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Preface
This book is a practical guide to data cleaning, broadly defined as all tasks necessary to 
prepare data for analysis. It is organized by the tasks usually completed during the data 
cleaning process: importing data, viewing data diagnostically, identifying outliers and 
unexpected values, imputing values, tidying data, and so on. Each recipe walks the reader 
from raw data through the completion of a specific data cleaning task.

There are already a number of very good pandas books. Unsurprisingly, there is some 
overlap between those texts and this one. However, the emphasis here is different. I focus 
as much on the why as on the how in this book.

Since pandas is still relatively new, the lessons I have learned about cleaning data have 
been shaped by my experiences with other tools. Before settling into my current work 
routine with Python and R about 8 years ago, I relied mostly on C# and T-SQL in the  
early 2000s, SAS and Stata in the 90s, and FORTRAN and Pascal in the 80s. Most readers 
of this text probably have experience with a variety of data cleaning and analysis tools. 
In many ways the specific tool is less significant than the data preparation task and the 
attributes of the data. I would have covered pretty much the same topics if I had been 
asked to write The SAS Data Cleaning Cookbook or The R Data Cleaning Cookbook. I just 
take a Python/pandas specific approach to the same data cleaning challenges that analysts 
have faced for decades.

I start each chapter with how to think about the particular data cleaning task at hand 
before discussing how to approach it with a tool from the Python ecosystem - pandas, 
NumPy, matplotlib, SciPy, and so on. This is reinforced in each recipe by a discussion of 
the implications of what we are uncovering in the data. I try to connect tool to purpose.  
For example, concepts like skew and kurtosis matter as much for handling outliers as does 
knowing how to update pandas series values.
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Who this book is for
This book is for anyone looking for ways to handle messy, duplicate, and poor data using 
different Python tools and techniques. The book takes a recipe-based approach to help 
you to learn how to clean and manage data. Working knowledge of Python programming 
is all you need to get the most out of the book.

What this book covers
Chapter 1, Anticipating Data Cleaning Issues when Importing Tabular Data into pandas, 
explores tools for loading CSV files, Excel files, relational database tables, SAS, SPSS, and 
Stata files, and R files into pandas DataFrames.

Chapter 2, Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas, 
discusses techniques for reading and normalizing JSON data, and for web scraping.

Chapter 3, Taking the Measure of Your Data, introduces common techniques for navigating 
around a DataFrame, selecting columns and rows, and generating summary statistics.

Chapter 4, Identifying Missing Values and Outliers in Subsets of Data, explores a wide range 
of strategies to identify missing values and outliers across a whole DataFrame and by 
selected groups.

Chapter 5, Using Visualizations for the Identification of Unexpected Values, demonstrates 
the use of matplotlib and seaborn tools to visualize how key variables are distributed, 
including with histograms, boxplots, scatter plots, line plots, and violin plots.

Chapter 6, Cleaning and Exploring Data with Series Operations, discusses updating pandas 
series with scalars, arithmetic operations, and conditional statements based on the values 
of one or more series.

Chapter 7, Fixing Messy Data when Aggregating, demonstrates multiple approaches to 
aggregating data by group, and discusses when to choose one approach over the others.

Chapter 8, Addressing Data Issues when Combining DataFrames, examines different 
strategies for concatenating and merging data, and how to anticipate common data 
challenges when combining data.

Chapter 9, Tidying and Reshaping Data, introduces several strategies for de-duplicating, 
stacking, melting, and pivoting data.

Chapter 10, User-Defined Functions and Classes to Automate Data Cleaning, examines how 
to turn many of the techniques from the first nine chapters into reusable code.
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To get the most out of this book
Working knowledge of Python programming is all you need to get the most out of this 
book. System requirements are mentioned in the following table. Alternatively, you can 
use Google Colab as well.

If you are using the digital version of this book, we advise you to type the code yourself 
or access the code via the GitHub repository (link available in the next section). Doing 
so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook. In case 
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at 
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800565661_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, 
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here 
is an example: "Define a getcases function that returns a series for total_cases_pm 
for the countries of a region."

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800565661_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800565661_ColorImages.pdf
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A block of code is set as follows:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

Any command-line input or output is written as follows:

$ pip install pyarrow

Bold: Indicates a new term, an important word, or words that you see onscreen. For 
example, words in menus or dialog boxes appear in the text like this. Here is an example: 
"We will work with cumulative data on coronavirus cases and deaths by country, and the 
National Longitudinal Survey (NLS) data."

Tips or important notes
Appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to 
do it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software 
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the  
previous section.
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There's more…
This section consists of additional information about the recipe in order to make you 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book 
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you have found a mistake in this book, we would be grateful if you would 
report this to us. Please visit www.packtpub.com/support/errata, selecting your 
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, 
we would be grateful if you would provide us with the location address or website name. 
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise  
in and you are interested in either writing or contributing to a book, please visit 
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about 
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com




1
Anticipating Data 

Cleaning Issues when 
Importing Tabular 
Data into pandas

Scientific distributions of Python (Anaconda, WinPython, Canopy, and so on) provide 
analysts with an impressive range of data manipulation, exploration, and visualization 
tools. One important tool is pandas. Developed by Wes McKinney in 2008, but really 
gaining in popularity after 2012, pandas is now an essential library for data analysis in 
Python. We work with pandas extensively in this book, along with popular packages such 
as numpy, matplotlib, and scipy.

A key pandas object is the data frame, which represents data as a tabular structure, 
with rows and columns. In this way, it is similar to the other data stores we discuss in 
this chapter. However, a pandas data frame also has indexing functionality that makes 
selecting, combining, and transforming data relatively straightforward, as the recipes in 
this book will demonstrate.
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Before we can make use of this great functionality, we have to get our data into pandas. 
Data comes to us in a wide variety of formats: as CSV or Excel files, as tables from 
SQL databases, from statistical analysis packages such as SPSS, Stata, SAS, or R, from 
non-tabular sources such as JSON, and from web pages.

We examine tools for importing tabular data in this recipe. Specifically, we cover the 
following topics:

•	 Importing CSV files

•	 Importing Excel files

•	 Importing data from SQL databases

•	 Importing SPSS, Stata, and SAS data

•	 Importing R data

•	 Persisting tabular data

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Importing CSV files
The read_csv method of the pandas library can be used to read a file with comma 
separated values (CSV) and load it into memory as a pandas data frame. In this recipe, 
we read a CSV file and address some common issues: creating column names that make 
sense to us, parsing dates, and dropping rows with critical missing data.

Raw data is often stored as CSV files. These files have a carriage return at the end of 
each line of data to demarcate a row, and a comma between each data value to delineate 
columns. Something other than a comma can be used as the delimiter, such as a tab. 
Quotation marks may be placed around values, which can be helpful when the delimiter 
occurs naturally within certain values, which sometimes happens with commas.

All data in a CSV file are characters, regardless of the logical data type. This is why it  
is easy to view a CSV file, presuming it is not too large, in a text editor. The pandas  
read_csv method will make an educated guess about the data type of each column, but 
you will need to help it along to ensure that these guesses are on the mark.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Getting ready
Create a folder for this chapter and create a new Python script or Jupyter Notebook file 
in that folder. Create a data subfolder and place the landtempssample.csv file in 
that subfolder. Alternatively, you could retrieve all of the files from the GitHub repository. 
Here is a code sample from the beginning of the CSV file:

locationid,year,month,temp,latitude,longitude,stnelev,station, 
countryid,country

USS0010K01S,2000,4,5.27,39.9,-110.75,2773.7,INDIAN_
CANYON,US,United States

CI000085406,1940,5,18.04,-18.35,-70.333,58.0,ARICA,CI,Chile

USC00036376,2013,12,6.22,34.3703,-91.1242,61.0,SAINT_
CHARLES,US,United States

ASN00024002,1963,2,22.93,-34.2833,140.6,65.5,BERRI_
IRRIGATION,AS,Australia

ASN00028007,2001,11,,-14.7803,143.5036,79.4,MUSGRAVE,AS,Austra
lia

Note
This dataset, taken from the Global Historical Climatology Network integrated 
database, is made available for public use by the United States National Oceanic 
and Atmospheric Administration at https://www.ncdc.noaa.gov/
data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-
monthly-version-4. This is just a 100,000-row sample of the full dataset, 
which is also available in the repository.

How to do it…
We will import a CSV file into pandas, taking advantage of some very useful  
read_csv options:

1.	 Import the pandas library and set up the environment to make viewing the  
output easier:

>>> import pandas as pd

>>> pd.options.display.float_format = '{:,.2f}'.format

>>> pd.set_option('display.width', 85)

>>> pd.set_option('display.max_columns', 8)

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
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2.	 Read the data file, set new names for the headings, and parse the date column.

Pass an argument of 1 to the skiprows parameter to skip the first row, pass a 
list of columns to parse_dates to create a pandas datetime column from those 
columns, and set low_memory to False to reduce the usage of memory during 
the import process:

>>> landtemps = pd.read_csv('data/landtempssample.csv',

...     
names=['stationid','year','month','avgtemp','latitude',

...       
'longitude','elevation','station','countryid','country'],

...     skiprows=1,

...     parse_dates=[['month','year']],

...     low_memory=False)

>>> type(landtemps)

<class 'pandas.core.frame.DataFrame'>

3.	 Get a quick glimpse of the data.

View the first few rows. Show the data type for all columns, as well as the number of 
rows and columns:

>>> landtemps.head(7)

  month_year    stationid  ...  countryid        country

0 2000-04-01  USS0010K01S  ...         US  United States

1 1940-05-01  CI000085406  ...         CI          Chile

2 2013-12-01  USC00036376  ...         US  United States

3 1963-02-01  ASN00024002  ...         AS      Australia

4 2001-11-01  ASN00028007  ...         AS      Australia

5 1991-04-01  USW00024151  ...         US  United States

6 1993-12-01  RSM00022641  ...         RS         Russia

[7 rows x 9 columns]

>>> landtemps.dtypes

month_year    datetime64[ns]

stationid             object

avgtemp              float64
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latitude             float64

longitude            float64

elevation            float64

station               object

countryid             object

country               object

dtype: object

>>> landtemps.shape

(100000, 9)

4.	 Give the date column a better name and view the summary statistics for average 
monthly temperature:

>>> landtemps.rename(columns={'month_
year':'measuredate'}, inplace=True)

>>> landtemps.dtypes

measuredate    datetime64[ns]

stationid              object

avgtemp               float64

latitude              float64

longitude             float64

elevation             float64

station                object

countryid              object

country                object

dtype: object

>>> landtemps.avgtemp.describe()

count   85,554.00

mean        10.92

std         11.52

min        -70.70

25%          3.46

50%         12.22

75%         19.57

max         39.95

Name: avgtemp, dtype: float64

5.	 Look for missing values for each column.
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Use isnull, which returns True for each value that is missing for each column, 
and False when not missing. Chain this with sum to count the missings for each 
column. (When working with Boolean values, sum treats True as 1 and False as 
0. I will discuss method chaining in the There's more... section of this recipe):

>>> landtemps.isnull().sum()

measuredate        0

stationid          0

avgtemp        14446

latitude           0

longitude          0

elevation          0

station            0

countryid          0

country            5

dtype: int64

6.	 Remove rows with missing data for avgtemp.

Use the subset parameter to tell dropna to drop rows where avgtemp is 
missing. Set inplace to True. Leaving inplace at its default value of False 
would display the data frame, but the changes we have made would not be retained. 
Use the shape attribute of the data frame to get the number of rows and columns:

>>> landtemps.dropna(subset=['avgtemp'], inplace=True)

>>> landtemps.shape

(85554, 9)

That's it! Importing CSV files into pandas is as simple as that.

How it works...
Almost all of the recipes in this book use the pandas library. We refer to it as pd to make 
it easier to reference later. This is customary. We also use float_format to display float 
values in a readable way and set_option to make the terminal output wide enough to 
accommodate the number of variables.
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Much of the work is done by the first line in step 2. We use read_csv to load a pandas 
data frame in memory and call it landtemps. In addition to passing a filename, we set 
the names parameter to a list of our preferred column headings. We also tell read_csv 
to skip the first row, by setting skiprows to 1, since the original column headings are in 
the first row of the CSV file. If we do not tell it to skip the first row, read_csv will treat 
the header row in the file as actual data.

read_csv also solves a date conversion issue for us. We use the parse_dates 
parameter to ask it to convert the month and year columns to a date value.

Step 3 runs through a few standard data checks. We use head(7) to print out all columns 
for the first 7 rows. We use the dtypes attribute of the data frame to show the data type 
of all columns. Each column has the expected data type. In pandas, character data has the 
object data type, a data type that allows for mixed values. shape returns a tuple, whose 
first element is the number of rows in the data frame (100,000 in this case) and whose 
second element is the number of columns (9).

When we used read_csv to parse the month and year columns, it gave the resulting 
column the name month_year. We use the rename method in step 4 to give that 
column a better name. We need to specify inplace=True to replace the old column 
name with the new column name in memory. The describe method provides summary 
statistics on the avgtemp column.

Notice that the count for avgtemp indicates that there are 85,554 rows that have 
valid values for avgtemp. This is out of 100,000 rows for the whole data frame, as 
provided by the shape attribute. The listing of missing values for each column in step 5 
(landtemps.isnull().sum()) confirms this: 100,000 – 85,554 = 14,446.

Step 6 drops all rows where avgtemp is NaN. (The NaN value, not a number, is the pandas 
representation of missing values.) subset is used to indicate which column to check for 
missings. The shape attribute for landtemps now indicates that there are 85,554 rows, 
which is what we would expect given the previous count from describe.

There's more...
If the file you are reading uses a delimiter other than a comma, such as a tab, this can be 
specified in the sep parameter of read_csv. When creating the pandas data frame, an 
index was also created. The numbers to the far left of the output when head and sample 
were run are index values. Any number of rows can be specified for head or sample. The 
default value is 5.
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Setting low_memory to False causes read_csv to parse data in chunks. This is easier 
on systems with lower memory when working with larger files. However, the full data 
frame will still be loaded into memory once read_csv completes successfully.

The landtemps.isnull().sum() statement is an example of chaining methods. 
First, isnull returns a data frame of True and False values, resulting from testing 
whether each column value is null. sum takes that data frame and sums the True values 
for each column, interpreting the True values as 1 and the False values as 0. We would 
have obtained the same result if we had used the following two steps:

>>> checknull = landtemps.isnull()

>>> checknull.sum()

There is no hard and fast rule for when to chain methods and when not to. I find it helpful 
to chain when I really think of something I am doing as being a single step, but only two 
or more steps, mechanically speaking. Chaining also has the side benefit of not creating 
extra objects that I might not need.

The dataset used in this recipe is just a sample from the full land temperatures database 
with almost 17 million records. You can run the larger file if your machine can handle it, 
with the following code:

>>> landtemps = pd.read_csv('data/landtemps.zip', 
compression='zip',

...     names=['stationid','year','month','avgtemp','latitude',

...       
'longitude','elevation','station','countryid','country'],

...     skiprows=1,

...     parse_dates=[['month','year']],

...     low_memory=False)

read_csv can read a compressed ZIP file. We get it to do this by passing the name of the 
ZIP file and the type of compression.

See also
Subsequent recipes in this chapter, and in other chapters, set indexes to improve 
navigation over rows and merging.

A significant amount of reshaping of the Global Historical Climatology Network raw data 
was done before using it in this recipe. We demonstrate this in Chapter 8, Addressing Data 
Issues when Combining DataFrames. That recipe also shows how to read a text file that is 
not delimited, one that is fixed, by using read_fwf.
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Importing Excel files
The read_excel method of the pandas library can be used to import data from an 
Excel file and load it into memory as a pandas data frame. In this recipe, we import an 
Excel file and handle some common issues when working with Excel files: extraneous 
header and footer information, selecting specific columns, removing rows with no data, 
and connecting to particular sheets.

Despite the tabular structure of Excel, which invites the organization of data into rows 
and columns, spreadsheets are not datasets and do not require people to store data in 
that way. Even when some data conforms to those expectations, there is often additional 
information in rows or columns before or after the data to be imported. Data types are 
not always as clear as they are to the person who created the spreadsheet. This will be all 
too familiar to anyone who has ever battled with importing leading zeros. Moreover, Excel 
does not insist that all data in a column be of the same type, or that column headings be 
appropriate for use with a programming language such as Python.

Fortunately, read_excel has a number of options for handling messiness in Excel data. 
These options make it relatively easy to skip rows and select particular columns, and to 
pull data from a particular sheet or sheets.

Getting ready
You can download the GDPpercapita.xlsx file, as well as the code for this recipe, 
from the GitHub repository for this book. The code assumes that the Excel file is in a data 
subfolder. Here is a view of the beginning of the file:

Figure 1.1 – View of the dataset

And here is a view of the end of the file:

Figure 1.2 – View of the dataset
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Note
This dataset, from the Organisation for Economic Co-operation and 
Development, is available for public use at https://stats.oecd.org/.

How to do it…
We import an Excel file into pandas and do some initial data cleaning:

1.	 Import the pandas library:

>>> import pandas as pd

2.	 Read the Excel per capita GDP data.

Select the sheet with the data we need, but skip the columns and rows that we do 
not want. Use the sheet_name parameter to specify the sheet. Set skiprows to 
4 and skipfooter to 1 to skip the first four rows (the first row is hidden) and the 
last row. We provide values for usecols to get data from column A and columns C 
through T (column B is blank). Use head to view the first few rows:

>>> percapitaGDP = pd.read_excel("data/GDPpercapita.
xlsx",

...    sheet_name="OECD.Stat export",

...    skiprows=4,

...    skipfooter=1,

...    usecols="A,C:T")

>>> percapitaGDP.head()

                         Year   2001  ...   2017   2018

0          Metropolitan areas    NaN  ...    NaN    NaN

1              AUS: Australia     ..  ...     ..     ..

2       AUS01: Greater Sydney  43313  ...  50578  49860

3    AUS02: Greater Melbourne  40125  ...  43025  42674

4     AUS03: Greater Brisbane  37580  ...  46876  46640

[5 rows x 19 columns]

3.	 Use the info method of the data frame to view data types and the non-null count:

>>> percapitaGDP.info()

<class 'pandas.core.frame.DataFrame'>

https://stats.oecd.org/
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RangeIndex: 702 entries, 0 to 701

Data columns (total 19 columns):

 #   Column  Non-Null Count  Dtype 

---  ------  --------------  ----- 

 0   Year    702 non-null    object

 1   2001    701 non-null    object

 2   2002    701 non-null    object

 3   2003    701 non-null    object

 4   2004    701 non-null    object

 5   2005    701 non-null    object

 6   2006    701 non-null    object

 7   2007    701 non-null    object

 8   2008    701 non-null    object

 9   2009    701 non-null    object

 10  2010    701 non-null    object

 11  2011    701 non-null    object

 12  2012    701 non-null    object

 13  2013    701 non-null    object

 14  2014    701 non-null    object

 15  2015    701 non-null    object

 16  2016    701 non-null    object

 17  2017    701 non-null    object

 18  2018    701 non-null    object

dtypes: object(19)

memory usage: 104.3+ KB

4.	 Rename the Year column to metro and remove the leading spaces.

Give an appropriate name to the metropolitan area column. There are extra spaces 
before the metro values in some cases, and extra spaces after the metro values in 
others. We can test for leading spaces with startswith(' ') and then use any 
to establish whether there are one or more occasions when the first character is 
blank. We can use endswith(' ') to examine trailing spaces. We use strip to 
remove both leading and trailing spaces:

>>> percapitaGDP.rename(columns={'Year':'metro'}, 
inplace=True)

>>> percapitaGDP.metro.str.startswith(' ').any()

True
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>>> percapitaGDP.metro.str.endswith(' ').any()

True

>>> percapitaGDP.metro = percapitaGDP.metro.str.strip()

5.	 Convert the data columns to numeric.

Iterate over all of the GDP year columns (2001-2018) and convert the data type 
from object to float. Coerce the conversion even when there is character data 
– the .. in this example. We want character values in those columns to become 
missing, which is what happens. Rename the year columns to better reflect the data 
in those columns:

>>> for col in percapitaGDP.columns[1:]:

...   percapitaGDP[col] = pd.to_numeric(percapitaGDP[col], 
errors='coerce')

...   percapitaGDP.rename(columns={col:'pcGDP'+col}, 
inplace=True)

... 

>>> percapitaGDP.head()

                      metro  pcGDP2001  ...  pcGDP2017  
pcGDP2018

0        Metropolitan areas        nan  ...        nan        
nan

1            AUS: Australia        nan  ...        nan        
nan

2     AUS01: Greater Sydney      43313  ...      50578      
49860

3  AUS02: Greater Melbourne      40125  ...      43025      
42674

4   AUS03: Greater Brisbane      37580  ...      46876      
46640

>>> percapitaGDP.dtypes

metro         object

pcGDP2001    float64

pcGDP2002    float64

abbreviated to save space
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pcGDP2017    float64

pcGDP2018    float64

dtype: object

6.	 Use the describe method to generate summary statistics for all numeric data in 
the data frame:

>>> percapitaGDP.describe()

       pcGDP2001  pcGDP2002  ...  pcGDP2017  pcGDP2018

count        424        440  ...        445        441

mean       41264      41015  ...      47489      48033

std        11878      12537  ...      15464      15720

min        10988      11435  ...       2745       2832

25%        33139      32636  ...      37316      37908

50%        39544      39684  ...      45385      46057

75%        47972      48611  ...      56023      56638

max        91488      93566  ...     122242     127468

[8 rows x 18 columns]

7.	 Remove rows where all of the per capita GDP values are missing.

Use the subset parameter of dropna to inspect all columns, starting with the 
second column (it is zero-based) through the last column. Use how to specify that 
we want to drop rows only if all of the columns specified in subset are missing. 
Use shape to show the number of rows and columns in the resulting data frame:

>>> percapitaGDP.dropna(subset=percapitaGDP.columns[1:], 
how="all", inplace=True)

>>> percapitaGDP.describe()

       pcGDP2001  pcGDP2002  ...  pcGDP2017  pcGDP2018

count        424        440  ...        445        441

mean       41264      41015  ...      47489      48033

std        11878      12537  ...      15464      15720

min        10988      11435  ...       2745       2832

25%        33139      32636  ...      37316      37908

50%        39544      39684  ...      45385      46057

75%        47972      48611  ...      56023      56638
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max        91488      93566  ...     122242     127468

[8 rows x 18 columns]

>>> percapitaGDP.head()

                      metro  pcGDP2001  ...  pcGDP2017  
pcGDP2018

2     AUS01: Greater Sydney      43313  ...      50578      
49860

3  AUS02: Greater Melbourne      40125  ...      43025      
42674

4   AUS03: Greater Brisbane      37580  ...      46876      
46640

5      AUS04: Greater Perth      45713  ...      66424      
70390

6   AUS05: Greater Adelaide      36505  ...      40115      
39924

[5 rows x 19 columns]

>>> percapitaGDP.shape

(480, 19)

8.	 Set the index for the data frame using the metropolitan area column.

Confirm that there are 480 valid values for metro and that there are 480 unique 
values, before setting the index:

>>> percapitaGDP.metro.count()

480

>>> percapitaGDP.metro.nunique()

480

>>> percapitaGDP.set_index('metro', inplace=True)

>>> percapitaGDP.head()

                     pcGDP2001  pcGDP2002  ...  pcGDP2017  
pcGDP2018

metro                                           ...                      

AUS01: Greater Sydney    43313      44008  ...      50578      
49860
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AUS02: Greater Melbourne 40125      40894  ...      43025      
42674

AUS03: Greater Brisbane  37580      37564  ...      46876      
46640

AUS04: Greater Perth     45713      47371  ...      66424      
70390

AUS05: Greater Adelaide  36505      37194  ...      40115      
39924

[5 rows x 18 columns]

>>> percapitaGDP.loc['AUS02: Greater Melbourne']

pcGDP2001   40125

pcGDP2002   40894

...

pcGDP2017   43025

pcGDP2018   42674

Name: AUS02: Greater Melbourne, dtype: float64

We have now imported the Excel data into a pandas data frame and cleaned up some of 
the messiness in the spreadsheet.

How it works…
We mostly manage to get the data we want in step 2 by skipping rows and columns we 
do not want, but there are still a number of issues: read_excel interprets all of the 
GDP data as character data, many rows are loaded with no useful data, and the column 
names do not represent the data well. In addition, the metropolitan area column might be 
useful as an index, but there are leading and trailing blanks and there may be missing or 
duplicated values.

read_excel interprets Year as the column name for the metropolitan area data 
because it looks for a header above the data for that Excel column and finds Year there. 
We rename that column metro in step 4. We also use strip to fix the problem with 
leading and trailing blanks. If there had only been leading blanks, we could have used 
lstrip, or rstrip if there had only been trailing blanks. It is a good idea to assume 
that there might be leading or trailing blanks in any character data and clean that data 
shortly after the initial import.
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The spreadsheet authors used .. to represent missing data. Since this is actually valid 
character data, those columns get the object data type (how pandas treats columns with 
character or mixed data). We coerce a conversion to numeric in step 5. This also results 
in the original values of .. being replaced with NaN (not a number), pandas' value for 
missing numbers. This is what we want.

We can fix all of the per capita GDP columns with just a few lines because pandas makes 
it easy to iterate over the columns of a data frame. By specifying [1:], we iterate from the 
second column to the last column. We can then change those columns to numeric and 
rename them to something more appropriate.

There are several reasons why it is a good idea to clean up the column headings for the 
annual GDP columns: it helps us to remember what the data actually is; if we merge 
it with other data by metropolitan area, we will not have to worry about conflicting 
variable names; and we can use attribute access to work with pandas series based on those 
columns, which I will discuss in more detail in the There's more… section of this recipe.

describe in step 6 shows us that only between 420 and 480 rows have valid data for 
per capita GDP. When we drop all rows that have missing values for all per capita GDP 
columns in step 7, we end up with 480 rows in the data frame, which is what we expected.

There's more…
Once we have a pandas data frame, we have the ability to treat columns as more than 
just columns. We can use attribute access (such as percapitaGPA.metro) or bracket 
notation (percapitaGPA['metro']) to get the functionality of a pandas data 
series. Either method makes it possible to use data series string-inspecting methods 
such as str.startswith, and counting methods such as nunique. Note that 
the original column names of 20## did not allow for attribute access because they 
started with a number, so percapitaGDP.pcGDP2001.count() works, but 
percapitaGDP.2001.count() returns a syntax error because 2001 is not a valid 
Python identifier (since it starts with a number).

Pandas is rich with features for string manipulation and for data series operations. We will 
try many of them out in subsequent recipes. This recipe showed those I find most useful 
when importing Excel data.

See also
There are good reasons to consider reshaping this data. Instead of 18 columns of GDP 
per capita data for each metropolitan area, we should have 18 rows of data for each 
metropolitan area, with columns for year and GDP per capita. Recipes for reshaping data 
can be found in Chapter 9, Tidying and Reshaping Data.
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Importing data from SQL databases
In this recipe, we will use pymssql and mysql apis to read data from Microsoft SQL 
Server and MySQL (now owned by Oracle) databases, respectively. Data from sources 
such as these tends to be well structured since it is designed to facilitate simultaneous 
transactions by members of organizations, and those who interact with them. Each 
transaction is also likely related to some other organizational transaction.

This means that although data tables from enterprise systems are more reliably structured 
than data from CSV files and Excel files, their logic is less likely to be self-contained. 
You need to know how the data from one table relates to data from another table to 
understand its full meaning. These relationships need to be preserved, including the 
integrity of primary and foreign keys, when pulling data. Moreover, well-structured data 
tables are not necessarily uncomplicated data tables. There are often sophisticated coding 
schemes that determine data values, and these coding schemes can change over time. For 
example, codes for staff ethnicity at a retail store chain might be different in 1998 than 
they are in 2020. Similarly, frequently there are codes for missing values, such as 99999, 
that pandas will understand as valid values.

Since much of this logic is business logic, and implemented in stored procedures or other 
applications, it is lost when pulled out of this larger system. Some of what is lost will 
eventually have to be reconstructed when preparing data for analysis. This almost always 
involves combining data from multiple tables, so it is important to preserve the ability to 
do that. But it also may involve adding some of the coding logic back after loading the 
SQL table into a pandas data frame. We explore how to do that in this recipe.

Getting ready
This recipe assumes you have the pymssql and mysql APIs installed. If you do not,  
it is relatively straightforward to install them with pip. From the terminal, or PowerShell 
(in Windows), enter pip install pymssql or pip install mysql-
connector-python.

Note
The dataset used in this recipe is available for public use at  
https://archive.ics.uci.edu/ml/machine-learning-
databases/00320/.

https://archive.ics.uci.edu/ml/machine-learning-databases/00320/
https://archive.ics.uci.edu/ml/machine-learning-databases/00320/
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How to do it...
We import SQL Server and MySQL data tables into a pandas data frame as follows:

1.	 Import pandas, numpy, pymssql, and mysql.

This step assumes that you have installed the pymssql and mysql APIs:
>>> import pandas as pd

>>> import numpy as np

>>> import pymssql

>>> import mysql.connector

2.	 Use the pymssql API and read_sql to retrieve and load data from a SQL  
Server instance.

Select the columns we want from the SQL Server data and use SQL aliases to 
improve column names (for example, fedu AS fathereducation). Create a 
connection to the SQL Server data by passing database credentials to the pymssql 
connect function. Create a pandas data frame by passing the select statement  
and connection object to read_sql. Close the connection to return it to the 
pool on the server:

>>> query = "SELECT studentid, school, sex, age, 
famsize,\

...   medu AS mothereducation, fedu AS fathereducation,\

...   traveltime, studytime, failures, famrel, freetime,\

...   goout, g1 AS gradeperiod1, g2 AS gradeperiod2,\

...   g3 AS gradeperiod3 From studentmath"

>>> 

>>> server = "pdcc.c9sqqzd5fulv.us-west-2.rds.amazonaws.
com"

>>> user = "pdccuser"

>>> password = "pdccpass"

>>> database = "pdcctest"

>>> 

>>> conn = pymssql.connect(server=server,

...   user=user, password=password, database=database)

>>> 

>>> studentmath = pd.read_sql(query,conn)

>>> conn.close()
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3.	 Check the data types and the first few rows:

>>> studentmath.dtypes

studentid          object

school             object

sex                object

age                 int64

famsize            object

mothereducation     int64

fathereducation     int64

traveltime          int64

studytime           int64

failures            int64

famrel              int64

freetime            int64

goout               int64

gradeperiod1        int64

gradeperiod2        int64

gradeperiod3        int64

dtype: object

>>> studentmath.head()

  studentid school  ... gradeperiod2  gradeperiod3

0       001     GP  ...            6             6

1       002     GP  ...            5             6

2       003     GP  ...            8            10

3       004     GP  ...           14            15

4       005     GP  ...           10            10

[5 rows x 16 columns]

4.	 (Alternative) Use the mysql connector and read_sql to get data from MySQL.

Create a connection to the mysql data and pass that connection to read_sql to 
retrieve the data and load it into a pandas data frame. (The same data file on student 
math scores was uploaded to SQL Server and MySQL, so we can use the same SQL 
SELECT statement we used in the previous step.):

>>> host = "pdccmysql.c9sqqzd5fulv.us-west-2.rds.
amazonaws.com"
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>>> user = "pdccuser"

>>> password = "pdccpass"

>>> database = "pdccschema"

>>> connmysql = mysql.connector.connect(host=host,

...   database=database,user=user,password=password)

>>> studentmath = pd.read_sql(sqlselect,connmysql)

>>> connmysql.close()

5.	 Rearrange the columns, set an index, and check for missing values.

Move the grade data to the left of the data frame, just after studentid. Also  
move the freetime column to the right after traveltime and studytime. 
Confirm that each row has an ID and that the IDs are unique, and set studentid 
as the index:

>>> newcolorder = ['studentid', 'gradeperiod1', 
'gradeperiod2',

...   'gradeperiod3', 'school', 'sex', 'age', 'famsize',

...   'mothereducation', 'fathereducation', 'traveltime',

...   'studytime', 'freetime', 'failures', 'famrel',

...   'goout']

>>> studentmath = studentmath[newcolorder]

>>> studentmath.studentid.count()

395

>>> studentmath.studentid.nunique()

395

>>> studentmath.set_index('studentid', inplace=True)

6.	 Use the data frame's count function to check for missing values:

>>> studentmath.count()

gradeperiod1       395

gradeperiod2       395

gradeperiod3       395

school             395

sex                395

age                395
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famsize            395

mothereducation    395

fathereducation    395

traveltime         395

studytime          395

freetime           395

failures           395

famrel             395

goout              395

dtype: int64

7.	 Replace coded data values with more informative values.

Create a dictionary with the replacement values for the columns, and then use 
replace to set those values:

>>> setvalues={"famrel":{1:"1:very 
bad",2:"2:bad",3:"3:neutral",

...     4:"4:good",5:"5:excellent"},

...   "freetime":{1:"1:very low",2:"2:low",3:"3:neutral",

...     4:"4:high",5:"5:very high"},

...   "goout":{1:"1:very low",2:"2:low",3:"3:neutral",

...     4:"4:high",5:"5:very high"},

...   "mothereducation":{0:np.nan,1:"1:k-4",2:"2:5-9",

...     3:"3:secondary ed",4:"4:higher ed"},

...   "fathereducation":{0:np.nan,1:"1:k-4",2:"2:5-9",

...     3:"3:secondary ed",4:"4:higher ed"}}

 

>>> studentmath.replace(setvalues, inplace=True)

>>> setvalueskeys = [k for k in setvalues]

8.	 Change the type for columns with the changed data to category.

Check for any changes in memory usage:
>>> studentmath[setvalueskeys].memory_usage(index=False)

famrel             3160

freetime           3160

goout              3160

mothereducation    3160



22     Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

fathereducation    3160

dtype: int64

>>> for col in studentmath[setvalueskeys].columns:

...     studentmath[col] = studentmath[col].
astype('category')

... 

>>> studentmath[setvalueskeys].memory_usage(index=False)

famrel             595

freetime           595

goout              595

mothereducation    587

fathereducation    587

dtype: int64

9.	 Calculate percentages for values in the famrel column.

Run value_counts and set normalize to True to generate percentages:
>>> studentmath['famrel'].value_counts(sort=False, 
normalize=True)

1:very bad    0.02

2:bad         0.05

3:neutral     0.17

4:good        0.49

5:excellent   0.27

Name: famrel, dtype: float64

10.	 Use apply to calculate percentages for multiple columns:

>>> studentmath[['freetime','goout']].\

...   apply(pd.Series.value_counts, sort=False, 
normalize=True)

             freetime  goout

1:very low       0.05   0.06

2:low            0.16   0.26

3:neutral        0.40   0.33

4:high           0.29   0.22

5:very high      0.10   0.13
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>>> 

>>> studentmath[['mothereducation','fathereducation']].\

...   apply(pd.Series.value_counts, sort=False, 
normalize=True)

                mothereducation  fathereducation

1:k-4                      0.15             0.21

2:5-9                      0.26             0.29

3:secondary ed             0.25             0.25

4:higher ed                0.33             0.24

The preceding steps retrieved a data table from a SQL database, loaded that data into 
pandas, and did some initial data checking and cleaning.

How it works…
Since data from enterprise systems is typically better structured than CSV or Excel files, 
we do not need to do things such as skip rows or deal with different logical data types in 
a column. But some massaging is still usually required before we can begin exploratory 
analysis. There are often more columns than we need, and some column names are not 
intuitive or not ordered in the best way for analysis. The meaningfulness of many data 
values is not stored in the data table, to avoid entry errors and save on storage space. For 
example, 3 is stored for mother's education rather than secondary education. 
It is a good idea to reconstruct that coding as early in the cleaning process as possible.

To pull data from a SQL database server, we need a connection object to authenticate us 
on the server, and a SQL select string. These can be passed to read_sql to retrieve the 
data and load it into a pandas data frame. I usually use the SQL SELECT statement to do 
a bit of cleanup of column names at this point. I sometimes also reorder columns, but I do 
that later in this recipe.

We set the index in step 5, first confirming that every row has a value for studentid and 
that it is unique. This is often more important when working with enterprise data because 
we will almost always need to merge the retrieved data with other data files on the system. 
Although an index is not required for this merging, the discipline of setting one prepares 
us for the tricky business of merging data down the road. It will also likely improve the 
speed of the merge.

We use the data frame's count function to check for missing values and there are no 
missing values – non-missing values is 395 (the number of rows) for every column. This 
is almost too good to be true. There may be values that are logically missing; that is, valid 
numbers that nonetheless connote missing values, such as -1, 0, 9, or 99. We address this 
possibility in the next step.
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Step 7 demonstrates a useful technique for replacing data values for multiple columns. We 
create a dictionary to map original values to new values for each column, and then run 
it using replace. To reduce the amount of storage space taken up by the new verbose 
values, we convert the data type of those columns to category. We do this by generating 
a list of the keys of our setvalues dictionary – setvalueskeys = [k for k 
in setvalues] generates [famrel, freetime, goout, mothereducation, and 
fathereducation]. We then iterate over those five columns and use the astype 
method to change the data type to category. Notice that the memory usage for those 
columns is reduced substantially.

Finally, we check the assignment of new values by using value_counts to view relative 
frequencies. We use apply because we want to run value_counts on multiple 
columns. To avoid value_counts sorting by frequency, we set sort to False.

The data frame replace method is also a handy tool for dealing with logical missing 
values that will not be recognized as missing when retrieved by read_sql. 0 values 
for mothereducation and fathereducation seem to fall into that category. 
We fix this problem in the setvalues dictionary by indicating that 0 values for 
mothereducation and fathereducation should be replaced with NaN. It is 
important to address these kinds of missing values shortly after the initial import because 
they are not always obvious and can significantly impact all subsequent work.

Users of packages such as SPPS, SAS, and R will notice the difference between this 
approach and value labels in SPSS and R, and proc format in SAS. In pandas, we need 
to change the actual data to get more informative values. However, we reduce how much 
data is actually stored by giving the column a category data type, similar to factors in R.

There's more…
I moved the grade data to near the beginning of the data frame. I find it helpful to have 
potential target or dependent variables in the leftmost columns, to keep them at the 
forefront of my thinking. It is also helpful to keep similar columns together. In this 
example, personal demographic variables (sex, age) are next to one another, as are family 
variables (mothereducation, fathereducation), and how students spend their 
time (traveltime, studytime, and freetime).

You could have used map instead of replace in step 7. Prior to version 19.2 of pandas, 
map was significantly more efficient. Since then, the difference in efficiency has been much 
smaller. If you are working with a very large dataset, the difference may still be enough to 
consider using map.
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See also
The recipes in Chapter 8, Addressing Data Issues when Combining DataFrames, go 
into detail on merging data. We will take a closer look at bivariate and multivariate 
relationships between variables in Chapter 4, Identifying Missing Values and Outliers in 
Subsets of Data. We demonstrate how to use some of these same approaches in packages 
such as SPSS, SAS, and R in subsequent recipes in this chapter.

Importing SPSS, Stata, and SAS data
We will use pyreadstat to read data from three popular statistical packages into 
pandas. The key advantage of pyreadstat is that it allows data analysts to import data 
from these packages without losing metadata, such as variable and value labels.

The SPSS, Stata, and SAS data files we receive often come to us with the data issues of 
CSV and Excel files and SQL databases having been resolved. We do not typically have the 
invalid column names, changes in data types, and unclear missing values that we can get 
with CSV or Excel files, nor do we usually get the detachment of data from business logic, 
such as the meaning of data codes, that we often get with SQL data. When someone or 
some organization shares a data file from one of these packages with us, they have often 
added variable labels and value labels for categorical data. For example, a hypothetical 
data column called presentsat has the variable label overall satisfaction 
with presentation and value labels 1-5, with 1 being not at all satisfied and 5 being 
highly satisfied.

The challenge is retaining that metadata when importing data from those systems into 
pandas. There is no precise equivalent to variable and value labels in pandas, and built-in 
tools for importing SAS, Stata, and SAS data lose the metadata. In this recipe, we will use 
pyreadstat to load variable and value label information and use a couple of techniques 
for representing that information in pandas.

Getting ready
This recipe assumes you have installed the pyreadstat package. If it is not installed, 
you can install it with pip. From the terminal, or PowerShell (in Windows), enter pip 
install pyreadstat. You will need the SPSS, Stata, and SAS data files for this recipe 
to run the code.

We will work with data from the United States National Longitudinal Survey of  
Youth (NLS).
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Note
The National Longitudinal Survey of Youth is conducted by the United States 
Bureau of Labor Statistics. This survey started with a cohort of individuals in 
1997 who were born between 1980 and 1985, with annual follow-ups each year 
through 2017. For this recipe, I pulled 42 variables on grades, employment, 
income, and attitudes toward government, from the hundreds of data items on 
the survey. Separate files for SPSS, Stata, and SAS can be downloaded from the 
repository. NLS data can be downloaded from https://www.nlsinfo.
org/investigator/pages/search.

How to do it...
We will import data from SPSS, Stata, and SAS, retaining metadata such as value labels:

1.	 Import pandas, numpy, and pyreadstat.

This step assumes that you have installed pyreadstat:
>>> import pandas as pd

>>> import numpy as np

>>> import pyreadstat

2.	 Retrieve the SPSS data.

Pass a path and filename to the read_sav method of pyreadstat. Display the 
first few rows and a frequency distribution. Notice that the column names and value 
labels are non-descriptive, and that read_sav creates both a pandas data frame 
and a meta object:

>>> nls97spss, metaspss = pyreadstat.read_sav('data/
nls97.sav')

>>> nls97spss.dtypes

R0000100    float64

R0536300    float64

R0536401    float64

...

U2962900    float64

U2963000    float64

Z9063900    float64

dtype: object

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search
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>>> nls97spss.head()

   R0000100  R0536300  ...  U2963000  Z9063900

0         1         2  ...       nan        52

1         2         1  ...         6         0

2         3         2  ...         6         0

3         4         2  ...         6         4

4         5         1  ...         5        12

[5 rows x 42 columns]

>>> nls97spss['R0536300'].value_counts(normalize=True)

1.00   0.51

2.00   0.49

Name: R0536300, dtype: float64

3.	 Grab the metadata to improve column labels and value labels.

The metaspss object created when we called read_sav has the column labels 
and the value labels from the SPSS file. Use the variable_value_labels 
dictionary to map values to value labels for one column (R0536300). (This does 
not change the data. It only improves our display when we run value_counts.) 
Use the set_value_labels method to actually apply the value labels to the  
data frame:

>>> metaspss.variable_value_labels['R0536300']

{0.0: 'No Information', 1.0: 'Male', 2.0: 'Female'}

>>> nls97spss['R0536300'].\

...   map(metaspss.variable_value_labels['R0536300']).\

...   value_counts(normalize=True)

Male     0.51

Female   0.49

Name: R0536300, dtype: float64

>>> nls97spss = pyreadstat.set_value_labels(nls97spss, 
metaspss, formats_as_category=True)
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4.	 Use column labels in the metadata to rename the columns.

To use the column labels from metaspss in our data frame, we can simply assign 
the column labels in metaspss to our data frame's column names. Clean up the 
column names a bit by changing them to lowercase, changing spaces to underscores, 
and removing all remaining non-alphanumeric characters:

>>> nls97spss.columns = metaspss.column_labels

>>> nls97spss['KEY!SEX (SYMBOL) 1997'].value_
counts(normalize=True)

Male     0.51

Female   0.49

Name: KEY!SEX (SYMBOL) 1997, dtype: float64

>>> nls97spss.dtypes

PUBID - YTH ID CODE 1997                        float64

KEY!SEX (SYMBOL) 1997                          category

KEY!BDATE M/Y (SYMBOL) 1997                     float64

KEY!BDATE M/Y (SYMBOL) 1997                     float64

CV_SAMPLE_TYPE 1997                            category

KEY!RACE_ETHNICITY (SYMBOL) 1997               category

...

HRS/WK R WATCHES TELEVISION 2017               category

HRS/NIGHT R SLEEPS 2017                         float64

CVC_WKSWK_YR_ALL L99                            float64

dtype: object

>>> nls97spss.columns = nls97spss.columns.\

...     str.lower().\

...     str.replace(' ','_').\

...     str.replace('[^a-z0-9_]', '')

>>> nls97spss.set_index('pubid__yth_id_code_1997', 
inplace=True)
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5.	 Simplify the process by applying the value labels from the beginning.

The data values can actually be applied in the initial call to read_sav by setting 
apply_value_formats to True. This eliminates the need to call the set_
value_labels function later:

>>> nls97spss, metaspss = pyreadstat.read_sav('data/
nls97.sav', apply_value_formats=True, formats_as_
category=True)

>>> nls97spss.columns = metaspss.column_labels

>>> nls97spss.columns = nls97spss.columns.\

...   str.lower().\

...   str.replace(' ','_').\

...   str.replace('[^a-z0-9_]', '')

6.	 Show the columns and a few rows:

>>> nls97spss.dtypes

pubid__yth_id_code_1997                        float64

keysex_symbol_1997                            category

keybdate_my_symbol_1997                        float64

keybdate_my_symbol_1997                        float64

...

hrsnight_r_sleeps_2017                         float64

cvc_wkswk_yr_all_l99                           float64

dtype: object

>>> nls97spss.head()

   pubid__yth_id_code_1997 keysex_symbol_1997  ...  \

0                        1             Female  ...   

1                        2               Male  ...   

2                        3             Female  ...   

3                        4             Female  ...   

4                        5               Male  ...   

   hrsnight_r_sleeps_2017  cvc_wkswk_yr_all_l99  

0                     nan                    52  

1                       6                     0  

2                       6                     0  
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3                       6                     4  

4                       5                    12  

[5 rows x 42 columns]

7.	 Run frequencies on one of the columns and set the index:

>>> nls97spss.govt_responsibility__provide_jobs_2006.\

...   value_counts(sort=False)

Definitely should be        454

Definitely should not be    300

Probably should be          617

Probably should not be      462

Name: govt_responsibility__provide_jobs_2006, dtype: 
int64

>>> nls97spss.set_index('pubid__yth_id_code_1997', 
inplace=True)

8.	 Import the Stata data, apply value labels, and improve the column headings.

Use the same methods for the Stata data that we use for the SPSS data:
>>> nls97stata, metastata = pyreadstat.read_dta('data/
nls97.dta', apply_value_formats=True, formats_as_
category=True)

>>> nls97stata.columns = metastata.column_labels

>>> nls97stata.columns = nls97stata.columns.\

...     str.lower().\

...     str.replace(' ','_').\

...     str.replace('[^a-z0-9_]', '')

>>> nls97stata.dtypes

pubid__yth_id_code_1997                        float64

keysex_symbol_1997                            category

keybdate_my_symbol_1997                        float64

keybdate_my_symbol_1997                        float64

...

hrsnight_r_sleeps_2017                         float64

cvc_wkswk_yr_all_l99                           float64

dtype: object
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9.	 View a few rows of the data and run frequency:

>>> nls97stata.head()

   pubid__yth_id_code_1997 keysex_symbol_1997  ...  \

0                        1             Female  ...   

1                        2               Male  ...   

2                        3             Female  ...   

3                        4             Female  ...   

4                        5               Male  ...   

   hrsnight_r_sleeps_2017  cvc_wkswk_yr_all_l99  

0                      -5                    52  

1                       6                     0  

2                       6                     0  

3                       6                     4  

4                       5                    12  

[5 rows x 42 columns] 

>>> nls97stata.govt_responsibility__provide_jobs_2006.\

...   value_counts(sort=False)

-5.0                        1425

-4.0                        5665

-2.0                          56

-1.0                           5

Definitely should be         454

Definitely should not be     300

Probably should be           617

Probably should not be       462

Name: govt_responsibility__provide_jobs_2006, dtype: 
int64

10.	 Fix the logical missing values that show up with the Stata data and set an index:

>>> nls97stata.min()

pubid__yth_id_code_1997                        1

keysex_symbol_1997                        Female

keybdate_my_symbol_1997                        1

keybdate_my_symbol_1997                    1,980



32     Anticipating Data Cleaning Issues when Importing Tabular Data into pandas

...

cv_bio_child_hh_2017                          -5

cv_bio_child_nr_2017                          -5

hrsnight_r_sleeps_2017                        -5

cvc_wkswk_yr_all_l99                          -4

dtype: object

>>> nls97stata.replace(list(range(-9,0)), np.nan, 
inplace=True)

>>> nls97stata.min()

pubid__yth_id_code_1997                        1

keysex_symbol_1997                        Female

keybdate_my_symbol_1997                        1

keybdate_my_symbol_1997                    1,980

...

cv_bio_child_hh_2017                           0

cv_bio_child_nr_2017                           0

hrsnight_r_sleeps_2017                         0

cvc_wkswk_yr_all_l99                           0

dtype: object

>>> nls97stata.set_index('pubid__yth_id_code_1997', 
inplace=True)

11.	 Retrieve the SAS data, using the SAS catalog file for value labels:

The data values for SAS are stored in a catalog file. Setting the catalog file path and 
filename retrieves the value labels and applies them:

>>> nls97sas, metasas = pyreadstat.read_sas7bdat('data/
nls97.sas7bdat', catalog_file='data/nlsformats3.
sas7bcat', formats_as_category=True)

>>> nls97sas.columns = metasas.column_labels

>>> 

>>> nls97sas.columns = nls97sas.columns.\

...     str.lower().\

...     str.replace(' ','_').\

...     str.replace('[^a-z0-9_]', '')

>>> 
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>>> nls97sas.head()

   pubid__yth_id_code_1997 keysex_symbol_1997  ...  \

0                        1             Female  ...   

1                        2               Male  ...   

2                        3             Female  ...   

3                        4             Female  ...   

4                        5               Male  ...   

   hrsnight_r_sleeps_2017  cvc_wkswk_yr_all_l99  

0                     nan                    52  

1                       6                     0  

2                       6                     0  

3                       6                     4  

4                       5                    12  

[5 rows x 42 columns]

>>> nls97sas.keysex_symbol_1997.value_counts()

Male      4599

Female    4385

Name: keysex_symbol_1997, dtype: int64

>>> nls97sas.set_index('pubid__yth_id_code_1997', 
inplace=True)

This demonstrates how to import SPSS, SAS, and Stata data without losing important 
metadata.

How it works...
The read_sav, read_dta, and read_sas7bdat methods of pyreadstat, for 
SPSS, Stata, and SAS data files, respectively, work in a similar manner. Value labels can be 
applied when reading in the data by setting apply_value_formats to True for SPSS 
and Stata files (steps 5 and 8), or by providing a catalog file path and filename for SAS (step 
11). We can set formats_as_category to True to change the data type to category 
for those columns where the data values will change. The meta object has the column 
names and the column labels from the statistical package, so metadata column labels can 
be assigned to pandas data frame column names at any point (nls97spss.columns = 
metaspss.column_labels). We can even revert to the original column headings after 
assigning meta column labels to them by setting pandas column names to the metadata 
column names (nls97spss.columns = metaspss.column_names).
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In step 3, we read the SPSS data without applying value labels. We looked at the dictionary 
for one variable (metaspss.variable_value_labels['R0536300']), but we 
could have viewed it for all variables (metaspss.variable_value_labels). When 
we are satisfied that the labels make sense, we can set them by calling the set_value_
labels function. This is a good approach when you do not know the data well and want 
to inspect the labels before applying them.

The column labels from the meta object are often a better choice than the original column 
headings. Column headings can be quite cryptic, particularly when the SPSS, Stata, 
or SAS file is based on a large survey, as in this example. But the labels are not usually 
ideal for column headings either. They sometimes have spaces, capitalization that is not 
helpful, and non-alphanumeric characters. We chain some string operations to switch to 
lowercase, replace spaces with underscores, and remove non-alphanumeric characters.

Handling missing values is not always straightforward with these data files, since there 
are often many reasons why data is missing. If the file is from a survey, the missing value 
may be because of a survey skip pattern, or a respondent failed to respond, or the response 
was invalid, and so on. The NLS has 9 possible values for missing, from -1 to -9. The SPSS 
import automatically set those values to NaN, while the Stata import retained the original 
values. (We could have gotten the SPSS import to retain those values by setting user_
missing to True.) For the Stata data, we need to tell it to replace all values from -1 to -9 
with NaN. We do this by using the data frame's replace function and passing it a list of 
integers from -9 to -1 (list(range(-9,0))).

There's more…
You may have noticed similarities between this recipe and the previous one in terms 
of how value labels are set. The set_value_labels function is like the data frame 
replace operation we used to set value labels in that recipe. We passed a dictionary 
to replace that mapped columns to value labels. The set_value_labels function 
in this recipe essentially does the same thing, using the variable_value_labels 
property of the meta object as the dictionary.

Data from statistical packages is often not as well structured as SQL databases tend to 
be in one significant way. Since they are designed to facilitate analysis, they often violate 
database normalization rules. There is often an implied relational structure that might 
have to be unflattened at some point. For example, the data combines individual and event 
level data – person and hospital visits, brown bear and date emerged from hibernation. 
Often, this data will need to be reshaped for some aspects of the analysis.
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See also
The pyreadstat package is nicely documented at https://github.com/Roche/
pyreadstat. The package has many useful options for selecting columns and handling 
missing data that space did not permit me to demonstrate in this recipe.

Importing R data
We will use pyreadr to read an R data file into pandas. Since pyreadr cannot capture 
the metadata, we will write code to reconstruct value labels (analogous to R factors)  
and column headings. This is similar to what we did in the Importing data from SQL 
databases recipe.

The R statistical package is, in many ways, similar to the combination of Python and 
pandas, at least in its scope. Both have strong tools across a range of data preparation and 
data analysis tasks. Some data scientists work with both R and Python, perhaps doing data 
manipulation in Python and statistical analysis in R, or vice-versa, depending on their 
preferred packages. But there is currently a scarcity of tools for reading data saved in R, 
as rds or rdata files, into Python. The analyst often saves the data as a CSV file first, 
and then loads the CSV file into Python. We will use pyreadr, from the same author as 
pyreadstat, because it does not require an installation of R.

When we receive an R file, or work with one we have created ourselves, we can count on it 
being fairly well structured, at least compared to CSV or Excel files. Each column will have 
only one data type, column headings will have appropriate names for Python variables, 
and all rows will have the same structure. However, we may need to restore some of the 
coding logic, as we did when working with SQL data.

Getting ready
This recipe assumes you have installed the pyreadr package. If it is not installed, you 
can install it with pip. From the terminal, or powershell (in Windows), enter pip 
install pyreadr. You will need the R rds file for this recipe in order to run the code.

We will again work with the National Longitudinal Survey in this recipe.

https://github.com/Roche/pyreadstat
https://github.com/Roche/pyreadstat
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How to do it…
We will import data from R without losing important metadata:

1.	 Load pandas, numpy, pprint, and the pyreadr package:

>>> import pandas as pd

>>> import numpy as np

>>> import pyreadr

>>> import pprint

2.	 Get the R data.

Pass the path and filename to the read_r method to retrieve the R data and load 
it into memory as a pandas data frame. read_r can return one or more objects. 
When reading an rds file (as opposed to an rdata file), it will return one object, 
having the key None. We indicate None to get the pandas data frame:

>>> nls97r = pyreadr.read_r('data/nls97.rds')[None]

>>> nls97r.dtypes

R0000100    int32

R0536300    int32

...

U2962800    int32

U2962900    int32

U2963000    int32

Z9063900    int32

dtype: object

>>> nls97r.head(10)

   R0000100  R0536300  R0536401  ...  U2962900  U2963000  
Z9063900

0         1         2         9  ...        -5        -5        
52

1         2         1         7  ...         2         6         
0

2         3         2         9  ...         2         6         
0

3         4         2         2  ...         2         6         
4
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4         5         1        10  ...         2         5        
12

5         6         2         1  ...         2         6         
6

6         7         1         4  ...        -5        -5         
0

7         8         2         6  ...        -5        -5        
39

8         9         1        10  ...         2         4         
0

9        10         1         3  ...         2         6         
0

[10 rows x 42 columns]

3.	 Set up dictionaries for value labels and column headings.

Load a dictionary that maps columns to the value labels and create a list of preferred 
column names as follows:

>>> with open('data/nlscodes.txt', 'r') as reader:

...     setvalues = eval(reader.read())

... 

>>> pprint.pprint(setvalues)

{'R0536300': {0.0: 'No Information', 1.0: 'Male', 2.0: 
'Female'},

 'R1235800': {0.0: 'Oversample', 1.0: 'Cross-sectional'},

 'S8646900': {1.0: '1. Definitely',

              2.0: '2. Probably ',

              3.0: '3. Probably not',

              4.0: '4. Definitely not'}}

...

>>> newcols = 
['personid','gender','birthmonth','birthyear',

...   'sampletype',  'category','satverbal','satmath',

...   
'gpaoverall','gpaeng','gpamath','gpascience','govjobs',

...   
'govprices','govhealth','goveld','govind','govunemp',
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...   'govinc','govcollege','govhousing','govenvironment',

...   
'bacredits','coltype1','coltype2','coltype3','coltype4',

...   
'coltype5','coltype6','highestgrade','maritalstatus',

...   'childnumhome','childnumaway','degreecol1',

...   'degreecol2','degreecol3','degreecol4','wageincome',

...   'weeklyhrscomputer','weeklyhrstv',

...   'nightlyhrssleep','weeksworkedlastyear']

4.	 Set value labels and missing values, and change selected columns to category  
data type.

Use the setvalues dictionary to replace existing values with value labels.  
Replace all values from -9 to -1 with NaN:  

>>> nls97r.replace(setvalues, inplace=True)

>>> nls97r.head()

   R0000100 R0536300  ...  U2963000  Z9063900

0         1   Female  ...        -5        52

1         2     Male  ...         6         0

2         3   Female  ...         6         0

3         4   Female  ...         6         4

4         5     Male  ...         5        12

[5 rows x 42 columns]

>>> nls97r.replace(list(range(-9,0)), np.nan, 
inplace=True)

>>> for col in nls97r[[k for k in setvalues]].columns:

...     nls97r[col] = nls97r[col].astype('category')

... 

>>> nls97r.dtypes

R0000100       int64

R0536300    category

R0536401       int64

R0536402       int64

R1235800    category
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              ...   

U2857300    category

U2962800    category

U2962900    category

U2963000     float64

Z9063900     float64

Length: 42, dtype: object

5.	 Set meaningful column headings:

>>> nls97r.columns = newcols

>>> nls97r.dtypes

personid                  int64

gender                 category

birthmonth                int64

birthyear                 int64

sampletype             category

                         ...   

wageincome             category

weeklyhrscomputer      category

weeklyhrstv            category

nightlyhrssleep         float64

weeksworkedlastyear     float64

Length: 42, dtype: object

This shows how R data files can be imported into pandas and value labels assigned.

How it works…
Reading R data into pandas with pyreadr is fairly straightforward. Passing a filename 
to the read_r function is all that is required. Since read_r can return multiple objects 
with one call, we need to specify which object. When reading an rds file (as opposed to 
an rdata file), only one object is returned. It has the key None.

In step 3, we load a dictionary that maps our variables to value labels, and a list for our 
preferred column headings. In step 4 we apply the value labels. We also change the data 
type to category for the columns where we applied the values. We do this by generating 
a list of the keys of our setvalues dictionary with [k for k in setvalues] and 
then iterating over those columns.
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We change the column headings in step 5 to ones that are more intuitive. Note that the 
order matters here. We need to set the value labels before changing the column names, 
since the setvalues dictionary is based on the original column headings.

The main advantage of using pyreadr to read R files directly into pandas is that we do 
not have to convert the R data into a CSV file first. Once we have written our Python 
code to read the file, we can just rerun it whenever the R data changes. This is particularly 
helpful when we do not have R on the machine where we are working.

There's more…
pyreadr is able to return multiple data frames. This is useful when we save several data 
objects in R as an rdata file. We can return all of them with one call.

print is a handy tool for improving the display of Python dictionaries.

See also
Clear instructions and examples for pyreadr are available at https://github.com/
ofajardo/pyreadr. 

Feather files, a relatively new format, can be read by both R and Python. I discuss those 
files in the next recipe.

We could have used rpy2 instead of pyreadr to import R data. rpy2 requires that 
R also be installed, but it is more powerful than pyreadr. It will read R factors and 
automatically set them to pandas data frame values. See the following code:

>>> import rpy2.robjects as robjects

>>> from rpy2.robjects import pandas2ri

>>> pandas2ri.activate()

>>> readRDS = robjects.r['readRDS']

>>> nls97withvalues = readRDS('data/nls97withvalues.rds')

>>> nls97withvalues

R0000100 R0536300  R0536401  ...               U2962900    
U2963000 

1     1   Female         9  ...                     NaN 
-2147483648       

2     2     Male         7  ...    3 to 10 hours a week           
6        

https://github.com/ofajardo/pyreadr
https://github.com/ofajardo/pyreadr
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3     3   Female         9  ...    3 to 10 hours a week           
6       

4     4   Female         2  ...    3 to 10 hours a week           
6        

5     5     Male        10  ...    3 to 10 hours a week           
5       

...  ...      ...       ...  ...                    ...         

...      

8980 9018  Female         3  ...   3 to 10 hours a week           
4       

8981 9019    Male         9  ...   3 to 10 hours a week           
6        

8982 9020    Male         7  ...                    NaN 
-2147483648       

8983 9021    Male         7  ...   3 to 10 hours a week           
7       

8984 9022  Female         1  ...Less than 2 hours per week        
7       

[8984 rows x 42 columns]

This generates an unusual -2147483648 values. This is what happened when readRDS 
interpreted missing data in numeric columns. A global replace of that number with NaN, 
after confirming that that is not a valid value, would be a good next step.

Persisting tabular data
We persist data, copy it from memory to local or remote storage, for several reasons: to be 
able to access the data without having to repeat the steps we used to generate it; to share 
the data with others; or to make it available for use with different software. In this recipe, 
we save data that we have loaded into a pandas data frame as different file types (CSV, 
Excel, pickle, and feather).

Another important, but sometimes overlooked, reason to persist data is to preserve 
some segment of our data that needs to be examined more closely; perhaps it needs to be 
scrutinized by others before our analysis can be completed. For analysts who work with 
operational data in medium- to large-sized organizations, this process is part of the daily 
data cleaning workflow.
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In addition to these reasons for persisting data, our decisions about when and how to 
serialize data are shaped by several other factors: where we are in terms of our data 
analysis projects, the hardware and software resources of the machine(s) saving and 
reloading the data, and the size of our dataset. Analysts end up having to be much 
more intentional when saving data than they are when pressing Ctrl + S in their word 
processing applications.

Once we persist data, it is stored separately from the logic that we used to create it. I find 
this to be one of the most important threats to the integrity of our analysis. Often, we end 
up loading data that we saved some time in the past (a week ago? a month ago? a year 
ago?) and forget how a variable was defined and how it relates to other variables. If we 
are in the middle of a data cleaning task, it is best not to persist our data, so long as our 
workstation and network can easily handle the burden of regenerating the data. It is a 
good idea to persist data only once we have reached milestones in our work.

Beyond the question of when to persist data, there is the question of how. If we are 
persisting it for our own reuse with the same software, it is best to save it in a binary 
format native to that software. That is pretty straightforward for tools such as SPSS,  
SAS, Stata, and R, but not so much for pandas. But that is good news in a way. We have 
lots of choices, from CSV and Excel to pickle and feather. We save to all these file types  
in this recipe.

Getting ready
You will need to install feather if you do not have it on your system. You can do that 
by entering pip install pyarrow in a terminal window or powershell (in 
Windows). If you do not already have a subfolder named Views in your chapter 1 
folder, you will need to create it in order to run the code for this recipe.

Note
This dataset, taken from the Global Historical Climatology Network integrated 
database, is made available for public use by the United States National Oceanic 
and Atmospheric Administration at https://www.ncdc.noaa.gov/
data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-
monthly-version-4. This is just a 100,000-row sample of the full dataset, 
which is also available in the repository.

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
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How to do it…
We will load a CSV file into pandas and then save it as a pickle file and as a feather file. We 
will also save subsets of the data in CSV and Excel formats:

1.	 Import pandas and pyarrow and adjust the display.

Pyarrow needs to be imported in order to save pandas to feather:
>>> import pandas as pd

>>> import pyarrow

2.	 Load the land temperatures CSV file into pandas, drop rows with missing data, and 
set an index:

>>> landtemps = pd.read_csv('data/landtempssample.csv',

...     
names=['stationid','year','month','avgtemp','latitude',

...       
'longitude','elevation','station','countryid','country'],

...     skiprows=1,

...     parse_dates=[['month','year']],

...     low_memory=False)

>>> 

>>> landtemps.rename(columns={'month_
year':'measuredate'}, inplace=True)

>>> landtemps.dropna(subset=['avgtemp'], inplace=True)

>>> landtemps.dtypes

measuredate    datetime64[ns]

stationid              object

avgtemp               float64

latitude              float64

longitude             float64

elevation             float64

station                object

countryid              object

country                object

dtype: object

>>> landtemps.set_index(['measuredate','stationid'], 
inplace=True)
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3.	 Write extreme values for temperature to CSV and Excel files.

Use the quantile method to select outlier rows, those at the 1-in-1,000 level at 
each end of the distribution:

>>> extremevals = landtemps[(landtemps.avgtemp < 
landtemps.avgtemp.quantile(.001)) | (landtemps.avgtemp > 
landtemps.avgtemp.quantile(.999))]

>>> extremevals.shape

(171, 7)

>>> extremevals.sample(7)

                         avgtemp  ...  country

measuredate stationid             ...         

2013-08-01  QAM00041170    35.30  ...    Qatar

2005-01-01  RSM00024966   -40.09  ...   Russia

1973-03-01  CA002401200   -40.26  ...   Canada

2007-06-01  KU000405820    37.35  ...   Kuwait

1987-07-01  SUM00062700    35.50  ...    Sudan

1998-02-01  RSM00025325   -35.71  ...   Russia

1968-12-01  RSM00024329   -43.20  ...   Russia

[7 rows x 7 columns]

>>> extremevals.to_excel('views/tempext.xlsx')

>>> extremevals.to_csv('views/tempext.csv')

4.	 Save to pickle and feather files.

The index needs to be reset in order to save a feather file:
>>> landtemps.to_pickle('data/landtemps.pkl')

>>> landtemps.reset_index(inplace=True)

>>> landtemps.to_feather("data/landtemps.ftr")

5.	 Load the pickle and feather files we just saved.

Notice that our index was preserved when saving and loading the pickle file:
>>> landtemps = pd.read_pickle('data/landtemps.pkl')

>>> landtemps.head(2).T

measuredate     2000-04-01  1940-05-01

stationid      USS0010K01S CI000085406
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avgtemp               5.27       18.04

latitude             39.90      -18.35

longitude          -110.75      -70.33

elevation         2,773.70       58.00

station      INDIAN_CANYON       ARICA

countryid               US          CI

country      United States       Chile

>>> landtemps = pd.read_feather("data/landtemps.ftr")

>>> landtemps.head(2).T

                               0                    1

measuredate  2000-04-01 00:00:00  1940-05-01 00:00:00

stationid            USS0010K01S          CI000085406

avgtemp                     5.27                18.04

latitude                   39.90               -18.35

longitude                -110.75               -70.33

elevation               2,773.70                58.00

station            INDIAN_CANYON                ARICA

countryid                     US                   CI

country            United States                Chile

The previous steps demonstrate how to serialize pandas data frames using two different 
formats, pickle and feather.

How it works...
Persisting pandas data is fairly straightforward. Data frames have to_csv, to_excel, 
to_pickle, and to_feather methods. Pickling preserves our index.

There's more...
The advantage of storing data in CSV files is that saving it uses up very little additional 
memory. The disadvantage is that writing CSV files is quite slow and we lose important 
metadata, such as data types. (read_csv can often figure out the data type when we 
reload the file, but not always.) Pickle files keep that data, but can burden a system that is 
low on resources when serializing. Feather is easier on resources, and can be easily loaded 
in R as well as Python, but we have to sacrifice our index in order to serialize. Also, the 
authors of feather make no promises regarding long-term support.
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You may have noticed that I do not make a recommendation about what to use for data 
serialization – other than to limit your persistence of full datasets to project milestones. 
This is definitely one of those "right tools for the right job" kind of situations. I use CSV 
or Excel files when I want to share a segment of a file with colleagues for discussion. I use 
feather for ongoing Python projects, particularly when I am using a machine with sub-par 
RAM and an outdated chip, and I am also using R. When I am wrapping up a project, I 
pickle the data frames.
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into pandas
This chapter continues our work on importing data from a variety of sources, and the initial 
checks we should do on the data after importing it. Gradually, over the last 25 years, data 
analysts have found that they increasingly need to work with data in non-tabular, semi-
structured forms. Sometimes they even create and persist data in those forms themselves. 
We work with a common alternative to traditional tabular datasets in this chapter, 
JSON, but the general concepts can be extended to XML and NoSQL data stores such as 
MongoDB. We also go over common issues that occur when scraping data from websites.
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In this chapter, we will work through the following recipes:

•	 Importing simple JSON data

•	 Importing more complicated JSON data from an API

•	 Importing data from web pages

•	 Persisting JSON data

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Importing simple JSON data
JavaScript Object Notation (JSON) has turned out to be an incredibly useful standard 
for transferring data from one machine, process, or node to another. Often a client sends 
a data request to a server, upon which that server queries the data in the local storage and 
then converts it from something like a SQL Server table or tables into JSON, which the 
client can consume. This is sometimes complicated further by the first server (say, a web 
server) forwarding the request to a database server. JSON facilitates this, as does XML, by 
doing the following:

•	 Being readable by humans

•	 Being consumable by most client devices 

•	 Not being limited in structure

JSON is quite flexible, which means that it can accommodate just about anything. The 
structure can even change within a JSON file, so different keys might be present at different 
points. For example, the file might begin with some explanatory keys that have a very different 
structure than the remaining data keys. Or some keys might be present in some cases, but not 
others. We go over some approaches for dealing with that messiness (uh, I mean flexibility).

Getting ready
We are going to work with data on news stories about political candidates in this recipe. 
This data is made available for public use at dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/0ZLHOK. I have combined the JSON 
files there into one file and randomly selected 60,000 news stories from the combined 
data. This sample (allcandidatenewssample.json) is available in the GitHub 
repository of this book.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
http://dataverse.harvard.edu/dataset.xhtml?persistentId=doi
http://dataverse.harvard.edu/dataset.xhtml?persistentId=doi
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We will do a little work with list and dictionary comprehensions in this recipe. 
DataCamp has good guides to list comprehensions (https://www.datacamp.
com/community/tutorials/python-list-comprehension) and dictionary 
comprehensions (https://www.datacamp.com/community/tutorials/
python-dictionary-comprehension) if you are feeling a little rusty.

How to do it…
We will import a JSON file into pandas after doing some data checking and cleaning:

1.	 Import the json and pprint libraries.

pprint improves the display of the lists and dictionaries that are returned when we 
load JSON data:

>>> import pandas as pd

>>> import numpy as np

>>> import json

>>> import pprint

>>> from collections import Counter

2.	 Load the JSON data and look for potential issues.

Use the json load method to return data on news stories about political 
candidates. load returns a list of dictionaries. Use len to get the size of the list, 
which is the total number of news stories in this case. (Each list item is a dictionary 
with keys for the title, source, and so on, and their respective values.) Use pprint 
to display the first two dictionaries. Get the value from the source key for the first 
list item:

>>> with open('data/allcandidatenewssample.json') as f:

...   candidatenews = json.load(f)

... 

>>> len(candidatenews)

60000

>>> pprint.pprint(candidatenews[0:2])

[{'date': '2019-12-25 10:00:00',

  'domain': 'www.nbcnews.com',

  'panel_position': 1,

https://www.datacamp.com/community/tutorials/python-list-comprehension
https://www.datacamp.com/community/tutorials/python-list-comprehension
https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
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  'query': 'Michael Bloomberg',

  'source': 'NBC News',

  'story_position': 6,

  'time': '18 hours ago',

  'title': 'Bloomberg cuts ties with company using prison 
inmates to make '

           'campaign calls',

  'url': 'https://www.nbcnews.com/politics/2020-election/
bloomberg-cuts-ties-company-using-prison-inmates-make-
campaign-calls-n1106971'},

 {'date': '2019-11-09 08:00:00',

  'domain': 'www.townandcountrymag.com',

  'panel_position': 1,

  'query': 'Amy Klobuchar',

  'source': 'Town & Country Magazine',

  'story_position': 3,

  'time': '18 hours ago',

  'title': "Democratic Candidates React to Michael 
Bloomberg's Potential Run",

  'url': 'https://www.townandcountrymag.com/society/
politics/a29739854/michael-bloomberg-democratic-
candidates-campaign-reactions/'}]

>>> pprint.pprint(candidatenews[0]['source'])

'NBC News'

3.	 Check for differences in the structure of the dictionaries.

Use Counter to check for any dictionaries in the list with fewer than, or more 
than, the nine keys that is normal. Look at a few of the dictionaries with almost no 
data (those with just two keys) before removing them. Confirm that the remaining 
list of dictionaries has the expected length – 60000-2382=57618:

>>> Counter([len(item) for item in candidatenews])

Counter({9: 57202, 2: 2382, 10: 416})

>>> pprint.pprint(next(item for item in candidatenews if 
len(item)<9))

{'date': '2019-09-11 18:00:00', 'reason': 'Not 
collected'}
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>>> pprint.pprint(next(item for item in candidatenews if 
len(item)>9))

{'category': 'Satire',

 'date': '2019-08-21 04:00:00',

 'domain': 'politics.theonion.com',

 'panel_position': 1,

 'query': 'John Hickenlooper',

 'source': 'Politics | The Onion',

 'story_position': 8,

 'time': '4 days ago',

 'title': ''And Then There Were 23,' Says Wayne Messam 
Crossing Out '

          'Hickenlooper Photo \n'

          'In Elaborate Grid Of Rivals',

 'url': 'https://politics.theonion.com/and-then-there-
were-23-says-wayne-messam-crossing-ou-1837311060'}

>>> pprint.pprint([item for item in candidatenews if 
len(item)==2][0:10])

[{'date': '2019-09-11 18:00:00', 'reason': 'Not 
collected'},

 {'date': '2019-07-24 00:00:00', 'reason': 'No Top 
stories'},

... 

 {'date': '2019-01-03 00:00:00', 'reason': 'No Top 
stories'}]

>>> candidatenews = [item for item in candidatenews if 
len(item)>2]

>>> len(candidatenews)

57618

4.	 Generate counts from the JSON data.

Get the dictionaries just for Politico (a website that covers political news) and 
display a couple of dictionaries:

>>> politico = [item for item in candidatenews if 
item["source"] == "Politico"]

>>> len(politico)

2732

>>> pprint.pprint(politico[0:2])
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[{'date': '2019-05-18 18:00:00',

  'domain': 'www.politico.com',

  'panel_position': 1,

  'query': 'Marianne Williamson',

  'source': 'Politico',

  'story_position': 7,

  'time': '1 week ago',

  'title': 'Marianne Williamson reaches donor threshold 
for Dem debates',

  'url': 'https://www.politico.com/story/2019/05/09/
marianne-williamson-2020-election-1315133'},

 {'date': '2018-12-27 06:00:00',

  'domain': 'www.politico.com',

  'panel_position': 1,

  'query': 'Julian Castro',

  'source': 'Politico',

  'story_position': 1,

  'time': '1 hour ago',

  'title': "O'Rourke and Castro on collision course in 
Texas",

  'url': 'https://www.politico.com/story/2018/12/27/
orourke-julian-castro-collision-texas-election-1073720'}]

5.	 Get the source data and confirm that it has the anticipated length.

Show the first few items in the new sources list. Generate a count of news stories 
by source and display the 10 most popular sources. Notice that stories from The Hill 
can have TheHill (without a space) or The Hill as the value for source:

>>> sources = [item.get('source') for item in 
candidatenews]

>>> type(sources)

<class 'list'>

>>> len(sources)

57618

>>> sources[0:5]

['NBC News', 'Town & Country Magazine', 'TheHill', 'CNBC.
com', 'Fox News']
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>>> pprint.pprint(Counter(sources).most_common(10))

[('Fox News', 3530),

 ('CNN.com', 2750),

 ('Politico', 2732),

 ('TheHill', 2383),

 ('The New York Times', 1804),

 ('Washington Post', 1770),

 ('Washington Examiner', 1655),

 ('The Hill', 1342),

 ('New York Post', 1275),

 ('Vox', 941)]

6.	 Fix any errors in the values in the dictionary.

Fix the source values for The Hill. Notice that The Hill is now the most 
frequent source for news stories:

>>> for newsdict in candidatenews:

...     newsdict.update((k, "The Hill") for k, v in 
newsdict.items()

...      if k == "source" and v == "TheHill")

... 

>>> sources = [item.get('source') for item in 
candidatenews]

>>> pprint.pprint(Counter(sources).most_common(10))

[('The Hill', 3725),

 ('Fox News', 3530),

 ('CNN.com', 2750),

 ('Politico', 2732),

 ('The New York Times', 1804),

 ('Washington Post', 1770),

 ('Washington Examiner', 1655),

 ('New York Post', 1275),

 ('Vox', 941),

 ('Breitbart', 799)]
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7.	 Create a pandas DataFrame.

Pass the JSON data to the pandas DataFrame method. Convert the date column 
to a datetime data type:

>>> candidatenewsdf = pd.DataFrame(candidatenews)

>>> candidatenewsdf.dtypes

title             object

url               object

source            object

time              object

date              object

query             object

story_position     int64

panel_position    object

domain            object

category          object

dtype: object

8.	 Confirm that we are getting the expected values for source.

Also, rename the date column:
>>> candidatenewsdf.rename(columns={'date':'storydate'}, 
inplace=True)

>>> candidatenewsdf.storydate = candidatenewsdf.
storydate.astype('datetime64[ns]')

>>> candidatenewsdf.shape

(57618, 10)

>>> candidatenewsdf.source.value_counts(sort=True).
head(10)

The Hill               3725

Fox News               3530

CNN.com                2750

Politico               2732

The New York Times     1804

Washington Post        1770

Washington Examiner    1655

New York Post          1275
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Vox                     941

Breitbart               799

Name: source, dtype: int64

We now have a pandas DataFrame with only the news stories where there is meaningful 
data, and with the values for source fixed.

How it works…
The json.load method returns a list of dictionaries. This makes it possible to use 
a number of familiar tools when working with this data: list methods, slicing, list 
comprehensions, dictionary updates, and so on. There are times, maybe when you just 
have to populate a list or count the number of individuals in a given category, when there 
is no need to use pandas.

In steps 2 to 6, we use list methods to do many of the same checks we have done with 
pandas in previous recipes. In step 3 we use Counter with a list comprehension 
(Counter([len(item) for item in candidatenews])) to get the number of 
keys in each dictionary. This tells us that there are 2,382 dictionaries with just 2 keys and 
416 with 10. We use next to look for an example of dictionaries with fewer than 9 keys or 
more than 9 keys to get a sense of the structure of those items. We use slicing to show 10 
dictionaries with 2 keys to see if there is any data in those dictionaries. We then select only 
those dictionaries with more than 2 keys.

In step 4 we create a subset of the list of dictionaries, one that just has source equal to 
Politico, and take a look at a couple of items. We then create a list with just the source 
data and use Counter to list the 10 most common sources in step 5.

Step 6 demonstrates how to replace key values conditionally in a list of dictionaries. In this 
case, we update the key value to The Hill whenever key (k) is source and value 
(v) is TheHill. The for k, v in newsdict.items() section is the unsung hero of 
this line. It loops through all key/value pairs for all dictionaries in candidatenews.

It is easy to create a pandas DataFrame by passing the list of dictionaries to the pandas 
DataFrame method. We do this in step 7. The main complication is that we need to 
convert the date column from a string to a date, since dates are just strings in JSON.

There's more…
In steps 5 and 6 we use item.get('source') instead of item['source']. This is 
handy when there might be missing keys in a dictionary. get returns None when the key 
is missing, but we can use an optional second argument to specify a value to return.
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I renamed the date column to storydate in step 8. This is not necessary, but is a good 
idea. Not only does date not tell you anything about what the dates actually represent, it 
is also so generic a column name that it is bound to cause problems at some point.

The news stories data fits nicely into a tabular structure. It makes sense to represent each 
list item as one row, and the key/value pairs as columns and column values for that row. 
There are no significant complications, such as key values that are themselves lists of 
dictionaries. Imagine an authors key for each story with a list item for each author as 
the key value, and that list item is a dictionary of information about the author. This is 
not at all unusual when working with JSON data in Python. The next recipe shows how to 
work with data structured in this way.

Importing more complicated JSON data from 
an API
In the previous recipe, we discussed one significant advantage (and challenge) of working 
with JSON data – its flexibility. A JSON file can have just about any structure its authors 
can imagine. This often means that this data does not have the tabular structure of the 
data sources we have discussed so far, and that pandas DataFrames have. Often, analysts 
and application developers use JSON precisely because it does not insist on a tabular 
structure. I know I do!

Retrieving data from multiple tables often requires us to do a one-to-many merge. Saving 
that data to one table or file means duplicating data on the "one" side of the one-to-many 
relationship. For example, student demographic data is merged with data on the courses 
studied, and the demographic data is repeated for each course. With JSON, duplication 
is not required to capture these items of data in one file. We can have data on the courses 
studied nested within the data for each student.

But doing analysis with JSON structured in this way will eventually require us to either: 
1) manipulate the data in a very different way than we are used to doing; or 2) convert 
the JSON to a tabular form. We examine the first approach in the Classes that handle 
non-tabular data structures recipe in Chapter 10, User-Defined Functions and Classes to 
Automate Data Cleaning. This recipe takes the second approach. It uses a very handy tool 
for converting selected nodes of JSON to a tabular structure – json_normalize.

We first use an API to get JSON data because that is how JSON is frequently consumed. 
One advantage of retrieving the data with an API, rather than working from a file we have 
saved locally, is that it is easier to rerun our code when the source data is refreshed.
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Getting ready
This recipe assumes you have the requests and pprint libraries already installed. If 
they are not installed, you can install them with pip. From the terminal (or PowerShell in 
Windows), enter pip install requests and pip install pprint.

The following is the structure of the JSON file that is created when using the collections 
API of the Cleveland Museum of Art. There is a helpful info section at the beginning, 
but we are interested in the data section. This data does not fit nicely into a tabular data 
structure. There may be several citations objects and several creators objects for 
each collection object. I have abbreviated the JSON file to save space:

{"info": { "total": 778, "parameters": {"african_american_
artists": "" }}, 

"data": [

{

"id": 165157, 

"accession_number": "2007.158", 

"title": "Fulton and Nostrand", 

"creation_date": "1958", 

"citations": [

  {

   "citation": "Annual Exhibition: Sculpture, Paintings...", 

   "page_number": "Unpaginated, [8],[12]", 

   "url": null

   }, 

  {

   "citation": "\"Moscow to See Modern U.S. Art,\"<em> New 
York...",   

   "page_number": "P. 60",

   "url": null

  }]

"creators": [

      {

     "description": "Jacob Lawrence (American, 1917-2000)", 

     "extent": null, 

     "qualifier": null, 

     "role": "artist", 
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     "birth_year": "1917", 

     "death_year": "2000"

     }

  ]

 }

Note
The API used in this recipe is provided by the Cleveland Museum of 
Art. It is available for public use at https://openaccess-api.
clevelandart.org/.

How to do it...
Create a DataFrame from the museum's collections data with one row for each 
citation, and the title and creation_date duplicated:

1.	 Import the json, requests, and pprint libraries.

We need the requests library to use an API to retrieve JSON data. pprint 
improves the display of lists and dictionaries:

>>> import pandas as pd

>>> import numpy as np

>>> import json

>>> import pprint

>>> import requests

2.	 Use an API to load the JSON data.

Make a get request to the collections API of the Cleveland Museum of Art. Use 
the query string to indicate that you just want collections from African-American 
artists. Display the first collection item. I have truncated the output for the first item 
to save space:

>>> response = requests.get("https://openaccess-api.
clevelandart.org/api/artworks/?african_american_artists")

>>> camcollections = json.loads(response.text)

>>> print(len(camcollections['data']))

778

>>> pprint.pprint(camcollections['data'][0])

{'accession_number': '2007.158',

https://openaccess-api.clevelandart.org/
https://openaccess-api.clevelandart.org/


Importing more complicated JSON data from an API     59

 'catalogue_raisonne': None,

 'citations': [{'citation': 'Annual Exhibition: 
Sculpture...',

                'page_number': 'Unpaginated, [8],[12]',

                'url': None},

               {'citation': '"Moscow to See Modern 
U.S....',

                'page_number': 'P. 60',

                'url': None}]

 'collection': 'American - Painting',

 'creation_date': '1958',

 'creators': [{'biography': 'Jacob Lawrence (born 
1917)...',

               'birth_year': '1917',

               'description': 'Jacob Lawrence 
(American...)',

               'role': 'artist'}],

 'type': 'Painting'}

3.	 Flatten the JSON data.

Create a DataFrame from the JSON data using the json_normalize method. 
Indicate that the number of citations will determine the number of rows, and that 
accession_number, title, creation_date, collection, creators, and 
type will be repeated. Observe that the data has been flattened by displaying the 
first two observations, transposing them with the .T option to make it easier to view:

>>> camcollectionsdf=pd.json_
normalize(camcollections['data'],/

 'citations',['accession_number','title','creation_
date',/

 'collection','creators','type'])

>>> camcollectionsdf.head(2).T

                          0                       1

citation        Annual Exhibiti...  "Moscow to See 
Modern...

page_number           Unpaginated,                     P. 
60

url                          None                       
None
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accession_number         2007.158                   
2007.158

title            Fulton and No...           Fulton and 
No...

creation_date                1958                       
1958

collection       American - Pa...           American - 
Pa...

creators   [{'description': 'J...     [{'description': 
'J...

type                     Painting                   
Painting

4.	 Pull the birth_year value from creators:

>>> creator = camcollectionsdf[:1].creators[0]

>>> type(creator[0])

<class 'dict'>

>>> pprint.pprint(creator)

[{'biography': 'Jacob Lawrence (born 1917) has been a 
prominent art...',

  'birth_year': '1917',

  'death_year': '2000',

  'description': 'Jacob Lawrence (American, 1917-2000)',

  'extent': None,

  'name_in_original_language': None,

  'qualifier': None,

  'role': 'artist'}]

>>> camcollectionsdf['birthyear'] = camcollectionsdf.\

...   creators.apply(lambda x: x[0]['birth_year'])

>>> camcollectionsdf.birthyear.value_counts().\

...   sort_index().head()

1821    18

1886     2

1888     1

1892    13

1899    17

Name: birthyear, dtype: int64
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This gives us a pandas DataFrame with one row for each citation for each collection 
item, with the collection information (title, creation_date, and so on) duplicated.

How it works…
We work with a much more interesting JSON file in this recipe than in the previous one. 
Each object in the JSON file is an item in the collection of the Cleveland Museum of Art. 
Nested within each collection item are one or more citations. The only way to capture this 
information in a tabular DataFrame is to flatten it. There are also one or more dictionaries 
for creators of the collection item (the artist or artists). That dictionary (or dictionaries) 
contains the birth_year value that we want.

We want one row for every citation for all collection items. To understand this, imagine 
that we are working with relational data and have a collections table and a citations 
table, and that we are doing a one-to-many merge from collections to citations. We do 
something similar with json_normalize by using citations as the second parameter. 
That tells json_normalize to create one row for each citation and use the key values in 
each citation dictionary – for citation, page_number, and url – as data values.

The third parameter in the call to json_normalize has the list of column names for 
the data that will be repeated with each citation. Notice that access_number, title, 
creation_date, collection, creators, and type are repeated in observations 
one and two. Citation and page_number change. (url is the same value for the first 
and second citations. Otherwise, it would also change.)

This still leaves us with the problem of the creators dictionaries (there can be more than 
one creator). When we ran json_normalize it grabbed the value for each key we 
indicated (in the third parameter) and stored it in the data for that column and row, 
whether that value was simple text or a list of dictionaries, as is the case for creators. 
We take a look at the first (and in this case, only) creators item for the first collections 
row in step 10, naming it creator. (Note that the creators list is duplicated across all 
citations for a collection item, just as the values for title, creation_date, and  
so on are.)

We want the birth year for the first creator for each collection item, which can be found 
at creator[0]['birth_year']. To create a birthyear series using this, we use 
apply and a lambda function:

>>> camcollectionsdf['birthyear'] = camcollectionsdf.\

...   creators.apply(lambda x: x[0]['birth_year'])
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We take a closer look at lambda functions in Chapter 6, Cleaning and Exploring Data 
with Series Operations. Here, it is helpful to think of the x as representing the creators 
series, so x[0] gives us the list item we want, creators[0]. We grab the value from the 
birth_year key.

There's more…
You may have noticed that we left out some of the JSON returned by the API in our call 
to json_normalize. The first parameter that we passed to json_normalize was 
camcollections['data']. Effectively, we ignore the info object at the beginning 
of the JSON data. The information we want does not start until the data object. This is 
not very different conceptually from the skiprows parameter in the second recipe of the 
previous chapter. There is sometimes metadata like this at the beginning of JSON files.

See also
The preceding recipe demonstrates some useful techniques for doing data integrity checks 
without pandas, including list operations and comprehensions. Those are all relevant for 
the data in this recipe as well.

Importing data from web pages
We use Beautiful Soup in this recipe to scrape data from a web page and load that data 
into pandas. Web scraping is very useful when there is data at a website that is updated 
regularly, but there is no API. We can rerun our code to generate new data whenever the 
page is updated.

Unfortunately, the web scrapers we build can be broken when the structure of the targeted 
page changes. That is less likely to happen with APIs because they are designed for 
data exchange, and carefully curated with that end in mind. The priority for most web 
designers is the quality of the display of information, not the reliability and ease of data 
exchange. This causes data cleaning challenges unique to web scraping, including HTML 
elements that house the data being in surprising and changing locations, formatting tags 
that obfuscate the underlying data, and explanatory text that aid data interpretation being 
difficult to retrieve. In addition to these challenges, scraping presents data cleaning issues 
that are familiar, such as changing data types in columns, less than ideal headings, and 
missing values. We deal with data issues that occur most frequently in this recipe.
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Getting ready
You will need Beautiful Soup installed to run the code in this recipe. You can install it with 
pip by entering pip install beautifulsoup4 in a terminal window or Windows 
PowerShell.

We will scrape data from a web page, find the following table in that page, and load it into 
a pandas DataFrame:

Figure 2.1 – COVID-19 data from six countries

Note
I created this web page, http://www.alrb.org/datacleaning/
covidcaseoutliers.html, based on COVID-19 data for public use 
from Our World in Data, available at https://ourworldindata.
org/coronavirus-source-data.

How to do it…
We scrape the COVID data from the website and do some routine data checks:

1.	 Import the pprint, requests, and BeautifulSoup libraries:

>>> import pandas as pd

>>> import numpy as np

>>> import json

>>> import pprint

>>> import requests

>>> from bs4 import BeautifulSoup

http://www.alrb.org/datacleaning/covidcaseoutliers.html
http://www.alrb.org/datacleaning/covidcaseoutliers.html
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
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2.	 Parse the web page and get the header row of the table.

Use Beautiful Soup's find method to get the table we want and then use  
find_all to retrieve the elements nested within the th elements for that table. 
Create a list of column labels based on the text of the th rows:

>>> webpage = requests.get("http://www.alrb.org/
datacleaning/covidcaseoutliers.html")

>>> bs = BeautifulSoup(webpage.text, 'html.parser')

>>> theadrows = bs.find('table', {'id':'tblDeaths'}).
thead.find_all('th')

>>> type(theadrows)

<class 'bs4.element.ResultSet'>

>>> labelcols = [j.get_text() for j in theadrows]

>>> labelcols[0] = "rowheadings"

>>> labelcols

['rowheadings', 'Cases', 'Deaths', 'Cases per Million', 
'Deaths per Million', 'population', 'population_density', 
'median_age', 'gdp_per_capita', 'hospital_beds_per_100k']

3.	 Get the data from the table cells.

Find all of the table rows for the table we want. For each table row, find the th element 
and retrieve the text. We will use that text for our row labels. Also, for each row, find 
all the td elements (the table cells with the data) and save text from all of them in a 
list. This gives us datarows, which has all the numeric data in the table. (You can 
confirm that it matches the table from the web page.) We then insert the labelrows 
list (which has the row headings) at the beginning of each list in datarows:

>>> rows = bs.find('table', {'id':'tblDeaths'}).tbody.
find_all('tr')

>>> datarows = []

>>> labelrows = []

>>> for row in rows:

...   rowlabels = row.find('th').get_text()

...   cells = row.find_all('td', {'class':'data'})

...   if (len(rowlabels)>3):

...     labelrows.append(rowlabels)
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...   if (len(cells)>0):

...     cellvalues = [j.get_text() for j in cells]

...     datarows.append(cellvalues)

... 

>>> pprint.pprint(datarows[0:2])

[['9,394', '653', '214', '15', '43,851,043', '17', '29', 
'13,914', '1.9'],

 ['16,642', '668', '1848', '74', '9,006,400', '107', 
'44', '45,437', '7.4']]

>>> pprint.pprint(labelrows[0:2])

['Algeria', 'Austria']

>>> 

>>> for i in range(len(datarows)):

...   datarows[i].insert(0, labelrows[i])

... 

>>> pprint.pprint(datarows[0:1])

[['Algeria','9,394','653','214','15','43,851,043','17','2
9','13,914','1.9']]

4.	 Load the data into pandas.

Pass the datarows list to the DataFrame method of pandas. Notice that all data 
is read into pandas with the object data type, and that some data has values that 
cannot be converted into numeric values in their current form (due to the commas):

>>> totaldeaths = pd.DataFrame(datarows, 
columns=labelcols)

>>> totaldeaths.head()

  rowheadings    Cases Deaths  ... median_age gdp_per_
capita  \

0     Algeria    9,394    653  ...         29         
13,914   

1     Austria   16,642    668  ...         44         
45,437   

2  Bangladesh   47,153    650  ...         28          
3,524   

3     Belgium   58,381   9467  ...         42         
42,659   
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4      Brazil  514,849  29314  ...         34         
14,103   

>>> totaldeaths.dtypes

rowheadings               object

Cases                     object

Deaths                    object

Cases per Million         object

Deaths per Million        object

population                object

population_density        object

median_age                object

gdp_per_capita            object

hospital_beds_per_100k    object

dtype: object

5.	 Fix the column names and convert the data to numeric values.

Remove spaces from column names. Remove all non-numeric data from the first 
columns with data, including the commas (str.replace("[^0-9]",""). 
Convert to numeric values, except for the rowheadings column:

>>> totaldeaths.columns = totaldeaths.columns.str.
replace(" ", "_").str.lower()

>>> for col in totaldeaths.columns[1:-1]:

...   totaldeaths[col] = totaldeaths[col].\

...     str.replace("[^0-9]","").astype('int64')

... 

>>> totaldeaths['hospital_beds_per_100k'] = 
totaldeaths['hospital_beds_per_100k'].astype('float')

>>> totaldeaths.head()

  rowheadings   cases  deaths  ...  median_age  gdp_per_
capita  \

0     Algeria    9394     653  ...          29           
13914   

1     Austria   16642     668  ...          44           
45437   

2  Bangladesh   47153     650  ...          28            
3524   
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3     Belgium   58381    9467  ...          42           
42659   

4      Brazil  514849   29314  ...          34           
14103   

>>> totaldeaths.dtypes

rowheadings                object

cases                       int64

deaths                      int64

cases_per_million           int64

deaths_per_million          int64

population                  int64

population_density          int64

median_age                  int64

gdp_per_capita              int64

hospital_beds_per_100k    float64

dtype: object

We have now created a pandas DataFrame from an html table.

How it works…
Beautiful Soup is a very useful tool for finding specific HTML elements in a web page 
and retrieving text from them. You can get one HTML element with find and get one or 
more with find_all. The first argument for both find and find_all is the HTML 
element to get. The second argument takes a Python dictionary of attributes. You can 
retrieve text from all of the HTML elements you find with get_text.

Some amount of looping is usually necessary to process the elements and text, as with  
step 2 and step 3. These two statements in step 2 are fairly typical:

>>> theadrows = bs.find('table', {'id':'tblDeaths'}).thead.
find_all('th')

>>> labelcols = [j.get_text() for j in theadrows]

The first statement finds all the th elements we want and creates a Beautiful Soup result 
set called theadrows from the elements it found. The second statement iterates over the 
theadrows Beautiful Soup result set using the get_text method to get the text from 
each element, and stores it in the labelcols list.
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Step 3 is a little more involved, but makes use of the same Beautiful Soup methods. 
We find all of the table rows (tr) in the target table (rows = bs.find('table', 
{'id':'tblDeaths'}).tbody.find_all('tr')). We then iterate over each of 
those rows, finding the th element and getting the text in that element (rowlabels = 
row.find('th').get_text()). We also find all of the table cells (td) for each row 
(cells = row.find_all('td', {'class':'data'}) and get the text from all 
table cells (cellvalues = [j.get_text() for j in cells]). Note that this 
code is dependent on the class of the td elements being data. Finally, we insert the row 
labels we get from the th elements at the beginning of each list in datarows:

>>> for i in range(len(datarows)):

...   datarows[i].insert(0, labelrows[i])

In step 4, we use the DataFrame method to load the list we created in steps 2 and 3 into 
pandas. We then do some cleaning similar to what we have done in previous recipes in 
this chapter. We use string replace to remove spaces from column names and to 
remove all non-numeric data, including commas, from what are otherwise valid numeric 
values. We convert all columns, except for the rowheadings column, to numeric.

There's more…
Our scraping code is dependent on several aspects of the web page's structure not 
changing: the ID of the main table, the presence of th tags with column and row labels, 
and the td elements continuing to have their class equal to data. The good news is that if 
the structure of the web page does change, this will likely only affect the find and find_
all calls. The rest of the code would not need to change.

Persisting JSON data
There are several reasons why we might want to serialize a JSON file:

•	 We may have retrieved the data with an API, but need to keep a snapshot of  
the data.

•	 The data in the JSON file is relatively static and informs our data cleaning and 
analysis over multiple phases of a project.

•	 We might decide that the flexibility of a schema-less format such as JSON helps us 
solve many data cleaning and analysis problems.
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It is worth highlighting this last reason to use JSON – that it can solve many data problems. 
Although tabular data structures clearly have many benefits, particularly for operational 
data, they are often not the best way to store data for analysis purposes. In preparing data 
for analysis, a substantial amount of time is spent either merging data from different tables 
or dealing with data redundancy when working with flat files. Not only are these processes 
time consuming, but every merge or reshaping leaves the door open to a data error of broad 
scope. This can also mean that we end up paying too much attention to the mechanics of 
manipulating data and too little to the conceptual issues at the core of our work.

We return to the Cleveland Museum of Art collections data in this recipe. There are 
at least three possible units of analysis for this data file – the collection item level, the 
creator level, and the citation level. JSON allows us to nest citations and creators within 
collections. (You can examine the structure of the JSON file in the Getting ready section of 
this recipe.) This data cannot be persisted in a tabular structure without flattening the file, 
which we did in an earlier recipe in this chapter. In this recipe, we will use two different 
methods to persist JSON data, each with its own advantages and disadvantages.

Getting ready
We will be working with data on the Cleveland Museum of Art's collection of works by 
African-American artists. The following is the structure of the JSON data returned by the 
API. It has been abbreviated to save space:

{"info": { "total": 778, "parameters": {"african_american_
artists": "" }}, 

"data": [

{

"id": 165157, 

"accession_number": "2007.158", 

"title": "Fulton and Nostrand", 

"creation_date": "1958", 

"citations": [

  {

   "citation": "Annual Exhibition: Sculpture, Paintings...", 

   "page_number": "Unpaginated, [8],[12]", 

   "url": null

   }, 

  {
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   "citation": "\"Moscow to See Modern U.S. Art,\"<em> New 
York...",   

   "page_number": "P. 60",

   "url": null

  }]

"creators": [

      {

     "description": "Jacob Lawrence (American, 1917-2000)", 

     "extent": null, 

     "qualifier": null, 

     "role": "artist", 

     "birth_year": "1917", 

     "death_year": "2000"

     }

  ]

 }

How to do it...
We will serialize the JSON data using two different methods:

1.	 Load the pandas, json, pprint, requests, and msgpack libraries:

>>> import pandas as pd

>>> import json

>>> import pprint

>>> import requests

>>> import msgpack

2.	 Load the JSON data from an API. I have abbreviated the JSON output:

>>> response = requests.get("https://openaccess-api.
clevelandart.org/api/artworks/?african_american_artists")

>>> camcollections = json.loads(response.text)

>>> print(len(camcollections['data']))

778

>>> pprint.pprint(camcollections['data'][0])

{'accession_number': '2007.158',
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 'catalogue_raisonne': None,

 'citations': [{'citation': 'Annual Exhibition: 
Sculpture...',

                'page_number': 'Unpaginated, [8],[12]',

                'url': None},

               {'citation': '"Moscow to See Modern 
U.S....',

                'page_number': 'P. 60',

                'url': None}]

 'collection': 'American - Painting',

 'creation_date': '1958',

 'creators': [{'biography': 'Jacob Lawrence (born 
1917)...',

               'birth_year': '1917',

               'description': 'Jacob Lawrence 
(American...',

               'role': 'artist'}],

 'type': 'Painting'}

3.	 Save and reload the JSON file using Python's json library.

Persist the JSON data in human-readable form. Reload it from the saved file  
and confirm that it worked by retrieving the creators data from the first 
collections item:

>>> with open("data/camcollections.json","w") as f:

...   json.dump(camcollections, f)

... 

>>> with open("data/camcollections.json","r") as f:

...   camcollections = json.load(f)

... 

>>> pprint.pprint(camcollections['data'][0]['creators'])

[{'biography': 'Jacob Lawrence (born 1917) has been a 
prominent artist since...'

  'birth_year': '1917',

  'description': 'Jacob Lawrence (American, 1917-2000)',

  'role': 'artist'}]
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4.	 Save and reload the JSON file using msgpack:

>>> with open("data/camcollections.msgpack", "wb") as 
outfile:

...     packed = msgpack.packb(camcollections)

...     outfile.write(packed)

... 

1586507

>>> with open("data/camcollections.msgpack", "rb") as 
data_file:

...     msgbytes = data_file.read()

... 

>>> camcollections = msgpack.unpackb(msgbytes)

>>> pprint.pprint(camcollections['data'][0]['creators'])

[{'biography': 'Jacob Lawrence (born 1917) has been a 
prominent...',

  'birth_year': '1917',

  'death_year': '2000',

  'description': 'Jacob Lawrence (American, 1917-2000)',

  'role': 'artist'}]

How it works…
We use the Cleveland Museum of Art's collections API to retrieve collections items. The 
african_american_artists flag in the query string indicates that we just want 
collections for those creators. json.loads returns a dictionary called info and a list of 
dictionaries called data. We check the length of the data list. This tells us that there are 
778 items in collections. We then display the first item of collections to get a better look at 
the structure of the data. (I have abbreviated the JSON output.)

We save and then reload the data using Python's JSON library in step 3. The advantage 
of persisting the data in this way is that it keeps the data in human-readable form. 
Unfortunately, it has two disadvantages: saving takes longer than alternative serialization 
methods, and it uses more storage space.

In step 4, we use msgpack to persist our data. This is faster than Python's json library, 
and the saved file uses less space. Of course, the disadvantage is that the resulting JSON is 
binary rather than text-based.
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There's more…
I use both methods for persisting JSON data in my work. When I am working with small 
amounts of data, and that data is relatively static, I prefer human-readable JSON. A great use 
case for this is the recipes in the previous chapter where we needed to create value labels.

I use msgpack when I am working with large amounts of data, where that data changes 
regularly. msgpack files are also great when you want to take regular snapshots of key 
tables in enterprise databases.

The Cleveland Museum of Art's collections data is similar in at least one important 
way to the data we work with every day. The unit of analysis frequently changes. Here 
we are looking at collections, citations, and creators. In our work, we might have to 
simultaneously look at students and courses, or households and deposits. An enterprise 
database system for the museum data would likely have separate collections, citations, and 
creators tables that we would eventually need to merge. The resulting merged file would 
have data redundancy issues that we would need to account for whenever we changed the 
unit of analysis.

When we alter our data cleaning process to work directly from JSON or parts of it, we 
end up eliminating a major source of errors. We do more data cleaning with JSON in 
the Classes that handle non-tabular data structures recipe in Chapter 10, User-Defined 
Functions and Classes to Automate Data Cleaning.





3
Taking the Measure 

of Your Data
Within a week of receiving a new dataset, at least one person is likely to ask us a familiar 
question: "so, how does it look?" This is not always asked in a relaxed tone, and others 
are not usually excited to hear about all of the red flags we have already found. There 
might be a sense of urgency to declare the data ready for analysis. Of course, if we sign 
it off too soon, this can create much larger problems; the presentation of invalid results, 
the misinterpretation of variable relationships, and having to redo major chunks of our 
analysis. The key is sorting out what we need to know about the data before we explore 
anything else in the data. The recipes in this chapter offer techniques for determining  
if the data is in good enough shape to begin the analysis, so that even if we cannot say,  
"it looks fine," we can at least say, "I'm pretty sure I have identified the main issues, and 
here they are."

Often our domain knowledge is quite limited, or at least not nearly as good as those  
who created the data. We have to quickly get a sense of what we are looking at even when  
we have little substantive understanding of the individuals or events reflected in the data. 
Many times (for some of us, most of the time) there is not anything like a data dictionary 
or codebook accompanying the receipt of the data.
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Quick. Ask yourself what the first few things you try to find out in this situation are; that 
is, when you first get data about which you know little. It is probably something like this:

•	 How are the rows of the dataset uniquely identified? (What is the unit of analysis?)

•	 How many rows and columns are in the dataset?

•	 What are the key categorical variables and the frequencies of each value?

•	 How are important continuous variables distributed?

•	 How might variables be related to each other – for example, how might the 
distribution of continuous variables vary according to categories in the data?

•	 What variable values are out of expected ranges, and how are missing values 
distributed?

We go over essential tools and strategies for answering the first four questions in this 
chapter. We look into the last two questions in the following chapter.

I should point out that this first take on our data is important even when the structure of 
the data is familiar; when, for example, we receive data for a new month or year with the 
same column names and data types as in previous periods. It is hard to guard against the 
sense that we can just rerun our old programs; to be as vigilant as we were the first few 
times we prepared the data for analysis. Most of us have probably been in situations where 
we receive new data with a familiar structure, but the answers to the preceding questions 
are meaningfully different: new valid values for key categorical variables; rare values 
that have always been permissible but that have not been seen for several periods; and 
unexpected changes in the status of clients/students/customers. It is important to build 
routines for understanding our data that we follow regardless of our familiarity with it.

Specifically, we will cover the following topics in this chapter:

•	 Getting a first look at your data

•	 Selecting and organizing columns

•	 Selecting rows

•	 Generating frequencies for categorical variables

•	 Generating statistics for continuous variables

Technical requirements 
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Getting a first look at your data
We will work with two datasets in this chapter: The National Longitudinal Survey of Youth 
for 1997, a survey conducted by the United States government that surveyed the same 
group of individuals from 1997 through 2017; and the counts of COVID cases and deaths 
by country from Our World in Data.

Getting ready…
We will mainly be using the pandas library for this recipe. We will use pandas tools to take 
a closer look at the National Longitudinal Survey (NLS) and COVID-19 case data.

Note
The NLS of Youth was conducted by the United States Bureau of Labor 
Statistics. This survey started with a cohort of individuals in 1997 who were 
born between 1980 and 1985, with annual follow-ups each year through 2017. 
For this recipe, I pulled 89 variables on grades, employment, income, and 
attitudes toward government from the hundreds of data items on the survey. 
Separate files for SPSS, Stata, and SAS can be downloaded from the repository. 
NLS data can be downloaded from https://www.nlsinfo.org/
investigator/pages/search.

Our World in Data provides COVID-19 public use data at https://
ourworldindata.org/coronavirus-source-data.

How to do it...
We will get an initial look at the NLS and COVID data, including the number of rows and 
columns, and the data types:

1.	 Import the libraries and load the DataFrames:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> 

>>> covidtotals = pd.read_csv("data/covidtotals.csv",

...   parse_dates=['lastdate'])

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
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2.	 Set and show the index and the size of the nls97 data.

Also, check to see whether the index values are unique:
>>> nls97.set_index("personid", inplace=True)

>>> nls97.index

Int64Index([100061, 100139, 100284, 100292, 100583, 
100833,             		  ...

            999543, 999698, 999963],

           dtype='int64', name='personid', length=8984)

>>> nls97.shape

(8984, 88)

>>> nls97.index.nunique()

8984

3.	 Show the data types and non-null value counts:

>>> nls97.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 88 columns):

 #   Column                 Non-Null Count  Dtype  

---  ------                 --------------  -----  

 0   gender                 8984 non-null   object 

 1   birthmonth             8984 non-null   int64  

 2   birthyear              8984 non-null   int64  

 3   highestgradecompleted  6663 non-null   float64

 4   maritalstatus          6672 non-null   object 

 5   childathome            4791 non-null   float64

 6   childnotathome         4791 non-null   float64

 7   wageincome             5091 non-null   float64

 8   weeklyhrscomputer      6710 non-null   object 

 9   weeklyhrstv            6711 non-null   object 

 10  nightlyhrssleep        6706 non-null   float64

 11  satverbal              1406 non-null   float64

 12  satmath                1407 non-null   float64

...

 

 83  colenroct15            7469 non-null   object 
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 84  colenrfeb16            7036 non-null   object 

 85  colenroct16            6733 non-null   object 

 86  colenrfeb17            6733 non-null   object 

 87  colenroct17            6734 non-null   object 

dtypes: float64(29), int64(2), object(57)

memory usage: 6.1+ MB

4.	 Show the first row of the nls97 data.

Use transpose to show a little more of the output:
>>> nls97.head(2).T

personid                        100061           100139

gender                          Female             Male

birthmonth                           5                9

birthyear                         1980             1983

highestgradecompleted               13               12

maritalstatus                  Married          Married

...                                ...              ...

colenroct15            1. Not enrolled  1. Not enrolled

colenrfeb16            1. Not enrolled  1. Not enrolled

colenroct16            1. Not enrolled  1. Not enrolled

colenrfeb17            1. Not enrolled  1. Not enrolled

colenroct17            1. Not enrolled  1. Not enrolled

5.	 Set and show the index and size for the COVID data.

Also, check to see whether index values are unqiue:
>>> covidtotals.set_index("iso_code", inplace=True)

>>> covidtotals.index

Index(['AFG', 'ALB', 'DZA', 'AND', 'AGO', 'AIA', 'ATG', 
'ARG',        	   ...

       'UZB', 'VAT', 'VEN', 'VNM', 'ESH', 'YEM', 
'ZMB','ZWE'],

      dtype='object', name='iso_code', length=210)

>>> covidtotals.shape

(210, 11)

>>> covidtotals.index.nunique()

210
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6.	 Show the data types and non-null value counts:

>>> covidtotals.info()

<class 'pandas.core.frame.DataFrame'>

Index: 210 entries, AFG to ZWE

Data columns (total 11 columns):

 #   Column           Non-Null Count  Dtype         

---  ------           --------------  -----         

 0   lastdate         210 non-null    datetime64[ns]

 1   location         210 non-null    object        

 2   total_cases      210 non-null    int64         

 3   total_deaths     210 non-null    int64         

 4   total_cases_pm   209 non-null    float64       

 5   total_deaths_pm  209 non-null    float64       

 6   population       210 non-null    float64       

 7   pop_density      198 non-null    float64       

 8   median_age       186 non-null    float64       

 9   gdp_per_capita   182 non-null    float64       

 10  hosp_beds        164 non-null    float64       

dtypes: datetime64[ns](1), float64(7), int64(2), 
object(1)

memory usage: 19.7+ KB

7.	 Show a sample of a few rows of the COVID case data:

>>> covidtotals.sample(2, random_state=1).T

iso_code                         COG                  THA

lastdate         2020-06-01 00:00:00  2020-06-01 00:00:00

location                       Congo             Thailand

total_cases                      611                 3081

total_deaths                      20                   57

total_cases_pm               110.727                44.14

total_deaths_pm                3.624                0.817

population               5.51809e+06             6.98e+07

pop_density                   15.405              135.132

median_age                        19                 40.1

gdp_per_capita               4881.41              16277.7

hosp_beds                        NaN                  2.1
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This has given us a good foundation for understanding our DataFrames, including their 
size and column data types.

How it works…
We set and display the index of the nls97 DataFrame, which is called personid, in 
step 2. It is a more meaningful index than the default pandas RangeIndex, which is 
essentially the row numbers with zero base. Often, there is a unique identifier when 
working with individuals as the unit of analysis. This is a good candidate for an index.  
It makes selecting a row by that identifier easier. Rather than using the statement nls97.
loc[personid==1000061] to get the row for that person, we can use nls97.
loc[1000061]. We try this out in the next recipe.

Pandas makes it easy to view the number of rows and columns, the data type and number 
of non-missing values for each column, and the values for the columns for a few rows of 
your data. This can be accomplished by using the shape attribute and calling the info 
and head, or sample, methods. Using the head(2) method shows the first two rows, 
but sometimes it is helpful to grab a row from anywhere in the DataFrame, in which case 
we would use sample (We set the seed when we call sample (random_state=1) 
to get the same results whenever we run the code). We can chain our call to head or 
sample with a T to transpose it. This reverses the display of rows and columns. That is 
helpful when there are more columns than can be shown horizontally and you want to  
be able to see all of them. By transposing the rows and columns we are able to see all of  
the columns.

The shape attribute of the nls97 DataFrame tells us that there are 8,984 rows and 88 
non-index columns. Since personid is the index, it is not included in the column count. 
The info method shows us that many of the columns have object data types and that 
some have a large number of missing values. satverbal and satmath have only about 
1,400 valid values.

The shape attribute of the covidtotals DataFrame tells us that there are 210 rows and 
11 columns, which does not include the country iso_code column used for the index 
(iso_code is a unique three-digit identifier for each country). The key variables for most 
analyses we would do are total_cases, total_deaths, total_cases_pm, and 
total_deaths_pm. total_cases and total_deaths are present for each country, 
but total_cases_pm and total_deaths_pm are missing for one country.
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There's more...
I find that thinking through the index when working with a data file can remind me of 
the unit of analysis. That is not actually obvious with the NLS data, as it is actually panel 
data disguised as person-level data. Panel, or longitudinal, datasets have data for the same 
individuals over some regular duration. In this case, data was collected for each person 
over a 21-year span, from 1997 till 2017. The administrators of the survey have flattened 
it for analysis purposes by creating columns for certain responses over the years, such as 
college enrollment (colenroct15 through colenroct17). This is a fairly standard 
practice, but it is likely that we will need to do some reshaping for some analyses.

One thing I pay careful attention to when receiving any panel data is drop-off in responses 
to key variables over time. Notice the drop off in valid values from colenroct15 to 
colenroct17. By October of 2017, only 75% of respondents provided a valid response 
(6,734/8,984). That is definitely worth keeping in mind during subsequent analysis, since 
the 6,734 remaining respondents may be different in important ways from the overall 
sample of 8,984.

See also
A recipe in Chapter 1, Anticipating Data Cleaning Issues when Importing Tabular Data into 
pandas, shows how to persist pandas DataFrames as feather or pickle files. In later recipes 
in this chapter, we will look at descriptives and frequencies for these two DataFrames.

We reshape the NLS data in Chapter 9, Tidying and Reshaping Data, recovering some of 
its actual structure as panel data. This is necessary for statistical methods such as survival 
analysis, and is closer to tidy data ideals.

Selecting and organizing columns
We explore several ways to select one or more columns from your DataFrame in this 
recipe. We can select columns by passing a list of column names to the [] bracket 
operator, or by using the pandas-specific data accessors loc and iloc.

When cleaning data or doing exploratory or statistical analyses, it is helpful to focus on 
the variables that are relevant to the issue or analysis at hand. This makes it important to 
group columns according to their substantive or statistical relationships with each other, 
or to limit the columns we are investigating at any one time. How many times have  
we said to ourselves something like, "Why does variable A have a value of x when variable 
B has a value of y?"  We can only do that when the amount of data we are viewing at a 
given moment does not exceed our perceptive abilities at that moment.
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Getting ready…
We will continue working with the NLS data in this recipe.

How to do it…
We will explore several ways to select columns:

1.	 Import the pandas library and load the NLS data into pandas.

Also, convert all columns with object data type in the NLS data to category data 
type. Do this by selecting object data type columns with select_dtypes and 
using apply plus a lambda function to change the data type to category:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> nls97.loc[:, nls97.dtypes == 'object'] = \

...   nls97.select_dtypes(['object']). \

...   apply(lambda x: x.astype('category'))

2.	 Select a column using the pandas [] bracket operator, and the loc and  
iloc accessors.

We pass a string matching a column name to the bracket operator to return 
a pandas series. If we pass a list of one element with that column name 
(nls97[['gender']]), a DataFrame is returned. We can also use the loc and 
iloc accessors to select columns:

>>> analysisdemo = nls97['gender']

>>> type(analysisdemo)

<class 'pandas.core.series.Series'>

>>> analysisdemo = nls97[['gender']]

>>> type(analysisdemo)

<class 'pandas.core.frame.DataFrame'>

>>> analysisdemo = nls97.loc[:,['gender']]

>>> type(analysisdemo)

<class 'pandas.core.frame.DataFrame'>
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>>> analysisdemo = nls97.iloc[:,[0]]

>>> type(analysisdemo)

<class 'pandas.core.frame.DataFrame'>

3.	 Select multiple columns from a pandas DataFrame.

Use the bracket operator and loc to select a few columns:
>>> analysisdemo = nls97[['gender','maritalstatus',

...  'highestgradecompleted']]

>>> analysisdemo.shape

(8984, 3)

>>> analysisdemo.head()

          	gender  maritalstatus  highestgradecompleted

personid                                              

100061    	Female        Married                     13

100139       Male        Married                     12

100284       Male  Never-married                      7

100292       Male            NaN                    nan

100583       Male        Married                     13

>>> analysisdemo = nls97.loc[:,['gender','maritalstatus',

...  'highestgradecompleted']]

>>> analysisdemo.shape

(8984, 3)

>>> analysisdemo.head()

          	     gender  	 maritalstatus 
highestgradecompleted

personid                                              

100061    		 Female        	 Married                     
13

100139     	  Male        	 Married                     
12

100284      	   Male  	 Never-married                     
7

100292      	   Male              NaN                    
nan

100583      	   Male        	 Married                     
13
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4.	 Select multiple columns based on a list of columns.

If you are selecting more than a few columns, it is helpful to create the list of column 
names separately. Here, we create a keyvars list of key variables for analysis:

>>> keyvars = ['gender','maritalstatus',

...  'highestgradecompleted','wageincome',

...  'gpaoverall','weeksworked17','colenroct17'] 

>>> analysiskeys = nls97[keyvars]

>>> analysiskeys.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 7 columns):

 #   Column                 Non-Null Count  Dtype   

---  ------                 --------------  -----   

 0   gender                 8984 non-null   category

 1   maritalstatus          6672 non-null   category

 2   highestgradecompleted  6663 non-null   float64 

 3   wageincome             5091 non-null   float64 

 4   gpaoverall             6004 non-null   float64 

 5   weeksworked17          6670 non-null   float64 

 6   colenroct17            6734 non-null   category

dtypes: category(3), float64(4)

memory usage: 377.7 KB

5.	 Select one or more columns by filtering on column name.

Select all of the weeksworked## columns using the filter operator:
>>> analysiswork = nls97.filter(like="weeksworked")

>>> analysiswork.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 18 columns):

 #   Column         Non-Null Count  Dtype  

---  ------         --------------  -----  

 0   weeksworked00  8603 non-null   float64

 1   weeksworked01  8564 non-null   float64

 2   weeksworked02  8556 non-null   float64

 3   weeksworked03  8490 non-null   float64
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 4   weeksworked04  8458 non-null   float64

 5   weeksworked05  8403 non-null   float64

 6   weeksworked06  8340 non-null   float64

 7   weeksworked07  8272 non-null   float64

 8   weeksworked08  8186 non-null   float64

 9   weeksworked09  8146 non-null   float64

 10  weeksworked10  8054 non-null   float64

 11  weeksworked11  7968 non-null   float64

 12  weeksworked12  7747 non-null   float64

 13  weeksworked13  7680 non-null   float64

 14  weeksworked14  7612 non-null   float64

 15  weeksworked15  7389 non-null   float64

 16  weeksworked16  7068 non-null   float64

 17  weeksworked17  6670 non-null   float64

dtypes: float64(18)

memory usage: 1.3 MB

6.	 Select all columns with the category data type.

Use the select_dtypes method to select columns by data type:
>>> analysiscats = nls97.select_
dtypes(include=["category"])

>>> analysiscats.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 57 columns):

 #   Column                 Non-Null Count  Dtype   

---  ------                 --------------  -----   

 0   gender                 8984 non-null   category

 1   maritalstatus          6672 non-null   category

 2   weeklyhrscomputer      6710 non-null   category

 3   weeklyhrstv            6711 non-null   category

 4   highestdegree          8953 non-null   category

...

 49  colenrfeb14            7624 non-null   category

 50  colenroct14            7469 non-null   category

 51  colenrfeb15            7469 non-null   category

 52  colenroct15            7469 non-null   category
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 53  colenrfeb16            7036 non-null   category

 54  colenroct16            6733 non-null   category

 55  colenrfeb17            6733 non-null   category

 56  colenroct17            6734 non-null   category

dtypes: category(57)

memory usage: 580.0 KB

7.	 Select all columns with numeric data types:
>>> analysisnums = nls97.select_dtypes(include=["number"])

>>> analysisnums.info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 31 columns):

 #   Column                 Non-Null Count  Dtype  

---  ------                 --------------  -----  

 0   birthmonth             8984 non-null   int64  

 1   birthyear              8984 non-null   int64  

 2   highestgradecompleted  6663 non-null   float64

...

 23  weeksworked10          8054 non-null   float64

 24  weeksworked11          7968 non-null   float64

 25  weeksworked12          7747 non-null   float64

 26  weeksworked13          7680 non-null   float64

 27  weeksworked14          7612 non-null   float64

 28  weeksworked15          7389 non-null   float64

 29  weeksworked16          7068 non-null   float64

 30  weeksworked17          6670 non-null   float64

dtypes: float64(29), int64(2)

memory usage: 2.2 MB

8.	 Organize columns using lists of column names.

Use lists to organize the columns in your DataFrame. You can easily change the 
order of columns or exclude some columns in this way. Here, we move the columns 
in the demoadult list to the front:

>>> demo = ['gender','birthmonth','birthyear']

>>> highschoolrecord = 
['satverbal','satmath','gpaoverall',
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...  'gpaenglish','gpamath','gpascience']

>>> govresp = ['govprovidejobs','govpricecontrols',

...   'govhealthcare','govelderliving','govindhelp',

...   'govunemp','govincomediff','govcollegefinance',

...   'govdecenthousing','govprotectenvironment']

>>> demoadult = ['highestgradecompleted','maritalstatus',

...   'childathome','childnotathome','wageincome',

...   'weeklyhrscomputer','weeklyhrstv','nightlyhrssleep',

...   'highestdegree']

>>> weeksworked = ['weeksworked00','weeksworked01',

...   'weeksworked02','weeksworked03','weeksworked04',

...   'weeksworked14','weeksworked15','weeksworked16',

...   'weeksworked17']

>>> colenr = ['colenrfeb97','colenroct97','colenrfeb98',

...   'colenroct98','colenrfeb99','colenroct99',

       ...

...   'colenrfeb15','colenroct15','colenrfeb16',

...   'colenroct16','colenrfeb17','colenroct17']

9.	 Create the new, reorganized DataFrame:

>>> nls97 = nls97[demoadult + demo + highschoolrecord + \

...   govresp + weeksworked + colenr]

>>> nls97.dtypes

highestgradecompleted     float64

maritalstatus            category

childathome               float64

childnotathome            float64

wageincome                float64

                           ...   

colenroct15              category

colenrfeb16              category

colenroct16              category

colenrfeb17              category

colenroct17              category

Length: 88, dtype: object
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The preceding steps showed how to select columns and change the order of columns in  
a pandas DataFrame.

How it works…
Both the [] bracket operator and the loc data accessor are very handy for selecting and 
organizing columns. Each returns a DataFrame when passed a list of names of columns. 
The columns will be ordered according to the passed list of column names.

In step 1, we use nls97.select_dtypes(['object']) to select columns with 
object data type and chain that with apply and a lambda function (apply(lambda 
x: x.astype('category'))) to change those columns to category. We use the 
loc accessor to only update columns with object data type (nls97.loc[:, nls97.
dtypes == 'object']) .  We go into much more detail on apply and lambda 
functions in Chapter 6, Cleaning and Exploring Data with Series Operations.

We also select columns by data type in steps 6 and 7. select_dtypes becomes quite 
useful when passing columns to methods such as describe or value_counts and  
you want to limit the analysis to continuous or categorical variables.

In step 9, we concatenate six different lists when using the bracket operator. This moves 
the column names in demoadult to the front and organizes all of the columns by those 
six groups. There are now clear high school record and weeks worked sections in our 
DataFrame's columns.

There's more…
We can also use select_dtypes to exclude data types. Also, if we are just interested in 
the info results, we can chain the select_dtypes call with the info method:

>>> nls97.select_dtypes(exclude=["category"]).info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 31 columns):

 #   Column                 Non-Null Count  Dtype  

---  ------                 --------------  -----  

 0   highestgradecompleted  6663 non-null   float64

 1   childathome            4791 non-null   float64

 2   childnotathome         4791 non-null   float64

 3   wageincome             5091 non-null   float64
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 4   nightlyhrssleep        6706 non-null   float64

 5   birthmonth             8984 non-null   int64  

 6   birthyear              8984 non-null   int64  

... 

 25  weeksworked12          7747 non-null   float64

 26  weeksworked13          7680 non-null   float64

 27  weeksworked14          7612 non-null   float64

 28  weeksworked15          7389 non-null   float64

 29  weeksworked16          7068 non-null   float64

 30  weeksworked17          6670 non-null   float64

dtypes: float64(29), int64(2)

memory usage: 2.2 MB

The filter operator can also take a regular expression. For example, you can return the 
columns that have income in their names:

>>> nls97.filter(regex='income')

>>> nls97.filter(regex='income')

          wageincome govincomediff

personid                          

100061        12,500           NaN

100139       120,000           NaN

100284        58,000           NaN

100292           nan           NaN

100583        30,000           NaN

...              ...           ...

999291        35,000           NaN

999406       116,000           NaN

999543           nan           NaN

999698           nan           NaN

999963        50,000           NaN

See also
Many of these techniques can be used to create pandas series as well as DataFrames. We 
demonstrate this in Chapter 6, Cleaning and Exploring Data With Series Operations.
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Selecting rows
When we are taking the measure of our data and otherwise answering the question, 
"How does it look?", we are constantly zooming in and out. We are looking at aggregated 
numbers and particular rows. But there are also important data issues that are only 
obvious at an intermediate zoom level, issues that we only notice when looking at some 
subset of rows. This recipe demonstrates how to use the pandas tools for detecting data 
issues in subsets of our data.

Getting ready...
We will continue working with the NLS data in this recipe.

How to do it...
We will go over several techniques for selecting rows in a pandas DataFrame.

1.	 Import pandas and numpy, and load the nls97 data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Use slicing to start at the 1001st row and go to the 1004th row:

nls97[1000:1004] selects every row starting from the row indicated by the 
integer to the left of the colon (1000, in this case) to, but not including, the row 
indicated by the integer to the right of the colon (1004). The row at 1000 is 
actually the 1001st row because of zero-based indexing. Each row appears as  
a column in the output since we have transposed the resulting DataFrame:

>>> nls97[1000:1004].T

personid      195884           195891           195970  
195996

gender          Male             Male           Female  
Female

birthmonth        12                9                3       
9

birthyear       1981             1980             1982    
1980

highestgradecompleted  NaN         12               17     
NaN
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maritalstatus    NaN    Never-married    Never-married     
NaN

...              ...              ...              ...     

...

colenroct15      NaN  1. Not enrolled  1. Not enrolled     
NaN

colenrfeb16      NaN  1. Not enrolled  1. Not enrolled     
NaN

colenroct16      NaN  1. Not enrolled  1. Not enrolled     
NaN

colenrfeb17      NaN  1. Not enrolled  1. Not enrolled     
NaN

colenroct17      NaN  1. Not enrolled  1. Not enrolled     
NaN

3.	 Use slicing to start at the 1001st row and go to the 1004th row, skipping every  
other row.

The integer after the second colon (2 in this case) indicates the size of the step. 
When the step is excluded it is assumed to be 1. Notice that by setting the value of 
the step to 2, we are skipping every other row:

>>> nls97[1000:1004:2].T

personid              195884           195970

gender                  Male           Female

birthmonth                12                3

birthyear               1981             1982

highestgradecompleted    NaN               17

maritalstatus            NaN    Never-married

...                      ...              ...

colenroct15              NaN  1. Not enrolled

colenrfeb16              NaN  1. Not enrolled

colenroct16              NaN  1. Not enrolled

colenrfeb17              NaN  1. Not enrolled

colenroct17              NaN  1. Not enrolled
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4.	 Select the first three rows using head and [] operator slicing.

Note that nls97[:3] returns the same DataFrame as nls97.head(3). By not 
providing a value to the left of the colon in [:3], we are telling the operator to get 
rows from the start of the DataFrame:

>>> nls97.head(3).T

personid              100061           100139           
100284

gender                Female             Male             
Male

birthmonth                 5                9               
11

birthyear               1980             1983             
1984

...                      ...              ...              

...

colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

>>> nls97[:3].T

personid              100061           100139           
100284

gender                Female             Male             
Male

birthmonth                 5                9               
11

birthyear               1980             1983             
1984

...                      ...              ...              

...

colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
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colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

5.	 Select the last three rows using tail and [] operator slicing.

Note that nls97.tail(3) returns the same DataFrame as nls97[-3:]:
>>> nls97.tail(3).T
personid              999543           999698           
999963
gender                Female           Female           
Female
birthmonth                 8                5                
9
birthyear               1984             1983             
1982
...                      ...              ...              
...
colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
>>> nls97[-3:].T
personid              999543           999698           
999963
gender                Female           Female           
Female
birthmonth                 8                5                
9
birthyear               1984             1983             
1982
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...                      ...              ...              

...
colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

6.	 Select a few rows using the loc data accessor.

Use the loc accessor to select by index label. We can pass a list of index labels 
or we can specify a range of labels. (Recall that we have set personid as the 
index.) Note that nls97.loc[[195884,195891,195970]] and nls97.
loc[195884:195970] return the same DataFrame:

>>> nls97.loc[[195884,195891,195970]].T

personid              195884           195891           
195970

gender                  Male             Male           
Female

birthmonth                12                9                
3

birthyear               1981             1980             
1982

highestgradecompleted    NaN               12               
17

maritalstatus            NaN    Never-married    Never-
married

...                      ...              ...              

...

colenroct15              NaN  1. Not enrolled  1. Not 
enrolled

colenrfeb16              NaN  1. Not enrolled  1. Not 
enrolled

colenroct16              NaN  1. Not enrolled  1. Not 
enrolled

colenrfeb17              NaN  1. Not enrolled  1. Not 
enrolled
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colenroct17              NaN  1. Not enrolled  1. Not 
enrolled

>>> nls97.loc[195884:195970].T

personid              195884           195891           
195970

gender                  Male             Male           
Female

birthmonth                12                9                
3

birthyear               1981             1980             
1982

highestgradecompleted    NaN               12               
17

maritalstatus            NaN    Never-married    Never-
married

...                      ...              ...              

...

colenroct15              NaN  1. Not enrolled  1. Not 
enrolled

colenrfeb16              NaN  1. Not enrolled  1. Not 
enrolled

colenroct16              NaN  1. Not enrolled  1. Not 
enrolled

colenrfeb17              NaN  1. Not enrolled  1. Not 
enrolled

colenroct17              NaN  1. Not enrolled  1. Not 
enrolled

7.	 Select a row from the beginning of the DataFrame with the iloc data accessor.

iloc differs from loc in that it takes a list of row position integers, rather than 
index labels. For that reason, it works similarly to bracket operator slicing. In this 
step, we first pass a one-item list with the value of 0. That returns a DataFrame with 
the first row:

>>> nls97.iloc[[0]].T

personid                        100061

gender                          Female

birthmonth                           5

birthyear                         1980
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highestgradecompleted               13

maritalstatus                  Married

...                                ...

colenroct15            1. Not enrolled

colenrfeb16            1. Not enrolled

colenroct16            1. Not enrolled

colenrfeb17            1. Not enrolled

colenroct17            1. Not enrolled

8.	 Select a few rows from the beginning of the DataFrame with the iloc data accessor.

We pass a three-item list, [0,1,2], to return a DataFrame of the first three rows of 
nls97. We would get the same result if we passed [0:3] to the accessor:

>>> nls97.iloc[[0,1,2]].T

personid              100061           100139           
100284

gender                Female             Male             
Male

birthmonth                 5                9               
11

birthyear               1980             1983             
1984

...                      ...              ...              

...

colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

>>> nls97.iloc[0:3].T

personid              100061           100139           
100284

gender                Female             Male             
Male
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birthmonth                 5                9               
11

birthyear               1980             1983             
1984

...                      ...              ...              

...

colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

9.	 Select a few rows from the end of the DataFrame with the iloc data accessor.

Use nls97.iloc[[-3,-2,-1]], and nls97.iloc[-3:] to retrieve the last 
three rows of the DataFrame. By not providing a value to the right of the colon in 
[-3:], we are telling the accessor to get all rows from the third-to-last row to the 
end of the DataFrame:

>>> nls97.iloc[[-3,-2,-1]].T

personid              999543           999698           
999963

gender                Female           Female           
Female

birthmonth                 8                5                
9

birthyear               1984             1983             
1982

...                      ...              ...              

...

colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled
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colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

>>> nls97.iloc[-3:].T

personid              999543           999698           
999963

gender                Female           Female           
Female

birthmonth                 8                5                
9

birthyear               1984             1983             
1982

...                      ...              ...              

...

colenroct15  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct16  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct17  1. Not enrolled  1. Not enrolled  1. Not 
enrolled

10.	 Select multiple rows conditionally using boolean indexing.

Create a DataFrame of just individuals receiving very little sleep. About 5% of 
survey respondents got 4 or fewer hours' sleep per night, of the 6,706 individuals 
who responded to that question. Test who is getting 4 or fewer hours of sleep with 
nls97.nightlyhrssleep<=4, which generates a pandas series of True and 
False values that we assign to sleepcheckbool. Pass that series to the loc 
accessor to create a lowsleep DataFrame. lowsleep has approximately the 
number of rows we are expecting. We do not need to do the extra step of assigning 
the boolean series to a variable. This is done here only for explanatory purposes:

>>> nls97.nightlyhrssleep.quantile(0.05)

4.0

>>> nls97.nightlyhrssleep.count()

6706
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>>> sleepcheckbool = nls97.nightlyhrssleep<=4

>>> sleepcheckbool

personid

100061    False

100139    False

100284    False

100292    False

100583    False

          ...  

999291    False

999406    False

999543    False

999698    False

999963    False

Name: nightlyhrssleep, Length: 8984, dtype: bool

>>> lowsleep = nls97.loc[sleepcheckbool]

>>> lowsleep.shape

(364, 88)

11.	 Select rows based on multiple conditions.

It may be that folks who are not getting a lot of sleep also have a fair number of 
children who live with them. Use describe to get a sense of the distribution 
of the number of children for those who have lowsleep. About a quarter have 
three or more children. Create a new DataFrame with individuals who have 
nightlyhrssleep of 4 or less and the number of children at home of 3 or more. 
The & is the logical and operator in pandas and indicates that both conditions 
have to be true for the row to be selected (We would have gotten the same result 
if we worked from the lowsleep DataFrame – lowsleep3pluschildren = 
lowsleep.loc[lowsleep.childathome>=3] – but then we would not have 
been able to demonstrate testing multiple conditions):

>>> lowsleep.childathome.describe()

count   293.00

mean      1.79

std       1.40

min       0.00

25%       1.00
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50%       2.00

75%       3.00

max       9.00

>>> lowsleep3pluschildren = nls97.loc[(nls97.
nightlyhrssleep<=4) & (nls97.childathome>=3)]

>>> lowsleep3pluschildren.shape

(82, 88)

12.	 Select rows and columns based on multiple conditions.

Pass the condition to the loc accessor to select rows. Also, pass a list of column 
names to select:

>>> lowsleep3pluschildren = nls97.loc[(nls97.
nightlyhrssleep<=4) & (nls97.childathome>=3), 
['nightlyhrssleep','childathome']]

>>> lowsleep3pluschildren

          nightlyhrssleep  childathome

personid                              

119754                  4            4

141531                  4            5

152706                  4            4

156823                  1            3

158355                  4            4

...                   ...          ...

905774                  4            3

907315                  4            3

955166                  3            3

956100                  4            6

991756                  4            3

The preceding steps demonstrated the key techniques for selecting rows in pandas.
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How it works…
We used the [] bracket operator in steps 2 through 5 to do standard Python-like slicing to 
select rows. That operator allows us to easily select rows based on a list or a range of values 
indicated with slice notation. This notation takes the form of [start:end:step], 
where a value of 1 for step is assumed if no value is provided. When a negative number 
is used for start, it represents the number of rows from the end of the DataFrame.

The loc accessor, used in step 6, selects rows based on row index labels. Since personid 
is the index for the DataFrame, we can pass a list of one or more personid values to  
the loc accessor to get a DataFrame with rows for those index labels. We can also pass  
a range of index labels to the accessor, which will return a DataFrame with all rows having 
index labels between the label to the left of the colon and the label to the right (inclusive); 
so, nls97.loc[195884:195970] returns a DataFrame for rows with personid 
between 195884 and 195970, including those two values.

The iloc accessor works very much like the bracket operator. We see this in steps 7 
through 9. We can pass either a list of integers or a range using slicing notation.

One of the most valuable pandas capabilities is boolean indexing. It makes it easy to 
select rows conditionally. We see this in step 10. A test returns a boolean series. The 
loc accessor selects all rows for which the test is True. We actually didn't need to 
assign the boolean data series to the variable that we then passed to the loc operator 
in. We could have just passed the test to the loc accessor with nls97.loc[nls97.
nightlyhrssleep<=4].

We should take a closer look at how we used the loc accessor to select rows in step 11. 
Each condition in nls97.loc[(nls97.nightlyhrssleep<=4) & (nls97.
childathome>=3)] is placed in parentheses. An error will be generated if the 
parentheses are excluded. The & operator is the equivalent of and in standard Python, 
meaning that both conditions have to be True for the row to be selected. We would have 
used | for or if we had wanted to select the row if either condition was True.

Finally, step 12 demonstrates how to select both rows and columns in one call to the loc 
accessor. The criteria for rows appear before the comma, and the columns to select appear 
after the comma, as in the following statement:

nls97.loc[(nls97.nightlyhrssleep<=4) & (nls97.childathome>=3), 
['nightlyhrssleep','childathome']]
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This returns the nightlyhrssleep and childathome columns for all rows where the 
individual has nightlyhrssleep of less than or equal to 4, and childathome greater 
than or equal to 3.

There's more…
We used three different tools to select rows from a pandas DataFrame in this recipe: the 
[] bracket operator, and two pandas-specific accessors, loc and iloc. This is a little 
confusing if you are new to pandas, but it becomes clear which tool to use in which 
situation after just a few months. If you came to pandas with a fair bit of Python and 
NumPy experience, you likely find the [] operator most familiar. However, the pandas 
documentation recommends against using the [] operator for production code. I have 
settled on a routine of using that operator only for selecting columns from a DataFrame.  
I use the loc accessor when selecting rows by boolean indexing or by index label, and the 
iloc accessor for selecting rows by row number. Since my workflow has me using a fair 
bit of boolean indexing, I use loc much more than the other methods.

See also
The recipe immediately preceding this one has a more detailed discussion on selecting 
columns.

Generating frequencies for categorical 
variables
Many years ago, a very seasoned researcher said to me, "90% of what we're going to find, 
we'll see in the frequency distributions." That message has stayed with me. The more 
one-way and two-way frequency distributions (crosstabs) I do on a DataFrame, the 
better I understand it. We will do one-way distributions in this recipe, and crosstabs in 
subsequent recipes.

Getting ready…
We continue our work with the NLS. We will also be doing a fair bit of column selection 
using filter methods. It is not necessary to review the recipe in this chapter on column 
selection, but it might be helpful.



104     Taking the Measure of Your Data

How to do it…
We use pandas tools to generate frequencies, particularly the very handy  
value_counts:

1.	 Load the pandas library and the nls97 file.

Also, convert the columns with object data type to category data type:
>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> nls97.loc[:, nls97.dtypes == 'object'] = \

...   nls97.select_dtypes(['object']). \

...   apply(lambda x: x.astype('category'))

2.	 Show the names for columns with the category data type and check for the number 
of missing values.

Notice that there are no missing values for gender and few for highestdegree, 
but many for maritalstatus and other columns:

>>> catcols = nls97.select_dtypes(include=["category"]).
columns

>>> nls97[catcols].isnull().sum()

gender                  0

maritalstatus        2312

weeklyhrscomputer    2274

weeklyhrstv          2273

highestdegree          31

                     ... 

colenroct15          1515

colenrfeb16          1948

colenroct16          2251

colenrfeb17          2251

colenroct17          2250

Length: 57, dtype: int64

3.	 Show the frequencies for marital status:

>>> nls97.maritalstatus.value_counts()

Married          3066
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Never-married    2766

Divorced          663

Separated         154

Widowed            23

Name: maritalstatus, dtype: int64

4.	 Turn off sorting by frequency:

>>> nls97.maritalstatus.value_counts(sort=False)

Divorced          663

Married          3066

Never-married    2766

Separated         154

Widowed            23

Name: maritalstatus, dtype: int64

5.	 Show percentages instead of counts:

>>> nls97.maritalstatus.value_counts(sort=False, 
normalize=True)

Divorced        0.10

Married         0.46

Never-married   0.41

Separated       0.02

Widowed         0.00

Name: maritalstatus, dtype: float64

6.	 Show the percentages for all government responsibility columns.

Filter the DataFrame for just the government responsibility columns, then use 
apply to run value_counts on all columns in that DataFrame:

>>> nls97.filter(like="gov").apply(pd.value_counts, 
normalize=True)

                   govprovidejobs  govpricecontrols  ...  
\

1. Definitely                0.25              0.54  ...   

2. Probably                  0.34              0.33  ...   

3. Probably not              0.25              0.09  ...   



106     Taking the Measure of Your Data

4. Definitely not            0.16              0.04  ...   

                   govdecenthousing  
govprotectenvironment  

1. Definitely                  0.44                   
0.67  

2. Probably                    0.43                   
0.29  

3. Probably not                0.10                   
0.03  

4. Definitely not              0.02                   
0.02 

7.	 Find the percentages for all government responsibility columns of people  
who are married.

Do what we did in step 6, but first select only rows with marital status equal  
to Married:

>>> nls97[nls97.maritalstatus=="Married"].\

... filter(like="gov").\

... apply(pd.value_counts, normalize=True)

                   govprovidejobs  govpricecontrols  ...  
\

1. Definitely                0.17              0.46  ...   

2. Probably                  0.33              0.38  ...   

3. Probably not              0.31              0.11  ...   

4. Definitely not            0.18              0.05  ...   

                   govdecenthousing  
govprotectenvironment  

1. Definitely                  0.36                   
0.64  

2. Probably                    0.49                   
0.31  

3. Probably not                0.12                   
0.03  

4. Definitely not              0.03                   
0.01 
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8.	 Find the frequencies and percentages for all category columns in the DataFrame.

First, open a file to write out the frequencies:
>>> freqout = open('views/frequencies.txt', 'w') 

>>> 

>>> for col in nls97.select_dtypes(include=["category"]):

...   print(col, "----------------------", "frequencies",

...   nls97[col].value_counts(sort=False),"percentages",

...   nls97[col].value_counts(normalize=True, 
sort=False),

...   sep="\n\n", end="\n\n\n", file=freqout)

... 

>>> freqout.close()

This generates a file, the beginning of which looks like this:
gender

----------------------

frequencies

Female    4385

Male      4599

Name: gender, dtype: int64

percentages

Female   0.49

Male     0.51

Name: gender, dtype: float64

As these steps demonstrate, value_counts is quite useful when we need to generate 
frequencies for one or more columns of a DataFrame.
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How it works…
Most of the columns in the nls97 DataFrame (57 out of 88) have the object data type. 
If we are working with data that is logically categorical, but does not have a category data 
type in pandas, there are good reasons to convert it to the category type. Not only does 
this save memory, it also makes data cleaning a little easier, as we saw in this recipe.

The star of the show for this recipe is the value_counts method. It can generate 
frequencies for a series, as we do with nls97.maritalstatus.value_counts. It 
can also be run on a whole DataFrame as we do with nls97.filter(like="gov").
apply(pd.value_counts, normalize=True). We first create a DataFrame with 
just the government responsibility columns and then pass the resulting DataFrame to 
value_counts with apply.

You probably noticed that in step 7, I split the chaining over several lines to make it easier 
to read. There is no rule about when it makes sense to do that. I generally try to do that 
whenever the chaining involves three or more operations.

In step 8, we iterate over all of the columns with the category data type: for col in 
nls97.select_dtypes(include=["category"]). For each of those columns, 
we run value_counts to get frequencies and value_counts again to get percentages. 
We use a print function so that we can generate the carriage returns necessary to make 
the output readable. All of this is saved to the frequencies.txt file in the views 
subfolder. I find it handy to have a bunch of one-way frequencies around just to check 
before doing any work with categorical variables. Step 8 accomplishes that.

There's more…
Frequency distributions may be the most important statistical tool for discovering 
potential data issues with categorical data. The one-way frequencies we generate in this 
recipe are a good foundation for further insights.

However, we often only detect problems once we examine the relationships between 
categorical variables and other variables, categorical or continuous. Although we stop 
short of doing two-way frequencies in this recipe, we do start the process of splitting up 
the data for investigation in step 7. In that step, we look at government responsibility 
responses for married individuals and see that those responses differ from those for the 
sample overall.
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This raises several questions about our data that we need to explore. Are there important 
differences in response rates by marital status, and might this matter for the distribution 
of the government responsibility variables? We also want to be careful about drawing 
conclusions before considering potential confounding variables. Are married respondents 
likely to be older or to have more children, and are those more important factors in their 
government responsibility answers?

I am using the marital status variable as an example of the kind of queries that producing 
one-way frequencies, like the ones in this recipe, are likely to generate. It is always good to 
have some bivariate analyses (a correlation matrix, some crosstabs, or a few scatter plots) 
at the ready should questions like these come up. We will generate those in the next two 
chapters.

Generating summary statistics for continuous 
variables
Pandas has a good number of tools we can use to get a sense of the distribution of 
continuous variables. We will focus on the splendid functionality of describe in this 
recipe and demonstrate the usefulness of histograms for visualizing variable distributions.

Before doing any analysis with a continuous variable it is important to have a good 
understanding of how it is distributed – its central tendency, its spread, and its skewness. 
This understanding greatly informs our efforts to identify outliers and unexpected values. 
But it is also crucial information in and of itself. I do not think it overstates the case to  
say that we understand a particular variable well if we have a good understanding of how 
it is distributed, and any interpretation without that understanding will be incomplete  
or flawed in some way.

Getting ready…
We will work with the COVID totals data in this recipe. You will need Matplotlib to run 
this. If it is not installed on your machine already, you can install it at the terminal by 
entering pip install matplotlib.
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How to do it…
We take a look at the distribution of a few key continuous variables:

1.	 Import pandas, numpy, and matplotlib, and load the COVID case totals data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> covidtotals = pd.read_csv("data/covidtotals.csv",

...   parse_dates=['lastdate'])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Let's remind ourselves of the structure of the data:

>>> covidtotals.shape

(210, 11)

>>> covidtotals.sample(2, random_state=1).T

iso_code                         COG                  THA

lastdate         2020-06-01 00:00:00  2020-06-01 00:00:00

location                       Congo             Thailand

total_cases                      611                 3081

total_deaths                      20                   57

total_cases_pm                110.73                44.14

total_deaths_pm                 3.62                 0.82

population              5,518,092.00        69,799,978.00

pop_density                    15.40               135.13

median_age                     19.00                40.10

gdp_per_capita              4,881.41            16,277.67

hosp_beds                        NaN                 2.10

>>> covidtotals.dtypes

lastdate           datetime64[ns]

location                   object

total_cases                 int64

total_deaths                int64

total_cases_pm            float64

total_deaths_pm           float64

population                float64

pop_density               float64



Generating summary statistics for continuous variables     111

median_age                float64

gdp_per_capita            float64

hosp_beds                 float64

dtype: object

3.	 Get the descriptive statistics on the COVID totals and demographic columns:

>>> covidtotals.describe()

    total_cases  total_deaths  total_cases_pm  ...  
median_age  

count       210           210             209  ...         
186   

mean     29,216         1,771           1,362  ...          
31   

std     136,398         8,706           2,630  ...           
9   

min           0             0               1  ...          
15   

25%         176             4              97  ...          
22   

50%       1,242            26             282  ...          
30   

75%      10,117           241           1,803  ...          
39   

max   1,790,191       104,383          19,771  ...          
48   

       gdp_per_capita  hosp_beds  

count             182        164  

mean           19,539          3  

std            19,862          2  

min               661          0  

25%             4,485          1  

50%            13,183          2  

75%            28,557          4  

max           116,936         14  
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4.	 Take a closer look at the distribution of values for the cases and deaths columns.

Use NumPy's arange method to pass a list of floats from 0 to 1.0 to the quantile 
method of the DataFrame:

>>> totvars = ['location','total_cases','total_deaths',

...   'total_cases_pm','total_deaths_pm']

>>> covidtotals[totvars].quantile(np.arange(0.0, 1.1, 
0.1))

      total_cases  total_deaths  total_cases_pm  total_
deaths_pm

0.00       0.00          0.00            0.89             
0.00

0.10      22.90          0.00           18.49             
0.00

0.20     105.20          2.00           56.74             
0.40

0.30     302.00          6.70          118.23             
1.73

0.40     762.00         12.00          214.92             
3.97

0.50   1,242.50         25.50          282.00             
6.21

0.60   2,514.60         54.60          546.05            
12.56

0.70   6,959.80        137.20        1,074.03            
26.06

0.80  16,847.20        323.20        2,208.74            
50.29

0.90  46,513.10      1,616.90        3,772.00           
139.53

1.00 1,790,191.00   104,383.00      19,771.35         
1,237.55

5.	 View the distribution of total cases:

>>> plt.hist(covidtotals['total_cases']/1000, bins=12)

>>> plt.title("Total Covid Cases")

>>> plt.xlabel('Cases')

>>> plt.ylabel("Number of Countries")

>>> plt.show()
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Figure 3.1 – Total COVID Cases

The preceding steps demonstrated the use of describe and Matplotlib's hist method, 
which are essential tools when working with continuous variables.

How it works…
We use the describe method in step 3 to examine some summary statistics and the 
distribution of the key variables. It is often a red flag when the mean and median (50%) 
have dramatically different values. Cases and deaths are heavily skewed to the right 
(reflected in the mean being much higher than the median). This alerts us to the presence 
of outliers at the upper end. This is true even with the adjustment for population size, as 
both total_cases_pm and total_deaths_pm show this same skew. We do more 
analysis of outliers in the next chapter.

The more detailed percentile data in step 4 further supports this sense of skewness. For 
instance, the gap between the 90th-percentile and 100th-percentile values for cases and 
deaths is substantial. These are good first indicators that we are not dealing with normally 
distributed data here. Even if this is not due to errors, this matters for the statistical testing 
we will do down the road. On the list of things we want to note when asked, "How does the 
data look?" this is one of the first things we want to say.
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We should also note the large number of zero values for total deaths, over 10%. This will 
also matter for statistical testing when we get to that point.

The histogram of total cases confirms that much of the distribution is between 0 and 
150,000, with a few outliers and 1S extreme outlier. Visually, the distribution looks much 
more log-normal than normal. Log-normal distributions have fatter tails and do not have 
negative values.

See also
We take a closer look at outliers and unexpected values in the next chapter. We do 
much more with visualizations in Chapter 5, Using Visualizations for the Identification of 
Unexpected Values.



4
Identifying Missing 

Values and Outliers 
in Subsets of Data

Outliers and unexpected values may not be errors. They often are not. Individuals and 
events are complicated and surprise the analyst. Some people really are 7'4" tall and some 
really have $50 million salaries. Sometimes, data is messy because people and situations 
are messy; however, extreme values can have an outsized impact on our analysis, 
particularly when we are using parametric techniques that assume a normal distribution.

These issues may become even more apparent when working with subsets of data. That is 
not just because extreme or unexpected values have more weight in smaller samples. It is 
also because they may make less sense when bivariate and multivariate relationships are 
considered. When the 7'4" person, or the person making $50 million, is 10 years old, the 
red flag gets even redder. We take these complications into account in this chapter when 
considering strategies for detecting outliers, unexpected values, and missing values.

Specifically, the recipes in this chapter examine the following:

•	 Finding missing values

•	 Identifying outliers with one variable



116     Identifying Missing Values and Outliers in Subsets of Data

•	 Identifying outliers and unexpected values in bivariate relationships

•	 Using subsetting to examine logical inconsistencies in variable relationships

•	 Using linear regression to identify data points with significant influence

•	 Using k-nearest neighbor to find outliers

•	 Using Isolation Forest to find anomalies

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Finding missing values
Before starting any analysis, we need to have a good sense of the number of missing values 
for each variable, and why those values are missing. We also want to know which rows in 
our data frame are missing values for several key variables. We can get this information 
with just a couple of statements in pandas.

We also need good strategies for dealing with missing values before we begin statistical 
modeling, since those models do not typically handle missing values flexibly. We 
introduce imputation strategies in this recipe and go into more detail in subsequent 
recipes in this chapter.

Getting ready
We will work with cumulative data on coronavirus cases and deaths by country. The 
DataFrame has other relevant information, including population density, age, and GDP.

Note
Our World in Data provides COVID-19 public use data at https://
ourworldindata.org/coronavirus-source-data. The data 
used in this recipe was downloaded on June 1, 2020. The Covid case and death 
data were missing for Hong Kong as of this date, but this problem was rectified 
in files after that.

We will also be doing some routine plotting with Matplotlib in this recipe to help us 
visualize the distributions of Covid cases and deaths. You can install Matplotlib using  
pip install matplotlib.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
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How to do it…
We make good use of the isnull and sum functions to count the number of missing 
values for selected columns and the number of rows that have missing values for several 
key variables. We then use the very handy data frame fillna method to impute  
missing values:

1.	 Load the pandas, numpy, and matplotlib libraries, along with the Covid  
case data file.

Also, set up the Covid case and demographic columns:
>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> covidtotals = pd.read_csv("data/
covidtotalswithmissings.csv")

>>> totvars = ['location','total_cases','total_
deaths','total_cases_pm',

...   'total_deaths_pm']

>>> 

>>> demovars = ['population','pop_density','median_
age','gdp_per_capita',

...   'hosp_beds']

2.	 Check the demographic columns for missing data.

Set the axis to 0 (the default) to check for the count of countries that are missing 
values for each of the demographic variables (missing values down columns). 
Notice that 46 out of 210 countries, more than 20 percent of countries, are missing 
hosp_beds. Set the axis to 1 to check for the number of demographic variables 
that are missing for each country (missing values across rows). Next, get value_
counts on the resulting demovarsmisscnt series to see whether some countries 
have missing values for much of the demographic data. Notice that 10 countries 
are missing values for 3 out of the 5 demographic variables, while 8 countries are 
missing values for 4 out of 5 demographic variables:

>>> covidtotals[demovars].isnull().sum(axis=0)

population         0

pop_density       12

median_age        24
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gdp_per_capita    28

hosp_beds         46

dtype: int64

>>> demovarsmisscnt = covidtotals[demovars].isnull().
sum(axis=1)

>>> demovarsmisscnt.value_counts()

0    156

1     24

2     12

3     10

4      8

dtype: int64

3.	 List the countries with three or more missing values for the demographic data.

Index alignment and Boolean indexing allow us to use the count of missing values 
(demovarsmisscnt) to select rows. Append the location to the demovars list to 
see the country. (We only show the first five of these countries here.):

>>> covidtotals.loc[demovarsmisscnt>=3, ['location'] + 
demovars].head(5).T

iso_code            AND            AIA                 
BES  \

location        Andorra       Anguilla    Bonaire Sint 
...   

population       77,265         15,002              
26,221   

pop_density         164            NaN                 
NaN   

median_age          NaN            NaN                 
NaN   

gdp_per_capita      NaN            NaN                 
NaN   

hosp_beds           NaN            NaN                 
NaN   

iso_code                           VGB             FRO  
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location        British Virgin Islands  Faeroe Islands  

population                      30,237          48,865  

pop_density                        208              35  

median_age                         NaN             NaN  

gdp_per_capita                     NaN             NaN  

hosp_beds                          NaN             NaN

  

>>> type(demovarsmisscnt)

<class 'pandas.core.series.Series'>

4.	 Check the Covid case data for missing values.

Notice that only one country has missing values for any of this data:
>>> covidtotals[totvars].isnull().sum(axis=0)

location           0

total_cases        0

total_deaths       0

total_cases_pm     1

total_deaths_pm    1

dtype: int64

>>> totvarsmisscnt = covidtotals[totvars].isnull().
sum(axis=1)

>>> totvarsmisscnt.value_counts()

0    209

2      1

dtype: int64

>>> covidtotals.loc[totvarsmisscnt>0].T

iso_code                         HKG

lastdate         2020-05-26 00:00:00

location                   Hong Kong

total_cases                        0

total_deaths                       0

total_cases_pm                   NaN

total_deaths_pm                  NaN

population                 7,496,988

pop_density                    7,040
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median_age                        45

gdp_per_capita                56,055

hosp_beds                        NaN

5.	 Use the fillna method to fix the missing cases data for the one country affected 
(Hong Kong).

We could just set the values to 0, since the numerator is 0 in both cases. However, it 
is helpful in terms of code reuse to use the correct logic:

>>> covidtotals.total_cases_pm.fillna(covidtotals.total_
cases/

...   (covidtotals.population/1000000), inplace=True)

>>> covidtotals.total_deaths_pm.fillna(covidtotals.total_
deaths/

...   (covidtotals.population/1000000), inplace=True)

>>> covidtotals[totvars].isnull().sum(axis=0)

location           0

total_cases        0

total_deaths       0

total_cases_pm     0

total_deaths_pm    0

dtype: int64

These steps give us a good sense of the number of missing values that we have for each 
column, and which countries have many missing values.

How it works...
Step 2 shows that there is a fair bit of missing data for the demographic variables, 
particularly for the number of hospital beds. 18 countries have at least 3 of the 5 
demographic variables missing. We will either have to exclude those variables from any 
multivariate analyses we will do in the future or impute values for those variables. We 
make no attempt to fix those values here. We look more at fixing missing values, including 
by imputing values, in subsequent chapters.

The key Covid case data is relatively free of missing values. We have one country with 
missing cases or death data, which we resolve in step 5. We use fillna to fix the missing 
value. We could have also used fillna to set the missing value to 0.
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We should not gloss over the little bit of pandas magic in steps 2 and 3. We create a series, 
demovarsmisscnt, which has the count of demographic columns that have missing 
values for each country. We are able to use that series, along with the three or more test 
series (demovarsmisscnt>=3), because of pandas index alignment and Boolean 
indexing. That's magic I say!

See also
We examine other pandas techniques for fixing missing values in Chapter 6, Cleaning and 
Exploring Data with Series Operations.

Identifying outliers with one variable
The concept of an outlier is somewhat subjective but is closely tied to the properties of a 
particular distribution; to its central tendency, spread, and shape. We make assumptions 
about whether a value is expected or unexpected based on how likely we are to get that 
value given the variable's distribution. We are more inclined to view a value as an outlier 
if it is multiple standard deviations away from the mean and it is from a distribution that 
is approximately normal; one that is symmetrical (has low skew) and has relatively skinny 
tails (low kurtosis).

This becomes clear if we imagine trying to identify outliers from a uniform distribution. 
There is no central tendency and there are no tails. Each value is equally likely. If, for 
example, Covid cases per country were uniformly distributed, with a minimum of 1 and a 
maximum of 10,000,000, neither 1 nor 10,000,000 would be considered an outlier.

We need to understand how a variable is distributed, then, before we can identify outliers. 
Several Python libraries provide tools to help us understand how variables of interest are 
distributed. We use a couple of them in this recipe to identify when a value is sufficiently 
out of range to be of concern.

Getting ready
You will need the matplotlib, statsmodels, and scipy libraries, in addition 
to pandas and numpy, to run the code in this recipe. You can install matplotlib, 
statsmodels, and scipy by entering pip install matplotlib, pip install 
statsmodels, and pip install scipy in a terminal client or PowerShell  
(in Windows).

We continue to work with the Covid case data.
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How to do it...
We take a good look at the distribution of some of the key continuous variables in the 
Covid data. We examine the central tendency and shape of the distribution, generating 
measures and visualizations of normality:

1.	 Load the pandas, numpy, matplotlib, statsmodels, and scipy libraries, 
and the Covid case data file.

Also, set up the Covid case and demographic columns:
>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

>>> import scipy.stats as scistat

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

>>> totvars = ['location','total_cases','total_
deaths','total_cases_pm',

...   'total_deaths_pm']

>>> demovars = ['population','pop_density','median_
age','gdp_per_capita',

...   'hosp_beds']

2.	 Get descriptive statistics for the Covid case data.

Create a data frame with just the key case data:
>>> covidtotalsonly = covidtotals.loc[:, totvars]

>>> covidtotalsonly.describe()

       total_cases  total_deaths  total_cases_pm  total_
deaths_pm

count          210           210             210              
210

mean        29,216         1,771           1,355               
56

std        136,398         8,706           2,625              
145

min              0             0               0                
0
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25%            176             4              93                
1

50%          1,242            26             281                
6

75%         10,117           241           1,801               
32

max      1,790,191       104,383          19,771            
1,238

3.	 Show more detailed percentile data.

Also show skewness and kurtosis. Skewness and kurtosis describe how symmetrical 
the distribution is and how fat the tails of the distribution are, respectively. Both 
measures are significantly higher than we would expect if our variables were 
distributed normally:

>>> covidtotalsonly.quantile(np.arange(0.0, 1.1, 0.1))

      total_cases  total_deaths  total_cases_pm  total_
deaths_pm

0.00         0.00          0.00            0.00             
0.00

0.10        22.90          0.00           18.00             
0.00

0.20       105.20          2.00           56.29             
0.38

0.30       302.00          6.70          115.43             
1.72

0.40       762.00         12.00          213.97             
3.96

0.50     1,242.50         25.50          280.93             
6.15

0.60     2,514.60         54.60          543.96            
12.25

0.70     6,959.80        137.20        1,071.24            
25.95

0.80    16,847.20        323.20        2,206.30            
49.97

0.90    46,513.10      1,616.90        3,765.14           
138.90
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1.00 1,790,191.00    104,383.00       19,771.35         
1,237.55

>>> covidtotalsonly.skew()

total_cases       10.80

total_deaths       8.93

total_cases_pm     4.40

total_deaths_pm    4.67

dtype: float64

>>> covidtotalsonly.kurtosis()

total_cases       134.98

total_deaths       95.74

total_cases_pm     25.24

total_deaths_pm    27.24

dtype: float64

4.	 Test the Covid data for normality.

Use the Shapiro-Wilk test from the scipy library. Print out the p-value from the 
test. (The null hypothesis of a normal distribution can be rejected at the 95% level 
at any p-value below 0.05.):

>>> def testnorm(var, df):

...   stat, p = scistat.shapiro(df[var])

...   return p

... 

>>> testnorm("total_cases", covidtotalsonly)

3.753789128593843e-29

>>> testnorm("total_deaths", covidtotalsonly)

4.3427896631016077e-29

>>> testnorm("total_cases_pm", covidtotalsonly)

1.3972683006509067e-23

>>> testnorm("total_deaths_pm", covidtotalsonly)

1.361060423265974e-25
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5.	 Show normal quantile-quantile plots (qqplots) of total cases and total cases  
per million.

The straight lines show what the distributions would look like if they were normal:
>>> sm.qqplot(covidtotalsonly[['total_cases']]. \

...   sort_values(['total_cases']), line='s')

>>> plt.title("QQ Plot of Total Cases")

>>> sm.qqplot(covidtotals[['total_cases_pm']]. \

...   sort_values(['total_cases_pm']), line='s')

>>> plt.title("QQ Plot of Total Cases Per Million")

>>> plt.show()

This results in the following scatter plots:

Figure 4.1 – Distribution of Covid cases compared with a normal distribution
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Even when adjusted by population with the total cases per million column, the 
distribution is substantially different from normal:

Figure 4.2 – Distribution of Covid cases per million compared with a normal distribution

6.	 Show the outlier range for total cases.

One way to define an outlier for a continuous variable is by distance above the 
third quartile or below the first quartile. If that distance is more than 1.5 times the 
interquartile range (the distance between the first and third quartiles), that value is 
considered an outlier. In this case, since only 0 or positive values are possible, any 
total cases value above 25,028 is considered an outlier:

>>> thirdq, firstq = covidtotalsonly.total_cases.
quantile(0.75), covidtotalsonly.total_cases.
quantile(0.25)

>>> interquartilerange = 1.5*(thirdq-firstq)

>>> outlierhigh, outlierlow = interquartilerange+thirdq, 
firstq-interquartilerange

>>> print(outlierlow, outlierhigh, sep=" <--> ")

-14736.125 <--> 25028.875
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7.	 Generate a data frame of outliers and write it to Excel.

Iterate over the four Covid case columns. Calculate the outlier thresholds for each 
column as we did in the previous step. Select from the data frame those rows above 
the high threshold or below the low threshold. Add columns that indicate the 
variable examined (varname) for outliers and the threshold levels:

>>> def getoutliers():

...   dfout = pd.DataFrame(columns=covidtotals.columns, 
data=None)

...   for col in covidtotalsonly.columns[1:]:

...     thirdq, firstq = covidtotalsonly[col].
quantile(0.75),\

...       covidtotalsonly[col].quantile(0.25)

...     interquartilerange = 1.5*(thirdq-firstq)

...     outlierhigh, outlierlow =  
          interquartilerange+thirdq,\

...       firstq-interquartilerange

...     df = covidtotals.
loc[(covidtotals[col]>outlierhigh) | \

...       (covidtotals[col]<outlierlow)]

...     df = df.assign(varname = col,  
           threshlow = outlierlow,\

...        threshhigh = outlierhigh)

...     dfout = pd.concat([dfout, df])

...   return dfout

... 

>>> outliers = getoutliers()

>>> outliers.varname.value_counts()

total_deaths       36

total_cases        33

total_deaths_pm    28

total_cases_pm     17

Name: varname, dtype: int64

>>> outliers.to_excel("views/outlierscases.xlsx")
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8.	 Look a little more closely at outliers for cases per million.

Use the varname column we created in the previous step to select the outliers 
for total_cases_pm. Also show columns (pop_density and gdp_per_
capita) that might help to explain the extreme values and the interquartile range 
for those columns:

>>> outliers.loc[outliers.varname=="total_cases_pm",\

...   ['location','total_cases_pm','pop_density','gdp_
per_capita']].\

...   sort_values(['total_cases_pm'], ascending=False)

          location  total_cases_pm  pop_density  gdp_per_
capita

SMR     San Marino       19,771.35       556.67       
56,861.47

QAT          Qatar       19,753.15       227.32      
116,935.60

VAT        Vatican       14,833.13          nan             
nan

AND        Andorra        9,888.05       163.75             
nan

BHR        Bahrain        6,698.47     1,935.91       
43,290.71

LUX     Luxembourg        6,418.78       231.45       
94,277.96

KWT         Kuwait        6,332.42       232.13       
65,530.54

SGP      Singapore        5,962.73     7,915.73       
85,535.38

USA  United States        5,408.39        35.61       
54,225.45

ISL        Iceland        5,292.31         3.40       
46,482.96

CHL          Chile        5,214.84        24.28       
22,767.04

ESP          Spain        5,120.95        93.11       
34,272.36

IRL        Ireland        5,060.96        69.87       
67,335.29

BEL        Belgium        5,037.35       375.56       
42,658.58
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GIB      Gibraltar        5,016.18     3,457.10             
nan

PER           Peru        4,988.38        25.13       
12,236.71

BLR        Belarus        4,503.60        46.86       
17,167.97

>>> covidtotals[['pop_density','gdp_per_capita']].
quantile([0.25,0.5,0.75])

      pop_density  gdp_per_capita

0.25        37.42        4,485.33

0.50        87.25       13,183.08

0.75       214.12       28,556.53

9.	 Show a histogram of total cases:

>>> plt.hist(covidtotalsonly['total_cases']/1000, bins=7)

>>> plt.title("Total Covid Cases (thousands)")

>>> plt.xlabel('Cases')

>>> plt.ylabel("Number of Countries")

>>> plt.show()

This code produces the following plot:

Figure 4.3 – Histogram of total Covid cases
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10.	 Perform a log transformation of the Covid data. Show a histogram of the log 
transformation of total cases:

>>> covidlogs = covidtotalsonly.copy()

>>> for col in covidtotalsonly.columns[1:]:

...   covidlogs[col] = np.log1p(covidlogs[col])

>>> plt.hist(covidlogs['total_cases'], bins=7)

>>> plt.title("Total Covid Cases (log)")

>>> plt.xlabel('Cases')

>>> plt.ylabel("Number of Countries")

>>> plt.show()

This code produces the following:

Figure 4.4 – Histogram of total Covid cases with log transformation

The tools we used in the preceding steps tell us a fair bit about how Covid cases and deaths 
are distributed, and about where outliers are located.
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How it works…
The percentile data shown in step 3 reflects the skewness of the cases and deaths data. If, 
for example, we look at the range of values between the 20th and 30th percentiles, and 
compare it with the range from the 70th to the 80th percentiles, we see that the range is 
much greater in the higher percentiles for each variable. This is confirmed by the very 
high values for skewness and kurtosis, compared with normal distribution values of 0 
and 3, respectively. We run formal tests of normality in step 4, which indicate that the 
distributions of the Covid variables are not normal at high levels of significance.

This is consistent with the qqplots we run in step 5. The distributions of both total  
cases and total cases per million differ significantly from normal, as represented by the 
straight line. Many cases hover around zero, and there is a dramatic increase in slope at 
the right tail.

We identify outliers in steps 6 and 7. Using 1.5 times the interquartile range to determine 
outliers is a reasonable rule of thumb. I like to output those values to an Excel file, along 
with associated data, to see what patterns I can detect in the data. This often leads to 
more questions, of course. We will try to answer some of them in the next recipe, but 
one question we can consider now is what accounts for the countries with high cases per 
million, displayed in step 8. Some of the countries with extreme values are very small, in 
terms of land mass, so perhaps population density matters. But half of the countries on 
this list are near or below the 75th percentile in population density. On the other hand, 
most countries on this list are above the 75th percentile in GDP per capita. It is worth 
exploring these bivariate relationships further, which we do in subsequent recipes.

Our identification of outliers in step 7 assumes a normal distribution, an assumption that 
we have shown to be unwarranted. Looking again at the distribution in step 9, it seems 
much more like a log-normal distribution, with values clustered around 0 and a right 
skew. We transform the data in step 10 and plot the results of the transformation.

There's more…
We could have also used standard deviation, rather than interquartile ranges, to identify 
outliers in steps 6 and 7.

I should add here that outliers are not necessarily data collection or measurement errors, 
and we may or may not need to make adjustments to the data. However, extreme values 
can have a meaningful and persistent impact on our analysis, particularly with small 
datasets like this one.
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The overall impression we should have of the Covid case data is that it is relatively clean; 
that is, there are not many invalid values, narrowly defined. Looking at each variable 
independently of how it moves with other variables does not identify much that screams 
out as a clear data error. However, the distribution of the variables is quite problematic 
statistically. Building statistical models dependent on these variables will be complicated, 
as we might have to rule out parametric tests.

It is also worth remembering that our sense of what constitutes an outlier is shaped by our 
assumption of a normal distribution. If, instead, we allow our expectations to be guided by 
the actual distribution of the data, we have a different understanding of extreme values. If 
our data reflects a social, or biological, or physical process that is inherently not normally 
distributed (uniform, logarithmic, exponential, Weibull, Poisson, and so on), our sense of 
what constitutes an outlier should adjust accordingly.

See also
Box plots might have also been illuminating here. We do a few box plots on this data in 
Chapter 5, Using Visualizations for the Identification of Unexpected Values.

We explore bivariate relationships in this same dataset in the next recipe for any insights 
they might provide about outliers and unexpected values. In subsequent chapters, we 
consider strategies for imputing values for missing data and for making adjustments to 
extreme values.

Identifying outliers and unexpected values in 
bivariate relationships
A value might be unexpected, even if it is not an extreme value, when it does not deviate 
significantly from the distribution mean. Some values for a variable are unexpected 
when a second variable has certain values. This is easy to illustrate when one variable is 
categorical and the other is continuous.

The following diagram illustrates the number of bird sightings per day over a several 
year period, but shows different distributions for each of the two sites. One site has a 
mean sightings per day of 33, and the other 52. (This is fictional data.) The overall mean 
(not shown) is 42. What should we make of a value of 58 for daily sightings? Is that an 
outlier? That clearly depends on which of the two sites was being observed. If there were 
58 sightings on a day at site A, 58 would be an unusually high number. Not so for site B, 
where 58 sightings would not be very different from the mean for that site:
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Figure 4.5 – Daily bird sightings by site

This hints at useful rule of thumb: whenever a variable of interest is significantly 
correlated with another variable, we should take that relationship into account when 
trying to identify outliers (or any statistical analysis with that variable actually). It is 
helpful to state this a little more precisely, and extend it to cases where both variables are 
continuous. If we assume a linear relationship between variable x and variable y, we can 
describe that relationship with the familiar y = mx + b equation, where m is the slope and 
b is the y-intercept. We can then expect for y to increase by m for every 1 unit increase in 
x. Unexpected values are those that deviate substantially from this relationship, where the 
value of y is much higher or lower than what would be predicted given the value of x. This 
can be extended to multiple x, or predictor, variables.

In this recipe, we demonstrate how to identify outliers and unexpected values by 
examining the relationship of a variable to one other variable. In subsequent recipes in 
this chapter, we use multivariate techniques to make additional improvements in our 
outlier detection.

Getting ready
We use the matplotlib and seaborn libraries in this recipe. You can install them with 
pip by entering pip install matplotlib and pip install seaborn with a 
terminal client or powershell (in Windows).
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How to do it...
We examine the relationship between total cases and total deaths. We take a closer look at 
those countries where deaths are higher or lower than expected given the number of cases:

1.	 Load pandas, numpy, matplotlib, seaborn, and the Covid cumulative data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

>>> totvars = ['location','total_cases','total_
deaths','total_cases_pm',

...   'total_deaths_pm']

>>> demovars = ['population','pop_density','median_
age','gdp_per_capita',

...   'hosp_beds']

2.	 Generate a correlation matrix for the cumulative and demographic columns.

Unsurprisingly, there is a very high correlation (0.93) between total cases and total 
deaths, and a smaller (0.59) but still substantial one between total cases per million 
and total deaths per million. There is a strong (0.65) relationship between GDP per 
capita and cases per million:

>>> covidtotals.corr(method="pearson")

               total_cases  total_deaths  total_cases_pm  
total_deaths_pm  

total_cases           1.00          0.93            0.18             
0.25   

total_deaths          0.93          1.00            0.18             
0.39   

total_cases_pm        0.18          0.18            1.00             
0.59   

total_deaths_pm       0.25          0.39            0.59             
1.00   

population            0.27          0.21           -0.06            
-0.01   

pop_density          -0.03         -0.03            0.11             
0.03   
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median_age            0.16          0.21            0.31             
0.39   

gdp_per_capita        0.19          0.20            0.65             
0.38   

hosp_beds             0.03          0.02            0.08             
0.12   

           population  pop_density  median_age  gdp_per_
capita  hosp_beds  

total_cases      0.27        -0.03        0.16            
0.19       0.03  

total_deaths     0.21        -0.03        0.21            
0.20       0.02  

total_cases_pm  -0.06         0.11        0.31            
0.65       0.08  

total_deaths_pm -0.01         0.03        0.39            
0.38       0.12  

population       1.00        -0.02        0.02           
-0.06      -0.04  

pop_density     -0.02         1.00        0.18            
0.32       0.31  

median_age       0.02         0.18        1.00            
0.65       0.66  

gdp_per_capita  -0.06         0.32        0.65            
1.00       0.30  

hosp_beds       -0.04         0.31        0.66            
0.30       1.00

3.	 Check to see whether some countries have unexpectedly high or low total deaths, 
given total cases.

First create a data frame with only the cases and deaths columns. Use qcut to 
create a column that breaks the data into quantiles. Show a crosstab of total cases 
quantiles by total deaths quantiles:

>>> covidtotalsonly = covidtotals.loc[:, totvars]

>>> covidtotalsonly['total_cases_q'] = pd.\

...   qcut(covidtotalsonly['total_cases'],

...   labels=['very low','low','medium',

...   'high','very high'], q=5, precision=0)

>>> covidtotalsonly['total_deaths_q'] = pd.\
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...   qcut(covidtotalsonly['total_deaths'],

...   labels=['very low','low','medium',

...   'high','very high'], q=5, precision=0)

>>> pd.crosstab(covidtotalsonly.total_cases_q,

...   covidtotalsonly.total_deaths_q)

total_deaths_q  very low  low  medium  high  very high

total_cases_q                                         

very low              34    7       1     0          0

low                   12   19      10     1          0

medium                 1   13      15    13          0

high                   0    0      12    24          6

very high              0    0       2     4         36

4.	 Take a look at countries that do not fit along the diagonal.

These are countries with very high total cases but medium total deaths. (There 
are no countries with high total cases and low or very low deaths.) Also, look 
at countries with low cases but high deaths. (Since the covidtotals and 
covidtotalsonly data frames have the same index, we can use Boolean series 
created from the latter to return selected rows from the former.):

>>> covidtotals.loc[(covidtotalsonly.total_cases_q=="very 
high") & (covidtotalsonly.total_deaths_q=="medium")].T

iso_code                         QAT                  SGP

lastdate         2020-06-01 00:00:00  2020-06-01 00:00:00

location                       Qatar            Singapore

total_cases                    56910                34884

total_deaths                      38                   23

total_cases_pm             19,753.15             5,962.73

total_deaths_pm                13.19                 3.93

population              2,881,060.00         5,850,343.00

pop_density                   227.32             7,915.73

median_age                     31.90                42.40

gdp_per_capita            116,935.60            85,535.38

hosp_beds                       1.20                 2.40

>>> covidtotals.loc[(covidtotalsonly.total_cases_
q=="low") & (covidtotalsonly.total_deaths_q=="high")].T

iso_code                         YEM

lastdate         2020-06-01 00:00:00
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location                       Yemen

total_cases                      323

total_deaths                      80

total_cases_pm                 10.83

total_deaths_pm                 2.68

population             29,825,968.00

pop_density                    53.51

median_age                     20.30

gdp_per_capita              1,479.15

hosp_beds                       0.70

>>> covidtotals.hosp_beds.mean()

3.012670731707318

5.	 Do a scatter plot of total cases by total deaths.

Use Seaborn's regplot method to generate a linear regression line in addition to 
the scatter plot:

>>> ax = sns.regplot(x="total_cases", y="total_deaths", 
data=covidtotals)

>>> ax.set(xlabel="Cases", ylabel="Deaths", title="Total 
Covid Cases and Deaths by Country")

>>> plt.show()

This produces the following scatter plot:

Figure 4.6 – Scatter plot of total cases and deaths with a linear regression line
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6.	 Examine unexpected values above the regression line.

It is good to take a closer look at countries with cases and deaths coordinates that 
are noticeably above or below the regression line through the data. There are four 
countries with fewer than 300,000 cases and more than 20,000 deaths:

>>> covidtotals.loc[(covidtotals.total_cases<300000) & 
(covidtotals.total_deaths>20000)].T

iso_code                         FRA                  ITA  
\

lastdate         2020-06-01 00:00:00  2020-06-01 00:00:00   

location                      France                Italy   

total_cases                   151753               233019   

total_deaths                   28802                33415   

total_cases_pm              2,324.88             3,853.99   

total_deaths_pm               441.25               552.66   

population             65,273,512.00        60,461,828.00   

pop_density                   122.58               205.86   

median_age                     42.00                47.90   

gdp_per_capita             38,605.67            35,220.08   

hosp_beds                       5.98                 3.18   

iso_code                         ESP                  GBR  

lastdate         2020-05-31 00:00:00  2020-06-01 00:00:00  

location                       Spain       United Kingdom  

total_cases                   239429               274762  

total_deaths                   27127                38489  

total_cases_pm              5,120.95             4,047.40  

total_deaths_pm               580.20               566.97  

population             46,754,783.00        67,886,004.00  

pop_density                    93.11               272.90  

median_age                     45.50                40.80  

gdp_per_capita             34,272.36            39,753.24  

hosp_beds                       2.97                 2.54 

7.	 Examine unexpected values below the regression line.

There is one country with more than 300,000 cases but fewer than 10,000 deaths:
>>> covidtotals.loc[(covidtotals.total_cases>300000) & 
(covidtotals.total_deaths<10000)].T
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iso_code                         RUS

lastdate         2020-06-01 00:00:00

location                      Russia

total_cases                   405843

total_deaths                    4693

total_cases_pm              2,780.99

total_deaths_pm                32.16

population            145,934,460.00

pop_density                     8.82

median_age                     39.60

gdp_per_capita             24,765.95

hosp_beds                       8.05

8.	 Do a scatter plot of total cases per million by total deaths per million:

>>> ax = sns.regplot(x="total_cases_pm", y="total_deaths_
pm", data=covidtotals)

>>> ax.set(xlabel="Cases Per Million", ylabel="Deaths Per 
Million", title="Total Covid Cases per Million and Deaths 
per Million by Country")

>>> plt.show()

This produces the following scatter plot:

Figure 4.7 – Scatter plot of cases and deaths per million with a linear regression line
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9.	 Examine deaths per million above and below the regression line:

>>> covidtotals.loc[(covidtotals.total_cases_pm<7500) \

...   & (covidtotals.total_deaths_pm>250),\

...   ['location','total_cases_pm','total_deaths_pm']]

                           location  total_cases_pm  
total_deaths_pm

iso_code                                                            

BEL                         Belgium           5,037              
817

FRA                          France           2,325              
441

IRL                         Ireland           5,061              
335

IMN                     Isle of Man           3,951              
282

ITA                           Italy           3,854              
553

JEY                          Jersey           3,047              
287

NLD                     Netherlands           2,710              
348

SXM       Sint Maarten (Dutch part)           1,796              
350

ESP                           Spain           5,121              
580

SWE                          Sweden           3,717              
435

GBR                  United Kingdom           4,047              
567

USA                   United States           5,408              
315

>>> covidtotals.loc[(covidtotals.total_cases_pm>5000) \

...   & (covidtotals.total_deaths_pm<=50), \

...   ['location','total_cases_pm','total_deaths_pm']]

           location  total_cases_pm  total_deaths_pm

iso_code                                            

BHR         Bahrain           6,698               11
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GIB       Gibraltar           5,016                0

ISL         Iceland           5,292               29

KWT          Kuwait           6,332               50

QAT           Qatar          19,753               13

SGP       Singapore           5,963                4

VAT         Vatican          14,833                0

The preceding steps examined the relationship between variables in order to identify outliers.

How it works…
A number of questions are raised by looking at the bivariate relationships that did not 
surface in our univariate exploration in the previous recipe. There is confirmation 
of anticipated relationships, such as with total cases and total deaths, but this makes 
deviations from this all the more curious. There are possible substantive explanations for 
unusually high death rates, given a certain number of cases, but measurement error or 
poor reporting of cases cannot be ruled out either.

Step 2 shows a high correlation (0.93) between total cases and total deaths, but there is 
variation even there. We divide the cases and deaths into quantiles in step 3 and then do a 
crosstab of the quantile values. Most countries are along the diagonal or close to it. However, 
two countries have a very high number of cases but medium deaths, Qatar and Singapore. 
This is also a reminder that both countries have very high total cases per million, well into 
the 90th percentile. It is reasonable to wonder if there are potential reporting issues.

One country, Yemen, had a low number of cases but a high number of deaths. This could 
perhaps be seen as consistent with the very low number of hospital beds per 100,000 
people in Yemen. But it could also mean that coronavirus cases have been under-reported.

We do a scatter plot in step 5 of total cases and deaths. The strong upward sloping 
relationship between the two is confirmed, but there are a number of countries whose 
deaths are above the regression line. We can see that four countries (France, Italy, Spain, 
and Great Britain) have higher deaths than would be predicted by the number of cases. 
One country (Russia) has a much lower number of deaths. It is at least worth wondering 
about whether this is a reporting problem, or reflects differences in how countries define a 
Covid death.

Not surprisingly, there is even more scatter around the regression line in the scatter plot of 
cases per million and deaths per million. Countries such as Belgium, France, Ireland, Italy, 
and the Netherlands have much higher deaths per million than the number of cases per 
million would suggest. Countries such as Bahrain, Iceland, Kuwait, Qatar, and Singapore 
have significantly lower rates.
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There's more…
We are beginning to get a good sense of what our data looks like, but the data in this form 
does not enable us to examine how the univariate distributions and bivariate relationships 
might change over time. For example, one reason why countries might have more deaths 
per million than the number of cases per million would indicate could be that more 
time has passed since the first confirmed cases. We are not able to explore that in the 
cumulative data. We need the daily data for that, which we look at in subsequent chapters.

This recipe, and the previous one, show how much data cleaning can bleed into 
exploratory data analysis, even when you are first starting to get a sense of your data. I 
would definitely draw a distinction between data exploration and what we are doing here. 
We are trying to get a sense of how the data hangs together, why certain variables take on 
certain values in certain situations and not others. We want to get to the point where there 
are not huge surprises when we begin to do the analysis.

I find it helpful to do small things to formalize this process. I use different naming 
conventions for files that are not quite ready for analysis. If nothing else, this helps remind 
me that any numbers produced at this point are far from ready for distribution.

See also
We still have not done much to examine possible data issues that only become apparent 
when examining subsets of data; for example, positive wage income values for people who 
say they are not working (both variables are on the National Longitudinal Survey). We do 
that in the next recipe.

We do much more with Matplotlib and Seaborn in Chapter 5, Using Visualizations for the 
Identification of Unexpected Values.

Using subsetting to examine logical 
inconsistencies in variable relationships
At a certain point, data issues come down to deductive logic problems, such as variable 
x has to be greater than some quantity a when variable y is less than some quantity 
b. Once we are through some initial data cleaning, it is important to check for logical 
inconsistencies. pandas makes this kind of error checking relatively straightforward with 
subsetting tools such as loc and Boolean indexing. This can be combined with summary 
methods on series and data frames to allow us to easily compare values for a particular row 
to values for the whole dataset or some subset of rows. We can also easily aggregate over 
columns. Just about any question we might have about the logical relationships between 
variables can be answered with these tools. We work through some examples in this recipe.
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Getting ready
We will work with the National Longitudinal Survey of Youth (NLS), mainly with data 
on employment and education. We use apply and lambda functions several times in 
this recipe, but go into more detail on their use in Chapter 7, Fixing Messy Data when 
Aggregating. It is not necessary to review Chapter 7 to follow along, however, even if you 
have no experience with those tools.

Data note
The NLS, administered by the United States Bureau of Labor Statistics, is a 
longitudinal survey of individuals who were in high school in 1997 when the 
survey started. Participants were surveyed each year through 2017.

How to do it…
We run a number of logical checks on the NLS data, such as individuals with post-
graduate enrollment but no undergraduate enrollment, or having wage income but no 
weeks worked. We also check for large changes in key values for a given individual from 
one period to the next:

1.	 Import pandas and numpy, and then load the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Look at some of the employment and education data.

The dataset has weeks worked each year from 2000 through 2017, and college 
enrollment status each month from February 1997 through October 2017. We use 
the ability of the loc accessor to choose all columns from the column indicated 
on the left of the colon through the column indicated on the right; for example, 
nls97.loc[:, "colenroct09":"colenrfeb14"]:

>>> nls97[['wageincome','highestgradecompleted', 
'highestdegree']].head(3).T

personid                       100061          100139   
100284

wageincome                     12,500         120,000   
58,000
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highestgradecompleted              13              12        
7

highestdegree          2. High School  2. High School  0. 
None

>>> nls97.loc[:, "weeksworked12":"weeksworked17"].
head(3).T

personid       100061  100139  100284

weeksworked12      40      52       0

weeksworked13      52      52     nan

weeksworked14      52      52      11

weeksworked15      52      52      52

weeksworked16      48      53      47

weeksworked17      48      52       0

>>> nls97.loc[:, "colenroct09":"colenrfeb14"].head(3).T

                        100061           100139           
100284

colenroct09    1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb10    1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct10    1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb11    1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct11  3. 4-year college  1. Not enrolled  1. Not 
enrolled

colenrfeb12  3. 4-year college  1. Not enrolled  1. Not 
enrolled

colenroct12  3. 4-year college  1. Not enrolled  1. Not 
enrolled

colenrfeb13    1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenroct13    1. Not enrolled  1. Not enrolled  1. Not 
enrolled

colenrfeb14    1. Not enrolled  1. Not enrolled  1. Not 
enrolled
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3.	 Show individuals with wage income but no weeks worked.

The wage income variable reflects wage income for 2016:
>>> nls97.loc[(nls97.weeksworked16==0) & nls97.
wageincome>0, ['weeksworked16','wageincome']]
          weeksworked16  wageincome
personid                           
102625                0       1,200
109403                0       5,000
118704                0      25,000
130701                0      12,000
131151                0      65,000
...                 ...         ...
957344                0      90,000
966697                0      65,000
969334                0       5,000
991756                0       9,000
992369                0      35,000

[145 rows x 2 columns]

4.	 Check for whether an individual was ever enrolled in a 4-year college course.

Chain several methods. First, create a data frame with columns that start with 
colenr (nls97.filter(like="colenr")). These are the college enrollment 
columns for October and February of each year. Then, use apply to run a 
lambda function that examines the first character of each colenr column 
(apply(lambda x: x.str[0:1]=='3')). This returns a value of True or 
False for all of the college enrollment columns; True if the first value of the 
string is 3, meaning enrollment at a 4-year college. Finally, use the any function 
to test whether any of the values returned from the previous step has a value of 
True (any(axis=1)). This will identify whether the individual was enrolled in a 
4-year college course between February 1997 and October 2017. The first statement 
here shows the results of the first two steps for explanatory purposes only. Only the 
second statement needs to be run to get the desired results: whether the individual 
was enrolled at a 4-year college course at some point:

>>> nls97.filter(like="colenr").apply(lambda x: 
x.str[0:1]=='3').head(2).T

personid     100061  100139

...
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colenroct09   False   False

colenrfeb10   False   False

colenroct10   False   False

colenrfeb11   False   False

colenroct11    True   False

colenrfeb12    True   False

colenroct12    True   False

colenrfeb13   False   False

colenroct13   False   False

colenrfeb14   False   False

...

>>> nls97.filter(like="colenr").apply(lambda x: 
x.str[0:1]=='3').\

...   any(axis=1).head(2)

personid

100061     True

100139    False

dtype: bool

5.	 Show individuals with post-graduate enrollment but no bachelor's enrollment.

We can use what we tested in step 4 to do some checking. We want individuals who 
have a 4 (graduate enrollment) as the first character for colenr any month, but 
who never had a 3 (bachelor enrollment). Note the "~" before the second half of the 
test, for negation. There are 22 individuals who fall into this category:

>>> nobach = nls97.loc[nls97.filter(like="colenr").\

...   apply(lambda x: x.str[0:1]=='4').\

...   any(axis=1) & ~nls97.filter(like="colenr").\

...   apply(lambda x: x.str[0:1]=='3').\

...   any(axis=1), "colenrfeb97":"colenroct17"]

>>> len(nobach)

22

>>> nobach.head(3).T

personid                153051               154535               
184721

...

colenroct08    1. Not enrolled      1. Not enrolled      
1. Not enrolled
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colenrfeb09    1. Not enrolled      1. Not enrolled      
1. Not enrolled

colenroct09    1. Not enrolled      1. Not enrolled      
1. Not enrolled

colenrfeb10    1. Not enrolled      1. Not enrolled      
1. Not enrolled

colenroct10    1. Not enrolled  4. Graduate program  4. 
Graduate program

colenrfeb11    1. Not enrolled  4. Graduate program                  
NaN

colenroct11    1. Not enrolled  4. Graduate program                  
NaN

colenrfeb12    1. Not enrolled  4. Graduate program                  
NaN

colenroct12    1. Not enrolled  4. Graduate program                  
NaN

colenrfeb13 4. Graduate program 4. Graduate program                  
NaN

colenroct13    1. Not enrolled  4. Graduate program                  
NaN

colenrfeb14 4. Graduate program 4. Graduate program                  
NaN

6.	 Show individuals with bachelor's degrees or more, but no 4-year college enrollment.

Use isin to compare the first character in highestdegree with 
all of the values in a list (nls97.highestdegree.str[0:1].
isin(['4','5','6','7'])): 

>>> nls97.highestdegree.value_counts(sort=False)

0. None             953

1. GED             1146

2. High School     3667

3. Associates       737

4. Bachelors       1673

5. Masters          603

6. PhD               54

7. Professional     120

Name: highestdegree, dtype: int64

>>> no4yearenrollment = nls97.loc[nls97.highestdegree.
str[0:1].\
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...   isin(['4','5','6','7']) & ~nls97.
filter(like="colenr").\

...   apply(lambda x: x.str[0:1]=='3').\

...   any(axis=1), "colenrfeb97":"colenroct17"]

>>> len(no4yearenrollment)

39

>>> no4yearenrollment.head(3).T

personid                 113486              118749              
124616

colenroct01  2. 2-year college      1. Not enrolled     
1. Not enrolled

colenrfeb02  2. 2-year college      1. Not enrolled  2. 
2-year college 

colenroct02  2. 2-year college      1. Not enrolled  2. 
2-year college 

colenrfeb03  2. 2-year college      1. Not enrolled  2. 
2-year college 

colenroct03  2. 2-year college      1. Not enrolled  2. 
2-year college 

colenrfeb04  2. 2-year college      1. Not enrolled  2. 
2-year college 

colenroct04     1. Not enrolled     1. Not enrolled  2. 
2-year college 

colenrfeb05     1. Not enrolled     1. Not enrolled  2. 
2-year college 

colenroct05     1. Not enrolled     1. Not enrolled     
1. Not enrolled

colenrfeb06     1. Not enrolled     1. Not enrolled     
1. Not enrolled

colenroct06     1. Not enrolled     1. Not enrolled     
1. Not enrolled

colenrfeb07     1. Not enrolled  2. 2-year college      
1. Not enrolled

colenroct07     1. Not enrolled  2. 2-year college      
1. Not enrolled

colenrfeb08     1. Not enrolled     1. Not enrolled     
1. Not enrolled

...
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7.	 Show individuals with a high wage income.

Define high wages as 3 standard deviations above the mean. It looks as though wage 
income values have been truncated at $235,884:

>>> highwages = nls97.loc[nls97.wageincome > 
nls97.wageincome.mean()+(nls97.wageincome.
std()*3),['wageincome']]

>>> highwages

          wageincome

personid            

131858       235,884

133619       235,884

151863       235,884

164058       235,884

164897       235,884

...              ...

964406       235,884

966024       235,884

976141       235,884

983819       235,884

989896       235,884

[121 rows x 1 columns]

8.	 Show individuals with large changes in weeks worked for the most recent year.

Calculate the average value for weeks worked between 2012 and 2016 for each 
person (nls97.loc[:, "weeksworked12":"weeksworked16"].
mean(axis=1)). We indicate axis=1 to calculate the mean across columns 
for each individual, rather than over individuals. We then check to see whether 
the mean is either less than 50% of the weeks worked in 2017 value or more than 
twice as much. We also indicate that we are not interested in rows that satisfy those 
criteria by being null for weeks worked in 2017. There are 1,160 individuals with 
sharp changes in weeks worked in 2017:

>>> workchanges = nls97.loc[~nls97.loc[:,

...   "weeksworked12":"weeksworked16"].mean(axis=1).\

...   between(nls97.weeksworked17*0.5,nls97.
weeksworked17*2) \

...   & ~nls97.weeksworked17.isnull(), 
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...   "weeksworked12":"weeksworked17"]

>>> len(workchanges)

1160

>>> workchanges.head(7).T

personid       100284  101526  101718  101724  102228  
102454  102625

weeksworked12       0       0      52      52      52      
52      14

weeksworked13     nan       0       9      52      52      
52       3

weeksworked14      11       0       0      52      17       
7      52

weeksworked15      52       0      32      17       0       
0      44

weeksworked16      47       0       0       0       0       
0       0

weeksworked17       0      45       0      17       0       
0       0

9.	 Show inconsistencies in the highest grade completed and the highest degree.

Use the crosstab function to show highestgradecompleted by 
highestdegree for people with highestgradecompleted less than 12. A 
good number of these individuals indicate that they have completed high school, 
which is unusual in the United States if the highest grade completed is less than 12:

>>> ltgrade12 = nls97.loc[nls97.highestgradecompleted<12, 
['highestgradecompleted','highestdegree']]

>>> pd.crosstab(ltgrade12.highestgradecompleted, 
ltgrade12.highestdegree)

highestdegree          0. None  1. GED  2. High School

highestgradecompleted                                 

5                            0       0               1

6                           11       5               0

7                           24       6               1

8                          113      78               7

9                          112     169               8

10                         111     204              13

11                         120     200              41

These steps reveal a number of logical inconsistences in the NLS data.
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How it works…
The syntax required to do the kind of subsetting that we have done in this recipe may seem 
a little complicated if you are seeing it for the first time. You do get used to it, however, and 
it allows for quickly running any query against the data that you might imagine.

Some of the inconsistencies or unexpected values suggest either respondent or entry error, 
so warrant further investigation. It is hard to explain positive values for wage income 
when weeks worked is 0. Other unexpected values might not be data problems at all, but 
suggest that we should be careful about how we use that data. For example, we might not 
want to use the weeks worked in 2017 by itself. Instead, we might consider using three-
year averages in many analyses.

See also
The Selecting and organizing columns and Selecting rows recipes in Chapter 3, Taking  
the Measure of Your Data, demonstrate some of the techniques for subsetting the data 
used here. We examine apply functions in more detail in Chapter 7, Fixing Messy Data 
when Aggregating.

Using linear regression to identify data points 
with significant influence
The remaining recipes in this chapter use statistical modeling to identify outliers. The 
advantage of these techniques is that they are less dependent on the distribution of the 
variable of concern, and take more into account than can be revealed in either univariate 
or bivariate analyses. This allows us to identify outliers that are not otherwise apparent. 
On the other hand, by taking more factors into account, multivariate techniques may 
provide evidence that a previously suspect value is actually within an expected range, and 
provides meaningful information.

In this recipe, we use linear regression to identify observations (rows) that have an 
outsized influence on models of a target or dependent variable. This can indicate that one 
or more values for a few observations are so extreme that they compromise model fit for 
all of the other observations.

Getting ready
The code in this recipe requires the matplotlib and statsmodels libraries. You can 
install Matplotlib and Statsmodels by entering pip install matplotlib and pip 
install statsmodels in a terminal window or powershell (in Windows).

We will be working with data on total COVID-19 cases and deaths per country.
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How to do it…
We will use the statsmodels OLS method to fit a linear regression model of total cases 
per million of the population. We then identify those countries that have the greatest 
influence on that model:

1.	 Import pandas, matplotlib, and statsmodels, and load the COVID case data:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Create an analysis file and generate descriptive statistics.

Get just the columns required for analysis. Drop any row with missing data for the 
analysis columns:

>>> xvars = ['pop_density','median_age','gdp_per_capita']

>>> covidanalysis = covidtotals.loc[:,['total_cases_pm'] 
+ xvars].dropna()

>>> covidanalysis.describe()

       total_cases_pm  pop_density  median_age  gdp_per_
capita

count             175          175         175             
175

mean            1,134          247          31          
19,008

std             2,101          822           9          
19,673

min                 0            2          15             
661

25%                67           36          22           
4,458

50%               263           82          30          
12,952

75%             1,358          208          39          
27,467

max            19,753        7,916          48         
116,936
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3.	 Fit a linear regression model.

There are good conceptual reasons to believe that population density, median age, 
and GDP per capita may be predictors of total cases per million. We use all three 
variables in our model:

>>> def getlm(df):

...   Y = df.total_cases_pm

...   X = df[['pop_density','median_age','gdp_per_
capita']]

...   X = sm.add_constant(X)

...   return sm.OLS(Y, X).fit()

... 

>>> lm = getlm(covidanalysis)

>>> lm.summary()

                coef    std err       t      P>|t|     
[0.025     0.975]

---------------------------------------------------------
---------------

const          944.47    426.71     2.21     0.028     
102.17    1786.77

pop_density     -0.21      0.14    -1.45     0.150      
-0.49      0.075

median_age     -49.44     16.01    -3.09     0.002     
-81.05    -17.832

gdp_per_capita   0.09      0.01    12.02     0.000      
0.077      0.107

4.	 Identify those countries with an outsized influence on the model.

Cook's distance values of greater than 0.5 should be scrutinized closely:
>>> influence = lm.get_influence().summary_frame()

>>> influence.loc[influence.cooks_d>0.5, ['cooks_d']]

          cooks_d

iso_code         

HKG          0.78

QAT          5.08

>>> covidanalysis.loc[influence.cooks_d>0.5]
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          total_cases_pm  pop_density  median_age  gdp_
per_capita

iso_code                                                         

HKG                 0.00     7,039.71       44.80       
56,054.92

QAT            19,753.15       227.32       31.90      
116,935.60

5.	 Do an influence plot.

Countries with higher Cook's Distance values have larger circles:
>>> fig, ax = plt.subplots(figsize=(10,6))

>>> sm.graphics.influence_plot(lm, ax = ax, 
criterion="cooks")

>>> plt.show()

This produces the following plot:

Figure 4.8 – Influence plot, including countries with the highest Cook's Distance

6.	 Run the model without the two outliers.

Removing these outliers, particularly Qatar, has a dramatic effect on the model. The 
estimates for median_age and for the constant are no longer significant: 

>>> covidanalysisminusoutliers = covidanalysis.
loc[influence.cooks_d<0.5]

>>> lm = getlm(covidanalysisminusoutliers)
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>>> lm.summary()

           coef    std err          t      P>|t|      
[0.025      0.975]

---------------------------------------------------------
----------------

const         44.09    349.92      0.13      0.900    
-646.70     734.87

pop_density    0.24      0.15      1.67      0.098      
-0.05       0.53

median_age    -2.52     13.53     -0.19      0.853     
-29.22      24.18

gdp_per_capita 0.06      0.01      7.88      0.000       
0.04       0.07

This gives us a sense of the countries that are most unlike the others in terms of the 
relationship between demographic variables and total cases per million in population.

How it works...
Cook's Distance is a measure of how much each observation influences the model. The 
large impact of the two outliers is confirmed in step 6 when we rerun the model without 
them. The question for the analyst is whether outliers such as these add important 
information or distort the model and limit its applicability. The coefficient of -49 for 
median age in the first regression results indicates that every one-year increase in median 
age is associated with a 49 point reduction in cases per million people. But this seems 
largely due to the model trying to fit a quite extreme total cases per million value for 
Qatar. Without Qatar, the coefficient on age is no longer significant.

The P>|t| value in the regression output tells us whether the coefficient is significantly 
different from 0. In the first regression, the coefficients for median_age and gdp_per_
capita are significant at the 99% level; that is, the P>|t| value is less than 0.01. Only 
gdp_per_capita is significant when the model is run without the two outliers.

There's more…
We run a linear regression model in this recipe, not so much because we are interested in 
the parameter estimates of the model, but because we want to determine whether there 
are observations with potential outsized influence on any multivariate analysis we might 
conduct. That definitely seems to be true in this case.
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Often, it makes sense to remove the outliers, as we have done here, but that is not always 
true. When we have independent variables that do a good job of capturing what makes 
outliers different, then the parameter estimates for the other independent variables are 
less vulnerable to distortion. We also might consider transformations, such as the log 
transformation we did in a previous recipe, and the scaling we will do in the next two 
recipes. An appropriate transformation, given your data, can reduce the influence of 
outliers by limiting the size of residuals at the extremes.

Using k-nearest neighbor to find outliers
Unsupervised machine learning tools can help us identify observations that are unlike 
others when we have unlabeled data; that is, when there is no target or dependent variable. 
(In the previous recipe, we used total cases per million as the dependent variable.) Even 
when selecting targets and factors is relatively straightforward, it might be helpful to identify 
outliers without making any assumptions about relationships between variables. We can use 
k-nearest neighbor to find observations that are most unlike others, those where there is the 
greatest difference between their values and their nearest neighbors' values.

Getting ready
You will need PyOD (Python outlier detection) and scikit-learn to run the code in this 
recipe. You can install both by entering pip install pyod and pip install 
sklearn in the terminal or powershell (in Windows).

How to do it…
We will use k-nearest neighbor to identify countries whose attributes indicate that they are 
most anomalous:

1.	 Load pandas, pyod, and scikit-learn, along with the Covid case data:

>>> import pandas as pd

>>> from pyod.models.knn import KNN

>>> from sklearn.preprocessing import StandardScaler

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)
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2.	 Create a standardized data frame of the analysis columns:

>>> standardizer = StandardScaler()

>>> analysisvars = ['location','total_cases_pm','total_
deaths_pm',\

...   'pop_density','median_age','gdp_per_capita']

>>> covidanalysis = covidtotals.loc[:, analysisvars].
dropna()

>>> covidanalysisstand = standardizer.fit_
transform(covidanalysis.iloc[:, 1:])

3.	 Run the KNN model and generate anomaly scores.

We create an arbitrary number of outliers by setting the contamination parameter  
to 0.1:

>>> clf_name = 'KNN'

>>> clf = KNN(contamination=0.1)

>>> clf.fit(covidanalysisstand)

KNN(algorithm='auto', contamination=0.1, leaf_size=30, 
method='largest',

  metric='minkowski', metric_params=None, n_jobs=1, n_
neighbors=5, p=2,

  radius=1.0)

>>> y_pred = clf.labels_

>>> y_scores = clf.decision_scores_

4.	 Show the predictions from the model.

Create a data frame from the y_pred and y_scores NumPy arrays. Set the index 
to the covidanalysis data frame index so that we can easily combine it with that 
data frame later. Notice that the decision scores for outliers are all higher than those 
for the inliers (outlier = 0):

>>> pred = pd.DataFrame(zip(y_pred, y_scores), 

...   columns=['outlier','scores'], 

...   index=covidanalysis.index)

>>> 

>>> pred.sample(10, random_state=1)

          outlier  scores

iso_code                 
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LBY             0    0.37

NLD             1    1.56

BTN             0    0.19

HTI             0    0.43

EST             0    0.46

LCA             0    0.43

PER             0    1.41

BRB             0    0.77

MDA             0    0.91

NAM             0    0.31

>>> pred.outlier.value_counts()

0    157

1     18

Name: outlier, dtype: int64

>>> pred.groupby(['outlier'])[['scores']].
agg(['min','median','max'])

        scores            

           min median  max

outlier                   

0         0.08   0.36 1.52

1         1.55   2.10 9.48

5.	 Show the COVID data for the outliers.

First, merge the covidanalysis and pred data frames:
>>> covidanalysis.join(pred).loc[pred.outlier==1,\

...   ['location','total_cases_pm','total_deaths_
pm','scores']].\

...   sort_values(['scores'], ascending=False)

                      location  total_cases_pm  total_
deaths_pm  scores

iso_code                                                               

SGP                  Singapore        5,962.73             
3.93    9.48

QAT                      Qatar       19,753.15            
13.19    8.00

HKG                  Hong Kong            0.00             
0.00    7.77
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BEL                    Belgium        5,037.35           
816.85    3.54

BHR                    Bahrain        6,698.47            
11.17    2.84

LUX                 Luxembourg        6,418.78           
175.73    2.44

ESP                      Spain        5,120.95           
580.20    2.18

KWT                     Kuwait        6,332.42            
49.64    2.13

GBR             United Kingdom        4,047.40           
566.97    2.10

ITA                      Italy        3,853.99           
552.66    2.09

IRL                    Ireland        5,060.96           
334.56    2.07

BRN                     Brunei          322.30             
4.57    1.92

USA              United States        5,408.39           
315.35    1.89

FRA                     France        2,324.88           
441.25    1.86

MDV                   Maldives        3,280.04             
9.25    1.82

ISL                    Iceland        5,292.31            
29.30    1.58

NLD                Netherlands        2,710.38           
347.60    1.56

ARE       United Arab Emirates        3,493.99            
26.69    1.55

These steps show how we can use k-nearest neighbor to identify outliers based on 
multivariate relationships.

How it works...
PyOD is a package of Python outlier detection tools. We use it here as a wrapper around 
scikit-learn's KNN package. This simplifies some tasks.
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Our focus in this recipe is not on building a model, but on getting a quick sense of which 
observations (countries) are significant outliers once we take all the data we have into 
account. This analysis supports our developing sense that Singapore, Qatar, and Hong 
Kong are very different observations than the others in our dataset. They have very high 
decision scores. (The table in step 5 is sorted in descending order of score.) 

Countries such as Belgium, Bahrain, and Luxembourg might also be considered outliers, 
though that is less clear cut. The previous recipe did not indicate that they had an 
overwhelming influence on a regression model. But that model did not take both cases per 
million and deaths per million into account at the same time. That could also explain why 
Singapore is even more of an outlier than Qatar here. It has both high cases per million 
and below-average deaths per million.

Scikit-learn makes scaling very easy. We use the standard scaler in step 2, which returns 
the z-score for each value in the data frame. The z-score subtracts the variable mean 
from each variable value and divides it by the standard deviation for the variable. Many 
machine learning tools require standardized data to run well.

There's more...
K-nearest neighbor is a very popular machine learning algorithm. It is easy to run and 
interpret. Its main limitation is that it will run slowly on large datasets.

We have skipped steps we might usually take when building machine learning models. 
We did not create separate training and test datasets, for example. PyOD allows this to be 
done easily, but this is not necessary for our purposes here.

See also
The PyOD toolkit has a large number of supervised and unsupervised learning  
techniques for detecting anomalies in data. You can get the documentation for this at 
https://pyod.readthedocs.io/en/latest/.

Using Isolation Forest to find anomalies
Isolation Forest is a relatively new machine learning technique for identifying anomalies. 
It has quickly become popular, partly because its algorithm is optimized to find anomalies, 
rather than normal values. It finds outliers by successive partitioning of the data until a 
data point has been isolated. Points that require fewer partitions to be isolated receive 
higher anomaly scores. This process turns out to be fairly easy on system resources. In this 
recipe, we demonstrate how to use it to detect outlier COVID-19 cases and deaths.

https://pyod.readthedocs.io/en/latest/
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Getting ready
You will need scikit-learn and Matplotlib to run the code in this recipe. You can install 
them by entering pip install sklearn and pip install matplotlib in the 
terminal or powershell (in Windows).

How to do it...
We will use Isolation Forest to find the countries whose attributes indicate that they are 
most anomalous:

1.	 Load pandas, matplotlib, and the StandardScaler and 
IsolationForest modules from scikit-learn:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> from sklearn.preprocessing import StandardScaler

>>> from sklearn.ensemble import IsolationForest

>>> from mpl_toolkits.mplot3d import Axes3D

>>> covidtotals = pd.read_csv("data/covidtotals.csv")

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Create a standardized analysis data frame.

First, remove all rows with missing data:
>>> analysisvars = ['location','total_cases_pm','total_
deaths_pm',

...   'pop_density','median_age','gdp_per_capita']

>>> standardizer = StandardScaler()

>>> covidtotals.isnull().sum()

lastdate            0

location            0

total_cases         0

total_deaths        0

total_cases_pm      0

total_deaths_pm     0

population          0

pop_density        12

median_age         24

gdp_per_capita     28
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hosp_beds          46

dtype: int64

>>> covidanalysis = covidtotals.loc[:, analysisvars].
dropna()

>>> covidanalysisstand = standardizer.fit_
transform(covidanalysis.iloc[:, 1:])

3.	 Run an Isolation Forest model to detect outliers.

Pass the standardized data to the fit method. 18 countries are identified as 
outliers. (These countries have anomaly values of -1.) This is determined by the 
contamination number of 0.1:

>>> clf=IsolationForest(n_estimators=100, max_
samples='auto',

...   contamination=.1, max_features=1.0)

>>> clf.fit(covidanalysisstand)

IsolationForest(behaviour='deprecated', bootstrap=False, 
contamination=0.1,

                max_features=1.0, max_samples='auto',  
                n_estimators=100,

                n_jobs=None, random_state=None, 
verbose=0, warm_start=False)

>>> covidanalysis['anomaly'] = clf.
predict(covidanalysisstand)

>>> covidanalysis['scores'] = clf.decision_
function(covidanalysisstand)

>>> covidanalysis.anomaly.value_counts()

 1    157

-1     18

Name: anomaly, dtype: int64

4.	 Create outlier and inlier data frames.

List the top 10 outliers according to anomaly score:
>>> inlier, outlier = covidanalysis.loc[covidanalysis.
anomaly==1],\

...   covidanalysis.loc[covidanalysis.anomaly==-1]
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>>> outlier[['location','total_cases_pm','total_deaths_
pm',\

...   'median_age','gdp_per_capita','scores']].\

...   sort_values(['scores']).\

...   head(10)

             location  total_cases_pm  total_deaths_pm  
median_age  \

iso_code                                                             

SGP         Singapore        5,962.73             3.93       
42.40   

QAT             Qatar       19,753.15            13.19       
31.90   

HKG         Hong Kong            0.00             0.00       
44.80   

BEL           Belgium        5,037.35           816.85       
41.80   

BHR           Bahrain        6,698.47            11.17       
32.40   

LUX        Luxembourg        6,418.78           175.73       
39.70   

ITA             Italy        3,853.99           552.66       
47.90   

ESP             Spain        5,120.95           580.20       
45.50   

NLD       Netherlands        2,710.38           347.60       
43.20   

MDV          Maldives        3,280.04             9.25       
30.60   

          gdp_per_capita  scores  

iso_code                          

SGP            85,535.38   -0.23  

QAT           116,935.60   -0.21  

HKG            56,054.92   -0.18  

BEL            42,658.58   -0.14  

BHR            43,290.71   -0.09  

LUX            94,277.96   -0.09  
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ITA            35,220.08   -0.08  

ESP            34,272.36   -0.06  

NLD            48,472.54   -0.03  

MDV            15,183.62   -0.03	

5.	 Plot the outliers and inliers:

>>> ax = plt.axes(projection='3d')

>>> ax.set_title('Isolation Forest Anomaly Detection')

>>> ax.set_zlabel("Cases Per Million")

>>> ax.set_xlabel("GDP Per Capita")

>>> ax.set_ylabel("Median Age")

>>> ax.scatter3D(inlier.gdp_per_capita, inlier.median_
age, inlier.total_cases_pm, label="inliers", c="blue")

>>> ax.scatter3D(outlier.gdp_per_capita, outlier.median_
age, outlier.total_cases_pm, label="outliers", c="red")

>>> ax.legend()

>>> plt.tight_layout()

>>> plt.show()

This produces the following plot:

Figure 4.9 – Inlier and outlier countries by GDP, median age, and cases per million
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The preceding steps demonstrate the use of Isolation Forest as an alternative to k-nearest 
neighbor for anomaly detection.

How it works…
We use Isolation Forest in this recipe much like we used k-nearest neighbor in the 
previous recipe. In step 3, we pass a standardized dataset to the Isolation Forest fit 
method, and then use its predict and decision_function methods to get the 
anomaly flag and score, respectively. We use the anomaly flag in step 4 to separate the data 
into inliers and outliers.

We plot the inliers and outliers in step 5. Since there are only three dimensions in the plot, 
it does not quite capture all of the features in our Isolation Forest model, but the outliers 
(the red dots) clearly have higher GDP per capita and median age; these are typically to 
the right of, and behind, the inliers.

The results from Isolation Forest are quite similar to the k-nearest neighbor results. Qatar, 
Singapore, and Hong Kong have the highest (most negative) anomaly scores. Belgium is 
not far behind, just as with the KNN model. This is most likely due to an exceptionally 
high total of deaths per million for Belgium, the highest in the dataset. We should 
consider removing these four observations from any multivariate analyses we conduct.

There's more…
Isolation Forest is a good alternative to k-nearest neighbor, particularly when working 
with large datasets. The efficiency of its algorithm allows it to handle large samples and a 
high number of features (variables).

The anomaly detection techniques we have used in the last three recipes were designed 
to improve multivariate analyses and the training of machine learning models. However, 
we might want to exclude the outliers they help us identify much earlier in the analysis 
process. For example, if it makes sense to exclude Qatar from our modeling, it might also 
make sense to exclude Qatar from some descriptive statistics.

See also
In addition to being useful for anomaly detection, the Isolation Forest algorithm is quite 
satisfying intuitively. (I think the same could be said about k-nearest neighbor.) You can 
read more about Isolation Forest here: https://cs.nju.edu.cn/zhouzh/zhouzh.
files/publication/icdm08b.pdf.

https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf




5
Using Visualizations 

for the Identification 
of Unexpected 

Values
We dipped our toes in the water with visualizations in several recipes in the previous 
chapter. We used histograms and QQ plots to examine the distribution of a single variable, 
and scatter plots to view how two variables are related. But we were just scratching the 
surface of the rich visualization tools available in the Matplotlib and Seaborn libraries. 
Getting comfortable with these tools, and their seemingly inexhaustible capabilities, can 
help us uncover patterns and oddities that are not obvious when we run the standard 
battery of descriptives.

Boxplots, for example, are a great tool for visualizing values outside of a certain range. 
These can be extended with grouped boxplots or violin plots that allow us to compare 
distributions across subsets of data. We can also do much more with scatter plots than 
we did in the last chapter, including getting some sense of multivariate relationships. 
Histograms, too, can sometimes offer additional insight if we display several histograms on 
one plot or create a stacked histogram. We explore all of these capabilities in this chapter.
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Specifically, the recipes in this chapter demonstrate the following topics:

•	 Using histograms to examine the distribution of continuous variables

•	 Using boxplots to identify outliers for continuous variables

•	 Using grouped boxplots to uncover unexpected values in a particular group

•	 Examining both the distribution shape and outliers with violin plots

•	 Using scatter plots to view bivariate relationships

•	 Using line plots to examine trends in continuous variables

•	 Generating a heat map based on a correlation matrix

Technical requirements 
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Using histograms to examine the distribution 
of continuous variables
The go-to visualization tool for statisticians trying to understand how single variables are 
distributed is the histogram. Histograms plot a continuous variable on the x axis, in bins 
determined by the researcher, and the frequency of occurrence on the y axis. 

Histograms provide a clear and meaningful illustration of the shape of a distribution, 
including central tendency, skewness (symmetry), excess kurtosis (relatively fat tails), 
and spread. This matters for statistical testing, as many tests make assumptions about a 
variable's distribution. Moreover, our expectation of what data values to expect should be 
guided by our understanding of the distribution's shape. For example, a value at the 90th 
percentile has very different implications when it comes from a normal distribution rather 
than from a uniform distribution.

One of the first tasks I ask introductory statistics students to do is construct a histogram 
manually from a small sample. We do boxplots in the following class. Together, histograms 
and boxplots provide a solid foundation for subsequent analysis. In my data science work, 
I try to remember to construct histograms and boxplots on all continuous variables of 
interest shortly after the initial importing and cleaning of data. We create histograms in 
this recipe, and boxplots in the following two recipes.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Getting ready
We will use the Matplotlib library to generate histograms. Some tasks can be done quickly 
and straightforwardly in Matplotlib. Histograms are one of those tasks. We will switch 
between Matplotlib and Seaborn (which is built on Matplotlib) in this chapter, based on 
which tool gets us to the required graphic more easily.

We will also use the statsmodels library. You can install Matplotlib and statsmodels with 
pip using pip install matplotlib and pip install statsmodels.

We will work with data on land temperature and on coronavirus cases in this recipe. The 
land temperature DataFrame has one row per weather station. The coronavirus data frame 
has one row per country and reflects totals as of July 18, 2020.

Data note
The land temperature DataFrame has the average temperature reading (in °C) 
in 2019 from over 12,000 stations across the world, though a majority of the 
stations are in the United States. The raw data was retrieved from the Global 
Historical Climatology Network integrated database. It is made available for public 
use by the United States National Oceanic and Atmospheric Administration at 
https://www.ncdc.noaa.gov/data-access/land-based-
station-data/land-based-datasets/global-historical-
climatology-network-monthly-version-4.

Our World in Data provides Covid-19 public use data at https://
ourworldindata.org/coronavirus-source-data. The data 
used in this recipe was downloaded on June 1, 2020. Some of the data was 
missing for Hong Kong as of this date, but this problem was fixed in files  
after that.

How to do it…
We take a close look at the distribution of land temperatures by weather station in 2019 
and total coronavirus cases per million of the population for each country. We start with a 
few descriptive statistics before doing a QQ plot, histograms, and stacked histograms.

1.	 Import the pandas, matplotlib, and statsmodels libraries.

Also, load the data on land temperatures and COVID cases:
>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import statsmodels.api as sm

>>> landtemps = pd.read_csv("data/landtemps2019avgs.csv")

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
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>>> covidtotals = pd.read_csv("data/covidtotals.csv", 
parse_dates=["lastdate"])
>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Show some of the station temperature rows.

The latabs column is the value of latitude without the North or South indicators; 
so, Cairo, Egypt at approximately 30 degrees north, and Porto Alegre, Brazil at 
about 30 degrees south have the same value:

>>> landtemps[['station','country','latabs','elevation', 
'avgtemp']].\
...   sample(10, random_state=1)
                    station        country  latabs  
elevation  avgtemp
10526         NEW_FORK_LAKE  United States      43      
2,542        2
1416              NEIR_AGDM         Canada      51      
1,145        2
2230                 CURICO          Chile      35        
225       16
6002     LIFTON_PUMPING_STN  United States      42      
1,809        4
2106                HUAILAI          China      40        
538       11
2090             MUDANJIANG          China      45        
242        6
7781   CHEYENNE_6SW_MESONET  United States      36        
694       15
10502           SHARKSTOOTH  United States      38      
3,268        4
11049            CHALLIS_AP  United States      45      
1,534        7
2820                METHONI         Greece      37         
52       18

3.	 Show some descriptive statistics.

Also, look at the skew and the kurtosis:
>>> landtemps.describe()
       latabs  elevation  avgtemp
count  12,095     12,095   12,095
mean       40        589       11
std        13        762        9
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min         0       -350      -61
25%        35         78        5
50%        41        271       10
75%        47        818       17
max        90      9,999       34
>>> landtemps.avgtemp.skew()
-0.2678382583481769
>>> landtemps.avgtemp.kurtosis()
2.1698313707061074

4.	 Do a histogram of average temperatures.

Also, draw a line at the overall mean:
>>> plt.hist(landtemps.avgtemp)
>>> plt.axvline(landtemps.avgtemp.mean(), color='red', 
linestyle='dashed', linewidth=1)
>>> plt.title("Histogram of Average Temperatures 
(Celsius)")
>>> plt.xlabel("Average Temperature")
>>> plt.ylabel("Frequency")
>>> plt.show()

This results in the following histogram:

Figure 5.1 – Histogram of average temperatures across weather stations in 2019
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5.	 Run a QQ plot to examine where the distribution deviates from a normal 
distribution.

Notice that much of the distribution of temperatures falls along the red line (all dots 
would fall on the red line if the distribution were perfectly normal, but the tails fall 
off dramatically from the normal):

>>> sm.qqplot(landtemps[['avgtemp']].sort_
values(['avgtemp']), line='s')

>>> plt.title("QQ Plot of Average Temperatures")

>>> plt.show()

This results in the following QQ plot:

Figure 5.2 – Plot of average temperature by station compared with the normal distribution
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6.	 Show the skewness and kurtosis for total Covid cases per million.

This is from the COVID-19 data frame, which has one row for each country:
>>> covidtotals.total_cases_pm.skew()

4.284484653881833

>>> covidtotals.total_cases_pm.kurtosis()

26.137524276840452

7.	 Do a stacked histogram of the Covid case data.

Select data from four of the regions. (Stacked histograms can get messy with any 
more categories than that.) Define a getcases function that returns a series for 
total_cases_pm for the countries of a region. Pass those series to the hist 
method ([getcases(k) for k in showregions]) to create the stacked 
histogram. Notice that much of the distribution—almost 40 countries out of the 65 
countries in these regions—has cases per million below 2,000:

>>> showregions = ['Oceania / Aus','East Asia','Southern 
Africa', 'Western Europe']

>>> 

>>> def getcases(regiondesc):

...   return covidtotals.loc[covidtotals.
region==regiondesc,

...     'total_cases_pm']

... 

>>> plt.hist([getcases(k) for k in showregions],\

...   color=['blue','mediumslateblue','plum', 
'mediumvioletred'],\

...   label=showregions,\

...   stacked=True)

>>> 

>>> plt.title("Stacked Histogram of Cases Per Million for 
Selected Regions")

>>> plt.xlabel("Cases Per Million")

>>> plt.ylabel("Frequency")

>>> plt.xticks(np.arange(0, 22500, step=2500))

>>> plt.legend()

>>> plt.show()
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This results in the following stacked histogram:

Figure 5.3 – Stacked histogram of number of countries per region at different cases per million levels

8.	 Show multiple histograms on one figure.

This allows different x and y axis values. We need to loop through each axis and 
select a different region from showregions for each subplot:

>>> fig, axes = plt.subplots(2, 2)

>>> fig.subtitle("Histograms of Covid Cases Per Million 
by Selected Regions")

>>> axes = axes.ravel()

>>> for j, ax in enumerate(axes):

...   ax.hist(covidtotals.loc[covidtotals.
region==showregions[j]].\

...     total_cases_pm, bins=5)

...   ax.set_title(showregions[j], fontsize=10)

...   for tick in ax.get_xticklabels():
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...     tick.set_rotation(45)

... 

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.88)

>>> plt.show()

This results in the following histograms:

Figure 5.4 – Histograms by region with numbers of countries at different cases per million levels

The preceding steps demonstrated how to visualize the distribution of a continuous 
variable using histograms and QQ plots.

How it works…
Step 4 shows how easy it is to display a histogram. This can be done by passing a series 
to the hist method of Matplotlib's pyplot module. (We use an alias of plt for 
matplotlib.) We could have also passed any ndarray, or even a list of data series.
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We also get great access to the attributes of the figure and its axes. We can set the labels for 
each axis, as well as the tick marks and tick labels. We can also specify the content and look 
and feel of the legend. We will be taking advantage of this functionality often in this chapter.

We pass multiple series to the hist method in Step 7 to produce the stacked histogram. 
Each series is the total_cases_pm (cases per million of population) value for the 
countries in a region. To get the series for each region, we call the getcases function for 
each item in showregions. We choose colors for each series rather than allowing that to 
happen automatically. We also use the showregions list to select labels for the legend.

In Step 8, we start by indicating that we want four subplots, in two rows and two columns. 
That is what we get with plt.subplots(2, 2), which returns both a figure and the 
four axes. We loop through the axes with for j, ax in enumerate(axes). Within 
each loop, we select a different region for the histogram from showregions. Within 
each axis, we loop through the tick labels and change the rotation. We also adjust the 
start of the subplots to make enough room for the figure title. Note that we need to use 
suptitle to add a title in this case. Using title would add the title to a subplot.

There's more...
The land temperature data is not quite normally distributed, as the histograms and the 
skew and kurtosis measures show. It is skewed to the left (skew of -0.26) and actually has 
somewhat skinnier tails than normal (kurtosis of 2.17, compared with 3). Although there 
are some extreme values, there are not that many of them relative to the overall size of the 
dataset. While it is not perfectly bell-shaped, the land temperature data frame is a fair bit 
easier to deal with than the Covid case data.

The skew and kurtosis of the Covid cases per million variable show that it is some 
distance from normal. The skew of 4 and kurtosis of 26 indicates a high positive skew and 
much fatter tails than with a normal distribution. This is also reflected in the histograms, 
even when we look at the numbers by region. There are a number of countries at very 
low levels of cases per million in most regions, and just a few countries with high levels of 
cases. The Using grouped boxplots to uncover unexpected values in a particular group recipe 
in this chapter shows that there are outliers in almost every region.

If you work through all of the recipes in this chapter, and you are relatively new to 
Matplotlib and Seaborn, you will find those libraries either usefully flexible or confusingly 
flexible. It is difficult to even pick one strategy and stick with it because you might need 
to set up your figure and axes in a particular way to get the visualization you want. It is 
helpful to keep two things in mind when working through these recipes: first, you will 
generally need to create a figure and one or more subplots; and second, the main plotting 
functions work similarly regardless, so plt.hist and ax.hist will both often work.
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Using boxplots to identify outliers for 
continuous variables
Boxplots are essentially a graphical representation of our work in the Identifying outliers with 
one variable recipe in Chapter 4, Identifying Missing Values and Outliers in Subsets of Data. 
There, we used the concept of interquartile range (IQR)—the distance between the value at 
the first quartile and the value at the third quartile—to determine outliers. Any value greater 
than (1.5 * IQR) + the third quartile value, or less than the first quartile value – (1.5 * 
IQR), was considered an outlier. That is precisely what is revealed in a boxplot.

Getting ready
We will work with cumulative data on coronavirus cases and deaths by country, and the 
National Longitudinal Surveys (NLS) data. You will need the Matplotlib library to run 
the code on your computer.

How to do it…
We use boxplots to show the shape and spread of Scholastic Assessment Test (SAT) 
scores, weeks worked, and Covid cases and deaths:

1.	 Load the pandas and matplotlib libraries.

Also, load the NLS and Covid data:
>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals.csv", 
parse_dates=["lastdate"])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Do a boxplot of SAT verbal scores.

Produce some descriptives first. The boxplot method produces a rectangle that 
represents the IQR, the values between the first and third quartile. The whiskers go 
from that rectangle to 1.5 times the IQR. Any values above or below the whiskers (what 
we have labeled the outlier threshold) are considered outliers (we use annotate to 
point to the first and third quartile points, the median, and to the outlier thresholds):

>>> nls97.satverbal.describe()

count   1,406
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mean      500

std       112

min        14

25%       430

50%       500

75%       570

max       800

Name: satverbal, dtype: float64

>>> plt.boxplot(nls97.satverbal.dropna(), labels=['SAT 
Verbal'])

>>> plt.annotate('outlier threshold', 
xy=(1.05,780), xytext=(1.15,780), size=7, 
arrowprops=dict(facecolor='black', headwidth=2, 
width=0.5, shrink=0.02))

>>> plt.annotate('3rd quartile', 
xy=(1.08,570), xytext=(1.15,570), size=7, 
arrowprops=dict(facecolor='black', headwidth=2, 
width=0.5, shrink=0.02))

>>> plt.annotate('median', xy=(1.08,500), 
xytext=(1.15,500), size=7, 
arrowprops=dict(facecolor='black', headwidth=2, 
width=0.5, shrink=0.02))

>>> plt.annotate('1st quartile', 
xy=(1.08,430), xytext=(1.15,430), size=7, 
arrowprops=dict(facecolor='black', headwidth=2, 
width=0.5, shrink=0.02))

>>> plt.annotate('outlier threshold', 
xy=(1.05,220), xytext=(1.15,220), size=7, 
arrowprops=dict(facecolor='black', headwidth=2, 
width=0.5, shrink=0.02))

>>> #plt.annotate('outlier threshold', 
xy=(1.95,15), xytext=(1.55,15), size=7, 
arrowprops=dict(facecolor='black', headwidth=2, 
width=0.5, shrink=0.02))

>>> plt.show()



Using boxplots to identify outliers for continuous variables     179

This results in the following boxplot:

Figure 5.5 – Boxplot of SAT verbal scores with labels for quartile range and outliers

3.	 Show some descriptives on weeks worked:

>>> weeksworked = nls97.loc[:, 
['highestdegree','weeksworked16', 'weeksworked17']]

>>> 

>>> weeksworked.describe()

       weeksworked16  weeksworked17

count          7,068          6,670

mean              39             39

std               21             19

min                0              0

25%               23             37

50%               53             49

75%               53             52

max               53             52
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4.	 Do boxplots of weeks worked:

>>> plt.boxplot([weeksworked.weeksworked16.dropna(),

...   weeksworked.weeksworked17.dropna()],

...   labels=['Weeks Worked 2016','Weeks Worked 2017'])

>>> plt.title("Boxplots of Weeks Worked")

>>> plt.tight_layout()

>>> plt.show()

This results in the following boxplots:

Figure 5.6 – Boxplots of two variables side by side
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5.	 Show some descriptives for the Covid data.

Create a list of labels (totvarslabels) for columns to use in a later step:
>>> totvars = ['total_cases','total_deaths','total_cases_
pm', 'total_deaths_pm']

>>> totvarslabels = ['cases','deaths','cases per 
million','deaths per million']

>>> covidtotalsonly = covidtotals[totvars]

>>> covidtotalsonly.describe()

       total_cases  total_deaths  total_cases_pm  total_
deaths_pm

count          209           209             209              
209

mean        60,757         2,703           2,297               
74

std        272,440        11,895           4,040              
156

min              3             0               1                
0

25%            342             9             203                
3

50%          2,820            53             869               
15

75%         25,611           386           2,785               
58

max      3,247,684       134,814          35,795            
1,238

6.	 Do boxplots of cases and deaths per million:

>>> fig, ax = plt.subplots()

>>> plt.title("Boxplots of Covid Cases and Deaths Per 
Million")

>>> ax.boxplot([covidtotalsonly.total_cases_
pm,covidtotalsonly.total_deaths_pm],\

...   labels=['cases per million','deaths per million'])

>>> plt.tight_layout()

>>> plt.show()
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This results in the following boxplots:

Figure 5.7 – Boxplots of two variables side by side

7.	 Show the boxplots as separate subplots on one figure.

It is hard to view multiple boxplots on one figure when the variable values are very 
different, as is true for Covid cases and deaths. Fortunately, matplotlib allows us to 
create multiple subplots on each figure, each of which can use different x and y axes:

>>> fig, axes = plt.subplots(2, 2)

>>> fig.suptitle("Boxplots of Covid Cases and Deaths")

>>> axes = axes.ravel()

>>> for j, ax in enumerate(axes):

...   ax.boxplot(covidtotalsonly.iloc[:, j], 
labels=[totvarslabels[j]])

... 

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.94)

>>> plt.show()
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This results in the following boxplots:

Figure 5.8 – Boxplots with different y axes

Boxplots are a relatively straightforward but exceedingly useful way to view how variables 
are distributed. They make it easy to visualize spread, central tendency, and outliers, all in 
one graphic.

How it works...
It is fairly easy to create a boxplot with matplotlib, as Step 2 shows. Passing a series to 
pyplot is all that is required (we use the plt alias). We call the show method of pyplot 
to show the figure. This step also demonstrates how to use annotations to add text and 
symbols to your figure. We show multiple boxplots in Step 4 by passing multiple series  
to pyplot.
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It can be difficult to show multiple boxplots in a single figure when the scales are very 
different, as is the case with the Covid outcome data (cases, deaths, cases per million, and 
deaths per million). Step 7 shows one way to deal with that. We can create several subplots 
on one plot. We start by indicating that we want four subplots, in two columns and two 
rows. That is what we get with plt.subplots(2, 2), which returns both a figure and 
the four axes. We can then loop through the axes, calling boxplot on each one. Nifty!

However, it is still hard to see the IQR for cases and deaths because of some of the extreme 
values. In the next recipe, we remove some of the extreme values to give us a better 
visualization of the remaining data.

There's more...
The boxplot of SAT verbal scores in Step 2 suggests a relatively normal distribution. The 
median is close to the center of the IQR. This is not surprising given that the descriptives 
we ran show that mean and median have the same value. There is, however, substantially 
more room for outliers at the lower end than at the upper end. (Indeed, the very low SAT 
verbal scores seem implausible and should be checked.)

The boxplots of weeks worked in 2016 and 2017 in Step 4 show variables that are 
distributed much differently than SAT scores. The medians are near the top of the IQR 
and are much greater than the means. This suggests a negative skew. Also, notice that 
there are no whiskers or outliers at the upper end of the distribution as the median value 
is at, or near, the maximum.

See also
Some of these boxplots suggest that the data we are examining is not normally distributed. 
The Identifying outliers with one variable recipe in Chapter 4, Identifying Missing Values and 
Outliers in Subsets of Data, covers some normal distribution tests. It also shows how to take 
a closer look at the values outside of the outlier thresholds: the circles in the boxplots.

Using grouped boxplots to uncover 
unexpected values in a particular group
We saw in the previous recipe that boxplots are a great tool for examining the distribution 
of continuous variables. They can also be useful when we want to see if those variables are 
distributed differently for parts of our dataset:  salaries for different age groups; number  
of children by marital status; litter size for different mammal species. Grouped boxplots 
are a handy and intuitive way to view differences in variable distribution by categories in 
our data.
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Getting ready
We will work with the NLS and the Covid case data. You will need Matplotlib and Seaborn 
installed on your computer to run the code in this recipe.

How to do it...
We generate descriptive statistics of weeks worked by highest degree earned. We then use 
grouped boxplots to visualize the spread of the weeks worked distribution by degree, and 
of Covid cases by region:

1.	 Import the pandas, matplotlib, and seaborn libraries:

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals.csv", 
parse_dates=["lastdate"])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 View the median, and first and third quartile values for weeks worked for each 
degree attainment level.

First, define a function that returns those values as a series, then use apply to call 
it for each group:

>>> def gettots(x):

...   out = {}

...   out['min'] = x.min()

...   out['qr1'] = x.quantile(0.25)

...   out['med'] = x.median()

...   out['qr3'] = x.quantile(0.75)

...   out['max'] = x.max()

...   out['count'] = x.count()

...   return pd.Series(out)

... 

>>> nls97.groupby(['highestdegree'])['weeksworked17'].\

...   apply(gettots).unstack()
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                 min  qr1  med  qr3  max  count

highestdegree                                  

0. None            0    0   40   52   52    510

1. GED             0    8   47   52   52    848

2. High School     0   31   49   52   52  2,665

3. Associates      0   42   49   52   52    593

4. Bachelors       0   45   50   52   52  1,342

5. Masters         0   46   50   52   52    538

6. PhD             0   46   50   52   52     51

7. Professional    0   47   50   52   52     97

3.	 Do a boxplot of weeks worked by highest degree earned.

Use Seaborn for these boxplots. First, create a subplot and name it myplt. This 
makes it easier to access subplot attributes later. Use the order parameter of 
boxplot to order by highest degree earned. Notice that there are no outliers or 
whiskers at the lower end for individuals with no degree ever received. This is 
because the IQR for those individuals covers the whole range of values; that is, the 
value at the 25th percentile is 0 and the value at the 75th percentile is 52: 

>>> myplt = sns.boxplot('highestdegree','weeksworked17', 
data=nls97,

...   order=sorted(nls97.highestdegree.dropna().
unique()))

>>> myplt.set_title("Boxplots of Weeks Worked by Highest 
Degree")

>>> myplt.set_xlabel('Highest Degree Attained')

>>> myplt.set_ylabel('Weeks Worked 2017')

>>> myplt.set_xticklabels(myplt.get_xticklabels(), 
rotation=60, horizontalalignment='right')

>>> plt.tight_layout()

>>> plt.show()
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This results in the following boxplots:

Figure 5.9 – Boxplots of weeks worked with IQR and outliers by highest degree

4.	 View the minimum, maximum, median, and first and third quartile values for total 
cases per million by region.

Use the gettots function defined in Step 2:
>>> covidtotals.groupby(['region'])['total_cases_pm'].\

...   apply(gettots).unstack()

                  min   qr1   med   qr3    max  count

region                                               

Caribbean          95   252   339 1,726  4,435     22

Central Africa     15    71   368 1,538  3,317     11

Central America    93   925 1,448 2,191 10,274      7
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Central Asia      374   919 1,974 2,907 10,594      6

East Africa         9    65   190   269  5,015     13

East Asia           3    16    65   269  7,826     16

Eastern Europe    347   883 1,190 2,317  6,854     22

North Africa      105   202   421   427    793      5

North America   2,290 2,567 2,844 6,328  9,812      3

Oceania / Aus       1    61   234   424  1,849      8

South America     284   395 2,857 4,044 16,323     13

South Asia        106   574   885 1,127 19,082      9

Southern Africa    36    86   118   263  4,454      9

West Africa        26   114   203   780  2,862     17

West Asia          23   273 2,191 5,777 35,795     16

Western Europe    200 2,193 3,769 5,357 21,038     32

5.	 Do boxplots of cases per million by region.

Flip the axes since there are a large number of regions. Also, do a swarm plot to give 
some sense of the number of countries by region. The swarm plot displays a dot 
for each country in each region. Some of the IQRs are hard to see because of the 
extreme values:

>>> sns.boxplot('total_cases_pm', 'region', 
data=covidtotals)

>>> sns.swarmplot(y="region", x="total_cases_pm", 
data=covidtotals, size=2, color=".3", linewidth=0)

>>> plt.title("Boxplots of Total Cases Per Million by 
Region")

>>> plt.xlabel("Cases Per Million")

>>> plt.ylabel("Region")

>>> plt.tight_layout()

>>> plt.show()
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This results in the following boxplots:

Figure 5.10 – Boxplots and swarm plots of cases per million by region, with IQR and outliers

6.	 Show the most extreme values for cases per million:

>>> covidtotals.loc[covidtotals.total_cases_pm>=14000,\

...   ['location','total_cases_pm']]

            location  total_cases_pm

iso_code                            

BHR          Bahrain          19,082

CHL            Chile          16,323

QAT            Qatar          35,795

SMR       San Marino          21,038

VAT          Vatican          14,833
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7.	 Redo the boxplots without the extreme values:

>>> sns.boxplot('total_cases_pm', 'region', 
data=covidtotals.loc[covidtotals.total_cases_pm<14000])

>>> sns.swarmplot(y="region", x="total_cases_pm", 
data=covidtotals.loc[covidtotals.total_cases_pm<14000], 
size=3, color=".3", linewidth=0)

>>> plt.title("Total Cases Without Extreme Values")

>>> plt.xlabel("Cases Per Million")

>>> plt.ylabel("Region")

>>> plt.tight_layout()

>>> plt.show()

This results in the following boxplots:

Figure 5.11 – Boxplots of cases per million by region without the extreme values

These grouped boxplots reveal how much the distribution of cases, adjusted by 
population, varies by region.
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How it works...
We use Seaborn for the figures we create in this recipe. We could have also used 
Matplotlib. Seaborn is actually built on top of Matplotlib, extending it in some areas, and 
making some things easier. It sometimes produces more aesthetically pleasing figures with 
the default settings than Matplotlib does.

It is a good idea to have some descriptives in front of us before creating figures with 
multiple boxplots. In Step 2, we get the first and third quartile values, and the median, 
for each degree attainment level. We do this by first creating a function called gettots, 
which returns a series with those values. We apply gettots to each group in the data 
frame with the following statement:

nls97.groupby(['highestdegree'])['weeksworked17'].
apply(gettots).unstack() 

The groupby method creates a data frame with grouping information, which is passed to 
the apply function. gettots then calculates summary values for each group. unstack 
reshapes the returned rows, from multiple rows per group (one for each summary 
statistic) to one row per group, with columns for each summary statistic.

In Step 3, we generate a boxplot for each degree attainment level. We do not normally 
need to name the subplot object we create when we use Seaborn's boxplot method. We 
do so in this step, naming it myplt, so that we can easily change attributes—such as tick 
labels—later. We rotate the labels on the x axis using set_xticklabels so that the 
labels do not run into each other.

We flip the axes for the boxplots in Step 5 since there are more group levels (regions) 
than there are ticks for the continuous variable, cases per million. We do that by making 
total_cases_pm the value for the first argument, rather than the second. We also do a 
swarm plot to give some sense of the number of observations (countries) in each region.

Extreme values can sometimes make it difficult to view a boxplot. Boxplots show both the 
outliers and the IQR, but the IQR rectangle will be so small that it is not viewable when 
outliers are several times the third or first quartile value. In Step 5, we remove all values 
of total_cases_pm greater than or equal to 14,000. This improves the presentation of 
each IQR.
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There's more…
The boxplots of weeks worked by educational attainment in Step 3 reveal high variation 
in weeks worked, something that is not obvious in univariate analysis. The lower the 
educational attainment level, the greater the spread in weeks worked. There is substantial 
variability in weeks worked in 2017 for individuals with less than a high school degree, 
and very little variability for individuals with college degrees.

This is quite relevant, of course, to our understanding of what is an outlier in terms of 
weeks worked. For example, someone with a college degree who worked 20 weeks is an 
outlier, but they would not be an outlier if they had less than a high school diploma.

The Cases Per Million boxplots also invite us to think more flexibly about what 
an outlier is. For example, none of the outliers for cases per million in East Africa would 
have been identified as an outlier in the dataset as a whole. In addition, those values are all 
lower than the third quartile value for North America. But they definitely are outliers for 
East Africa.

One of the first things I notice when looking at a boxplot is where the median is in the 
IQR. When the median is not at all close to the center, I know I am not dealing with a 
normally distributed variable. It also gives me a good sense of the direction of the skew. 
If it is near the bottom of the IQR, meaning that the median is much closer to the first 
quartile than the third, then there is positive skew. Compare the boxplot for the Caribbean 
to that of Western Europe. A large number of low values and a few high values brings the 
median close to the first quartile value for the Caribbean.

See also
We work much more with groupby in Chapter 7, Fixing Messy Data when Aggregating. 
We work more with stack and unstack in Chapter 9, Tidying and Reshaping Data.

Examining both the distribution shape and 
outliers with violin plots
Violin plots combine histograms and boxplots in one plot. They show the IQR, median, 
and whiskers, as well as the frequency of observations at all ranges of values. It is hard to 
visualize how that is possible without seeing an actual violin plot. We generate a few violin 
plots on the same data we used for boxplots in the previous recipe, to make it easier to 
grasp how they work.
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Getting ready
We will work with the NLS and the Covid case data. You need Matplotlib and Seaborn 
installed on your computer to run the code in this recipe.

How to do it…
We do violin plots to view both the spread and shape of the distribution on the same 
graphic. We then do violin plots by groups:

1.	 Load pandas, matplotlib, and seaborn, and the Covid case and NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> nls97 = pd.read_csv("data/nls97.csv")

>>> nls97.set_index("personid", inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals.csv", 
parse_dates=["lastdate"])

>>> covidtotals.set_index("iso_code", inplace=True)

2.	 Do a violin plot of the SAT verbal score:

>>> sns.violinplot(nls97.satverbal, color="wheat", 
orient="v")

>>> plt.title("Violin Plot of SAT Verbal Score")

>>> plt.ylabel("SAT Verbal")

>>> plt.text(0.08, 780, "outlier threshold", 
horizontalalignment='center', size='x-small')

>>> plt.text(0.065, nls97.satverbal.quantile(0.75), "3rd 
quartile", horizontalalignment='center', size='x-small')

>>> plt.text(0.05, nls97.satverbal.median(), "Median", 
horizontalalignment='center', size='x-small')

>>> plt.text(0.065, nls97.satverbal.quantile(0.25), "1st 
quartile", horizontalalignment='center', size='x-small')

>>> plt.text(0.08, 210, "outlier threshold", 
horizontalalignment='center', size='x-small')

>>> plt.text(-0.4, 500, "frequency", 
horizontalalignment='center', size='x-small')

>>> plt.show()
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This results in the following violin plot:

Figure 5.12 – Violin plot of SAT verbal score with labels for the IQR and outlier threshold

3.	 Get some descriptives for weeks worked:

>>> nls97.loc[:, ['weeksworked16','weeksworked17']].
describe()

       weeksworked16  weeksworked17

count          7,068          6,670

mean              39             39

std               21             19

min                0              0

25%               23             37

50%               53             49

75%               53             52

max               53             52
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4.	 Show weeks worked for 2016 and 2017.

Use a more object-oriented approach to make it easier to access some axes' 
attributes. Notice that the weeksworked distributions are bimodal, with bulges 
near the top and the bottom of the distribution. Also, note the very different IQR for 
2016 and 2017:

>>> myplt = sns.violinplot(data=nls97.loc[:, ['weeksworke
d16','weeksworked17']])

>>> myplt.set_title("Violin Plots of Weeks Worked")

>>> myplt.set_xticklabels(["Weeks Worked 2016","Weeks 
Worked 2017"])

>>> plt.show()

This results in the following violin plots:

Figure 5.13 – Violin plots showing the spread and shape of the distribution for two variables side by side
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5.	 Do a violin plot of wage income by gender and marital status.

First, create a collapsed marital status column. Specify gender for the x axis, 
salary for the y axis, and a new collapsed marital status column for hue. The hue 
parameter is used for grouping, which will be added to any grouping already used 
for the x axis. We also indicate scale="count" to generate violin plots sized 
according to the number of observations in each category:

>>> nls97["maritalstatuscollapsed"] = nls97.
maritalstatus.\

...   replace(['Married','Never-married','Divorced','Sepa
rated','Widowed'],\

...   ['Married','Never Married','Not Married','Not 
Married','Not Married']) 

>>> sns.violinplot(nls97.gender, nls97.wageincome, 
hue=nls97.maritalstatuscollapsed, scale="count")

>>> plt.title("Violin Plots of Wage Income by Gender and 
Marital Status")

>>> plt.xlabel('Gender')

>>> plt.ylabel('Wage Income 2017')

>>> plt.legend(title="", loc="upper center", 
framealpha=0, fontsize=8)

>>> plt.tight_layout()

>>> plt.show()

This results in the following violin plots:
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Figure 5.14 – Violin plots showing the spread and shape of the distribution by two different groups

6.	 Do violin plots of weeks worked by highest degree attained:

>>> myplt = sns.
violinplot('highestdegree','weeksworked17', data=nls97, 
rotation=40)

>>> myplt.set_xticklabels(myplt.get_xticklabels(), 
rotation=60, horizontalalignment='right')

>>> myplt.set_title("Violin Plots of Weeks Worked by 
Highest Degree")

>>> myplt.set_xlabel('Highest Degree Attained')

>>> myplt.set_ylabel('Weeks Worked 2017')

>>> plt.tight_layout()

>>> plt.show()
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This results in the following violin plots:

Figure 5.15 – Violin plots showing the spread and shape of the distribution by group

These steps show just how much violin plots can tell us about how continuous variables in 
our data frame are distributed, and how that might vary by group.

How it works…
Similar to boxplots, violin plots show the median, first and third quartiles, and the 
whiskers. They also show the relative frequency of variable values. (When the violin plot 
is displayed vertically, the relative frequency is the width at a given point.) The violin plot 
produced in Step 2, and the associated annotations, provide a good illustration. We can tell 
from the violin plot that the distribution of SAT verbal scores is not dramatically different 
from the normal, other than the extreme values at the lower end. The greatest bulge 
(greatest width) is at the median, declining fairly symmetrically from there. The median is 
relatively equidistant from the first and third quartiles.
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We can create a violin plot in Seaborn by passing one or more data series to the 
violinplot method. We can also pass a whole data frame of one or more columns. We 
do that in Step 4 because we want to plot more than one continuous variable.

We sometimes need to experiment with the legend a bit to get it to be both informative 
and unobtrusive. In Step 5, we used the following command to remove the legend title 
(since it is clear from the values), locate it in the best place in the figure, and make the box 
transparent (framealpha=0):

plt.legend(title="", loc="upper center", framealpha=0, 
fontsize=8)

We can pass data series to violinplot in a variety of ways. If you do not indicate an 
axis with "x=" or "y=", or grouping with "hue=", Seaborn will figure that out based on 
order. For example, in Step 5, we did the following:

sns.violinplot(nls97.gender, nls97.wageincome, hue=nls97.
maritalstatuscollapsed, scale="count")

We would have got the same results if we had done the following:

sns.violinplot(x=nls97.gender, y=nls97.wageincome, hue=nls97.
maritalstatuscollapsed, scale="count")

We could have also done this to obtain the same result:

sns.violinplot(y=nls97.wageincome, x=nls97.gender,  hue=nls97.
maritalstatuscollapsed, scale="count")

Although I have highlighted this flexibility in this recipe, these techniques for sending 
data to Matplotlib and Seaborn apply to all of the plotting methods discussed in this 
chapter (though not all of them have a hue parameter).

There's more…
Once you get the hang of violin plots, you will appreciate the enormous amount of 
information they make available on one figure. We get a sense of the shape of the 
distribution, its central tendency, and its spread. We can also easily show that information 
for different subsets of our data.
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The distribution of weeks worked in 2016 is different enough from weeks worked in 2017 
to give the careful analyst pause. The IQR is quite different—30 for 2016 (23 to 53), and 15 
for 2017 (37 to 52).

An unusual fact about the distribution of wage income is revealed when examining 
the violin plots produced in Step 5. There is a bunching-up of incomes at the top of the 
distribution for married males, and somewhat for married females. That is quite unusual 
for a wage income distribution. As it turns out, it looks like there is a ceiling on wage 
income of $235,884. This is something that we definitely want to take into account in 
future analyses that include wage income.

The income distributions have a similar shape across gender and marital status, with 
bulges slightly below the median and extended positive tails. The IQRs have relatively 
similar lengths. However, the distribution for married males is noticeably higher (or to the 
right, depending on chosen orientation) than that for the other groups.

The violin plots of weeks worked by degree attained show very different distributions 
by group, as we also discovered in the boxplots of the same data in the previous recipe. 
What is more clear here, though, is the bimodal nature of the distribution at lower levels 
of education. There is a bunching at low levels of weeks worked for individuals without 
college degrees. Individuals without high school diplomas or a GED (a Graduate 
Equivalency Diploma) were nearly as likely to work 5 or fewer weeks in 2017 as they were 
to work 50 or more weeks.

We used Seaborn exclusively to produce violin plots in this recipe. Violin plots can also 
be produced with Matplotlib. However, the default graphics in Matplotlib for violin plots 
look very different from those for Seaborn.

See also
It might be helpful to compare the violin plots in this recipe to the histograms, boxplots, 
and grouped boxplots in the previous recipes in this chapter.
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Using scatter plots to view bivariate 
relationships
My sense is that there are few plots that data analysts rely more on than scatter plots, 
with the possible exception of histograms. We are all very used to looking at relationships 
that can be illustrated in two dimensions. Scatter plots capture important real-world 
phenomena (the relationship between variables) and are quite intuitive for most people. 
This makes them a valuable addition to our visualization toolkit.

Getting ready
You will need Matplotlib and Seaborn for this recipe. We will be working with the 
landtemps dataset, which provides the average temperature in 2019 for 12,095 weather 
stations across the world.

How to do it...
We level up our scatter plot skills from the previous chapter and visualize more 
complicated relationships. We display the relationship between average temperature, 
latitude, and elevation by showing multiple scatter plots on one chart, creating 3D scatter 
plots, and showing multiple regression lines:

1.	 Load pandas, numpy, matplotlib, the Axes3D module, and seaborn:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> from mpl_toolkits.mplot3d import Axes3D

>>> import seaborn as sns

>>> landtemps = pd.read_csv("data/landtemps2019avgs.csv")

2.	 Run a scatter plot of latitude (latabs) by average temperature:

>>> plt.scatter(x="latabs", y="avgtemp", data=landtemps)

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature (Celsius)")

>>> plt.yticks(np.arange(-60, 40, step=20))

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.show()
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This results in the following scatter plot:

Figure 5.16 – Scatter plot of latitude by average temperature

3.	 Show the high elevation points in red.

Create low and high elevation data frames. Notice that the high elevation points are 
generally lower (that is, cooler) on the figure at each latitude:

>>> low, high = landtemps.loc[landtemps.elevation<=1000], 
landtemps.loc[landtemps.elevation>1000]

>>> plt.scatter(x="latabs", y="avgtemp", c="blue", 
data=low)

>>> plt.scatter(x="latabs", y="avgtemp", c="red", 
data=high)

>>> plt.legend(('low elevation', 'high elevation'))

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature (Celsius)")

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.show()
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This results in the following scatter plot:

Figure 5.17 – Scatter plot of latitude by average temperature and elevation

4.	 View a three-dimensional plot of temperature, latitude, and elevation.

It looks like there is a somewhat steeper decline in temperature, with increases in 
latitude for high elevation stations:

>>> fig = plt.figure()

>>> plt.suptitle("Latitude, Temperature, and Elevation in 
2019")

>>> ax.set_title('Three D')

>>> ax = plt.axes(projection='3d')

>>> ax.set_xlabel("Elevation")

>>> ax.set_ylabel("Latitude")

>>> ax.set_zlabel("Avg Temp")

>>> ax.scatter3D(low.elevation, low.latabs, low.avgtemp, 
label="low elevation", c="blue")
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>>> ax.scatter3D(high.elevation, high.latabs, high.
avgtemp, label="high elevation", c="red")

>>> ax.legend()

>>> plt.show()

This results in the following scatter plot:

Figure 5.18 – 3D scatter plot of latitude and elevation by average temperature

5.	 Show a regression line of latitude on the temperature data.

Use regplot to get a regression line:
>>> sns.regplot(x="latabs", y="avgtemp", color="blue", 
data=landtemps)

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature")

>>> plt.show()
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This results in the following scatter plot:

Figure 5.19 – Scatter plot of latitude by average temperature with regression line

6.	 Show separate regression lines for low and high elevation stations.

We use lmplot this time instead of regplot. The two methods have similar 
functionality. Unsurprisingly, high elevation stations appear to have both lower 
intercepts (where the line crosses the y axis) and steeper negative slopes:

>>> landtemps['elevation_group'] = np.where(landtemps.
elevation<=1000,'low','high')

>>> sns.lmplot(x="latabs", y="avgtemp", hue="elevation_
group", palette=dict(low="blue", high="red"), legend_
out=False, data=landtemps)

>>> plt.xlabel("Latitude (N or S)")

>>> plt.ylabel("Average Temperature")

>>> plt.legend(('low elevation', 'high elevation'), 
loc='lower left')

>>> plt.yticks(np.arange(-60, 40, step=20))

>>> plt.title("Latitude and Average Temperature in 2019")

>>> plt.tight_layout()

>>> plt.show()
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This results in the following scatter plot:

Figure 5.20 – Scatter plot of latitude by temperature with separate regression lines for elevation

7.	 Show some stations above the low and high elevation regression lines:

>>> high.loc[(high.latabs>38) & (high.avgtemp>=18),\

...   
['station','country','latabs','elevation','avgtemp']]

            station        country  latabs  elevation  
avgtemp

3985       LAJES_AB       Portugal      39      1,016       
18

5870  WILD_HORSE_6N  United States      39      1,439       
23

>>> low.loc[(low.latabs>47) & (low.avgtemp>=14),

...   
['station','country','latabs','elevation','avgtemp']]

                 station        country  latabs  
elevation  avgtemp



Using scatter plots to view bivariate relationships     207

1062      SAANICHTON_CDA         Canada      49         
61       18

1160     CLOVERDALE_EAST         Canada      49         
50       15

6917  WINNIBIGOSHISH_DAM  United States      47        
401       18

7220            WINIFRED  United States      48        
988       16

8.	 Show some stations below the low and high elevation regression lines:

>>> high.loc[(high.latabs<5) & (high.avgtemp<18),\

...   
['station','country','latabs','elevation','avgtemp']]

              station   country  latabs  elevation  
avgtemp

2273  BOGOTA_ELDORADO  Colombia       5      2,548       
15

2296         SAN_LUIS  Colombia       1      2,976       
11

2327         IZOBAMBA   Ecuador       0      3,058       
13

2331            CANAR   Ecuador       3      3,083       
13

2332  LOJA_LA_ARGELIA   Ecuador       4      2,160       
17

>>> low.loc[(low.latabs<50) & (low.avgtemp<-9),

...   
['station','country','latabs','elevation','avgtemp']]

                  station        country  latabs  
elevation  avgtemp

1204  FT_STEELE_DANDY_CRK         Canada      50        
856      -12

1563               BALDUR         Canada      49        
450      -11

1852       POINTE_CLAVEAU         Canada      48          
4      -11

1881     CHUTE_DES_PASSES         Canada      50        
398      -13

6627         PRESQUE_ISLE  United States      47        
183      -10



208     Using Visualizations for the Identification of Unexpected Values

Scatter plots are a great way to view the relationship between two variables. These steps 
also show how we can display that relationship for different subsets of our data.

How it works…
We can run a scatter plot by just providing column names for x and y and a data frame. 
Nothing more is required. We get the same access to the attributes of the figure and its 
axes that we get when we run histograms and boxplots—titles, axis labels, tick marks and 
labels, and so on. Note that to access attributes such as labels on an axis (rather than on 
the figure), we use set_xlabels or set_ylabels, not xlabels or ylabels.

3D plots are a little more complicated. First, we need to have imported the Axes3D module. 
Then, we set the projection of our axes to 3d—plt.axes(projection='3d'), as we 
do in Step 4. We can then use the scatter3D method for each subplot.

Since scatter plots are designed to illustrate the relationship between a regressor (the x 
variable) and a dependent variable, it is quite helpful to see a least-squares regression line 
on the scatter plot. Seaborn provides two methods for doing that: regplot and lmplot. 
I use regplot typically, since it is less resource-intensive. But sometimes, I need the 
features of lmplot. We use lmplot and its hue attribute in Step 6 to generate separate 
regression lines for each elevation level.

In Steps 7 and 8, we view some of the outliers: those stations with temperatures much 
higher or lower than the regression line for their group. We would want to investigate 
the data for the LAJES_AB station in Portugal and the WILD_HORSE_6N station in 
the United States ((high.latabs>38) & (high.avgtemp>=18)). The average 
temperatures are higher than would be predicted at the latitude and elevation level. 
Similarly, there are four stations in Canada and one in the United States that are at 
low elevation and have lower average temperatures than would be expected (low.
latabs<50) & (low.avgtemp<-9)).

There's more...
We see the expected relationship between latitude and average temperatures. 
Temperatures fall as latitude increases. But elevation is another important factor. Being 
able to visualize all three variables at once helps us identify outliers more easily. Of course, 
there are additional factors that matter for temperatures, such as warm ocean currents. 
That data is not in this dataset, unfortunately.
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Scatter plots are great for visualizing the relationship between two continuous variables. 
With some tweaking, Matplotlib's and Seaborn's scatter plot tools can also provide some 
sense of relationships between three variables—by adding a third dimension, creative 
use of colors (when the third dimension is categorical), or changing the size of the dots 
(the Using linear regression to identify data points with high influence recipe in Chapter 4, 
Identifying Missing Values and Outliers in Subsets of Data, provides an example of that).

See also
This is a chapter on visualization, and identifying unexpected values through visualizations. 
But these figures also scream out for the kind of multivariate analyses we did in Chapter 4, 
Identifying Missing Values and Outliers in Subsets of Data. In particular, linear regression 
analysis, and a close look at the residuals, would be useful for identifying outliers.

Using line plots to examine trends in 
continuous variables
A typical way to visualize values for a continuous variable over regular intervals of time is 
through a line plot, though sometimes bar charts are used for small numbers of intervals. 
We will use line plots in this recipe to display variable trends, and examine sudden 
deviations in trends and differences in values over time by groups.

Getting ready
We will work with daily Covid case data in this recipe. In previous recipes, we have used 
totals by country. The daily data provides us with the number of new cases and new deaths 
each day by country, in addition to the same demographic variables we used in other 
recipes. You will need Matplotlib installed to run the code in this recipe.

How to do it…
We use line plots to visualize trends in daily coronavirus cases and deaths. We create line 
plots by region, and stacked plots to get a better sense of how much one country can drive 
the number of cases for a whole region:

1.	 Import pandas, matplotlib, and the matplotlib dates and date  
formatting utilities:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt
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>>> import matplotlib.dates as mdates

>>> from matplotlib.dates import DateFormatter

>>> coviddaily = pd.read_csv("data/coviddaily720.csv", 
parse_dates=["casedate"])

2.	 View a couple of rows of the Covid daily data:

>>> coviddaily.sample(2, random_state=1).T
                         2478            9526
iso_code                  BRB             FRA
casedate           2020-06-11      2020-02-16
location             Barbados          France
continent       North America          Europe
new_cases                   4               0
new_deaths                  0               0
population            287,371      65,273,512
pop_density               664             123
median_age                 40              42
gdp_per_capita         16,978          38,606
hosp_beds                   6               6
region              Caribbean  Western Europe

3.	 Calculate new cases and deaths by day.

Select dates between 2020-02-01 and 2020-07-12, and then use groupby to 
summarize cases and deaths across all countries for each day:

>>> coviddailytotals = coviddaily.loc[coviddaily.
casedate.between('2020-02-01','2020-07-12')].\
...   groupby(['casedate'])[['new_cases','new_deaths']].\
...   sum().\
...   reset_index()
>>> 
>>> coviddailytotals.sample(7, random_state=1)
       casedate  new_cases  new_deaths
44   2020-03-16     12,386         757
47   2020-03-19     20,130         961
94   2020-05-05     77,474       3,998
78   2020-04-19     80,127       6,005
160  2020-07-10    228,608       5,441
11   2020-02-12      2,033          97
117  2020-05-28    102,619       5,168
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4.	 Show line plots for new cases and new deaths by day.

Show cases and deaths on different subplots:
>>> fig = plt.figure()

>>> plt.suptitle("New Covid Cases and Deaths By Day 
Worldwide in 2020")

>>> ax1 = plt.subplot(2,1,1)

>>> ax1.plot(coviddailytotals.casedate, coviddailytotals.
new_cases)

>>> ax1.xaxis.set_major_formatter(DateFormatter("%b"))

>>> ax1.set_xlabel("New Cases")

>>> ax2 = plt.subplot(2,1,2)

>>> ax2.plot(coviddailytotals.casedate, coviddailytotals.
new_deaths)

>>> ax2.xaxis.set_major_formatter(DateFormatter("%b"))

>>> ax2.set_xlabel("New Deaths")

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.88)

>>> plt.show()

This results in the following line plots:

Figure 5.21 – Daily trend lines of worldwide Covid cases and deaths
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5.	 Calculate new cases and deaths by day and region:

>>> regiontotals = coviddaily.loc[coviddaily.casedate.
between('2020-02-01','2020-07-12')].\
...   groupby(['casedate','region'])[['new_cases','new_
deaths']].\
...   sum().\
...   reset_index()
>>> 
>>> regiontotals.sample(7, random_state=1)
       casedate          region  new_cases  new_deaths
1518 2020-05-16    North Africa        634          28
2410 2020-07-11    Central Asia      3,873          26
870  2020-04-05  Western Europe     30,090       4,079
1894 2020-06-08  Western Europe      3,712         180
790  2020-03-31  Western Europe     30,180       2,970
2270 2020-07-02    North Africa      2,006          89
306  2020-02-26   Oceania / Aus          0           0

6.	 Show line plots of new cases by selected regions.

Loop through the regions in showregions. Do a line plot of the total new_cases 
by day for each region. Use the gca method to get the x axis and set the date format:

>>> showregions = ['East Asia','Southern Africa','North 
America',

...   'Western Europe']

>>> 

>>> for j in range(len(showregions)):

...   rt = regiontotals.loc[regiontotals.
region==showregions[j],

...     ['casedate','new_cases']]

...   plt.plot(rt.casedate, rt.new_cases, 
label=showregions[j])

... 

>>> plt.title("New Covid Cases By Day and Region in 
2020")

>>> plt.gca().get_xaxis().set_major_
formatter(DateFormatter("%b"))

>>> plt.ylabel("New Cases")

>>> plt.legend()

>>> plt.show()
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This results in the following line plots:

Figure 5.22 – Daily trend lines of Covid cases by region

7.	 Use a stacked plot to examine the uptick in Southern Africa more closely.

See whether one country (South Africa) in Southern Africa is driving the trend line. 
Create a data frame (af) for new_cases by day for Southern Africa (the region). 
Add a series for new_cases in South Africa (the country) to the af data frame. 
Then, create a new series in the af data frame for Southern Africa cases minus 
South African cases (afcasesnosa). Select only data from April or later, since 
that is when we start to see an increase in new cases:

>>> af = regiontotals.loc[regiontotals.region=='Southern 
Africa',

...   ['casedate','new_cases']].rename(columns={'new_
cases':'afcases'})

>>> sa = coviddaily.loc[coviddaily.location=='South 
Africa',

...   ['casedate','new_cases']].rename(columns={'new_
cases':'sacases'})

>>> af = pd.merge(af, sa, left_on=['casedate'], right_
on=['casedate'], how="left")



214     Using Visualizations for the Identification of Unexpected Values

>>> af.sacases.fillna(0, inplace=True)

>>> af['afcasesnosa'] = af.afcases-af.sacases

>>> afabb = af.loc[af.casedate.between('2020-04-
01','2020-07-12')]

>>> fig = plt.figure()

>>> ax = plt.subplot()

>>> ax.stackplot(afabb.casedate, afabb.sacases, afabb.
afcasesnosa, labels=['South Africa','Other Southern 
Africa'])

>>> ax.xaxis.set_major_formatter(DateFormatter("%m-%d"))

>>> plt.title("New Covid Cases in Southern Africa")

>>> plt.tight_layout()

>>> plt.legend(loc="upper left")

>>> plt.show()

This results in the following stacked plot:

Figure 5.23 – Stacked daily trends of cases in South Africa and the rest of that region (Southern Africa)

These steps show how to use line plots to examine trends in a variable over time, and how 
to display trends for different groups on one figure.
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How it works...
We need to do some manipulation of the daily Covid data before we do the line charts. We 
use groupby in Step 3 to summarize new cases and deaths over all countries for each day. 
We use groupby in Step 5 to summarize cases and deaths for each region and day.

In Step 4, we set up our first subplot with plt.subplot(2,1,1). That will give us a 
figure with two rows and one column. The 1 for the third argument indicates that this 
subplot will be the first, or top, subplot. We can pass a data series for date and for the values 
for the y axis. So far, this is pretty much what we have done with the hist, scatterplot, 
boxplot, and violinplot methods. But since we are working with dates here, we take 
advantage of Matplotlib's utilities for date formatting and indicate that we want only the 
month to show, with xaxis.set_major_formatter(DateFormatter("%b")). 
Since we are working with subplots, we use set_xlabel rather than xlabel to indicate 
the label we want for the x axis.

We show line plots for four selected regions in Step 6. We do this by calling plot for each 
region that we want plotted. We could have done it for all of the regions, but it would have 
been too difficult to view.

We have to do some additional manipulation in Step 7 to pull the South African (the 
country) cases out of the cases for Southern Africa (the region). Once we do that, we can 
do a stacked plot with the Southern Africa cases (minus South Africa) and South Africa. 
This figure suggests that the increase in cases in Southern Africa is almost completely 
driven by increases in South Africa.

There's more…
The figure produced in Step 6 reveals a couple of potential data issues. There are unusual 
spikes in mid-February in East Asia and in late April in North America. It is important to 
examine these anomalies to see if there is a data collection error.

It is difficult to miss how much the trends differ by region. There are substantive reasons 
for this, of course. The different lines reflect what we know to be reality about different 
rates of spread by country and region. However, it is worth exploring any significant 
change in the direction or slope of trend lines to make sure that we can confirm that the 
data is accurate. We want to be able to explain what happened in Western Europe in early 
April and in North America and Southern Africa in early June. One question is whether 
the trends reflect changes in the whole region (such as with the decline in Western Europe 
in early April) or for one or two large countries in the region (the United States in North 
America and South Africa in Southern Africa).
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See also
We cover groupby in more detail in Chapter 7, Fixing Messy Data When Aggregating. 
We go over merging data, as we did in Step 7, in Chapter 8, Addressing Data Issues when 
Combining DataFrames.

Generating a heat map based on a correlation 
matrix
The correlation between two variables is a measure of how much they move together. A 
correlation of 1 means that the two variables are perfectly positively correlated. As one 
variable increases in size, so does the other. A value of -1 means that they are perfectly 
negatively correlated. As one variable increases in size, the other decreases. Correlations 
of 1 or -1 only rarely happen, but correlations above 0.5 or below -0.5 might still be 
meaningful. There are several tests that can tell us whether the relationship is statistically 
significant (such as Pearson, Spearman, and Kendall). Since this is a chapter on 
visualizations, we will focus on viewing important correlations.

Getting ready
You will need Matplotlib and Seaborn installed to run the code in this recipe. Both can 
be installed by using pip, with the pip install matplotlib and pip install 
seaborn commands.

How to do it…
We first show part of a correlation matrix of the Covid data, and the scatter plots of some 
key relationships. We then show a heat map of the correlation matrix to visualize the 
correlations between all variables:

1.	 Import matplotlib and seaborn, and load the Covid totals data:

>>> import pandas as pd

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import seaborn as sns

>>> covidtotals = pd.read_csv("data/covidtotals.csv", 
parse_dates=["lastdate"])
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2.	 Generate a correlation matrix.

View part of the matrix:
>>> corr = covidtotals.corr()

>>> corr[['total_cases','total_deaths','total_cases_
pm','total_deaths_pm']]

                 total_cases  total_deaths  total_cases_
pm  total_deaths_pm

total_cases             1.00          0.93            
0.23             0.26

total_deaths            0.93          1.00            
0.20             0.41

total_cases_pm          0.23          0.20            
1.00             0.49

total_deaths_pm         0.26          0.41            
0.49             1.00

population              0.34          0.28           
-0.04            -0.00

pop_density            -0.03         -0.03            
0.08             0.02

median_age              0.12          0.17            
0.22             0.38

gdp_per_capita          0.13          0.16            
0.58             0.37

hosp_beds              -0.01         -0.01            
0.02             0.09

3.	 Show scatter plots of median age and gross domestic product (GDP) per capita by 
cases per million.

Indicate that we want the subplots to share y axis values with sharey=True:
>>> fig, axes = plt.subplots(1,2, sharey=True)

>>> sns.regplot(covidtotals.median_age, covidtotals.
total_cases_pm, ax=axes[0])

>>> sns.regplot(covidtotals.gdp_per_capita, covidtotals.
total_cases_pm, ax=axes[1])

>>> axes[0].set_xlabel("Median Age")

>>> axes[0].set_ylabel("Cases Per Million")

>>> axes[1].set_xlabel("GDP Per Capita")
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>>> axes[1].set_ylabel("")

>>> plt.suptitle("Scatter Plots of Age and GDP with Cases 
Per Million")

>>> plt.tight_layout()

>>> fig.subplots_adjust(top=0.92)

>>> plt.show()

This results in the following scatter plots:

Figure 5.24 – Scatter plots of median age and GDP by cases per million side by side

4.	 Generate a heat map of the correlation matrix:

>>> sns.heatmap(corr, xticklabels=corr.columns, 
yticklabels=corr.columns, cmap="coolwarm")

>>> plt.title('Heat Map of Correlation Matrix')

>>> plt.tight_layout()

>>> plt.show()
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This results in the following heat map:

Figure 5.25 – Heat map of Covid data, with strongest correlations in red and peach

Heat maps are a great way to visualize how all key variables in our data frame are 
correlated with one another.

How it works…
The corr method of a data frame generates correlation coefficients of all numeric 
variables by all other numeric variables. We display part of that matrix in Step 2. In Step 
3, we do scatter plots of median age by cases per million, and GDP per capita by cases per 
million. These plots give a sense of what it looks like when the correlation is 0.22 (median 
age and cases per million) and when it is 0.58 (GDP per capita and cases per million). 
There is not much of a relationship between median age and cases per million. There is 
more of a relationship between GDP per capita and cases per million.
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The heat map provides a visualization of the correlation matrix we created in Step 2. All of 
the red squares are correlations of 1.0 (which is the correlation of the variable with itself). 
The slightly lighter red squares are between total_cases and total_deaths (0.93). 
The peach squares (those with correlations between 0.55 and 0.65) are also interesting. 
GDP per capita, median age, and hospital beds per 1,000 people are positively correlated 
with each other, and GDP per capita is positively correlated with cases per million.

There's more…
I find it helpful to always have a correlation matrix or heat map close by when I am doing 
exploratory analysis or statistical modeling. I understand the data much better when I am 
able to keep these bivariate relationships in mind.

See also
We go over tools for examining the relationship between two variables in more detail in 
the Identifying outliers and unexpected values in bivariate relationships recipe in Chapter 4, 
Identifying Missing Values and Outliers in Subsets of Data.



6
Cleaning and 

Exploring Data with 
Series Operations

We can view the recipes in the first few chapters of this book as, essentially, diagnostic. 
We imported some raw data and then generated descriptive statistics about key variables. 
This gave us a sense of how the values for those variables were distributed and helped us 
identify outliers and unexpected values. We then examined the relationships between 
variables to look for patterns, and deviations from those patterns, including logical 
inconsistencies. In short, our primary goal so far has been to figure out what is going on 
with our data.

The recipes in this chapter demonstrate how to use pandas methods to update series 
values once we have figured out what needs to be done. Ideally, we need to take the 
time to carefully examine our data before manipulating the values of our variables. We 
should have measures of central tendency, indicators of distribution shape and spread, 
correlations, and visualizations in front of us before we update the variable's values, or 
before creating new variables based on them. We should also have a good sense of outliers 
and missing values, understand how they affect summary statistics, and have preliminary 
plans for imputing new values or otherwise adjusting them.
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Having done that, we will be ready to perform some data cleaning tasks. These tasks  
usually involve working directly with a pandas series object, regardless of whether we  
are changing values for an existing series or creating a new one. This often involves 
changing values conditionally, altering only those values that meet specific criteria, or 
assigning multiple possible values based on existing values for that series, or values for 
another series.

How we assign such values varies significantly by the series' data type, either for the series to 
be changed or a criterion series. Querying and cleaning string data bears little resemblance 
to those tasks containing date or numeric data. With strings, we often need to evaluate 
whether some string fragment does or does not have a certain value, strip the string of some 
meaningless characters, or convert the value into a numeric or date value. With dates, we 
might need to look for invalid or out-of-range dates, or even calculate date intervals.

Fortunately, pandas series have an enormous number of tools for manipulating string, 
numeric, and date values. We will explore many of the most useful tools in this chapter. 
Specifically, we will cover the following recipes:

•	 Getting values from a pandas series

•	 Showing summary statistics for a pandas series

•	 Changing series values

•	 Changing series values conditionally

•	 Evaluating and cleaning string series data

•	 Working with dates

•	 Identifying and cleaning missing data

•	 Missing value imputation with k-nearest neighbor

Let's get started!

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Getting values from a pandas series
A pandas series is a one-dimensional array-like structure that takes a NumPy data type. 
Each series also has an index; that is, an array of data labels. If an index is not specified 
when the series is created, it will be the default index of 0 through N-1.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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There are several ways to create a pandas series, including from a list, 
dictionary, NumPy array, or a scalar. In our data cleaning work, we will most 
frequently be accessing data series that contain columns of data frames, using 
either attribute access (dataframename.columname) or bracket notation 
(dataframename['columnname']). Attribute access cannot be used to set values for 
series, but bracket notation will work for all series operations.

In this recipe, we'll explore several ways we can get values from a pandas series. These 
techniques are very similar to the methods we used to get rows from a pandas DataFrame, 
which we covered in the Selecting rows recipe of Chapter 3, Taking the Measure of Your Data.

Getting ready
We will be working with data from the National Longitudinal Survey (NLS) in this 
recipe – primarily with data about each respondent's overall high school Grade Point 
Average (GPA).

Data note
The National Longitudinal Survey of Youth is conducted by the United States 
Bureau of Labor Statistics. This survey started with a cohort of individuals in 
1997 who were born between 1980 and 1985, with annual follow-ups each year 
until 2017. Survey data is available for public use at nlsinfo.org.

How to do it…
For this recipe, we must select series values using the bracket operator and the loc and 
iloc accessors. Let's get started:

1.	 Import pandas and the required NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Create a series from the GPA overall column.

Show the first few values and associated index labels using head. The default 
number of values shown for head is 5. The index for the series is the same as the 
DataFrame's index, which is personid:

>>> gpaoverall = nls97.gpaoverall

>>> type(gpaoverall)

http://nlsinfo.org
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<class 'pandas.core.series.Series'>

>>> gpaoverall.head()

personid

100061   3.06

100139    nan

100284    nan

100292   3.45

100583   2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.index

Int64Index([100061, 100139, 100284, 100292, 100583, 
100833, 100931, 101089,

            101122, 101132,

            ...

            998997, 999031, 999053, 999087, 999103, 
999291, 999406, 999543,

            999698, 999963],

           dtype='int64', name='personid', length=8984)

3.	 Select GPA values using the bracket operator.

Use slicing to create a series with every value from the first value to the fifth. 
Notice that we get the same values that we got with the head method in step 2. Not 
including a value to the left of the colon in gpaoverall[:5] means that it must 
start from the beginning. gpaoverall[0:5] will give the same results. Similarly, 
gpaoverall[-5:] shows the values from the fifth to the last position. This 
produces the same results as gpaoverall.tail():

>>> gpaoverall[:5]

personid

100061   3.06

100139    nan

100284    nan

100292   3.45

100583   2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.tail()

personid

999291   3.11
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999406   2.17

999543    nan

999698    nan

999963   3.78

Name: gpaoverall, dtype: float64

>>> gpaoverall[-5:]

personid

999291   3.11

999406   2.17

999543    nan

999698    nan

999963   3.78

Name: gpaoverall, dtype: float64

4.	 Select values using the loc accessor.

We pass an index label (a value for personid) to the loc accessor to return a 
scalar. We get a series if we pass a list of index labels, regardless of whether there's 
one or more. We can even pass a range, separated by a colon. We'll do this here with 
gpaoverall.loc[100061:100833]:

>>> gpaoverall.loc[100061]

3.06

>>> gpaoverall.loc[[100061]]

personid

100061   3.06

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[[100061,100139,100284]]

personid

100061   3.06

100139    nan

100284    nan

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[100061:100833]

personid

100061   3.06

100139    nan

100284    nan
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100292   3.45

100583   2.91

100833   2.46

Name: gpaoverall, dtype: float64

5.	 Select values using the iloc accessor.

iloc differs from loc in that it takes a list of row numbers rather than labels. 
It works similarly to bracket operator slicing. In this step, we pass a one-item 
list with the value of 0. We then pass a five-item list, [0,1,2,3,4], to return a 
series containing the first five values. We get the same result if we pass [:5] to the 
accessor:

>>> gpaoverall.iloc[[0]]

personid

100061   3.06

Name: gpaoverall, dtype: float64

>>> gpaoverall.iloc[[0,1,2,3,4]]

personid

100061   3.06

100139    nan

100284    nan

100292   3.45

100583   2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.iloc[:5]

personid

100061   3.06

100139    nan

100284    nan

100292   3.45

100583   2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall.iloc[-5:]

personid

999291   3.11

999406   2.17

999543    nan
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999698    nan

999963   3.78

Name: gpaoverall, dtype: float64

Each of these ways of accessing pandas series values – the bracket operator, the loc 
accessor, and the iloc accessor – have many use cases, particularly the loc accessor.

How it works...
We used the [] bracket operator in step 3 to perform standard Python-like slicing to create a 
series. This operator allows us to easily select data based on position using a list, or a range of 
values indicated with slice notation. This notation takes the form of [start:end:step], where 1 
is assumed for step if no value is provided. When a negative number is used for start, it 
represents the number of rows from the end of the original series.

The loc accessor, used in step 4, selects data by index labels. Since personid is the index 
for the series, we can pass a list of one or more personid values to the loc accessor 
to get a series with those labels and associated GPA values. We can also pass a range of 
labels to the accessor, which will return a series with GPA values from the index label to 
the left of the colon and the index label to the right inclusive. So, here, gpaoverall.
loc[100061:100833] returns a series with GPA values for personid between 
100061 and 100833, including those two values.

As shown in step 5, the iloc accessor takes row positions rather than index labels. We 
can pass either a list of integers or a range using slicing notation.

Showing summary statistics for a pandas 
series
There are a large number of pandas series methods for generating summary statistics. 
We can easily get the mean, median, maximum, or minimum values for a series with the 
mean, median, max, and min methods, respectively. The incredibly handy describe 
method will return all of these statistics, as well as several others. We can also get the 
series value at any percentile using quantile. These methods can be used across all 
values for a series, or just for selected values. This will be demonstrated in this recipe.

Getting ready
We will continue working with the overall GPA column from the NLS.
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How to do it...
Let's take a good look at the distribution of the overall GPA for the DataFrame and for the 
selected rows. To do this, follow these steps:

1.	 Import pandas and numpy and load the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Gather some descriptive statistics:

>>> gpaoverall = nls97.gpaoverall

>>> gpaoverall.mean()

2.8184077281812145

>>> gpaoverall.describe()

count   6,004.00

mean        2.82

std         0.62

min         0.10

25%         2.43

50%         2.86

75%         3.26

max         4.17

Name: gpaoverall, dtype: float64

>>> gpaoverall.quantile(np.arange(0.1,1.1,0.1))

0.10   2.02

0.20   2.31

0.30   2.52

0.40   2.70

0.50   2.86

0.60   3.01

0.70   3.17

0.80   3.36

0.90   3.60

1.00   4.17

Name: gpaoverall, dtype: float64
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3.	 Show descriptives for a subset of the series:

>>> gpaoverall.loc[gpaoverall.between(3,3.5)].head(5)

personid

100061   3.06

100292   3.45

101526   3.37

101527   3.26

102125   3.14

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[gpaoverall.between(3,3.5)].sum()

1679

>>> gpaoverall.loc[(gpaoverall<2) | (gpaoverall>4)].
sample(5, random_state=2)

personid

932782   1.90

561335   1.82

850001   4.10

292455   1.97

644271   1.97

Name: gpaoverall, dtype: float64

>>> gpaoverall.loc[gpaoverall>gpaoverall.
quantile(0.99)].\

...   agg(['count','min','max'])

count   60.00

min      3.98

max      4.17

Name: gpaoverall, dtype: float64

4.	 Test for a condition across all values.

Check whether any GPA values are above 4 and if all the values are above or equal 
to 0. Also, count how many values are missing:

>>> (gpaoverall>4).any() # any person has GPA greater 
than 4

True

>>> (gpaoverall>=0).all() # all people have GPA greater 
than or equal 0

False
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>>> (gpaoverall>=0).sum() # of people with GPA greater 
than or equal 0

6004

>>> (gpaoverall==0).sum() # of people with GPA equal to 0

0

>>> gpaoverall.isnull().sum() # of people with missing 
value for GPA

2980

5.	 Show descriptives for a subset of the series based on values in a different column.

Show the mean high school GPA for individuals with a wage income in 2016 that's 
above the 75th percentile, as well as for those with a wage income that's below the 
25th percentile:

>>> nls97.loc[nls97.wageincome > nls97.wageincome.
quantile(0.75),'gpaoverall'].mean()

3.0804171011470256

>>> nls97.loc[nls97.wageincome < nls97.wageincome.
quantile(0.25),'gpaoverall'].mean()

2.720143415906124

6.	 Show descriptives and frequencies for a series containing categorical data:

>>> nls97.maritalstatus.describe()

count        6672

unique          5

top       Married

freq         3066

Name: maritalstatus, dtype: object

>>> nls97.maritalstatus.value_counts()

Married          3066

Never-married    2766

Divorced          663

Separated         154

Widowed            23

Name: maritalstatus, dtype: int64

Once we have a series, we can use a wide variety of pandas tools to calculate descriptive 
statistics for all or part of that series.
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How it works…
The series describe method is quite useful as it gives us a good sense of the central 
tendency and spread of continuous variables. It is also often helpful to see the value at 
each decile. We obtained this in step 2 by passing a list of values ranging from 0.1 to 1.1 to 
the quantile method of the series.

We can use these methods on subsets of a series. In step 3, we obtained the count of 
GPA values between 3 and 3.5. We can also select values based on their relationship to 
a summary statistic; for example, gpaoverall>gpaoverall.quantile(0.99) 
selects values from the GPA that are greater than the 99th percentile value. We then pass 
the resulting series to the agg method using method chaining, which returns multiple 
summary statistics (agg(['count','min','max'])).

Sometimes, all we need to do is test whether some condition is true across all the values 
in a series. The any and all methods are useful for this. any returns True when at least 
one value in the series satisfies the condition (such as (gpaoverall>4).any()).  all 
returns True when all the values in the series satisfy the condition. When we chain the 
test condition with sum ((gpaoverall>=0).sum()), we get a count of all the True 
values since pandas interprets True values as 1 when performing numeric operations.

(gpaoverall>4) is a shorthand for creating a Boolean series with the same index  
as gpaoverall. It has a value of True when gpaoverall is greater than 4, and  
False otherwise:

>>> (gpaoverall>4)

personid

100061    False

100139    False

100284    False

100292    False

100583    False

          ...  

999291    False

999406    False

999543    False

999698    False

999963    False

Name: gpaoverall, Length: 8984, dtype: bool
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We often need to generate summary statistics for a series that has been filtered by another 
series. We did this in step 5 by calculating the mean high school GPA for individuals 
with a wage income that's above the third quartile, as well as for individuals with a wage 
income that's below the first quartile.

The describe method is most useful with continuous variables, such as gpaoverall;, 
but it also provides useful information when used with categorical variables, such  
as maritalstatus (see step 6). This returns the count of non-missing values, the 
number of different values, the category that occurs most frequently, and the frequency  
of that category.

However, when working with categorical data, the value_counts method is more 
frequently used. It provides the frequency of each category in the series.

There's more…
Working with series is so fundamental to pandas data cleaning tasks that data analysts 
quickly find that the tools that were used in this recipe are part of their daily data cleaning 
workflow. Typically, not much time elapses between the initial data import stage and using 
series methods such as describe, mean, sum, isnull, all, and any.

See also
This chapter is just an introduction to how to generate statistics and test for conditions 
with series. The recipes in Chapter 3, Taking the Measure of Your Data, go into this in more 
detail. We are also only scratching the surface on aggregating data in this chapter. We'll go 
through this more thoroughly in Chapter 7, Fixing Messy Data when Aggregating.

Changing series values
During the data cleaning process, we often need to change the values in a data series or 
create a new one. We can change all the values in a series, or just the values in a subset 
of our data. Most of the techniques we have been using to get values from a series can be 
used to update series values, though some minor modifications are necessary.

Getting ready
We will work with the overall high school GPA column from the National Longitudinal 
Survey in this recipe.
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How to do it…
We can change the values in a pandas series for all rows, as well as for selected rows. We 
can update a series with scalars, by performing arithmetic operations on other series, and 
by using summary statistics. Let's take a look at this:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Edit all the values based on a scalar.

Multiply gpaoverall by 100:
>>> nls97.gpaoverall.head()

personid

100061   3.06

100139    nan

100284    nan

100292   3.45

100583   2.91

Name: gpaoverall, dtype: float64

>>> gpaoverall100 = nls97['gpaoverall'] * 100

>>> gpaoverall100.head()

personid

100061   306.00

100139      nan

100284      nan

100292   345.00

100583   291.00

Name: gpaoverall, dtype: float64

3.	 Set values using index labels.

Use the loc accessor to specify which values to change by index label:
>>> nls97.loc[[100061], 'gpaoverall'] = 3

>>> nls97.loc[[100139,100284,100292],'gpaoverall'] = 0

>>> nls97.gpaoverall.head()

personid
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100061   3.00

100139   0.00

100284   0.00

100292   0.00

100583   2.91

Name: gpaoverall, dtype: float64

4.	 Set values using an operator on more than one series.

Use the + operator to calculate the number of children, which is the sum of children 
who live at home and children who do not live at home:

>>> nls97['childnum'] = nls97.childathome + nls97.
childnotathome

>>> nls97.childnum.value_counts().sort_index()

0.00       23

1.00     1364

2.00     1729

3.00     1020

4.00      420

5.00      149

6.00       55

7.00       21

8.00        7

9.00        1

12.00       2

Name: childnum, dtype: int64

5.	 Set the values for a summary statistic using index labels.

Use the loc accessor to select personid values from 100061 to 100292:
>>> nls97.loc[100061:100292,'gpaoverall'] = nls97.
gpaoverall.mean()

>>> nls97.gpaoverall.head()

personid

100061   2.82

100139   2.82

100284   2.82
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100292   2.82

100583   2.91

Name: gpaoverall, dtype: float64

6.	 Set the values using position.

Use the iloc accessor to select by position. An integer, or slice notation 
(start:end:step), can be used to the left of the comma to indicate the rows 
where the values should be changed. An integer is used to the right of the comma 
to select the column. The gpaoverall column is in the 14th position (which is 13 
since the column index is zero-based):

>>> nls97.iloc[0, 13] = 2

>>> nls97.iloc[1:4, 13] = 1

>>> nls97.gpaoverall.head()

personid

100061   2.00

100139   1.00

100284   1.00

100292   1.00

100583   2.91

Name: gpaoverall, dtype: float64

7.	 Set the GPA values after filtering.

Change all GPA values over 4 to 4:
>>> nls97.gpaoverall.nlargest()

personid

312410   4.17

639701   4.11

850001   4.10

279096   4.08

620216   4.07

Name: gpaoverall, dtype: float64

>>> nls97.loc[nls97.gpaoverall>4, 'gpaoverall'] = 4

>>> nls97.gpaoverall.nlargest()

personid

112756   4.00
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119784   4.00

160193   4.00

250666   4.00

271961   4.00

Name: gpaoverall, dtype: float64

The preceding steps showed us how to update series values with scalars, arithmetic 
operations, and summary statistics values.

How it works…
The first thing to observe is that, in step 2, pandas vectorizes the division by a scalar. It 
knows that we want to apply the scalar to all rows. nls97['gpaoverall'] * 100 
essentially creates a temporary series with all values set to 100, and with the same index as 
the gpaoverall series. It then multiplies gpaoverall by that series of 100 values. This 
is known as broadcasting.

We can use a lot of what we learned in the first recipe of this chapter, about how to 
get values from a series, to select particular values to update. The main difference 
here is that we use the loc and iloc accessors of the DataFrame (nls97.loc) 
rather than the series (nls97.gpaoverall.loc). This is to avoid the dreaded 
SettingwithCopyWarning, which warns us about setting values on a copy of a 
DataFrame. nls97.gpaoverall.loc[[100061]] = 3 triggers that warning, while 
nls97.loc[[100061], 'gpaoverall'] = 3 does not. 

In step 4, we saw how pandas handles numeric operations with two or more series. 
Operations such as addition, subtraction, multiplication, and division are very much like 
the operations performed on scalars in standard Python, only with vectorization. (This is 
made possible by pandas' index alignment. Remember that a series in a DataFrame will 
have the same index.) If you are familiar with NumPy, then you already have a good idea 
of how this works.

There's more…
It is useful to notice that nls97.loc[[100061], 'gpaoverall'] returns a series, 
while nls97.loc[[100061], ['gpaoverall']] returns a DataFrame:

>>> type(nls97.loc[[100061], 'gpaoverall'])

<class 'pandas.core.series.Series'>

>>> type(nls97.loc[[100061], ['gpaoverall']])

<class 'pandas.core.frame.DataFrame'>
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If the second argument of the loc accessor is a string, it will return a series. If it is a list, 
even if the list contains only one item, it will return a DataFrame.

For any of the operations we discussed in this recipe, it is good to be mindful of 
how pandas treats missing values. For example, in step 3, if either childathome or 
childnotathome is missing, then the operation will return missing. We'll discuss 
how to handle situations like this in the Identifying and cleaning missing data recipe in  
this chapter.

See also
Chapter 3, Taking the Measure of Your Data, goes into greater detail on the use of the 
loc and iloc accessors, particularly in the Selecting rows and Selecting and organizing 
columns recipes.

Changing series values conditionally
So, changing series values is often more complicated than the previous recipe suggests. 
We often need to set series values based on the values of one or more other series for that 
row of data. This is complicated further when we need to set series values based on values 
from other rows; say, a previous value for an individual, or the mean for a subset. We will 
deal with these complications in this and the next recipe.

Getting ready
We will work with land temperature data and the National Longitudinal Survey data in 
this recipe.

Data note
The land temperature dataset contains the average temperature readings 
(in Celsius) in 2019 from over 12,000 stations across the world, though the 
majority of the stations are in the United States. The raw data was retrieved 
from the Global Historical Climatology Network integrated database. It has 
been made available for public use by the United States National Oceanic and 
Atmospheric Administration at https://www.ncdc.noaa.gov/
data-access/land-based-station-data/land-based-
datasets/global-historical-climatology-network-
monthly-version-4.

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
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How to do it…
We will use NumPy's where and select methods to assign series values based on the 
values of that series, the values of other series, and summary statistics. We'll then use the 
lambda and apply functions to construct more complicated criteria for assignment. 
Let's get started:

1.	 Import pandas and numpy, and then load the NLS and land temperatures data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

>>> landtemps = pd.read_csv("data/landtemps2019avgs.csv")

2.	 Use NumPy's where function to create a categorical series containing two values.

First, do a quick check of the distribution of elevation values:
>>> landtemps.elevation.quantile(np.arange(0.2,1.1,0.2))

0.20      48.00

0.40     190.50

0.60     393.20

0.80   1,066.80

1.00   9,999.00

Name: elevation, dtype: float64

>>> landtemps['elevation_group'] = np.where(landtemps.
elevation>landtemps.elevation.quantile(0.8),'High','Low')

>>> landtemps.elevation_group = landtemps.elevation_
group.astype('category')

>>> landtemps.groupby(['elevation_group'])['elevation'].\

agg(['count','min','max'])

                 count      min      max

elevation_group                         

High              2409 1,067.00 9,999.00

Low               9686  -350.00 1,066.80

3.	 Use NumPy's where method to create a categorical series containing three values.
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Set values above the 80th percentile to 'High', values above the median and up to 
the 80th percentile to 'Medium', and the remaining values to 'Low':

>>> landtemps.elevation.median()

271.3

>>> landtemps['elevation_group'] = np.where(landtemps.
elevation>

...   landtemps.elevation.quantile(0.8),'High',np.
where(landtemps.elevation>

...   landtemps.elevation.median(),'Medium','Low'))

>>> landtemps.elevation_group = landtemps.elevation_
group.astype('category')

>>> landtemps.groupby(['elevation_group'])['elevation'].
agg(['count','min','max'])

                 count      min      max

elevation_group                         

High              2409 1,067.00 9,999.00

Low               6056  -350.00   271.30

Medium            3630   271.40 1,066.80

4.	 Use NumPy's select method to evaluate a list of conditions.

First, set up a list of test conditions and another list for the result. We want 
individuals with a GPA less than 2 and no degree earned to be in one category, 
individuals with no degree but with a higher GPA to be in a second category, 
individuals with a degree but a low GPA in a third category, and the remaining 
individuals in a fourth category:

>>> test = [(nls97.gpaoverall<2) & (nls97.
highestdegree=='0. None'), nls97.highestdegree=='0. 
None', nls97.gpaoverall<2]

>>> result = ['1. Low GPA and No Diploma','2. No 
Diploma','3. Low GPA']

>>> nls97['hsachieve'] = np.select(test, result, '4. Did 
Okay')

>>> nls97[['hsachieve','gpaoverall','highestdegree']].
head()

              hsachieve  gpaoverall   highestdegree

personid                                           

100061      4. Did Okay        3.06  2. High School

100139      4. Did Okay         nan  2. High School
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100284    2. No Diploma         nan         0. None

100292      4. Did Okay        3.45    4. Bachelors

100583      4. Did Okay        2.91  2. High School

>>> nls97.hsachieve.value_counts().sort_index()

1. Low GPA and No Diploma      95

2. No Diploma                 858

3. Low GPA                    459

4. Did Okay                  7572

Name: hsachieve, dtype: int64

5.	 Use lambda to test several columns in one statement.

The colenr columns have the enrollment status in February and October of each 
year for each person. We want to test whether any of the college enrollment columns 
have a value of 3. 4-year college. Use filter to create a DataFrame of the 
colenr columns. Then, use apply to call a lambda function that tests the first 
character of each colenr column. (We can just look at the first character and see 
whether it has a value of 3.) That is then passed to any to evaluate whether any 
(one or more) of the columns has a 3 as its first character. (We only show values 
for college enrollment between 2000 and 2004 due to space considerations, but we 
check all the values for the college college enrollment columns between 1997 and 
2017.) This can be seen in the following code:

>>> nls97.loc[[100292,100583,100139], 
'colenrfeb00':'colenroct04'].T

personid                100292             100583           
100139

colenrfeb00    1. Not enrolled    1. Not enrolled  1. Not 
enrolled

colenroct00  3. 4-year college    1. Not enrolled  1. Not 
enrolled

colenrfeb01  3. 4-year college    1. Not enrolled  1. Not 
enrolled

colenroct01  3. 4-year college  3. 4-year college  1. Not 
enrolled

colenrfeb02  3. 4-year college  3. 4-year college  1. Not 
enrolled

colenroct02  3. 4-year college    1. Not enrolled  1. Not 
enrolled
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colenrfeb03  3. 4-year college    1. Not enrolled  1. Not 
enrolled

colenroct03  3. 4-year college    1. Not enrolled  1. Not 
enrolled

colenrfeb04  3. 4-year college    1. Not enrolled  1. Not 
enrolled

colenroct04    1. Not enrolled    1. Not enrolled  1. Not 
enrolled

>>> nls97['baenrollment'] = nls97.filter(like="colenr").\

...   apply(lambda x: x.str[0:1]=='3').\

...   any(axis=1)

>>> 

>>> nls97.loc[[100292,100583,100139], ['baenrollment']].T

personid      100292  100583  100139

baenrollment    True    True   False

>>> nls97.baenrollment.value_counts()

False    5085

True     3899

Name: baenrollment, dtype: int64

6.	 Create a function that assigns a value based on the value of several series.

The getsleepdeprivedreason function creates a variable that categorizes 
survey respondents by the possible reasons why they might get fewer than 6 
hours of sleep a night. We base this on NLS survey responses about a respondent's 
employment status, the number of children who live with the respondent, wage 
income, and highest grade completed:

>>> def getsleepdeprivedreason(row):

...   sleepdeprivedreason = "Unknown"

...   if (row.nightlyhrssleep>=6):

...     sleepdeprivedreason = "Not Sleep Deprived"

...   elif (row.nightlyhrssleep>0):

...     if (row.weeksworked16+row.weeksworked17 < 80):

...       if (row.childathome>2):

...         sleepdeprivedreason = "Child Rearing"

...       else:

...         sleepdeprivedreason = "Other Reasons"

...     else:
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...       if (row.wageincome>=62000 or row.
highestgradecompleted>=16):

...         sleepdeprivedreason = "Work Pressure"

...       else:

...         sleepdeprivedreason = "Income Pressure"

...   else:

...     sleepdeprivedreason = "Unknown"

...   return sleepdeprivedreason

... 

7.	 Use apply to run the function for all rows:

>>> nls97['sleepdeprivedreason'] = nls97.
apply(getsleepdeprivedreason, axis=1)

>>> nls97.sleepdeprivedreason = nls97.
sleepdeprivedreason.astype('category')

>>> nls97.sleepdeprivedreason.value_counts()

Not Sleep Deprived    5595

Unknown               2286

Income Pressure        462

Work Pressure          281

Other Reasons          272

Child Rearing           88

Name: sleepdeprivedreason, dtype: int64

The preceding steps demonstrate several techniques we can use to set the values for a 
series conditionally.

How it works…
If you have used if-then-else statements in SQL or Microsoft Excel, then NumPy's 
where should be familiar to you. It follows the form of where (test condition, clause if 
True, clause if False). In step 2, we tested whether the value of elevation for each row 
is greater than the value at the 80th percentile. If True, we return 'High'. We return 
'Low' otherwise. This is a basic if-then-else construction.

Sometimes, we need to nest a test within a test. We did this in step 3 to create three 
elevation groups; high, medium, and low. Instead of a simple statement in the False 
section (after the second comma), we used another where statement. This changes it 
from an else clause to an else if clause. It takes the form of where(test condition, 
statement if True, where(test condition, statement if True, statement if False)).
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It is possible to add many more nested where statements, though that is not advisable. 
When we need to evaluate a slightly more complicated test, NumPy's select method 
comes in handy. In step 4, we passed a list of tests, as well as a list of results of that test, to 
select. We also provided a default value of "4. Did Okay" for any case where none 
of the tests was True. When multiple tests are True, the first one that is True is used.

Once the logic becomes even more complicated, we can use apply. The DataFrame 
apply method can be used to send each row of a DataFrame to a function by specifying 
axis=1. In step 5, we used apply to call a lambda function that tests whether the first 
character of each college enrollment value is 3. But first, we used the filter DataFrame 
method to select all the college enrollment columns. We explored how to select columns 
from a DataFrame in Chapter 3, Taking the Measure of Your Data.

In steps 6 and 7, we created a series that categorizes reasons for being sleep deprived based 
on weeks worked, the number of children living with the respondent, wage income, and 
highest grade completed. If the respondent did not work most of 2016 and 2017, and if 
more than two children lived with them, sleepdeprivedreason is set to "Child 
Rearing". If the respondent did not work most of 2016 and 2017 and two or fewer 
children lived with them, sleepdeprivedreason is set to "Other Reasons". If they 
worked most of 2016 and 2017, then sleepdeprivedreason is "Work Pressure" if 
she had either a high salary or completed 4 years of college, and is "Income Pressure" 
otherwise. Of course, these categories are somewhat contrived, but they do illustrate how to 
use a function to create a series based on complicated relationships between other series.

You may have noticed that we changed the data type of the new series we created to 
category. The new series was an object data type initially. We reduced memory usage 
by changing the type to category.

We used another incredibly useful method in step 2, somewhat incidentally. landtemps.
groupby(['elevation_group']) creates a DataFrame groupby object that we pass 
to an aggregate (agg) function. This gives us a count, min, and max for each elevation_
group, allowing us to confirm that our group classification works as expected.

There's more…
It has been a long time since I have had a data cleaning project that did not involve a 
NumPy where or select statement, nor a lambda or apply statement. At some point, 
we need to create or update a series based on values from one or more other series. It is a 
good idea to get comfortable with these techniques.
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Whenever there is a built-in pandas function that does what we need, it is better to use 
that than apply. The great advantage of apply is that it is quite generic and flexible, but 
that is also why it is more resource-intensive than the optimized functions. However, it is 
a great tool when we want to create a series based on complicated relationships between 
existing series.

Another way to perform steps 6 and 7 is to add a lambda function to apply. This 
produces the same results:

>>> def getsleepdeprivedreason(childathome, 
nightlyhrssleep, wageincome, weeksworked16, weeksworked17, 
highestgradecompleted):

...   sleepdeprivedreason = "Unknown"

...   if (nightlyhrssleep>=6):

...     sleepdeprivedreason = "Not Sleep Deprived"

...   elif (nightlyhrssleep>0):

...     if (weeksworked16+weeksworked17 < 80):

...       if (childathome>2):

...         sleepdeprivedreason = "Child Rearing"

...       else:

...         sleepdeprivedreason = "Other Reasons"

...     else:

...       if (wageincome>=62000 or highestgradecompleted>=16):

...         sleepdeprivedreason = "Work Pressure"

...       else:

...         sleepdeprivedreason = "Income Pressure"

...   else:

...     sleepdeprivedreason = "Unknown"

...   return sleepdeprivedreason

... 

>>> nls97['sleepdeprivedreason'] = nls97.apply(lambda x: 
getsleepdeprivedreason(x.childathome, x.nightlyhrssleep, 
x.wageincome, x.weeksworked16, x.weeksworked17, 
x.highestgradecompleted), axis=1)

See also
We'll go over DataFrame groupby objects in detail in Chapter 7, Fixing Messy Data 
when Aggregating. We examined various techniques we can use to select columns from a 
DataFrame, including filter, in Chapter 3, Taking the Measure of Your Data.
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Evaluating and cleaning string series data
There are many string cleaning methods in Python and pandas. This is a good thing. 
Given the great variety of data stored in strings, it is important to have a wide range of 
tools to call upon when performing string evaluation and manipulation: when selecting 
fragments of a string by position, when checking whether a string contains a pattern, 
when splitting a string, when testing a string's length, when joining two or more strings, 
when changing the case of a string, and so on. We'll explore some of the methods that are 
used most frequently for string evaluation and cleaning in this recipe.

Getting ready
We will work with the National Longitudinal Survey data in this recipe. (The NLS data 
was actually a little too clean for this recipe. To illustrate working with strings with trailing 
spaces, I added trailing spaces to the maritalstatus column values.)

How to do it...
In this recipe, we will perform some common string evaluation and cleaning tasks. We'll 
use contains, endswith, and findall to search for patterns, trailing blanks, and 
more complicated patterns, respectively. We will also create a function for processing 
string values before assigning values to a new series and then use replace for simpler 
processing. Let's get started:

1.	 Import pandas and numpy, and then load the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Test whether a pattern exists in a string.

Use contains to examine the govprovidejobs (whether the government 
should provide jobs) responses for the "Definitely not" and "Probably not" values. In 
the where call, handle missing values first to make sure that they do not end up in 
the first else clause (the section after the second comma):

>>> nls97.govprovidejobs.value_counts()

2. Probably          617

3. Probably not      462

1. Definitely        454
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4. Definitely not    300

Name: govprovidejobs, dtype: int64

>>> nls97['govprovidejobsdefprob'] = np.where(nls97.
govprovidejobs.isnull(),

...   np.nan,np.where(nls97.govprovidejobs.str.
contains("not"),"No","Yes"))

>>> pd.crosstab(nls97.govprovidejobs, nls97.
govprovidejobsdefprob)

govprovidejobsdefprob   No  Yes

govprovidejobs                 

1. Definitely            0  454

2. Probably              0  617

3. Probably not        462    0

4. Definitely not      300    0

3.	 Handle leading or trailing spaces in a string.

Create an ever-married series. First, examine the values of maritalstatus. Notice 
that there are two stray values, indicating married. Those two are "Married " with 
an extra space at the end, unlike the other values of "Married" with no trailing 
spaces. Use startswith and endswith to test for a leading or trailing space, 
respectively. Use strip to remove the trailing space before testing for ever-married. 
strip removes leading and trailing spaces (lstrip removes leading spaces,  
while rstrip removes trailing spaces, so rstrip would have also worked in  
this example):

>>> nls97.maritalstatus.value_counts()

Married          3064

Never-married    2766

Divorced          663

Separated         154

Widowed            23

Married             2

Name: maritalstatus, dtype: int64

>>> nls97.maritalstatus.str.startswith(' ').any()

False

>>> nls97.maritalstatus.str.endswith(' ').any()

True
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>>> nls97['evermarried'] = np.where(nls97.maritalstatus.
isnull(),np.nan,np.where(nls97.maritalstatus.str.
strip()=="Never-married","No","Yes"))

>>> pd.crosstab(nls97.maritalstatus, nls97.evermarried)

evermarried      No   Yes

maritalstatus            

Divorced          0   663

Married           0  3064

Married           0     2

Never-married  2766     0

Separated         0   154

Widowed           0    23

4.	 Use isin to compare a string value to a list of values:

>>> nls97['receivedba'] = np.where(nls97.highestdegree.
isnull(),np.nan,np.where(nls97.highestdegree.str[0:1].
isin(['4','5','6','7']),"Yes","No"))

>>> pd.crosstab(nls97.highestdegree, nls97.receivedba)

receivedba         No   Yes

highestdegree              

0. None           953     0

1. GED           1146     0

2. High School   3667     0

3. Associates     737     0

4. Bachelors        0  1673

5. Masters          0   603

6. PhD              0    54

7. Professional     0   120

5.	 Use findall to extract numeric values from a text string.

Use findall to create a list of all numbers in the weeklyhrstv (hours spent 
each week watching television) string. The "\d+" regular expression that's passed 
to findall indicates that we just want numbers:

>>> pd.concat([nls97.weeklyhrstv.head(),\

...   nls97.weeklyhrstv.str.findall("\d+").head()], 
axis=1)

                    weeklyhrstv weeklyhrstv
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personid                                   

100061    11 to 20 hours a week    [11, 20]

100139     3 to 10 hours a week     [3, 10]

100284    11 to 20 hours a week    [11, 20]

100292                      NaN         NaN

100583     3 to 10 hours a week     [3, 10]

6.	 Use the list created by findall to create a numeric series from the weeklyhrstv 
text.

First, define a function that retrieves the last element in the list created by findall 
for each value of weeklyhrstv. The getnum function also adjusts that number 
so that it's closer to the midpoint of the two numbers, where there is more than 
one number. We then use apply to call this function, passing it the list created 
by findall for each value. crosstab shows that the new weeklyhrstvnum 
column does what we want it to do:

>>> def getnum(numlist):

...   highval = 0

...   if (type(numlist) is list):

...     lastval = int(numlist[-1])

...     if (numlist[0]=='40'):

...       highval = 45

...     elif (lastval==2):

...       highval = 1

...     else:

...       highval = lastval - 5

...   else:

...     highval = np.nan

...   return highval

... 

>>> nls97['weeklyhrstvnum'] = nls97.weeklyhrstv.str.\

...   findall("\d+").apply(getnum)

>>> 

>>> pd.crosstab(nls97.weeklyhrstv, nls97.weeklyhrstvnum)

weeklyhrstvnum              1.00   5.00   15.00  25.00  
35.00  45.00

weeklyhrstv                                                         
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11 to 20 hours a week           0      0   1145      0      
0      0

21 to 30 hours a week           0      0      0    299      
0      0

3 to 10 hours a week            0   3625      0      0      
0      0

31 to 40 hours a week           0      0      0      0    
116      0

Less than 2 hours per week   1350      0      0      0      
0      0

More than 40 hours a week       0      0      0      0      
0    176

7.	 Replace the values in a series with alternative values.

The weeklyhrscomputer (hours spent each week on a computer) series does 
not sort nicely with its current values. We can fix this by replacing the values 
with letters that indicate order. We'll start by creating a list containing the old 
values and another list containing the new values that we want. We then use the 
series replace method to replace the old values with the new values. Whenever 
replace finds a value from the old values list, it replaces it with a value from the 
same list position in the new list:

>>> comphrsold = ['None','Less than 1 hour a week',

...   '1 to 3 hours a week','4 to 6 hours a week',

...   '7 to 9 hours a week','10 hours or more a week']

>>> 

>>> comphrsnew = ['A. None','B. Less than 1 hour a week',

...   'C. 1 to 3 hours a week','D. 4 to 6 hours a week',

...   'E. 7 to 9 hours a week','F. 10 hours or more a 
week']

>>> 

>>> nls97.weeklyhrscomputer.value_counts().sort_index()

1 to 3 hours a week         733

10 hours or more a week    3669

4 to 6 hours a week         726

7 to 9 hours a week         368

Less than 1 hour a week     296

None                        918

Name: weeklyhrscomputer, dtype: int64
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>>> nls97.weeklyhrscomputer.replace(comphrsold, 
comphrsnew, inplace=True)

>>> nls97.weeklyhrscomputer.value_counts().sort_index()

A. None                        918

B. Less than 1 hour a week     296

C. 1 to 3 hours a week         733

D. 4 to 6 hours a week         726

E. 7 to 9 hours a week         368

F. 10 hours or more a week    3669

Name: weeklyhrscomputer, dtype: int64

The steps in this recipe demonstrate some of the common string evaluation and 
manipulation tasks we can perform in pandas.

How it works...
We frequently need to examine a string to see whether a pattern is there. We can use the 
string contains method to do this. If we know exactly where the expected pattern will 
be, we can use standard slice notation, [start:stop:step], to select text from start 
through stop-1. (The default value for step is 1.) For example, in step 4, we got the first 
character from highestdegree with nls97.highestdegree.str[0:1]. We then 
used isin to test whether the first string appears in a list of values. (isin works for both 
character and numeric data.)

Sometimes, we need to pull multiple values from a string that satisfy a condition. 
findall is helpful in those situations as it returns a list of all values satisfying the 
condition. It can be paired with a regular expression when we are looking for something 
more general than a literal. In steps 5 and 6, we were looking for any number.

There's more…
It is important to be deliberate when we're handling missing values when creating a 
series based on values for another series. Missing values may satisfy the else condition 
in a where call when that is not our intention. In steps 2, 3, and 4, we made sure that 
we handled the missing values appropriately by testing for them at the beginning of the 
where call.

We also need to be careful about case when making string comparisons. For example, 
"Probably" and "probably" are not equal. One way to get around this is to use the upper 
or lower methods when doing comparisons when a potential difference in case is not 
meaningful. upper("Probably") == upper("PROBABLY") is actually True.
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Working with dates
Working with dates is rarely straightforward. Data analysts need to successfully parse  
date values, identify invalid or out-of-range dates, impute dates when they're missing,  
and calculate time intervals. There are surprising hurdles at each of these steps, but we  
are halfway there once we've parsed the date value and have a datetime value in pandas. 
We will start by parsing date values in this recipe before working our way through the 
other challenges.

Getting ready
We will work with the National Longitudinal Survey and COVID case daily data in this 
recipe. The COVID daily data contains one row for each reporting day for each country. 
(The NLS data was actually a little too clean for this purpose. To illustrate working with 
missing date values, I set one of the values for birth month to missing.)

Data note
Our World in Data provides COVID-19 public use data at  
https://ourworldindata.org/coronavirus-source-data. 
The data that will be used in this recipe was downloaded on July 18, 2020.

How to do it…
In this recipe, we will convert numeric data into datetime data, first by confirming that 
the data has valid date values and then by using fillna to replace missing dates. We will 
then calculate some date intervals; that is, the age of respondents for the NLS data and the 
days since the first COVID case for the COVID daily data. Let's get started:

1.	 Import pandas, numpy, and the datetime module, and then load the NLS and 
COVID case daily data:

>>> import pandas as pd

>>> import numpy as np

>>> from datetime import datetime

>>> covidcases = pd.read_csv("data/covidcases720.csv")

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

https://ourworldindata.org/coronavirus-source-data
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2.	 Show the birth month and year values.

Notice that there is one missing value for birth month. Other than that, the data that 
we will use to create the birthdate series look pretty clean:

>>> nls97[['birthmonth','birthyear']].isnull().sum()

birthmonth    1

birthyear     0

dtype: int64

>>> nls97.birthmonth.value_counts().sort_index()

1     815

2     693

3     760

4     659

5     689

6     720

7     762

8     782

9     839

10    765

11    763

12    736

Name: birthmonth, dtype: int64

>>> nls97.birthyear.value_counts().sort_index()

1980    1691

1981    1874

1982    1841

1983    1807

1984    1771

Name: birthyear, dtype: int64

3.	 Use the series fillna method to set a value for the missing birth month.

Pass the average of birthmonth, rounded to the nearest integer, to fillna. This 
will replace the missing value for birthmonth with the mean of birthmonth. 
Notice that one more person now has a value of 6 for birthmonth:

>>> nls97.birthmonth.fillna(int(nls97.birthmonth.mean()), 
inplace=True)

>>> nls97.birthmonth.value_counts().sort_index()
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1     815

2     693

3     760

4     659

5     689

6     721

7     762

8     782

9     839

10    765

11    763

12    736

4.	 Use month and date integers to create a datetime column.

We can pass a dictionary to the pandas to_datetime function. The dictionary 
needs to contain a key for year, month, and day. Notice that there are no missing 
values for birthmonth, birthyear, and birthdate:

>>> nls97['birthdate'] = pd.to_datetime(dict(year=nls97.
birthyear, month=nls97.birthmonth, day=15))

>>> nls97[['birthmonth','birthyear','birthdate']].head()

          birthmonth  birthyear  birthdate

personid                                  

100061             5       1980 1980-05-15

100139             9       1983 1983-09-15

100284            11       1984 1984-11-15

100292             4       1982 1982-04-15

100583             6       1980 1980-06-15

>>> nls97[['birthmonth','birthyear','birthdate']].
isnull().sum()

birthmonth    0

birthyear     0

birthdate     0

dtype: int64
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5.	 Calculate age values using a datetime column.

First, define a function that will calculate age values when given a start date and an  
end date:

>>> def calcage(startdate, enddate):

...   age = enddate.year - startdate.year

...   if (enddate.month<startdate.month or (enddate.
month==startdate.month and enddate.day<startdate.day)):

...     age = age -1

...   return age

... 

>>> rundate = pd.to_datetime('2020-07-20')

>>> nls97["age"] = nls97.apply(lambda x: calcage(x.
birthdate, rundate), axis=1)

>>> nls97.loc[100061:100583, ['age','birthdate']]

          age  birthdate

personid                

100061     40 1980-05-15

100139     36 1983-09-15

100284     35 1984-11-15

100292     38 1982-04-15

100583     40 1980-06-15

6.	 Convert a string column into a datetime column.

The casedate column is an object data type, not a datetime data type:
>>> covidcases.iloc[:, 0:6].dtypes

iso_code        object

continent       object

location        object

casedate        object

total_cases    float64

new_cases      float64

dtype: object

>>> covidcases.iloc[:, 0:6].sample(2, random_state=1).T

                   13482          2445 

iso_code             IMN            BRB

continent         Europe  North America
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location     Isle of Man       Barbados

casedate      2020-06-20     2020-04-28

total_cases          336             80

new_cases              0              1

>>> covidcases['casedate'] = pd.to_datetime(covidcases.
casedate, format='%Y-%m-%d')

>>> covidcases.iloc[:, 0:6].dtypes

iso_code               object

continent              object

location               object

casedate       datetime64[ns]

total_cases           float64

new_cases             float64

dtype: object

7.	 Show descriptive statistics on the datetime column:

>>> covidcases.casedate.describe()

count                   29529

unique                    195

top       2020-05-23 00:00:00

freq                      209

first     2019-12-31 00:00:00

last      2020-07-12 00:00:00

Name: casedate, dtype: object

8.	 Create a timedelta object to capture a date interval.

For each day, calculate the number of days since the first case was reported for 
each country. First, create a DataFrame that shows the first day of new cases for 
each country and then merge it with the full COVID cases data. Then, for each day, 
calculate the number of days from firstcasedate to casedate. Notice that 
one country started reporting data 62 days before its first case:

>>> firstcase = covidcases.loc[covidcases.new_
cases>0,['location','casedate']].\

...   sort_values(['location','casedate']).\

...   drop_duplicates(['location'], keep='first').\

...   rename(columns={'casedate':'firstcasedate'})

>>> 
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>>> covidcases = pd.merge(covidcases, firstcase, left_
on=['location'], right_on=['location'], how="left")

>>> covidcases['dayssincefirstcase'] = covidcases.
casedate - covidcases.firstcasedate

>>> covidcases.dayssincefirstcase.describe()

count                      29529

mean     56 days 00:15:12.892410

std      47 days 00:35:41.813685

min           -62 days +00:00:00

25%             21 days 00:00:00

50%             57 days 00:00:00

75%             92 days 00:00:00

max            194 days 00:00:00

Name: dayssincefirstcase, dtype: object

This recipe showed how it's possible to parse date values and create a datetime series, as 
well as how to calculate time intervals.

How it works…
The first task when working with dates in pandas is converting them properly into a 
pandas datetime series. We tackled a couple of the most common issues in steps 3, 4, and 
6: missing values, date conversion from integer parts, and date conversion from strings. 
birthmonth and birthyear are integers in the NLS data. We confirmed that those 
values are valid values for dates of months and years. If, for example, there were month 
values of 0 or 20, the conversion to pandas datetime would fail.

Missing values for birthmonth or birthyear will just result in a missing 
birthdate. We used fillna for the missing value for birthmonth, assigning it to the 
mean value of birthmonth. In step 5, we calculated an age for each person as of July 20, 
2020 using the new birthdate column. The calcage function that we created adjusts 
for individuals whose birth dates come later in the year than July 20.

Data analysts often receive data files containing date values as strings. The to_datetime 
function is the analyst's key ally when this happens. It is often smart enough to figure 
out the format of the string date data without us having to specify a format explicitly. 
However, in step 6, we told to_datetime to use the "%Y-%m-%d" format with our data.

Step 7 told us that there were 195 unique days where COVID cases were reported and that 
the most frequent day is May 23. The first reported day is Dec 31, 2019 and the last is July 
12, 2020. This is what we expected.
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The first two statements in step 8 involved techniques (sorting and dropping duplicates) 
that we will not explore in detail until Chapter 7, Fixing Messy Data when Aggregating, 
and Chapter 8, Addressing Data Issues when Combining DataFrames. All you need to 
understand here is the objective: creating a DataFrame with one row per location 
(country), and with the date of the first reported COVID case. We did this by only 
selecting rows from the full data where new_cases is greater than 0, before sorting 
that by location and casedate and keeping the first row for each location. We 
then changed the name of casedate to firstcasedate before merging the new 
firstcase DataFrame with the COVID daily cases data.

Since both casedate and firstcasedate are datetime columns, subtracting the 
latter from the former will result in a timedelta value. This gives us a series that is the 
number of days before or after the first day of new_cases for each reporting day. So, if a 
country started reporting on COVID cases 3 weeks before its first new case, it would have 
-21 days for the value of dayssincefirstcase for that first day. This is useful if we 
want to track trends by how long the virus has been obviously present in a country, rather 
than by date.

See also
Instead of using sort_values and drop_duplicates in step 8, we could have used 
groupby to achieve similar results. We'll explore groupby a fair bit in the next Chapter 7,  
Fixing Messy Data when Aggregating. This is the first time we have done a merge in 
this book, but it is far from the last time we will be combining DataFrames. Chapter 8, 
Addressing Data Issues when Combining DataFrames, will be devoted to this topic. We'll 
explore more strategies for handling missing data in the next two recipes.

Identifying and cleaning missing data
We have already explored some strategies for identifying and cleaning missing values, 
particularly in Chapter 1, Anticipating Data Cleaning Issues when Importing Tabular Data 
into pandas. We will polish up on those skills in this recipe. We will do this by exploring a 
full range of strategies for handling missing data, including using DataFrame means and 
group means, as well as forward filling with nearby values. In the next recipe, we impute 
values using k-nearest neighbor.

Getting ready
We will continue working with the National Longitudinal Survey data in this recipe.
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How to do it…
In this recipe, we will check key demographic and school record columns for missing 
values. We'll then use several strategies to impute values for missing data: assigning the 
overall mean for that column, assigning a group mean, and assigning the value of the 
nearest preceding non-missing value. Let's get started:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Set up school record and demographic DataFrames from the NLS data:

>>> schoolrecordlist = 
['satverbal','satmath','gpaoverall','gpaenglish',

...   'gpamath','gpascience','highestdegree', 
'highestgradecompleted']

>>> demolist = 
['maritalstatus','childathome','childnotathome',

...   'wageincome','weeklyhrscomputer','weeklyhrstv', 
'nightlyhrssleep']

>>> schoolrecord = nls97[schoolrecordlist]

>>> demo = nls97[demolist]

>>> schoolrecord.shape

(8984, 8)

>>> demo.shape

(8984, 7)

3.	 Check data for missing values.

Check the number of missing values for each column in the schoolrecord 
DataFrame. isnull returns a Boolean series with True when values for that column 
are missing, and False otherwise. When chained with sum, a count of True values 
is returned. By setting axis=1, we can check the number of missing values for each 
row. 11 individuals have missing values for all 8 columns, and 946 have missing values 
for 7 out of 8 columns. Upon taking a look at the data for a few of these individuals, it 
looks like they mainly have highestdegree and no valid values for other columns:

>>> schoolrecord.isnull().sum(axis=0)

satverbal                7578
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satmath                  7577

gpaoverall               2980

gpaenglish               3186

gpamath                  3218

gpascience               3300

highestdegree              31

highestgradecompleted    2321

dtype: int64

>>> misscnt = schoolrecord.isnull().sum(axis=1)

>>> misscnt.value_counts().sort_index()

0    1087

1     312

2    3210

3    1102

4     176

5     101

6    2039

7     946

8      11

dtype: int64

>>> schoolrecord.loc[misscnt>=7].head(4).T

personid               101705   102061  102648   104627

satverbal                 NaN      NaN     NaN      NaN

satmath                   NaN      NaN     NaN      NaN

gpaoverall                NaN      NaN     NaN      NaN

gpaenglish                NaN      NaN     NaN      NaN

gpamath                   NaN      NaN     NaN      NaN

gpascience                NaN      NaN     NaN      NaN

highestdegree          1. GED  0. None  1. GED  0. None

highestgradecompleted     NaN      NaN     NaN      NaN

4.	 Remove rows where nearly all the data is missing.

Here, we use the dropna DataFrame method with thresh set to 2. This removes 
rows with less than two non-missing values (those with seven or eight missing values):

>>> schoolrecord = schoolrecord.dropna(thresh=2)

>>> schoolrecord.shape
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(8027, 8)

>>> schoolrecord.isnull().sum(axis=1).value_counts().
sort_index()

0    1087

1     312

2    3210

3    1102

4     176

5     101

6    2039

dtype: int64

5.	 Assign the mean of the GPA values where it's missing:

>>> int(schoolrecord.gpaoverall.mean())

2

>>> schoolrecord.gpaoverall.isnull().sum()

2023

>>> schoolrecord.gpaoverall.fillna(int(schoolrecord.
gpaoverall.mean()), inplace=True)

>>> schoolrecord.gpaoverall.isnull().sum()

0

6.	 Use forward fill to replace missing values.

Use the ffill option with fillna to replace missing values with the nearest 
non-missing value preceding it in the data:

>>> demo.wageincome.head().T

personid

100061    12,500

100139   120,000

100284    58,000

100292       nan

100583    30,000

Name: wageincome, dtype: float64

>>> demo.wageincome.isnull().sum()

3893
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>>> nls97.wageincome.fillna(method='ffill', inplace=True)

>>> demo = nls97[demolist]

>>> demo.wageincome.head().T

personid

100061    12,500

100139   120,000

100284    58,000

100292    58,000

100583    30,000

Name: wageincome, dtype: float64

>>> demo.wageincome.isnull().sum()

0

7.	 Fill missing values with the mean by group.

Create a DataFrame containing the average value of weeks worked in 2017 by the 
highest degree they've earned. Merge that with the NLS data, then use fillna to 
replace the missing values for weeks worked with the mean for that individual's 
highest degree earned group:

>>> nls97[['highestdegree','weeksworked17']].head()

           highestdegree  weeksworked17

personid                               

100061    2. High School             48

100139    2. High School             52

100284           0. None              0

100292      4. Bachelors            nan

100583    2. High School             52

>>> 

>>> workbydegree = nls97.groupby(['highestdegree'])
['weeksworked17'].mean().\

...   reset_index().
rename(columns={'weeksworked17':'meanweeksworked17'})

>>> 

>>> nls97 = nls97.reset_index().\

...   merge(workbydegree, left_on=['highestdegree'], 
right_on=['highestdegree'], how='left').set_
index('personid')
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>>> 

>>> nls97.weeksworked17.fillna(nls97.meanweeksworked17, 
inplace=True)

>>> nls97[['highestdegree','weeksworked17', 
'meanweeksworked17']].head()

           highestdegree  weeksworked17  
meanweeksworked17

personid                                                  

100061    2. High School             48                 
38

100139    2. High School             52                 
38

100284           0. None              0                 
29

100292      4. Bachelors             44                 
44

100583    2. High School             52                 
38

The preceding steps demonstrated several different approaches we can use to replace 
missing series values.

How it works…
By shifting the axis when using isnull, we can check for missing values column-wise 
or row-wise. In the latter case, rows with almost all missing data are good candidates for 
removal. In the former case, where there are particular columns that have missing values 
but also a fair bit of good data, we can think about imputation strategies.

The very useful grouby DataFrame method is used once more in this recipe. By using it 
in step 7 to create a DataFrame with a summary statistic by group (in this case, the group 
mean for weeks worked), we can use those values to improve our data cleaning work. This 
merge is a little more complicated because, usually, we would lose the index with this kind 
of merge (we are not merging by the index). We reset the index and then set it again so 
that it is still available to us in the subsequent statements in that step.
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There's more...
We explored several imputation strategies in this recipe, such as setting missing values 
to the overall mean, setting them to the mean for a particular group, and forward filling 
values. Which one is appropriate for a given data cleaning task is, of course, determined 
by your data.

Forward filling makes the most sense with time series data, with the assumption being 
that the missing value is most likely to be near the value of the immediately preceding 
time period. But forward filling may also make sense when missing values are rare and 
spread somewhat randomly throughout the data. When you have reason to believe that 
the data values for rows near each other have more in common with each other than they 
do with the overall mean, forward filling might be a better choice than the mean. For this 
same reason, a group mean might be a better option than both, assuming that the variable 
of interest varies significantly with group membership.

See also
This discussion leads us to another missing value imputation strategy: using machine 
learning techniques such as k-nearest neighbor (KNN). The next recipe demonstrates the 
use of KNN to clean missing data.

Missing value imputation with K-nearest 
neighbor
KNN is a popular machine learning technique because it is intuitive and easy to run 
and yields good results when there is not a large number of features (variables) and 
observations. For the same reasons, it is often used to impute missing values. As its name 
suggests, KNN identifies the k observations whose features are most similar to each 
observation. When used to impute missing values, KNN uses the nearest neighbors to 
determine what fill values to use.

Getting ready
We will work with the National Longitudinal Survey data again in this recipe, and then try 
to impute reasonable values for the same school record data that we worked with in the 
preceding recipe.

You will need scikit-learn to run the code in this recipe. You can install it by entering pip 
install sklearn in a Terminal or Windows PowerShell.
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How to do it…
In this recipe, we will use scikit-learn's KNNImputer module to fill in missing values for 
key NLS school record columns. Let's get started:

1.	 Import pandas and scikit-learn's KNNImputer module, and then load the  
NLS data:

>>> import pandas as pd

>>> from sklearn.impute import KNNImputer

>>> nls97 = pd.read_csv("data/nls97c.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Select the NLS school record data:

>>> schoolrecordlist = 
['satverbal','satmath','gpaoverall','gpaenglish',

...   'gpamath','gpascience','highestgradecompleted']

>>> schoolrecord = nls97[schoolrecordlist]

3.	 Initialize a KNN imputation model and fill in the values:

>>> impKNN = KNNImputer(n_neighbors=5)

>>> newvalues = impKNN.fit_transform(schoolrecord)

>>> schoolrecordimp = pd.DataFrame(newvalues, 
columns=schoolrecordlist, index=schoolrecord.index)

4.	 View the imputed values:

>>> schoolrecord.head().T

personid               100061  100139  100284  100292  
100583

satverbal                 nan     nan     nan     nan     
nan

satmath                   nan     nan     nan     nan     
nan

gpaoverall                3.1     nan     nan     3.5     
2.9

gpaenglish              350.0     nan     nan   345.0   
283.0

gpamath                 280.0     nan     nan   370.0   
285.0
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gpascience              315.0     nan     nan   300.0   
240.0

highestgradecompleted    13.0    12.0     7.0     nan    
13.0

>>> schoolrecordimp.head().T

personid               100061  100139  100284  100292  
100583

satverbal               446.0   412.0   290.8   534.0   
414.0

satmath                 460.0   470.0   285.2   560.0   
454.0

gpaoverall                3.1     2.3     2.5     3.5     
2.9

gpaenglish              350.0   232.4   136.0   345.0   
283.0

gpamath                 280.0   218.0   244.6   370.0   
285.0

gpascience              315.0   247.8   258.0   300.0   
240.0

highestgradecompleted    13.0    12.0     7.0     9.8    
13.0

5.	 Compare the summary statistics:

>>> schoolrecord[['gpaoverall','highestgradecompleted']].
agg(['mean','count'])

       gpaoverall  highestgradecompleted

mean          2.8                   14.1

count     6,004.0                6,663.0

>>> 
schoolrecordimp[['gpaoverall','highestgradecompleted']].
agg(['mean','count'])

       gpaoverall  highestgradecompleted

mean          2.8                   13.5

count     8,984.0                8,984.0

This recipe showed us how to use KNN for missing values imputation.
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How it works…
Almost all the work in this recipe was done in step 3, where we initialized the KNN 
imputer. The only decision we need to make here is what value the nearest neighbor will 
have. We chose 5 here, a reasonable value for a DataFrame of this size. Then, we passed 
the schoolrecord DataFrame to the fit_transform method, which returns an 
array of new DataFrame values. The array retains the non-missing values but has imputed 
values where they were missing. We then loaded the array into a new DataFrame, using 
the column names and index from the original DataFrame.

We got a good look at the new values in steps 4 and 5. All of the missing values 
have been replaced. There is also little change in the means for gpaoverall and 
highestgradecompleted.

There's more...
We are probably asking KNN to do too much work here since a few rows of data have very 
little information we can use for imputation. We should consider dropping rows from the 
DataFrame that contain fewer than two or three non-missing values.

See also
KNN is also often used to detect outliers in data. The Using k-nearest neighbor to find 
outliers recipe in Chapter 4, Identifying Missing Values and Outliers in Subsets of Data, 
demonstrates this.



7
Fixing Messy Data 
when Aggregating

Earlier chapters of this book introduced techniques for generating summary statistics on 
a whole DataFrame. We used methods such as describe, mean, and quantile to do 
that. This chapter covers more complicated aggregation tasks: aggregating by categorical 
variables, and using aggregation to change the structure of DataFrames.

After the initial stages of data cleaning, analysts spend a substantial amount of their time 
doing what Hadley Wickham has called splitting-applying-combining. That is, we subset 
data by groups, apply some operation to those subsets, and then draw conclusions about 
a dataset as a whole. In slightly more specific terms, this involves generating descriptive 
statistics by key categorical variables. For the nls97 dataset, this might be gender, marital 
status, and highest degree received. For the COVID-19 data, we might segment the data 
by country or date.

Often, we need to aggregate data to prepare it for subsequent analysis. Sometimes, the 
rows of a DataFrame are disaggregated beyond the desired unit of analysis, and some 
aggregation has to be done before analysis can begin. For example, our DataFrame might 
have bird sightings by species per day over the course of many years. Since those values 
jump around, we might decide to smooth that out by working only with the total sightings 
by species per month, or even per year. Another example is households and car repair 
expenditures. We might need to summarize those expenditures over a year.
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There are several ways to aggregate data using NumPy and pandas, each with particular 
strengths. We explore the most useful approaches in this chapter; from looping with 
itertuples, to navigating over NumPy arrays, to several techniques using the 
DataFrame groupby method. It is helpful to have a good understanding of the full range 
of tools available in pandas and NumPy since: almost all data analysis projects require 
some aggregation; aggregation is among the most consequential steps we take in the data 
cleaning process; and the best tool for the job is determined more by the attributes of the 
data than by our personal preferences.

Specifically, the recipes in this chapter examine the following:

•	 Looping through data with itertuples (an anti-pattern)

•	 Calculating summaries by group with NumPy arrays

•	 Using groupby to organize data by groups

•	 Using more complicated aggregation functions with groupby

•	 Using user-defined functions and apply with groupby

•	 Using groupby to change the unit of analysis of a DataFrame

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Looping through data with itertuples  
(an anti-pattern)
In this recipe, we will iterate over the rows of a DataFrame and generate our own totals for 
a variable. In subsequent recipes in this chapter we will use NumPy arrays, and then some 
pandas-specific techniques, for accomplishing the same tasks.

It may seem odd to begin this chapter with a technique that we are often cautioned against 
using. But I used to do the equivalent of looping every day 30 years ago in SAS, and on select 
occasions as recently as 7 years ago in R. That is why I still find myself thinking conceptually 
about iterating over rows of data, sometimes sorted by groups, even though I rarely 
implement my code in this manner. I think it is good to hold onto that conceptualization, 
even when using other pandas methods that work for us more efficiently.

I do not want to leave the impression that pandas-specific techniques are always markedly 
more efficient either. pandas users probably find themselves using apply more than they 
would like, an approach that is only somewhat faster than looping.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Finally, I should add that if your DataFrame has fewer than 10,000 rows then the 
efficiency gains from using pandas-specific techniques, rather than looping, are likely to 
be minimal. In that case, analysts should choose the approach that is most intuitive and 
resistant to errors.

Getting ready
We will work with the COVID-19 case daily data in this recipe. It has one row per day per 
country, each row having the number of new cases and new deaths for that day. It reflects 
the totals as of July 18, 2020.

We will also be working with land temperature data from 87 weather stations in Brazil in 
2019. Most weather stations had one temperature reading for each month.

Data note
Our World in Data provides Covid-19 public use data at https://
ourworldindata.org/coronavirus-source-data.

The land temperature data is taken from the Global Historical Climatology 
Network integrated database, which is made available for public use by 
the United States National Oceanic and Atmospheric Administration 
at https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/global-
historical-climatology-network-monthly-version-4. 
Only data for Brazil in 2019 is used in this recipe.

How to do it…
We will use the itertuples DataFrame method to loop over the rows of the COVID-
19 daily data and the monthly land temperature data for Brazil. We add logic for handling 
missing data and unexpected changes in key variable values from one period to the next:

1.	 Import pandas and numpy, and load the COVID-19 and land temperature data:

>>> import pandas as pd

>>> import numpy as np

>>> coviddaily = pd.read_csv("data/coviddaily720.csv", 
parse_dates=["casedate"])

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
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2.	 Sort data by location and date:

>>> coviddaily = coviddaily.sort_
values(['location','casedate'])

3.	 Iterate over rows with itertuples.

Use itertuples, which allows us to iterate over all rows as named tuples. Sum 
new cases over all dates for each country. With each change of country (location) 
append the running total to rowlist, and then set the count to 0: (Note that 
rowlist is a list and we are appending a dictionary to rowlist with each change 
of country. A list of dictionaries is a good place to temporarily store data you might 
eventually want to convert to a DataFrame.):

>>> prevloc = 'ZZZ'

>>> rowlist = []

>>> 

>>> for row in coviddaily.itertuples():

...   if (prevloc!=row.location):

...     if (prevloc!='ZZZ'):

...       rowlist.append({'location':prevloc,  
        'casecnt':casecnt})

...     casecnt = 0

...     prevloc = row.location

...   casecnt += row.new_cases

... 

>>> rowlist.append({'location':prevloc, 
'casecnt':casecnt})

>>> len(rowlist)

209

>>> rowlist[0:4]

[{'location': 'Afghanistan', 'casecnt': 34451.0}, 
{'location': 'Albania', 'casecnt': 3371.0}, {'location': 
'Algeria', 'casecnt': 18712.0}, {'location': 'Andorra', 
'casecnt': 855.0}]

4.	 Create a DataFrame from the list of summary values, rowlist.

Pass the list we created in the previous step to the pandas DataFrame method:
>>> covidtotals = pd.DataFrame(rowlist)

>>> covidtotals.head()
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      location  casecnt

0  Afghanistan   34,451

1      Albania    3,371

2      Algeria   18,712

3      Andorra      855

4       Angola      483

5.	 Sort the land temperature data.

Also, drop rows with missing values for temperatures:
>>> ltbrazil = ltbrazil.sort_values(['station','month'])

>>> ltbrazil = ltbrazil.dropna(subset=['temperature'])

6.	 Exclude rows where there is a large change from one period to the next.

Calculate the average temperature for the year, excluding values for a temperature 
more than 3°C greater than or less than the temperature for the previous month:

>>> prevstation = 'ZZZ'

>>> prevtemp = 0

>>> rowlist = []

>>> 

>>> for row in ltbrazil.itertuples():

...   if (prevstation!=row.station):

...     if (prevstation!='ZZZ'):

...       rowlist.append({'station':prevstation, 
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})

...     tempcnt = 0

...     stationcnt = 0

...     prevstation = row.station

...   # choose only rows that are within 3 degrees of the 
previous temperature  

...   if ((0 <= abs(row.temperature-prevtemp) <= 3) or 
(stationcnt==0)):

...     tempcnt += row.temperature

...     stationcnt += 1

...   prevtemp = row.temperature

... 

>>> rowlist.append({'station':prevstation, 
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})
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>>> rowlist[0:5]

[{'station': 'ALTAMIRA', 'avgtemp': 28.310000000000002, 
'stationcnt': 5}, {'station': 'ALTA_FLORESTA_AERO', 
'avgtemp': 29.433636363636367, 'stationcnt': 11}, 
{'station': 'ARAXA', 'avgtemp': 21.612499999999997, 
'stationcnt': 4}, {'station': 'BACABAL', 'avgtemp': 
29.75, 'stationcnt': 4}, {'station': 'BAGE', 'avgtemp': 
20.366666666666664, 'stationcnt': 9}]

7.	 Create a DataFrame from the summary values.

Pass the list we created in the previous step to the pandas DataFrame method:
>>> ltbrazilavgs = pd.DataFrame(rowlist)

>>> ltbrazilavgs.head()

              station  avgtemp  stationcnt

0            ALTAMIRA    28.31           5

1  ALTA_FLORESTA_AERO    29.43          11

2               ARAXA    21.61           4

3             BACABAL    29.75           4

4                BAGE    20.37           9

This gives us a DataFrame with average temperatures for 2019 and the number of 
observations for each station.

How it works...
After sorting the Covid daily data by location and casedate in Step 2, we loop 
through our data one row at a time and do a running tally of new cases in Step 3. We set 
that tally back to 0 when we get to a new country, and then resume counting. Notice that 
we do not actually append our summary of new cases until we get to the next country. 
This is because there is no way to tell that we are on the last row for any country until 
we get to the next country. That is not a problem because we append the summary 
to rowlist right before we reset the value to 0. That also means that we need to do 
something special to output the totals for the last country since there is no next country 
reached. We do this with a final append after the loop is complete. This is a fairly standard 
approach to looping through data and outputting totals by group.
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The summary DataFrame we create in Steps 3 and 4 can be created more efficiently, both 
in terms of the analyst's time and our computer's workload, with other pandas techniques 
that we cover in this chapter. But that becomes a more difficult call when we need to  
do more complicated calculations, particularly those that involve comparing values  
across rows.

Steps 6 and 7 provide an example of this. We want to calculate the average temperature for 
each station for the year. Most stations have one reading per month. But we are concerned 
that there might be some outlier values for temperature, defined here by a change of 
more than 3°C from one month to the next. We want to exclude those readings from 
the calculation of the mean for each station. It is fairly straightforward to do that while 
iterating over the data by storing the previous value for temperature (prevtemp) and 
comparing it to the current value.

There's more...
We could have used iterrows in Step 3 rather than itertuples, with almost exactly 
the same syntax. Since we do not need the functionality of iterrows here, we use 
itertuples. itertuples is easier on system resources than iterrows.

The hardest tasks to complete when working with tabular data involve calculations across 
rows: summing data across rows, basing a calculation on values in a different row, and 
generating running totals. Such calculations are complicated to implement and resource-
intensive, regardless of language. But it is hard to avoid having to do them, particularly 
when working with panel data. Some values for variables in a given period might be 
determined by values in a previous period. This is often more complicated than the 
running totals we have done in this recipe.

For decades, data analysts have tried to address these data-cleaning challenges by looping 
through rows, carefully inspecting categorical and summary variables for data problems, 
and then handling the summation accordingly. Although this continues to be the 
approach that provides the most flexibility, pandas provides a number of data aggregation 
tools that run more efficiently and are easier to code. The challenge is to match the ability 
of looping solutions to adjust for invalid, incomplete, or atypical data. We explore these 
tools later in this chapter.
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Calculating summaries by group with NumPy 
arrays
We can accomplish much of what we did in the previous recipe with itertuples using 
NumPy arrays. We can also use NumPy arrays to get summary values for subsets of  
our data.

Getting ready
We will work again with the COVID-19 case daily data and the Brazil land  
temperature data.

How to do it…
We copy DataFrame values to a NumPy array. We then navigate over the array, calculating 
totals by group and checking for unexpected changes in values:

1.	 Import pandas and numpy, and load the Covid and land temperature data:

>>> import pandas as pd

>>> import numpy as np

>>> coviddaily = pd.read_csv("data/coviddaily720.csv", 
parse_dates=["casedate"])

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

2.	 Create a list of locations:

>>> loclist = coviddaily.location.unique().tolist()

3.	 Use a NumPy array to calculate sums by location.

Create a NumPy array of the location and new cases data. We then can iterate 
over the location list we created in the previous step, and select all new case values 
(casevalues[j][1]) for each location (casevalues[j][0]). We then sum 
the new case values for that location:

>>> rowlist = []

>>> casevalues = coviddaily[['location','new_cases']].
to_numpy()

>>> 

>>> for locitem in loclist:

...   cases = [casevalues[j][1] for j in 
range(len(casevalues))\
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...     if casevalues[j][0]==locitem]

...   rowlist.append(sum(cases))

... 

>>> len(rowlist)

209

>>> len(loclist)

209

>>> rowlist[0:5]

[34451.0, 3371.0, 18712.0, 855.0, 483.0]

>>> casetotals = pd.DataFrame(zip(loclist,rowlist), 
columns=(['location','casetotals']))

>>> casetotals.head()

      location  casetotals

0  Afghanistan   34,451.00

1      Albania    3,371.00

2      Algeria   18,712.00

3      Andorra      855.00

4       Angola      483.00

4.	 Sort the land temperature data and drop rows with missing values for temperature:

>>> ltbrazil = ltbrazil.sort_values(['station','month'])

>>> ltbrazil = ltbrazil.dropna(subset=['temperature'])

5.	 Use a NumPy array to calculate average temperature for the year.

Exclude rows where there is a large change from one period to the next:
>>> prevstation = 'ZZZ'

>>> prevtemp = 0

>>> rowlist = []

>>> tempvalues = ltbrazil[['station','temperature']].to_
numpy()

>>> 

>>> for j in range(len(tempvalues)):

...   station = tempvalues[j][0]

...   temperature = tempvalues[j][1]

...   if (prevstation!=station):

...     if (prevstation!='ZZZ'):
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...       rowlist.append({'station':prevstation, 
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})

...     tempcnt = 0

...     stationcnt = 0

...     prevstation = station

...   if ((0 <= abs(temperature-prevtemp) <= 3) or 
(stationcnt==0)):

...     tempcnt += temperature

...     stationcnt += 1

...   prevtemp = temperature

... 

>>> rowlist.append({'station':prevstation, 
'avgtemp':tempcnt/stationcnt, 'stationcnt':stationcnt})

>>> rowlist[0:5]

[{'station': 'ALTAMIRA', 'avgtemp': 28.310000000000002, 
'stationcnt': 5}, {'station': 'ALTA_FLORESTA_AERO', 
'avgtemp': 29.433636363636367, 'stationcnt': 11}, 
{'station': 'ARAXA', 'avgtemp': 21.612499999999997, 
'stationcnt': 4}, {'station': 'BACABAL', 'avgtemp': 
29.75, 'stationcnt': 4}, {'station': 'BAGE', 'avgtemp': 
20.366666666666664, 'stationcnt': 9}]

6.	 Create a DataFrame of the land temperature averages:

>>> ltbrazilavgs = pd.DataFrame(rowlist)

>>> ltbrazilavgs.head()

              station  avgtemp  stationcnt

0            ALTAMIRA    28.31           5

1  ALTA_FLORESTA_AERO    29.43          11

2               ARAXA    21.61           4

3             BACABAL    29.75           4

4                BAGE    20.37           9

This gives us a DataFrame with average temperature and number of observations per 
station. Notice that we get the same results as in the final step of the previous recipe.
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How it works…
NumPy arrays can be quite useful when we are working with tabular data but need to do 
some calculations across rows. This is because accessing items over the equivalent of rows 
is not really that different from accessing items over the equivalent of columns in an array. 
For example, casevalues[5][0] (the sixth "row" and first "column" of the array) is 
accessed in the same way as casevalues[20][1]. Navigating over a NumPy array is 
also faster than iterating over a pandas DataFrame.

We take advantage of this in Step 3. We get all of the array rows for a given location 
(if casevalues[j][0]==locitem) with a list comprehension. Since we also need 
the location list in the DataFrame we will create of summary values, we use zip to 
combine the two lists.

We start working with the land temperature data in Step 4, first sorting it by station and 
month, and then dropping rows with missing values for temperature. The logic in Step 
5 is almost identical to the logic in Step 6 in the previous recipe. The main difference is 
that we need to refer to the locations of station (tempvalues[j][0]) and temperature 
(tempvalues[j][1]) in the array.

There's more…
When you need to iterate over data, NumPy arrays will generally be faster than iterating 
over a pandas DataFrame with itertuples or iterrows. Also, if you tried to run the 
list comprehension in Step 3 using itertuples, which is possible, you would be waiting 
some time for it to finish. In general, if you want to do a quick summary of values for 
some segment of your data, using NumPy arrays is a reasonable choice.

See also
The remaining recipes in this chapter rely on the powerful groupby method of pandas 
DataFrames to generate group totals.

Using groupby to organize data by groups
At a certain point in most data analysis projects, we have to generate summary statistics by 
groups. While this can be done using the approaches in the previous recipe, in most cases 
the pandas DataFrame groupby method is a better choice. If groupby can handle an 
aggregation task—and it usually can—it is likely the most efficient way to accomplish that 
task. We make good use of groupby in the remaining recipes in this chapter. We go over 
the basics in this recipe.
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Getting ready
We will work with the COVID-19 daily data in this recipe.

How to do it…
We will create a pandas groupby DataFrame and use it to generate summary statistics  
by group:

1.	 Import pandas and numpy, and load the Covid case daily data:

>>> import pandas as pd

>>> import numpy as np

>>> coviddaily = pd.read_csv("data/coviddaily720.csv", 
parse_dates=["casedate"])

2.	 Create a pandas groupby DataFrame:

>>> countrytots = coviddaily.groupby(['location'])

>>> type(countrytots)

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

3.	 Create DataFrames for the first and last rows of each country:

>>> countrytots.first().iloc[0:5, 0:5]

            iso_code   casedate continent  new_cases  
new_deaths

location                                                        

Afghanistan      AFG 2019-12-31      Asia          0           
0

Albania          ALB 2020-03-09    Europe          2           
0

Algeria          DZA 2019-12-31    Africa          0           
0

Andorra          AND 2020-03-03    Europe          1           
0

Angola           AGO 2020-03-22    Africa          2           
0

>>> countrytots.last().iloc[0:5, 0:5]

            iso_code   casedate continent  new_cases  
new_deaths

location                                                        
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Afghanistan      AFG 2020-07-12      Asia         85          
16

Albania          ALB 2020-07-12    Europe         93           
4

Algeria          DZA 2020-07-12    Africa        904          
16

Andorra          AND 2020-07-12    Europe          0           
0

Angola           AGO 2020-07-12    Africa         25           
2

>>> type(countrytots.last())

<class 'pandas.core.frame.DataFrame'>

4.	 Get all the rows for a country:

>>> countrytots.get_group('Zimbabwe').iloc[0:5, 0:5]

      iso_code   casedate continent  new_cases  new_
deaths

29099      ZWE 2020-03-21    Africa          1           
0

29100      ZWE 2020-03-22    Africa          1           
0

29101      ZWE 2020-03-23    Africa          0           
0

29102      ZWE 2020-03-24    Africa          0           
1

29103      ZWE 2020-03-25    Africa          0           
0

5.	 Loop through the groups:

>>> for name, group in countrytots:

...   if (name in ['Malta','Kuwait']):

...     print(group.iloc[0:5, 0:5])

... 

      iso_code   casedate location continent  new_cases

14707      KWT 2019-12-31   Kuwait      Asia          0

14708      KWT 2020-01-01   Kuwait      Asia          0

14709      KWT 2020-01-02   Kuwait      Asia          0
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14710      KWT 2020-01-03   Kuwait      Asia          0

14711      KWT 2020-01-04   Kuwait      Asia          0

      iso_code   casedate location continent  new_cases

17057      MLT 2020-03-07    Malta    Europe          1

17058      MLT 2020-03-08    Malta    Europe          2

17059      MLT 2020-03-09    Malta    Europe          0

17060      MLT 2020-03-10    Malta    Europe          2

17061      MLT 2020-03-11    Malta    Europe          1

6.	 Show the number of rows for each country:

>>> countrytots.size()

location

Afghanistan       185

Albania           126

Algeria           190

Andorra           121

Angola            113

                 ... 

Vietnam           191

Western Sahara     78

Yemen              94

Zambia            116

Zimbabwe          114

Length: 209, dtype: int64

7.	 Show the summary statistics by country:

>>> countrytots.new_cases.describe().head()

             count  mean  std  min  25%  50%  75%   max

location                                               

Afghanistan    185   186  257    0    0   37  302 1,063

Albania        126    27   25    0    9   17   36    93

Algeria        190    98  124    0    0   88  150   904

Andorra        121     7   13    0    0    1    9    79

Angola         113     4    9    0    0    1    5    62

>>> countrytots.new_cases.sum().head()

location
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Afghanistan   34,451

Albania        3,371

Algeria       18,712

Andorra          855

Angola           483

Name: new_cases, dtype: float64

These steps demonstrate how remarkably useful the groupby DataFrame object is when 
we want to generate summary statistics by categorical variables.

How it works...
In Step 2, we create a pandas DataFrame groupby object using the pandas DataFrame 
groupby method, passing it a column or list of columns for the grouping. Once we have 
a groupby DataFrame, we can generate statistics by group with the same tools that we 
use to generate summary statistics for the whole DataFrame. describe, mean, sum, 
and similar methods work on the groupby DataFrame—or series created from it—as 
expected, except the summary is run for each group.

In Step 3, we use first and last to create DataFrames with the first and last occurrence 
of each group. We use get_group to get all the rows for a particular group in Step 4. We 
can also loop over the groups and use size to count the number of rows for each group.

In Step 7, we create a series groupby object from the DataFrame groupby object. Using 
the resulting object's aggregation methods gives us summary statistics for a series by 
group. One thing is clear about the distribution of new_cases from this output: it varies 
quite a bit by country. For example, we can see right away that the interquartile range is 
quite different, even for the first five countries.

There's more...
The output from Step 7 is quite useful. It is worth saving output such as that for each 
important continuous variable where the distribution is meaningfully different by group.

Pandas groupby DataFrames are extraordinarily powerful and easy to use. Step 7 shows 
just how easy it is to create the summaries by groups that we created in the first two 
recipes in this chapter. Unless the DataFrame we are working with is small, or the task 
involves very complicated calculations across rows, the groupby method is a superior 
choice to looping.
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Using more complicated aggregation functions 
with groupby
In the previous recipe, we created a groupby DataFrame object and used it to run 
summary statistics by groups. We use chaining in this recipe to create the groups, choose 
the aggregation variable(s), and select the aggregation function(s), all in one line. We also 
take advantage of the flexibility of the groupby object, which allows us to choose the 
aggregation columns and functions in a variety of ways.

Getting ready
We will work with the National Longitudinal Survey of Youth (NLS) data in 
 this recipe.  

Data note
The NLS, administered by the United States Bureau of Labor Statistics, are 
longitudinal surveys of individuals who were in high school in 1997 when 
the surveys started. Participants were surveyed each year through 2018. The 
surveys are available for public use at nlsinfo.org.

How to do it…
We do more complicated aggregations with groupby than we did in the previous recipe, 
taking advantage of its flexibility:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Review the structure of the data:

>>> nls97.iloc[:,0:7].info()

<class 'pandas.core.frame.DataFrame'>

Int64Index: 8984 entries, 100061 to 999963

Data columns (total 7 columns):

 #   Column                 Non-Null Count  Dtype  

---  ------                 --------------  -----  

http://nlsinfo.org
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 0   gender                 8984 non-null   object 

 1   birthmonth             8984 non-null   int64  

 2   birthyear              8984 non-null   int64  

 3   highestgradecompleted  6663 non-null   float64

 4   maritalstatus          6672 non-null   object 

 5   childathome            4791 non-null   float64

 6   childnotathome         4791 non-null   float64

dtypes: float64(3), int64(2), object(2)

memory usage: 561.5+ KB

3.	 Review some of the categorical data:

>>> catvars = ['gender','maritalstatus','highestdegree']

>>> 

>>> for col in catvars:

...   print(col, nls97[col].value_counts().sort_index(), 
sep="\n\n", end="\n\n\n")

... 

gender

Female    4385

Male      4599

Name: gender, dtype: int64

maritalstatus

Divorced          663

Married          3066

Never-married    2766

Separated         154

Widowed            23

Name: maritalstatus, dtype: int64

highestdegree

0. None             953

1. GED             1146

2. High School     3667

3. Associates       737

4. Bachelors       1673
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5. Masters          603

6. PhD               54

7. Professional     120

Name: highestdegree, dtype: int64

4.	 Review some descriptive statistics:

>>> contvars = 
['satmath','satverbal','weeksworked06','gpaoverall',

...   'childathome']

>>> 

>>> nls97[contvars].describe()

       satmath  satverbal  weeksworked06  gpaoverall  
childathome

count  1,407.0    1,406.0        8,340.0     6,004.0      
4,791.0

mean     500.6      499.7           38.4         2.8          
1.9

std      115.0      112.2           18.9         0.6          
1.3

min        7.0       14.0            0.0         0.1          
0.0

25%      430.0      430.0           27.0         2.4          
1.0

50%      500.0      500.0           51.0         2.9          
2.0

75%      580.0      570.0           52.0         3.3          
3.0

max      800.0      800.0           52.0         4.2          
9.0

5.	 Look at Scholastic Assessment Test (SAT) math scores by gender.

We pass the column name to groupby to group by that column:
>>> nls97.groupby('gender')['satmath'].mean()

gender

Female   487

Male     517

Name: satmath, dtype: float64



Using more complicated aggregation functions with groupby     285

6.	 Look at the SAT math scores by gender and highest degree earned.

We can pass a list of column names to groupby to group by more than one column:
>> nls97.groupby(['gender','highestdegree'])['satmath'].
mean()

gender  highestdegree  

Female  0. None           333

        1. GED            405

        2. High School    431

        3. Associates     458

        4. Bachelors      502

        5. Masters        508

        6. PhD            575

        7. Professional   599

Male    0. None           540

        1. GED            320

        2. High School    468

        3. Associates     481

        4. Bachelors      542

        5. Masters        574

        6. PhD            621

        7. Professional   588

Name: satmath, dtype: float64

7.	 Look at the SAT math and verbal scores by gender and highest degree earned.

We can use a list to summarize values for more than one variable, in this case 
satmath and satverbal:

>>> nls97.groupby(['gender','highestdegree'])
[['satmath','satverbal']].mean()

                        satmath  satverbal

gender highestdegree                      

Female 0. None              333        409

       1. GED               405        390

       2. High School       431        444

       3. Associates        458        466

       4. Bachelors         502        506

       5. Masters           508        534
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       6. PhD               575        558

       7. Professional      599        587

Male   0. None              540        483

       1. GED               320        360

       2. High School       468        457

       3. Associates        481        462

       4. Bachelors         542        528

       5. Masters           574        545

       6. PhD               621        623

       7. Professional      588        592

8.	 Add columns for the count, max, and standard deviation.

Use the agg function to return several summary statistics:

>>> nls97.groupby(['gender','highestdegree'])
['gpaoverall'].agg(['count','mean','max','std'])

                        count  mean  max  std

gender highestdegree                         

Female 0. None            148   2.5  4.0  0.7

       1. GED             227   2.3  3.9  0.7

       2. High School    1212   2.8  4.2  0.5

       3. Associates      290   2.9  4.0  0.5

       4. Bachelors       734   3.2  4.1  0.5

       5. Masters         312   3.3  4.1  0.4

       6. PhD              22   3.5  4.0  0.5

       7. Professional     53   3.5  4.1  0.4

Male   0. None            193   2.2  4.0  0.6

       1. GED             345   2.2  4.0  0.6

       2. High School    1436   2.6  4.0  0.5

       3. Associates      236   2.7  3.8  0.5

       4. Bachelors       560   3.1  4.1  0.5

       5. Masters         170   3.3  4.0  0.4

       6. PhD              20   3.4  4.0  0.6

       7. Professional     38   3.4  4.0  0.3
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9.	 Use a dictionary for more complicated aggregations:

>>> pd.options.display.float_format = '{:,.1f}'.format

>>> aggdict = {'weeksworked06':['count', 'mean', 
'max','std'], 'childathome':['count', 'mean', 'max', 
'std']}

>>> nls97.groupby(['highestdegree']).agg(aggdict)

                weeksworked06                childathome             

                        count mean  max  std       count 
mean max std

highestdegree                                                        

0. None                   703 29.7 52.0 21.6         439  
1.8 8.0 1.6

1. GED                   1104 33.2 52.0 20.6         693  
1.7 9.0 1.5

2. High School           3368 39.4 52.0 18.6        1961  
1.9 7.0 1.3

3. Associates             722 40.7 52.0 17.7         428  
2.0 6.0 1.1

4. Bachelors             1642 42.2 52.0 16.1         827  
1.9 8.0 1.0

5. Masters                601 42.2 52.0 16.1         333  
1.9 5.0 0.9

6. PhD                     53 38.2 52.0 18.6          32  
2.1 6.0 1.1

7. Professional           117 27.1 52.0 20.4          57  
1.8 4.0 0.8

>>> nls97.groupby(['maritalstatus']).agg(aggdict)

              weeksworked06                childathome             

                      count mean  max  std       count 
mean max std

maritalstatus                                                      

Divorced                660 37.5 52.0 19.1         524  
1.5 5.0 1.2

Married                3033 40.3 52.0 17.9        2563  
2.1 8.0 1.1

Never-married          2734 37.2 52.0 19.1        1502  
1.6 9.0 1.3

Separated               153 33.8 52.0 20.2         137  
1.5 8.0 1.4
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Widowed                  23 37.1 52.0 19.3          18  
1.8 5.0 1.4

We display the same summary statistics for weeksworked06 and childathome, but 
we could have specified different aggregation functions for each using the same syntax as 
we used in Step 9.

How it works…
We first take a look at some summary statistics for key columns in the DataFrame. We 
get frequencies for the categorical variables in Step 3, and some descriptives for the 
continuous variables in Step 4. It is a good idea to have summary values for the DataFrame 
as a whole in front of us before generating statistics by group.

We are then ready to create summary statistics using groupby. This involves three steps:

1.	 Creating a groupby DataFrame based on one or more categorical variables

2.	 Selecting the column(s) to be used for the summary statistics

3.	 Choosing the aggregation function(s)

We use chaining in this recipe to do all three in one line. So, nls97.
groupby('gender')['satmath'].mean() in Step 5 does three things: nls97.
groupby('gender') creates the groupby DataFrame object, ['satmath'] chooses 
the aggregation column, and mean() is the aggregation function.

We can pass a column name (as in Step 5) or a list of column names (as in Step 6) 
to groupby to create groupings by one or more columns. We can select multiple 
variables for aggregation with a list of those variables, as we do in Step 7 with 
[['satmath','satverbal']].

We can chain a specific summary function such as mean, count, or max. Or, we could 
pass a list to agg to choose multiple aggregation functions, such as with agg(['coun
t','mean','max','std']) in Step 8. We can use the familiar pandas and NumPy 
aggregation functions or a user-defined function, which we explore in the next recipe.

Another important takeaway from Step 8 is that agg sends the aggregation columns to 
each function a group at a time. The calculations in each aggregation function are run 
for each group in the groupby DataFrame. Another way to conceptualize this is that it 
allows us to run the same functions we are used to running across a whole DataFrame for 
one group at a time, accomplishing this by automating the process of sending the data for 
each group to the aggregation functions.
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There's more…
We first get a sense of how the categorical and continuous variables in the DataFrame  
are distributed. Often, we group data to see how a distribution of a continuous variable, 
such as weeks worked, differs by a categorical variable, such as marital status. Before doing 
that, it is helpful to have a good idea of how those variables are distributed across the 
whole dataset.

The nls97 dataset only has SAT scores for about 1,400 of 8,984 respondents, so we need 
to be careful when examining SAT scores by different groups. This means that some of the 
counts by gender and highest degree, especially for PhD recipients, are a little too small to 
be reliable. There are outliers for SAT math and verbal scores (if we define outliers as 1.5 
times the interquartile range above the third quartile or below the first quartile).

We have acceptable counts for weeks worked and number of children living at home for 
all values of highest degree achieved, and values of marital status except for widowed. 
The average weeks worked for folks who received a professional degree is unexpected. It 
is lower than for any other group. A good next step would be to see how persistent this is 
over the years. (We are just looking at 2006 weeks worked here, but there are 20 years' of 
data on weeks worked.)

See also
The nls97 file is panel data masquerading as individual-level data. The panel data 
structure can be recovered, facilitating analysis over time of areas such as employment and 
school enrollment. We do this in the recipes in Chapter 9, Tidying and Reshaping Data.

Using user-defined functions and apply with 
groupby
Despite the numerous aggregation functions available in pandas and NumPy, we 
sometimes have to write our own to get the results we need. In some cases, this requires 
the use of apply.

Getting ready
We will work with the NLS data in this recipe.
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How to do it…
We will create our own functions to define the summary statistics we want by group:

1.	 Import pandas and the NLS data:

>>> import pandas as pd

>>> import numpy as np

>>> nls97 = pd.read_csv("data/nls97b.csv")

>>> nls97.set_index("personid", inplace=True)

2.	 Create a function for defining the interquartile range:

>>> def iqr(x):

...   return x.quantile(0.75) - x.quantile(0.25)

... 

3.	 Run the interquartile range function.

First, create a dictionary that specifies which aggregation functions to run on each 
analysis variable:

>>> aggdict = {'weeksworked06':['count', 'mean', iqr], 
'childathome':['count', 'mean', iqr]}

>>> nls97.groupby(['highestdegree']).agg(aggdict)

                weeksworked06           childathome         

                        count mean  iqr       count mean 
iqr

highestdegree                                               

0. None                   703 29.7 47.0         439  1.8 
3.0

1. GED                   1104 33.2 39.0         693  1.7 
3.0

2. High School           3368 39.4 21.0        1961  1.9 
2.0

3. Associates             722 40.7 18.0         428  2.0 
2.0

4. Bachelors             1642 42.2 14.0         827  1.9 
1.0

5. Masters                601 42.2 13.0         333  1.9 
1.0

6. PhD                     53 38.2 23.0          32  2.1 
2.0
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7. Professional           117 27.1 45.0          57  1.8 
1.0

4.	 Define a function to return selected summary statistics as a series:

>>> def gettots(x):

...   out = {}

...   out['qr1'] = x.quantile(0.25)

...   out['med'] = x.median()

...   out['qr3'] = x.quantile(0.75)

...   out['count'] = x.count()

...   return pd.Series(out)

...

5.	 Use apply to run the function.

This will create a series with a multi-index based on highestdegree values and 
the desired summary statistics:

>>> pd.options.display.float_format = '{:,.0f}'.format

>>> nls97.groupby(['highestdegree'])['weeksworked06'].
apply(gettots)

highestdegree         

0. None          qr1         5

                 med        34

                 qr3        52

                 count     703

1. GED           qr1        13

                 med        42

                 qr3        52

                 count   1,104

2. High School   qr1        31

                 med        52

                 qr3        52

                 count   3,368

3. Associates    qr1        34

                 med        52

                 qr3        52

                 count     722
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..... abbreviated to save space .....

Name: weeksworked06, dtype: float64

6.	 Use reset_index to use the default index instead of the index created from the 
groupby DataFrame:

>>> nls97.groupby(['highestdegree'])['weeksworked06'].
apply(gettots).reset_index()

      highestdegree level_1  weeksworked06

0           0. None     qr1              5

1           0. None     med             34

2           0. None     qr3             52

3           0. None   count            703

4            1. GED     qr1             13

5            1. GED     med             42

6            1. GED     qr3             52

7            1. GED   count          1,104

8    2. High School     qr1             31

9    2. High School     med             52

10   2. High School     qr3             52

11   2. High School   count          3,368

12    3. Associates     qr1             34

13    3. Associates     med             52

14    3. Associates     qr3             52

15    3. Associates   count            722

..... abbreviated to save space .....

7.	 Chain with unstack instead to create columns based on the summary variables.

This will create a DataFrame with the highestdegree values as the index, and 
aggregation values in the columns:

>>> nlssums = nls97.groupby(['highestdegree'])
['weeksworked06'].apply(gettots).unstack()

>>> nlssums

                 qr1  med  qr3  count

highestdegree                        

0. None            5   34   52    703

1. GED            13   42   52  1,104
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2. High School    31   52   52  3,368

3. Associates     34   52   52    722

4. Bachelors      38   52   52  1,642

5. Masters        39   52   52    601

6. PhD            29   50   52     53

7. Professional    4   29   49    117

>>> nlssums.info()

<class 'pandas.core.frame.DataFrame'>

Index: 8 entries, 0. None to 7. Professional

Data columns (total 4 columns):

 #   Column  Non-Null Count  Dtype  

---  ------  --------------  -----  

 0   qr1     8 non-null      float64

 1   med     8 non-null      float64

 2   qr3     8 non-null      float64

 3   count   8 non-null      float64

dtypes: float64(4)

memory usage: 320.0+ bytes

unstack is useful when we want to rotate parts of the index to the columns' axis.

How it works...
We define a very simple function to calculate interquartile ranges by group in Step 2. We 
then include calls to that function in our list of aggregation functions in Step 3.

Steps 4 and 5 are a little more complicated. We define a function that calculates the first 
and third quartiles and median, and counts the number of rows. It returns a series with 
these values. By combining a groupby DataFrame with apply in Step 5, we get the 
gettots function to return that series for each group.

Step 5 gives us the numbers we want, but maybe not in the best format. If, for example, we 
want to use the data for another operation—say, a visualization—we need to chain some 
additional methods. One possibility is to use reset_index. This will replace the multi-
index with the default index. Another option is to use unstack. This will create columns 
from the second level of the index (having qr1, med, qr3, and count values).
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There's more...
Interestingly, the interquartile ranges for weeks worked and number of children at home 
drop substantially as education increases. There seems to be a higher variation in those 
variables among groups with less education. This should be examined more closely and 
has implications for statistical testing that assumes common variances across groups.

In Step 5, we could have set the groupby method's as_index parameter to False. If 
we had done so, we would not have had to use reset_index or unstack to deal with 
the multi-index created. The disadvantage of setting that parameter to False, as you 
can see in the following code snippet, is that the groupby values are not reflected in the 
returned DataFrame, either as an index or a column. This is because we use groupby 
with apply and a user-defined function. When we use as_index=False with an agg 
function, we get a column with the groupby values (we see a couple of examples of that 
in the next recipe):

>>> nls97.groupby(['highestdegree'], as_index=False)
['weeksworked06'].apply(gettots)

   qr1  med  qr3  count

0    5   34   52    703

1   13   42   52  1,104

2   31   52   52  3,368

3   34   52   52    722

4   38   52   52  1,642

5   39   52   52    601

6   29   50   52     53

7    4   29   49    117

See also
We do much more with stack and unstack in Chapter 9, Tidying and Reshaping Data.

Using groupby to change the unit of analysis 
of a DataFrame
The DataFrame that we created in the last step of the previous recipe was something of 
a fortunate by-product of our efforts to generate multiple summary statistics by groups. 
There are times when we really do need to aggregate data to change the unit of analysis—
say, from monthly utility expenses per family to annual utility expenses per family, or 
from students' grades per course to students' overall grade point average (GPA).
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groupby is a good tool for collapsing the unit of analysis, particularly when summary 
operations are required. When we only need to select unduplicated rows—perhaps 
the first or last row for each individual over a given interval—then the combination of 
sort_values and drop_duplicates will do the trick. But we often need to do some 
calculation across the rows for each group before collapsing. That is when groupby 
comes in very handy.

Getting ready
We will work with the COVID-19 case daily data, which has one row per country per day. 
We will also work with the Brazil land temperature data, which has one row per month 
per weather station.

How to do it...
We will use groupby to create a DataFrame of summary values by group:

1.	 Import pandas and load the Covid and land temperature data:

>>> import pandas as pd

>>> coviddaily = pd.read_csv("data/coviddaily720.csv", 
parse_dates=["casedate"])

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

2.	 Convert Covid data from one country per day to summaries across all countries  
by day:

>>> coviddailytotals = coviddaily.loc[coviddaily.
casedate.between('2020-02-01','2020-07-12')].\

...   groupby(['casedate'], as_index=False)[['new_
cases','new_deaths']].\

...   sum()

>>> 

>>> coviddailytotals.head(10)

    casedate  new_cases  new_deaths

0 2020-02-01      2,120          46

1 2020-02-02      2,608          46

2 2020-02-03      2,818          57

3 2020-02-04      3,243          65

4 2020-02-05      3,897          66
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5 2020-02-06      3,741          72

6 2020-02-07      3,177          73

7 2020-02-08      3,439          86

8 2020-02-09      2,619          89

9 2020-02-10      2,982          97

3.	 Create a DataFrame with average temperatures for each station in Brazil.

First, remove rows with missing temperature values, and show some data for  
a few rows:

>>> ltbrazil = ltbrazil.dropna(subset=['temperature'])

>>> ltbrazil.loc[103508:104551, 
['station','year','month','temperature','elevation', 
'latabs']]

                   station  year  month  temperature  
elevation  latabs

103508     CRUZEIRO_DO_SUL  2019      1           26        
194       8

103682              CUIABA  2019      1           29        
151      16

103949  SANTAREM_AEROPORTO  2019      1           27         
60       2

104051  ALTA_FLORESTA_AERO  2019      1           27        
289      10

104551          UBERLANDIA  2019      1           25        
943      19

>>> 

>>> ltbrazilavgs = ltbrazil.groupby(['station'], as_
index=False).\

...   agg({'latabs':'first','elevation':'first', 
'temperature':'mean'})

>>> 

>>> ltbrazilavgs.head(10)

               station  latabs  elevation  temperature

0             ALTAMIRA       3        112           28

1   ALTA_FLORESTA_AERO      10        289           29

2                ARAXA      20      1,004           22

3              BACABAL       4         25           30

4                 BAGE      31        242           19
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5             BARBALHA       7        409           27

6             BARCELOS       1         34           28

7       BARRA_DO_CORDA       6        153           29

8            BARREIRAS      12        439           27

9  BARTOLOMEU_LISANDRO      22         17           26

Let's take a closer look at how the aggregation functions in these examples work.

How it works…
In Step 2, we first select the dates that we want (some countries started reporting COVID-
19 cases later than others). We create a DataFrame groupby object based on casedate, 
choose new_cases and new_deaths as the aggregation variables, and select sum for 
the aggregation function. This produces a sum for both new_cases and new_deaths 
for each group (casedate). Depending on your purposes you may not want casedate 
to be the index, which would happen if we did not set as_index to False.

We often need to use a different aggregation function with different aggregation variables. 
We might want to take the first (or last) value for one variable, and get the mean of the 
values of another variable by group. This is what we do in Step 3. We do this by passing  
a dictionary to the agg function, with our aggregation variables as keys and the 
aggregation function to use as values.





8
Addressing Data 

Issues When 
Combining 

DataFrames
At some point during most data cleaning projects, the analyst will have to combine data 
from different data tables. This involves either appending data with the same structure to 
existing data rows or doing a merge to retrieve columns from a different data table. The 
former is sometimes referred to as combining data vertically, or concatenating, while the 
latter is referred to as combining data horizontally, or merging.

Merges can be categorized by the amount of duplication of merge-by column values. With 
one-to-one merges, merge-by column values appear once on each data table. One-to-many  
merges have unduplicated merge-by column values on one side of the merge and 
duplicated merge-by column values on the other side. Many-to-many merges have 
duplicated merge-by column values on both sides. Merging is further complicated by the 
fact that there is often no perfect correspondence between merge-by values on the data 
tables; each data table may have values in the merge-by column that are not present in the 
other data table.
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New data issues can be introduced when data is combined. When data is appended, it may 
have different logical values than the original data, even when the columns have the same 
names and data types. For merges, whenever merge-by values are missing on one side of 
a merge, the columns that are added will have missing values. For one-to-one or one-to-
many merges, there may be unexpected duplicates in merge-by values, resulting in values 
for other columns being duplicated unintentionally.

In this chapter, we will combine DataFrames vertically and horizontally and consider 
strategies for dealing with the data problems that often arise. Specifically, in this chapter, 
we will cover the following recipes:

•	 Combining DataFrames vertically

•	 Doing one-to-one merges

•	 Doing one-to-one merges by multiple columns

•	 Doing one-to-many merges

•	 Doing many-to-many merges

•	 Developing a merge routine

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Combining DataFrames vertically
There are times when we need to append rows from one data table to another. This will 
almost always be rows from data tables with similar structures, along with the same 
columns and data types. For example, we might get a new CSV file containing hospital 
patient outcomes each month and need to add that to our existing data. Alternatively, 
we might end up working at a school district central office and receive data from many 
different schools. We might want to combine this data before conducting analyses.

Even when the data structure across months and across schools (in these examples) is 
theoretically the same, it may not be in practice. Business practices can change from one 
period to another. This can be intentional or happen inadvertently due to staff turnover or 
some external factor. One institution or department might implement practices somewhat 
differently than another, and some data values might be different for some institutions or 
missing altogether.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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We are likely to come across a change in what seems like similar data when we let our 
guard down, typically when we start to assume that the new data will look like the old 
data. I try to remember this whenever I combine data vertically. I will be referring to 
combining data vertically as concatenating or appending for the rest of this chapter.

In this recipe, we'll use the pandas concat function to append rows from a pandas 
DataFrame to another DataFrame. We will also do a few common checks on the concat 
operation to confirm that the resulting DataFrame is what we expected.

Getting ready
We will work with land temperature data from several countries in this recipe. This data 
includes the monthly average temperature, latitude, longitude, and elevation at many 
weather stations in each country during 2019. The data for each country is contained in  
a CSV file.

Data note
The data for this recipe has been taken from the Global Historical Climatology 
Network integrated database, which has been made available for public use 
by the United States National Oceanic and Atmospheric Administration, 
at https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/global-
historical-climatology-network-monthly-version-4.

How to do it…
In this recipe, we will combine similarly structured DataFrames vertically, check the 
values in the concatenated data, and fix missing values. Let's get started:

1.	 Import pandas and NumPy, as well as the os module:

>>> import pandas as pd

>>> import numpy as np

>>> import os

2.	 Load the data from Cameroon and Poland:

>>> ltcameroon = pd.read_csv("data/ltcountry/ltcameroon.
csv")

>>> ltpoland = pd.read_csv("data/ltcountry/ltpoland.csv")

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
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3.	 Concatenate the Cameroon and Poland data:

>>> ltcameroon.shape

(48, 11)

>>> ltpoland.shape

(120, 11)

>>> ltall = pd.concat([ltcameroon, ltpoland])

>>> ltall.country.value_counts()

Poland      120

Cameroon     48

Name: country, dtype: int64

4.	 Concatenate all the country data files.

Loop through all the filenames in the folder that contains the CSV files for each 
country. Use the endswith method to check that the filename has a CSV file 
extension. Use read_csv to create a new DataFrame and print out the number of 
rows. Use concat to append the rows of the new DataFrame to the rows that have 
already been appended. Finally, display any columns that are missing in the most 
recent DataFrame, or that are in the most recent DataFrame but not the previous 
ones. Notice that the ltoman DataFrame is missing the latabs column:

>>> directory = "data/ltcountry"

>>> ltall = pd.DataFrame()

>>> 

>>> for filename in os.listdir(directory):

...   if filename.endswith(".csv"): 

...     fileloc = os.path.join(directory, filename)

...     # open the next file

...     with open(fileloc) as f:

...       ltnew = pd.read_csv(fileloc)

...       print(filename + " has " + str(ltnew.shape[0]) 
+ " rows.")

...       ltall = pd.concat([ltall, ltnew])

...       # check for differences in columns

...       columndiff = ltall.columns.symmetric_
difference(ltnew.columns)

...       if (not columndiff.empty):

...         print("", "Different column names for:", 
filename,\
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...           columndiff, "", sep="\n")

... 

ltpoland.csv has 120 rows.

ltjapan.csv has 1800 rows.

ltindia.csv has 1056 rows.

ltbrazil.csv has 1104 rows.

ltcameroon.csv has 48 rows.

ltoman.csv has 288 rows.

Different column names for:

ltoman.csv

Index(['latabs'], dtype='object')

ltmexico.csv has 852 rows.

5.	 Show some of the combined data:

>>> ltall[['country','station','month','temperature', 
'latitude']].sample(5, random_state=1)

    country     station  month  temperature  latitude

597   Japan      MIYAKO      4           24        25

937   India  JHARSUGUDA     11           25        22

616  Mexico   TUXPANVER      9           29        21

261   India    MO_AMINI      3           29        11

231    Oman        IBRA     10           29        23

6.	 Check the values in the concatenated data.

Notice that the values for latabs for Oman are all missing. This is because 
latabs is missing in the DataFrame for Oman (latabs is the absolute value of 
the latitude for each station):

>>> ltall.country.value_counts().sort_index()

Brazil      1104

Cameroon      48

India       1056

Japan       1800

Mexico       852

Oman         288
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Poland       120

Name: country, dtype: int64

>>> 

>>> ltall.groupby(['country']).
agg({'temperature':['min','mean',\

...   'max','count'],'latabs':['min','mean','max','co
unt']})

         temperature                latabs               

                 min mean max count    min mean max count

country                                                  

Brazil            12   25  34   969      0   14  34  1104

Cameroon          22   27  36    34      4    8  10    48

India              2   26  37  1044      8   21  34  1056

Japan             -7   15  30  1797     24   36  45  1800

Mexico             7   23  34   806     15   22  32   852

Oman              12   28  38   205    nan  nan nan     0

Poland            -4   10  23   120     50   52  55   120

7.	 Fix the missing values.

Set the value of latabs to the value of latitude for Oman. (All of the 
latitude values for stations in Oman are above the equator and positive. In the 
Global Historical Climatology Network integrated database, latitude values 
above the equator are positive, while all the latitude values below the equator are 
negative). Do this as follows:

>>> ltall['latabs'] = np.where(ltall.country=="Oman", 
ltall.latitude, ltall.latabs)

>>> 

>>> ltall.groupby(['country']).
agg({'temperature':['min','mean',\

...   'max','count'],'latabs':['min','mean','max','co
unt']})

         temperature                latabs               

                 min mean max count    min mean max count

country                                                  

Brazil            12   25  34   969      0   14  34  1104

Cameroon          22   27  36    34      4    8  10    48
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India              2   26  37  1044      8   21  34  1056

Japan             -7   15  30  1797     24   36  45  1800

Mexico             7   23  34   806     15   22  32   852

Oman              12   28  38   205     17   22  26   288

Poland            -4   10  23   120     50   52  55   120

With that, we have combined the data for the seven CSV files we found in the selected 
folder. We have also confirmed that we have appended the correct number of rows, 
identified columns that are missing in some files, and fixed missing values.

How it works...
We passed a list of pandas DataFrames to the pandas concat function in step 3. The 
rows from the second DataFrame were appended to the bottom of the first DataFrame. If 
we had listed a third DataFrame, those rows would have been appended to the combined 
rows of the first two DataFrames. Before concatenating, we used the shape attribute to 
check the number of rows. We confirmed that the concatenated DataFrame contains the 
expected number of rows for each country.

We could have concatenated data from all the CSV files in the ltcountry subfolder by 
loading each file and then adding it to the list we passed to concat. However, this is not 
always practical. If we want to load and then read more than a few files, we can get Python's 
os module to find the files. In step 4, we looked for all the CSV files in a specified folder, 
loaded each file that was found into memory, and then appended the rows of each file to a 
DataFrame. We printed the number of rows for each data file we loaded so that we could 
check those numbers against the totals in the concatenated data later. We also identified 
any DataFrames with different columns compared to the others. We used value_counts 
in step 6 to confirm that there was the right number of rows for each country.

The pandas groupby method can be used to check column values from each of the 
original DataFrames. We group by country since that identifies the rows from each of the 
original DataFrames – all the rows for each DataFrame have the same value for country. 
(It is helpful to always have a column that identifies the original DataFrames in the 
concatenated DataFrame, even if that information is not needed for subsequent analysis.) 
In step 6, this helped us notice that there are no values for the latabs column for Oman. 
We replaced the missing values for latabs for Oman in step 7.
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See also
We went over the powerful pandas groupby method in some detail in Chapter 7, Fixing 
Messy Data when Aggregating.

We examined NumPy's where function in Chapter 6, Cleaning and Exploring Data with 
Series Operations.

Doing one-to-one merges
The remainder of this chapter will explore combining data horizontally; that is, merging 
columns from a data table with columns from another data table. Borrowing from SQL 
development, we typically talk about such operations as join operations: left joins, right 
joins, inner joins, and outer joins. This recipe examines one-to-one merges, where the 
merge-by values are unduplicated in both files. Subsequent recipes will demonstrate 
one-to-many merges, where the merge-by values are duplicated on the right data table; 
and many-to-many merges, where merge-by values are duplicated on both the left and 
right data tables.

We often speak of left and right sides of a merge, a convention that we will follow 
throughout this chapter. But this is of no real consequence, other than for clarity of 
exposition. We can accomplish exactly the same thing with a merge if A were the left data 
table and B were the right data table and vice versa.

I am using the expressions merge-by column and merge-by value in this chapter, rather 
than key column or index column. This avoids possible confusion with pandas index 
alignment. An index may be used as the merge-by column, but other columns may also 
be used. I also want to avoid relying on relational database concepts such as primary or 
foreign keys in this discussion. It is helpful to be aware of which data columns function 
as primary or foreign keys when we're extracting data from relational systems, and we 
should take this into account when setting indexes in pandas. But the merging we do for 
most data cleaning projects often goes beyond these keys.

In the straightforward case of a one-to-one merge, each row in the left data table is 
matched with one – and only one – row on the right data table, according to the merge-by 
value. What happens when a merge-by value appears on one, but not the other, data table 
is determined by the type of join that's specified. The following diagram illustrates the four 
different types of joins:
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Figure 8.1 – A diagram illustrating the four different types of joins

When two data tables are merged with an inner join, rows are retained when the merge-by 
values appear in both the left and right data tables. This is the intersection of the left and 
right data tables, represented by B in the preceding diagram. Outer joins return all rows; 
that is, rows where the merge-by values appear in both data tables, rows where those 
values appear in the left data table but not the right, and rows where those values appear 
in the right but not the left – B, A, and C, respectively. This is known as the union. Left 
joins return rows where the merge-by values are present on the left data table, regardless 
of whether they are present on the right data table. This is A and B. Right joins return 
rows where the merge-by values are present on the right data table, regardless of whether 
they are present on the left data table.

Missing values may result from outer joins, left joins, or right joins. This is because the 
returned merged data table will have missing values for columns when the merge-by value 
is not found. For example, when performing a left join, there may be merge-by values 
from the left dataset that do not appear on the right dataset. In this case, the columns from 
the right dataset will all be missing. (I say may here because it is possible to do an outer, 
left, or right join that returns the same results as an inner join because the same merge-by 
values appear on both sides. Sometimes, a left join is done so that we're certain that all the 
rows on the left dataset, and only those rows, are returned).

We will look at all four types of joins in this recipe.
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Getting ready
We will work with two files from the National Longitudinal Survey (NLS). Both files 
contain one row per person. One contains employment, educational attainment, and 
income data, while the other file contains data on the income and educational attainment 
of the respondents' parents.

Data note
The NLS is conducted by the United States Bureau of Labor Statistics. 
It is available for public use at https://www.nlsinfo.org/
investigator/pages/search. The survey started with a cohort 
of individuals in 1997 who were born between 1980 and 1985, with annual 
follow-ups each year through 2017. I extracted fewer than 100 variables from 
the hundreds available from this rich data source.

How to do it...
In this recipe, we will perform left, right, inner, and outer joins on two DataFrames that 
have one row for each merge-by value. Let's get started:

1.	 Import pandas and load the two NLS DataFrames:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index("personid", inplace=True)

>>> nls97add = pd.read_csv("data/nls97add.csv")

2.	 Look at some of the NLS data:

>>> nls97.head()

          gender  birthmonth  birthyear  ...      
colenrfeb17  \

personid                                 ...                    

100061    Female           5       1980  ...  1. Not 
enrolled   

100139      Male           9       1983  ...  1. Not 
enrolled   

100284      Male          11       1984  ...  1. Not 
enrolled   

100292      Male           4       1982  ...              
NaN   

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search
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100583      Male           1       1980  ...  1. Not 
enrolled   

              colenroct17  originalid  

personid                               

100061    1. Not enrolled        8245  

100139    1. Not enrolled        3962  

100284    1. Not enrolled        3571  

100292                NaN        2979  

100583    1. Not enrolled        8511  

>>> nls97.shape

(8984, 89)

>>> nls97add.head()

   originalid  motherage  parentincome  fatherhighgrade  
motherhighgrade

0           1         26            -3               16                
8

1           2         19            -4               17               
15

2           3         26         63000               -3               
12

3           4         33         11700               12               
12

4           5         34            -3               12               
12

>>> nls97add.shape

(8984, 5)

3.	 Check that the number of unique values for originalid is equal to the number  
of rows.

4.	 We will use originalid for our merge-by column later:

>>> nls97.originalid.nunique()==nls97.shape[0]

True

>>> nls97add.originalid.nunique()==nls97add.shape[0]

True
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5.	 Create some mismatched IDs.

Unfortunately, the NLS data is a little too clean for our purposes. Due to this, we 
will mess up a couple of values for originalid. originalid is the last column 
in the nls97 file and the first column in the nls97add file:

>>> nls97 = nls97.sort_values('originalid')

>>> nls97add = nls97add.sort_values('originalid')

>>> nls97.iloc[0:2, -1] = nls97.originalid+10000

>>> nls97.originalid.head(2)

personid

135335    10001

999406    10002

Name: originalid, dtype: int64

>>> nls97add.iloc[0:2, 0] = nls97add.originalid+20000

>>> nls97add.originalid.head(2)

0    20001

1    20002

Name: originalid, dtype: int64

6.	 Use join to perform a left join.

nls97 is the left DataFrame and nls97add is the right DataFrame when we 
use join in this way. Show the values for the mismatched IDs. Notice that the 
values for the columns from the right DataFrame are all missing when there is 
no matching ID on that DataFrame (the orignalid values 10001 and 10002 
appear on the left DataFrame but not on the right DataFrame):

>>> nlsnew = nls97.join(nls97add.set_
index(['originalid']))

>>> nlsnew.loc[nlsnew.originalid>9999, 
['originalid','gender','birthyear','motherage', 
'parentincome']]

          originalid  gender  birthyear  motherage  
parentincome

personid                                                        

135335         10001  Female       1981        nan           
nan

999406         10002    Male       1982        nan           
nan
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7.	 Perform a left join with merge.

The first DataFrame is the left DataFrame, while the second DataFrame is the right 
DataFrame. Use the on parameter to indicate the merge-by column. Set the value of 
the how parameter to "left" to do a left join. We get the same results that we get 
when using join, other than with the index:

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'], 
how="left")

>>> nlsnew.loc[nlsnew.originalid>9999, 
['originalid','gender','birthyear','motherage', 
'parentincome']]

   originalid  gender  birthyear  motherage  parentincome

0       10001  Female       1981        nan           nan

1       10002    Male       1982        nan           nan

8.	 Perform a right join.

With a right join, the values from the left DataFrame are missing when there is no 
matching ID on the left DataFrame:

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'], 
how="right")

>>> nlsnew.loc[nlsnew.originalid>9999, 
['originalid','gender','birthyear','motherage', 
'parentincome']]

      originalid gender  birthyear  motherage  
parentincome

8982       20001    NaN        nan         26            
-3

8983       20002    NaN        nan         19            
-4

9.	 Perform an inner join.

None of the mismatched IDs (that have values over 10000) appear after the inner 
join. This is because they do not appear on both DataFrames:

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'], 
how="inner")

>>> nlsnew.loc[nlsnew.originalid>9999, 
['originalid','gender','birthyear','motherage', 
'parentincome']]

Empty DataFrame
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Columns: [originalid, gender, birthyear, motherage, 
parentincome]

Index: []

10.	 Perform an outer join.

This retains all the rows, so rows with merge-by values in the left DataFrame but 
not in the right are retained (originalid values 10001 and 10002), and rows 
with merge-by values in the right DataFrame but not in the left are also retained 
(originalid values 20001 and 20002):

>>> nlsnew = pd.merge(nls97, nls97add, on=['originalid'], 
how="outer")

>>> nlsnew.loc[nlsnew.originalid>9999, 
['originalid','gender','birthyear','motherage', 
'parentincome']]

      originalid  gender  birthyear  motherage  
parentincome

0          10001  Female      1,981        nan           
nan

1          10002    Male      1,982        nan           
nan

8984       20001     NaN        nan         26            
-3

8985       20002     NaN        nan         19            
-4

11.	 Create a function to check for ID mismatches.

The function takes a left and right DataFrame, as well as a merge-by column. It 
perform an outer join because we want to see which merge-by values are present in 
either DataFrame, or both of them:

>>> def checkmerge(dfleft, dfright, idvar):

...   dfleft['inleft'] = "Y"

...   dfright['inright'] = "Y"

...   dfboth = pd.merge(dfleft[[idvar,'inleft']],\

...     dfright[[idvar,'inright']], on=[idvar], 
how="outer")

...   dfboth.fillna('N', inplace=True)

...   print(pd.crosstab(dfboth.inleft, dfboth.inright))

... 
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>>> checkmerge(nls97,nls97add, "originalid")

inright  N     Y

inleft          

N        0     2

Y        2  8982

With that, we have demonstrated how to perform the four types of joins with a one-to- 
one merge.

How it works...
One-to-one merges are fairly straightforward. The merge-by column(s) only appear once 
on the left and right DataFrames. However, some merge-by column values may appear 
on only one DataFrame. This is what makes the type of join important. If all merge-by 
column values appeared on both DataFrames, then a left join, right join, inner join, or 
outer join would return the same result. We took a look at the two DataFrames in the 
first few steps. In step 3, we confirmed that the number of unique values for the merge-by 
column (originalid) is equal to the number of rows in both DataFrames. This tells us 
that we will be doing a one-to-one merge.

If the merge-by column is the index, then the easiest way to perform a left join is to use 
the join DataFrame method. We did this in step 5. We passed the right DataFrame, after 
setting the index, to the join method of the left DataFrame. (The index has already been 
set for the left DataFrame). The same result was returned when we performed a left join 
using the pandas merge function in step 6. We used the how parameter to specify a left 
join and indicated the merge-by column using on. The value that we passed to on can be 
any column(s) in the DataFrame.

In steps 7 to 9, we performed the right, inner, and outer joins, respectively. This is specified 
by the how value, which is the only part of the code that is different across these steps.

The simple checkmerge function we created in step 10 counted the number of rows with 
merge-by column values on one DataFrame but not the other, and the number of values 
on both. Passing copies of the two DataFrames to this function tells us that two rows are 
in the left DataFrame and not in the right, two rows are in the right DataFrame but not 
the left, and 8,982 rows are in both.
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There's more...
You should run a function similar to the checkmerge function we created in step 10 
before you do any non-trivial merge – which, in my opinion, is pretty much all merges.

The merge function is more flexible than the examples I have used in this recipe suggest. 
For example, in step 6, we did not have to specify the left DataFrame as the first parameter. 
I could have indicated the left and right DataFrames explicitly, like so:

>>> nlsnew = pd.merge(right=nls97add, left=nls97, 
on=['originalid'], how="left")

We can also specify different merge-by columns for the left and right DataFrames by using 
left_on and right_on instead of on:

>>> nlsnew = pd.merge(nls97, nls97add, left_on=['originalid'], 
right_on=['originalid'], how="left")

The flexibility of the merge function makes it a great tool any time we need to combine 
data horizontally.

Using multiple merge-by columns
The same logic we used to perform one-to-one merges with one merge-by column applies 
to merges we perform with multiple merge-by columns. Inner, outer, left, and right joins 
work the same way when you have two or more merge-by columns. We will demonstrate 
this in this recipe.

Getting ready
We will work with the NLS data in this recipe, specifically weeks worked and college 
enrollment from 2000 through 2004. Both the weeks worked and college enrollment files 
contain one row per person, per year.
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How to do it...
We will continue this recipe with one-to-one merges, but this time with multiple merge-by 
columns on each DataFrame. Let's get started:

1.	 Import pandas and load the NLS weeks worked and college enrollment data:

>>> import pandas as pd

>>> nls97weeksworked = pd.read_csv("data/
nls97weeksworked.csv")

>>> nls97colenr = pd.read_csv("data/nls97colenr.csv")

2.	 Look at some of the NLS weeks worked data:

>>> nls97weeksworked.sample(10, random_state=1)

       originalid  year  weeksworked

32923        7199  2003          0.0

14214        4930  2001         52.0

2863         4727  2000         13.0

9746         6502  2001          0.0

2479         4036  2000         28.0

39435        1247  2004         52.0

36416        3481  2004         52.0

6145         8892  2000         19.0

5348         8411  2000          0.0

24193        4371  2002         34.0

>>> nls97weeksworked.shape

(44920, 3)

>>> nls97weeksworked.originalid.nunique()

8984

3.	 Look at some of the NLS college enrollment data:

>>> nls97colenr.sample(10, random_state=1)

       originalid  year              colenr

32923        7199  2003     1. Not enrolled

14214        4930  2001     1. Not enrolled

2863         4727  2000                 NaN

9746         6502  2001     1. Not enrolled

2479         4036  2000     1. Not enrolled
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39435        1247  2004   3. 4-year college

36416        3481  2004     1. Not enrolled

6145         8892  2000     1. Not enrolled

5348         8411  2000     1. Not enrolled

24193        4371  2002  2. 2-year college

>>> nls97colenr.shape

(44920, 3)

>>> nls97colenr.originalid.nunique()

8984

4.	 Check for unique values in the merge-by columns.

We get the same number of merge-by column value combinations (44,920) as there 
are number of rows in both DataFrames:

>>> nls97weeksworked.groupby(['originalid','year'])\

...   ['originalid'].count().shape

(44920,)

>>> 

>>> nls97colenr.groupby(['originalid','year'])\

...   ['originalid'].count().shape

(44920,)

5.	 Check for mismatches in the merge-by columns:

>>> def checkmerge(dfleft, dfright, idvar):

...   dfleft['inleft'] = "Y"

...   dfright['inright'] = "Y"

...   dfboth = pd.merge(dfleft[idvar + ['inleft']],\

...     dfright[idvar + ['inright']], on=idvar, 
how="outer")

...   dfboth.fillna('N', inplace=True)

...   print(pd.crosstab(dfboth.inleft, dfboth.inright))

... 

>>> checkmerge(nls97weeksworked.copy(),nls97colenr.
copy(), ['originalid','year'])

inright      Y

inleft        

Y        44920
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6.	 Perform a merge with multiple merge-by columns:

>>> nlsworkschool = pd.merge(nls97weeksworked, 
nls97colenr, on=['originalid','year'], how="inner")

>>> nlsworkschool.shape

(44920, 4)

>>> nlsworkschool.sample(10, random_state=1)

       originalid  year  weeksworked              colenr

32923        7199  2003            0     1. Not enrolled

14214        4930  2001           52     1. Not enrolled

2863         4727  2000           13                 NaN

9746         6502  2001            0     1. Not enrolled

2479         4036  2000           28     1. Not enrolled

39435        1247  2004           52   3. 4-year college

36416        3481  2004           52     1. Not enrolled

6145         8892  2000           19     1. Not enrolled

5348         8411  2000            0     1. Not enrolled

24193        4371  2002           34  2. 2-year college

These steps demonstrate that the syntax for running merges changes very little when there 
are multiple merge-by columns.

How it works...
Every person in the NLS data has five rows for both the weeks worked and college 
enrollment DataFrames, with one for each year between 2000 and 2004. In step 3, we 
saw that there is a row even when the colenr value is missing. Both files contain 44,920 
rows with 8,984 unique individuals (indicated by originalid). This all makes sense 
(8,984*5=44,920).

Step 4 confirmed that the combination of columns we will be using for the merge-by 
columns will not be duplicated, even if individuals are duplicated. Each person has only 
one row for each year. This means that merging the weeks worked and college enrollment 
data will be a one-to-one merge. In step 5, we checked to see whether there were any 
individual and year combinations that were in one DataFrame but not the other. There 
were none.
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Finally, we were ready to do the merge in step 6. We set the on parameter to a list 
(['originalid','year']) to tell the merge function to use both columns in the 
merge. We specified an inner join, even though we would get the same results with any 
join. This is because the same merge-by values are present in both files.

There's more...
All the logic and potential issues in merging data that we discussed in the previous recipe 
apply, regardless of whether we are merging with one merge-by column or several. Inner, 
outer, right, and left joins work the same way. We can still calculate the number of rows 
that will be returned before doing the merge. However, we still need to check for the 
number of unique merge-by values and for matches between the DataFrames.

If you have worked with recipes in earlier chapters that used the NLS weeks worked and 
college enrollment data, you probably noticed that it is structured differently here. In 
previous recipes, there was one row per person with multiple columns for weeks worked 
and college enrollment, representing weeks worked and college enrollment for multiple 
years. For example, weeksworked01 is the number of weeks worked in 2001. The 
structure of the weeks worked and college enrollment DataFrames we used in this recipe 
is considered tidier than the NLS DataFrame we used in earlier recipes. We'll learn how to 
tidy data in Chapter 9, Tidying and Reshaping Data.

Doing one-to-many merges
In one-to-many merges, there are unduplicated values for the merge-by column or 
columns on the left data table and duplicated values for those columns on the right data 
table. For these merges, we usually do either an inner join or a left join. Which join we use 
matters when merge-by values are missing on the right data table. When performing a left 
join, all the rows that would be returned from an inner join will be returned, plus one row 
for each merge-by value present on the left dataset, but not the right. For those additional 
rows, values for all the columns on the right dataset will be missing in the resulting 
merged data. This relatively straightforward fact ends up mattering a fair bit and should be 
thought through carefully before you code a one-to-many merge.

This is where I start to get nervous, and where I think it makes sense to be a little nervous. 
When I do workshops on data cleaning, I pause before starting this topic and say, "do not 
start a one-to-many merge until you are able to bring a friend with you."

I am joking, of course… mostly. The point I am trying to make is that something should 
cause us to pause before doing a non-trivial merge, and one-to-many merges are never 
trivial. Too much about the structure of our data can change.



Doing one-to-many merges     319

Specifically, there are several things we want to know about the two DataFrames we will 
be merging before starting. First, we should know what columns make sense as merge-by 
columns on each DataFrame. They do not have to be the same columns. Indeed, one-to-
many merges are often used to recapture relationships from an enterprise database system, 
and they are consistent with the primary keys and foreign keys used, which may have 
different names. (The primary key on the left data table is often linked to the foreign key 
on the right data table in a relational database.) Second, we should know what kind of join 
we will be using and why.

Third, we should know how many rows are on both data tables. Fourth, we should have 
a good idea of how many rows will be retained based on the type of join, the number of 
rows in each dataset, and preliminary checks on how many of the merge-by values will 
match. If all the merge-by values are present on both datasets or if we are doing an inner 
join, then the number of rows will be equal to the number of rows of the right dataset of  
a one-to-many merge. But it is often not as straightforward as that. We frequently perform 
left joins with one-to-many merges. With these types of joins, the number of retained 
rows will be equal to the number of rows in the right dataset with a matching merge-by 
value, plus the number of rows in the left dataset with non-matching merge-by values.

This should be clearer once we've worked through the examples in this recipe.

Getting ready
We will be working with data based on weather stations from the Global Historical 
Climatology Network integrated database for this recipe. One of the DataFrames contains 
one row for each country. The other contains one row for each weather station. There are 
typically many weather stations for each country.

How to do it…
In this recipe, we will do a one-to-many merge of data for countries, which contains 
one row per country, and a merge for the weather station data, which contains multiple 
stations for each country. Let's get started:

1.	 Import pandas and load the weather station and country data:

>>> import pandas as pd

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")
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2.	 Set the index for the weather station (locations) and country data.

Confirm that the merge-by values for the countries DataFrame are unique:
>>> countries.set_index(['countryid'], inplace=True)

>>> locations.set_index(['countryid'], inplace=True)

>>> countries.head()

                        country

countryid                      

AC          Antigua and Barbuda

AE         United Arab Emirates

AF                  Afghanistan

AG                      Algeria

AJ                   Azerbaijan

>>> countries.index.nunique()==countries.shape[0]

True

>>> locations[['locationid','latitude','stnelev']].
head(10)

            locationid  latitude  stnelev

countryid                                

AC         ACW00011604        58       18

AE         AE000041196        25       34

AE         AEM00041184        26       31

AE         AEM00041194        25       10

AE         AEM00041216        24        3

AE         AEM00041217        24       27

AE         AEM00041218        24      265

AF         AF000040930        35    3,366

AF         AFM00040911        37      378

AF         AFM00040938        34      977	

3.	 Perform a left join of countries and locations using join:

>>> stations = countries.join(locations)

>>> 
stations[['locationid','latitude','stnelev','country']].
head(10)
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            locationid  latitude  stnelev               
country

countryid                                                      

AC         ACW00011604        58       18   Antigua and 
Barbuda

AE         AE000041196        25       34  United Arab 
Emirates

AE         AEM00041184        26       31  United Arab 
Emirates

AE         AEM00041194        25       10  United Arab 
Emirates

AE         AEM00041216        24        3  United Arab 
Emirates

AE         AEM00041217        24       27  United Arab 
Emirates

AE         AEM00041218        24      265  United Arab 
Emirates

AF         AF000040930        35    3,366           
Afghanistan

AF         AFM00040911        37      378           
Afghanistan

AF         AFM00040938        34      977           
Afghanistan

4.	 Check that the merge-by column matches.

First, reload the DataFrames since we have made some changes. The checkmerge 
function shows that there are 27,472 rows with merge-by values (from 
countryid) in both DataFrames and two in countries (the left DataFrame) but 
not in locations. This indicates that an inner join would return 27,472 rows and 
a left join would return 27,474 rows. The last statement in the function identifies the 
countryid values that appear in one DataFrame but not the other:

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")

>>> 

>>> def checkmerge(dfleft, dfright, idvar):

...   dfleft['inleft'] = "Y"

...   dfright['inright'] = "Y"

...   dfboth = pd.merge(dfleft[[idvar,'inleft']],\
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...     dfright[[idvar,'inright']], on=[idvar], 
how="outer")

...   dfboth.fillna('N', inplace=True)

...   print(pd.crosstab(dfboth.inleft, dfboth.inright))

...   print(dfboth.loc[(dfboth.inleft=='N') | (dfboth.
inright=='N')])

... 

>>> checkmerge(countries.copy(), locations.copy(), 
"countryid")

inright  N      Y

inleft           

N        0      1

Y        2  27472

      countryid inleft inright

9715         LQ      Y       N

13103        ST      Y       N

27474        FO      N       Y

5.	 Show the rows in one file but not the other.

The last statement in the previous step displays the two values of countryid  
in countries but not in locations, and the one in locations but not  
in countries:

>>> countries.loc[countries.countryid.isin(["LQ","ST"])]

    countryid                        country

124        LQ  Palmyra Atoll [United States]

195        ST                    Saint Lucia

>>> locations.loc[locations.countryid=="FO"]

       locationid  latitude  longitude  stnelev   station 
countryid

7363  FOM00006009        61         -7      102  AKRABERG        
FO
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6.	 Merge the locations and countries DataFrames.

Perform a left join. Also, count the number of missing values for each column, 
where merge-by values are present in the countries data but not in the weather 
station data:

>>> stations = pd.merge(countries, locations, 
on=["countryid"], how="left")

>>> 
stations[['locationid','latitude','stnelev','country']].
head(10)

    locationid  latitude  stnelev               country

0  ACW00011604        58       18   Antigua and Barbuda

1  AE000041196        25       34  United Arab Emirates

2  AEM00041184        26       31  United Arab Emirates

3  AEM00041194        25       10  United Arab Emirates

4  AEM00041216        24        3  United Arab Emirates

5  AEM00041217        24       27  United Arab Emirates

6  AEM00041218        24      265  United Arab Emirates

7  AF000040930        35    3,366           Afghanistan

8  AFM00040911        37      378           Afghanistan

9  AFM00040938        34      977           Afghanistan

>>> stations.shape

(27474, 7)

>>> stations.loc[stations.countryid.isin(["LQ","ST"])].
isnull().sum()

countryid     0

country       0

locationid    2

latitude      2

longitude     2

stnelev       2

station       2

dtype: int64

The one-to-many merge returns the expected number of rows and new missing values.
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How it works...
In step 2, we used the join DataFrame method to perform a left join of the countries 
and locations DataFrames. This is the easiest way to do a merge. Since the join 
method uses the index of the DataFrames for the merge, we need to set the index first.  
We then passed the right DataFrame to the join method of the left DataFrame.

Although join is a little more flexible than this example suggests (you can specify the 
type of join, for example), I prefer the more verbose pandas merge function for all but the 
simplest of merges. I can be confident when using the merge function that all the options 
I need are available to me. Before we could do the merge, we had to do some checks. We 
did this in step 4. This told us how many rows to expect in the merged DataFrame if we 
were to do an inner or left join; there would be 27,472 or 27,474 rows, respectively.

We also displayed the rows with merge-by values in one DataFrame but not the other. If 
we are going to do a left join, we need to decide what to do with the missing values that 
will result from the right DataFrame. In this case, there were two merge-by values that 
were not found on the right DataFrame, giving us two missing values for those columns.

There's more…
You may have noticed that in our call to checkmerge, we passed copies of the 
countries and locations DataFrames:

>>> checkmerge(countries.copy(), locations.copy(), "countryid")

We use copy here because we do not want the checkmerge function to make any 
changes to our original DataFrames.

See also
We discussed join types in detail in the Doing one-to-one merges recipe.
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Doing many-to-many merges
Many-to-many merges have duplicate merge-by values in both the left and right 
DataFrames. We should only rarely need to do a many-to-many merge. Even when data 
comes to us in that form, it is often because we are missing the central file in multiple 
one-to-many relationships. For example, there are donor, donor contributions, and donor 
contact information data tables, and the last two files contain multiple rows per donor. 
However, in this case, we do not have access to the donor file, which has a one-to-many 
relationship with both the contributions and contact information files. This happens more 
frequently than you may think. People sometimes give us data with little awareness of the 
underlying structure. When I do a many-to-many merge, it is typically because I am missing 
some key information rather than because that was how the database was designed.

Many-to-many merges return the Cartesian product of the merge-by column values.  
So, if a donor ID appears twice on the donor contact information file and five times  
on the donor contributions file, then the merge will return 10 rows. The problem here  
is there will be more rows in the returned data, but this does not make sense analytically. 
In this example, a many-to-many merge will duplicate the donor contributions, once for 
each address.

Often, when faced with a potential many-to-many merge situation, the solution is not 
to do it. Instead, we can recover the implied one-to-many relationships. With the donor 
example, we could remove all the rows except for the most recent contact information, 
thus ensuring that there is one row per donor. We could then do a one-to-many merge 
with the donor contributions file. But we are not always able to avoid doing a many-to-
many merge. Sometimes, we must produce an analytical or flat file that keeps all of the 
data, without regard for duplication. This recipe demonstrates how to do those merges 
when that is required.

Getting ready
We will work with data based on the Cleveland Museum of Art's collections. We will use 
two CSV files: one containing each media citation for each item in the collection and 
another containing the creator(s) of each item.

Tip
The Cleveland Museum of Art provides an API for public access to this data: 
https://openaccess-api.clevelandart.org/. Much more 
than the citations and creators data is available in the API.

https://openaccess-api.clevelandart.org/
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How to do it...
Follow these steps to complete this recipe:

1.	 Load pandas and the Cleveland Museum of Art (CMA) collections data:

>>> import pandas as pd

>>> cmacitations = pd.read_csv("data/cmacitations.csv")

>>> cmacreators = pd.read_csv("data/cmacreators.csv")

2.	 Look at the citations data:

>>> cmacitations.head(10)

      id                                           
citation

0  92937  Milliken, William M. "The Second Exhibition 
of...

1  92937  Glasier, Jessie C. "Museum Gets Prize-Winning 
...

2  92937  "Cleveland Museum Acquires Typical Pictures 
by...

3  92937  Milliken, William M. "Two Examples of Modern 
P...

4  92937  <em>Memorial Exhibition of the Work of George 
...

5  92937  The Cleveland Museum of Art. <em>Handbook of 
t...

6  92937  Cortissoz, Royal. "Paintings and Prints by 
Geo...

7  92937  Isham, Samuel, and Royal Cortissoz. <em>The 
Hi...

8  92937  Mather, Frank Jewett, Charles Rufus Morey, 
and...

9  92937  "Un Artiste Americain." 
<em>L'illustration.</e...

>>> cmacitations.shape

(11642, 2)

>>> cmacitations.id.nunique()

935
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3.	 Look at the creators data:

>>> cmacreators.loc[:,['id','creator','birth_year']].
head(10)

       id                                      creator 
birth_year

0   92937         George Bellows (American, 1882-1925)       
1882

1   94979  John Singleton Copley (American, 1738-1815)       
1738

2  137259          Gustave Courbet (French, 1819-1877)       
1819

3  141639  Frederic Edwin Church (American, 1826-1900)       
1826

4   93014            Thomas Cole (American, 1801-1848)       
1801

5  110180   Albert Pinkham Ryder (American, 1847-1917)       
1847

6  135299          Vincent van Gogh (Dutch, 1853-1890)       
1853

7  125249          Vincent van Gogh (Dutch, 1853-1890)       
1853

8  126769           Henri Rousseau (French, 1844-1910)       
1844

9  135382             Claude Monet (French, 1840-1926)       
1840

>>> cmacreators.shape

(737, 8)

>>> cmacreators.id.nunique()

654

4.	 Show duplicates of merge-by values in the citations data.

5.	 There are 174 media citations for collection item 148758:

>>> cmacitations.id.value_counts().head(10)

148758    174

122351    116

92937      98

123168     94
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94979      93

149112     93

124245     87

128842     86

102578     84

93014      79

Name: id, dtype: int64

6.	 Show duplicates of the merge-by values in the creators data:

>>> cmacreators.id.value_counts().head(10)

140001    4

149386    4

114537    3

149041    3

93173     3

142752    3

114538    3

146795    3

146797    3

142753    3

Name: id, dtype: int64

7.	 Check the merge.

Use the checkmerge function we used in the Doing one-to-many merges recipe:
>>> def checkmerge(dfleft, dfright, idvar):

...   dfleft['inleft'] = "Y"

...   dfright['inright'] = "Y"

...   dfboth = pd.merge(dfleft[[idvar,'inleft']],\

...     dfright[[idvar,'inright']], on=[idvar], 
how="outer")

...   dfboth.fillna('N', inplace=True)

...   print(pd.crosstab(dfboth.inleft, dfboth.inright))

... 

>>> checkmerge(cmacitations.copy(), cmacreators.copy(), 
"id")

inright     N     Y



Doing many-to-many merges     329

inleft             

N           0    46

Y        2579  9701

8.	 Show a merge-by value duplicated in both DataFrames:

>>> cmacitations.loc[cmacitations.id==124733]

          id                                           
citation

8963  124733  Weigel, J. A. G. <em>Catalog einer Sammlung 
vo...

8964  124733  Winkler, Friedrich. <em>Die Zeichnungen 
Albrec...

8965  124733  Francis, Henry S. "Drawing of a Dead Blue 
Jay ...

8966  124733  Kurz, Otto. <em>Fakes: A Handbook for 
Collecto...

8967  124733  Minneapolis Institute of Arts. 
<em>Watercolors...

8968  124733  Pilz, Kurt. "Hans Hoffmann: Ein Nürnberger 
Dür...

8969  124733  Koschatzky, Walter and Alice Strobl. 
<em>Düre...

8970  124733  Johnson, Mark M<em>. Idea to Image: 
Preparator...

8971  124733  Kaufmann, Thomas DaCosta. <em>Drawings from 
th...

8972  124733  Koreny, Fritz. <em>Albrecht Dürer and the 
ani...

8973  124733  Achilles-Syndram, Katrin. <em>Die 
Kunstsammlun...

8974  124733  Schoch, Rainer, Katrin Achilles-Syndram, 
and B...

8975  124733  DeGrazia, Diane and Carter E. Foster. 
<em>Mast...

8976  124733  Dunbar, Burton L., et al. <em>A Corpus of 
Draw...

>>> cmacreators.loc[cmacreators.id==124733, 
['id','creator','birth_year','title']]
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         id                                  creator 
birth_year  \

449  124733       Albrecht Dürer (German, 1471-1528)       
1471   

450  124733  Hans Hoffmann (German, 1545/50-1591/92)    
1545/50   

                title  

449  Dead Blue Roller  

450  Dead Blue Roller

9.	 Do a many-to-many merge:

>>> cma = pd.merge(cmacitations, cmacreators, on=['id'], 
how="outer")

>>> cma['citation'] = cma.citation.str[0:20]

>>> cma['creator'] = cma.creator.str[0:20]

>>> cma.loc[cma.id==124733, ['citation','creator','birth_
year']]

                  citation               creator birth_
year

9457  Weigel, J. A. G. <em  Albrecht Dürer (Germ       
1471

9458  Weigel, J. A. G. <em  Hans Hoffmann (Germa    
1545/50

9459  Winkler, Friedrich.   Albrecht Dürer (Germ       
1471

9460  Winkler, Friedrich.   Hans Hoffmann (Germa    
1545/50

9461  Francis, Henry S. "D  Albrecht Dürer (Germ       
1471

9462  Francis, Henry S. "D  Hans Hoffmann (Germa    
1545/50

9463  Kurz, Otto. <em>Fake  Albrecht Dürer (Germ       
1471

9464  Kurz, Otto. <em>Fake  Hans Hoffmann (Germa    
1545/50

9465  Minneapolis Institut  Albrecht Dürer (Germ       
1471
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9466  Minneapolis Institut  Hans Hoffmann (Germa    
1545/50

9467  Pilz, Kurt. "Hans Ho  Albrecht Dürer (Germ       
1471

9468  Pilz, Kurt. "Hans Ho  Hans Hoffmann (Germa    
1545/50

9469  Koschatzky, Walter a  Albrecht Dürer (Germ       
1471

9470  Koschatzky, Walter a  Hans Hoffmann (Germa    
1545/50

... last 14 rows removed to save space

Now that I have taken you through the messiness of a many-to-many merge, I'll say a little 
more about how it works.

How it works...
Step 2 told us that there were 11,642 citations for 935 unique IDs. There is a unique ID 
for each item in the museum's collection. On average, each item has 12 media citations 
(11,642/935). Step 3 told us that there are 737 creators over 654 items, so there is only one 
creator for the overwhelming majority of pieces. But the fact that there are duplicated IDs 
(our merge-by value) on both the citations and creators DataFrames means that 
our merge will be a many-to-many merge.

Step 4 gave us a sense of which IDs are duplicated on the citations DataFrame. Some 
items in the museum's collection have more than 80 citations. It is worth taking a closer 
look at the citations for those items to see whether they make sense. Step 5 showed us that 
even when there is more than one creator, there are rarely more than three. In step 6, we 
saw that most IDs have rows in both the citations file and the creators file, but  
a fair number have citations rows but no creators rows. We will lose those 2,579 
rows if we do an inner join or a right join, but not if we do a left join or an outer join. 
(This assumes that the citations DataFrame is the left DataFrame and the creators 
DataFrame is the right one.)

We looked at an ID that is in both DataFrames in step 7 – one that also has duplicate 
IDs in both DataFrames. There are 14 rows for this collection item in the citations 
DataFrame and two in the creators DataFrame. This will result in 28 rows (2 * 14) with 
that ID in the merged DataFrame. The citations data will be repeated for each row  
in creators.
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This was confirmed when we looked at the results of the merge in step 8. We performed 
an outer join with id as the merge-by column. (We also shortened the citation and 
creator descriptions to make them easier to view.) When we displayed the rows in the 
merged file for the same ID we used in step 7, we got the 28 rows we were expecting  
(I removed the last 14 rows of output to save space).

There's more...
It is good to understand what to expect when we do a many-to-many merge because  
there are times when it cannot be avoided. But even in this case, we can tell that the  
many-to-many relationship is really just two one-to-many relationships with the data file 
missing from the one side. There is likely a data table that contains one row per collection 
item that has a one-to-many relationship with both the citations data and the 
creators data. When we do not have access to a file like that, it is probably best to try to 
reproduce a file with that structure. With this data, we could have created a file containing 
id and maybe title, and then done one-to-many merges with the citations and 
creators data.

However, there are occasions when we must produce a flat file for subsequent analysis. We 
might need to do that when we, or a colleague who is getting the cleaned data from us, are 
using software that cannot handle relational data well. For example, someone in another 
department might do a lot of data visualization work with Excel. As long as that person 
knows which analyses require them to remove duplicated rows, a file with a structure like 
the one we produced in step 8 might work fine.

Developing a merge routine
I find it helpful to think of merging data as the parking lot of the data cleaning process. 
Merging data and parking may seem routine, but they are where a disproportionate 
number of accidents occur. One approach to getting in and out of parking lots without an 
incident occurring is to use a similar strategy each time you go to a particular lot. It could 
be that you always go to a relatively low traffic area and you get to that area the same way 
most of the time.

I think a similar approach can be applied to getting in and out of merges with our data 
relatively unscathed. If we choose a general approach that works for us 80 to 90 percent of 
the time, we can focus on what is most important – the data, rather than the techniques 
for manipulating that data.
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In this recipe, I will demonstrate the general approach that works for me, but the 
particular techniques I will use are not very important. I think it is just helpful to have an 
approach that you understand well and that you become comfortable using.

Getting ready
We will return to the objectives we focused on in the Doing one-to-many merges recipe of 
this chapter. We want to do a left join of the countries data with the locations data 
from the Global Historical Climatology Network integrated database.

How to do it…
In this recipe, we will do a left join of the countries and locations data after 
checking for merge-by value mismatches. Let's get started:

1.	 Import pandas and load the weather station and country data:

>>> import pandas as pd

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")

2.	 Check the merge-by column matches:

>>> def checkmerge(dfleft, dfright, mergebyleft, 
mergebyright):

...   dfleft['inleft'] = "Y"

...   dfright['inright'] = "Y"

...   dfboth = pd.merge(dfleft[[mergebyleft,'inleft']],\

...     dfright[[mergebyright,'inright']], left_
on=[mergebyleft],\

...     right_on=[mergebyright], how="outer")

...   dfboth.fillna('N', inplace=True)

...   print(pd.crosstab(dfboth.inleft, dfboth.inright))

...   print(dfboth.loc[(dfboth.inleft=='N') | (dfboth.
inright=='N')].head(20))

... 

>>> checkmerge(countries.copy(), locations.copy(), 
"countryid", "countryid")

inright  N      Y

inleft           

N        0      1
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Y        2  27472

      countryid inleft inright

9715         LQ      Y       N

13103        ST      Y       N

27474        FO      N       Y

3.	 Merge the country and location data:

>>> stations = pd.merge(countries, locations, left_
on=["countryid"], right_on=["countryid"], how="left")

>>> 
stations[['locationid','latitude','stnelev','country']].
head(10)

    locationid  latitude  stnelev               country

0  ACW00011604        58       18   Antigua and Barbuda

1  AE000041196        25       34  United Arab Emirates

2  AEM00041184        26       31  United Arab Emirates

3  AEM00041194        25       10  United Arab Emirates

4  AEM00041216        24        3  United Arab Emirates

5  AEM00041217        24       27  United Arab Emirates

6  AEM00041218        24      265  United Arab Emirates

7  AF000040930        35    3,366           Afghanistan

8  AFM00040911        37      378           Afghanistan

9  AFM00040938        34      977           Afghanistan

>>> stations.shape

(27474, 7)

Here, we got the expected number of rows from a left join; 27,472 rows with merge-by 
values in both DataFrames and two rows with merge-by values in the left DataFrame, but 
not the right.
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How it works...
For the overwhelming majority of merges I do, something like the logic used in steps 2 
and 3 works well. We added a fourth argument to the checkmerge function we used in 
the previous recipe. This allows us to specify different merge-by columns for the left and 
right DataFrames. We do not need to recreate this function every time we do a merge. We 
can just include it in a module that we import. (We'll go over adding helper functions to 
modules in the final chapter of this book).

Calling the checkmerge function before running a merge gives us enough information 
so that we know what to expect when running the merge with different join types. We  
will know how many rows will be returned from an inner, outer, left, or right join. We will 
also know where the new missing values will be generated before we run the actual merge. 
Of course, this is a fairly expensive operation, requiring us to run a merge twice each 
time – one diagnostic outer join followed by whatever join we subsequently choose. But 
I would argue that it is usually worth it, if for no other reason than that it helps us to stop 
and think about what we are doing.

Finally, we performed the merge in step 3. This is my preferred syntax. I always use the 
left DataFrame for the first argument and the right DataFrame for the second argument, 
though merge allows us to specify the left and right DataFrames in different ways. I also 
set values for left_on and right_on, even if the merge-by column is the same and  
I could use on instead (as we did in the previous recipe). This is so I will not have to 
change the syntax in cases where the merge-by column is different, and I like it that it 
makes the merge-by column explicit for both DataFrames.

A somewhat more controversial routine is that I default to a left join, setting the how 
parameter to left initially. I make that my starting assumption and then ask myself if 
there is any reason to do a different join. The rows in the left DataFrame often represent 
my unit of analysis (students, patients, customers, and so on) and that I am adding 
supplemental data (GPA, blood pressure, zip code, and so on). It may be problematic to 
remove rows from the unit of analysis because the merge-by value is not present on the 
right DataFrame, as would happen if I did an inner join instead. For example, in the Doing 
one-to-one merges recipe of this chapter, it probably would not have made sense to remove 
rows from the main NLS data because they do not appear on the supplemental data we 
have for parents.

See also
We will create modules with useful data cleaning functions in Chapter 10, User-Defined 
Functions and Classes to Automate Data Cleaning.

We have discussed the types of joins in the Doing one to one merges recipe in this chapter.
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Tidying and 

Reshaping Data
As Leo Tolstoy and Hadley Wickham tell us, all tidy data is fundamentally alike, but all 
untidy data is messy in its own special way. How many times have we all stared at some 
rows of data and thought, "what..... how...... why did they do that?" This overstates the case 
somewhat. Although there are many ways that data can be poorly structured, there are 
limits to human creativity in this regard. It is possible to categorize the most frequent ways 
in which datasets deviate from normalized or tidy forms.

This was Hadley Wickham's observation in his seminal work on tidy data. We can 
lean on that work, and our own experiences with oddly structured data, to prepare 
for the reshaping we have to do. Untidy data often has one or more of the following 
characteristics: a lack of clarity about merge-by column relationships; data redundancy 
on the one side of one-to-many relationships; data redundancy due to many-to-many 
relationships; values stored in column names; multiple values stored in one variable value; 
and data not being structured at the unit of analysis. (Although the last category is not 
necessarily a case of untidy data, some of the techniques we will review in the next few 
recipes are applicable to common unit-of-analysis problems.)
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We use powerful tools in this chapter to deal with data cleaning challenges like the 
preceding. Specifically, we'll go over the following:

•	 Removing duplicated rows

•	 Fixing many-to-many relationships

•	 Using stack and melt to reshape data from a wide to long format

•	 Melting multiple groups of columns

•	 Using unstack and pivot to reshape data from long to wide format

Technical requirements
The code and notebooks for this chapter are available on GitHub at https://
github.com/PacktPublishing/Python-Data-Cleaning-Cookbook

Removing duplicated rows
There are several reasons why we might have data duplicated at the unit of analysis:

•	 The existing DataFrame may be the result of a one-to-many merge, and the one side 
is the unit of analysis.

•	 The DataFrame is repeated measures or panel data collapsed into a flat file, which is 
just a special case of the first situation.

•	 We may be working with an analysis file where multiple one-to-many relationships 
have been flattened, creating many-to-many relationships.

When the one side is the unit of analysis, data on the many side may need to be collapsed 
in some way. For example, if we are analyzing outcomes for a cohort of students at a 
college, students are the unit of analysis; but we may also have course enrollment data for 
each student. To prepare the data for analysis, we might need to first count the number 
of courses, sum the total credits, or calculate the GPA for each student, before ending up 
with one row per student. To generalize from this example, we often need to aggregate the 
information on the many side before removing duplicated data.

In this recipe, we look at pandas techniques for removing duplicate rows, and consider 
when we do and don't need to do aggregation during that process. We address duplication 
in many-to-many relationships in the next recipe.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Getting ready...
We will work with the COVID-19 daily case data in this recipe. It has one row per day per 
country, each row having the number of new cases and new deaths for that day. There are 
also demographic data for each country, and running totals for cases and deaths, so the 
last row for each country provides total cases and total deaths.

Note
Our World in Data provides COVID-19 public use data at https://
ourworldindata.org/coronavirus-source-data. The data 
used in this recipe was downloaded on July 18, 2020.

How to do it…
We use drop_duplicates to remove duplicated demographic data for each country 
in the COVID daily data. We explore groupby as an alternative to drop_duplicates 
when we need to do some aggregation before removing duplicated data:

1.	 Import pandas and the COVID daily cases data:

>>> import pandas as pd

>>> covidcases = pd.read_csv("data/covidcases720.csv")

2.	 Create lists for the daily cases and deaths columns, the case total columns, and the 
demographic columns:

>>> dailyvars = ['casedate','new_cases','new_deaths']

>>> totvars = ['location','total_cases','total_deaths']

>>> demovars = ['population','population_
density','median_age',

...   'gdp_per_capita','hospital_beds_per_
thousand','region']

>>> 

>>> covidcases[dailyvars + totvars + demovars].head(3).T

                                       0             1             
2

casedate                      2019-12-31    2020-01-01    
2020-01-02

new_cases                           0.00          0.00          
0.00

new_deaths                          0.00          0.00          
0.00

https://ourworldindata.org/coronavirus-source-data
https://ourworldindata.org/coronavirus-source-data
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location                     Afghanistan   Afghanistan   
Afghanistan

total_cases                         0.00          0.00          
0.00

total_deaths                        0.00          0.00          
0.00

population                 38,928,341.00 38,928,341.00 
38,928,341.00

population_density                 54.42         54.42         
54.42

median_age                         18.60         18.60         
18.60

gdp_per_capita                  1,803.99      1,803.99      
1,803.99

hospital_beds_per_thousand          0.50          0.50          
0.50

region                        South Asia    South Asia    
South Asia

3.	 Create a DataFrame with just the daily data:

>>> coviddaily = covidcases[['location'] + dailyvars]

>>> coviddaily.shape

(29529, 4)

>>> coviddaily.head()

      location    casedate  new_cases  new_deaths

0  Afghanistan  2019-12-31       0.00        0.00

1  Afghanistan  2020-01-01       0.00        0.00

2  Afghanistan  2020-01-02       0.00        0.00

3  Afghanistan  2020-01-03       0.00        0.00

4  Afghanistan  2020-01-04       0.00        0.00

4.	 Select one row per country.

Check to see how many countries (location) to expect by getting the number 
of unique locations. Sort by location and casedate. Then use drop_
duplicates to select one row per location, and use the keep parameter to 
indicate that we want the last row for each country:

>>> covidcases.location.nunique()

209
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>>> coviddemo = covidcases[['casedate'] + totvars + 
demovars].\

...   sort_values(['location','casedate']).\

...   drop_duplicates(['location'], keep='last').\

...   rename(columns={'casedate':'lastdate'})

>>> 

>>> coviddemo.shape

(209, 10)

>>> coviddemo.head(3).T

                                     184             310           
500

lastdate                      2020-07-12      2020-07-12    
2020-07-12

location                     Afghanistan         Albania       
Algeria

total_cases                    34,451.00        3,371.00     
18,712.00

total_deaths                    1,010.00           89.00      
1,004.00

population                 38,928,341.00    2,877,800.00 
43,851,043.00

population_density                 54.42          104.87         
17.35

median_age                         18.60           38.00         
29.10

gdp_per_capita                  1,803.99       11,803.43     
13,913.84

hospital_beds_per_thousand          0.50            2.89          
1.90

region                        South Asia  Eastern Europe  
North Africa

5.	 Sum the values for each group.

Use the pandas DataFrame groupby method to sum total cases and deaths for 
each country. Also, get the last value for some of the columns that are duplicated 
across all rows for each country: median_age, gdp_per_capita, region, and 
casedate. (We select only a few columns from the DataFrame.) Notice that the 
numbers match those from step 4:

>>> covidtotals = covidcases.groupby(['location'], as_
index=False).\
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...   agg({'new_cases':'sum','new_deaths':'sum','median_
age':'last',

...     'gdp_per_
capita':'last','region':'last','casedate':'last',

...     'population':'last'}).\

...   rename(columns={'new_cases':'total_cases',

...     'new_deaths':'total_
deaths','casedate':'lastdate'})

>>> covidtotals.head(3).T

                           0               1             
2

location         Afghanistan         Albania       
Algeria

total_cases        34,451.00        3,371.00     
18,712.00

total_deaths        1,010.00           89.00      
1,004.00

median_age             18.60           38.00         
29.10

gdp_per_capita      1,803.99       11,803.43     
13,913.84

region            South Asia  Eastern Europe  North 
Africa

lastdate          2020-07-12      2020-07-12    2020-07-
12

population     38,928,341.00    2,877,800.00 
43,851,043.00

The choice of drop_duplicates or groupby to eliminate data redundancy comes 
down to whether we need to do any aggregation before collapsing the many side.

How it works...
The COVID data has one row per country per day, but very little of the data is actually daily 
data. Only casedate, new_cases, and new_deaths can be considered daily data. The 
other columns show cumulative cases and deaths, or demographic data. The cumulative 
data is redundant since we have the actual values for new_cases and new_deaths. The 
demographic data has the same values for each country across all days.
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There is an implied one-to-many relationship between country (and its associated 
demographic data) on the one side and the daily data on the many side. We can recover 
that structure by creating a DataFrame with the daily data, and another DataFrame with 
the demographic data. We do that in steps 3 and 4. When we need totals across countries 
we can generate those ourselves, rather than storing redundant data.

The running totals variables are not completely useless, however. We can use them 
to check our calculations of total cases and total deaths. Step 5 shows how we can use 
groupby to restructure data when we need to do more than drop duplicates. In this case, 
we want to summarize new_cases and many-to-many relationships new_deaths for 
each country.

There's more...
I can sometimes forget a small detail. When changing the structure of data, the meaning 
of certain columns can change. In this example, casedate becomes the date for the last 
row for each country. We rename that column lastdate.

See also...
We explore groupby in more detail in Chapter 7, Fixing Messy Data when Aggregating. 
Hadley Wickham's Tidy Data paper is available at https://vita.had.co.nz/
papers/tidy-data.pdf.

Fixing many-to-many relationships
We sometimes have to work with a data table that was created from a many-to-many 
merge. This is a merge where merge-by column values are duplicated on both the left and 
right sides. As we discussed in the previous chapter, many-to-many relationships in a 
data file often represent multiple one-to-many relationships where the one side has been 
removed. There is a one-to-many relationship between dataset A and dataset B, and also 
a one-to-many relationship between dataset A and dataset C. The problem we sometimes 
have is that we receive a data file with B and C merged, but with A excluded.

The best way to work with data structured in this way is to recreate the implied  
one-to-many relationships, if possible. We do this by first creating a dataset structured  
like A; that is, how A is likely structured given the many-to-many relationship we see 
between B and C. The key to being able to do this is in identifying a good merge-by 
column for the data on both sides of the many-to-many relationship. This column or 
column(s) will be duplicated in both the B and C datasets, but will be unduplicated in the 
theoretical A dataset.

https://vita.had.co.nz/papers/tidy-data.pdf
https://vita.had.co.nz/papers/tidy-data.pdf
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The data we use in this recipe is a good example. We have data from the Cleveland 
Museum of Art on its collections. We have two datasets: a creators file and a media 
citations file. The creators file has the creator or creators of every item in the museum's 
collections. There is one row for each creator, so there may be multiple rows for each 
collection item. The citations file has citations (in newspapers, from news stations, in 
journals, and so on) for every item. The citations file has a row for each citation, and so 
often has multiple rows per collection item.

We do not have what we might expect – a collections file with one row (and a unique 
identifier) for each item in the collection. This leaves us with just the many-to-many 
relationship between the creators and citations datasets.

I should add that this situation is not the fault of the Cleveland Museum of Art, which 
generously provides an API that returns collections data as a JSON file. It is possible 
to extract the data needed from the JSON file to produce a collections DataFrame, in 
addition to the creators and citations data that I have extracted. But we do not always have 
access to data like that and it is good to have strategies for when we do not.

Getting ready...
We will work with data on the Cleveland Museum of Art's collections. The CSV file has 
data on both creators and citations merged by an id column that identifies the collection 
item. There are one or many rows for citations and creators for each item.

Note
The Cleveland Museum of Art provides an API for public access to this data: 
https://openaccess-api.clevelandart.org. Much more 
than the citations and creators data used in this recipe is available with the API.

How to do it…
We handle many-to-many relationships between DataFrames by recovering the multiple 
implied one-to-many relationships in the data:

1.	 Import pandas and the museum's collections data:

>>> import pandas as pd

>>> cma = pd.read_csv("data/cmacollections.csv")

https://openaccess-api.clevelandart.org
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2.	 Show the museum's collections data.

Also show the number of unique id, citation, and creator values:
>>> cma.shape

(12326, 9)

>>> cma.head(2).T

                                 0                    1

id                           92937                92937

citation        Milliken, William    Glasier, Jessie C.

creator         George Bellows (Am   George Bellows (Am

title            Stag at Sharkey's    Stag at Sharkey's

birth_year                    1882                 1882

death_year                    1925                 1925

collection     American - Painting  American - Painting

type                      Painting             Painting

creation_date                 1909                 1909

>>> cma.id.nunique()

972

>>> cma.drop_duplicates(['id','citation']).id.count()

9758

>>> cma.drop_duplicates(['id','creator']).id.count()

1055

3.	 Show a collection item with duplicated citations and creators.

Only show the first 14 rows (there are actually 28 in total):
>>> cma.set_index(['id'], inplace=True)

>>> cma.loc[124733, ['title','citation','creator','birth_
year']].head(14)

                title            citation             
creator  birth_year

id                                                                         

124733  Dead Blue Roller  Weigel, J. A. G.  Albrecht 
Dürer(Ge        1471

124733  Dead Blue Roller  Weigel, J. A. G.  Hans 
Hoffmann(Ger     1545/50

124733  Dead Blue Roller  Winkler, Friedrich Albrecht 
Dürer(Ge       1471
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124733  Dead Blue Roller  Winkler, Friedrich Hans 
Hoffmann(Ger    1545/50

124733  Dead Blue Roller  Francis, Henry S.  Albrecht 
Dürer(Ge       1471

124733  Dead Blue Roller  Francis, Henry S.  Hans 
Hoffmann(Ger    1545/50

124733  Dead Blue Roller  Kurz, Otto. <em>Fa Albrecht 
Dürer(Ge       1471

124733  Dead Blue Roller  Kurz, Otto. <em>Fa Hans 
Hoffmann(Ger    1545/50

124733  Dead Blue Roller  Minneapolis Instit Albrecht 
Dürer(Ge       1471

124733  Dead Blue Roller  Minneapolis Instit Hans 
Hoffmann(Ger    1545/50

124733  Dead Blue Roller  Pilz, Kurt. "Hans  Albrecht 
Dürer(Ge       1471

124733  Dead Blue Roller  Pilz, Kurt. "Hans  Hans 
Hoffmann(Ger    1545/50

124733  Dead Blue Roller  Koschatzky, Walter Albrecht 
Dürer(Ge       1471

124733  Dead Blue Roller  Koschatzky, Walter Hans 
Hoffmann(Ger    1545/50

4.	 Create a collections DataFrame:

>>> collectionsvars = ['title','collection','type']

>>> cmacollections = cma[collectionsvars].\

...   reset_index().\

...   drop_duplicates(['id']).\

...   set_index(['id'])

>>> 

>>> cmacollections.shape

(972, 3)

>>> cmacollections.head()

                                 title            
collection      type

id                                                                    

92937                Stag at Sharkey's   American - 
Painting  Painting

94979                   Nathaniel Hurd   American - 
Painting  Painting
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137259        Mme L... (Laure Borreau)  Mod Euro - 
Painting   Painting

141639      Twilight in the Wilderness   American - 
Painting  Painting

93014   View of Schroon Mountain, Esse   American - 
Painting  Painting

>>> cmacollections.loc[124733]

title         Dead Blue Roller

collection         DR - German

type                   Drawing

Name: 124733, dtype: object

5.	 Create a citations DataFrame:

This will just have the id and the citation:
>>> cmacitations = cma[['citation']].\

...   reset_index().\

...   drop_duplicates(['id','citation']).\

...   set_index(['id'])

>>> 

>>> cmacitations.loc[124733]

                  citation

id                        

124733  Weigel, J. A. G. <

124733  Winkler, Friedrich

124733  Francis, Henry S. 

124733  Kurz, Otto. <em>Fa

124733  Minneapolis Instit

124733  Pilz, Kurt. "Hans 

124733  Koschatzky, Walter

124733  Johnson, Mark M<em

124733  Kaufmann, Thomas D

124733  Koreny, Fritz. <em

124733  Achilles-Syndram, 

124733  Schoch, Rainer, Ka

124733  DeGrazia, Diane an

124733  Dunbar, Burton L.,



348     Tidying and Reshaping Data

6.	 Create a creators DataFrame:

>>> creatorsvars = ['creator','birth_year','death_year']

>>> 

>>> cmacreators = cma[creatorsvars].\

...   reset_index().\

...   drop_duplicates(['id','creator']).\

...   set_index(['id'])

>>> 

>>> cmacreators.loc[124733]

                   creator birth_year death_year

id                                              

124733  Albrecht Dürer (Ge       1471       1528

124733  Hans Hoffmann (Ger    1545/50    1591/92

7.	 Count the number of collection items with a creator born after 1950.

First, convert the birth_year values from string to numeric. Then create 
a DataFrame with just young artists. Finally, merge that DataFrame with the 
collections DataFrame to create a flag for collection items that have at least one 
creator born after 1950:

>>> cmacreators['birth_year'] = cmacreators.birth_year.
str.findall("\d+").str[0].astype(float)

>>> youngartists = cmacreators.loc[cmacreators.birth_
year>1950, ['creator']].assign(creatorbornafter1950='Y')

>>> youngartists.shape[0]==youngartists.index.nunique()

True

>>> youngartists

                   creator creatorbornafter1950

id                                             

371392  Belkis Ayón (Cuban                    Y

162624  Robert Gober (Amer                    Y

172588  Rachel Harrison (A                    Y

169335  Pae White (America                    Y

169862  Fred Wilson (Ameri                    Y

312739  Liu Jing (Chinese,                    Y

293323  Zeng Xiaojun (Chin                    Y
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172539  Fidencio Fifield-P                    Y

>>> cmacollections = pd.merge(cmacollections, 
youngartists, left_on=['id'], right_on=['id'], 
how='left')

>>> cmacollections.creatorbornafter1950.fillna("N", 
inplace=True)

>>> cmacollections.shape

(972, 5)

>>> cmacollections.creatorbornafter1950.value_counts()

N    964

Y      8

Name: creatorbornafter1950, dtype: int64

We now we have three DataFrames – collection items (cmacollections), citations 
(cmacitations), and creators (cmacreators) – instead of one. cmacollections 
has a one-to-many relationship with both cmacitations and cmacreators.

How it works...
If you mainly work directly with enterprise data, you probably rarely see a file with this 
kind of structure, but many of us are not so lucky. If we requested data from the museum 
on both the media citations and creators of their collections, it would not be completely 
surprising to get a data file similar to this one, with duplicated data for citations and 
creators. But the presence of what looks like a unique identifier of collection items gives us 
some hope of recovering the one-to-many relationships between a collection item and its 
citations, and a collection item and its creators.

Step 2 shows that there are 972 unique id values. This suggests that there are probably 
only 972 collection items represented in the 12,326 rows of the DataFrame. There are 
9,758 unique id and citation pairs, or about 10 citations per collection item on 
average. There are 1,055 id and creator pairs.

Step 3 shows the duplication of collection item values such as title. The number of rows 
returned is equal to the Cartesian product of the merge-by values on the left and ride side 
of the merge. For the Dead Blue Roller item, there are 14 citations (we only show half of 
them in step 3) and 2 creators. The row for each creator is duplicated 14 times; once for 
each citation. There are very few use cases for which it makes sense to leave the data in 
this state.
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Our North Star to guide us in getting this data into better shape is the id column. We  
use it to create a collections DataFrame in step 4. We keep only one row for each value  
of id, and get other columns associated with a collection item, rather than a citation  
or creator – title, collection, and type (since id is the index we need to first reset 
the index before dropping duplicates).

We follow the same procedure to create citations and creators DataFrames in steps 
5 and 6. We use drop_duplicates to keep unique combinations of id and citation, 
and unique combinations of id and creator, respectively. This gives us the expected 
number of rows in the example case: 14 citations rows and 2 creators rows.

Step 7 demonstrates how we can now work with these DataFrames to construct new 
columns and do analysis. We want the number of collection items that have at least 
one creator born after 1950. The unit of analysis is the collection items, but we need 
information from the creators DataFrame for the calculation. Since the relationship 
between cmacollections and cmacreators is one-to-many, we make sure that 
we are only retrieving one row per id in the creators DataFrame, even if more than one 
creator for an item was born after 1950:

youngartists.shape[0]==youngartists.index.nunique()

There's more...
The duplication that occurs with many-to-many merges is most problematic when we 
are working with quantitative data. If the original file had the assessed value of each item 
in the collection, it would be duplicated in much the same way as title is duplicated. 
Any descriptive statistics we generated on the assessed value would be off by a fair bit. For 
example, if the Dead Blue Roller item had an assessed value of $1,000,000, we would get 
$28,000,000 when summarizing the assessed value, since there are 28 duplicated values.

This shows the importance of normalized and tidy data. If there were an assessed value 
column, we would have included it in the cmacollections DataFrame we created 
in step 4. This value would be unduplicated and we would be able to generate summary 
statistics for collections.

I find it helpful to always return to the unit of analysis, which overlaps with the tidy data 
concept, but is different in some ways. The approach in step 7 would have been very 
different if we were just interested in the number of creators born after 1950, instead of the 
number of collection items with a creator born after 1950. In that case, the unit of analysis 
would be the creator and we would just use the creators DataFrame.
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See also...
We examine many-to-many merges in the Doing many-to-many merges recipe in Chapter 8,  
Addressing Data Issues when Combining DataFrames.

We demonstrate a very different way to work with data structured in this way in Chapter 10,  
User Defined Functions and Classes to Automate Data Cleaning, in the Classes that handle 
non-tabular data structures recipe.

Using stack and melt to reshape data from 
wide to long format
One type of untidiness that Wickham identified is variable values embedded in column 
names. Although this rarely happens with enterprise or relational data, it is fairly common 
with analytical or survey data. Variable names might have suffixes that indicate a time 
period, such as a month or year. Another case is that similar variables on a survey might 
have similar names, such as familymember1age, familymember2age, and so on, 
because that is convenient and consistent with the survey designers' understanding of  
the variable.

One reason why this messiness happens relatively frequently with survey data is that there 
can be multiple units of analysis on one survey instrument. An example is the United 
States decennial census, which asks both household and person questions. Survey data is 
also sometimes made up of repeated measures or panel data, but nonetheless often has 
only one row per respondent. When this is the case, new measurements or responses are 
stored in new columns rather than new rows, and the column names will be similar to 
column names for responses from earlier periods, except for a change in suffix.

The United States National Longitudinal Survey of Youth (NLS) is a good example of 
this. It is panel data, where each individual is surveyed each year. However, there is just 
one row of data per respondent in the analysis file provided. Responses to questions 
such as the number of weeks worked in a given year are placed in new columns. 
Tidying the NLS data means converting columns such as weeksworked00 through 
weeksworked04 (for weeks worked in 2000 through 2004) to just one column for weeks 
worked, another column for year, and five rows for each person (one for each year) rather 
than one.

Amazingly, pandas has several functions that make transformations like this relatively 
easy: stack, melt, and wide_to_long. We use stack and melt in this recipe, and 
explore wide_to_long in the next.
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Getting ready...
We will work with the NLS data on the number of weeks worked and college enrollment 
status for each year. The DataFrame has one row per survey respondent.

Note
The NLS is conducted by the United States Bureau of Labor Statistics. 
It is available for public use at https://www.nlsinfo.org/
investigator/pages/search. The survey started with a cohort 
of individuals in 1997 who were born between 1980 and 1985, with annual 
follow-ups each year through 2017.

How to do it…
We will use stack and melt to transform the NLS' weeks worked data from wide to 
long, pulling out year values from the column names as we do so:

1.	 Import pandas and the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

2.	 View some of the values for the number of weeks worked.

First, set the index:
>>> nls97.set_index(['originalid'], inplace=True)

>>> 

>>> weeksworkedcols = ['weeksworked00','weeksworked01','w
eeksworked02',

...   'weeksworked03','weeksworked04']

>>> nls97[weeksworkedcols].head(2).T

originalid     8245  3962

weeksworked00    46     5

weeksworked01    52    49

weeksworked02    52    52

weeksworked03    48    52

weeksworked04    52    52

>>> nls97.shape

(8984, 89)

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search
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3.	 Use stack to transform the data from wide to long.

First, select only the weeksworked## columns. Use stack to move each column 
name in the original DataFrame into the index and move the weeksworked## 
values into the associated row. Reset the index so that the weeksworked## 
column names become the values for the level_0 column (which we rename 
year), and the weeksworked## values become the values for the 0 column 
(which we rename weeksworked):

>>> weeksworked = nls97[weeksworkedcols].\

...   stack(dropna=False).\

...   reset_index().\

...   rename(columns={'level_1':'year',0:'weeksworked'})

>>> 

>>> weeksworked.head(10)

   originalid           year  weeksworked

0        8245  weeksworked00           46

1        8245  weeksworked01           52

2        8245  weeksworked02           52

3        8245  weeksworked03           48

4        8245  weeksworked04           52

5        3962  weeksworked00            5

6        3962  weeksworked01           49

7        3962  weeksworked02           52

8        3962  weeksworked03           52

9        3962  weeksworked04           52

4.	 Fix the year values.

Get the last digits of the year values, convert them to integers, and add 2000:
>>> weeksworked['year'] = weeksworked.year.str[-2:].
astype(int)+2000

>>> weeksworked.head(10)

   originalid  year  weeksworked

0        8245  2000           46

1        8245  2001           52

2        8245  2002           52

3        8245  2003           48

4        8245  2004           52
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5        3962  2000            5

6        3962  2001           49

7        3962  2002           52

8        3962  2003           52

9        3962  2004           52

>>> weeksworked.shape

(44920, 3)

5.	 Alternatively, use melt to transform the data from wide to long.

First, reset the index and select the originalid and weeksworked## columns. 
Use the id_vars and value_vars parameters of melt to specify originalid 
as the ID variable and the weeksworked## columns as the columns to be rotated, 
or melted. Use the var_name and value_name parameters to rename the 
columns to year and weeksworked respectively. The column names in  
value_vars become the values for the new year column (which we convert  
to an integer using the original suffix). The values for the value_vars columns  
are assigned to the new weeksworked column for the associated row:

>>> weeksworked = nls97.reset_index().\

...   loc[:,['originalid'] + weeksworkedcols].\

...   melt(id_vars=['originalid'], value_
vars=weeksworkedcols,

...     var_name='year', value_name='weeksworked')

>>> 

>>> weeksworked['year'] = weeksworked.year.str[-2:].
astype(int)+2000

>>> weeksworked.set_index(['originalid'], inplace=True)

>>> weeksworked.loc[[8245,3962]]

            year  weeksworked

originalid                   

8245        2000           46

8245        2001           52

8245        2002           52

8245        2003           48

8245        2004           52

3962        2000            5

3962        2001           49

3962        2002           52
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3962        2003           52

3962        2004           52

6.	 Reshape the college enrollment columns with melt.

This works the same way as the melt function for the weeks worked columns:
>>> colenrcols = 
['colenroct00','colenroct01','colenroct02',

...   'colenroct03','colenroct04']

>>> 

>>> colenr = nls97.reset_index().\

...   loc[:,['originalid'] + colenrcols].\

...   melt(id_vars=['originalid'], value_vars=colenrcols,

...     var_name='year', value_name='colenr')

>>> 

>>> colenr['year'] = colenr.year.str[-2:].
astype(int)+2000

>>> colenr.set_index(['originalid'], inplace=True)

>>> colenr.loc[[8245,3962]]

            year           colenr

originalid                       

8245        2000  1. Not enrolled

8245        2001  1. Not enrolled

8245        2002  1. Not enrolled

8245        2003  1. Not enrolled

8245        2004  1. Not enrolled

3962        2000  1. Not enrolled

3962        2001  1. Not enrolled

3962        2002  1. Not enrolled

3962        2003  1. Not enrolled

3962        2004  1. Not enrolled

7.	 Merge the weeks worked and college enrollment data:

>>> workschool = pd.merge(weeksworked, colenr, 
on=['originalid','year'], how="inner")

>>> workschool.shape

(44920, 4)

>>> workschool.loc[[8245,3962]]
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            year  weeksworked           colenr

originalid                                    

8245        2000           46  1. Not enrolled

8245        2001           52  1. Not enrolled

8245        2002           52  1. Not enrolled

8245        2003           48  1. Not enrolled

8245        2004           52  1. Not enrolled

3962        2000            5  1. Not enrolled

3962        2001           49  1. Not enrolled

3962        2002           52  1. Not enrolled

3962        2003           52  1. Not enrolled

3962        2004           52  1. Not enrolled

This gives us one DataFrame from the melting of both the weeks worked and the college 
enrollment columns.

How it works...
We can use stack or melt to reshape data from wide to long form, but melt provides 
more flexibility. stack will move all of the column names into the index. We see in step 
4 that we get the expected number of rows after stacking, 44920, which is 5*8,984, the 
number of rows in the initial data.

With melt, we can rotate the column names and values based on an ID variable other 
than the index. We do this with the id_vars parameter. We specify which variables to 
melt by using the value_vars parameter.

In step 6, we also reshape the college enrollment columns. To create one DataFrame with 
the reshaped weeks worked and college enrollment data, we merge the two DataFrames 
we created in steps 5 and 6. We will see in the next recipe how to accomplish what we did 
in steps 5 through 7 in one step.

Melting multiple groups of columns
When we needed to melt multiple groups of columns in the previous recipe, we used 
melt twice and then merged the resulting DataFrames. That worked fine, but we can 
accomplish the same tasks in one step with the wide_to_long function. wide_to_
long has more functionality than melt, but is a bit more complicated to use.
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Getting ready...
We will work with the weeks worked and college enrollment data from the NLS in  
this recipe.

How to do it…
We will transform multiple groups of columns at once using wide_to_long:

1.	 Import pandas and load the NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index('personid', inplace=True)

2.	 View some of the weeks worked and college enrollment data:

>>> weeksworkedcols = ['weeksworked00','weeksworked01','w
eeksworked02',

...   'weeksworked03','weeksworked04']

>>> colenrcols = 
['colenroct00','colenroct01','colenroct02',

...   'colenroct03','colenroct04']

>>> 

>>> nls97.loc[nls97.originalid.isin([1,2]),

...   ['originalid'] + weeksworkedcols + colenrcols].T

personid                  135335              999406

originalid                     1                   2

weeksworked00                 53                  51

weeksworked01                 52                  52

weeksworked02                NaN                  44

weeksworked03                 42                  45

weeksworked04                 52                  52

colenroct00    3. 4-year college   3. 4-year college

colenroct01    3. 4-year college  2. 2-year college 

colenroct02    3. 4-year college   3. 4-year college

colenroct03      1. Not enrolled   3. 4-year college

colenroct04      1. Not enrolled   3. 4-year college
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3.	 Run the wide_to_long function.

Pass a list to stubnames to indicate the column groups wanted. (All columns 
starting with the same characters as each item in the list will be selected for 
melting.) Use the i parameter to indicate the ID variable (originalid), and  
use the j parameter to name the column (year) that is based on the column 
suffixes – 00, 01, and so on:

>>> workschool = pd.wide_to_long(nls97[['originalid'] + 
weeksworkedcols 

...   + colenrcols], 
stubnames=['weeksworked','colenroct'], 

...   i=['originalid'], j='year').reset_index()

>>> 

>>> workschool['year'] = workschool.year+2000

>>> workschool = workschool.sort_
values(['originalid','year'])

>>> workschool.set_index(['originalid'], inplace=True)

>>> workschool.head(10)

            year  weeksworked           colenroct

originalid                                       

1           2000           53   3. 4-year college

1           2001           52   3. 4-year college

1           2002          nan   3. 4-year college

1           2003           42     1. Not enrolled

1           2004           52     1. Not enrolled

2           2000           51   3. 4-year college

2           2001           52  2. 2-year college 

2           2002           44   3. 4-year college

2           2003           45   3. 4-year college

2           2004           52   3. 4-year college

wide_to_long accomplishes in one step what it took us several steps to accomplish in 
the previous recipe using melt.
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How it works...
The wide_to_long function does almost all of the work for us, though it takes more 
effort to set it up than for stack or melt. We need to provide the function with the 
characters (weeksworked and colenroct in this case) of the column groups. Since 
our variables are named with suffixes indicating the year, wide_to_long translates the 
suffixes into values that make sense and melts them into the column that is named with 
the j parameter. It's almost magic!

There's more...
The suffixes of the stubnames columns in this recipe are the same: 00 through 04. But 
that does not have to be the case. When suffixes are present for one column group, but not 
for another, the values for the latter column group for that suffix will be missing. We can 
see that if we exclude weeksworked03 from the DataFrame and add weeksworked05:

>>> weeksworkedcols = ['weeksworked00','weeksworked01','weeksw
orked02',

...   'weeksworked04','weeksworked05']

>>> 

>>> workschool = pd.wide_to_long(nls97[['originalid'] + 
weeksworkedcols 

...   + colenrcols], stubnames=['weeksworked','colenroct'], 

...   i=['originalid'], j='year').reset_index()

>>> 

>>> workschool['year'] = workschool.year+2000

>>> workschool = workschool.sort_values(['originalid','year'])

>>> workschool.set_index(['originalid'], inplace=True)

>>> workschool.head(12)

            year  weeksworked           colenroct

originalid                                       

1           2000           53   3. 4-year college

1           2001           52   3. 4-year college

1           2002          nan   3. 4-year college

1           2003          nan     1. Not enrolled

1           2004           52     1. Not enrolled

1           2005           53                 NaN

2           2000           51   3. 4-year college

2           2001           52  2. 2-year college 
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2           2002           44   3. 4-year college

2           2003          nan   3. 4-year college

2           2004           52   3. 4-year college

2           2005           53                 NaN

The weeksworked values for 2003 are now missing, as are the colenroct values for 
2005. (The weeksworked value for 2002 for originalid 1 was already missing.)

Using unstack and pivot to reshape data from 
long to wide
Sometimes, we actually have to move data from a tidy to an untidy structure. This is often 
because we need to prepare the data for analysis with software packages that do not handle 
relational data well, or because we are submitting data to some external authority that has 
requested it in an untidy format. unstack and pivot can be helpful when we need to 
reshape data from long to wide format. unstack does the opposite of what we did with 
stack, and pivot does the opposite of melt.

Getting ready...
We continue to work with the NLS data on weeks worked and college enrollment in  
this recipe.

How to do it…
We use unstack and pivot to return the melted NLS DataFrame to its original state:

1.	 Import pandas and load the stacked and melted NLS data:

>>> import pandas as pd

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index(['originalid'], inplace=True)

2.	 Stack the data again.

This repeats the stack operation from an earlier recipe in this chapter:
>>> weeksworkedcols = ['weeksworked00','weeksworked01',

...   'weeksworked02','weeksworked03','weeksworked04']

>>> weeksworkedstacked = nls97[weeksworkedcols].\

...   stack(dropna=False)
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>>> weeksworkedstacked.loc[[1,2]]

originalid               

1           weeksworked00    53

            weeksworked01    52

            weeksworked02   nan

            weeksworked03    42

            weeksworked04    52

2           weeksworked00    51

            weeksworked01    52

            weeksworked02    44

            weeksworked03    45

            weeksworked04    52

dtype: float64

3.	 Melt the data again.

This repeats the melt operation from an earlier recipe in this chapter:
>>> weeksworkedmelted = nls97.reset_index().\

...   loc[:,['originalid'] + weeksworkedcols].\

...   melt(id_vars=['originalid'], value_
vars=weeksworkedcols,

...     var_name='year', value_name='weeksworked')

>>> 

>>> weeksworkedmelted.loc[weeksworkedmelted.originalid.
isin([1,2])].\

...   sort_values(['originalid','year'])

       originalid           year  weeksworked

377             1  weeksworked00           53

9361            1  weeksworked01           52

18345           1  weeksworked02          nan

27329           1  weeksworked03           42

36313           1  weeksworked04           52

8980            2  weeksworked00           51

17964           2  weeksworked01           52

26948           2  weeksworked02           44

35932           2  weeksworked03           45

44916           2  weeksworked04           52
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4.	 Use unstack to convert the stacked data from long to wide:

>>> weeksworked = weeksworkedstacked.unstack()

>>> weeksworked.loc[[1,2]]

weeksworked00  weeksworked01  weeksworked02  
weeksworked03  weeksworked04

originalid                                                                           

1          53             52            nan             
42             52

2          51             52             44             
45             52

5.	 Use pivot to convert the melted data from long to wide.

pivot is slightly more complicated than unstack. We need to pass arguments 
to do the reverse of melt, telling pivot the column to use for the column 
name suffixes (year) and where to grab the values to be unmelted (from the 
weeksworked columns, in this case):

>>> weeksworked = weeksworkedmelted.
pivot(index='originalid', \

...   columns='year', values=['weeksworked']).reset_
index()

>>> 

>>> weeksworked.columns = ['originalid'] + \

...   [col[1] for col in weeksworked.columns[1:]]

>>> 

>>> weeksworked.loc[weeksworked.originalid.isin([1,2])].T

                0  1

originalid      1  2

weeksworked00  53 51

weeksworked01  52 52

weeksworked02 nan 44

weeksworked03  42 45

weeksworked04  52 52

This returns the NLS data back to its original untidy form.
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How it works...
We first do a stack and a melt in steps 2 and 3 respectively.  This rotates the DataFrames 
from wide to long format. We then unstack (step 4) and pivot (step 5) those data frames to 
rotate them back from long to wide.

unstack uses the multi-index that is created by the stack to figure out how to rotate 
the data.

The pivot function needs for us to indicate the index column (originalid), the 
column whose values will be appended to the column names (year), and the name of 
the columns with the values to be unmelted (weeksworked). Pivot will return multilevel 
column names. We fix that by pulling from the second level with [col[1] for col in 
weeksworked.columns[1:]].
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User-Defined 

Functions and 
Classes to Automate 

Data Cleaning
There are a number of great reasons to write code that is reusable. When we step back from 
the particular data cleaning problem at hand and consider its relationship to very similar 
problems, we can actually improve our understanding of the key issues involved. We are 
also more likely to address a task systematically when we set our sights more on solving 
it for the long term than on the before-lunch solution. This has the additional benefit of 
helping us to disentangle the substantive issues from the mechanics of data manipulation.

We will create several modules to accomplish routine data cleaning tasks in this chapter. 
The functions and classes in these modules are examples of code that can be reused across 
DataFrames, or for one DataFrame over an extended period of time. These functions 
handle many of the tasks we discussed in the first nine chapters, but in a manner that 
allows us to reuse our code.
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Specifically, the recipes in this chapter cover the following:

•	 Functions for getting a first look at our data

•	 Functions for displaying summary statistics and frequencies

•	 Functions for identifying outliers and unexpected values

•	 Functions for aggregating or combining data

•	 Classes that contain the logic for updating series values

•	 Classes that handle non-tabular data structures

Technical requirements 
The code and notebooks for this chapter are available on GitHub at https://github.
com/PacktPublishing/Python-Data-Cleaning-Cookbook

Functions for getting a first look at our data
The first few steps we take after we import our data into a pandas DataFrame are pretty 
much the same regardless of the characteristics of the data. We almost always want to 
know the number of columns and rows and the column data types, and see the first few 
rows. We also might want to view the index and check whether there is a unique identifier 
for DataFrame rows. These discrete, easily repeatable tasks are good candidates for  
a collection of functions we can organize into a module.

In this recipe, we will create a module with functions that give us a good first look at any 
pandas DataFrame. A module is simply a collection of Python code that we can import 
into another Python program. Modules are easy to reuse because they can be referenced 
by any program with access to the folder where the module is saved.

Getting ready...
We create two files in this recipe: one with a function we will use to look at our data 
and another to call that function. Let's call the file with the function we will use 
basicdescriptives.py and place it in a subfolder called helperfunctions.

We work with the National Longitudinal Survey (NLS) data in this recipe.

https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
https://github.com/PacktPublishing/Python-Data-Cleaning-Cookbook
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Note
The NLS is conducted by the United States Bureau of Labor Statistics. 
It is available for public use at https://www.nlsinfo.org/
investigator/pages/search. The survey started with a cohort 
of individuals in 1997 who were born between 1980 and 1985, with annual 
follow-ups each year through 2017.

How to do it...
We will create a function to take an initial look at a DataFrame.

1.	 Create the basicdescriptives.py file with the function we want.

The getfirstlook function will return a dictionary with summary 
information on a DataFrame. Save the file in the helperfunctions subfolder 
as basicdescriptives.py. (You can also just download the code from the 
GitHub repository). Also, create a function (displaydict) to pretty up the 
display of a dictionary:

>>> import pandas as pd

>>> def getfirstlook(df, nrows=5, uniqueids=None):

...   out = {}

...   out['head'] = df.head(nrows)

...   out['dtypes'] = df.dtypes

...   out['nrows'] = df.shape[0]

...   out['ncols'] = df.shape[1]

...   out['index'] = df.index

...   if (uniqueids is not None):

...     out['uniqueids'] = df[uniqueids].nunique()

...   return out

>>> def displaydict(dicttodisplay):

...   print(*(': '.join(map(str, x)) \

...     for x in dicttodisplay.items()), sep='\n\n')

2.	 Create a separate file, firstlook.py, to call the getfirstlook function.

Import the pandas, os, and sys libraries, and load the NLS data:
>>> import pandas as pd

>>> import os

https://www.nlsinfo.org/investigator/pages/search
https://www.nlsinfo.org/investigator/pages/search
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>>> import sys

>>> nls97 = pd.read_csv("data/nls97f.csv")

3.	 Import the basicdescriptives module.

First, append the helperfunctions subfolder to the Python path. We can then 
import basicdescriptives. We use the same name as the name of the file to 
import the module. We create an alias, bd, to make it easier to access the functions 
in the module later. (We can use importlib, commented out here, if we need to 
reload basicdescriptives because we have made some changes in the code in 
that module).

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import basicdescriptives as bd

>>> # import importlib

>>> # importlib.reload(bd)

4.	 Take a first look at the NLS data.

We can just pass the DataFrame to the getfirstlook function in the 
basicdescriptives module to get a quick summary of the NLS data. The 
displaydict function gives us prettier printing of the dictionary:

>>> dfinfo = bd.getfirstlook(nls97)

>>> bd.displaydict(dfinfo)

head:           gender  birthmonth  ...      colenroct17  
originalid

personid                      ...                             

100061    Female           5  ...  1. Not enrolled        
8245

100139      Male           9  ...  1. Not enrolled        
3962

100284      Male          11  ...  1. Not enrolled        
3571

100292      Male           4  ...              NaN        
2979

100583      Male           1  ...  1. Not enrolled        
8511

[5 rows x 89 columns]

dtypes: gender                    object
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birthmonth                 int64

birthyear                  int64

highestgradecompleted    float64

maritalstatus             object

                          ...   

colenrfeb16               object

colenroct16               object

colenrfeb17               object

colenroct17               object

originalid                 int64

Length: 89, dtype: object	

nrows: 8984

ncols: 89

index: Int64Index([100061, 100139, 100284, 100292, 
100583, 100833, 100931,

            ...

            999543, 999698, 999963],

           dtype='int64', name='personid', length=8984)

5.	 Pass values to the nrows and uniqueids parameters of getfirstlook.

The two parameters default to values of 5 and None, unless we provide values:
>>> dfinfo = bd.getfirstlook(nls97,2,'originalid')

>>> bd.displaydict(dfinfo)

head:           gender  birthmonth  ...      colenroct17  
originalid

personid                      ...                             

100061    Female           5  ...  1. Not enrolled        
8245

100139      Male           9  ...  1. Not enrolled        
3962

[2 rows x 89 columns]

dtypes: gender                    object

birthmonth                 int64

birthyear                  int64

highestgradecompleted    float64
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maritalstatus             object

                          ...   

colenrfeb16               object

colenroct16               object

colenrfeb17               object

colenroct17               object

originalid                 int64

Length: 89, dtype: object

nrows: 8984

ncols: 89

index: Int64Index([100061, 100139, 100284, 100292, 
100583, 100833, 100931,

            ...

            999543, 999698, 999963],

           dtype='int64', name='personid', length=8984)

uniqueids: 8984

6.	 Work with some of the returned dictionary keys and values.

We can also display selected key values from the dictionary returned from 
getfirstlook. Show the number of rows and data types, and check to 
see whether each row has a uniqueid instance (dfinfo['nrows'] == 
dfinfo['uniqueids']):

>>> dfinfo['nrows']

8984

>>> dfinfo['dtypes']

gender                    object

birthmonth                 int64

birthyear                  int64

highestgradecompleted    float64

maritalstatus             object

                          ...   

colenrfeb16               object

colenroct16               object

colenrfeb17               object
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colenroct17               object

originalid                 int64

Length: 89, dtype: object

>>> dfinfo['nrows'] == dfinfo['uniqueids']

True

Let's take a closer look at how the function works and how we call it.

How it works...
Almost all of the action in this recipe is in the getfirstlook function, which we 
look at in step 1. We place the getfirstlook function in a separate file that we name 
basicdescriptives.py, which we can import as a module with that name (minus 
the extension).

We could have typed the function into the file we were using and called it from there. By 
putting it in a module instead, we can call it from any file that has access to the folder where 
the module is saved. When we import the basicdescriptives module in step 3, we load 
all of the code in basicdescriptives, allowing us to call all functions in that module.

The getfirstlook function returns a dictionary with useful information about the 
DataFrame that is passed to it.  We see the first five rows, the number of columns and 
rows, the data types, and the index. By passing a value to the uniqueid parameter, we 
also get the number of unique values for the column.

By adding keyword parameters (nrows and uniqueid) with default values, we improve 
the flexibility of getfirstlook, without increasing the amount of effort it takes to call 
the function when we do not need the extra functionality. In the first call, in step 4, we do 
not pass values for nrows or uniqueid, sticking with the default values. In step 5, we 
indicate that we only want two rows displayed and that we want to examine unique values 
for originalid.

There's more...
The point of this recipe, and the ones that follow it, is not to provide code that you  
can download and run on your own data, though you are certainly welcome to do that. 
I am mainly trying to demonstrate how you can collect your favorite approaches to data 
cleaning in handy modules, and how this allows easy code reuse. The specific code here is 
just a serving suggestion, if you will.

Whenever we use a combination of positional and keyword parameters, the positional 
parameters must go first.



372     User-Defined Functions and Classes to Automate Data Cleaning

Functions for displaying summary statistics 
and frequencies
During the first few days of working with a DataFrame, we try to get a good sense of the 
distribution of continuous variables and counts for categorical variables. We also often 
do counts by selected groups. Although pandas and NumPy have many built-in methods 
for these purposes – describe, mean, valuecounts, crosstab, and so on – data 
analysts often have preferences for how they work with these tools. If, for example, an 
analyst finds that she usually needs to see more percentiles than those generated by 
describe, she can use her own function instead. We will create user-defined functions 
for displaying summary statistics and frequencies in this recipe.

Getting ready
We will be working with the basicdescriptives module again in this recipe. All  
of the functions we will define are saved in that module. We continue to work with the 
NLS data.

How to do it...
We will use functions we create to generate summary statistics and counts:

1.	 Create the gettots function in the basicdescriptives module.

The function takes a pandas DataFrame and creates a dictionary with selected 
summary statistics. It returns a pandas DataFrame: 

>>> def gettots(df):

...   out = {}

...   out['min'] = df.min()

...   out['per15'] = df.quantile(0.15)

...   out['qr1'] = df.quantile(0.25)

...   out['med'] = df.median()

...   out['qr3'] = df.quantile(0.75)

...   out['per85'] = df.quantile(0.85)

...   out['max'] = df.max()

...   out['count'] = df.count()

...   out['mean'] = df.mean()

...   out['iqr'] = out['qr3']-out['qr1']

...   return pd.DataFrame(out)
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2.	 Import the pandas, os, and sys libraries.

Do this from a different file, which you can call taking_measure.py:
>>> import pandas as pd

>>> import os

>>> import sys

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index('personid', inplace=True)

3.	 Import the basicdescriptives module:

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import basicdescriptives as bd

4.	 Show summary statistics for continuous variables.

Use the gettots function from the basicdescriptives module that we 
created in step 1:

>>> bd.gettots(nls97[['satverbal','satmath']]).T

        satverbal      satmath

min      14.00000     7.000000

per15   390.00000   390.000000

qr1     430.00000   430.000000

med     500.00000   500.000000

qr3     570.00000   580.000000

per85   620.00000   621.000000

max     800.00000   800.000000

count  1406.00000  1407.000000

mean    499.72404   500.590618

iqr     140.00000   150.000000

>>> bd.gettots(nls97.filter(like="weeksworked"))

               min  per15   qr1  ...  count       mean   
iqr

weeksworked00  0.0    0.0   5.0  ...   8603  26.417761  
45.0

weeksworked01  0.0    0.0  10.0  ...   8564  29.784096  
41.0

weeksworked02  0.0    0.0  13.0  ...   8556  31.805400  
39.0
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weeksworked03  0.0    0.0  14.0  ...   8490  33.469611  
38.0

weeksworked04  0.0    1.0  18.0  ...   8458  35.104635  
34.0

...

weeksworked15  0.0    0.0  33.0  ...   7389  39.605630  
19.0

weeksworked16  0.0    0.0  23.0  ...   7068  39.127476  
30.0

weeksworked17  0.0    0.0  37.0  ...   6670  39.016642  
15.0

5.	 Create a function to count missing values by columns and rows.

The getmissings function will take a DataFrame and a parameter for showing 
percentages or counts. Return two series, one with the missing values for each 
column and the other with missing values by row. Save the function in the 
basicdescriptives module:

>>> def getmissings(df, byrowperc=False):

...   return df.isnull().sum(),\

...     df.isnull().sum(axis=1).value_
counts(normalize=byrowperc).sort_index()

6.	 Call the getmissings function.

Call it first with byrowperc (the second parameter) set to True. This will show 
the percentage of rows with the associated number of missing values. For example, 
the missingbyrows value shows that 73.9% of rows have 0 missing values for 
weeksworked16 and weeksworked17. Call it again, leaving byrowperc at its 
default value of False, to get counts instead:

>>> missingsbycols, missingsbyrows = 
bd.getmissings(nls97[['weeksworked16','weeksworked17']], 
True)

>>> missingsbycols

weeksworked16    1916

weeksworked17    2314

dtype: int64

>>> missingsbyrows

0    0.739203

1    0.050757
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2    0.210040

dtype: float64

>>> missingsbycols, missingsbyrows = 
bd.getmissings(nls97[['weeksworked16','weeksworked17']])

>>> missingsbyrows

0    6641

1     456

2    1887

dtype: int64

7.	 Create a function to calculate frequencies for all categorical variables.

The makefreqs function loops through all columns with the category data type in 
the passed DataFrame, running value_counts on each one. The frequencies are 
saved to the file indicated by outfile:

>>> def makefreqs(df, outfile):

...   freqout = open(outfile, 'w') 

...   for col in df.select_dtypes(include=["category"]):

...     print(col, "----------------------", 
"frequencies",

...     df[col].value_counts().sort_
index(),"percentages",

...     df[col].value_counts(normalize=True).sort_
index(),

...     sep="\n\n", end="\n\n\n", file=freqout)

...   freqout.close()

8.	 Call the makefreqs function.

First change data type of each object column to category. This call runs  
value_counts on category data columns in the NLS data frame and saves the 
frequencies to nlsfreqs.txt in the views subfolder of the current folder.

>>> nls97.loc[:, nls97.dtypes == 'object'] = \

...   nls97.select_dtypes(['object']). \

...   apply(lambda x: x.astype('category'))

>>> bd.makefreqs(nls97, "views/nlsfreqs.txt")
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9.	 Create a function to get counts by groups.

The getcnts function counts the number of rows for each combination of column 
values in cats, a list of column names. It also counts the number of rows for each 
combination of column values excluding the final column in cats. This provides a 
total across all values of the final column. (The next step shows what this looks like).

>>> def getcnts(df, cats, rowsel=None):

...   tots = cats[:-1]

...   catcnt = df.groupby(cats).size().reset_
index(name='catcnt')

...   totcnt = df.groupby(tots).size().reset_
index(name='totcnt')

...   percs = pd.merge(catcnt, totcnt, left_on=tots, 

...     right_on=tots, how="left")

...   percs['percent'] = percs.catcnt / percs.totcnt

...   if (rowsel is not None):

...     percs = percs.loc[eval("percs." + rowsel)]

...   return percs

10.	 Pass the marital status, gender, and college enrollment columns to the getcnts 
function.

This returns a DataFrame with counts for each column value combination, as well 
as counts for all combinations excluding the last column. This is used to calculate 
percentages within groups. For example, 393 respondents were divorced and female 
and 317 of those (or 81%) were not enrolled in college in October of 2000:

>>> bd.getcnts(nls97, 
['maritalstatus','gender','colenroct00'])

   maritalstatus  gender         colenroct00  catcnt  
totcnt   percent

0       Divorced  Female     1. Not enrolled     317     
393  0.806616

1       Divorced  Female  2. 2-year college       35     
393  0.089059

2       Divorced  Female   3. 4-year college      41     
393  0.104326

3       Divorced    Male     1. Not enrolled     238     
270  0.881481

4       Divorced    Male  2. 2-year college       15     
270  0.055556
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..           ...     ...                 ...     ...     

...       ...

25       Widowed  Female  2. 2-year college        1      
19  0.052632

26       Widowed  Female   3. 4-year college       2      
19  0.105263

27       Widowed    Male     1. Not enrolled       3       
4  0.750000

28       Widowed    Male  2. 2-year college        0       
4  0.000000

29       Widowed    Male   3. 4-year college       1       
4  0.250000

11.	 Use the rowsel parameter of getcnts to limit the output to specific rows:

>>> bd.getcnts(nls97, 
['maritalstatus','gender','colenroct00'], "colenroct00.
str[0:1]=='1'")

    maritalstatus  gender      colenroct00  catcnt  
totcnt   percent

0        Divorced  Female  1. Not enrolled     317     
393  0.806616

3        Divorced    Male  1. Not enrolled     238     
270  0.881481

6         Married  Female  1. Not enrolled    1168    
1636  0.713936

9         Married    Male  1. Not enrolled    1094    
1430  0.765035

12  Never-married  Female  1. Not enrolled    1094    
1307  0.837031

15  Never-married    Male  1. Not enrolled    1268    
1459  0.869088

18      Separated  Female  1. Not enrolled      66      
79  0.835443

21      Separated    Male  1. Not enrolled      67      
75  0.893333

24        Widowed  Female  1. Not enrolled      16      
19  0.842105

27        Widowed    Male  1. Not enrolled       3       
4  0.750000
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These steps demonstrate how to create functions and use them to generate summary 
statistics and frequencies.

How it works...
In step 1, we create a function that calculates descriptive statistics for all columns in  
a DataFrame, returning those results in a summary DataFrame. Most of the statistics 
can be generated with the describe method, but we add a few statistics – the 15th 
percentile, the 85th percentile, and the interquartile range. We call that function twice in 
step 4, the first time for the SAT verbal and math scores and the second time for all weeks 
worked columns.

Steps 5 and 6 create and call a function that shows the number of missing values for each 
column in the passed DataFrame. It also counts missing values for each row, displaying the 
frequency of missing values. The frequency of missing values by row can also be displayed 
as a percentage of all rows by passing a value of True to the byrowperc parameter.

Steps 7 and 8 produce a text file with frequencies for all categorical variables in the 
passed DataFrame. We just loop through all columns with the category data type and run 
value_counts. Since often the output is long, we save it to a file. It is also good to have 
frequencies saved somewhere for later reference.

The getcnts function we create in step 9 and call in steps 10 and 11 is a tad idiosyncratic. 
pandas has a very useful crosstab function, which I use frequently. But I often need  
a no-fuss way to look at group counts and percentages for subgroups within groups. The 
getcnts function does that.

There's more...
A function can be very helpful even when it does not do very much. There is not much 
code in the getmissings function, but I check for missing values so frequently that the 
small time-savings are significant cumulatively. It also reminds me to check for missing 
values by column and by row.

See also...
We explore pandas' tools for generating summary statistics and frequencies in Chapter 3, 
Taking the Measure of Your Data.
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Functions for identifying outliers and 
unexpected values
If I had to pick one data cleaning area where I find reusable code most beneficial, it 
would be in the identification of outliers and unexpected values. This is because our prior 
assumptions often lead us to the central tendency of a distribution, rather than to the 
extremes. Quickly – think of a cat. Unless you were thinking about a particular cat in your 
life, an image of a generic feline between 8 and 10 pounds probably came to mind; not one 
that is 6 pounds or 22 pounds.

We often need to be more deliberate to elevate extreme values to consciousness. This is 
where having a standard set of diagnostic functions to run on our data is very helpful. 
We can run these functions even if nothing in particular triggers us to run them. This 
recipe provides examples of functions that we can use regularly to identify outliers and 
unexpected values.

Getting ready
We will create two files in this recipe, one with the functions we will use to check for 
outliers and another with the code we will use to call those functions. Let's call the 
file with the functions we will use outliers.py, and place it in a subfolder called 
helperfunctions.

You will need the matplotlib and scipy libraries, in addition to pandas, to run the 
code in this recipe. You can install matplotlib and scipy by entering pip install 
matplotlib and pip install scipy in a Terminal client or in Windows 
PowerShell. You will also need the pprint utility, which you can install with pip 
install pprint.

We will work with the NLS and COVI-19 data in this recipe. The Covid data has one row 
per country, with cumulative cases and deaths for that country.

Note
Our World in Data provides Covid-19 public use data at  
https://ourworldindata.org/coronavirus-source-data. 
The data used in this recipe were downloaded on July 18, 2020.

https://ourworldindata.org/coronavirus-source-data
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How to do it...
We create and call functions to check the distribution of variables, list extreme values, and 
visualize a distribution:

1.	 Import the pandas, os, sys, and pprint libraries.

Also, load the NLS and Covid data:
>>> import pandas as pd

>>> import os

>>> import sys

>>> import pprint

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97.set_index('personid', inplace=True)

>>> covidtotals = pd.read_csv("data/covidtotals720.csv")

2.	 Create a function to show some important properties of a distribution.

The getdistprops function takes a series and generates measures of central 
tendency, shape, and spread. The function returns a dictionary with these measures. 
It also handles situations where the Shapiro test for normality does not return  
a value. It will not add keys for normstat and normpvalue when that happens. 
Save the function in a file named outliers.py in the helperfunctions 
subfolder of the current directory. (Also load the pandas, matplotlib, scipy, 
and math libraries we will need for this and other functions in this module.)

>>> import pandas as pd

>>> import matplotlib.pyplot as plt

>>> import scipy.stats as scistat

>>> import math

>>> 

>>> def getdistprops(seriestotest):

...   out = {}

...   normstat, normpvalue = scistat.
shapiro(seriestotest)

...   if (not math.isnan(normstat)):

...     out['normstat'] = normstat

...     if (normpvalue>=0.05):

...       out['normpvalue'] = str(round(normpvalue, 2)) + 
": Accept Normal"

...     elif (normpvalue<0.05):
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...       out['normpvalue'] = str(round(normpvalue, 2)) + 
": Reject Normal"

...   out['mean'] = seriestotest.mean()

...   out['median'] = seriestotest.median()

...   out['std'] = seriestotest.std()

...   out['kurtosis'] = seriestotest.kurtosis()

...   out['skew'] = seriestotest.skew()

...   out['count'] = seriestotest.count()

...   return out

3.	 Pass the total cases per million in population series to the getdistprops function.

The skew and kurtosis values suggest that the distribution of total_cases_
pm has significantly positive skew and fatter tails than a normally distributed 
variable. The Shapiro test of normality (normpvalue) confirms this. (Use pprint 
to improve the display of the dictionary returned by getdistprops).

>>> dist = ol.getdistprops(covidtotals.total_cases_pm)

>>> pprint.pprint(dist)

{'count': 209,

 'kurtosis': 26.137524276840452,

 'mean': 2297.0221435406693,

 'median': 868.866,

 'normpvalue': '0.0: Reject Normal',

 'normstat': 0.5617035627365112,

 'skew': 4.284484653881833,

 'std': 4039.840202653782}

4.	 Create a function to list the outliers in a DataFrame.

The getoutliers function iterates over all columns in sumvars. It determines 
outlier thresholds for those columns, setting them at 1.5 times the interquartile 
range (the distance between the first and third quartile) below the first quartile or 
above the third quartile. It then selects all rows with values above the high threshold 
or below the low threshold. It adds columns that indicate the variable examined 
(varname) for outliers and the threshold levels. It also includes columns in the 
othervars list in the DataFrame it returns:

>>> def getoutliers(dfin, sumvars, othervars):

...   dfin = dfin[sumvars + othervars]
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...   dfout = pd.DataFrame(columns=dfin.columns, 
data=None)

...   dfsums = dfin[sumvars]

...   for col in dfsums.columns:

...     thirdq, firstq = dfsums[col].quantile(0.75),\

...       dfsums[col].quantile(0.25)

...     interquartilerange = 1.5*(thirdq-firstq)

...     outlierhigh, outlierlow = 
interquartilerange+thirdq,\

...       firstq-interquartilerange

...     df = dfin.loc[(dfin[col]>outlierhigh) | \

...       (dfin[col]<outlierlow)]

...     df = df.assign(varname = col, threshlow = 
outlierlow,\

...       threshhigh = outlierhigh)

...     dfout = pd.concat([dfout, df])

...   return dfout

5.	 Call the getoutlier function.

Pass a list of columns to check for outliers (sumvars) and another list of columns 
to include in the returned DataFrame (othervars). Show the count of outliers  
for each variable and view the outliers for SAT math:

>>> sumvars = ['satmath','wageincome']

>>> othervars = 
['originalid','highestdegree','gender','maritalstatus']

>>> outliers = ol.getoutliers(nls97, sumvars, othervars)

>>> outliers.varname.value_counts(sort=False)

satmath        10

wageincome    260

Name: varname, dtype: int64

>>> outliers.loc[outliers.varname=='satmath', othervars + 
sumvars]

       originalid   highestdegree  ... satmath wageincome

223058       6696         0. None  ...    46.0    30000.0

267254       1622  2. High School  ...    48.0   100000.0

291029       7088  2. High School  ...    51.0        NaN

337438        159  2. High School  ...   200.0        NaN
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399109       3883  2. High School  ...    36.0        NaN

448463        326    4. Bachelors  ...    47.0        NaN

738290       7705         0. None  ...     7.0        NaN

748274       3394    4. Bachelors  ...    42.0        NaN

799095        535      5. Masters  ...    59.0   120000.0

955430       2547  2. High School  ...   200.0        NaN

[10 rows x 6 columns]

>>> outliers.to_excel("views/nlsoutliers.xlsx")

6.	 Create a function to generate histograms and boxplots.

The makeplot function takes a series, title, and label for the x-axis. The default 
plot is set as a histogram:

>>> def makeplot(seriestoplot, title, xlabel, 
plottype="hist"):

...   if (plottype=="hist"):

...     plt.hist(seriestoplot)

...     plt.axvline(seriestoplot.mean(), color='red',\

...       linestyle='dashed', linewidth=1)

...     plt.xlabel(xlabel)

...     plt.ylabel("Frequency")

...   elif (plottype=="box"):

...     plt.boxplot(seriestoplot.dropna(), 
labels=[xlabel])

...   plt.title(title)

...   plt.show()

7.	 Call the makeplot function to create a histogram:

>>> ol.makeplot(nls97.satmath, "Histogram of SAT Math", 
"SAT Math")
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This generates the following histogram:

Figure 10.1 – Frequencies of SAT math values

8.	 Use the makeplot function to create a boxplot:

>>> ol.makeplot(nls97.satmath, "Boxplot of SAT Math", 
"SAT Math", "box")

This generates the following boxplot:

Figure 10.2 – Show the median, interquartile range, and outlier thresholds with a boxplot
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The preceding steps show how we can develop reusable code to check for outliers and 
unexpected values.

How it works...
We start by getting the key attributes of a distribution, including the mean, median, 
standard deviation, skew, and kurtosis. We do this by passing a series to the 
getdistprop function in step 3, getting back a dictionary with these measures.

The function in step 4 selects rows where one of the columns in sumvars has a value that 
is an outlier. It also includes the values for the columns in othervars and the threshold 
amounts in the DataFrame it returns.

We create a function in step 6 that makes it easier to create a simple histogram or boxplot. 
The functionality of matplotlib is great, but it can take a minute to remind ourselves of 
the syntax when we just want to create a simple histogram or boxplot. We can avoid that 
by defining a function with a few routine parameters: series, title, and x-label. We call that 
function in steps 7 and 8.

There's more...
We do not want to do too much work with a continuous variable before getting a good 
sense of how its values are distributed; what are the central tendency and shape of the 
distribution? If we run something like the functions in this recipe for key continuous 
variables, we would be off to a good start.

The relatively painless portability of Python modules makes this pretty easy to do. If we 
wanted to use the outliers module that we use in this example, we would just need to 
save the outliers.py file to a folder that our program can access, add that folder to the 
Python path, and import it.

Usually, when we are inspecting an extreme value, we want to have a better idea of the 
context of other variables that might explain why the value is extreme. For example,  
a height of 178 centimeters is not an outlier for an adult male, but it definitely is for  
a 9-year old. The DataFrame produced in steps 4 and 5 provides us with both the outlier 
values and other data that might be relevant. Saving the data to an Excel file makes it easy 
to inspect outlier rows later or share that data with others.



386     User-Defined Functions and Classes to Automate Data Cleaning

See also
We go into a fair bit of detail on detecting outliers and unexpected values in Chapter 4,  
Identifying Missing Values and Outliers in Subsets of Data. We examine histograms, 
boxplots, and many other visualizations in Chapter 5, Using Visualizations for the 
Identification of Unexpected Values.

Functions for aggregating or combining data
Most data analysis projects require some reshaping of data. We may need to aggregate  
by group or combine data vertically or horizontally. We have to do similar tasks each 
time we prepare our data for this reshaping. We can routinize some of these tasks with 
functions, improving both the reliability of our code and our efficiency in getting the work 
done. We sometimes need to check for mismatches in merge-by columns before doing  
a merge, check for unexpected changes in values in panel data from one period to the next 
before aggregating, or concatenate a number of files at once and verify that data has been 
combined accurately.

These are just a few examples of the kind of data aggregation and combining tasks that 
might lend themselves to a more generalized coding solution. In this recipe, we define 
functions that can help with these tasks.

Getting ready
We will work with the Covid daily data in this recipe. This data comprises new cases and 
new deaths for each country by day. We will also work with land temperatures data for 
several countries in 2019. The data for each country is in a separate file and has one row 
per weather station in that country for each month.

Note
The land temperatures data is taken from the Global Historical Climatology 
Network integrated database, which is made available for public use by 
the United States National Oceanic and Atmospheric Administration 
at https://www.ncdc.noaa.gov/data-access/land-
based-station-data/land-based-datasets/global-
historical-climatology-network-monthly-version-4.

https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
https://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/global-historical-climatology-network-monthly-version-4
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How to do it...
We will use functions to aggregate data, combine data vertically, and check  
merge-by values:

1.	 Import the pandas, os, and sys libraries:

>>> import pandas as pd

>>> import os

>>> import sys

2.	 Create a function (adjmeans) to aggregate values by period for a group.

Sort the values in the passed DataFrame by group (byvar) and then period. 
Convert the DataFrame values to a NumPy array. Loop through the values, do  
a running tally of the var column, and set the running tally back to 0 when you 
reach a new value for byvar. Before aggregating, check for extreme changes in 
values from one period to the next. The changeexclude parameter indicates the 
size of a change from one period to the next that should be considered extreme. 
The excludetype parameter indicates whether the changeexclude value is an 
absolute amount or a percentage of the var column's mean. Save the function in a 
file called combineagg.py in the helperfunctions subfolder:

>>> def adjmeans(df, byvar, var, period, 
changeexclude=None, excludetype=None):

...   df = df.sort_values([byvar, period])

...   df = df.dropna(subset=[var])

...   # iterate using numpy arrays

...   prevbyvar = 'ZZZ'

...   prevvarvalue = 0

...   rowlist = []

...   varvalues = df[[byvar, var]].values

...   # convert exclusion ratio to absolute number

...   if (excludetype=="ratio" and changeexclude is not 
None):

...     changeexclude = df[var].mean()*changeexclude

...   # loop through variable values

...   for j in range(len(varvalues)):

...     byvar = varvalues[j][0]

...     varvalue = varvalues[j][1]
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...     if (prevbyvar!=byvar):

...       if (prevbyvar!='ZZZ'):

...         rowlist.append({'byvar':prevbyvar, 
'avgvar':varsum/byvarcnt,\

...           'sumvar':varsum, 'byvarcnt':byvarcnt})

...       varsum = 0

...       byvarcnt = 0

...       prevbyvar = byvar

...     # exclude extreme changes in variable value

...     if ((changeexclude is None) or (0 <= 
abs(varvalue-prevvarvalue) \

...       <= changeexclude) or (byvarcnt==0)):

...       varsum += varvalue

...       byvarcnt += 1

...     prevvarvalue = varvalue

...   rowlist.append({'byvar':prevbyvar, 'avgvar':varsum/
byvarcnt, \

...     'sumvar':varsum, 'byvarcnt':byvarcnt})

...   return pd.DataFrame(rowlist)

3.	 Import the combineagg module:

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import combineagg as ca

4.	 Load the DataFrames:

>>> coviddaily = pd.read_csv("data/coviddaily720.csv")

>>> ltbrazil = pd.read_csv("data/ltbrazil.csv")

>>> countries = pd.read_csv("data/ltcountries.csv")

>>> locations = pd.read_csv("data/ltlocations.csv")

5.	 Call the adjmeans function to summarize panel data by group and time period.

Indicate that we want a summary of new_cases by location:
>>> ca.adjmeans(coviddaily, 'location','new_
cases','casedate')

              byvar      avgvar   sumvar  byvarcnt

0       Afghanistan  186.221622  34451.0       185



Functions for aggregating or combining data     389

1           Albania   26.753968   3371.0       126

2           Algeria   98.484211  18712.0       190

3           Andorra    7.066116    855.0       121

4            Angola    4.274336    483.0       113

..              ...         ...      ...       ...

204         Vietnam    1.937173    370.0       191

205  Western Sahara    6.653846    519.0        78

206           Yemen   14.776596   1389.0        94

207          Zambia   16.336207   1895.0       116

208        Zimbabwe    8.614035    982.0       114

[209 rows x 4 columns]

6.	 Call the adjmeans function again, this time excluding values where new_cases 
go up or down by more than 150 from one day to the next. Notice some reduction 
in the counts for some countries:

>>> ca.adjmeans(coviddaily, 'location','new_
cases','casedate', 150)

              byvar      avgvar   sumvar  byvarcnt

0       Afghanistan  141.968750  22715.0       160

1           Albania   26.753968   3371.0       126

2           Algeria   94.133690  17603.0       187

3           Andorra    7.066116    855.0       121

4            Angola    4.274336    483.0       113

..              ...         ...      ...       ...

204         Vietnam    1.937173    370.0       191

205  Western Sahara    2.186667    164.0        75

206           Yemen   14.776596   1389.0        94

207          Zambia   11.190909   1231.0       110

208        Zimbabwe    8.614035    982.0       114

[209 rows x 4 columns]
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7.	 Create a function to check values for merge-by columns on one file but not another.

The checkmerge function does an outer join of two DataFrames passed to it, using 
the third and fourth parameters for the merge-by columns for the first and second 
DataFrame respectively. It then does a crosstab that shows the number of rows with 
merge-by values in both DataFrames and those in one DataFrame but not the other. 
It also shows up to 20 rows of data for merge-by values found in just one file:

>>> def checkmerge(dfleft, dfright, mergebyleft, 
mergebyright):

...   dfleft['inleft'] = "Y"

...   dfright['inright'] = "Y"

...   dfboth = pd.merge(dfleft[[mergebyleft,'inleft']],\

...     dfright[[mergebyright,'inright']], left_
on=[mergebyleft],\

...     right_on=[mergebyright], how="outer")

...   dfboth.fillna('N', inplace=True)

...   print(pd.crosstab(dfboth.inleft, dfboth.inright))

...   print(dfboth.loc[(dfboth.inleft=='N') | (dfboth.
inright=='N')].head(20))

8.	 Call the checkmerge function.

Check a merge between the countries land temperatures DataFrame (which has 
one row per country) and the locations DataFrame (which has one row for each 
weather station in each country). The crosstab shows that 27,472 merge-by column 
values are in both DataFrames, two are in the countries file and not in the 
locations file, and one is in the locations file but not the countries file:

>>> ca.checkmerge(countries.copy(), locations.copy(),\

...   "countryid", "countryid")

inright  N      Y

inleft           

N        0      1

Y        2  27472

      countryid inleft inright

9715         LQ      Y       N

13103        ST      Y       N

27474        FO      N       Y
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9.	 Create a function that concatenates all CSV files in a folder.

This function loops through all of the filenames in the specified folder. It uses the 
endswith method to check that the filename has a CSV file extension. It then 
loads the DataFrame and prints out the number of rows. Finally, it uses concat  
to append the rows of the new DataFrame to the rows already appended. If column 
names on a file are different, it prints those column names:

>>> def addfiles(directory):

...   dfout = pd.DataFrame()

...   columnsmatched = True

...   # loop through the files

...   for filename in os.listdir(directory):

...     if filename.endswith(".csv"): 

...       fileloc = os.path.join(directory, filename)

...       # open the next file

...       with open(fileloc) as f:

...         dfnew = pd.read_csv(fileloc)

...         print(filename + " has " + str(dfnew.
shape[0]) + " rows.")

...         dfout = pd.concat([dfout, dfnew])

...         # check if current file has any different 
columns

...         columndiff = dfout.columns.symmetric_
difference(dfnew.columns)

...         if (not columndiff.empty):

...           print("", "Different column names for:",  
                filename,\

...             columndiff, "", sep="\n")

...           columnsmatched = False

...   print("Columns Matched:", columnsmatched)

...   return dfout
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10.	 Use the addfiles function to concatenate all of the countries land 
temperatures files.

It looks like the file for Oman (ltoman) is slightly different. It does not have 
the latabs column. Notice that the counts for each country in the combined 
DataFrame match the number of rows for each country file:

>>> landtemps = ca.addfiles("data/ltcountry")

ltpoland.csv has 120 rows.

ltjapan.csv has 1800 rows.

ltindia.csv has 1056 rows.

ltbrazil.csv has 1104 rows.

ltcameroon.csv has 48 rows.

ltoman.csv has 288 rows.

Different column names for:

ltoman.csv

Index(['latabs'], dtype='object')

ltmexico.csv has 852 rows.

Columns Matched: False

>>> landtemps.country.value_counts()

Japan       1800

Brazil      1104

India       1056

Mexico       852

Oman         288

Poland       120

Cameroon      48

Name: country, dtype: int64

The preceding steps demonstrate how we can systematize some of our messy data 
reshaping work. I am sure you can think of a number of other functions that might  
be helpful.
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How it works...
You may have noticed that in the adjmeans function we define in step 2, we actually 
do not append our summary of the var column values until we get to the next byvar 
column value. This is because there is no way to tell that we are on the last row for any 
byvar value until we get to the next byvar value. That is not a problem because we 
append the summary to rowlist right before we reset the value to 0. This also means 
that we need to do something special to output the totals for the last byvar value since  
no next byvar value is reached. We do this with a final append after the loop is complete.

In step 5, we call the adjmeans function we defined in step 2. Since we do not set  
a value for the changeexclude parameter, the function will include all values in the 
aggregation. This will give us the same results as we would get using groupby with an 
aggregation function. When we pass an argument to changeexclude, however, we 
determine which rows to exclude from the aggregation. In step 6, the fifth argument in the 
call to adjmeans indicates that we should exclude new cases values that are more than 
150 cases higher or lower than the value for the previous day.

The function in step 9 works well when the data files to be concatenated have the same, 
or nearly the same, structure. We print an alert when the column names are different, 
as step 10 shows. The latabs column is not in the Oman file. This means that in the 
concatenated file, latabs will be missing for all of the rows for Oman.

There's more...
The adjmeans function does a fairly straightforward check of each new value to be 
aggregated before including it in the total. But we could imagine much more complicated 
checks. We could even have made a call to another function within the adjmeans 
function where we are deciding whether to include the row.

See also
We examine combining DataFrames vertically and horizontally in Chapter 8, Addressing 
Data Issues when Combining DataFrames. 
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Classes that contain the logic for updating 
series values
We sometimes work with a particular dataset for an extended period of time, occasionally 
years. The data might be updated regularly, for a new month or year, or with additional 
individuals, but the data structure might be fairly stable. If that dataset also has a large 
number of columns, we might be able to improve the reliability and readability of our 
code by implementing classes.

When we create classes, we define the attributes and methods of objects. When I use 
classes for my data cleaning work, I tend to conceptualize a class as representing my unit 
of analysis. So, if my unit of analysis is a student, then I have a student class. Each instance 
of a student created by that class might have birth date and gender attributes and a course 
registration method. I might also create a subclass for alumni that inherits methods and 
attributes from the student class.

Data cleaning for the NLS DataFrame could be implemented nicely with classes. The 
dataset has been stable for 20 years, both in terms of the variables and the allowable values 
for each variable. We explore how to create a respondent class for NLS survey responses in 
this recipe.

Getting ready
You will need to create a helperfunctions subfolder in your current directory to  
run the code in this recipe.  We will save the file (respondent.py) for our new class  
in that subfolder.

How to do it...
We will define a respondent class to create several new series based on the NLS data:

1.	 Import the pandas, os, sys, and pprint libraries.

We store this code in a different file than we will save the respondent class. Let's  
call this file class_cleaning.py. We will instantiate respondent objects from 
this file:

>>> import pandas as pd

>>> import os

>>> import sys

>>> import pprint
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2.	 Create a respondent class and save it to respondent.py in the 
helperfunctions subfolder.

When we call our class (instantiate a class object), the __init__ method  
runs automatically. (There is a double underscore before and after init).  
The __init__ method has self as the first parameter, as any instance method 
does. The __init__  method of this class also has a respdict parameter, which 
expects a dictionary of values from the NLS data. In later steps, we will instantiate  
a respondent object once for each row of data in the NLS DataFrame.

The __init__ method assigns the passed respdict value to self.respdict 
to create an instance variable that we can reference in other methods. Finally, we 
increment a counter, respondentcnt. We will be able to use this later to confirm 
the number of instances of respondent that we created. We also import the math 
and datetime modules because we will need them later. (Notice that class names 
are capitalized by convention).

>>> import math

>>> import datetime as dt

>>> 

>>> class Respondent:

...   respondentcnt = 0

...   def __init__(self, respdict):

...     self.respdict = respdict

...     Respondent.respondentcnt+=1

3.	 Add a method for counting the number of children.

This is a very simple method that just adds the number of children living with the 
respondent to the number of children not living with the respondent, to get the total 
number of children. It uses the childathome and childnotathome key values 
in the self.respdict dictionary:

>>> def childnum(self):

...   return self.respdict['childathome'] + self.
respdict['childnotathome']
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4.	 Add a method for calculating average weeks worked across the 20 years of  
the survey.

Use dictionary comprehension to create a dictionary (workdict) of the weeks 
worked keys that do not have missing values. Sum the values in workdict and 
divide that by the length of workdict:

>>> def avgweeksworked(self):

...   workdict = {k: v for k, v in self.respdict.items() 
\

...     if k.startswith('weeksworked') and not math.
isnan(v)}

...   nweeks = len(workdict)

...   if (nweeks>0):

...     avgww = sum(workdict.values())/nweeks

...   else:

...     avgww = 0

...   return avgww

5.	 Add a method for calculating age as of a given date.

This method takes a date string (bydatestring) to use for the end date of the 
age calculation. We use the datetime module to convert the date string to a 
datetime object, bydate. We subtract the birth year value in self.respdict 
from the year of bydate, subtracting 1 from that calculation if the birth date has 
not happened yet that year. (We only have birth month and birth year in the NLS 
data, so we choose 15 as a midpoint).

>>> def ageby(self, bydatestring):

...   bydate = dt.datetime.strptime(bydatestring, 
'%Y%m%d')

...   birthyear = self.respdict['birthyear']

...   birthmonth = self.respdict['birthmonth']

...   age = bydate.year - birthyear

...   if (bydate.month<birthmonth or (bydate.
month==birthmonth \

...       and bydate.day<15)):

...     age = age -1

...   return age
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6.	 Add a method to create a flag if the respondent ever enrolled at a 4-year college.

Use dictionary comprehension to check whether any college enrollment values are 
at a 4-year college:

>>> def baenrollment(self):

...   colenrdict = {k: v for k, v in self.respdict.
items() \

...     if k.startswith('colenr') and v=="3. 4-year 
college"}

...   if (len(colenrdict)>0):

...     return "Y"

...   else:

...     return "N"

7.	  Import the respondent class.

Now we are ready to instantiate some Respondent objects! Let's do that from 
the class_cleaning.py file we started in step 1. We start by importing 
the respondent class. (This step assumes that respondent.py is in the 
helperfunctions subfolder).

>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import respondent as rp

8.	 Load the NLS data and create a list of dictionaries.

Use the to_dict method to create the list of dictionaries (nls97list). Each row 
from the DataFrame will be a dictionary with column names as keys. Show part of 
the first dictionary (the first row):

>>> nls97 = pd.read_csv("data/nls97f.csv")

>>> nls97list = nls97.to_dict('records')

>>> nls97.shape

(8984, 89)

>>> len(nls97list)

8984

>>> pprint.pprint(nls97list[0:1])

[{'birthmonth': 5,

  'birthyear': 1980,

  'childathome': 4.0,
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  'childnotathome': 0.0,

  'colenrfeb00': '1. Not enrolled',

  'colenrfeb01': '1. Not enrolled',

  ...

  'weeksworked16': 48.0,

  'weeksworked17': 48.0}]

9.	 Loop through the list, creating a respondent instance each time.

We pass each dictionary to the respondent class, rp.Respondent(respdict). 
Once we have created a respondent object (resp), we can then use all of the instance 
methods to get the values we need. We create a new dictionary with those values 
returned by instance methods. We then append that dictionary to analysisdict:

>>> analysislist = []

>>> 

>>> for respdict in nls97list:

...   resp = rp.Respondent(respdict)

...   newdict = dict(originalid=respdict['originalid'],

...     childnum=resp.childnum(),

...     avgweeksworked=resp.avgweeksworked(),

...     age=resp.ageby('20201015'),

...     baenrollment=resp.baenrollment())

...   analysislist.append(newdict)

10.	 Pass the dictionary to the pandas DataFrame method.

First, check the number of items in analysislist and the number of  
instances created:

>>> len(analysislist)

8984

>>> resp.respondentcnt

8984

>>> pprint.pprint(analysislist[0:2])

[{'age': 40,

  'avgweeksworked': 49.05555555555556,

  'baenrollment': 'Y',

  'childnum': 4.0,

  'originalid': 8245},
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 {'age': 37,

  'avgweeksworked': 49.388888888888886,

  'baenrollment': 'N',

  'childnum': 2.0,

  'originalid': 3962}]

>>> analysis = pd.DataFrame(analysislist)

>>> analysis.head(2)

   originalid  childnum  avgweeksworked  age baenrollment

0        8245       4.0       49.055556   40            Y

1        3962       2.0       49.388889   37            N

These steps demonstrated how to create a class in Python, how to pass data to a class,  
how to create an instance of a class, and how to call the methods of the class to update 
variable values.

How it works...
The key work in this recipe is done in step 2. It creates the respondent class and sets  
us up well for the remaining steps. We pass a dictionary with the values for each row to 
the class's __init__ method. The __init__ method assigns that dictionary to  
an instance variable that will be available to all of the class's methods (self.respdict 
= respdict).

Steps 3 through 6 use that dictionary to calculate number of children, average weeks 
worked per year, age, and college enrollment. Steps 4 and 6 show how helpful dictionary 
comprehensions are when we need to test for the same value over many keys. The 
dictionary comprehensions select the relevant keys, weeksworked##, colenroct##, 
and colenrfeb##, and allow us to inspect the values of those keys. This is incredibly 
useful when we have data that is untidy in this way, as survey data often is.

In step 8, we create a list of dictionaries with the to_dict method. It has the expected 
number of list items, 8,984, the same as the number of rows in the DataFrame. We use 
pprint to show what the dictionary looks like for the first list item. The dictionary has 
keys for the column names and values for the column values.

We iterate over the list in step 9, creating a new respondent object and passing the list 
item. We call the methods to get the values we want, except for originalid, which 
we can pull directly from the dictionary. We create a dictionary (newdict) with those 
values, which we append to a list (analysislist).
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In step 10, we create a pandas DataFrame from the list (analysislist) we created in 
step 9. We do this by passing the list to the pandas DataFrame method.

There's more...
We pass dictionaries to the class rather than data rows, which is also a possibility. We do 
this because navigating a NumPy array is more efficient than looping over a DataFrame 
with itertuples or iterrows. We do not lose much of the functionality needed  
for our class when we work with dictionaries rather than DataFrame rows. We are still 
able to use functions such as sum and mean and count the number of values meeting 
certain criteria.

It is hard to avoid having to iterate over data with this conceptualization of a respondent 
class. This respondent class is consistent with our understanding of the unit of analysis, 
the survey respondent. That is also, unsurprisingly, how the data comes to us. But iterating 
over data one row at a time is resource-intensive, even with more efficient NumPy arrays.

I would argue, however, that you gain more than you lose by constructing a class like 
this one when working with data with many columns and with a structure that does not 
change much over time. The most important advantage is that it matches our intuition 
about the data and focuses our work on understanding the data for each respondent. I also 
think we find that when we construct the class well we do far fewer passes through the 
data than we otherwise might.

See also
We examine navigating over DataFrame rows and NumPy arrays in Chapter 7, Fixing 
Messy Data when Aggregating.

This was a very quick introduction to working with classes in Python. If you would like to 
learn more about object-oriented programming in Python, I would recommend Python 3 
Object-Oriented Programming, Third Edition by Dusty Phillips.

Classes that handle non-tabular data 
structures
Data scientists increasingly receive non-tabular data, often in the form of JSON or XML 
files. The flexibility of JSON and XML allows organizations to capture complicated 
relationships between data items in one file. A one-to-many relationship stored in two 
tables in an enterprise data system can be represented well in JSON by a parent node for 
the one side and child nodes for data on the many side.
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When we receive JSON data we often start by trying to normalize it. Indeed, we do that 
in a couple of recipes in this book. We try to recover the one-to-one and one-to-many 
relationships in the data obfuscated by the flexibility of JSON. But there is another way to 
work with such data, one that has many advantages.

Instead of normalizing the data, we can create a class that instantiates objects at the 
appropriate unit of analysis, and use the methods of the class to navigate the many side of 
one-to-many relationships. For example, if we get a JSON file that has student nodes and 
then multiple child nodes for each course taken by a student, we would usually normalize 
that data by creating a student file and a course file, with student ID as the merge-by 
column on both files. An alternative, which we explore in this recipe, would be to leave 
the data as it is, create a student class, and create methods that do calculations on the child 
nodes, such as calculating total credits taken.

Let's try that with this recipe, using data from the Cleveland Museum of Art, which has 
collection items, one or more nodes for media citations for each item, and one or more 
nodes for each creator of the item.

Getting ready
This recipe assumes you have the requests and pprint libraries. If they are not 
installed, you can install them with pip. From the Terminal, or PowerShell (in Windows), 
enter pip install requests and pip install pprint.

I show here the structure of the JSON file that is created when using the collections 
API of the Cleveland Museum of Art. (I have abbreviated the JSON file to save space.)

{

"id": 165157, 

"title": "Fulton and Nostrand", 

"creation_date": "1958", 

"citations": [

  {

   "citation": "Annual Exhibition: Sculpture, Paintings, 
Watercolors, Drawings,  

   "page_number": "Unpaginated, [8],[12]", 

   "url": null

   }, 

  {

   "citation": "\"Moscow to See Modern U.S. Art,\"<em> New York 
Times</em> (May 31, 1959).",   
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   "page_number": "P. 60",

   "url": null

  }]

"creators": [

      {

     "description": "Jacob Lawrence (American, 1917-2000)", 

     "role": "artist", 

     "birth_year": "1917", 

     "death_year": "2000"

     }

  ]

 }

Note
The Cleveland Museum of Art provides an API for public access to this data: 
https://openaccess-api.clevelandart.org/. Much more 
than the citations and creators data used in this recipe is available with the API.

How to do it...
We create a collection item class that summarizes the data we need on creators and  
media citations:

1.	 Import the pandas, json, pprint, and requests libraries.

Let's first create a file that we will use to instantiate collection item objects and call  
it class_cleaning_json.py:

>>> import pandas as pd

>>> import json

>>> import pprint

>>> import requests

https://openaccess-api.clevelandart.org/
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2.	 Create a Collectionitem class.

We pass a dictionary for each collection item to the __init__ method of the 
class, which runs automatically when an instance of the class is created. We 
assign the collection item dictionary to an instance variable. Save the class as 
collectionitem.py in the helperfunctions folder:

>>> class Collectionitem:

...   collectionitemcnt = 0

...   def __init__(self, colldict):

...     self.colldict = colldict

...     Collectionitem.collectionitemcnt+=1

3.	 Create a method to get the birth year of the first creator for each collection item.

Remember that collection items can have multiple creators. This means that the 
creators key has one or more list items as values, and these items are themselves 
dictionaries. To get the birth year of the first creator, then, we need ['creators']
[0]['birth_year']. We also need to allow for the birth year key to be missing, 
so we test for that first:

>>> def birthyearcreator1(self):

...   if ("birth_year" in self.colldict['creators'][0]):

...     byear = self.colldict['creators'][0]['birth_
year']

...   else:

...     byear = "Unknown"

...   return byear

4.	 Create a method to get the birth years for all creators.

Use list comprehension to loop through all the creators items. This will return the 
birth years as a list:

>>> def birthyearsall(self):

...   byearlist = [item.get('birth_year') for item in \

...     self.colldict['creators']]

...   return byearlist
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5.	 Create a method to count the number of creators:

>>> def ncreators(self):

...   return len(self.colldict['creators'])

6.	 Create a method to count the number of media citations:

>>> def ncitations(self):

...   return len(self.colldict['citations'])

7.	 Import the collectionitem module.

We do this from the class_cleaning_json.py file we created in step 1:
>>> sys.path.append(os.getcwd() + "/helperfunctions")

>>> import collectionitem as ci

8.	 Load the art museum's collections data.

This returns a list of dictionaries:
>>> response = requests.get("https://openaccess-api.
clevelandart.org/api/artworks/?african_american_artists")

>>> camcollections = json.loads(response.text)

>>> camcollections = camcollections['data']

9.	 Loop through the camcollections list.

Create a collection item instance for each item in camcollections. Pass each 
item, which is a dictionary of collections, creators, and citation keys, to the class. 
Call the methods we have just created and assign the values they return to a 
new dictionary (newdict). Append that dictionary to a list (analysislist).  
(Some of the values can be pulled directly from the dictionary, such as with 
title=colldict['title'], since we do not need to change the value in  
any way).

>>> analysislist = []

>>> 

>>> for colldict in camcollections:

...   coll = ci.Collectionitem(colldict)

...   newdict = dict(id=colldict['id'],

...     title=colldict['title'],

...     type=colldict['type'],
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...     creationdate=colldict['creation_date'],

...     ncreators=coll.ncreators(),

...     ncitations=coll.ncitations(),

...     birthyearsall=coll.birthyearsall(),

...     birthyear=coll.birthyearcreator1())

...   analysislist.append(newdict)

10.	  Create an analysis DataFrame with the new list of dictionaries.

Confirm that we are getting the correct counts, and print the dictionary for the  
first item:

>>> len(camcollections)

789

>>> len(analysislist)

789

>>> pprint.pprint(analysislist[0:1])

[{'birthyear': '1917',

  'birthyearsall': ['1917'],

  'creationdate': '1958',

  'id': 165157,

  'ncitations': 24,

  'ncreators': 1,

  'title': 'Fulton and Nostrand',

  'type': 'Painting'}]

>>> analysis = pd.DataFrame(analysislist)

>>> analysis.birthyearsall.value_counts().head()

[1951]          262

[1953]          118

[1961, None]    105

[1886]           34

[1935]           17

Name: birthyearsall, dtype: int64

>>> analysis.head(2)

       id                title  ... birthyearsall 
birthyear
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0  165157  Fulton and Nostrand  ...        [1917]      
1917

1  163769        Go Down Death  ...        [1899]      
1899

[2 rows x 8 columns]

These steps give a sense of how we can use classes to handle non-tabular data.

How it works...
This recipe demonstrated how to work directly with a JSON file, or any file with implied 
one-to-many or many-to-many relationships. We created a class at the unit of analysis  
(a collection item, in this case) and then created methods to summarize multiple nodes  
of data for each collection item.

The methods we created in steps 3 through 6 are satisfyingly straightforward. When we 
first look at the structure of the data, displayed in the Getting ready section of this recipe, 
it is hard not to feel that it will be really difficult to clean. It looks like anything goes. But it 
turns out to have a fairly reliable structure. We can count on one or more child nodes for 
creators and citations. Each creators and citations node also has child nodes, 
which are key and value pairs. These keys are not always present, so we need to first check to 
see whether they are present before trying to grab their values. We do this in step 3.

There's more...
I go into some detail about the advantages of working directly with JSON files in Chapter 2, 
Anticipating Data Cleaning Issues when Importing HTML and JSON into pandas. I think  
the museum's collections data is a good example of why we might want to stick with JSON 
if we can. The structure of the data actually makes sense, even if it is in a very different 
form. There is always a danger when we try to normalize it that we will miss some aspects 
of its structure.
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