rows for each combination of column
values in cats, a list of column names. It also counts the number of rows for each
combination of column values excluding the final column in cats. This provides a
total across all values of the final column. (The next step shows what this looks like).

>>> def getcnts(df, cats, rowsel=None):

... tots = cats[:-1]

... catcnt = df.groupby(cats).size().reset_
index(name='catcnt')

... totcnt = df.groupby(tots).size().reset_
index(name='totcnt')

... percs = pd.merge(catcnt, totcnt, left_on=tots,

... right_on=tots, how="left")

... percs['percent'] = percs.catcnt / percs.totcnt

... if (rowsel is not None):

... percs = percs.loc[eval("percs." + rowsel)]

... return percs

10.	 Pass the marital status, gender, and college enrollment columns to the getcnts
function.

This returns a DataFrame with counts for each column value combination, as well
as counts for all combinations excluding the last column. This is used to calculate
percentages within groups. For example, 393 respondents were divorced and female
and 317 of those (or 81%) were not enrolled in college in October of 2000:

>>> bd.getcnts(nls97,
['maritalstatus','gender','colenroct00'])

 maritalstatus gender colenroct00 catcnt
totcnt percent

0 Divorced Female 1. Not enrolled 317
393 0.806616

1 Divorced Female 2. 2-year college 35
393 0.089059

2 Divorced Female 3. 4-year college 41
393 0.104326

3 Divorced Male 1. Not enrolled 238
270 0.881481

4 Divorced Male 2. 2-year college 15
270 0.055556

Functions for displaying summary statistics and frequencies 377

..

... ...

25 Widowed Female 2. 2-year college 1
19 0.052632

26 Widowed Female 3. 4-year college 2
19 0.105263

27 Widowed Male 1. Not enrolled 3
4 0.750000

28 Widowed Male 2. 2-year college 0
4 0.000000

29 Widowed Male 3. 4-year college 1
4 0.250000

11.	 Use the rowsel parameter of getcnts to limit the output to specific rows:

>>> bd.getcnts(nls97,
['maritalstatus','gender','colenroct00'], "colenroct00.
str[0:1]=='1'")

 maritalstatus gender colenroct00 catcnt
totcnt percent

0 Divorced Female 1. Not enrolled 317
393 0.806616

3 Divorced Male 1. Not enrolled 238
270 0.881481

6 Married Female 1. Not enrolled 1168
1636 0.713936

9 Married Male 1. Not enrolled 1094
1430 0.765035

12 Never-married Female 1. Not enrolled 1094
1307 0.837031

15 Never-married Male 1. Not enrolled 1268
1459 0.869088

18 Separated Female 1. Not enrolled 66
79 0.835443

21 Separated Male 1. Not enrolled 67
75 0.893333

24 Widowed Female 1. Not enrolled 16
19 0.842105

27 Widowed Male 1. Not enrolled 3
4 0.750000

378 User-Defined Functions and Classes to Automate Data Cleaning

These steps demonstrate how to create functions and use them to generate summary
statistics and frequencies.

How it works...
In step 1, we create a function that calculates descriptive statistics for all columns in
a DataFrame, returning those results in a summary DataFrame. Most of the statistics
can be generated with the describe method, but we add a few statistics – the 15th
percentile, the 85th percentile, and the interquartile range. We call that function twice in
step 4, the first time for the SAT verbal and math scores and the second time for all weeks
worked columns.

Steps 5 and 6 create and call a function that shows the number of missing values for each
column in the passed DataFrame. It also counts missing values for each row, displaying the
frequency of missing values. The frequency of missing values by row can also be displayed
as a percentage of all rows by passing a value of True to the byrowperc parameter.

Steps 7 and 8 produce a text file with frequencies for all categorical variables in the
passed DataFrame. We just loop through all columns with the category data type and run
value_counts. Since often the output is long, we save it to a file. It is also good to have
frequencies saved somewhere for later reference.

The getcnts function we create in step 9 and call in steps 10 and 11 is a tad idiosyncratic.
pandas has a very useful crosstab function, which I use frequently. But I often need
a no-fuss way to look at group counts and percentages for subgroups within groups. The
getcnts function does that.

There's more...
A function can be very helpful even when it does not do very much. There is not much
code in the getmissings function, but I check for missing values so frequently that the
small time-savings are significant cumulatively. It also reminds me to check for missing
values by column and by row.

See also...
We explore pandas' tools for generating summary statistics and frequencies in Chapter 3,
Taking the Measure of Your Data.

Functions for identifying outliers and unexpected values 379

Functions for identifying outliers and
unexpected values
If I had to pick one data cleaning area where I find reusable code most beneficial, it
would be in the identification of outliers and unexpected values. This is because our prior
assumptions often lead us to the central tendency of a distribution, rather than to the
extremes. Quickly – think of a cat. Unless you were thinking about a particular cat in your
life, an image of a generic feline between 8 and 10 pounds probably came to mind; not one
that is 6 pounds or 22 pounds.

We often need to be more deliberate to elevate extreme values to consciousness. This is
where having a standard set of diagnostic functions to run on our data is very helpful.
We can run these functions even if nothing in particular triggers us to run them. This
recipe provides examples of functions that we can use regularly to identify outliers and
unexpected values.

Getting ready
We will create two files in this recipe, one with the functions we will use to check for
outliers and another with the code we will use to call those functions. Let's call the
file with the functions we will use outliers.py, and place it in a subfolder called
helperfunctions.

You will need the matplotlib and scipy libraries, in addition to pandas, to run the
code in this recipe. You can install matplotlib and scipy by entering pip install
matplotlib and pip install scipy in a Terminal client or in Windows
PowerShell. You will also need the pprint utility, which you can install with pip
install pprint.

We will work with the NLS and COVI-19 data in this recipe. The Covid data has one row
per country, with cumulative cases and deaths for that country.

Note
Our World in Data provides Covid-19 public use data at
https://ourworldindata.org/coronavirus-source-data.
The data used in this recipe were downloaded on July 18, 2020.

https://ourworldindata.org/coronavirus-source-data

380 User-Defined Functions and Classes to Automate Data Cleaning

How to do it...
We create and call functions to check the distribution of variables, list extreme values, and
visualize a distribution:

1.	 Import the pandas, os, sys, and pprint libraries.

Also, load the NLS and Covid data:
>>> import pandas as pd

>>> import os

>>> import sys

>>> import pprint

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index('personid', inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals720.csv")

2.	 Create a function to show some important properties of a distribution.

The getdistprops function takes a series and generates measures of central
tendency, shape, and spread. The function returns a dictionary with these measures.
It also handles situations where the Shapiro test for normality does not return
a value. It will not add keys for normstat and normpvalue when that happens.
Save the function in a file named outliers.py in the helperfunctions
subfolder of the current directory. (Also load the pandas, matplotlib, scipy,
and math libraries we will need for this and other functions in this module.)

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import scipy.stats as scistat

>>> import math

>>>

>>> def getdistprops(seriestotest):

... out = {}

... normstat, normpvalue = scistat.
shapiro(seriestotest)

... if (not math.isnan(normstat)):

... out['normstat'] = normstat

... if (normpvalue>=0.05):

... out['normpvalue'] = str(round(normpvalue, 2)) +
": Accept Normal"

... elif (normpvalue<0.05):

Functions for identifying outliers and unexpected values 381

... out['normpvalue'] = str(round(normpvalue, 2)) +
": Reject Normal"

... out['mean'] = seriestotest.mean()

... out['median'] = seriestotest.median()

... out['std'] = seriestotest.std()

... out['kurtosis'] = seriestotest.kurtosis()

... out['skew'] = seriestotest.skew()

... out['count'] = seriestotest.count()

... return out

3.	 Pass the total cases per million in population series to the getdistprops function.

The skew and kurtosis values suggest that the distribution of total_cases_
pm has significantly positive skew and fatter tails than a normally distributed
variable. The Shapiro test of normality (normpvalue) confirms this. (Use pprint
to improve the display of the dictionary returned by getdistprops).

>>> dist = ol.getdistprops(covidtotals.total_cases_pm)

>>> pprint.pprint(dist)

{'count': 209,

 'kurtosis': 26.137524276840452,

 'mean': 2297.0221435406693,

 'median': 868.866,

 'normpvalue': '0.0: Reject Normal',

 'normstat': 0.5617035627365112,

 'skew': 4.284484653881833,

 'std': 4039.840202653782}

4.	 Create a function to list the outliers in a DataFrame.

The getoutliers function iterates over all columns in sumvars. It determines
outlier thresholds for those columns, setting them at 1.5 times the interquartile
range (the distance between the first and third quartile) below the first quartile or
above the third quartile. It then selects all rows with values above the high threshold
or below the low threshold. It adds columns that indicate the variable examined
(varname) for outliers and the threshold levels. It also includes columns in the
othervars list in the DataFrame it returns:

>>> def getoutliers(dfin, sumvars, othervars):

... dfin = dfin[sumvars + othervars]

382 User-Defined Functions and Classes to Automate Data Cleaning

... dfout = pd.DataFrame(columns=dfin.columns,
data=None)

... dfsums = dfin[sumvars]

... for col in dfsums.columns:

... thirdq, firstq = dfsums[col].quantile(0.75),\

... dfsums[col].quantile(0.25)

... interquartilerange = 1.5*(thirdq-firstq)

... outlierhigh, outlierlow =
interquartilerange+thirdq,\

... firstq-interquartilerange

... df = dfin.loc[(dfin[col]>outlierhigh) | \

... (dfin[col]<outlierlow)]

... df = df.assign(varname = col, threshlow =
outlierlow,\

... threshhigh = outlierhigh)

... dfout = pd.concat([dfout, df])

... return dfout

5.	 Call the getoutlier function.

Pass a list of columns to check for outliers (sumvars) and another list of columns
to include in the returned DataFrame (othervars). Show the count of outliers
for each variable and view the outliers for SAT math:

>>> sumvars = ['satmath','wageincome']

>>> othervars =
['originalid','highestdegree','gender','maritalstatus']

>>> outliers = ol.getoutliers(nls97, sumvars, othervars)

>>> outliers.varname.value_counts(sort=False)

satmath 10

wageincome 260

Name: varname, dtype: int64

>>> outliers.loc[outliers.varname=='satmath', othervars +
sumvars]

 originalid highestdegree ... satmath wageincome

223058 6696 0. None ... 46.0 30000.0

267254 1622 2. High School ... 48.0 100000.0

291029 7088 2. High School ... 51.0 NaN

337438 159 2. High School ... 200.0 NaN

Functions for identifying outliers and unexpected values 383

399109 3883 2. High School ... 36.0 NaN

448463 326 4. Bachelors ... 47.0 NaN

738290 7705 0. None ... 7.0 NaN

748274 3394 4. Bachelors ... 42.0 NaN

799095 535 5. Masters ... 59.0 120000.0

955430 2547 2. High School ... 200.0 NaN

[10 rows x 6 columns]

>>> outliers.to_excel("views/nlsoutliers.xlsx")

6.	 Create a function to generate histograms and boxplots.

The makeplot function takes a series, title, and label for the x-axis. The default
plot is set as a histogram:

>>> def makeplot(seriestoplot, title, xlabel,
plottype="hist"):

... if (plottype=="hist"):

... plt.hist(seriestoplot)

... plt.axvline(seriestoplot.mean(), color='red',\

... linestyle='dashed', linewidth=1)

... plt.xlabel(xlabel)

... plt.ylabel("Frequency")

... elif (plottype=="box"):

... plt.boxplot(seriestoplot.dropna(),
labels=[xlabel])

... plt.title(title)

... plt.show()

7.	 Call the makeplot function to create a histogram:

>>> ol.makeplot(nls97.satmath, "Histogram of SAT Math",
"SAT Math")

384 User-Defined Functions and Classes to Automate Data Cleaning

This generates the following histogram:

Figure 10.1 – Frequencies of SAT math values

8.	 Use the makeplot function to create a boxplot:

>>> ol.makeplot(nls97.satmath, "Boxplot of SAT Math",
"SAT Math", "box")

This generates the following boxplot:

Figure 10.2 – Show the median, interquartile range, and outlier thresholds with a boxplot

Functions for identifying outliers and unexpected values 385

The preceding steps show how we can develop reusable code to check for outliers and
unexpected values.

How it works...
We start by getting the key attributes of a distribution, including the mean, median,
standard deviation, skew, and kurtosis. We do this by passing a series to the
getdistprop function in step 3, getting back a dictionary with these measures.

The function in step 4 selects rows where one of the columns in sumvars has a value that
is an outlier. It also includes the values for the columns in othervars and the threshold
amounts in the DataFrame it returns.

We create a function in step 6 that makes it easier to create a simple histogram or boxplot.
The functionality of matplotlib is great, but it can take a minute to remind ourselves of
the syntax when we just want to create a simple histogram or boxplot. We can avoid that
by defining a function with a few routine parameters: series, title, and x-label. We call that
function in steps 7 and 8.

There's more...
We do not want to do too much work with a continuous variable before getting a good
sense of how its values are distributed; what are the central tendency and shape of the
distribution? If we run something like the functions in this recipe for key continuous
variables, we would be off to a good start.

The relatively painless portability of Python modules makes this pretty easy to do. If we
wanted to use the outliers module that we use in this example, we would just need to
save the outliers.py file to a folder that our program can access, add that folder to the
Python path, and import it.

Usually, when we are inspecting an extreme value, we want to have a better idea of the
context of other variables that might explain why the value is extreme. For example,
a height of 178 centimeters is not an outlier for an adult male, but it definitely is for
a 9-year old. The DataFrame produced in steps 4 and 5 provides us with both the outlier
values and other data that might be relevant. Saving the data to an Excel file makes it easy
to inspect outlier rows later or share that data with others.

386 User-Defined Functions and Classes to Automate Data Cleaning

See also
We go into a fair bit of detail on detecting outliers and unexpected values in Chapter 4,
Identifying Missing Values and Outliers in Subsets of Data. We examine histograms,
boxplots, and many other visualizations in Chapter 5, Using Visualizations for the
Identification of Unexpected Values.

Functions for aggregating or combining data
Most data analysis projects require some reshaping of data. We may need to aggregate
by group or combine data vertically or horizontally. We have to do similar tasks each
time we prepare our data for this reshaping. We can routinize some of these tasks with
functions, improving both the reliability of our code and our efficiency in getting the work
done. We sometimes need to check for mismatches in merge-by columns before doing
a merge, check for unexpected changes in values in panel data from one period to the next
before aggregating, or concatenate a number of files at once and verify that data has been
combined accurately.

These are just a few examples of the kind of data aggregation and combining tasks that
might lend themselves to a more generalized coding solution. In this recipe, we define
functions that can help with these tasks.

Getting ready
We will work with the Covid daily data in this recipe. This data comprises new cases and
new deaths for each country by day. We will also work with land temperatures data for
several countries in 2019. The data for each country is in a separate file and has one row
per weather station in that country for each month.

Note
The land temperatures data is taken from the Global Historical Climatology
Network integrated database, which is made available for public use by
the United States National Oceanic and Atmospheric Administration
at https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/global-
historical-climatology-network-monthly-version-4.

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4

Functions for aggregating or combining data 387

How to do it...
We will use functions to aggregate data, combine data vertically, and check
merge-by values:

1.	 Import the pandas, os, and sys libraries:

>>> import pandas as pd

>>> import os

>>> import sys

2.	 Create a function (adjmeans) to aggregate values by period for a group.

Sort the values in the passed DataFrame by group (byvar) and then period.
Convert the DataFrame values to a NumPy array. Loop through the values, do
a running tally of the var column, and set the running tally back to 0 when you
reach a new value for byvar. Before aggregating, check for extreme changes in
values from one period to the next. The changeexclude parameter indicates the
size of a change from one period to the next that should be considered extreme.
The excludetype parameter indicates whether the changeexclude value is an
absolute amount or a percentage of the var column's mean. Save the function in a
file called combineagg.py in the helperfunctions subfolder:

>>> def adjmeans(df, byvar, var, period,
changeexclude=None, excludetype=None):

... df = df.sort_values([byvar, period])

... df = df.dropna(subset=[var])

... # iterate using numpy arrays

... prevbyvar = 'ZZZ'

... prevvarvalue = 0

... rowlist = []

... varvalues = df[[byvar, var]].values

... # convert exclusion ratio to absolute number

... if (excludetype=="ratio" and changeexclude is not
None):

... changeexclude = df[var].mean()*changeexclude

... # loop through variable values

... for j in range(len(varvalues)):

... byvar = varvalues[j][0]

... varvalue = varvalues[j][1]

388 User-Defined Functions and Classes to Automate Data Cleaning

... if (prevbyvar!=byvar):

... if (prevbyvar!='ZZZ'):

... rowlist.append({'byvar':prevbyvar,
'avgvar':varsum/byvarcnt,\

... 'sumvar':varsum, 'byvarcnt':byvarcnt})

... varsum = 0

... byvarcnt = 0

... prevbyvar = byvar

... # exclude extreme changes in variable value

... if ((changeexclude is None) or (0 <=
abs(varvalue-prevvarvalue) \

... <= changeexclude) or (byvarcnt==0)):

... varsum += varvalue

... byvarcnt += 1

... prevvarvalue = varvalue

... rowlist.append({'byvar':prevbyvar, 'avgvar':varsum/
byvarcnt, \

... 'sumvar':varsum, 'byvarcnt':byvarcnt})

... return pd.DataFrame(rowlist)

3.	 Import the combineagg module:

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import combineagg as ca

4.	 Load the DataFrames:

>>> coviddaily = pd.read_csv("data/coviddaily720.csv")

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")

5.	 Call the adjmeans function to summarize panel data by group and time period.

Indicate that we want a summary of new_cases by location:
>>> ca.adjmeans(coviddaily, 'location','new_
cases','casedate')

 byvar avgvar sumvar byvarcnt

0 Afghanistan 186.221622 34451.0 185

Functions for aggregating or combining data 389

1 Albania 26.753968 3371.0 126

2 Algeria 98.484211 18712.0 190

3 Andorra 7.066116 855.0 121

4 Angola 4.274336 483.0 113

..

204 Vietnam 1.937173 370.0 191

205 Western Sahara 6.653846 519.0 78

206 Yemen 14.776596 1389.0 94

207 Zambia 16.336207 1895.0 116

208 Zimbabwe 8.614035 982.0 114

[209 rows x 4 columns]

6.	 Call the adjmeans function again, this time excluding values where new_cases
go up or down by more than 150 from one day to the next. Notice some reduction
in the counts for some countries:

>>> ca.adjmeans(coviddaily, 'location','new_
cases','casedate', 150)

 byvar avgvar sumvar byvarcnt

0 Afghanistan 141.968750 22715.0 160

1 Albania 26.753968 3371.0 126

2 Algeria 94.133690 17603.0 187

3 Andorra 7.066116 855.0 121

4 Angola 4.274336 483.0 113

..

204 Vietnam 1.937173 370.0 191

205 Western Sahara 2.186667 164.0 75

206 Yemen 14.776596 1389.0 94

207 Zambia 11.190909 1231.0 110

208 Zimbabwe 8.614035 982.0 114

[209 rows x 4 columns]

390 User-Defined Functions and Classes to Automate Data Cleaning

7.	 Create a function to check values for merge-by columns on one file but not another.

The checkmerge function does an outer join of two DataFrames passed to it, using
the third and fourth parameters for the merge-by columns for the first and second
DataFrame respectively. It then does a crosstab that shows the number of rows with
merge-by values in both DataFrames and those in one DataFrame but not the other.
It also shows up to 20 rows of data for merge-by values found in just one file:

>>> def checkmerge(dfleft, dfright, mergebyleft,
mergebyright):

... dfleft['inleft'] = "Y"

... dfright['inright'] = "Y"

... dfboth = pd.merge(dfleft[[mergebyleft,'inleft']],\

... dfright[[mergebyright,'inright']], left_
on=[mergebyleft],\

... right_on=[mergebyright], how="outer")

... dfboth.fillna('N', inplace=True)

... print(pd.crosstab(dfboth.inleft, dfboth.inright))

... print(dfboth.loc[(dfboth.inleft=='N') | (dfboth.
inright=='N')].head(20))

8.	 Call the checkmerge function.

Check a merge between the countries land temperatures DataFrame (which has
one row per country) and the locations DataFrame (which has one row for each
weather station in each country). The crosstab shows that 27,472 merge-by column
values are in both DataFrames, two are in the countries file and not in the
locations file, and one is in the locations file but not the countries file:

>>> ca.checkmerge(countries.copy(), locations.copy(),\

... "countryid", "countryid")

inright N Y

inleft

N 0 1

Y 2 27472

 countryid inleft inright

9715 LQ Y N

13103 ST Y N

27474 FO N Y

Functions for aggregating or combining data 391

9.	 Create a function that concatenates all CSV files in a folder.

This function loops through all of the filenames in the specified folder. It uses the
endswith method to check that the filename has a CSV file extension. It then
loads the DataFrame and prints out the number of rows. Finally, it uses concat
to append the rows of the new DataFrame to the rows already appended. If column
names on a file are different, it prints those column names:

>>> def addfiles(directory):

... dfout = pd.DataFrame()

... columnsmatched = True

... # loop through the files

... for filename in os.listdir(directory):

... if filename.endswith(".csv"):

... fileloc = os.path.join(directory, filename)

... # open the next file

... with open(fileloc) as f:

... dfnew = pd.read_csv(fileloc)

... print(filename + " has " + str(dfnew.
shape[0]) + " rows.")

... dfout = pd.concat([dfout, dfnew])

... # check if current file has any different
columns

... columndiff = dfout.columns.symmetric_
difference(dfnew.columns)

... if (not columndiff.empty):

... print("", "Different column names for:",
 filename,\

... columndiff, "", sep="\n")

... columnsmatched = False

... print("Columns Matched:", columnsmatched)

... return dfout

392 User-Defined Functions and Classes to Automate Data Cleaning

10.	 Use the addfiles function to concatenate all of the countries land
temperatures files.

It looks like the file for Oman (ltoman) is slightly different. It does not have
the latabs column. Notice that the counts for each country in the combined
DataFrame match the number of rows for each country file:

>>> landtemps = ca.addfiles("data/ltcountry")

ltpoland.csv has 120 rows.

ltjapan.csv has 1800 rows.

ltindia.csv has 1056 rows.

ltbrazil.csv has 1104 rows.

ltcameroon.csv has 48 rows.

ltoman.csv has 288 rows.

Different column names for:

ltoman.csv

Index(['latabs'], dtype='object')

ltmexico.csv has 852 rows.

Columns Matched: False

>>> landtemps.country.value_counts()

Japan 1800

Brazil 1104

India 1056

Mexico 852

Oman 288

Poland 120

Cameroon 48

Name: country, dtype: int64

The preceding steps demonstrate how we can systematize some of our messy data
reshaping work. I am sure you can think of a number of other functions that might
be helpful.

Functions for aggregating or combining data 393

How it works...
You may have noticed that in the adjmeans function we define in step 2, we actually
do not append our summary of the var column values until we get to the next byvar
column value. This is because there is no way to tell that we are on the last row for any
byvar value until we get to the next byvar value. That is not a problem because we
append the summary to rowlist right before we reset the value to 0. This also means
that we need to do something special to output the totals for the last byvar value since
no next byvar value is reached. We do this with a final append after the loop is complete.

In step 5, we call the adjmeans function we defined in step 2. Since we do not set
a value for the changeexclude parameter, the function will include all values in the
aggregation. This will give us the same results as we would get using groupby with an
aggregation function. When we pass an argument to changeexclude, however, we
determine which rows to exclude from the aggregation. In step 6, the fifth argument in the
call to adjmeans indicates that we should exclude new cases values that are more than
150 cases higher or lower than the value for the previous day.

The function in step 9 works well when the data files to be concatenated have the same,
or nearly the same, structure. We print an alert when the column names are different,
as step 10 shows. The latabs column is not in the Oman file. This means that in the
concatenated file, latabs will be missing for all of the rows for Oman.

There's more...
The adjmeans function does a fairly straightforward check of each new value to be
aggregated before including it in the total. But we could imagine much more complicated
checks. We could even have made a call to another function within the adjmeans
function where we are deciding whether to include the row.

See also
We examine combining DataFrames vertically and horizontally in Chapter 8, Addressing
Data Issues when Combining DataFrames.

394 User-Defined Functions and Classes to Automate Data Cleaning

Classes that contain the logic for updating
series values
We sometimes work with a particular dataset for an extended period of time, occasionally
years. The data might be updated regularly, for a new month or year, or with additional
individuals, but the data structure might be fairly stable. If that dataset also has a large
number of columns, we might be able to improve the reliability and readability of our
code by implementing classes.

When we create classes, we define the attributes and methods of objects. When I use
classes for my data cleaning work, I tend to conceptualize a class as representing my unit
of analysis. So, if my unit of analysis is a student, then I have a student class. Each instance
of a student created by that class might have birth date and gender attributes and a course
registration method. I might also create a subclass for alumni that inherits methods and
attributes from the student class.

Data cleaning for the NLS DataFrame could be implemented nicely with classes. The
dataset has been stable for 20 years, both in terms of the variables and the allowable values
for each variable. We explore how to create a respondent class for NLS survey responses in
this recipe.

Getting ready
You will need to create a helperfunctions subfolder in your current directory to
run the code in this recipe. We will save the file (respondent.py) for our new class
in that subfolder.

How to do it...
We will define a respondent class to create several new series based on the NLS data:

1.	 Import the pandas, os, sys, and pprint libraries.

We store this code in a different file than we will save the respondent class. Let's
call this file class_cleaning.py. We will instantiate respondent objects from
this file:

>>> import pandas as pd

>>> import os

>>> import sys

>>> import pprint

Classes that contain the logic for updating series values 395

2.	 Create a respondent class and save it to respondent.py in the
helperfunctions subfolder.

When we call our class (instantiate a class object), the __init__ method
runs automatically. (There is a double underscore before and after init).
The __init__ method has self as the first parameter, as any instance method
does. The __init__ method of this class also has a respdict parameter, which
expects a dictionary of values from the NLS data. In later steps, we will instantiate
a respondent object once for each row of data in the NLS DataFrame.

The __init__ method assigns the passed respdict value to self.respdict
to create an instance variable that we can reference in other methods. Finally, we
increment a counter, respondentcnt. We will be able to use this later to confirm
the number of instances of respondent that we created. We also import the math
and datetime modules because we will need them later. (Notice that class names
are capitalized by convention).

>>> import math

>>> import datetime as dt

>>>

>>> class Respondent:

... respondentcnt = 0

... def __init__(self, respdict):

... self.respdict = respdict

... Respondent.respondentcnt+=1

3.	 Add a method for counting the number of children.

This is a very simple method that just adds the number of children living with the
respondent to the number of children not living with the respondent, to get the total
number of children. It uses the childathome and childnotathome key values
in the self.respdict dictionary:

>>> def childnum(self):

... return self.respdict['childathome'] + self.
respdict['childnotathome']

396 User-Defined Functions and Classes to Automate Data Cleaning

4.	 Add a method for calculating average weeks worked across the 20 years of
the survey.

Use dictionary comprehension to create a dictionary (workdict) of the weeks
worked keys that do not have missing values. Sum the values in workdict and
divide that by the length of workdict:

>>> def avgweeksworked(self):

... workdict = {k: v for k, v in self.respdict.items()
\

... if k.startswith('weeksworked') and not math.
isnan(v)}

... nweeks = len(workdict)

... if (nweeks>0):

... avgww = sum(workdict.values())/nweeks

... else:

... avgww = 0

... return avgww

5.	 Add a method for calculating age as of a given date.

This method takes a date string (bydatestring) to use for the end date of the
age calculation. We use the datetime module to convert the date string to a
datetime object, bydate. We subtract the birth year value in self.respdict
from the year of bydate, subtracting 1 from that calculation if the birth date has
not happened yet that year. (We only have birth month and birth year in the NLS
data, so we choose 15 as a midpoint).

>>> def ageby(self, bydatestring):

... bydate = dt.datetime.strptime(bydatestring,
'%Y%m%d')

... birthyear = self.respdict['birthyear']

... birthmonth = self.respdict['birthmonth']

... age = bydate.year - birthyear

... if (bydate.month<birthmonth or (bydate.
month==birthmonth \

... and bydate.day<15)):

... age = age -1

... return age

Classes that contain the logic for updating series values 397

6.	 Add a method to create a flag if the respondent ever enrolled at a 4-year college.

Use dictionary comprehension to check whether any college enrollment values are
at a 4-year college:

>>> def baenrollment(self):

... colenrdict = {k: v for k, v in self.respdict.
items() \

... if k.startswith('colenr') and v=="3. 4-year
college"}

... if (len(colenrdict)>0):

... return "Y"

... else:

... return "N"

7.	 Import the respondent class.

Now we are ready to instantiate some Respondent objects! Let's do that from
the class_cleaning.py file we started in step 1. We start by importing
the respondent class. (This step assumes that respondent.py is in the
helperfunctions subfolder).

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import respondent as rp

8.	 Load the NLS data and create a list of dictionaries.

Use the to_dict method to create the list of dictionaries (nls97list). Each row
from the DataFrame will be a dictionary with column names as keys. Show part of
the first dictionary (the first row):

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97list = nls97.to_dict('records')

>>> nls97.shape

(8984, 89)

>>> len(nls97list)

8984

>>> pprint.pprint(nls97list[0:1])

[{'birthmonth': 5,

 'birthyear': 1980,

 'childathome': 4.0,

398 User-Defined Functions and Classes to Automate Data Cleaning

 'childnotathome': 0.0,

 'colenrfeb00': '1. Not enrolled',

 'colenrfeb01': '1. Not enrolled',

 ...

 'weeksworked16': 48.0,

 'weeksworked17': 48.0}]

9.	 Loop through the list, creating a respondent instance each time.

We pass each dictionary to the respondent class, rp.Respondent(respdict).
Once we have created a respondent object (resp), we can then use all of the instance
methods to get the values we need. We create a new dictionary with those values
returned by instance methods. We then append that dictionary to analysisdict:

>>> analysislist = []

>>>

>>> for respdict in nls97list:

... resp = rp.Respondent(respdict)

... newdict = dict(originalid=respdict['originalid'],

... childnum=resp.childnum(),

... avgweeksworked=resp.avgweeksworked(),

... age=resp.ageby('20201015'),

... baenrollment=resp.baenrollment())

... analysislist.append(newdict)

10.	 Pass the dictionary to the pandas DataFrame method.

First, check the number of items in analysislist and the number of
instances created:

>>> len(analysislist)

8984

>>> resp.respondentcnt

8984

>>> pprint.pprint(analysislist[0:2])

[{'age': 40,

 'avgweeksworked': 49.05555555555556,

 'baenrollment': 'Y',

 'childnum': 4.0,

 'originalid': 8245},

Classes that contain the logic for updating series values 399

 {'age': 37,

 'avgweeksworked': 49.388888888888886,

 'baenrollment': 'N',

 'childnum': 2.0,

 'originalid': 3962}]

>>> analysis = pd.DataFrame(analysislist)

>>> analysis.head(2)

 originalid childnum avgweeksworked age baenrollment

0 8245 4.0 49.055556 40 Y

1 3962 2.0 49.388889 37 N

These steps demonstrated how to create a class in Python, how to pass data to a class,
how to create an instance of a class, and how to call the methods of the class to update
variable values.

How it works...
The key work in this recipe is done in step 2. It creates the respondent class and sets
us up well for the remaining steps. We pass a dictionary with the values for each row to
the class's __init__ method. The __init__ method assigns that dictionary to
an instance variable that will be available to all of the class's methods (self.respdict
= respdict).

Steps 3 through 6 use that dictionary to calculate number of children, average weeks
worked per year, age, and college enrollment. Steps 4 and 6 show how helpful dictionary
comprehensions are when we need to test for the same value over many keys. The
dictionary comprehensions select the relevant keys, weeksworked##, colenroct##,
and colenrfeb##, and allow us to inspect the values of those keys. This is incredibly
useful when we have data that is untidy in this way, as survey data often is.

In step 8, we create a list of dictionaries with the to_dict method. It has the expected
number of list items, 8,984, the same as the number of rows in the DataFrame. We use
pprint to show what the dictionary looks like for the first list item. The dictionary has
keys for the column names and values for the column values.

We iterate over the list in step 9, creating a new respondent object and passing the list
item. We call the methods to get the values we want, except for originalid, which
we can pull directly from the dictionary. We create a dictionary (newdict) with those
values, which we append to a list (analysislist).

400 User-Defined Functions and Classes to Automate Data Cleaning

In step 10, we create a pandas DataFrame from the list (analysislist) we created in
step 9. We do this by passing the list to the pandas DataFrame method.

There's more...
We pass dictionaries to the class rather than data rows, which is also a possibility. We do
this because navigating a NumPy array is more efficient than looping over a DataFrame
with itertuples or iterrows. We do not lose much of the functionality needed
for our class when we work with dictionaries rather than DataFrame rows. We are still
able to use functions such as sum and mean and count the number of values meeting
certain criteria.

It is hard to avoid having to iterate over data with this conceptualization of a respondent
class. This respondent class is consistent with our understanding of the unit of analysis,
the survey respondent. That is also, unsurprisingly, how the data comes to us. But iterating
over data one row at a time is resource-intensive, even with more efficient NumPy arrays.

I would argue, however, that you gain more than you lose by constructing a class like
this one when working with data with many columns and with a structure that does not
change much over time. The most important advantage is that it matches our intuition
about the data and focuses our work on understanding the data for each respondent. I also
think we find that when we construct the class well we do far fewer passes through the
data than we otherwise might.

See also
We examine navigating over DataFrame rows and NumPy arrays in Chapter 7, Fixing
Messy Data when Aggregating.

This was a very quick introduction to working with classes in Python. If you would like to
learn more about object-oriented programming in Python, I would recommend Python 3
Object-Oriented Programming, Third Edition by Dusty Phillips.

Classes that handle non-tabular data
structures
Data scientists increasingly receive non-tabular data, often in the form of JSON or XML
files. The flexibility of JSON and XML allows organizations to capture complicated
relationships between data items in one file. A one-to-many relationship stored in two
tables in an enterprise data system can be represented well in JSON by a parent node for
the one side and child nodes for data on the many side.

Classes that handle non-tabular data structures 401

When we receive JSON data we often start by trying to normalize it. Indeed, we do that
in a couple of recipes in this book. We try to recover the one-to-one and one-to-many
relationships in the data obfuscated by the flexibility of JSON. But there is another way to
work with such data, one that has many advantages.

Instead of normalizing the data, we can create a class that instantiates objects at the
appropriate unit of analysis, and use the methods of the class to navigate the many side of
one-to-many relationships. For example, if we get a JSON file that has student nodes and
then multiple child nodes for each course taken by a student, we would usually normalize
that data by creating a student file and a course file, with student ID as the merge-by
column on both files. An alternative, which we explore in this recipe, would be to leave
the data as it is, create a student class, and create methods that do calculations on the child
nodes, such as calculating total credits taken.

Let's try that with this recipe, using data from the Cleveland Museum of Art, which has
collection items, one or more nodes for media citations for each item, and one or more
nodes for each creator of the item.

Getting ready
This recipe assumes you have the requests and pprint libraries. If they are not
installed, you can install them with pip. From the Terminal, or PowerShell (in Windows),
enter pip install requests and pip install pprint.

I show here the structure of the JSON file that is created when using the collections
API of the Cleveland Museum of Art. (I have abbreviated the JSON file to save space.)

{

"id": 165157,

"title": "Fulton and Nostrand",

"creation_date": "1958",

"citations": [

 {

 "citation": "Annual Exhibition: Sculpture, Paintings,
Watercolors, Drawings,

 "page_number": "Unpaginated, [8],[12]",

 "url": null

 },

 {

 "citation": "\"Moscow to See Modern U.S. Art,\" New York
Times (May 31, 1959).",

402 User-Defined Functions and Classes to Automate Data Cleaning

 "page_number": "P. 60",

 "url": null

 }]

"creators": [

 {

 "description": "Jacob Lawrence (American, 1917-2000)",

 "role": "artist",

 "birth_year": "1917",

 "death_year": "2000"

 }

]

 }

Note
The Cleveland Museum of Art provides an API for public access to this data:
https://openaccess-api.clevelandart.org/. Much more
than the citations and creators data used in this recipe is available with the API.

How to do it...
We create a collection item class that summarizes the data we need on creators and
media citations:

1.	 Import the pandas, json, pprint, and requests libraries.

Let's first create a file that we will use to instantiate collection item objects and call
it class_cleaning_json.py:

>>> import pandas as pd

>>> import json

>>> import pprint

>>> import requests

https://openaccess-api.clevelandart.org/

Classes that handle non-tabular data structures 403

2.	 Create a Collectionitem class.

We pass a dictionary for each collection item to the __init__ method of the
class, which runs automatically when an instance of the class is created. We
assign the collection item dictionary to an instance variable. Save the class as
collectionitem.py in the helperfunctions folder:

>>> class Collectionitem:

... collectionitemcnt = 0

... def __init__(self, colldict):

... self.colldict = colldict

... Collectionitem.collectionitemcnt+=1

3.	 Create a method to get the birth year of the first creator for each collection item.

Remember that collection items can have multiple creators. This means that the
creators key has one or more list items as values, and these items are themselves
dictionaries. To get the birth year of the first creator, then, we need ['creators']
[0]['birth_year']. We also need to allow for the birth year key to be missing,
so we test for that first:

>>> def birthyearcreator1(self):

... if ("birth_year" in self.colldict['creators'][0]):

... byear = self.colldict['creators'][0]['birth_
year']

... else:

... byear = "Unknown"

... return byear

4.	 Create a method to get the birth years for all creators.

Use list comprehension to loop through all the creators items. This will return the
birth years as a list:

>>> def birthyearsall(self):

... byearlist = [item.get('birth_year') for item in \

... self.colldict['creators']]

... return byearlist

404 User-Defined Functions and Classes to Automate Data Cleaning

5.	 Create a method to count the number of creators:

>>> def ncreators(self):

... return len(self.colldict['creators'])

6.	 Create a method to count the number of media citations:

>>> def ncitations(self):

... return len(self.colldict['citations'])

7.	 Import the collectionitem module.

We do this from the class_cleaning_json.py file we created in step 1:
>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import collectionitem as ci

8.	 Load the art museum's collections data.

This returns a list of dictionaries:
>>> response = requests.get("https://openaccess-api.
clevelandart.org/api/artworks/?african_american_artists")

>>> camcollections = json.loads(response.text)

>>> camcollections = camcollections['data']

9.	 Loop through the camcollections list.

Create a collection item instance for each item in camcollections. Pass each
item, which is a dictionary of collections, creators, and citation keys, to the class.
Call the methods we have just created and assign the values they return to a
new dictionary (newdict). Append that dictionary to a list (analysislist).
(Some of the values can be pulled directly from the dictionary, such as with
title=colldict['title'], since we do not need to change the value in
any way).

>>> analysislist = []

>>>

>>> for colldict in camcollections:

... coll = ci.Collectionitem(colldict)

... newdict = dict(id=colldict['id'],

... title=colldict['title'],

... type=colldict['type'],

Classes that handle non-tabular data structures 405

... creationdate=colldict['creation_date'],

... ncreators=coll.ncreators(),

... ncitations=coll.ncitations(),

... birthyearsall=coll.birthyearsall(),

... birthyear=coll.birthyearcreator1())

... analysislist.append(newdict)

10.	 Create an analysis DataFrame with the new list of dictionaries.

Confirm that we are getting the correct counts, and print the dictionary for the
first item:

>>> len(camcollections)

789

>>> len(analysislist)

789

>>> pprint.pprint(analysislist[0:1])

[{'birthyear': '1917',

 'birthyearsall': ['1917'],

 'creationdate': '1958',

 'id': 165157,

 'ncitations': 24,

 'ncreators': 1,

 'title': 'Fulton and Nostrand',

 'type': 'Painting'}]

>>> analysis = pd.DataFrame(analysislist)

>>> analysis.birthyearsall.value_counts().head()

[1951] 262

[1953] 118

[1961, None] 105

[1886] 34

[1935] 17

Name: birthyearsall, dtype: int64

>>> analysis.head(2)

 id title ... birthyearsall
birthyear

406 User-Defined Functions and Classes to Automate Data Cleaning

0 165157 Fulton and Nostrand ... [1917]
1917

1 163769 Go Down Death ... [1899]
1899

[2 rows x 8 columns]

These steps give a sense of how we can use classes to handle non-tabular data.

How it works...
This recipe demonstrated how to work directly with a JSON file, or any file with implied
one-to-many or many-to-many relationships. We created a class at the unit of analysis
(a collection item, in this case) and then created methods to summarize multiple nodes
of data for each collection item.

The methods we created in steps 3 through 6 are satisfyingly straightforward. When we
first look at the structure of the data, displayed in the Getting ready section of this recipe,
it is hard not to feel that it will be really difficult to clean. It looks like anything goes. But it
turns out to have a fairly reliable structure. We can count on one or more child nodes for
creators and citations. Each creators and citations node also has child nodes,
which are key and value pairs. These keys are not always present, so we need to first check to
see whether they are present before trying to grab their values. We do this in step 3.

There's more...
I go into some detail about the advantages of working directly with JSON files in Chapter 2,
Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas. I think
the museum's collections data is a good example of why we might want to stick with JSON
if we can. The structure of the data actually makes sense, even if it is in a very different
form. There is always a danger when we try to normalize it that we will miss some aspects
of its structure.

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Practical Data Analysis Using Jupyter Notebook
Marc Wintjen
ISBN: 978-1-83882-603-1

•	 Understand the importance of data literacy and how to communicate effectively
using data

•	 Find out how to use Python packages such as NumPy, pandas, Matplotlib, and
the Natural Language Toolkit (NLTK) for data analysis

•	 Wrangle data and create DataFrames using pandas
•	 Produce charts and data visualizations using time-series datasets
•	 Discover relationships and how to join data together using SQL
•	 Use NLP techniques to work with unstructured data to create sentiment

analysis models
•	 Discover patterns in real-world datasets that provide accurate insights

https://www.packtpub.com/product/practical-data-analysis-using-jupyter-notebook/9781838826031

408 Other Books You May Enjoy

Hands-On Exploratory Data Analysis with Python

Suresh Kumar Mukhiya, Usman Ahmed

ISBN: 978-1-78953-725-3

•	 Import, clean, and explore data to perform preliminary analysis using powerful
Python packages

•	 Identify and transform erroneous data using different data wrangling techniques

•	 Explore the use of multiple regression to describe non-linear relationships

•	 Discover hypothesis testing and explore techniques of time-series analysis

•	 Understand and interpret results obtained from graphical analysis

•	 Build, train, and optimize predictive models to estimate results

•	 Perform complex EDA techniques on open source datasets

https://www.packtpub.com/product/hands-on-exploratory-data-analysis-with-python/9781789537253

Leave a review - let other readers know what you think 409

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
addfiles function 392
adjmeans function 388
anomalies

finding, Isolation Forest used 160-165
API

complicated JSON data,
importing from 56-61

apply
using, with groupby 289-293

B
Beautiful Soup 62, 67
bivariate relationships

outliers, identifying 132-142
viewing, with scatter plots 201-208

boxplots
about 192
used, for identifying outliers for

continuous variables 177-184

C
categorical variables

frequencies, generating for 103-108
checkmerge function 390
classes

logic, for updating series values 394-399
non-tabular data structures,

handling 400-406
columns

organizing 82-89
selecting 82-89

comma separated values (CSV) 2
complicated aggregation functions

using, with groupby 282-288
complicated JSON data

importing, from API 56-61
continuous variables

summary statistics, generating
for 109-114

trends, examining with line
plots 209-215

correlation matrix
heat map, generating based on 216-220

CSV files
importing 2-7

412 ﻿

D
data

importing, from SQL databases 17-24
importing, from web pages 62-68
working with 77-81

data, by groups
organizing, with groupby 277-281

data file
working with 82

DataFrames
combining, vertically 300-305

dates
working with 251-257

dictionary comprehensions, DataCamp
reference link 49

displaydict function 368
distribution of continuous variables

examining, with histograms 168-176
distribution shape

examining, with violin plots 192-199
duplicated rows

removing 338-343

E
Excel files

importing 9-16

F
frequencies

generating, for categorical
variables 103-108

functions
creating, to aggregate data 386-393
creating, to display frequencies 372-378

creating, to display summary
statistics 372-378

creating, to identify outliers 379-385
creating, to identify unexpected

values 379-385
creating, to take initial look at

DataFrame 366-371

G
getcnts function 376, 378
getdistprops function 380
getfirstlook function 367
getmissings function 374
getoutliers function 381
gettots function 372, 373
Global Historical Climatology

Network integrated database
reference link 3, 269

Grade Point Average (GPA) 223, 294
Graduate Equivalency Diploma

(GED) 200
gross domestic product (GDP) 217
groupby

apply, using with 289-293
complicated aggregation functions,

using with 282-288
used, for modifying unit of analysis

of DataFrame 294-297
used, for organizing data by

groups 277-281
user-defined functions,

using with 289-293
grouped boxplots

using, to uncover unexpected values
in particular group 184-191

﻿ 413

H
heat map

generating, based on correlation
matrix 216-220

histograms
distribution of continuous variables,

examining 168-176

I
interquartile range (IQR) 177
Isolation Forest

about 160
reference link 165
used, for finding anomalies 160-165

itertuples
used, for looping through data 268-273

J
JavaScript Object Notation (JSON) 48
JSON data

persisting 68-72

K
k-nearest neighbor (KNN)

about 263
advantages 160
missing value imputation 263-266
used, for finding outliers 156-159

L
linear regression

used, for identifying data points with
significant influence 151-155

line plots
used, for examining trends in

continuous variables 209-215
list comprehensions, DataCamp

reference link 49

M
makefreqs function 375
makeplot function 383
many-to-many merges

performing 325-331
many-to-many relationships

fixing 343-350
Matplotlib 109
melt

used, for reshaping data from wide
to long format 351-356

merge routine
developing 332-335

Microsoft SQL Server 17
missing data

cleaning 257-262
identifying 257-262

missing value imputation
with k-nearest neighbor (KNN) 263-266

missing values
finding 116-120

modules 366
multiple groups, of columns

melting 356-360
multiple merge-by columns

using 314-318
MySQL 17

414 ﻿

N
National Longitudinal Survey

(NLS) 77, 83, 177, 223, 282
National Longitudinal Survey of

Youth (NLSY) 282, 351
NLS data

download link 77
NumPy arrays

summaries by group,
calculating 274-277

O
one-to-many merges

performing 318-323
one-to-one merges

performing 306-313
Organisation for Economic

Co-operation and Development
reference link 10

Our World in Data,
Covid-19 public use data

reference link 269
outliers

examining, with violin plots 192-199
finding, k-nearest neighbor

used 156-159
identifying, in bivariate

relationships 132-142
outliers for continuous variables

identifying, with boxplots 177-184
outliers, with one variable

identifying 121-132

P
pandas DataFrame

rows, selecting from 103
pandas series

about 222
summary statistics, displaying

for 227-232
values, obtaining from 223-227

pivot
used, for reshaping data from wide

to long format 360-363
print 40
PyOD toolkit

reference link 160
pyreadr

about 40
reference link 40

pyreadstat package
reference link 35

R
R data

importing 35-40
read_csv method 2
read_excel method 9
rows

selecting 91-102
selecting, from pandas DataFrame 103

S
SAS data

importing 25-34
scatter plots

used, for viewing bivariate
relationships 201-208

﻿ 415

Scholastic Assessment Test (SAT) 177, 284
select_dtypes

using 89, 90
series values

modifying 232-236
modifying, conditionally 237-243

simple JSON data
importing 48-55

SPSS data
importing 25-34

SQL databases
data, importing from 17-24

SQL Server table 48
stack

used, for reshaping data from wide
to long format 351-356

Stata data
importing 25-34

string series data
cleaning 245-250
evaluating 245-250

subsetting
used, for examining logical

inconsistencies in variable
relationships 142-151

summaries, by group
calculating, with NumPy arrays 274-277

summary statistics
displaying, for pandas series 227-232
generating, for continuous

variables 109-114

T
tabular data

persisting 41-45

trends
examining, in continuous variables

with line plots 209-215

U
United States National Longitudinal

Survey of Youth (NLS) 25
unit of analysis, DataFrame

modifying, with groupby 294-297
unstack

used, for reshaping data from wide
to long format 360-362

user-defined functions
using, with groupby 289-293

V
values

obtaining, from pandas series 223-227
variable relationships

logical inconsistencies examination,
with subsetting 142-151

violin plots
about 199
distribution shape, examining

with 192-199
outliers, examining with 192-199

W
web pages

data, importing from 62-68
web scraping 62

	Cover
	Copyright
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Anticipating Data Cleaning Issues when Importing Tabular Data into Pandas
	Technical requirements
	Importing CSV files
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also

	Importing Excel files
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Importing data from SQL databases
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Importing SPSS, Stata, and SAS data
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Importing R data
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Persisting tabular data
	Getting ready
	How to do it…
	How it works...
	There's more...

	Chapter 2: Anticipating Data Cleaning Issues when Importing HTML and JSON
into pandas
	Technical requirements
	Importing simple JSON data
	Getting ready
	How to do it…
	How it works…
	There's more…

	Importing more complicated JSON data from an API
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Importing data from web pages
	Getting ready
	How to do it…
	How it works…
	There's more…

	Persisting JSON data
	Getting ready
	How to do it...
	How it works…
	There's more…

	Chapter 3: Taking the Measure of Your Data
	Technical requirements
	Getting a first look at your data
	Getting ready…
	How to do it...
	How it works…
	There's more...
	See also

	Selecting and organizing columns
	Getting ready…
	How to do it…
	How it works…
	There's more…
	See also

	Selecting rows
	Getting ready...
	How to do it...
	How it works…
	There's more…
	See also

	Generating frequencies for categorical variables
	Getting ready…
	How to do it…
	How it works…
	There's more…

	Generating summary statistics for continuous variables
	Getting ready…
	How to do it…
	How it works…
	See also

	Chapter 4: Identifying Missing Values and Outliers in Subsets of Data
	Technical requirements
	Finding missing values
	Getting ready
	How to do it…
	How it works...
	See also

	Identifying outliers with one variable
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Identifying outliers and unexpected values in bivariate relationships
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Using subsetting to examine logical inconsistencies in variable relationships
	Getting ready
	How to do it…
	How it works…
	See also

	Using linear regression to identify data points with significant influence
	Getting ready
	How to do it…
	How it works...
	There's more…

	Using k-nearest neighbor to find outliers
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also

	Using Isolation Forest to find anomalies
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Chapter 5: Using Visualizations for the Identification of Unexpected Values
	Technical requirements
	Using histograms to examine the distribution of continuous variables
	Getting ready
	How to do it…
	How it works…
	There's more...

	Using boxplots to identify outliers for continuous variables
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also

	Using grouped boxplots to uncover unexpected values in a particular group
	Getting ready
	How to do it...
	How it works...
	There's more…
	See also

	Examining both the distribution shape and outliers with violin plots
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using scatter plots to view bivariate relationships
	Getting ready
	How to do it...
	How it works…
	There's more...
	See also

	Using line plots to examine trends in continuous variables
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also

	Generating a heat map based on a correlation matrix
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Chapter 6: Cleaning and Exploring Data with Series Operations
	Technical requirements
	Getting values from a pandas series
	Getting ready
	How to do it…
	How it works...

	Showing summary statistics for a pandas series
	Getting ready
	How to do it...
	How it works…
	There's more…
	See also

	Changing series values
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Changing series values conditionally
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Evaluating and cleaning string series data
	Getting ready
	How to do it...
	How it works...
	There's more…

	Working with dates
	Getting ready
	How to do it…
	How it works…
	See also

	Identifying and cleaning missing data
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also

	Missing value imputation with K-nearest neighbor
	Getting ready
	How to do it…
	How it works…
	There's more...
	See also

	Chapter 7: Fixing Messy Data when Aggregating
	Technical requirements
	Looping through data with itertuples
(an anti-pattern)
	Getting ready
	How to do it…
	How it works...
	There's more...

	Calculating summaries by group with NumPy arrays
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using groupby to organize data by groups
	Getting ready
	How to do it…
	How it works...
	There's more...

	Using more complicated aggregation functions with groupby
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Using user-defined functions and apply with groupby
	Getting ready
	How to do it…
	How it works...
	There's more...
	See also

	Using groupby to change the unit of analysis of a DataFrame
	Getting ready
	How to do it...
	How it works…

	Chapter 8: Addressing Data Issues When Combining DataFrames
	Technical requirements
	Combining DataFrames vertically
	Getting ready
	How to do it…
	How it works...
	See also

	Doing one-to-one merges
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using multiple merge-by columns
	Getting ready
	How to do it...
	How it works...
	There's more...

	Doing one-to-many merges
	Getting ready
	How to do it…
	How it works...
	There's more…
	See also

	Doing many-to-many merges
	Getting ready
	How to do it...
	How it works...
	There's more...

	Developing a merge routine
	Getting ready
	How to do it…
	How it works...
	See also

	Chapter 9: Tidying and Reshaping Data
	Technical requirements
	Removing duplicated rows
	Getting ready...
	How to do it…
	How it works...
	There's more...
	See also...

	Fixing many-to-many relationships
	Getting ready...
	How to do it…
	How it works...
	There's more...
	See also...

	Using stack and melt to reshape data from wide to long format
	Getting ready...
	How to do it…
	How it works...

	Melting multiple groups of columns
	Getting ready...
	How to do it…
	How it works...
	There's more...

	Using unstack and pivot to reshape data from long to wide
	Getting ready...
	How to do it…
	How it works...

	Chapter 10: User-Defined Functions and Classes to Automate Data Cleaning
	Technical requirements
	Functions for getting a first look at our data
	Getting ready...
	How to do it...
	How it works...
	There's more...

	Functions for displaying summary statistics and frequencies
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also...

	Functions for identifying outliers and unexpected values
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Functions for aggregating or combining data
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Classes that contain the logic for updating series values
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Classes that handle non-tabular data structures
	Getting ready
	How to do it...
	How it works...
	There's more...

	Other Books You May Enjoy
	Index

