‘Python

The Complete Manual

The essential handbook for Pythbn users

Welcome to

Python

The Complete Manual

Python is a versatile language and its rise in popularity is
certainly no surprise. Its similarity to everyday language has
made it a perfect companion for the Raspberry Pi, which
is often a first step into practical programming. But don't
be fooled by its beginner-friendly credentials — Python has
plenty of more advanced functions. In this bookazine, you
will learn how to program in Python, discover amazing
projects to improve your understanding, and find ways
to use Python to enhance your experience of computing.
You'll also create fun projects including programming
a quadcopter drone and sending text messages from
Raspberry Pi. Let's get coding!

Python

The Complete Manual

Irnazgine Publishing Ltd
Richroord Houw s
22 Richrnond Hill
Bourremouth

Dorsst BHZ SEX

T+ 44 (O] 1202 BOE200

Wiabeita: waw. imesg ine-p ublishing oo, uk
Twitter: @Books_Imaging
Facebook: wwaw facebookcom ImagineBoo karines

Fublizhing Director
samn Asadi

Head of Design
ROEs ANdEw S

Froduction Editor
Ay Hoskins

Sanior AM Editor
Gg Whitakar

Dagignar
Farmy e e |- ks

Fhotographer
Jamas Shappam

Prin ted by
William Gibbons, 26 Flanatany Fomd, Wilenhall, West Midiands, Wyls 36T

Digtributed inthe UK, Eite & tha Rest of Tha world by
harketiome, 5Churchill Pace, Canare Wharn, London, E14 SHU
Tal G202 TAT SOS0 vt markatiome.co. uk

Distributed in Australia ooy
Metork S ices (3 division of Bauer Media Group), Level 21 Civic Tower, S3-58 Goulburn stneet,
Spdrey, Mes South Wales 2000 Australia, Tel +912 557 T2es

Dsclamer
Tha publi shar cannot accapt /= sponsibility Tor 2y Unsolicfad matenal st ordamagad in tha
post. Al et and OOt s tha copy ight of IMSzing PUBIishing L. WOthing in this bookaging may
e Eepduced in who ke O par wWithout The witien permission of the publishar All COppRzits am
mcognizad and used spacificaly Tor the purpose of criticism and review, Although the bookazing fas
andevounad to ensue il infomiation is comect 9t time of print, prices and availbility may change,
This bOokazing i Tl indapandant Snd not SrTliEtad in S ny Wap sith Tha companias memionad hamin,

PYINON i & tracemank of PYLRon Inc., Egistema in tha U5 . 5nd 0ther oo untries.
Fython & 2018 Fython Inc
PYthon The Gompleta Manual Filst Edition & 2006 Imeging Publishing 110

12BN 73 17865 462 Qo5

Part of the

Get sta rted
i ion

Discover the basics of Python

Introducing Python Create with Python Use Python with Pi
26 Makewebapps 80 Tic-tac-toe with Kivy 104 Using Python on Pi
Master this starter project Program a simple game Optimise your code
- === 86 MakeaPongclone 110 Send an SMS
e B Enhance your game skills Combine Twilio and
i @ Raspberry Pi
S| | MQE,HE 114 Voice synthesizer
' ' y Use the eSpeak library
32 TB l:(“d anrapp fornAt:dlzlc\ll £ 116 Programaquadcopter
axeyourappsonthemove Balp S 2 Make a drone with Pi
40 50 Python tips rograma space .
A selection of handy tips Invaders clone 122 CodeaTwitter bqt
Have fun with Pivaders Retweet automatically
Work with Python 98 Make a visual novel 124 Controlan LED
A e B S SRl s ondiny Tell a story using Python Use GPIO for lights

50 Replaceyour shell
Say goodbye to Bash

58 Scientific computing
Discover NumPy's power

64 Python for system admins
How to tweak your settings

72 Scrape Wikipedia
Start using Beautiful Soup

) Always wanted to have a go at programming? No more

excuses, because Python is the perfect way to get started!

Python is a great programming language for both beginners and experts. It
is designed with code readability in mind, making it an excellent choice for
beginners who are still getting used to various programming concepts.

The language is popular and has plenty of libraries available, allowing
programmers to get a lot done with relatively little code.

You can make all kinds of applications in Python: you could use the
Pygame framework to write simple 2D games, you could use the GTK
libraries to create a windowed application, or you could try something
a little more ambitious like an app such as creating one using Python'’s
Bluetooth and Input libraries to capture the input from a USB keyboard and
relay the input events to an Android phone.

For this tutorial we're going to be using Python 2.x since that is the
version that is most likely to be installed on your Linux distribution.

In the following tutorials, you'll learn how to create popular games using
Python programming. We'll also show you how to add sound and Al to
these games.

Get started with Python Getting started

Hello World

Let's get stuck in, and what better way than with the programmer’s
best friend, the ‘Hello World' application! Start by opening a terminal.
Its current working directory will be your home directory. It's probably
a good idea to make a directory for the files that we'll be creating in
this tutorial, rather than having them loose in your home directory.
You can create a directory called Python using the command mkdir
Python. You'll then want to change into that directory using the
command cd Python.

The next step is to create an empty file using the command ‘touch’
followed by the filename. Our expert used the command touch
hello_world.py. The final and most important part of setting up the
file is making it executable. This allows us to run code inside the hello_
world.py file. We do this with the command chmod +x hello_world.
py. Now that we have our file set up, we can go ahead and open it up
in nano, or alternatively any text editor of your choice. Gedit is a great
editor with syntax highlighting support that should be available on any
distribution. You'll be able to install it using your package manager if
you don't have it already.

l [liam@liam-laptop ~1$ mkdir Python

I [liam@liam-laptop ~I$ cd Python/

l [liam@liam-laptop Pythonl]$ touch hello_world.py

l [liam@liam-laptop Pythonl$ chmod +x hello_world.py
l [liam@liam-laptop Python]$ nano hello_world.py

Our Hello World program is very simple, it only needs two lines.
The first line begins with a ‘shebang’ (the symbol # — also known

Get started with Python Getting started

as a hashbang) followed by the path to the Python interpreter. The

program loader uses this line to work out what the rest of the lines i Tip
need to be interpreted with. If you're running this in an IDE like IDLE, , Ifyou were using a graphical
you don't necessarily need to do this. g editor such as gedit, then you
. . . : would only have to do the
The code that is actually read by the Python interpreter is only a last step of making the fle
single line. We're passing the value Hello World to the print function by executable. You should only have
L . . , . . : to mark the file as executable
placing it in brackets immediately after we've called the print function. © EEESAIRERA TSR
Hello World is enclosed in quotation marks to indicate that it is a literal i once itis executable.

value and should not be interpreted as source code. As we would
expect, the print function in Python prints any value that gets passed
to it from the console.

You can save the changes you've just made to the file in nano using
the key combination Ctr+O, followed by Enter. Use Ctrl+X to exit nano.

l #!/usr/bin/env python2
I print(“Hello World”)

You can run the Hello World program by prefixing
its filename with ./ — in this case youd type:
/hello_world.py.

. [liam@liam-laptop Python]$./hello_world.py
I Hello World

Variables and data types

A variable is a name in source code that is associated with an area in
memory that you can use to store data, which is then called upon
throughout the code. The data can be one of many types, including:

Integer Stores whole numbers
Float Stores decimal numbers

Boolean Can have avalue of True or False

String Stores a collection of characters. “Hello World” is a
string

"A variable is associated with an area in
memory that you can use to store data”

Getting started

Tip

At this point, it's worth explaining
thatany textin a Python file

that follows a # character will be
ignored by the interpreter. This

is so you can write comments in
your code.

Get started with Python

As well as these main data types, there are sequence types (technically,
astring is a sequence type but is so commonly used we've classed it
as a main data type):

List Contains a collection of data in a specific order

Tuple Contains a collection immutable data in a specific
order

Atuple would be used for something like a co-ordinate, containing
an xand y value stored as a single variable, whereas a list is typically
used to store larger collections. The data stored in a tuple is immutable
because you aren‘t able to change values of individual elements in a
tuple. However, you can do so in a list.

It will also be useful to know about Python's dictionary type. A
dictionary is a mapped data type. It stores data in key-value pairs.

This means that you access values stored in the dictionary using that
value's corresponding key, which is different to how you would do it
with a list. In a list, you would access an element of the list using that
element’s index (a number representing where the element is placed
in the list).

Let's work on a program we can use to demonstrate how to use
variables and different data types. It's worth noting at this point that
you don't always have to specify data types in Python. Feel free to
create this file in any editor you like. Everything will work just fine as
long as you remember to make the file executable. We're going to call
ours variables.py.

Interpreted vs compiled languages

An interpreted language
such as Python is one
where the source code
is converted to machine
code and then executed

compiled language such as
C, where the source code is
only converted to machine
code once - the resulting
machine code is then
executed each time the
program runs.

each time the program
runs. This is different from a

Full code listing

BT LT T T T RIT e TT

The following line creates
an integer variable called
hello_int with the #
value of 21. Notice how

it doesn't need to go in
quotation marks

The same principal is LI

true of Boolean values

We create a tuple in
the following way

And a list in this way

You could
also create the
same list in the
following way

=
]
[
-
L

Get started with Python Getting started

#!/usr/bin/env python2

#We create a variable by writing the name of the
variable we want followed# by an equals sign,
which is followed by the value we want to store

in the# variable. For example, the following line
creates a variable called# hello_str, containing the
string Hello World.

hello_str = “Hello World”

hello_int = 21

hello_bool = True
hello_tuple = (21, 32)

hello_list = [“Hello,”, “this”, “is”,
Ua” “].iSt"]

#This list now contains 5 strings. Notice that
there are no spaces# between these strings so if
you were to join them up so make a sentence #
you'd have to add a space between each element.

hello_list = list()
hello_list.append(“Hello,”)
hello_list.append(“this”)
hello_list.append(“is”)
hello_list.append(“a”)
hello_list.append(“list”)

#The first line creates an empty list and the
following lines use the append# function
of the list type to add elements to the
list. This way of using a# list isn't
really very useful when working
with strings you know of in
#advance, but it can be
useful when working with
dynamic data such as
user# input. This list
will overwrite the

first list without
any warning

Getting started Get started with Python

We might as well as we# are using the same variable name as the
create a dictionary previous list.

while we're at it.
Notice how we've
aligned the colons
below to make the
code tidy

hello_dict = { “first_name” : “Liam”,
“last_name”

“Fraser”,
“eye_colour” : “Blue” }

Let's access some elements inside our
collections# We'll start by changing the value

of the last string in our hello_list and# add an
exclamation mark to the end. The “list” string is
the 5th element # in the list. However, indexes
in Python are zero-based, which means the

first element has an index of 0.

Notice that there
will now be two
exclamation marks

print(hello_list[4])
hello_list[4] += “!”

present when we # The above line is the same as
) hello_list[4] = hello_list[4] + “!”
print the element . .
print(hello_list[4])
Remember
that tuples are _l print(str(hello_tuple[0]))
immutable, #We can't change the value of those elements
although we like we just did with the list
can access the # Notice the use of the str function above to
elements of them explicitly convert the integer
like so # value inside the tuple to a string before
printing it.
Let's create a

sentence using

the data in our print(hello_dict[“first_name"] +““ + hello_

hello_dict ' dict[“last_name”] +“ has” +
hello_dict["eye_colour”] +" eyes!)

A much tidier way

of doing this would = "
be to use Pythors print(“{0} {1} has {2} eyes!"format(hello_

string formatter I dict[“first_name”],
hello_dict["last_name”],

hello_dict[“eye_colour"]))

Get started with Python Getting started

Indentation in detail

As previously mentioned, essential to use a consistent
the level of indentation indentation style. Four
dictates which statement a spaces are typically used to
block of code belongs to. represent a single level of

Indentation is mandatory indentation in Python. You
in Python, whereas inother ~ can use tabs, but tabs are
languages, sets of braces not well defined, espedially if
are used to organise code you open a file in more than
blocks. For this reason, it is one editor.

Control structures

In programming, a control structure is any kind of statement that can
change the path that the code execution takes. For example, a control
structure that decided to end the program if a number was less than 5
would look something like this:

#!/usr/bin/env python2
import sys # Used for the sys.exit function
int_condition = 5
if int_condition < 6:
sys.exit(“int_condition must be >= 67)
else:
print(“int_condition was >= 6 - continuing”)

The path that the code takes will depend on the value of

the integer int_condition. The code in the ‘if" block will only be

executed if the condition is true. The import statement is used to

load the Python system library; the latter provides the exit function,

allowing you to exit the program, printing an error message. Notice i

that indentation (in this case four spaces per indent) is used to indicate “*"-.—
which statement a block of code belongs to. If’ statements are :

probably the most commonly used control structures. Other control

"The path the code takes will depend on
the value of the integer int_condition”

Getting started - Get started with Python

structures include: the following items which you should be aware of

when using Python:

« For statements, which allow you to iterate over items in
collections, or to repeat a piece of code again a certain number
of times;

« While statements, a loop that continues while the condition
is true.

We're going to write a program that accepts user input from the
user to demonstrate how control structures work. We're calling it
construct.py. The for’ loop is using a local copy of the current value,
which means any changes inside the loop won't make any changes
affecting the list. On the other hand however, the ‘while’ loop is
directly accessing elements in the list, so you could change the list
there should you want to do so. We will talk about variable scope in
some more detail later on in the article. The output from the above
program is as followvs:

[liam@liam-laptop Pythonl$./
construct.py

How many integers? acd

You must enter an integer

[liam@liam-laptop Pythonl$./
construct.py

How many integers? 3
Please enter integer 1: t
You must enter an integer
Please enter integer 1: 5
Please enter integer 2: 2
Please enter integer 3: 6
Using a for loop

5

2

6

Using a while loop

5

2

6

"The for’ loop uses a local copy, so
changes in the loop won't affect the list”

Get started with Python Getting started

Full code listing

The number of
integers we want
in the list

Alist to store the
integers

These are used
to keep track
of how many
integers we
currently have

L

T |

#!/usr/bin/env python2

#We're going to write a program that will ask the
user to input an arbitrary

number of integers, store them in a collection,
and then demonstrate how the

collection would be used with various control

structures.

import sys # Used for the sys.exit
function

target_int = raw_input(“How many

integers? “)

By now, the variable target_int contains a string
representation of

whatever the user typed. We need to try and
convert that to an integer but

be ready to # deal with the error if it's not.
Otherwise the program will

crash.
try:
target_int = int(target_int)
except ValueError:
sys.exit(“You must enter an
integer”)

ints = list()

count = @

Getting started

Get started with Python

If the above
succeeds then
isint will be set
to true: isint
=True

Keep asking for an integer until we have the

required number
while count < target_int:
new_int = raw_input(“Please enter
integer {0}: “.format(count + 1))
isint = False
try:
[:new_int = int(new_int)

By now, the

user has given
up or we have

a list filled with
integers. We can
loop through
these in a couple
of ways. The first
is with a for loop

except:
print(“You must enter an

integer”)

Only carry on if we have an integer. If not,
we'll loop again

Notice below | use ==, which is different from

=.The single equals is an

assignment operator whereas the double

equals is a comparison operator.

if isint == True:
Add the integer to the collection
ints.append(new_int)
Increment the count by 1

count += 1

print(“Using a for loop”)
for value in ints:
print(str(value))

Or with a while loop:

print(“Using a while loop”)
We already have the total above, but knowing

Get started with Python Getting started

the len function is very

useful.
total = len(ints)
count = @

while count < total:
print(str(ints[count]))
count += 1

More about a Python list

A Python list is similar to an we recommend that you
array in other languages. A only store data of the same
list (or tuple) in Python can type in a list. This should
contain data of multiple almost always be the case
types, which is not usually anyway due to the nature of
the case with arrays in other the way data in a list would
languages. For this reason, be processed.

Functions and variable scope

Functions are used in programming to break processes down

into smaller chunks. This often makes code much easier to read.

Functions can also be reusable if designed in a certain way. Functions

can have variables passed to them. Variables in Python are always

passed by value, which means that a copy of the variable is passed

to the function that is only valid in the scope of the function. Any

changes made to the original variable inside the function will be

discarded. However, functions can also return values, so this isn‘t an

issue. Functions are defined with the keyword def, followed by the

name of the function. Any variables that can be passed through are

put in brackets following the function’s name. Multiple variables are

separated by commas. The names given to the variables in these

brackets are the ones that they will have in the scope of the function, o

regardless of what the variable that's passed to the function is called. : T ——
Let’s see this in action. The output from the program opposite is :

as follows:

“Functions are defined with the keyword
def, then the name of the function”

Getting started

Get started with Python

We are now outside
of the scope of

the modify_string
function, as we have
reduced the level of
indentation

4 i

he test string

won't be changed
in this code

However, we
can call the
function like this

#!/usr/bin/env python2 # Below is a function
called modify_string, which accepts a variable
that will be called original in the scope of the
function. Anything # indented with 4 spaces
under the function definition is in the
scope.
def modify_string(original):
original += “ that has been

modified.”

At the moment, only the local copy of this
string has been modified

def modify_string_return(original):
original += “ that has been
modified.”

However, we can return our local copy to the
caller. The function# ends as soon as the return
statement is used, regardless of where it # is in
the function.

return original

test_string = “This is a test string”

modify_string(test_string)
print(test_string)

test_string = modify_string_
return(test_string)
print(test_string)

#The function’s return value is stored in the
variable test string, # overwriting the original and
therefore changing the value that is # printed.

[liam@liam-laptop Python]$./functions_and_
scope.py

This is a test string

This is a test string that has been modified.

Scope is an important thing to get the hang of, otherwise it can
get you into some bad habits. Let’s write a quick program to
demonstrate this. It's going to have a Boolean variable called cont,
which will decide if a number will be assigned to a variable in an if
statement. However, the variable hasn't been defined anywhere
apart from in the scope of the if statement. We'll finish off by trying

to print the variable.

Get started with Python Getting started

#!/usr/bin/env python2
cont = False
if cont:

var = 1234

print(var)

In the section of code above, Python will convert the integer to a string
before printing it. However, it's always a good idea to explicitly convert
things to strings — especially when it comes to concatenating strings
together. If you try to use the + operator on a string and an integer,
there will be an error because it's not explicitly clear what needs to
happen. The + operator would usually add two integers together.
Having said that, Python’s string formatter that we demonstrated
earlier is a cleaner way of doing that. Can you see the problem? Var has
only been defined in the scope of the if statement. This means that we
get a very nasty error when we try to access var.

[liam@liam-laptop Python]$./scope.py
Traceback (most recent call last):
File“/scope.py’, line 8, in <module>
print var
NameError: name ‘var’is not defined

If cont is set to True, then the variable will be created and we can
access it just fine. However, this is a bad way to do things. The correct
way is to initialise the variable outside of the scope of the if statement.

#!/usr/bin/env python2
cont = False

var=0

if cont:

var=1234

if var!=0:
print(var)

Getting started

Tip

You can define defaults for
variables if you want to be able to
call the function without passing
any variables through at all. You
do this by putting an equals

sign after the variable name. For
example, you can do:

def modify_string (original="
Default String”)

Get started with Python

The variable var is defined in a wider scope than the if statement,
and can still be accessed by the if statement. Any changes made to
var inside the if statement are changing the variable defined in the
larger scope. This example doesn't really do anything useful apart
from illustrate the potential problem, but the worst-case scenario has
gone from the program crashing to printing a zero. Even that doesn’t
happen because we've added an extra construct to test the value of
var before printing it.

“Google, or any other search engine,

is very helpful. If you are stuck with
anything, or have an error message you
can't work out how to fix”

Comparison operators
The common comparison operators available in Python include:

strictly less than

<
B T
= oot |

Get started with Python Getting started

Coding style

It's worth taking a little time to talk about coding style. It's simple to
write tidy code. The key is consistency. For example, you should always
name your variables in the same manner. It doesn't matter if you want
to use camelCase or use underscores as we have. One crudial thing is
to use self-documenting identifiers for variables. You shouldn't have

to guess what a variable does. The other thing that goes with this is to
always comment your code. This will help anyone else who reads your
code, and yourself in the future. It's also useful to put a brief summary
at the top of a code file describing what the application does, or a part
of the application if it's made up of multiple files.

Summary

This article should have introduced you to the basics of programming
in Python. Hopefully you are getting used to the syntax, indentation
and general look and feel of a Python program. The next step is

to learn how to come up with a problem that you want to solve,

and break it down into small steps that you can implement in a
programming language. Google, or any other search engine, is very
helpful. If you are stuck with anything, or have an error message you
can't work out how to fix, stick it into Google and you should be a lot
closer to solving your problem. For example, if we Google ‘play mp3
file with python’ the first link takes us to a Stack Overflow thread with
a bunch of useful replies. Don't be afraid to get stuck in — the real fun
of programming is solving problems one manageable chunk at a time.

Introducing Python Python essentials

Intro

Pyth

Lay the foundations and build your knowledge

Now that you've taken the first steps with Python, it's time

to begin using that knowledge to get coding: In this section,

you'll find out how to begin coding apps for Android operating

systems (p.32) and the worldwide web (p.26). These easy-to-

follow tutorials will help you to cement the Python language

that you've learned, while developing a skill that is very helpful

in the current technology market. We'll finish up by giving you

50 essential Python tips (p.40) to increase your knowledge and {
ability in no time.

Python essentials Introducing Python

Introducing Python

What you'll need...

Python 2.7:
https://www.python.org/download/
releases/2.7/

Django version 1.4
https://www.djangoproject.com/

Make web apps with Python

I\/Iake web

~apps with
Python

Python provides quick and easy way to build
applications, including web apps. Find out how to
use it to build a feature-complete web app

Python is known for its simplicity and capabilities. At this point it is
so advanced that there is nothing you cannot do with Python, and
conquering the web is one of the possibilities. When you are using
Python for web development you get access to a huge catalogue
of modules and community support — make the most of them.

Web development in Python can be done in many different
ways, right from using the plain old CGl modules to utilising fully
groomed web frameworks. Using the latter is the most popular
method of building web applications with Python, since it allows
you to build applications without worrying about all that low-level
implementation stuff. There are many web frameworks available for
Python, such as Django, TurboGears and Web2Py. For this tutorial
we will be using our current preferred option, Django.

The Django Project portable and can be integrated with

A other Django sites with very little effort.
Magazine Issue tracker B $ django-admin.py startproject

ludIssueTracker
0 The django-admin.py file is used A project directory will be created.
to create new Django projects. This will also act as the root of your

Let's create one for our issue tracker development web server that comes
project here. .. with Django. Under the project

In Django, a project represents the directory you will find the following
site and its settings. An application, on items. ..
the other hand, represents a specific manage.py: Python script to work with
feature of the site, like blogging or your project.

tagging. The benefit of this approach is ludissueTracker: A python package
that your Django application becomes (a directory with __init__.py file) for

your project. This package is the one
containing your project’s settings and
configuration data.
ludissueTracker/settings.py: This file
contains all the configuration options
for the project.
ludlssueTracker/urls.py: This file
contains various URL mappings.
wsgi.py: An entry-point for WSGI-
compatible web servers to serve your
project. Only useful when you are
deploying your project. For this tutorial
we won't be needing it.

Configuring the

Django project

O Before we start working
on the application, let's

configure the Django project

as per our requirements.

Edit ludlssueTracker/settings.py

as follows (only parts requiring

modification are shown):

Database Settings: We will be

using SQLite3 as our database

system here.

NOTE: Red text indicates new

code or

updated code.

‘default’: {

‘ENGINE’:
‘django.db.backends.
sqlite3’,

‘NAME’: ‘ludsite.
db3,

Path settings
Django requires an absolute
path for directory settings.
But we want to be able to
pass in the relative directory
references. In order to do that
we will add a helper Python
function. Insert the following
code at the top of the settings.
py file:
import os
I def getabspath(*x):
return os.path.join(os.
path.abspath(os.path.

Make web apps with Python

dirname(__file__)), *x)
Now update the path options:
I ecode

B TEMPLATE_DIRS = (

1 getabspath(‘templates’)
)

B MEDTA_ROOT =
getabspath(‘media’)

B MEDIA_URL = “/media/’

Now we will need to enable the
admin interface for our Django

site. This is a neat feature of Django
which allows automatic creation of
an admin interface of the site based
on the data model. The admin
interface can be used to add and
manage content for a Django site.
Uncomment the following line:

B INSTALLED_APPS = (

‘django.contrib.auth’,
‘django.contrib.
contenttypes’,

] ‘django.contrib.sessions’,
I ‘django.contrib.sites’,

I ‘django.contrib.messages’,
l ‘django.contrib.
staticfiles’,

I ‘django.contrib.admin’,

[| # ‘django.contrib.
admindocs’,

)

Creating ludissues app

0 In this step we will create the
primary app for our site, called

ludissues. To do that, we will use the

manage.py script:

l $ python manage.py startapp

Introducing Python

ludissues

We will need to enable this app in the
config file as well:

B INSTALLED_APPS = (
‘django.contrib.admin’,
‘ludissues’,

— ..

Creating the data model

O This is the part where we
define the data model

for our app. Please see the inline

comments to understand what is

happening here.

From django.db import models:

We are importing the
user authentication module so
that we use the built
B # in authentication model
in this app
l from django.contrib.auth.
models import User
I # We would also create an
admin interface for our app
from django.contrib import
admin

l # A Tuple to hold the
multi choice char fields.

' # First represents the
field name the second one
repersents the display name
ISSUE_STATUS_CHOICES = (
(‘new’, ‘New’),
(‘accepted’,’Accepted’),
(‘reviewed’,’Reviewed’),
(‘started’,’Started’),
(‘closed’,’Closed’),

e 1 [|

“When you are using Python for web
development you get access to a huge
catalogue of modules and support”

27

Introducing Python

Iclass Issue(models.Model):

owner will be a
foreign key to the User
model which is already built-
in Django

owner = models.Foreignke
y(User,null=True,blank=True)

multichoice with
defaulting to “new”

status = models.
CharField(max_
length=25,choices=ISSUE_
STATUS_CHOICES, default="new’)

summary = models.
TextField()

date time field which
will be set to the date time
when the record is created

opened_on = models.
DateTimeField(‘date opened’,
auto_now_add=True)

modified_on = models.
DateTimeField(‘date modified’,
auto_now=True)

def name(self):
return self.summary.
split(‘\n’,1)[e]

. # Admin front end for the
app. We are also configuring
some of the
I # built in attributes for
the admin interface on
I # how to display the list,
how it will be sorted
I # what are the search
fields etc.
class IssueAdmin(admin.
ModelAdmin):

date_hierarchy =
‘opened_on’

list_filter =
(‘status’,’owner’)

list_display = (‘id’,’n
ame’,’status’,’owner’,’modifi
ed_on’)

search_fields =
[‘description’,’status’]

I # register our site with
the Django admin interface
admin.site.

Make web apps with Python

register(Issue,IssueAdmin)

To have the created data model
reflected in the database, run the
following command:

$ python manage.py syncdb
You'll be also asked to create a
superuser for it:

You just installed Django’s auth
system, which means you don’t
have any superusers defined.
Would you like to create one
now? (yes/no): yes

Enabling the admin site

O The admin site is already
enabled, but we need to enable

it in the urls.py file - this contains

the regex-based URL mapping from

model to view. Update the urls.py file

as follows:

l from django.conf.urls import

patterns, include, url

l from django.contrib import

admin

admin.autodiscover()

I urlpatterns = patterns(‘’,
I url(r’*admin/’,
include(admin.site.urls)),

)

Starting the Django
web server

O Django includes a built-in
web server which is very

handy to debug and test Django

applications. Let's start it to see how

our admin interface works. ...

To start the web server:

| python manage.py

runserver

If you do not have any errors in your
code, the server should be available
on port 8000. To launch the admin
interface, navigate your browser to
http:/localhost:8000/admin.

You will be asked to log in here.
Enter the username and password

that you created while you were
syncing the database.

Django sdministration

Weeraamer mgs

Bavommrd mwemes

Loy =

After logging in, you will notice that
all the apps installed in your project are
available here. We are only interested in
the Auth and Ludlssues app.

You can click the +Add to add a
record. Click the Add button next to
Users and add a few users to the site.

Once you have the users inside the
system, you can now add a few issues
to the system.

Django administration

. Lundivyies © Hases

Add issue
ower
max
. micdza
AR allen
danwest
Sunwmary.

Click the Add button next to Issues.
Here you will notice that you can enter
Owner, Status and Summary for the
issue. But what about the opened_on
and modified_on field that we

“It's great that

the owner field
is automatically
populated with

details of the users
inside the site”

Django administration

Make web apps with Python

Introducing Python

walvoms, man. Chargs passenayd [Loy

Site administration

[e ——— i
Croups fAdd 7 Change
Users $Add P Change
Issues & agy * Change
_ .
Sites $Add S Change

Regent Actions

My Artinng
Nnne sviitahle

Django administration

e R el

Select issue to change
al e
nn ey 11 Febrasy 18 Felfuery 2B
L)
w0 Nare

|0 w3 poblem w I modei

ntbgrtgt o S8 i b Comec O S TS SA
bleche frdurabon hin som ey wit® e Wars soCerae

|
4 Whduing by wrw piuh egnin. Thi o the i sir & hasermed Eda
L]

Phine (ufh ae riiing o aokeinr pod foms

defined while modelling the app?
They are not here because they are
not supposed to be entered by the
user. opened_on will automatically
set to the date time it is created and
modified_on will automatically set
to the date time on which an issue
is modified.

Another cool thing is that
the owner field is automatically
populated with all the users inside
the site.

We have defined our list view to
show ID, name, status, owner and
‘modified on’in the model. You
can get to this view by navigating
to http:/localhost:8000/admin/
ludissues/issue/.

Y [T
Siaried ; B
S

Creating the public user

interface for ludissues
At this point, the admin

O interface is working. But
we need a way to display the
data that we have added using
the admin interface. But there is
no public interface. Let's create
it Now.

We will have to begin by
editing the main
urls.py (ludissueTracker/urls.py).
I urlpatterns = patterns(‘’,

(r’~’,include(‘ludissues.
urls’)),
l (r’*admin/’,

e =t b
bon 18 FOLL E36
T TR
feb A3 FNAL Ki Mo
Feb 38 2L Sam

Fob 20, 3010 2i8am

include(admin.site.urls)),

)

This ensures that all the requests will be
processed by ludissues.urls first.

Creating ludissues.url
Create a urls.py file in the

O app directory (ludissues/urls.
py) with the following content:

l from django.conf.urls
import patterns, include, url
I # use ludissues model

. from models import
ludissues

l # dictionary with all the

Introducing Python

objects in ludissues

info = {
‘queryset’:ludissues.

objects.all(),

}

l # To save us writing lots of
python code

we are using the list_
detail generic view

I #list detail is the name of
view we are using

l urlpatterns =
patterns(‘django.views.generic.
list_detail’,

. #issue-list and issue-detail
are the template names

B #which will be looked in the
default template

#directories

I url(r’*$’,’object_
list’,info,name="issue-list’),

B url@r~(2P<object_
id>\d+)/$’,’object_
detail’,info,name="issue-detail’),

)

To display an issue list and details,

we are using a Django feature called
generic views. In this case we are
using views called list and details. This
allow us to create an issue list view
and issue detail view. These views are
then applied using the issue_listhtml
and issue_detail. html template. In
the following steps we will create the
template files.

Setting up template and
media directories

09 In this step we will create the

template and media directories.

We have already mentioned the

template directory as

TEMPLATE_DIRS = (
getabspath(‘templates’)

)

Make web apps with Python

Which translates to ludissueTracker/
ludlssueTracker/templates/. Since
we will be accessing the templates
from the ludissues app, the
complete directory path would be
ludlssueTracker/ludlssueTracker/
templates/ludissues. Create these
folders in your project folder.

Also, create the directory
ludlssueTracker/ludlssueTracker/media/
for holding the CSS file. Copy the style.
css file from the resources directory
of the code folder. To serve files from
this folder, make it available publicly.
Open settings.py and add these lines in
ludlssueTracker/ludlissueTracker/urls.py:

I from django.conf.urls import
patterns, include, url

from django.conf import
settings

Uncomment the next two
lines to enable the admin:

from django.contrib import
admin
admin.autodiscover()

I urlpatterns = patterns(’,
(r’~’,include(‘ludissues.

urls’)),

| | (r’*admin/’, include(admin.

site.urls)),

| | (r’*media/

(?P<path>.%)$’,’django.views.

static.serve’,

I {‘document_root’:settings.
MEDIA_ROOTY})
)

Creating the template files

1 O Templates will be loaded
from the ludissueTracker/

ludissueTracker/templates directory.

In Django, we start with the
ludissueTracker/ludlssueTracker/
templates/base.html template. Think of
it as the master template which can be
inherited by slave ones.
ludlssueTracker/ludlssueTracker/
templates/base.html
B <IDOCTYPE html PUBLIC “~//
W3C//DTD XHTML Strict//EN”
B « HYPERLINK “http://www.
w3.org/TR/xhtm11/DTD/xhtml1-
strict.dtd” http://www.w3.org/TR/
xhtml1/DTD/xhtml1-strict.dtd”>
I <html>
1 <head>
<title>{% block title
%}H{% endblock %}LUD Issues</
title>
l <link rel="stylesheet”
href="{{ MEDIA_URL }}style.css”
type="text/css” media="screen”
/>
B </head>
I<body>
i <div id="hd”>
<h1>LUD
Issue Tracker</h1>
</div>
1 <div id="mn”>

I
2

<a href="{% url issue-list
%Y’ class="sel”>View Issues</
a></1i>

Admin
Site</1i>

I </div>
1l <div id="bd">
il % block
content %}{% endblock %3}
</div>
I</body>
I </htm>

“To display an issue list and details here,
we are using a Django feature called
generic views"

L0 Admin Site

(=]

Make web apps with Python

Description

5 Threa colts are missing from eplinter call torch

{{ variablename }} represents a
Django variable.
(% block title %} represents blocks.
Contents of a block are evaluated
by Django and are displayed. These
blocks can be replaced by the child
templates.
Now we need to create the issue_list.
html template. This template is
responsible for displaying all the
issues available in the system.
ludissueTracker/ludlssueTracker/
templates/ludissues/issue_listhtml
{% extends ‘base.html’ %3}
{% block title %}View Issues -
{% endblock %}
{% block content %}
<table cellspacing="0"
class="column-options”>

<tr>

<th>Issue</th>
<th>Description</th>
<th>Status</th>
<th>Owner</th>

</tr>

{% for issue in object_list

%}
<tr>

<td><a href="{% url
issue-detail issue.id %}">{{
issue.id }}</td>

<td><a href="{% url
issue-detail issue.id %}Y">{{

issue.name }}</td>
<td>{{ issue.status
B</td>
<td>{{ issue.
owner}}</td>
</tr>
{% endfor %}
</table>
{% endblock %}

Here we are inheriting the base.
html file that we created earlier. {%
forissue in object_list %} runs on the
object sent by the urls.py. Then we
are iterating on the object_list for
issueid and issue.name.
Now we will create issue_detail.
html. This template is responsible for
displaying the detail view of a case.
ludissueTracker/ludlssueTracker/
templates/ludissues/issue_detail.
html
l {% extends ‘base.html’ %}
B % block title %)Issue #{{
object.id }} - {% endblock %}
i {% block content %}
I <h2>Issue #{{ object.id }}
{{ object.status }}</
span></h2>
l <div class="issue”>
<h2>Information</

Introducing Python

lud is:

Status Owner

now max

accapted ana

started samflehar
started dumbledors
Etanad eamfighar
h2>

l <div class="date”>

<p class="cr”>0Opened
{{ object.opened_on }} ago</p>

<p class="up”>Last
modified {{ object.modified_on
1} ago</p>
B <idiv>

<div
class="clear”> </div>
l <div class="block
w49 right”>

<p class="ass
title”>Owner</p>

<p class="ass”>{{
object.owner }}</p>

</div>
| <div
class="clear”> </div>
l <div class="block”>

<p class="des
title”>Summary</p>

<p class="des”>{{
object.summary }}</p>
I </div>
</div>
I {% endblock %}

And that's everything! The issue
tracker app is now complete and
ready to use. You can now point your
browser at localhost:3000 to start
using the app.

Introducing Python

Build an app for Android with Python

Build an app for
Android with Python

Master Kivy, the excellent cross-platform application
framework to make your first Android app. ..

The great thing about Kivy is
there are loads of directions

we could take it in to do some
pretty fancy things. But, we're
going to make a beeline for one
of Kivy's coolest features - the
ability it affords you to easily run
your programs on Android.

We'll approach this by first
showing how to make a new
app, this time a dynamic
Breakout-style game. We'll then
be able to compile this straight
to an Android APK that you can
use just like any other.

Of course, once you have
mastered the basic techniques
you aren't limited to using any
particular kind of app, as even on
Android you can make use of all
your favourite Python libraries

to make any sort of program
you like.

Once you've mastered Kivy,
your imagination is the only
limit. If you're pretty new to Kivy,
don't worry, we won't assume
that you have any pre-existing
knowledge. As long as you have
mastered some of the Python
in this book so far, and have a
fairly good understanding of the
language, you shouldn't have
any problems following along
with this.

Before anything else, let's
throw together a basic Kivy app
(Fig. 01). We've pre-imported
the widget types welll be using,
which this time are just three:
the basic Widget with no special

behaviour, the ModalView with
a pop-up behaviour as used
last time, and the FloatLayout
as we will explain later. Kivy has
many other pre-built widgets for
creating GUIs, but this time we're
going to focus on drawing the
whole GUI from scratch using
Kivy's graphics instructions. These
comprise either vertex instructions
to create shapes (including
rectangles, lines, meshes, and
so on) or contextual graphics
changes (such as translation,
rotation, scaling, etc), and are able
to be drawn anywhere on your
screen and on any widget type.
Before we can do any of this
well need a class for each kind of
game object, which we're going
to pre-populate with some of
the properties that we'll need
later to control them. Remember
from last time, Kivy properties are
special attributes declared at class
level, which (@mong other things)
can be modified via kv language
and dispatch events when they
are modified. The Game class will
be one big widget containing

Build an app for Android with Python

the entire game. We've specifically
made it a subclass of FloatLayout
because this special layout is able
to position and size its children

in proportion to its own position
and size — 50 no matter where we
run it or how much we resize the
window, it will place all the game
objects appropriately.

Next we can use Kivy's graphics
instructions to draw various
shapes on our widgets. We'll just
demonstrate simple rectangles to
show their locations, though there
are many more advanced options
you might like to investigate. In
a Python file we can apply any
instruction by declaring it on the
canvas of any widget, an example
of which is shown in Fig. 03.

This would draw a red rectangle
with the same position and size
as the player at its moment of
instantiation — but this presents a
problem, unfortunately, because
the drawing is static. When we
later go on to move the player
widget, the red rectangle will
stay in the same place, while the
widget will be invisible when it is
in its real position.

We could fix this by keeping
references to our canvas
instructions and repeatedly
updating their properties to track
the player, but there's actually an
easier way to do all of this - we
can use the Kivy language we
introduced last time. It has a
special syntax for drawing on

the widget canvas, which we
can use here to draw each of our
widget shapes:
<Player>:
canvas:
Color:
rgba: 1, 1, 1, 1
Rectangle:
pos: self.pos
size: self.size

<Ball>:
canvas:
Color:
rgb: 1, 0.55, 0
Rectangle:
pos: self.pos
size: self.size

<Block>:
canvas:
Color:
rgb: self.colour
A property we
predefined above
Rectangle:
pos: self.pos
size: self.size
Color:
rgb: 0.1, 0.1, 0.1
Line:
rectangle:
[self.x, self.y,
self.width, self.
height]

The canvas declaration is special,
underneath it we can write any
canvas instructions we like. Don't
get confused, canvas is not a
widget and nor are graphics
instructions like Line. This is just
a special syntax that is unique to
the canvas. Instructions all have

Introducing Python

different properties that can be
set, like the pos and size of the
rectangle, and you can check the
Kivy documentation online for

all the different possibilities. The
biggest advantage is that although
we still declare simple canvas
instructions, kv language is able
to detect what Kivy properties we
have referred to and automatically
track them, so when they are
updated (the widget moves or is
resized) the canvas instructions
move to follow this!

Fig 01

from kivy.app import App
from kivy.uix.widget import
Widget

from kivy.uix.floatlayout
import FloatlLayout

from kivy.uix.modalview
import ModalView

__version__ = #
Used later during Android

compilation

BreakoutApp(“pp):
pass

BreakoutApp().run()

from kivy.properties
import (ListProperty,
NumericProperty,

ObjectProperty,
StringProperty)

33

Introducing Python

Game():
Will contain everything
blocks = ListProperty([1)
player = ObjectProperty()
The game's Player instance
ball = ObjectProperty() #
The game's Ball instance

Player(): # A
moving paddle
position =
NumericProperty(0.5)
direction =
StringProperty()

Ball():
bouncing ball
pos_hints are for

A

proportional positioning,
see below

pos_hint_x =
NumericProperty(0.5)
pos_hint_y =

NumericProperty(0.3)
proper_size =
NumericProperty(0.)
velocity =
ListProperty([0.1, 0.5])

Block() H#

Each coloured block to
destroy

colour =

ListProperty([1, 0, @)

Fig 03

from kivy.graphics.context_
instructions import Color

from kivy.graphics.
vertex_instructions import
Rectangle

Player():

Build an app for Android with Python

(self,
*xlkwargs):
(Player,
self).__init__(x*kwargs)
with self.
canvas:
Color(l, 0,

0, D) #r, g b, a—>red

Rectangle(pos=self.pos,
size=self.size)

or without
the with syntax, self.
canvas.add(...)

Above Running the app shows our coloured
blocks on the screen... but they all overlap! We
can fix that easily

You probably noticed we
had one of the Block’s ‘Color’
instructions refer to its colour
property. This means that we can
change the property any time to
update the colour of the block, or
in this case to give each block a
random colour (Fig. 04).

Now that each of our widgets
has a graphical representation,
let's now tell our Game where
to place them, so that we can
start up the app and actually see
something there.

Game():
(self):
for y_jump in 5):
for x_jump in
(10):

block = Block(pos_
hint={

1 0.05 + 0.09%x_

jump,
1 0.05 + 0.09%y_

Jump})
self.blocks.
append(block)
self.add_
widget(block)
BreakoutApp(“np):
(self):
g = Game()
g.setup_blocks()
return g

Here we create the widgets we
want then use add_widget to add
them to the graphics tree. Our
root widget on the screen is an
instance of Game and every block
is added to that to be displayed.

The only new thing in there is
that every Block has been given
a pos_hint. All widgets have this
special property, and it is used by
FloatLayouts like our Game to set
their position proportionately to
the layout.

The dictionary is able to handle
various parameters, but in this
case ‘xand 'y’ give x and y Block
position as a relative fraction of
the parent width and height.

You can run the app now, and
this time it will add 50 blocks to
the Game before displaying it
on the screen. Each should have
one of the three possible random
colours and be positioned in a
grid, but you'll now notice their
sizes haven't been manually set so
they all overlap. We can fix this by
setting their size_hint properties —
and let's also

Build an app for Android with Python

take this opportunity to do the
same for the other widgets as
well (Fig. 05).

This takes care of keeping all our
game widgets positioned and
sized in proportion to the Game
containing them. Notice that the
Player and Ball use references to
the properties we set earlier, so
well be able to move them by
just setting these properties and
letting kv language automatically
update their positions.

The Ball also uses an extra
property to remain square rather
than rectangular, just because the
alternative would likely look a little
bit odd.

We've now almost finished
the basic graphics of our app! All
that remains is to add a Ball and a
Player widget to the Game.
<Game>:

ball: the_ball
player: the_player
Ball:

: the_ball
Player:

: the_player

You can run the game again
now, and should be able to see
all the graphics working properly.
Nothing moves yet, but thanks to
the FloatlLayout everything should
remain in proportion if you resize
the game/window.

Now we just have to add the
game mechanics. For a game like
this you usually want to run some
update function many times per
second, updating the widget

positions and carrying out game
logic — in this case collisions with
the ball (Fig. 06).

The Clock can schedule
any function at any time,
either once or repeatedly. A
function scheduled at interval
automatically receives the time
since its last call (dt here), which
we've passed through to the ball
and player via the references we
created in kv language. It's good
practice to scale the update (eg
ball distance moved) by this dt,
so things remain stable even if
something interrupts the clock
and updates don't meet the
regular 1/60s you want.

At this point we have also
added the first steps toward
handling keyboard input, by
binding to the kivy Window to
call a method of the Player every
time a key is pressed. We can
then finish off the Player class by
adding this key handler along
with touch/mouse input.

Player():
(’
D:
self.direction = (
if touch.x >
self.parent. < center_x else

)

(’
D:

self.direction =

Introducing Python

if scancode == 275:
self.direction =

elif scancode == 276:
self.direction =
else:
self.direction =

(self, *args):

self.direction =

(self, dt):
dir_dict = { 01,
;- . 0}
self.position += (0.5
* dt * dir_ «dict[self.
direction])

These on_touch_ functions
are Kivy's general method for
interacting with touch or mouse
input, they are automatically
called when the input is detected
and you can do anything you
like in response to the touches
you receive. In this case we set
the Player's direction property
in response to either keyboard
and touch/mouse input, and
use this direction to move the
Player when its update method is
called. We can also add the right
behaviour for the ball (Fig. 07).

This makes the ball bounce off
every wall by forcing its velocity
to point back into the Game,
as well as bouncing from the
player paddle — but with an extra
kick just to let the ball speed
change. It doesn't yet handle any
interaction with the blocks or
any win/lose conditions, but it
does try to call Gamelose() if the

Introducing Python

ball hits the bottom of the player's
screen, so let's now add in some
game end code to handle all of this
(Fig. 08). And then add the code in
Fig. 09 to your 'breakoutkv file.

This should fully handle the
loss or win, opening a pop-up
with an appropriate message
and providing a button to try
again. Finally, we have to handle
destroying blocks when the ball
hits them (Fig. 10).

This fully covers these last
conditions, checking collision
via Kivy's built-in collide_widget
method that compares their
bounding boxes (pos and size). The
bounce direction will depend on
how far the ball has penetrated, as
this will tell us how it first collided
with the Block.

So there we have it, you can
run the code to play your simple
Breakout game. Obviously it's very
simple right now, but hopefully
you can see lots of different ways
to add whatever extra behaviour
you like - you could add different
types of blocks and power-ups, a
lives system, more sophisticated
paddle/ball interaction, or even
build a full game interface with a
menu and settings screen as well.

We're just going to finish
showing one cool thing that you
can already do — compile your
game for Android! Generally
speaking you can take any Kivy
app and tum it straight into an
Android APK that will run on any

36

Build an app for Android with Python

of your Android devices. You can
even access the normal Android
API to access hardware or OS
features such as vibration, sensors
or native notifications.

We'll build for Android using
the Buildozer tool, and a Kivy
sister project wrapping other
build tools to create packages on
different systems. This takes care
of downloading and running
the Android build tools (SDK,
NDK, etc) and Kivy's Python-for-
Android tools that create the APK.

import random

Block(Widget):
(self,
*xlwargs):
(Block,
self).__init__(**kwargs)
self.colour =

random.choice([

(0.78, 0.28,
),)0.28, 0.63, 0.28),)0.25,
0.28, 0.78)])

Fig 05

<Block>:
size_hint: 0.09, 0.05
... canvas part

<Player>:
size_hint: 0.1, 0.025
pos_hint: {
position, 1 0.1}
... canvas part

self.

<Ball>:
pos_hint: {'x': self.pos_
hint_x, . self.pos_hint_y}

size_hint: None, None
proper_size:
(0.03*self.parent.
height, 0.03*self.parent.width)
size: self.proper_size,
self.proper_size
... canvas part

from kivy.clock import
Clock

from kivy.core.window
import Window

from kivy.utils import
platform

Game():
(self, dt):
self.ball.
update(dt) # Not defined yet
self.player.

update(dt) # Not defined yet

start(self,
*args):
Clock.schedule_
interval(self.update, 1./60.)

stop(self):
Clock.
unschedule(self.update)
reset(self):
for block in
self.blocks:
self.remove_
widget(block)
self.blocks = []
self.setup_
blocks()

self.ball.velocity
= [random.random(), ©.5]
self.player.
position = 0.5

BreakoutApp(“pp):
(self):

Build an app for Android with Python

g = Game()
if platform() !=

Window.
bind(on_key_down=g.player.
on_key_down)

Window.
bind(on_key_up=g.player.on_
key_up)

g.reset()
Clock.schedule_
once(g.start, 0)
return g

Fig 07

Ball()
(self, dt):
self.pos_hint_x
self.velocity[0] * dt
self.pos_hint_y
+= self.velocity[1] * dt
if self.right >

+
Il

self.parent.right: # Bounce
from right
self.
velocity[e] = -1 = (self.
velocity[@])
if self.x < self.
parent.x: # Bounce from left
self.
velocity[?] = (self.
velocity[0])
if self.top
> self.parent.top: # Bounce
from top
self.
velocity[1] = -1 =* (self.
velocity[1])
if selfly < self.
parent.y: # Lose at bottom

self.parent.

lose() # Not implemented yet

self.bounce_from_
player(self.parent.player)

(self,
player):
if self.
collide_widget(player):
self.
velocity[1] = (self.
velocity[1])
self.
velocity[@] += (
0.1
* ((self.center_x -
player.center_x) /

player.width))

Fig 08

GameEndPopup():
message =
StringProperty()

game =

ObjectProperty()

Game():
(self):
self.stop()
GameEndPopup(
message=

game=self).open()

(self): #
Not called yet, but we'll
need it later
self.stop()
GameEndPopup(
message=

’

game=self).open()

Introducing Python

<GameEndPopup>:
size_hint: 0.8, 0.8
auto_dismiss: False

Don't close if player
clicks outside
BoxLayout:
orientation:
Label:
text: root.
message
font_size:
60
markup: True
halign:
Button:
size_hint_y:
None
height:
sp(80)
text:
font_size:
60
on_release:
root.game.start(); root.

dismiss()

Here you will be needing
some basic dependencies, which
can be installed with ease just
by using your distro's normal
repositories. The main ones to use
are OpenJDK7, zlib, an up-to-date
Cython, and Git. If you are using
a 64-bit distro you will also be
in need of 32-bit compatibility
libraries for Zlib, libstdc++ as well
as libgcc. You can then go on and
download and install Buildozer:

37

Introducing Python

Putting your APK
on the Play Store
Find out how to digitally sign a

release APK and upload it to an
app store of your choice

1 Build and sign a release
APK

Begin by creating a personal
digital key, then using it to sign
a special release version of the
APK. Run these commands, and
follow the instructions.

Create your personal
digital key Ht
You can choose your own
i keystore name, alias,
and passwords.
$ keytool -genkey -v
—keystore test- release-
key.keystore \

-alias test-alias
—keyalg RSA

-keysize 2048 -validity
10000
Compile your app in
release mode
$ buildozer android
release
Sign the APK with your
new key
$ jarsigner -verbose
-sigalg
SHAIwithRSA -digestalg
SHAL \
-keystore ./test-
release-key.keystore \
./bin/KivyBreakout-0.1-
release-
unsigned.apk test-alias
Align the APK zip file
$ ~/.buildozer/android/
platform/android- sdk-21/
tools/zipalign -v 4 \
./bin/KivyBreakout-0.1-
release-
unsigned.apk \
./bin/KivyBreakout-0.1-
release.apk

Build an app for Android with Python

"Check through the whole file just to see
what's available, but most of the default

settings will be fine”

git clone git://github.com/
kivy/buildozer

cd buildozer

sudo python2.7 setup.py
install

When you're done with that part
you can then go on and navigate
to your Kivy app, and you'll have
to name the main code file ‘main.
py, this is the access point that the
Android APK will expect. Then:
buildozer init

This creates a ‘buildozer.spec’ file,
a settings file containing all the
information that Buildozer needs
to create your APK, from the name
and version to the specific Android
build options. We suggest that you
check through the whole file just
to see what's available but most of
the default settings will be fine, the
only thing we suggest changing
is (Fig. 11).

There are various other options
you will often want to set, but
none are really all that vital right
now, so you'e able to immediately
tell Buildozer to build your APK and
get going!
buildozer android debug

This will take some time, so be
patient and it will work out fine.

When you first run it, it will
download both the Android SDK
and NDK, which are large (at least
hundreds of megabytes) but vital
to the build. It will also take time
to build these and to compile the
Python components of your APK.
Alot of this only needs to be
done once, as future builds will
take a couple of minutes if you
change the buildozerspec, or
just a few seconds if you've only
changed your code.

The APK produced is a debug
APK; and you can install and use
it. There are extra steps if you
want to digitally sign it so that it
can be posted on the Play store.
This isn't hard, and Buildozer can
do some of the work, but check
the documentation online for
full details.

Assuming everything goes
fine (it should!), your Android
APK will be in a newly created
'bin’ directory with the name
‘KivyBreakout-0.1-debug.apk'.
You can send it to your phone
any way you like (eg email),
though you may need to
enable application installation
from unknown sources in your
Settings before you can install it.

Build an app for Android with Python

self.parent.do_
layout()
self.parent.destroy_
blocks(self)

Game():
(self,

for i, block in
(self.blocks):
if ball.
collide_widget(block):
y_overlap
=(
ball.
top - block.y if ball.
velocity[1] > 0
else
block.top - ball.y) / block.
size_hint_y
x_overlap
=(
ball.
right - block.x if ball.
velocity[0] > 0
else
block.right - ball.x) /
block.size_hint_x
if x_
overlap < y_overlap:

ball.velocity[0] *=
-1

else:

ball.velocity[1] *=
-1

self.
remove_widget(block)
self.blocks.

pop(i)

if (self.
blocks) == 0:
self.
win()
return

title = Kivy Breakout

package.name = breakout

fullscreen = 0

log_level = 2

Above Your game should run on any modern
Android device... you can even build a release
version and publish to an app store!

Introducing Python

25ign up as a Google Play
Developer

Visit https:/play.google.com/
apps/publish/signup, and follow
the instructions. You'l need to
pay a one-off $25 charge, but
then you can upload as many
apps as you like.

Upload your app to the

store
Click'Add new application'
to submit your app the store,
including uploading your APK
and adding description text.
When everything is ready, simply
click Publish, and it should take
just afew hours for your app to
golivel

Introducing Python

50 Python tips

f, 50 Python tips

Python is a programming language that lets you work more quickly and
integrate your systems more effectively. Today, Python is one of the most popular
programming languages in the open source space. Look around and you will
find it running everywhere, from various configuration tools to XML parsing. Here
is the collection of 50 gems to make your Python experience worthwhile. . .

Basics

Running Python scripts

0 On most of the UNIX systems,
you can run Python scripts from

the command line.

Bs python mypyprog.py

Running Python programs
from Python interpreter

0 The Python interactive
interpreter makes it easy to
try your first steps in programming
and using all Python commands.
You just issue each command at the
command prompt (>>>), one by
one, and the answer is immediate.
Python interpreter can
be started by issuing the
command:
I $ python
I kunal@ubuntu:~$ python
l Python 2.6.2 (release26-
maint, Apr 19 2009, 01:56:41)
[GCC 4.3.3] on linux2
Type “help”, “copyright”,
“credits” or “license” for
more information.
>>> <type commands here>
In this article, all the code
starting at the
>>> symbol is meant to be given

at the Python prompt.

Itis also important to remember
that Python takes tabs very seriously
- soif you are receiving any error that
mentions tabs, correct the tab spacing.

Dynamic typing

03 In Java, G++, and other statically
typed languages, you must

specify the data type of the function
return value and each function
argument. On the other hand, Python
is a dynamically typed language. In
Python you will never have to explicitly
specify the data type of anything you
use. Based on what value you assign,
Python will automatically keep track of
the data type internally.

Python statements

O 4 Python uses carriage returns

to separate statements, and
a colon and indentation to separate
code blocks. Most of the compiled
programming languages, such as C
and G+, use semicolons to separate
statements and curly brackets to
separate code blocks.

==and = operators

0 Python uses =='for
comparison and ='for

assignment. Python does not
support inline assignment,

so there’s no chance of
accidentally assigning the value
when you actually want to
compare it.

0 You can use “+ to concatenate
strings.

l >>> print ‘kun’+al’

kunal

The __init__ method
O The __init__ method is run as
soon as an object of a class is
instantiated. The method is useful to do
any initialization you want to do with
your object. The
__init__ method is analogous to a
constructor in CG++ C# or Java.
Example:
I class Person:
def __init__(self, name):
self.name = name
def sayHi(self):
print ‘Hello, my name
is’, self.name
I p = Person(‘Kunal’)
B p.sayHiQ
Output:
il [~/src/python $:] python
initmethod.py
I Hello, my name is Kunal

Modules

O To keep your programs
manageable as they grow in
size you may want to make them into
several files. Python allows you to put
multiple function definitions into a file
and use them as a module that can be
imported. These files must have a .py
extension however.
Example:
B # file my_function.py
l def minmax(a,b):
lifa<b:
[| min, max = a, b
l else:
[| min, max = b, a
l return min, max
l Module Usage
[| import my_function

Module defined names

09 Example
The built-in function ‘dir()’ can

be used to find out which names a
module defines. It returns a sorted list
of strings.

>>> import time
I >>> dir(time)

[‘__doc__’, ‘__file__’,
- ‘__name__, __package__,
‘accept2dyear’, ‘altzone’,
‘asctime’, ‘clock’, ‘ctime’,
‘daylight’, ‘gmtime’, ‘localtime’,
‘mktime’, ‘sleep’, ‘strftime’,
‘strptime’, ‘struct_time’,

‘time’, ‘timezone’,
‘tzset’]file’]

‘tzname’,

Module internal
documentation

1 0 You can see the internal
documentation (if available) of
a module name by looking at
__doc__
Example:
> import time
B >>> print time.clock.__doc__
l clock() -> floating

50 Python tips

point number

This example returns the CPU time or
real time since the start of the process
or since the first call to clock(). This has
just as much precision as the system
records do.

Passing arguments
to a Python script

1 Python lets you access whatever
you have passed to a script

while calling it. The ‘command line’

content is stored in the sys.argv list.
import sys

' print sys.argv

Loading modules or
commands at startup

1 You can load predefined
modules or

commands at the startup of

any Python script by using

the environment variable

SPYTHONSTARTUP. You can

set environment variable

SPYTHONSTARTUP to a file which

contains the instructions load

necessary modules or commands .

Converting a string
to date object

1 You can use the function
‘DateTime’to convert astring to a
date object.
Example:
l from DateTime import DateTime
[| dateobj = DateTime(string)

Converting a string
to date object

1 You can convert a list to string
in the following ways.
1st method:

B >>> mylist = [‘spam’, ‘ham’,

Introducing Python

‘eggs’]

l >>> print ¢, ‘join(mylist)
' spam, ham, eggs

2nd method:

l >>> print ‘\n’.join(mylist)
l spam

' ham

B eges

Tab completion
in Python interpreter

1 You can achieve auto
completion inside Python
interpreter by adding these lines to
your pythonrc file (or your file for
Python to read on startup):
| import rlcompleter, readline
l readline.parse_and_bind(‘tab:
complete’)
This will make Python complete
partially typed function, method and
variable names when you press the
Tab key.

Python
documentation tool

1 You can pop up a graphical
interface for searching the

Python documentation using the

command:

B $ pydoc g

You will need python-tk package for

this to work.

“Today, Python is
certainly one of
the most popular
programming
languages to be
found in the open
source space”

Introducing Python

Accessing the Python
documentation server

1 You can start an HTTP server
on the given port on the

local machine. This will give you a

nice-looking access to all Python

documentation, including third-party

module documentation.

Bs pydoc -p <portNumber>

Python development
software

1 There are plenty of tools to help
with Python development.

Here are a few important ones:

IDLE: The Python built-in IDE, with

autocompletion, function signature

popup help, and file editing.

IPython: Another enhanced Python

shell with tab-completion and

other features.

Eric3: A GUI Python IDE with

autocompletion, class browser, built-in

shell and debugger.

WingIDE: Commercial Python IDE

with free licence available to open-

source developers everywhere.

Built-in modules

Executing at Python
interpreter termination

1 You can use ‘atexit’ module to
execute functions at the time of
Python interpreter termination.
Example:
I def sum():
print(4+5)
B def message():
print(“Executing Now”)
l import atexit
[| atexit.register(sum)
[| atexit.register(message)
Output:
l Executing Now
9

50 Python tips

Converting from integer
to binary and more

2 0 Python provides easy-to-use
functions — bin(), hex() and

oct() - to convert from integer to binary,
decimal and octal format respectively.
Example:

B > binee)

B ‘obiiece’

I > hex(2)

B oxe

> oct(24)

|

Converting any
charset to UTF-8

21 You can use the following
function to convert any charset

to UTF-8.
l data.decode(“input_charset_
here”).encode(‘utf-8”)

Removing
duplicates from lists

2 2 If you want to remove duplicates
from a list, just put every

element into a dict as a key (for
example with ‘none’ as value) and then
check dictkeys().

from operator import setitem
B der distinct(1):

I d=0
B map(setitem, (d,)*len(l),
1, [D

l return d.keys()
Do-while loops

2 Since Python has no do-while
or do-until loop constructs (yet),

you can use the following method to

achieve similar results:

I while True:

1 do_something()

] if condition():

I break

Detecting system
platform

2 4 To execute platform-specific
functions, it is very useful to

detect the platform on which the

Python interpreter is running. You can

use ‘sys.platform’ to find out the current

platform.

Example:

On Ubuntu Linux

B >> import sys

B >> sys.platform

B linux2’

On Mac OS X Snow Leopard

B >> import sys

l >>> sys.platform

B ‘darwin’

Disabling and enabling
garbage coIIect|on

2 Sometimes you may
want to enable or disable
the garbage collector function
at runtime. You can use the ‘gc’
module to enable or disable the
garbage collection.
Example:
>>> import gc
l > gc.enable
B <built-in function enable>
B > ge.disable
l <built-in function
disable>

Using C-based modules
for better performance

2 Many Python modules
ship with counterpart
C modules. Using these C
modules will give a significant
performance boost in your
complex applications.
Example:
I cPickle instead of
Pickle, cStringIO instead
of StringIO .

Calculating maximum,

2 You can use the following built-
in functions.

max: Returns the largest element in

the list.

min: Returns the smallest element in

the list.

sum: This function returns the sum

of all elements in the list. It accepts an

optional second argument: the value

to start with when summing (defaults

to 0).

Representing
fractional numbers

2 Fraction instance can be
created in Python using the

following constructor:

I Fraction([numerator

[,denominator]])

Performing
math operations

2 The 'math’ module provides
a plethora of mathematical

functions. These functions work on

integer and float numbers, except

complex numbers. For complex

numbers, a separate module is used,

called ‘cmath’.

For example:

I math.acos(x): Return arc

cosine of x.

l math.cos(x): Returns cosine

of x.

B math.factorial(x)

factorial.

: Returns x

Working with arrays

3 The ‘array’ module provides
an efficient way to use arrays

in your programs. The ‘array’ module

defines the following type:

B array(typecode [,

50 Python tips

initializer])
Once you have created an array
object, say myarray, you can apply a
bunch of methods to it. Here are a few
important ones:

myarray.count(x): Returns the
number of occurrences of x
in a.
1 myarray.extend(x): Appends x
at the end of the array.
I myarray.reverse(): Reverse the
order of the array.

Sorting items

3 The ‘bisect’ module makes

it very easy to keep lists in
any possible order. You can use the
following functions to order lists.
l bisect.insort(list, item [,
low [, highll)
Inserts item into list in sorted order. If
item is already in the list, the new entry
is inserted to the right of any existing
entries there.
' bisect.insort_left(list, item
[, low [, highlD)
Inserts item into list in sorted order.
If item is already within the list, the
new entry is inserted to the left of any
existing entries.

Using regular
expression-based search

3 The 're" module makes it very
easy to use regxp-based

searches. You can use the function

‘research()’ with a regexp-based

expression. Check out the example

included below.

Example:

l >> import re

B > s = “kunal is a bad boy”

B > if re.search(“K”, s):

print “Match!” # char literal

I Match!

I >>> if re.search(“[er-Z]”, s):
print “Match!” # char class

B ... # match either at-sign or

Introducing Python

capital letter

Bl Match!

B > if re.search(“\d”, s):
print “Match!” # digits class

Working with bzip2 (bz2)
compression format

3 You can use the module 'bz2’
to read and write data using
the bzip2 compression algorithm.

. bz2.compress() : For bz2
compression

l bz2.decompress() : For bz2
decompression

Example:

B # File: bz2-example.py
l import bz2
B MESSAGE = “Kunal is a bad
boy”
[] compressed_message = bz2.
compress(MESSAGE)
' decompressed_message = bz2.
decompress(compressed_message)
print “original:”,
repr(MESSAGE)
print “compressed message:”,
repr(compressed_ message)
print “decompressed message:”,
repr(decompressed_message)

Output:

l [~/src/python $:] python bz2-
example.py

l original: ‘Kunal is a bad
boy’

B compressed message:
‘BZh91AY&SY\xc4\xOfG\Xx98\ x00\
X00\x02\x15\x80@\x00\x00\x084%\
x8a \x00”\x00\x0c\x84\r\x@3C\
xa2\xb@\xd6s\xa5\xb3\x19\x00\xf8\
xbb\x92)\xc2\x84\x86 z<\xc@’

I decompressed message: ‘Kunal
is a bad boy’

“There are tools to
help develop
with Python”

43

Introducing Python

Using SQLite database
with Python

3 SQLite is fast becoming a very

popular embedded database
because of the zero configuration that
is needed, and its superior levels of
performance. You can use the module
‘sqlite3"in order to work with these
SQLite databases.
Example:
B >>> import sqlite3

>>> connection = sqlite.
connect(‘test.db’)

>>> curs = connection.
cursor()

>>> curs.execute(‘’’create
table item

... (id integer primary key,
itemno text unique,

. scancode text, descr text,

price real)’’’)

<sqlite3.Cursor object at
0x1004a2b30>

Working with zip files

You can use the module ‘zipfile’
3 to work with zip files.

B zipfile.zipFile(filename

[, mode [, compression
[,allowZip64]11])

Open a zip file, where the file can be
either a path to afile (a string) or a file-
like object.

B zipfile.closeO1

Close the archive file. You must call
‘close()" before exiting your program or
essential records will not be written.

I zipfile.extract(member[,

path[, pwd]ll)

Extract a member from the archive

to the current working directory;
‘member’ must be its full name (or a
zipinfo object). Its file information is
extracted as accurately as possible.
‘path’ specifies a different directory to
extract to.'member’ can be a filename
or a zipinfo object. ‘pwd’ is the
password used for encrypted files.

50 Python tips

Using wildcards to search
for filenames

3 You can use the module ‘glob’
to find all the pathnames

matching a pattern according to the

rules used by the UNIX shell. % 7, and

character ranges expressed with [] will

be matched.

Example:

I >>> import glob

0 >>> glob.glob(*./[6-91.%")

B P, </2.txt’]

| = glob.glob(‘x.gif”)

B r1gif’, ‘card.gif’]

B >>> glob.glob(2.gif")

B rgifa

Performing basic file
operations

3 You can use the module ‘shutil’
to perform basic file operation

at a high level. This module works with

your regular files and so will not work

with special files like named pipes,

block devices, and so on.

l shutil.copy(src,dst)

Copies the file src to the file or

directory dst.

i shutil.copymode(src,dst)

Copies the file permissions from src

to dst.

I shutil.move(src,dst)

Moves a file or directory to dst.

I shutil.copytree(src, dst,

symlinks [,ignorell)

Recursively copy an entire directory

at src.

l shutil.rmtree(path [, ignore_

errors [, onerror]])

Deletes an entire directory.

Executing UNIX
commands from Python

3 You can use module
commands to execute
UNIX commands. This is not
available in Python 3 —instead,
in this, you will need to use the
module ‘subprocess’.
Example:
>>> import commands
I > commands.
getoutput(‘ls’)
il ‘bz2-example.py\ntest.py’

Reading environment
variables

3 You can use the module ‘os’

to gather up some operating-
system-specific information:
Example:
I > import os
l >>> os.path <module ‘posixpath’
l from “/usr/1ib/python2.6/
posixpath.pyc’>>>> os.environ
{‘LANG’: ‘en_IN’, ‘TERM’: ‘xterm-
color’, ‘SHELL’:
I Ybin/bash,
l ‘/usr/bin/lesspipe %s %s’,
I XDG_SESSION_COOKIE’:
l “925¢4644597¢791c704656354adf56d6-
I 1257673132.347986-1177792325,
I ‘SSHLVL’: “1’, ‘SSH_TTY’: ‘/dev/
pts/2’, ‘PWD’: ¢/ home/kunal’,
B ‘LESSOPEN’: ¢| /usr/bin
i lesspipe

‘LESSCLOSE’:

B > os.name

I ‘posix’

l >>> os.linesep
I\

“Look around and you will find Python
everywhere, from various configuration
tools to XML parsing”

Sending email

You can use the module
4 ‘smtplib’ to send email using
an SMTP (Simple Mail Transfer Protocol)
client interface.
smtplib.SMTP([host [, port]])
Example (send an email using
Google Mail SMTP server):
g import smtplib
I # Use your own to and from
email address
I fromaddr = ‘kunaldeo@gmail.com’
B toaddrs = ‘toemail@gmail.com’
l msg = ‘I am a Python geek.
Here is the proof.!’
I # Credentials
I # Use your own Google Mail
credentials while running the

program
I username = ‘kunaldeo@gmail.com’
I password = ‘XXXXXXXX’

I # The actual mail send
l server = smtplib.SMTP(‘smtp.
gmail.com:587")
I # Google Mail uses secure
connection for SMTP connections
server.starttls()
I server.login(username,password)
server.sendmail(fromaddr,
toaddrs, msg)
server.quit()

Accessing FTP server

41 ‘ftplib'is a fully fledged client
FTP module for Python. To
establish an FTP connection, you can
use the following function:
smtplib.SMTP([host [, portll)
Example (send an email using
Google Mail SMTP server):

B ftplib.FTP([host [, user [,
passwd [, acct [, timeout]]111)
Example:

I host = “ftp.redhat.com”

I username = “anonymous”

B password = “kunaldeo@gmail.
com”

B import ftplib

l import urllib2

i ftp_serv = ftplib.

50 Python tips

FTP(host,username,password)

I # Download the file

l u = urllib2.urlopen (“ftp://
ftp.redhat.com/ pub/redhat/
linux/README”)

B # Print the file contents

l print (u.read())

Output:

| [~/src/python $:] python
ftpclient.py

Older versions of Red Hat Linux have
been moved to the following location:
ftp://archive.download.redhat.com/
pub/redhat/linux/

Launching a webpage
with the web browser

4 ‘The ‘webbrowser’ module
provides a convenient way to

launch webpages using the default

web browser.

Example (launch google.co.uk

with system’s default web

browser):

>>> import webbrowser

>>> webbrowser.open(‘http://

google.co.uk’)

True

Creating secure hashes

4 The 'hashlib" module
supports a plethora of
secure hash algorithms including
SHAT, SHA224, SHA256, SHA384,

SHAS512 and MD5.

Example (create hex digest of
the given text):

l >> import hashlib

B # shal Digest

| >> hashlib.shal(“MI6
Classified Information @07”).
hexdigest()

224015437 229cc0ch935a1eb9593
§ 18valboocss

B # sha24 Digest

| >> hashlib.sha224(“MI6
Classified

| Information Q07”).hexdigest)

Introducing Python

3d01e274100000224084482F905e967h97
B 72590480990ea8355e2c0"

l # sha256 Digest

> hashlib.sha256(“MI6 Classified

l Information @07”).hexdigest()

§ 2fdde57335047b672fch39725991c89

B b2s5e707chf4c403e fdo33blc19825e”

B # sha3ss Digest

Bl >> hashlib.sha384(“MI6 Classified

Bl Information @07).hexdigest()

B ‘sc4914160f03cifbdl19el4d3ecle74bdshod
B dc192edc]38aaf 7682800982488daaf 540be
B 9e0e50fc3d3a65c806353572d"

B # sha512 Digest

B >> hashlib.sha512(“MI6 Classified

§ Information @07”).hexdigest()

I ‘a704ac3dbefbe8234578482a31d5ad29d25

2c822d1f4973f49b850222edcc@a29bb89077

8aeaB07a0a48ee4ff8bb18566140667fbaf7
B 3aldciff192febc713d2’

B # MD5 Digest

B > hashlib.md5(“MI6 Classified

I Information 007”).hexdigest()

B ‘8e2f1c52ac146F1a999a670c826f7126°

Seeding random numbers

4 You can use the module

‘random’ to generate a wide
variety of random numbers. The
most used one is random.seed([x]). It
initialises the basic random number
generator. If x is omitted or None,
the current system time is used; the
current system time is also used to
initialise the generator when the
module is first imported.

"Programming in
Python lets you
work more quickly
and integrate your
systems much
more effectively”

Introducing Python

Working with
CSVfiles

45 CSVfiles are very popular
for data exchange over
the web. Using the module ‘csv/,
you can read and write CSV files.
Example:
import csv
B # write stocks data as
comma- separated values
I writer = csv.
writer(open(‘stocks.csv’, ‘wb’,
buffering=0))
writer.writerows([
1] (‘GO0G’, ‘Google, Inc.’,
505.24, 0.47, 0.09),
[| (‘YHOO’, ‘Yahoo! Inc.’,
27.38, 0.33, 1.22),
B (‘ONET’, ‘ONET Networks,
Inc.’, 8.62, -0.13, -1.49)
|)
I # read stocks data, print
status messages
stocks = csv.
reader(open(‘stocks.csv’,
‘rb’))
' status_labels = {-1: ‘down’,
@: ‘unchanged’, 1: ‘up’}
' for ticker, name, price,
change, pct in stocks:
I status = status_
labels[cmp(float(change), 0.0)]
print ‘%s is %s (%sk%)’
% (name, status, pct)

Installing third-party
modules using setuptools

4 6‘setuptools’ is a Python package
which lets you download, build,

install, upgrade and uninstall packages
very easily. To use the 'setuptools’

50 Python tips

package you will need to install
these from your distribution’s
package manager.

After installation you can use
the command ‘easy_install' to
perform any Python package
management tasks that are
necessary at that point.
Example (installing
simplejson using
setuptools):

B kunaleubuntu:~$ sudo
easy_ install simplejson
l Searching for simplejson
1 Reading http://pypi.
python.org/simple/
simplejson/

l Reading http://undefined.
org/python/#simplejson

Best match: simplejson
2.0.9
I Downloading http://
pypi.python.org/packages/
source/s/simplejson/
simplejson-2.0.9.tar.gz#md5
=af5e67a39ca3408563411d357
e6d5e47
. Processing simplejson-
2.0.9.tar.gz
l Running simplejson-2.0.9/
setup.py -q bdist_egg
--dist-dir /tmp/
easy_install-FiyfNL/
simplejson-2.0.9/egg-dist-
tmp-3YwsGV
I Adding simplejson 2.0.9
to easy-install.pth file
B 1nstalled /usr/local/lib/
python2.6/dist-packages/
simplejson-2.0.9-py2.6-
linux-i686.egg
l Processing dependencies
for simplejson
I Finished processing
dependencies for simplejson

generate a wide variety of random

numbers with the basic generator”

Logging to system log

4 You can use the module
‘syslog’ to write to system log.
‘syslog’ acts as an interface to UNIX
syslog library routines.
Example:
il import syslog
I syslog.syslog(‘mygeekapp:
started logging’)
for a in [‘@’, ‘b’, ‘c’]:
| b= ‘mygeekapp: I found
letter ‘+a
1 syslog.syslog(b)
I syslog.syslog(‘mygeekapp:
the script goes to sleep now,
bye,bye!”)
Output:
l $ python mylog.py
l $ tail -f /var/log/messages
B Nov 8 17:14:34 ubuntu -- MARK
I Nov 8 17:22:34 ubuntu python:
mygeekapp: started logging
Nov 8 17:22:34 ubuntu python:
mygeekapp: I found letter a
Nov 8 17:22:34 ubuntu python:
mygeekapp: I found letter b
B Nov 8 17:22:34 ubuntu
python: mygeekapp: I found
letter ¢
B Nov 8 17:22:34 ubuntu
python: mygeekapp: the script
goes to sleep now, bye,bye!

Third-party

modules

Generating PDF
documents

4 ‘ReportLab'is a very
popular module for PDF

generation from Python.

Perform the following steps

to install ReportLab

Is wget http://www.

reportlab.org/ftp/

ReportlLab_2_3.tar.gz

Bs tar xvfz ReportLab_2_3.
tar.gz

Bscd ReportLab_2_3

I $ sudo python setup.py
install

For a successful installation, you
should see a similar message:

I HHHHAHAHAH#SUMMARY
INFO##HHHHHEHHI

W

I #Attempting install of _rl_
accel, sgmlop & pyHnj

B #extensions from “home/
kunal/python/ ReportLab_2_3/
src/rl_addons/rl_accel’

A

I #Attempting install of
_renderPM

I #extensions from ‘/home/
kunal/python/ ReportlLab_2_3/
src/rl_addons/renderPM’

' # installing with freetype
version 21

W

Example:

B >>> from reportlab.pdfgen.
canvas import Canvas

I # Select the canvas of
letter page size

B >>> from reportlab.lib.
pagesizes import letter

B >>> pdf = canvas(“bond.pdf”,
pagesize = letter)

I # import units

B >>> from reportlab.lib.units
import cm, mm, inch, pica
I >>> pdf.setFont(“Courier”,
60)

B >>> pdf.setFillColorRGB(1,
0, 0)

Bl >> pdf.

50 Python tips

drawCentredString(letter[0]

/ 2, inch * 6, “MI6
CLASSIFIED”)

l >>> pdf.setFont(“Courier”,
40)

I > pdf.
drawCentredString(letter[@] /
2, inch x 5, “For 007’s Eyes
Only”)

B # Close the drawing for
current page

I >>> pdf.showPage()

I # Save the pdf page

I >>> pdf.save()

Output:

I @image:pdf.png

B etitle: POF Output

Using Twitter API

4 You can connect to Twitter
easily using the ‘Python-

Twitter module.

Perform the following steps to

install Python-Twitter:

B $ wget http://python-

twitter.googlecode.com/files/

python-twitter-0.6.tar.gz

l $ tar xvfz python-twitterx

B 3 cd python-twitterx

I $ sudo python setup.py

install

Example (fetching followers list):

> import twitter

Use you own twitter account

here

B >>> mytwi = twitter.Api(us

ername="kunaldeo’,password="x

XXXXX")

B >>> friends = mytwi.

GetFriends()

B >>> print [u.name for u in

friends]

“There are plenty of services such as
IPython and IDLE available to users to
help them with Python development”

Introducing Python

' [u'Matt Legend Gemmell’,
u’jono wells’, u’The MDN

Big Blog’, u’Manish Mandal’,
u’iH8sn@w’, u’IndianVideoGamer.
com’, u’FakeAaron Hillegass’,
u’ChaosCode’, u’nileshp’, u’Frank
Jennings’,..’]

Doing Yahoo! news search

You can use the Yahoo!
5 search SDK to access
Yahoo! search APIs from Python.
Perform the following steps
to install it:
l $wget http://developer.
yahoo.com/download/files/
yws- 2.12.zip
B $ unzip ywsx
. $ cd ywsx/Python/
pYsearchx/
l $ sudo python setup.py
install
Example:
B # Importing news search
APT
Bl >>> from yahoo.search.
news import NewsSearch
B >>> srch =
NewsSearch(‘YahooDemo’,
query="London’)
l # Fetch Results
B >>> info = srch.parse_
results()
B >>> info.total_results_
available
I #1640
B >>> info.total_results_
returned
B w
l >>> for result in info.
results:
l ... print “%s’, from
%s” % (result[‘Title’],
result[‘NewsSource’])

B ‘Afghan Handover to
Be Planned at London
Conference, Brown Says’,
from Bloomberg

Work with Python Practical Python tips and projects

Work with Python ™

P e O e R Eog 2o to work

- - - hi

Withia.rﬁé‘r:s‘dli?undsns andin yC ally begin to_
make it work for you. Itis a highly i;’w versatile language
and in this section, we'll show you b e }.m r
own projects. First, we ow you how to ditc el

and replace it using Python (p.50), then look J
help with scientific computing (p.58). We'll n‘ ook at how:Python
can help with system administration (p.64), and howyou can u
with Beautiful Soup to read Wikipedia offline (p.72). Get read
Python to its full potential.

Practical Python tips and projects Work with Python

Work with Python Replace your shell with Python

What you'll need...

- Replace your shell
with Python

Python is a great programming language, but did
you know it can even replace your primary shell?

We all use shell on a daily basis. For most of us, shell is the gateway into
our Linux system. For years and even today, Bash has been the default
shell for Linux. But it is getting a bit long in the tooth.

No need to be offended: we still believe Bash is the best shell out
there when compared to some other UNIX shells such as Korn Shell
(KSH), C Shell (CSH) or even TCSH.

This tutorial is not about Bash being incapable, but it is about
how to breathe completely new life into the shell to do old things
conveniently and new things which were previously not possible, even
by a long shot. So, without further delay, let's jump in.

While the Python programming language may require you to write
longer commands to accomplish a task (due to the way Python's
modules are organised), this is not something to be particularly
concerned about. You can easily write aliases to the equivalent of the
Bash command that you intend to replace. Most of the time there
will be more than one way to do a thing, but you will need to decide
which way works best for you.

Python provides support for executing system commands directly
(via the os or subprocess module), but where possible we will focus
on Python-native implementations here, as this allows us to develop
portable code.

SECTION 1: Completing basic shell tasks in Python

1. File management

The Python module shutil provides support for file and directory
operations. It provides support for file attributes, directory copying,

archiving etc. Let’s look at some of its important functions.

shutil module

Replace your shell with Python

copy (src,dst): Copy the src file to the destination directory. In this
mode permissions bits are copied but metadata is not copied.
copy2 (src,dst): Same as copy() but also copies the metadata.
copytree(src, dst[, symlinks=False[, ignore=None]l):Thisis
similar to ‘cp -r; it allows you to copy an entire directory.
ignore_patterns (*patterns):ignore_patterns is an interesting
function that can be used as a callable for copytree(), it allows you to
ignore files and directories specified by the glob-style patterns.
rmtree(path[, ignore_errors[, onerror]]):rmtree() is used to
delete an entire directory.

move(src,dst): Similar to mv command it allows you to recessively
move a file or directory to a new location.

Example:

l from shutil import copytree, ignore_patterns

Icopytree(source, destination, ignore=ignore_patterns(‘*.
pyc’, ‘tmpx’))

make_archive(base_name, format[, root_dir[, base_dir[,
verbose[, dry_run[, owner[, group[, logger1111111: Think of
this as a replacement for tar, zip, bzip etc. make_archive() creates an
archive file in the given format such as zip, bztar, tar, gztar. Archive
support can be extended via Python modules.

Example
l from shutil import make_archive
l import os
I archive_name = os.path.expanduser(os.path.join(‘~’,
‘ludarchive’))
root_dir = os.path.expanduser(os.path.join(‘~’, ‘.ssh’))
Imake_archive(archive_name, ‘gztar’, root_dir)

‘/Users/kunal/ludarchive.tar.gz’

2. Interfacing operating system & subprocesses

Python provides two modules to interface with the OS and to manage
processes, called os and subprocess. These modules let you interact
with the core operating system shell, and work with the environment,
processes, users and file descriptors. The subprocess module was
introduced to support better management of subprocesses (paalready

Work with Python

Above You may never need to use Bash
again, with some dedicated Python
modules at hand

Work with Python

Replace your shell with Python

in Python and is aimed to replace 0s.system, os.spawn’*, os.popen,
popen2* and commands* modules.

0s module
environ: environment represents the OS environment variables in a
string object.

Example:
I import os
I 0s.environ

{“VERSIONER_PYTHON_PREFER_32_BIT’: ‘no’, ‘LC_CTYPE’: ‘UTF-

8, ‘TERM_PROGRAM_VERSION’: 297°, ‘LOGNAME’: ‘kunaldeo’,
‘USER’: ‘kunaldec’, ‘PATH’: ‘/System/Library/Frameworks/
Python.framework/Versions/2.7/bin:/Users/kunaldeo/narwhal/
bin:/opt/local/sbin:/usr/local/bin:/usr/bin:/bin:/usr/sbin:/
sbin:/usr/local/bin:/usr/X11/bin:/opt/local/bin:/Applications/
MOTODEV_Studio_For:_Android_2.0.0_x86/android_sdk/tools:/
Applications/MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk/
platform-tools:/Volumes/CyanogenModWorkspace/bin’, ‘HOME’:
‘/Users/kunaldeo’, ‘PS1’: “\\[\\e[@;32m\\T\\UN\L\We[m\] \\
[\\e[1;34m\INWNI\WNe[m\] WE\e[1;32m\INWSW[\Ne[m\N\] W\
[\\e[1;37m\\]’, ‘NARWHAL_ENGINE’: ‘jsc’, ‘DISPLAY’: ¢/tmp/launch-
s2lUfa/org.x:0’, ‘TERM_PROGRAM’: ‘Apple_Terminal’, ‘TERM’:
‘xterm-color’, ‘Apple_PubSub_Socket_Render’: ¢/tmp/launch-
kDul5P/Render’, ‘VERSIONER_PYTHON_VERSION’: ‘2.7, ‘SHLVL: ‘1,
‘SECURITYSESSIONID”: “186a5’, ‘ANDROID_SDK’: ‘/Applications/
MOTODEV_Studio_For_Android_2.0.0_x86/android_sdk’,’_’: ‘/System/
Library/Frameworks/Python.framework/Versions/2.7/bin/pythor’,
‘TERM_SESSION_ID’: ‘ACFE2492-BB5C-418E-8D4F-84E9CF63B506’,
‘SSH_AUTH_SOCK’: “/tmp/launch-djéMk4/Listeners’, ‘SHELL: ‘/bin/
bash’, ‘TMPDIR’: ‘/var/folders/6s/pgknm8b118737mb8psz8x4z80000
en/T/’, ‘LSCOLORS’: ‘ExFxCxDxBxegedabagacad’, ‘CLICOLOR’: ‘17,
‘__CF_USER_TEXT_ENCODING”: ‘@x1F5:0:0’, ‘PWD’: ‘/Users/kunaldeo’,
‘COMMAND_MODE’: ‘unix20@3’}

You can also find out the value for an environment value:

I os.environ[‘HOME’]
‘/Users/kunaldeo’

Replace your shell with Python

putenv(varname,value) : Adds or sets an environment variable with
the given variable name and value.

getuid() : Return the current process's user id.

getlogin() : Returns the username of currently logged in user
getpid(pid) : Retumns the process group id of given pid. When used
without any parameters it simply returns the current process id.
getcwd() : Retumn the path of the current working directory.
chdir(path) : Change the current working directory to the given path.
listdir(path) : Similar to Is, returns a list with the content of
directories and file available on the given path.

Example:
I o0s.listdir(“/home/homer™)

[‘.gnome2’, ‘.pulse’, ‘.gconf’, ‘.gconfd’, ‘.beagle’,
‘.gnome2_private’, ‘.gksu.lock’, ‘Public’, ‘.ICEauthority’,
‘.bash_history’, ‘.compiz’, ‘.gvfs’, ‘.update-notifier’,
‘.cache’, ‘Desktop’, ‘Videos’, ‘.profile’, ‘.config’, ‘.esd_
auth’, ‘viminfo’, ‘.sudo_as_admin_successful’, ‘mbox’,
‘.xsession-errors’, ‘.bashrc’, ‘Music’, ‘.dbus’, ‘.local’,
‘.gstreamer-0.10’, ‘Documents’, ‘.gtk-bookmarks’, ‘Downloads’,
‘Pictures’, ‘.pulse-cookie’, ‘.nautilus’, ‘examples.desktop’,
‘Templates’, ‘.bash_logout’]

mkdir(path[, model) : Creates a directory with the given path with
the numeric code mode. The default mode is 0777.
makedirs(path[, mode]) : Creates given path (inclusive of all its
directories) recursively. The default mode is 0777

Example:

l import os

l path = “/home/kunal/greatdir”
l os.makedirs(path, 0755);

rename (old,new) : The file or directory “old" is renamed to "new” If

"new” is a directory, an error will be raised. On Unix and Linux, if “"new”
exists and is a file, it will be replaced silently if the user has permission

todo so.

renames (old,new) : Similar to rename but also creates any directories

Work with Python

Above A screenshot of the IPython Gt
console with GUI capabilities

Work with Python Replace your shell with Python

recessively if necessary.

rmdir(path) : Remove directory from the path mentioned. If the path
already has files you will need to use shutil.rmdtree()

subprocess:

call(*popenargs, **kwargs) :Runs the command with arguments.
On process completion it returns the returncode attribute.

Example:
I import subprocess
I print subprocess.call([“1s”,”-1"])

total 3684688
drwx———-— + 5 kunaldeo staff 170 Aug 19 @1:37 Desktop
drwx———-— + 10 kunaldeo staff 349 Jul 26 08:30
Documents
drwx———— + 50 kunaldeo staff 1700 Aug 19 12:50
Downloads
drwx-—-—— @ 127 kunaldeo staff 4318 Aug 19 01:43 Dropbox
drwx-—-—— @ 42 kunaldeo staff 1428 Aug 12 15:17 Library
drwx———— @ 3 kunaldeo staff 102 Jul 3 23:23 Movies
drwx—— + 4 kunaldeo staff 136 Jul 6 08:32 Music
drwx—-—- + 5 kunaldeo staff 170 Aug 12 11:26 Pictures
drwxr-xr-x+ 5 kunaldeo staff 170 Jul 3 23:23 Public
—WXI-XIr=X 1 kunaldeo staff 1886555648 Aug 16 21:02
androidsdk.tar
drwxr-xr-x 5 kunaldeo staff 170 Aug 16 21:05 sdk
drwxr-xr-x 19 kunaldeo staff 646 Aug 19 01:47 src
“rw-r-——r—— 1 root staff 367 Aug 16 20:36
umbrellad.log

STD_INPUT_HANDLE: The standard input device. Initially, this is the
| console input buffer.

Above IPython previously offered a STD_OUTPUT_HANDLE: The standard output device. Initially, this is the
notebook feature, enabling users to create .

HTML documents where images, code active console screen buffer.

and mathematical formulae were correctly . . L. .
formatted. This has since been split off into STD_ERROR_HANDLE: The standard error device. |ﬂ|t|a”y/ this is the active

a separate (but tightly integrated) service
called Jupyter console screen buffer.

Replace your shell with Python

SECTION 2: IPython: a ready-made Python system
shell replacement

In section 1 we have introduced you to the Python modules which
allow you to do system shell-related tasks very easily using vanilla
Python. Using the same features, you can build a fully featured shell
and remove a lot of Python boilerplate code along the way. However,
if you are kind of person who wants everything ready-made, you are in
luck. IPython provides a powerful and interactive Python shell which
you can use as your primary shell. IPython supports Python 26 to 2.7
and 3.1 to0 3.2.. It supports two type of Python shells: Terminal based
and Qt based.

Just to reiterate, IPython is purely implemented in Python and
provides a 100% Python-compliant shell interface, so everything that
you have learnt in section 1 so far can be run inside IPython without
any problems.

IPython is already available in most Linux distributions. Search your
distro’s repositories to look for it. In case you are not able to find it, you
can also install it using easy_install or PyPI.

IPython provides a lot of interesting features which makes it a great
shell replacement. ..

Tab completion: Tab completion provides an excellent way to explore
any Python object that you are working with. It also helps you to avoid
making typos.

Example :

In [3]: import o {hit tab}

objc opcode operator optparse 0s os2emxpath

In [3]: import os

In [4]: os.p <{hit tab}

os.pardir 0s.pathconf_names 0S.popen 0s.popen4
o0s.path 0s.pathsep 0s.popen2 0s.putenv
os.pathconf os.pipe 0s.popen3

Built In Object Explorer:You canadd ?'afterany Python object
to view its details such as Type, Base Class, String Form, Namespace, File
and Docstring.

Work with Python

Work with Python

Replace your shell with Python

Example:
In [28]: os.path?
Type: module

Base Class: <type ‘module’>

String Form:<module °‘posixpath’ from ¢/System/Library/
Frameworks/Python.framework/Versions/2.7/1ib/python2.7/
posixpath.pyc’>

Namespace: Interactive

File: /System/Library/Frameworks/Python.framework/
Versions/2.7/1ib/python2.7/posixpath.py

Docstring:

Common operations on POSIX pathnames.

Instead of importing this module directly, import os and refer to this
module as os.path. The ‘ospath’name is an alias for this module on
POSIX systems; on other systems (eg Mac, Windows), os.path provides
the same operations in a manner specific to that platform, and is an
alias to another module (eg macpath, ntpath).

Some of this can actually be useful on non-POSIX systems too, eg for
manipulation of the pathname component of URLs. You can also use
double question marks (??) to view the source code for the relevant object.

Magic functions: IPython comes with a set of predefined ‘magic
functions' that you can call with a command-line-style syntax. IPython
‘magic’ commands are conventionally prefaced by %, but if the flag
Y%automagic is set to on, then you can call magic commands without
the 9%. To view a list of available magic functions, use ‘magic function
%lsmagic’ They include functions that work with code such as %run,
%edlit, %macro, %recall etc; functions that affect shell such as %colors,
%xmode, Y%autoindent etc; and others such as %reset, %timeit, %paste
etc. Most cool features of IPython are powered using magic functions.

Example:

In [45]: %lsmagic

Available magic functions:

%alias %autocall %autoindent %automagic %bookmark %cd
%colors %cpaste %debug %dhist %dirs %doctest_mode %ed
%edit %env %gui %hist %history %install_default_config
%install_profiles %load_ext %loadpy %logoff %logon
%logstart %logstate %logstop %lsmagic %macro Y%magic

Replace your shell with Python

%oage Ypaste Ypastebin %pdb %pdef %pdoc Ypfile
%oinfo %pinfo2 %popd %pprint %precision %profile %prun
%osearch %psource %pushd %pwd %pycat %pylab %quickref
%recall %rehashx %reload_ext %rep %rerun %reset
%reset_selective %run %save %sc %sx %tb %time %timeit
%unalias %unload_ext Y%who %who_ls %whos %xdel %xmode

Automagic is OFF, % prefix IS needed for magjic functions. To view help

on any Magic Function, call ‘9%somemagic?” to read its docstring.
Python script execution and runtime code editing: You can use %run

to run any Python script. You can also control-run the Python script with

pdb debugger using -d, or pdn profiler using -p. You can also edit a

Python script using the %edit command which opens the given Python

script in the editor defined by the SEDITOR environment variable.

Shell command support:To just run a shell command, prefix the
command with !,

Example :
In [5]: !ps

PID TTY TIME CMD
4508 ttys000 0:00.07 -bash
84275 ttysool 0:00.03 -bash
17958 ttys0e02 0:00.18 -bash

In [8]: !clang prog.c -0 prog

prog.c:2:1: warning: type specifier missing, defaults to
‘int’ [Wimplicit-int]

main()

Ammns

1 warning generated.

Qt console : IPython comes with a Qt-based console. This provides
features only available in a GUI, like inline figures, multiline editing with
syntax highlighting, and graphical calltips. Start the Qt console with:

I $ ipython gtconsole

If you get errors about missing modules, ensure that you have installed
dependent packages — PyQt, pygments, pyexpect and ZeroMQ.

Work with Python

Conclusion

As you can see, it's easy to

tailor Python for all your shell
environment needs. Python
modules like os, subprocess

and shutil are available at

your disposal to do just about
everything you need using
Python. IPython turns this whole
experience into an even more
complete package. You get

to do everything a standard
Python shell does and with
much more convenient features.
IPython’s magic functions really
do provide a magical Python
shell experience. So next time
you open a Bash session, think
again: why settle for gold when
platinum is a step away?

Work with Python

What you'll need...

NumPy
www.numpy.org
SciPy
WWW.5Cipy.org

Matplotlib

www.matplotlib.org

Scientific computing with NumPy

Scientific
computing
with NumPy

Make some powerful calculations with NumPy,
SciPy and Matplotlib

NumPy is the primary Python package for performing scientific
computing. It has a powerful N-dimensional array object, tools

for integrating C/C++and Fortran code, linear algebra, Fourier
transform, and random number capabilities, among other things.
NumPy also supports broadcasting, which is a clever way for
universal functions to deal in a meaningful way with inputs that do
not have exactly the same form.

Apart from its capabilities, the other advantage of NumPy is that it
can be integrated into Python programs. In other words, you may
get your data from a database, the output of another program, an
external file or an HTML page and then process it using NumPy.

This article will show you how to install NumPy, make calculations,
plot data, read and write external files, and it will introduce you to
some Matplotlib and SciPy packages that work well with NumpPy.

NumPy also works with Pygame, a Python package for creating
games, though explaining its use is unfortunately beyond of the
scope of this article.

Itis considered good practice to try the various NumPy
commands inside the Python shell before putting them into
Python programs. The examples in this article use either Python
shell or iPython.

Scientific computing with NumPy

Asimple Python
program for
Polynomial Fitting!

APython script
that uses SciPy to
process animage

Installing NumPy

O Most Linux distributions have a

ready-to-install package you can
use. After installation, you can find out
the NumPy version you are using by
executing the following:

Is python

B Python 2.7.3 (default, Mar 13
2014, 11:03:55)

B [ocC 4.7.21 on linux2

l Type “help”, “copyright”,
“credits” or “license” for
more information.

l >>> numpy.version.version

l Traceback (most recent call
last):

B File stdin>”, line 1, in
<module>

. NameError: name ‘numpy’ isnot
defined

l >>> import numpy

I >>> numpy.version.version

§ 162

B>

Not only have you found the NumPy
version but you also know that NumPy
is properly installed.

About NumPy

02 Despite its simplistic name,
NumPy is a powerful Python
package that is mainly for working
with arrays and matrices. There are
many ways to create an array but the
simplest one is to make use of the
array() function:

I >>> oneD = array([1,2,3,4])

The aforementioned command
creates a one-dimensional array. If you
want to create a two-dimensional
array, you can use the array() function
as follows:

B > twoD = array([[1,2,3],

Work with Python

Matplotlib
generated output

Finding help
iseasy

i .. [3,3,3],
i.. [-1,-0.5,4],
i .. [0,1,011)
You can also create arrays with some
more dimensions.

Making simple calculations
using NumPy

0 Given an array named myArray,

you can find the minimum and
maximum values in it by executing the
following commands:

B >> myArray.minQ
B >>> myArray.max()

Should you wish to find the mean value
of all array elements, you can run the
next command:

B >>> myArray.mean()

Similarly, you can find the median of the

Work with Python

array by running the following
Python command:

B >>> median(myArray)

The median value of a set is an element
that divides the data set into two
subsets (left and right subsets) with the
same number of elements. If the data
set has an odd number of elements,
then the median is part of the data set.
On the other side, if the data set has an
even number of elements, then the
median is the mean value of the two
centre elements of the sorted data set.

Using arrays with NumPy

04 NumPy not only embraces
the indexing methods used
in typical Python for strings and lists
but also extends them. If you want to

select a given element from an array,
you can use the following notation:

B > twoD[1,2]

You can also select a part of an array (a
slice) using the following notation:

l >>> twoD[:1,1:3]

Finally, you can convert an array into a
Python list using the tolist() function.

Scientific computing with NumPy

Reading files
Imagine that you have just

O extracted information from an
Apache log file using AWK and you
now want to go and process the text
file using NumPy.

The following AWK code finds out
the total number of requests per hour:

I $ cat access.log | cut -d[
-f2 | cut -d] -f1 | awk -F:
“print $2}’ | sort -n | uniq
-c | awk ‘{print $2, $1} >
timeN.txt

The format of the text file (timeN.txt)
with the data is the following:

B oo 101
| W7l
| 2BV
| IR

Reading the timeN.txt file and
assigning it to a new array variable can
be done as follows:

Ba- np.loadtxt(“timeN.txt”)

Writing to files

O Writing variables to a file
is largely similar to reading

“When you apply
a function to an
array, the function
is automatically
applied to all of the
array elements”

afile. If you have an array variable
named aal, you can easily save its
contents into a file called aal.txt by
using the following command:

I In [17]: np.savetxt(“aal.txt”,
aal)

As you can easily imagine, you can
read the contents of aal.txt later by
using the loadtxt() function.

Common functions

O NumPy supports many
numerical and statistical

functions. When you apply a function
to an array, the function is then
automatically applied to all of the
array elements.

When working with matrices, you
can find the inverse of a matrix AA
by typing "AA.I". You can also find
its eigenvalues by typing “np.linalg.
eigvals(AA)" and its eigenvector by
typing “np.linalg.eig(BB)".

Working with matrices

A special subtype of a two-
08 dimensional NumPy array is
a matrix. A matrix is like an array except
that matrix multiplication replaces
element-by-element multiplication.

Matrices are generated using
the matrix (or mat) function as follows:

Bin2: AA=npmatCo 1 1; 1
11,111)

Scientific computing with NumPy Work with Python

ID/var — 33h — 30x45

root@mall:~# apt-get install python-matplotlib

Reading package 1 Done

Building dependency treée

Reading state information... Do

The following extra age be installed:
blt fonts-lyx girl lib-2.8 libgire itary-1.8-1 libglade?-8 python-caire
python—dateutil python-gi p51hﬂﬂ glade? python-gobject python-gobject-2 python-gthk2
python-matplotlib-data python-pyparsing python-tk python-tz

Sugoested packages:

python-gi-cairo python-gtk2-doc python-gobject-2-dbg dvipng ipytho
onfigob)] python-excelerator rthon-matplotlib—doc python-gtd4 python-tralts

python-wxgtk2.8 texlive-extra-utils ive-latex-extra tix

The following NEW packages will be installed:
blt font girl.2-glib-2.8 libgirepository-1.8-1 Libglade2-# pythen-calro
python-dateutil python-gi python-glade? python-gobject python-gobject-2 python-gtk2
pyth aatplotlib python-matplotlib-da python-pyparsing python-tk python—tz

@ upgraded, 17 newly installed, @ to remowve and @ not upgraded.

MNeed to get 10.4 M8 of & ives.

After this operation, 31.3 MB of additional disk space w be used.

Do you nue [Y/n]l? ¥

Get:1 http ’ debinn.org/debian/ ezy /e blt amdB4 2. «2 [1,694 KB}

debian.org/deblan/ / n fonts=lyx all 2.8.3-3 [167 k8]

Get:: t t .debian.org/deblan/ whe / libgirepository=1.8-1 amdf4d 1.32.1

@7 ki)

Gel:d 4 Tl;l.-..'s.dl:b;gll.ung.-'lf::uhﬂ f

Get:5 /i ftp. debian.org/deb

Get:6 tp.us.debian.org/debian

Get:7 «debisn,org/debian/

k]

Get +us.debian.org/debian/ = 8 python-gi amdé4 3.2.2-

. ftp.us.debian.org/debian/ wh main python-gobijec amdbid

t10 http://ftp.us.debian.org/debian/ Wi fmain python-gtk2 amd6d4 2.24.8-3+bl 1,805 k
http://ftp.us.debian.org/debian/ wheery/main python-glade? amdbd 2.24.8-3

t12 http://ftp.us.debian.org/debian/ wheezy/main python-gobject all 3.2.2-2
f/ftp.us.debian.org/debian/ wheery/ma python-satplotlib~data all 1.1.1~r
057 k8]
Get: s/ /ftp.us.debian.org bian/ whee ain python-pyparsing all 1.5.6+dfsqgl-

Get:15 hytp:// .us,debian.org/debian/ wheez python
Get:16 1/ fftp.us.debian.org/debian/ whee python-matplotl
695

s.debian.org/debian/ wheez python-tk amd&d

You can add matrices named AA and dependencies that you should

BB by typing AA + BB. Similarly, you also install. The first thing you will p .
can multiply them by typing AA * BB. learn is how to plot a polynomial 'Tl’y the Various

. . . function. The necessary commands
Plotting with Matplotlib for plotting the 3x\2-x+1 Num Py o
prmmmmmmm s polynomial are the following: Commands |nS|de
The first move you should "
O make is to install Matplotlib. Bl import numpy as np the Python She”

As you can see, Matplotlib has many W import matplotlib.pyplot

Work with Python

as plt
I myPoly = np.polyld(np.
array([3, -1, 1D).
astype(float))
B x = np.linspace(-5, 5, 100)
By = myPoly®
| | plt.xlabel(‘x values’)
I plt.ylabel(‘f(x) values’)
I xticks = np.arange(-5, 5, 10)
l yticks = np.arange(@, 100,
10)
. plt.xticks(xticks)
[| plt.yticks(yticks)
I plt.grid(True)
I plt.plot(x,y)

The variable that holds the
polynomial is myPoly. The range of
values that will be plotted for x is
defined using “x = np.linspace(-5, 5,
100)". The other important variable
is y, which calculates and holds the
values of f(x) for each x value.

Itis important that you start
ipython using the “ipython
--pylab=qt" parameters in order
to see the output on your screen.
If you are interested in plotting
polynomial functions, you should
experiment more, as NumPy can
also calculate the derivatives of a
function and plot multiple functions
in the same output.

About SciPy

1 SciPy is built on top of NumPy
and is more advanced than

NumPy. It supports numerical

integration, optimisations, signal

processing, image and audio

processing, and statistics.

The example below uses just one

"For plotting
polynomial
functions,

experiment more”

Scientific computing with NumPy

small part of the scipy.stats
package about statistics.

B 10 [361: from scipy.stats
import poisson, lognorm
B 1n 0372: mysh = 10;
B 1 383 myMu = 10;
B1npon 1n=
lognorm(mySh)
| BURETIR p = poisson(myMu)
| BONCAY 1n.rvs((19,))
B outs1:
B array(@ 9.29393114e-
02, 1.15957068e+01,
9.78411983e+01,
8.26370734e-
a7, 5.64451441e-03,
4.61744055e-09,
4.98471222e-
06, 1.45947948e+02,
9.25502852e-06,
| 5.87353720e-021)
| BONC7E p.rvs((19,))
B outl421: array(f12, 11, 9,
9, 9,10, 9, 4, 13, 8D
B In M31: 1n.pdf(3)
B outr43n:
0.013218067177522842

The example uses two statistics
distributions and may be difficult
to understand, but it is presented
in order to give you a better taste
of SciPy commands.

g g o ey

mUﬁ qystE

d ninl&-tfﬁt""r

e

upe
0 sl
':_1,}1315'(- xr‘lU n I

o0+ 20

Using SciPy forimage
processing

1 1 Now we will show you how

to process and transform a
PNG image using SciPy. The most
important part of the code is the
following line:

1l image = np.array(Image.
open(‘SA.png’).convert(‘L’))

This line allows you to read a usual
PNG file and convert it into a NumPy
array for additional processing. The
program will also separate the output
into four parts and displays a different
image for each of these four parts.

Other useful functions
1 2 It is very useful to be able to
find out the data type of the
elements in an array; it can be done
using the dtype() function. Similarly,
the ndim() function returns the
number of dimensions of an array.
When reading data from external
files, you can save their data columns
into separate variables using the
following method:

I In [10]: aal,aa2 =

Scientific computing with NumPy

Work with Python

np.loadtxt(“timeN.txt”,
usecols=(0,1), unpack=True)

The aforementioned command saves
column 1 into variable aal and column
2 into variable aa2. The “unpack=True"
allows the data to be assigned to two
different variables. Please note that the
numbering of columns starts with 0.

Fitting to polynomials

frrr

1 The NumPy polyfit() function
tries to fit a set of data points

to a polynomial. The data was found

from the timeN.txt file, created earlier.

The Python script uses a fifth degree
polynomial, but if you want to use a
different degree instead then you only
have to change the following line:

l coefficients = np.polyfit(aal,
aa2, 5)

Array broadcasting in
NumPy

1 To close, we will talk more about
array broadcasting because it
is a very useful characteristic. First, you

Above Fitting to Polynomials

should know that array broadcasting
has a rule: in order for two arrays to
be considered for array broadcasting,
“the size of the trailing axes for both
arrays in an operation must either be
the same size or one of them must
be one”

Put simply, array broadcasting
allows NumPy to ‘change” the
dimensions of an array by filling
it with data in order to be able to
do calculations with another array.
Nevertheless, you cannot stretch
both dimensions of an array to do
your job.

63

Work with Python Python for system administrators

What you'll need...

e Python for system

Python development libraries, required
for compiling third-party Python

module ° °
ddministrators
setuptools allows you to download, :

build, install, upgrade, and uninstall
Python packages with ease

Learn how Python can help by daring to replace the
usual shell scripting. ..

System administration is an important part of our computing

[\[o] ¢ - environment. It does not matter whether you are managing systems
This is wiitten for the Python at your work our home. Linux, being a UNIX-based operating system,
2X series, asitis stll the most already has everything a system administrator needs, such as the

popular and default Python : . .
Tt —— [} world-class shells (not just one but many, including Bash, csh, zsh etc),

platforms (including all Linux * handy tools, and many other features which make the Linux system an

distros, BSDs and Mac OS X).

administrator's dream. So why do we need Python when Linux already
has everything built-in? Being a dynamic scripting language, Python

is very easy to read and learn. That's just not us saying that, but many
Linux distributions actually use Python in core administrative parts. For
example, Red Hat (@and Fedora) system setup tool Anaconda is written
in Python (read this line again, got the snake connection?). Also, tools like
GNU Mailman, CompizConfig Settings Manager (CCSM) and hundreds
of tiny GUl'and non-GUI configuration tools are written using Python.
Python does not limit you on the choice of user interface to follow — you
can build command-line, GUI and web apps using Python. This way, it
has got covered almost all the possible interfaces. Here we will look into
executing sysadmin-related tasks using Python.

Parsing configuration files

Configuration files provide a way for applications to store various
settings. In order to write a script that allows you to modify settings of
a particular application, you should be able to parse the configuration
file of the application. In this section we learn how to parse INI-style
configuration files. Although old, the INI file format is very popular with
much modern open source software, such as PHP and MySQL.

Excerpt for php.ini configuration file:
| G
engine = On

Python for system administrators

l zend.zel_compatibility_mode = Off
I. short_open_tag = On

I asp_tags = Off

Iprecision = 14

l y2k_compliance = On

I output_buffering = 4096

l ;output_handler =

l zlib.output_compression = Off

I tysou

l ; Allow or prevent persistent links.
I mysql.allow_persistent = On

I mysql.max_persistent = 20

I mysqgl.max_links = -1

l mysqgl.default_port = 3306

I mysqgl.default_socket =

l mysqgl.default_host = localhost

I mysql.connect_timeout = 60
mysqgl.trace_mode = Off

Python provides a built-in module called
ConfigParser (known as configparser in Python
3.0). You can use this module to parse and create
configuration files.

@code: writeconfig.py
@description: The following demonstrates adding
MySQL section to the phpini file.

@warning: Do not use this script with the actual php.

ini file, as it's not designed to handle all aspects of a
complete php.nifile.

l import ConfigParser
l config = ConfigParser.RawConfigParser()

I config.add_section(‘MySQL’)

I config.set(‘MySQL’,’mysql.trace_mode’,’0ff”)

I config.set(‘MySQL’,’mysql.connect_
timeout’,’60’)

I config.set(‘MySQL’,’mysql.default_

Work with Python

host’,’localhost’)

I config.set(‘MySQL’,’mysql.default_
port’,’3306’)

I config.set(‘MySQL’,’mysql.allow_persistent’,
‘on’)

I config.set(‘MySQL’,’mysql.max_
persistent’,’20”)

with open(‘php.ini’,
config.write(configfile)

‘ap’) as configfile:

Output:php.ini

[MySQL]

mysql.max_persistent = 20
mysql.allow_persistent = On
mysql.default_port = 3306
mysqgl.default_host = localhost

i
i
o
Io
i
i
i
1
l mysql.trace_mode = Off
I
i
i
i
i
|
i
i

mysql.connect_timeout = 60

@code: parseconfig.py

@description: Parsing and updating the
config file

import ConfigParser

config = ConfigParser.ConfigParser()
config.read(‘php.ini’)

Print config values

print config.get(‘MySQL’,’mysqgl.default_
host”)

I print config.get(‘MySQL’,’mysqgl.default_
port’)
config.remove_option(‘MySQL’,’mysql.trace_
mode’)

I with open(‘php.ini’, ‘wb’) as configfile:

config.write(configfile)

Parsing JSON data

JSON (also known as JavaScript Object Notation) is a
lightweight modern data-interchange format. JSSON is
an open standard under ECMA-262. It is a text format

Work with Python

and is completely language-independent. JSSON is
also used as the configuration file format for modern
applications such as Moxzilla Firefox and Google
Chrome. JSON is also very popular with modern
web services such as Facebook, Twitter, Amazon EC2
etc. In this section we will use the Python module
‘Ssimplejson’ to access Yahoo Search (using the Yahoo
Web Services API), which outputs JSON data.

To use this section, you should have the following:

1. Python module: simplejson.
Note: You can install Python modules using the
command ‘easy_install <module name>' This
command assumes that you have a working internet
connection.
2. Yahoo App ID:
The Yahoo App ID can be created from https./
developerappsyahoo.com/dashboard/createKey.
html. The Yahoo App ID will be generated on the
next page. See the screenshot below for details.
simplejson is very easy to use. In the following
example we will use the capability of mapping
JSON data structures directly to Python data types.
This gives us direct access to the JSON data without
developing any XML parsing code.

JSON PYTHON DATA MAPPING

object | dict

string | unicode

number (real) | float

FALSE | FALSE

Python for system administrators

For this section we will use the simplejson.load
function, which allows us to deserialise a JSON object
into a Python object.

I @code: LUDSearch.py

l import simplejson, urllib

I APP_ID = ‘xxxxxxxx’ # Change this to
your APP ID

l SEARCH_BASE = ‘http://search.yahooapis.
com/WebSearchService/V1/webSearch’

I class YahooSearchError(Exception):
I pass

I def search(query, results=20, start=l,

**kwargs):
kwargs.update({

| ‘appid’: APP_ID,

I ‘query’: query,

I ‘results’: results,

I ‘start’: start,

I ‘output’: ‘json’

I

| url = SEARCH_BASE + ‘2 + urllib.
urlencode(kwargs)

l result = simplejson.load(urllib.
urlopen(url))

I if ‘Error’ in result:

l # An error occurred; raise an
exception

I raise YahooSearchError,
result[‘Error’]

I return result[‘ResultSet’]

Let's use the code listed above from the Python shell
to see how it works. Change to the directory where
you have saved the LUDYSearch.py and open a
Python shell.

I @code: Python Shell Output. Lines

Python for system administrators

"""'il want 1o use some Yanoo

=
W smed sy |mfermnion fomem pons

F

SLUBMIT THIS FORM»

L [al

Work with Python

Applicaiion Nam

LUDPy Search

(CeriiDesiie ' F)

Hind af Applis stinan

Descriplion An App in Anmeeairats e (SOM parung weg Pynee
£ & fras echmry e e
Favicon URL: Tiip wwe yoursle com TenAgo oo
TS .
rt o FIiVeY
Varemi ALY yes P Cldut pretsel ler sasora calptes of A5 gy g

Accosy Fopey AT

il CEE s onadiveg e s and we reeed gt ateat of

Appucation Uwner

Rl

Contsct Emall huneioeol00 ! Gryahes com

Torns of Use: B 1 hans roas ane sgres 1 ma Yire

Get APl Koy Cancal

Above Generating the Yahoo App ID

starting with ‘>>>’ indicate input
l >>> execfile(“LUDYSearch.py”)

>>> results = search(‘Linux User and

Developer?”)
l >>> results[‘totalResultsAvailable’]
§ 123000000
l >>> results[‘totalResultsReturned’]
i »
I >>> items = results[‘Result’]
l >>> for Result in items:

print Result[‘Title’],Result[‘Url’]

Linux User hittp:/wwwiinuxuser.co.uk/
Linux User and Developer - Wikipedia, the free

scpar Matamun, Tarme of Ut

encyclopedia http./enwikipedia.org/wiki/Linux_
User_and_Developer

Linux User &amp; Developer | Linux User http/
wwwilinuxuserco.uk/tag/linux-user-developer/

Gathering system information

An important job for a system administrator is
gathering system information. Here we will use the
SIGAR (System Information Gatherer And Reporter)
APl to demonstrate how we can gather system
information using Python. SIGAR is a very complete
APl and can provide lots of information, including:

1. Systemn memory, swap, CPU, load average,
uptime, logins.

Work with Python

2. Per-process memory, CPU, credential info, state,
arguments, environment, open files.

3. File system detection and metrics.

4. Network interface detection, configuration info
and metrics.

5.TCP and UDP connection tables.

6. Network route table.

Installing SIGAR

The first step is to build and install SIGAR. SIGAR is
hosted at GitHub, so make sure that you have Git
installed in your system. Then perform the following
steps to install SIGAR and its Python bindings:

I $ git clone git://github.com/hyperic/
sigar.git sigar.git

I $ cd sigar.git/bindings/python

I $ sudo python setup.py install

At the end you should see a output similar to the
following :

Writing /usr/local/lio/python2.6/dist-packages/
pysigar-0.1.egg-info

SIGARis a very easy-to-use library and can be used to

get information on almost every aspect of a system.
The next example shows you how to do this. The
following code shows the memory and the file
system information.

I @code: PySysInfo.py
I import os

I import sigar

I sg = sigar.open()
I mem = sg.mem()

I swap = sg.swap()

i
1
i
|

fsllst sg.file_system_list()

print ‘“\tTotal\tUsed\tFree”

print ‘“Mem:\t”\

Python for system administrators

(mem.total() / 1024), \
(mem.used() / 1024), \
(mem.free() / 1024)

print “Swap:\t”, \
(swap.total() / 1024), \
(swap.used() / 1024), \
(swap.free() / 1024)

pr1nt “RAM:\t”, mem.ram(), “MB”

File System

i

|

|

i

i

|

i

i

i

I def format_size(size):

I return sigar.format_size(size * 1024)

I print ‘Filesystem\tSize\tUsed\tAvail\

tUse%\tMounted on\tType\n’

I for fs in fslist:

I dir_name = fs.dir_name()

I usage = sg.file_system_usage(dir_

name)

I total = usage.total()

I used = total - usage.free()

I avail = usage.avail()

I pct = usage.use_percent() * 100

I if pct == 0.0:

| pct =

I print fs.dev_name(), format_
size(total), format_size(used), format_
size(avail),\

pct, dir_name, fs.sys_type_

name(), /’, fs.type_name()

I @output

Total Used Free

Mem: 8388608 6061884 2326724

131072 16048 115024
RAM: 8192 MB

I ==========Fjle System
Information============

I Filesystem Size Used Avail

Use% Mounted on Type

Python for system administrators

B /dev/diskes2 300G 1756 124G 59.0 / hfs /
local

B devfs 191K 191K o
none

- /dev devfs /

Accessing Secure Shell (SSH) services

SSH (Secure Shell) is a modern replacement for an
old remote shell system called Telnet. It allows data to
be exchanged using a secure channel between two
networked devices. System administrators frequently
use SSH to administrate networked systems. In
addition to providing remote shell, SSH s also used
for secure file transfer (using SSH File Transfer Protocol,
or SFTP) and remote X server forwarding (@llows

you to use SSH clients as X server). In this section we
will learn how to use the SSH protocol from Python
using a Python module called paramiko, which
implements the SSH2 protocol for Python.

paramiko can be installed using the following steps:

I $ git clone https://github.com/robey/
paramiko.git

I $ cd paramiko

l $ sudo python setup.py install

To the core of paramiko is the SSHClient class. This
class wraps L{Transport}, L{Channel}, and L{SFTPClient}
to handle most of the aspects of SSH. You can use
SSHClient as:

B client = ssHClient()

I client.load_system_host_keys()

l client.connect(‘some.host.com’)

l stdin, stdout, stderr = client.exec_
command(‘dir’)

The following example demonstrates a full SSH client
written using the paramiko module.

I @code: PySSHClient.py

Work with Python

l import base64, getpass, os, socket, sys,
socket, traceback

I import paramiko
import interactive

I # setup logging

I paramiko.util.log_to_file(‘demo_simple.
log”)

I # get hostname

I username = ¢

I if len(sys.argv) > 1:

I hostname = sys.argv[1]

I if hostname.find(‘@’) >= o:

l username, hostname = hostname.

split(‘@’)

l else:

I hostname = raw_input(‘Hostname:)

I if len(hostname) ==

l print ‘**x Hostname required.’

I sys.exit(l)

I port = 22

l if hostname.find(‘:’) >= o:

I hostname, portstr = hostname.
split(‘:’)

I port = int(portstr)

I # get username

I if username == ¢:

I default_username = getpass.getuser()

I username = raw_input(‘Username [%s]:
¢ % default_username)

I if len(username) ==

I username = default_username

I password = getpass.getpass(‘Password for
%s@%hs: ¢ % (username, hostname))

I # now, connect and use paramiko Client
to negotiate SSH2 across the connection

I try:

I client = paramiko.SSHClient()

I client.load_system_host_keys()

I client.set_missing_host_key_

policy(paramiko.WarningPolicy)

Work with Python

print ‘**x Connecting...’

client.connect(hostname, port,
username, password)

chan = client.invoke_shell()

print repr(client.get_transport())

print ‘“**x SSH Server Connected!
*kk’

print

interactive.interactive_shell(chan)

chan.close()

client.close()
except Exception, e:

print ‘**x Caught exception: %s:
%S’ % (e.__class__, e)

traceback.print_exc()

try:

client.close()
except:
pass
sys.exit(l)

To run this code you will also need a custom Python
class interactive py which implements the interactive
shell for the SSH session. Look for this file on FileSilo
and copy it into the same folder where you have
created PySSHClient.py .

I @code_Output

I kunal@ubuntu-vm-kdeo:~/src/paramiko/

demos$ python demo_simple.py

P Hostname: 192.168.1.2

I Username [kunall: luduser

I Password for luduser@192.168.1.2:

I **x Connecting...

I <paramiko.Transport at @xb7620lacL
(cipher aesl28-ctr, 128 bits) (active; 1
open channel(s))>
*xx SSH Server Connected! **x

I Last login: Thu Jan 13 ©2:01:06 2011
from 192.168.1.9

Python for system administrators

I s

If the host key for the SSH server is not added to your
SHOME/ssh/known_hosts file, the client will throw
the following error:

l *%x Caught exception: <type ‘exceptions.
TypeError’>: unbound method missing_
host_key() must be called with
WarningPolicy instance as first
argument (got SSHClient instance
instead)

This means that the client cannot verify the
authenticity of the server you are connected to. To
add the host key to known_hosts, you can use the
ssh command. It is important to remember that this
is not the ideal way to add the host key; instead you
should use ssh-keygen. But for simplicity’s sake we
are using the ssh client.

I kunal@ubuntu-vm-kdeo:~/.ssh$ ssh
luduser@192.168.1.2

I The authenticity of host ‘192.168.1.2
(192.168.1.2)’ can’t be established.

I RSA key fingerprint is be:01:76:6a:b9:bb:6
9:64:e3:dc:37:00:a4:36:33:d1.

I Are you sure you want to continue
connecting (yes/no)? yes

I Warning: Permanently added ‘192.168.1.2’
(RSA) to the list of known hosts.

So now you've seen just how easy it can be to carry
out the complex sysadmin tasks using Python’s
versatile language.

As is the case with all Python coding, the code that
is presented here can fairly easily be adopted into
your GUI application (using software such as PyGTK
or PyQt) or a web application (using a framework
such as Django or Grok).

stem administrators

Writing a user interface using Python

Administrators are comfortable with running raw scripts by
hand, but end-users are not. So if you are writing a script that

is supposed to be used by common users, it is a good idea to
create a user-friendly interface on top of the script. This way
end-users can run the scripts just like any other application. To
demonstrate this, we will create a simple GRUB configuration
tool which allows users to select default boot entry and

the timeout. We will be creating a TUI (text user interface)
application and will use the Python module ‘snack’ to facilitate
this (not to be confused with the Python audio library, tksnack).

This app consists of two files. ..

grub.py: GRUB Config File (grub.conf) Parser (available on
FileSilo). It implements two main functions, readBootDB() and
writeBootFile(), which are responsible for reading and writing
the GRUB configuration file.

grub_tui.py: Text user interface file for manipulating the GRUB
configuration file using the functions available in grub.py.

@code:grub_tui.py
import sys
from snack import *

l from grub import (readBootDB, writeBootFile)

def main(entry_value="1’,kernels=[1):
try:
(default_value, entry_value,
kernels)=readBootDB()
except:
print > sys.stderr, (“Error reading /boot/
grub/grub.conf.”)
sys.exit(10)

screen=SnackScreen()

while True:
g=GridForm(screen, (“Boot configuration™),1,5)
if len(kernels)>0 :
1li=l istbox(height=len(kernels), width=20,
returnExit=1)
for i, x in enumerate(kernels):
1i.append(x,i)
g.add(li, o, 0)
li.setCurrent(default_value)

bb = ButtonBar(screen, (((“Ok™), “ok™),
((“Cancel”), “cancel”)))

e=Entry(3, str(entry_value))
1=Label((“Timeout (in seconds):”))

Work with Python

gg=6rid(2,1)
gg.setField(1,0,0)
gg.setField(e,1,0)

g.add(Label(*),0,1)

g.add(gg,9,2)

g.add(Label(*"),9,3)

g.add(bb,0,4,growx=1)

result = g.runOnce()

if bb.buttonPressed(result) = ‘cancel’:
screen.finish()
sys.exit(0)

else:
entry_value = e.value()
try :

¢ = int(entry_value)
break

except ValueError:
continue

writeBootFile(c, li.current())
screen.finish()

|
|
I if __name_= ‘_main_":
I min0

Start the tool using the sudo command (as it reads the grub.
conffile)

I $ sudo grub_tui.py

Work with Python

What you’II need

Beautlful Soup
www.crummy.com/software/
BeautifulSoup/

HTML5Lib
https://github.com/html5lib/
htmi5lib-python

Python 2.6+ &WikiParser.
zip Six
https:/pypi.python.org/pypi/six/

Infinite Links

Wikipedia has a lot of links and
when you start following links

to links to links, the number of
pages you have to parse can
grow exponentially, depending
on the subject matter. By passing
through the levels value, we put a
cap on the amount of pages we
can grab— although the number
of files stored can still vary greatly.
Use it wisely.

Scrape Wikipedia with Beautiful Soup

Scrape
Wikipedia with
Beautiful Soup

Use the Beautiful Soup Python library to parse
Wikipedia's HTML and store it for offline reading

In this tutorial we'll use the popular Python library Beautiful Soup to
scrape Wikipedia for links to articles and then save those pages for offline
reading. This is ideal for when travelling or in a location with a poor
internet connection.

The plan is simple: using Beautiful Soup with the HTML5Lib Parser,
we're going to load a Wikipedia page, remove all of the GUland
unrelated content, search the content for links to other Wikipedia articles
and then, after a tiny bit of modification, write them to a file.

Even though it's now the de facto knowledge base of the world,
Wikipedia isn't great when it comes to DOM consistency — that is, IDs and
classes are sometimes quite loose in their usage. Because of this, we will
also cover how to handle all of the excess bits and bobs of the Wikipedia
GUI that we don't need, as well as the various erroneous links that won't
be of much use to us. You can find the CSS stylings sheet and a Python
script pertaining to this tutorial at http:/bit.ly/19MibBv.

Install Beautiful Soup & HTMLS5Lib

01 Before we can start writing code, we need to install the libraries we'll be using
for the program (Beautiful Soup, HTML5Lib, Six). The installation process is
fairly standard: grab the libraries from their respective links, then unzip them. In

the terminal, enter the unzipped directory and run python setup.py install for each
library. They will now be ready for use.

“Wikipedia isn't great when it comes
to DOM consistency”

1 Import libraries
These are the
libraries we are
going to be using
for this program

2 Set up variables
These are some
variables we'll use
to keep track of the
script’s progress

3 Initialisation
This is the initialising
function that we
will use to handle
the input coming
from the user

Scrape Wikipedia with Beautiful Soup

o1

—

—

Work with Python

Full code listing

import os, sys, urllib2, argparse, datetime, atexit
from bs4 import BeautifulSoup

addresses = []
deepestAddresses = []

maxLevel = 1
storeFolder = “Wikistore “ + str(datetime.datetime.now().strftime(“%Y-%m-%d %H:%M”))

undesirables = [{“element” : “table”, “attr” : {‘class’ ‘infobox’} 3}, {“element” :
“table”, “attr” : {‘class’ ‘vertical-navbox’}}, {“element” : “span”, “attr” : {‘class’
‘mw-editsection’}}, {“element” : “div”, “attr” : {‘class’ ‘thumb’}}, {“element”
: “sup”, “attr” : {‘class’ ‘reference’}}, {“element” : “div”, “attr” : {‘class’
‘reflist’}}, {“element” : “table”, “attr” : {‘class’ ‘nowraplinks’}}, {“element” :
“table”, “attr” : {‘class’ ‘ambox-Refimprove’}}, {“element” : “img”, “attr” : None},
{“element” : “script”, “attr” : None}, {“element” : “table”, “attr” : {‘class’
‘mbox-small’}} , {“element” : “span”, “attr” : {“id” : “coordinates”}}, {“element” :
“table”, “attr” : {“class” : “ambox-Orphan”}}, {“element” : “div”, “attr” : {“class” :
“mainarticle”}}, {“element” : None, “attr” : {“id” : “References”}}]

def init():

parser = argparse.ArgumentParser(description="Handle the starting page and number
of levels we\'re going to scrape’)

parser.add_argument(‘-URL’, dest="link’, action=’store’, help="The Wikipedia page
from which we will start scraping’)

parser.add_argument(‘-levels’, dest="levels”, action=’store’, help="How many levels
deep should the scraping go’)

args = parser.parse_args()

if(args.levels != None):
global maxLevel8
maxLevel = int(args.levels)

if(args.link == None):
print(“You need to pass a link with the -URL flag”)
sys.exit(0)
else:
if not os.path.exists(storeFolder):
os.makedirs(storeFolder)

grabPage(args.link, 0, args.link.split(“/wiki/”)[1].strip().replace(“_”, “))
atexit.register(cleanUp)
def isValidLink(link):

if “/wiki/” in link and “:” not in link and “http://” not in link and “wikibooks”
not in link and “#” not in link and “wikiquote” not in link and “wiktionary” not in
link and “wikiversity” not in link and “wikivoyage” not in link and “wikisource” not
in link and “wikinews” not in link and “wikiversity” not in link and “wikidata” not
in link:
return True
else:
return False

def grabPage(URL, level, name):
opener = urllib2.build_opener()

opener.addheaders = [(‘User-agent’, ‘Mozilla/5.0’)]
req = opener.open(URL)

Work with Python

iki-Everything

Wikipedia has so many different
services that interlink with each
other; however, we don't want
to grab those pages, so we've
got quite a lengthy conditional
statement to stop that. It's pretty
good at making sure we only get
links from Wikipedia.

Scrape Wikipedia with Beautiful Soup

Creating some useful variables

0 These variables will keep track of the links we've accessed while the script
has been running: addresses is a list containing every link we've accessed;

deepestAddresses are the links of the pages that were the furthest down the link

tree from our starting point; storeFolder is where we will save the HTML files we

create and maxLevel is the maximum depth that we can follow the links to from

our starting page.

Handling the user’s input

03 In the first few lines of this function, we're just creating a helper statement.
Afterwards, we're parsing any arguments passed into the program on its
execution and looking for a-URL flag and a -levels flag. The -levels flag is optional as
we already have a preset depth that we'll follow the links to, but we need a link to

start from so if the -URL flag is missing, we'll prompt the user and exit. If we have a link,
then we quickly check whether or not we have a directory to store files in — which
we'll create if we don't — and then welll fire off the function to get that page. Finally, we
register a handler for when the script tries to exit. We'll get to that bit later.

Retrieving the page from the URL

O Here we're using URLLIb2 to request the page the the user has asked for
and then, once we've received that page, we're going to pass the content

through to Beautiful Soup with the soup variable. This gives us access to the

methods we're going to call as we parse the document.

Trimming the fat
O Wikipedia has a lot of nodes that we don’t want to parse. The content
variable allows us to straight away ignore most of Wikipedia's GUI, but
there are still lots of elements that we don't want to parse. We remedy this by
iterating through the list ‘undesirables’ that we created earlier on in the document.
For each different div/section/node that we don't want, we call Beautiful Soup’s
find_all() method and use the extract() method to remove that node from the
document. At the end of the undesirables loop, most of the content we don't
want any more will be gone. We also look for the ‘also’ element in the Wiki page.
Generally, everything after this div is of no use to us. By calling the find_all_next()
method on the also node, we can get a list of every other element we can
remove from that point on.

"The HTML page uses built-in browser
styles when rendering the page”

Scrape Wikipedia with Beautiful Soup Work with Python

“Wikipedia has so many different services that interlink with

each other; we don't want to grab those pages”

4 Get the page
Here we grab the
page we want to
store and remove
the bits of the
document we
don't need

5 Check links
Then we iterate
through all of the
<a>tags and check
if there’s a valid link
to another page
we can grab, and
tweak them for our
own use

page = req.read()
reqg.close()
soup = BeautifulSoup(page, “html51ib”, from_encoding="UTF-8")
content = soup.find(id="mw-content-text”)
if hasattr(content, ‘find_all’):
global undesirables
for notWanted in undesirables:

removal = content.find_all(notWanted[‘element’], notWanted[‘attr’])
if len(removal) > 0:
for el in removal:
el.extract() .
Styling
also = content.find(id="See_also”) —_—
Currently, the HTML page will use the
built-in browser styles when rendering the
page. If you like, you can include the style
sheet included in the tutorial resources
to make it look a little nicer. To use it, you
can minify the script and include it inside

if(also != None):
also.extract()
tail = also.find_all_next()
if(len(tail) > 0):
for element in tail:
element.extract()

= a <style> tag in the head string on line
— for link in content.find_all(‘a’): 102,or>{ouc.a|w rewrite the head string to
something like:
href = link[“href”]
head = ‘“<head><meta
if isvValidLink(href): charset=\"UTF-8\" /><title>” +
fileName + “</title><style>” +
if level < maxLevel: str(open(‘/PATH/TO/STYLES”, ‘r’).
read()) + “</style></head>”
stored = False;
@ for addr in addresses:
if addr == link.get(“href”):
stored = True
if(stored == False):
title = link.get(‘href’).replace(“/wiki/”, “7)
addresses.append(str(title + “.html”))
grabPage(“http://en.wikipedia.org” + link.get(‘href’), level +
1, title)

print title

= link[“href”] = link[“href”].replace(“/wiki/”, “7) + “.html”
fileName = str(name)

if level == maxLevel:
deepestAddresses.append(fileName.replace(‘/’, ‘_’) + “.html”)

75

Work with Python Scrape Wikipedia with Beautiful Soup

Beautiful Soup Documentation

B e B 6 MY Y SR Sy o AN W HTEL B ML Wea § et 5P s T e B Tl St wigs
e N MRS R e P e et B T WA R St 4 B

Thit o s B 8 e S o DT B § a T A e (W e T T iy § e B S W
U R Sk R . R e R e wae et s S

s ey P AT] e P aa ey o Py § e By 1]

*

A e Tl § . L 200 g P e P Rt T) WA ey s i ty -
T b T R e el LA M p o] SRR Y g - -
Pey——— PR
IR R v i P S S A W Ghages Ty e b '5‘/, - i
I
Bise
Getting heip
¥ e ey gt g o R T (e] T 8 e S E e g § i e b g e TR sy, o g 0 et e
P s ee LU e S P Sy
Quick Start

P e L, e Y g i 5 . P TS Bk B Y 0 Sy M s o P

By o T b e T e B v 8 b b s T TN TS e (EELT B & S A S

i

BeautlSoup ot hip A OZHHID i Grabbing the links
By calling content.find_all(a’) we get a list of every <a> in the

06 document. We can iterate through this and check whether or not
there is a valid Wikipedia link in the <a>'s href. If the link is a valid link, we
quickly check how far down the link tree we are from the original page. If
we've reached the maximum depth we can go, we'll store this page and call
it quits, otherwise we'll start looking for links that we can grab within it. For
every page we request, we append its URL to the addresses list; to make sure
we don't call the same page twice for each link we find, we check if we've
already stored it. If we have, then we'll skip over the rest of the loop, but if
we've not then we'll add it to the list of URLs that we've requested and fire off
a request. Once that check is done, We then do a quick string replace on that
link so that it points to the local directory, not to the subfolder /wiki/ that it's
looking for.

Writing tofile

O Now we create a file to store the newly parsed document in for later

reading. We change any 7' in the filename to ' so the script doesn’t
try and write to a random folder. We also do a quick check to see how many
links we've followed since the first page. If it's the max level, we'll add it to the
deepestAddresses list. We'll use this a little bit later.

Scrape Wikipedia with Beautiful Soup Work with Python

Tying up loose ends
O After our script has iterated through every link on every page to the
maximum level of depth that it can, it will try to exit. On line 34 of the
code (on the disc and online) in the init function, we registered the function
cleanUp to execute on the program trying to exit; cleanUp's job is to go through
the documents that we've downloaded and check that every link we've left in
the pages does in fact link to a file that we have available. If it can't match the link
in the href to a file in the addresses list, it will remove it. Once we're done, we will
have a fully portable chunk of Wikipedia we can take with us.

doctype = “<IDOCTYPE html>”
6 Copy to file

After that, We take head = “<head><meta charset=\"UTF-8\” /><title>” + fileName + “</title></
the content we've m head>”
parsed and put it

' f = open(storeFolder + “/” + fileName.replace(‘/’, ‘_’) + “.html”, ‘w’)
into a brand new fwrite(doctype + “<html lang=\"en\">” + head + “<body><h1>” + fileName + “</
HTML file h1>” + str(content) + “</body></html>")

- f.close()

[~ def cleanUp():
print(“\nRemoving links to pages that have not been saved\n”)
for deepPage in deepestAddresses:
rF = open(storeFolder + “/” + deepPage, ‘r’)
deepSoup = BeautifulSoup(rF.read(), “html51lib”, from_encoding="UTF-8")

for deepLinks in deepSoup.find_all(‘a’):
link = deepLinks.get(“href”)

7 Clean up
Once every page pageStored = False
has been parsed for addr in addresses:
and stored, we'll if addr == link:
go on through and pageStored = True
try to remove an
d)e/ad links Y if pageStored == False:
if link is not None:
if “#” not in link:
del deepLinks[‘href’]
elif ‘4’ in link and len(link.split(‘#’)) > 1 or ‘:’ in link:
del deepLinks[‘href’]
wF = open(storeFolder + “/” + deepPage, ‘w’)
wF.write(str(deepSoup))
wF.close()
8 Initialise - print(“Complete”)

Th|s is how we wll H if __name__ == “__main__":
initialise our script init()

Create with Python Have fun with programming

t

Create with Pyth‘g

Use Python to get creative and program games s ‘\t’ 4 - -y

-
.

What could be more satisfying than playing a game that you have BN
programmed yourself? In this section we're going to show you how to™

do just that. We'll get started with a simple game of tictac-toe, made =
with the help of Kivy (p.80), before stepping things up a notch and
cloning the classic favourite, Pong (p.86). Then, it’s time to have a go L
making a Space Invaders-inspired game complete with retro grabl‘r Q.\\
(p.88). Finally, you'll learn how to make a stripped-back ‘choose-y yo‘“r
own-adventure’ game (p.98).

-

-

Have fun with programming Create with Python

."’I\/\aking a playable game is not
~_asdifficult as youmay think”

79

Create with Python Build tic-tac-toe with Kivy

What you'll need...

e Build tictactoe
with Kivy

Ease into the workings of Kivy by creating the pen-
and-paper classic in just over 100 lines of Python...

Kivy is a highly cross-platform graphical framework for Python, designed
for the creation of innovative user interfaces like multitouch apps. Its
applications can run not only on the traditional desktop platforms of
Linux, OS X and Windows, but also Android and iOS, plus devices like the
Raspberry Pi.

That means you can develop cross-platform apps using Python
libraries such as Requests, SQLAIchemy or even NumPy. You can even
access native mobile APIs straight from Python using some of Kivy's
sister projects. Another great feature is the Gython-optimised OpenGL
graphics pipeline, allowing advanced GPU effects even though the basic
Python APl is very simple.

Kivy is a set of Python/Cython modules that can easily be installed via
pip, but you'll need a few dependencies. It uses Pygame as a rendering
backend (though its APl is not exposed), Cython for compilation of the
speedy graphics compiler internals, and GStreamer for multimedia.
These should all be available through your distro’s repositories, or via pip
where applicable.

With these dependencdies satisfied, you should be able install Kivy with
the normal pip incantation. The current version is 1.80, and the same
codebase supports both python2 and python3. The code in this tutorial
is also version-agnostic, running in python2.7 and python3.3.

pip install kivy

If you have any problems with pip, you can use easy._install via easy._
install kivy.

There are also packages or repositories available for several popular
distros. You can find more information on Kivy's website. A kivy
application is started by instantiating and running an ‘App’ class. This is
what initialises our pp's window, interfaces with the OS, and provides an

Build tic-tac-toe with Kivy

entry point for the creation of our GUI. We can start
by making the simplest Kivy app possible:

from kivy.app import App

TicTacToeApp(“pp):
pass
if __name__ == “__main__":
TicTacToeApp().run()

You can already run this, your app will start up and
you'll get a plain black window. Exciting!

We can build our own GUI out of Kivy widgets.
Each is a simple graphics element with some
specific behaviour of its own ranging from
standard GUI functionality (eg the Button, Label
or Textinput), to those that impose positioning on
their child widgets (eg the BoxLayout, FloatLayout
or GridLayout), to those abstracting a more
involved task like interacting with hardware (eg
the FileChooser, Camera or VideoPlayer). Most
importantly, Kivy's widgets are designed to be easily
combined - rather than including a widget for every
need imaginable, widgets are kept simple but are
easy to join to invent new interfaces. We'll see some
of that in this tutorial.

Since ‘Hello World!"is basically compulsory in any
programming tutorial, let’s get it over with by using a
simple ‘Label widget to display the text:

from kivy.uix.label import Label

We'll display the ‘Label’ by returning it as our app’s
root widget. Every app has a single root widget, the
top level of its widget tree, and it will automatically
be sized to fill the window. We'll see later how to
construct a full GUI by adding more widgets for this
one, but for now it's enough to set the root widget
by adding a new method to the ‘App*

Create with Python

Above The game with final additions, making the grid square and
extending the interface

(self):
return Label(text="Hello World!’,
font_size=100,
color=0, 1, 0, 1))

The ‘build’ method is called when the ‘App’is run,
and whatever widget is returned automatically
becomes the root widget of that App In our case
that's a Label, and we've set several properties - the
‘text, font_size’ and ‘color’. All widgets have different
properties controlling aspects of their behaviour,
which can be dynamically updated to alter their
appearance later, though here we set them just once
upon instantiation.

Note that these properties are not just Python
attributes but instead Kivy properties. These are
accessed like normal attributes but provide extra
functionality by hooking into Kivy's event system.
We'll see examples of creating properties shortly,
and you should do the same if you want to use your
variables with Kivy's event or binding functionality.

That's all you need to show some simple text, so
run the program again to check that this does work.
You can experiment with the parameters if it's unclear
what any of them are doing.

Create with Python

Our own widget: tic-tac-toe

Since Kivy doesn't have a tictactoe widget, we'll have
to make our own! It's natural to create a new widget
class to contain this behaviour:

from kivy.uix.gridlayout import GridLayout
TicTacToeGrid():
pass

Now this obviously doesn't do anything vet,

except that it inherits all the behaviour of the Kivy
GridLayout widget - that is, we'll need to tell it how
many columns to have, but then it will automatically
arrange any child widgets to fit nicely with as many
rows as necessary. Tictac-toe requires three columns
and nine children.

Here we introduce the Kivy language (kv), a
special domain-specific language for making
rules describing Kivy widget trees. It's very simple
but removes a lot of necessary boilerplate for
manipulating the GUI with Python code - as aloose
analogy you might think of it as the HTML/CSS to
Python's JavaScript. Python gives us the dynamic
power to do anything, but all that power gets in the
way if we just want to declare the basic structure
of our GUI. Note that you never need kv language,
you can always do the same thing in Python alone,
but the rest of the example may show why Kivy
programmers usually like to use k.

Kivy comes with all the tools needed to use kv
language; the simplest way is to write it in a file with
a name based on our App class. That is, we should
place the following in a file named ‘tictactoe.kv"

<TicTacToeGrid>:
cols: 3

This is the basic syntax of kv language; for each
widget type we may write a rule defining its
behaviour, including setting its properties and adding

Build tic-tac-toe with Kivy

child widgets. This example demonstrates the
former, creating a rule for the TicTacToeGrid' widget
by declaring that every TiclacToeGrid' instantiated
should have its ‘cols' property set to 3.

We'l use some more kv language features later, but
for now let's go back to Python to create the buttons
that will be the entries in our tictactoe grid.

from kivy.uix.button import Button
from kivy.properties import ListProperty

GridEntry():
coords = ListProperty([0, @1)

This inherits from Kivy's ‘Button’ widget, which
interacts with mouse or touch input, dispatching
events when interactions toggle it. We can hook
into these events to call our own functions when
a user presses the button, and can set the button’s
‘text’ property to display the X' or ‘O’ We also created
anew Kivy property for our widget, ‘coords’ — well
show how this is useful later on. It's almost identical
to making a normal Python attribute by writing ‘self.
coords = [0, 0'in ‘GridEntry.__init__"

As with the TicTacToeGrid, we'll style our new class
with kv language, but this time we get to see a more
interesting feature.

<GridEntry>:
font_size: self.height

As before, this syntax defines a rule for how a
‘GridEntry’ widget should be constructed, this time
setting the font_size’ property that controls the size
of the text in the button's label. The extra magic is
that kv language automatically detects that we've
referenced the Button's own height and will create
a binding to update this relationship — when a
‘GridEntry’ widget's height changes, its font_size’
will change so the text fits perfectly. We could have

Build tic-tac-toe with Kivy

made these bindings straight from Python (@nother
usage of the ‘bind” method used later on), but that's
rarely as convenient as referencing the property we
want to bind to.

Let's now populate our TicTacToeGrid' with
‘GridEntry’ widgets.

TicTacToeGrid():
(, * , KK):
(TicTacToeGrid, self).__init__(xargs,
**kwargs)
for row in 3):
for column in 3):
grid_entry = Gridentry(
=(row, column))
grid_entry.bind(
pressed)
self.add_widget(grid_entry)

=self.button_

(self,):
print(‘(} button clicked!’.format(instance.
coords))

This introduces a few new concepts: When we
instantiated our ‘GridEntry’ widgets, we were able to
set their ‘coords’ property by simply passing itin as
akwarg. This is a minor feature that is automatically
handled by Kivy properties.

We used the bind’ method to call the grid's
‘button_pressed’ method whenever the ‘GridEntry
widget dispatches an ‘on_release’ event. This is
automatically handled by its ‘Button’ superclass, and
will occur whenever a user presses, then releases a
‘GridEntry” button. We could also bind to ‘on_press,
which is dispatched when the button is first clicked,
or to any Kivy property of the button, dispatched
dynamically when the property is modified.

We added each ‘GridEntry’ widget to our ‘Grid’ via
the ‘add_widget’ method. That means each one
is a child widget of the TicTacToeGrid, and so it will

Create with Python

display them and knows it should automatically
arrange them into a grid with the number of
columns we set earlier.

Now all we have to do is replace our root widget
(returned from ‘App.build’) with a TicTacToeGrid’ and
we can see what our app looks like.

(self):
return TicTacToeGrid()

With this complete you can run your main Python file
again and enjoy your new program. All being well,
the single Label is replaced by a grid of nine buttons,
each of which you can click (it will automatically
change colour) and release (you'l see the printed
output information from our binding).

We could customise the appearance by modifying
other properties of the Button, but for now well leave
them as they are.

Has anyone won yet?

We'll want to keep track of the state of the board to
check if anyone has won, which we can do with a
couple more Kivy properties:

from kivy.properties import (ListProperty,
NumericProperty)

TicTacToeGrid():
status = ListProperty([0, 0, 0, 0, 0, 0,
0, 0, 0
current_player = NumericProperty(1)

This adds an internal status list representing who has
played where, and a number to represent the current
player (1 for O; -1 for X).

By placing these numbers in our status list, we'll know
if somebody wins because the sum of a row, column or
diagonal will be +-3. Now we can update our graphical
grid whenamoveis played.

Create with Python

(self,):
player = {l: ‘0’, -1: X}
colours = {1: (1, 9, 0, 1), -1: (©, 1, 9,
Dy #@0, 8 b a

row, column = button.coords

status_index = 3*row + column
already_played = self.status[status_index]

if not already_played:
self.status[status_index] = self.
current_player
button.text = {1: ‘0’, -1: ‘X’}self.
current_player]
button.background_color = colours[self.
current_player]
self.current_player *= -1

You can run your app again to see exactly what this
did, and you'l find that clicking each button now
places an ‘O’ or X' as well as a coloured background
depending on whose tum it is to play. Not only that,
but you can only play one move in each button
thanks to our status array that keeps track of the
existing moves.

This is enough to play the game but there's one
vital element missing.. a big pop-up telling you when
you've won! Before we can do that, we need to add
some code to check if the game is over.

Kivy properties have another useful feature
here, whenever they change they automatically
call an ‘on_propertyname’ method if it exists and
dispatch a corresponding event in Kivy's event
system. That makes it very easy to write code that
will run when a property changes, both in Python
and kv language. In our case we can use it to
check the status list every time it is updated, doing
something special if a player has filled a column,
row or diagonal.

Build tic-tac-toe with Kivy

(’ ’):

status = new_value

sums = [sum(status[0:3]),
(status[3:6]),
(status[6:9]),
(status[©0::3]),
(status[1::3]),
(status[2::3]),
(status[::4]),
(status[2:-2:21)]

if 3 in sums:

print(‘Os win!”)

elif -3 in sums:
print(‘Xs win!”)

elif 0 not in self.status:
print(‘Draw!”)

This covers the basic detection of a won or drawn
board, but it only prints the result to stdout. At this
stage we probably want to reset the board so that
the players can try again, along with displaying a
graphical indicator of the result.

(self, *xargs):
self.status = [@ for _ in ©)
for child in self.children:
child.text = ¢
child.background_color = (1, 1, 1, 1)

self.current_player = 1
Finally, we can modify the “on_status method to
both reset the board and display the winner

in a'ModalView' widget.

from kivy.uix.modalview import ModalView

Build tic-tac-toe with Kivy

This is a pop-up widget that draws itself on top of
everything else rather than as part of the normal

widget tree. It also automatically closes when the user

clicks or taps outside it.

winner = None

if =3 in sums:
winner = ‘Xs win!’

elif 3 in sums:
winner = ‘Os win!’

elif 0 not in self.status:
winner = ‘Draw...nobody wins!’

if winner:
popup = ModalView(size_hint=0.75, 0.5))
victory_label = Label(text=winner,
font_size=50)
popup.add_widget(victory_label)
popup.bind(on_dismiss=self.reset)
popup.open()

This mostly uses the same ideas we already covered,
adding the ‘Label' widget to the ‘ModalView' then
letting the ‘ModalView' take care of drawing itself
and its children on top of everything else. We also
use another binding; this time to ‘on_dismiss, which
is an event dispatched by the ‘ModalView' when
it is closed. Finally, we made use of the ‘size_hint’
property common to all widgets, which in this case
is used to set the ‘ModalView' size proportional to
the window — while a ‘ModalView' is open you can
resize the window to see it dynamically resize, always
maintaining these proportions. This is another trick
made possible by a binding with the ‘size_hint’ Kivy
property, this time managed internally by Kivy.
That's it, a finished program! We can now not only
play tictac-toe, but our program automatically tells
us when somebody has won, and resets the board
SO we can play again. Simply run your program and
enjoy hours of fun!

Create with Python

Above Atic-tac-toe grid now accepting input, adding inan O or X
alternately, each go

Time to experiment
This has been a quick tour through some of Kivy's
features, but hopefully it demonstrates how to think
about building a Kivy application. Our programs
are built from individual Kivy widgets, interacting
by having Python code run when their properties
change (eg our ‘on_status’ method) or when they
dispatch events (eg ‘Button’‘on_release)). We also
briefly saw kv language and experienced how it can
automatically create bindings between properties.
You canfind a copy of the full program on FileSilo,
reference this to check you've followed everything
correctly. We've also added an extra widget, the
‘Interface’, with a structure coded entirely in kv
language that demonstrates how to add child
widgets. Test it by uncommenting the return
Interface()' line in TicTacToeGrid build’ It doesn’t
do anything fundamentally different to what we
already covered, but it does make extensive use of
kv language’s binding ability to automatically update
a label showing the current player, and to resize the
TicTacToeGrid so it is always square to fit within its
parent. You can play with the settings to see how it
fits together, or try swapping out the different widget
types to see how other widgets behave.

Create with Python

What you’II need..

Latest Raspblan Image
www.raspberrypi.org/downloads

Pillow
https://github.com/python-imaging/Pillow

SimpleGUITk
https://github.com/dholm/simpleguitk/

Below ‘Tux for Two'is a great little
Pong clone using the beloved Linux
mascot, Tux, in the centre of the action

Make a Pong clone with Python

Make a Pong
clone with
Python

We update the retro classic Pong for the Linux
generation with a new library called SimpleGUITk

The Raspberry Piis a fantastic way to start learning how to code.

One area that can be very rewarding for amateur coders is game
programming, allowing for a more interactive result and a greater sense
of accomplishment. Game programming can also teach improvisation
and advanced mathematics skills for code. We'll be using the fantastic
SimpleGUITk module in Python, a very straightforward way of creating
graphical interfaces based on Tkinter.

Python module preparat|on

0 Head to the webswtes we've listed in \/\/hat you'l need and download azp of
the source files from the GitHub pages. Update your Raspbian packages and

then install the following:

I $ sudo apt-get install python-dev python-setuptools tk8.5-dev

tcl8.5-dev

InstaII the modules

O Opeh the terminal and use cd

to move to the extracted Pillow
folder. Once there, type:
l $ sudo python setup.py install
Once that's complete, move to the
simpleguitk folder and use the same
command to install that as well.

Set up the game

erte your code

O Launch IDLE 2, rather than IDLE 3,
and open a new window. Use the
code listing to create our game Tux for
Two'. Be careful to follow along with the
code to make sure you know what you're
doing. This way, you can make your own
changes to the game rules if you wish.

0 There’s nothing too grouhdbreakmg to start the code: Tux’s and the padd\es
initial positions are set, along with the initial speed and direction of Tux. These
are also used when a point is won and the playing field is reset. The direction and

speed is set to random for each spawn.

The SlmpIeGUI code

05 The important parts in the
draw function are the draw_
line, draw_image and draw_text
functions. These are specifically from
SimpleGUI, and allow you to easily put
these objects on the screen with a
position, size and colour. You need to
tie them to an object, though - in this
case, canvas. This tells the software
that we want to put these items on
the screen for people to see.

S|mpIeGUI setup code

0 The last parts are purely for

the interface. We tell the code
what to do when a key is depressed
and then released, and give it a frame
to work in. The frame is then told what
functions handle the graphics, key
functions etc. Finally, we give it frame.
start() so it starts.

Make a Pong clone with Python

Full code listing

import simpleguitk as simplegui
import random

w, h = 600, 400
tux_r = 20
pad_w= 8

pad_h = 80

def tux_spawn(right):
global tux_pos, tux_vel
tux_pos = [0,0]
tux_vel = [0,0]
tux_pos[@] = w/2
tux_pos[1] = h/2
if right:
tux_vel[@] = random.randrange(2, 4)
else:
tux_vel[@] = -random.randrange(2, 4)
tux_vel[1] = -random.randrange(l, 3)

def start():
global paddlel_pos, paddle2_pos, <!
paddlel_vel, paddle2_vel
global scorel, score2
tux_spawn(random.choice([True, Falsel))
scorel, score2 = 0,0
paddlel_vel, paddle2_vel = 0,0
paddlel_pos, paddle2_pos = h/2, h/2

def draw(canvas):
global scorel, score2, paddlel_pos, =
paddle2_pos, tux_pos, tux_vel
if paddlel_pos > (h - (pad_h/2)):
paddlel_pos = (h - (pad_h/2))
elif paddlel_pos < (pad_h/2):
paddlel_pos = (pad_h/2)
else:
paddlel_pos += paddlel_vel
if paddle2_pos > (h - (pad_h/2)):
paddle2_pos = (h - (pad_h/2))
elif paddle2_pos < (pad_h/2):
paddle2_pos = (pad_h/2)
else:
paddle2_pos += paddle2_vel
canvas.draw_line(lw / 2, @],lw / 2, hl, 4, «
“Green”)
canvas.draw_line([(pad_w/2), paddlel_ =
pos + (pad_h/2)], [(pad_w/2), paddlel_pos - «!
(pad_h/2)], pad_w, “Green”)
canvas.draw_line([w - (pad_w/2), «!
paddle2_pos + (pad_h/2)], [w - (pad_w/2), «!
paddle2_pos - (pad_h/2)], pad_w, “Green”)
tux_pos[0] += tux_vel[0@]
tux_pos[1] += tux_vel[1]
if tux_pos[1] <= tux_r or tux_pos[1] >= «!
h - tux_r:
tux_vel[l] = -tux_vel[1]x1.1

Create with Python

if tux_pos[@] <= pad_w + tux_r:
if (paddlel_pos+(pad_h/2)) >= <l
tux_pos[1] >= (paddlel_pos-(pad_h/2)):
tux_vel[@] = -tux_vel[@]x1.1
tux_vel[1] *= 1.1
else:
score2 += 1
tux_spawn(True)
elif tux_pos[@] >= w - pad_w - tux_r:
if (paddle2_post(pad_h/2)) >= «!
tux_pos[1] >= (paddle2_pos-(pad_h/2)):
tux_vel[@] = -tux_vel[@]
tux_vel[1] *= 1.1
else:
scorel += 1
tux_spawn(False)
canvas.draw_image(tux, (265 / 2, 314 / 2), =
(265, 314), tux_pos, (45, 45))
canvas.draw_text(str(scorel), [150, 100], «!
30, “Green”)
canvas.draw_text(str(score2), [450, 100], «
30, “Green”)

def keydown(key):

global paddlel_vel, paddle2_vel

acc = 3

if key == simplegui.KEY_MAP[“w”]:
paddlel_vel —= acc

elif key == simplegui.KEY_MAP[“s”]:
paddlel_vel += acc

elif key==simplegui.KEY_MAP[“down”]:
paddle2_vel += acc

elif key==simplegui.KEY_MAP[“up”]:
paddle2_vel -= acc

de

=

keyup(key):

global paddlel_vel, paddle2_vel

acc = 0

if key == simplegui.KEY_MAP[“w”]:
paddlel_vel = acc

elif key == simplegui.KEY_MAP[“s”]:
paddlel_vel = acc

elif key==simplegui.KEY_MAP[“down”]:
paddle2_vel = acc

elif key==simplegui.KEY_MAP[“up”]:
paddle2_vel = acc

frame = simplegui.create_frame(“Tux for Two”, -
w, h)

frame.set_draw_handler(draw)
frame.set_keydown_handler(keydown)
frame.set_keyup_handler(keyup)

tux = simplegui.load_image(‘http://upload. =
wikimedia.org/wikipedia/commons/a/af/Tux.png’)

start()
frame.start()

Create with Python

What you'll need...

Raspbian

www.raspberrypi.org/downloads

Python

www.python.org/doc

Pygame

www.pygame.org/docs

Did you know...

Space Invaders was one of the
biggest arcade hits in the world.
It's a great first game since
everyone knows how to play!

SCORE D

Right Pivaders is
aSpace Invaders
clone we've made
especially for the Pi

Program a Space Invaders clone

Program a Space
Invaders clone

Write your own RasPi shooter in 300 lines of Python

When you're learning to program in a new language or trying to master
a new module, experimenting with a familiar and relatively simply
project is a very useful exercise to help expand your understanding of
the tools you're using. Our Space Invaders clone is one such example
that lends itself perfectly to Python and the Pygame module —it's a
simple game with almost universally understood rules and logic.

We've tried to use many features of Pygame, which is designed to
make the creation of games and interactive applications easier. We've
extensively used the Sprite class, which saves dozens of lines of extra
code in making collision detection simple and updating the screen and
its many actors a single-line command.

Have fun with the project and make sure you tweak and change
things to make it your own!

Program a Space Invaders clone Create with Python

Full code listing

#!/usr/bin/env python2
import pygame, random

BLACK = (0, 0, 0)

BLUE = (0, 0, 255)
WHITE = (255, 255, 255)
RED = (255, 0, 0)
ALIEN_SIZE = (30, 40)
ALIEN_SPACER = 20
BARRIER_ROW = 10
BARRIER_COLUMN = 4
BULLET_SIZE = (5, 10)
MISSILE_SIZE = (5, 5)
BLOCK_SIZE = (10, 10)
RES = (800, 600)

Player():

(self):

pygame.sprite.Sprite. (self)

self.size = (60, 55)

self.rect = self.image.get_rect()

self.rect.x = (RES[0] / 2) - (self.size &/

[e1 /7 2

self.rect.y = 520

self.travel = 7

self.speed = 350

self.time = pygame.time.get_ticks()

(self):
self.rect.x += GameState.vector * self. «!
travel
if self.rect.x < 0:
self.rect.x = 0
elif self.rect.x > RES[0] - self.size[0]:
self.rect.x = RES[Q] - self.size[0]

Alien():

(self):

pygame.sprite.Sprite. (self)

self.size = (ALIEN_SIZE)

self.rect = self.image.get_rect()

self.has_moved = [0, 0]

self.vector = [1, 1]

self.travel = [(ALIEN_SIZE[0] - 7), =

ALIEN_SPACER]
self.speed = 700
self.time = pygame.time.get_ticks()

(self):
if GameState.alien_time - self.time > !
self.speed:
if self.has_moved[¢] < 12:

self.rect.x += self.vector[0] * self. «!

travell0]
self.has_moved[0] +=1
else:

if not self.has_moved[1]:
self.rect.y += self.vector[1] * <!

self.travell1]

self.vector[0] *= -1
self.has_moved = [0, @]
self.speed -= 20
if self.speed <= 100:
self.speed = 100
self.time = GameState.alien_time

Ammo():

(self, color, (width, height)):
pygame.sprite.Sprite. (self)
self.image = pygame.Surface([width, </

height])

self.image.fill(color)

self.rect = self.image.get_rect()
self.speed = 0

self.vector = 0

(self):
self.rect.y += self.vector * self.speed
if self.rect.y < @ or self.rect.y > RES[1]:
self.kill()

Block():

(self, color, (width, height)):
pygame.sprite.Sprite. (self)
self.image = pygame.Surface([width, <!

height])

self.image.fill(color)
self.rect = self.image.get_rect()
GameState:

pass

Game():
(self):
pygame.init()
pygame.font.init()
self.clock = pygame.time.Clock()
self.game_font = pygame.font.Font(

self.intro_font = pyéame.Font.Font(

)

self.screen = pygame.display.set_ «

mode([RES[?], RES[111)

self.time = pygame.time.get_ticks()
self.refresh_rate = 20

self.rounds_won = 0

self.level _up = 50

self.score = 0

self.lives = 2

self.player_group = pygame.sprite.Group()
self.alien_group = pygame.sprite.Group()
self.bullet_group = pygame.sprite.Group()
self.missile_group = pygame.sprite.Group()
self.barrier_group = pygame.sprite.Group()

Continued on page 91

Create with Python

Setting up dependencies

01 If you're looking to get a better understanding of programming games with
Python and Pygame, we strongly recommend you copy the Pivaders code

in this tutorial into your own program. It's great practice and gives you a chance

to tweak elements of the game to suit you, be it a different ship image, changing

the difficulty or the ways the alien waves behave. If you just want to play the game,

that's easily achieved too, though. Either way, the game’s only dependency is

Pygame, which (if it isn't already) can be installed from the terminal by typing:

B sudo apt-get install python-pygame

Installation
O For Pivaders we've used Git, a brilliant form of version control used to
safely store the game files and retain historical versions of your code. Git

should already be installed on your Pi; if not, you can acquire it by typing:
B sudo apt-get install git

As well as acting as caretaker for your code, Git enables you to clone copies
of other people’s projects so you can work on them, or just use them. To clone
Pivaders, go to your home folder in the terminal (cd ~), make a directory for the

project (mkdir pivaders), enter the directory (cd pivaders) and type:
I git pull https://github.com/russb78/pivaders.git

3 With Pygame installed and the project cloned to your machine (you can also
0 find the zip on this issue’s cover DVD — simply unpack it and copy it to your
home directory to use it), you can take it for a quick test drive to make sure everything's
set up properly. All you need to do is type python pivaders.py from within the
pivaders directory in the terminal to get started. You can start the game with the
space bar, shoot with the same button and simply use the left and right arrows on
your keyboard to move your ship left and right.

Creating your own clone

O Once you've racked up a good high score (anything over 2,000 points is

respectable) and got to know our simple implementation, you'll get more
from following along with and exploring the code and our brief explanations of
what's going on. For those who want to make their own project, create a new
project folder and use either IDLE or Leafpad (or perhaps install Geany) to create
and save a .py file of your own.

applications easier”

Program a Space Invaders clone

Global variables & tuples
Once we've imported the
O modules we need for the
project, there’s quite a long list
of variables in block capitals. The
capitals denote that these variables
are constants (or global variables).
These are important numbers that
never change — they represent
things referred to regularly in the
code, like colours, block sizes and
resolution. You'll also notice that
colours and sizes hold multiple
numbers in braces — these are tuples.
You could use square brackets (to
make them lists), but we use tuples
here since they're immutable, which
means you can't reassign individual
items within them. Perfect for
constants, which aren't designed to
change anyway.

Classes —part 1

06 A class is essentially a
blueprint for an object you'd
like to make. In the case of our player,
it contains all the required info, from
which you can make multiple copies
(we create a player instance in the
make_player() method halfway
through the project). The great thing
about the classes in Pivaders is that
they inherit lots of capabilities and
shortcuts from Pygame’s Sprite class,
as denoted by the pygame.sprite.
Sprite found within the braces of the
first line of the class. You can read
the docs to learn more about the
Sprite class via
www.pygame.org/docs/ref/sprite.html.

“We've tried to use many features of
Pygame, which is designed to make
the creation of games and interactive

Program a Space Invaders clone

Continued from page 89

self.all_sprite_list = pygame.sprite. -
Group()
self.intro_screen = pygame.image.load(
).convert()
self.background = pygame.image.load(
).convert()

pygame.display.set_caption(-l
)

pygame.mouse.set_visible(False)
Player.image = pygame.image.load(
).convert()
Player.image.set_colorkey(BLACK)
Alien.image = pygame.image.load(
).convert()
Alien.image.set_colorkey(WHITE)
GameState.end_game = False
GameState.start_screen = True
GameState.vector = 0
GameState.shoot_bullet = False

(self):
for event in pygame.event.get():
if event.type == pygame.QUIT:
GameState.start_screen = False
GameState.end_game = True
if event.type == pygame.KEYDOWN \
and event.key == pygame.K_ESCAPE:
if GameState.start_screen:

GameState.start_screen = False

GameState.end_game = True

self.kill_all()

else:

GameState.start_screen = True
self.keys = pygame.key.get_pressed()
if self.keys[pygame.K_LEFT]:

GameState.vector = -1
elif self.keys[pygame.K_RIGHT]:
GameState.vector = 1
else:
GameState.vector = 0
if self.keys[pygame.K_SPACE]:
if GameState.start_screen:
GameState.start_screen = False
self.lives = 2
self.score = 0
self.make_player()
self.make_defenses()
self.alien_wave()
else:
GameState.shoot_bullet = True

(self):
while GameState.start_screen:
self.kill_all()
self.screen.blit(self.intro_screen, </
[0, e
self.screen.blit(self.intro_font.render(
, 1, WHITE), (265, 120))

Create with Python

self.screen.blit(self.game_font.render(
L 1, WHITE), o
(274, 191))
pygame.display.flip()
self.control()

(self):
self.player = Player()
self.player_group.add(self.player)
self.all_sprite_list.add(self.player)

(self):
self.all_sprite_list.draw(self.screen)
self.refresh_scores()
pygame.display.flip()
self.screen.blit(self.background, [0, @)
self.clock.tick(self.refresh_rate)

(self):
self.screen.blit(self.game_font.render(
+ (self.score), 1, WHITE), «!
(1o, 8)

self.screen.blit(self.game_font.render(
+ (self.lives + 1), 1, RED), «!
(355, 575))

(self, speed):
for column in (BARRIER_COLUMN):
for row in (BARRIER_ROW):

alien = Alien()
alien.rect.y = 65 + (column * (
ALIEN_SIZE[1] + ALIEN_SPACER))
alien.rect.x = ALIEN_SPACER + (
row * (ALIEN_SIZE[0] + ALIEN_SPACER))
self.alien_group.add(alien)
self.all_sprite_list.add(alien)
alien.speed -= speed

(self):
if GameState.game_time - self.player. <!
time > self.player.speed:
bullet = Ammo(BLUE, BULLET_SIZE)
bullet.vector = -1
bullet.speed = 26
bullet.rect.x = self.player.rect.x + 28
bullet.rect.y = self.player.rect.y
self.bullet_group.add(bullet)
self.all_sprite_list.add(bullet)
self.player.time = GameState.game_time
GameState.shoot_bullet = False

(self):
if (self.alien_group):
shoot = random.random()
if shoot <= 0.05:
shooter = random.choice([
alien for alien in self.alien_groupl)
missile = Ammo(RED, MISSILE_SIZE)

Continued on page 93

Create with Python

Classes — part 2

0 In Pivader's classes, besides creating the required attributes for the object,
you'll also notice all the classes have an update() method apart from the

Block class (@ method is a function within a class). The update() method is called

in every loop through the main game and simply asks the iteration of the class

we've created to move. In the case of a bullet from the Ammo class, we're asking it
to move down the screen. If it goes off either end, we destroy it.

PIURDERS

PRESS SPACE TO PLAY

Ammo
0 What's most interesting about classes, though, is that you can use one class
to create lots of different things. You could, for example, have a pet class.
From that class you could create a cat (that meows) and a dog (that barks). They're
different in many ways, but they're both furry and have four legs, so can be created
from the same parent class. We've done exactly that with our Ammo class, using it to
create both the player bullets and the alien missiles. They're different colours and they
shoot in opposite directions, but they're fundamentally one and the same.

The game

Our final class is called Game. This is where all the main functionality of
0 the game itself comes in, but remember, so far this is still just a list of
ingredients — nothing can actually happen until a ‘Game’ object is created (right
at the bottom of the code). The Game class is where the central mass of the
game resides, so we initialise Pygame, set the imagery for our protagonist and
extraterrestrial antagonist and create some GameState attributes that we use to
control key aspects of external classes, like changing the player’s vector (direction).

The main loop

1 There are a lot of methods (class functions) in the Game class, and each is
designed to control a particular aspect of either setting up the game or

the gameplay itself. The logic that dictates what happens within any one round

of the game is contained in the main_loop() method right at the bottom of the

pivaders.py script and is the key to unlocking exactly what variables and functions

you need for your game.

Program a Space Invaders clone

Main loop key

1 1 Firstly the game checks that

the end_game attribute is
false - if it's true, the entire loop in
main_loop() is skipped and we go
straight to pygame.quit(), exiting the
game. This flag is set to true only if
the player closes the game window
or presses the Esc key when on the
start_screen. Assuming end_game
and start_screen are false, the main
loop can start proper, with the
control() method, which checks to see
if the location of the player needs to
change. Next we attempt to make an
enemy missile and we use the random
module to limit the number of missiles
that can be created. Next we call the
update() method for each and every
actor on the screen using a simple for
loop. This makes sure everyone’s up
to date and moved before we check
collisions in calc_collisions().

Main loop key
logic - part 2

1 Once collisions have been
calculated, we need to
see if the game is still meant to
continue. We do so with is_dead()
and defenses_breached() - if either
of these methods returns true, we
know we need to return to the start
screen. On the other hand, we also
need to check to see if we've killed all
the aliens, from within win_round().
Assuming we're not dead, but the
aliens are, we know we can call the
next_round() method, which creates
a fresh batch of aliens and increases
their speed around the screen. Finally,
we refresh the screen so everything
that's been moved, shot or killed can
be updated or removed from the
screen. Remember, the main loop
happens 20 times a second - so the
fact we don't call for the screen to
update right at the end of the loop is
of no consequence.

Program a Space Invaders clone

Continued from page 91

missile.vector = 1

missile.rect.x = shooter.rect.x + 15
missile.rect.y = shooter.rect.y + 40
missile.speed = 10
self.missile_group.add(missile)
self.all_sprite_list.add(missile)

(self, columns, rows, spacer):
for column in (columns):
for row in (rows):
barrier = Block(WHITE, (BLOCK_SIZE))
barrier.rect.x = 55 + (200 * spacer) =
+ (row * 10)
barrier.rect.y = 450 + (column x 10)
self.barrier_group.add(barrier)
self.all_sprite_list.add(barrier)

(self):
for spacing, spacing in <l
((O)H

self.make_barrier(3, 9, spacing)

(self):
for items in [self.bullet_group, self. «!
player_group,
self.alien_group, self.missile_group, =+
self.barrier_group]:
for i in items:
i.killQ)

(self):
if self.lives < 0:

self.screen.blit(self.game_font.render(
+ str(

self.score), 1, RED), (250, 15))

self.rounds_won = 0

self.refresh_screen()

pygame.time.delay(3000)

return True

(self):
if len(self.alien_group) < 1:
self.rounds_won += 1
self.screen.blit(self.game_font.render(
+ (self.rounds_won) +
. 1, RED), «
(200, 15))
self.refresh_screen()
pygame.time.delay(3000)
return True

(self):
for alien in self.alien_group:
if alien.rect.y > 410:
self.screen.blit(self.game_font.render(

=l

1, RED), (180, 15))

Create with Python

self.refresh_screen()
pygame.time.delay(3000)
return True

(self):
pygame.sprite.groupcollide(
self.missile_group, self.barrier_group, !

True, True)
pygame.sprite.groupcollide(
self.bullet_group, self.barrier_group, +!
True, True)
if pygame.sprite.groupcollide(
self.bullet_group, self.alien_group, =
True, True):
self.score += 10
if pygame.sprite.groupcollide(
self.player_group, self.missile_group, =«
False, True):
self.lives -= 1

(self):
for actor in [self.missile_group,
self.barrier_group, self.bullet_group]:

for i in actor:
i.killQ)

self.alien_wave(self.level _up)
self.make_defenses()
self.level _up += 50

(self):
while not GameState.end_game:
while not GameState.start_screen:
GameState.game_time = pygame.time. !
get_ticks()
GameState.alien_time = pygame.time. «!
get_ticks()
self.control()
self.make_missile()
for actor in [self.player_group, «-!
self.bullet_group,
self.alien_group, self.missile_groupl:
for i in actor:
i.update()
if GameState.shoot_bullet:
self.make_bullet()
self.calc_collisions()
if self.is_dead() or self.defenses_ «!
breached():
GameState.start_screen = True
if self.win_round():
self.next_round()
self.refresh_screen()
self.splash_screen()
pygame.quit()

if __name__ ==
pv = Game()
pv.main_loop()

93

Create with Python

What you'll need...

Raspbian

www.raspberrypi.org/downloads

Python

www.python.org/doc

Pygame

www.pygame.org/docs

Art assets
opengameart.org

Did you know...

Space Invaders is one of

the most cloned games in the
world! It makes a great first
project for game programmers.

Setting up dependencies
0 You'll get much more from
the exercise if you download
the code (git.io/8QsK-w) and use
it for reference as you create your
own animations and sound effects.
Regardless of whether you just want
to simply preview and play or walk-
through the code to get a better
understanding of basic game creation,
you're still going to need to satisfy
some basic dependencies. The two
key requirements here are Pygame
and Git, both of which are installed
by default on up-to-date Raspbian
installations. That's easy!

Pivaders part 2: graphics and sound

Pivaders Pt 2:
graphics & soun

This time we'll expand our Space Invaders clone to
include immersive animation and sound

We had great fun creating our basic Space Invaders clone, Pivaders,
in the previous guide. Pygame’s ability to group, manage and detect
collisions thanks to the Sprite class really made a great difference to
our project, not just in terms of code length, but in simplicity too. If
you missed the first part of the project, you can find the v0.1 code
listing on GitHub via git.io/cBVTBg, while you can find version v0.2
of the code, including all the images, music and sound effects we've
used at git.io/8QsK-w.

To help keep our project code manageable and straightforward
(as your projects grow keeping your code easy to follow becomes
increasingly harder) we integrated a few animation methods into
our Game class and opted to use a sprite sheet. Not only does it
make it very easy to draw to the screen, but it also keeps the asset

count under control and keeps performance levels up, which is
especially important for the Raspberry Pi. We hope you have fun
using our techniques to add animation and sound to your projects!

Downloading pivaders

02 Git is a superb version

control solution that helps
programmers safely store their code
and associated files. Not only does

it help you retain a full history of
changes, it means you can ‘clone’
entire projects to use and work on
from places like github.com. To clone
the version of the project we created
for this tutorial, go to your home
folder from the command line (cd ~)
and type:

I git pull https://github.com/
russb78/pivaders.git

This creates a folder called pivaders.

Navigating the project

O Within pivaders sits a licence,
readme and a second pivaders
folder. This contains the main game
file, pivaders.py, which launches the
application. Within the data folder
you'll find subfolders for both graphics
and sound assets, as well as the font
we've used for the title screen and
scores. To take pivaders for a test-drive,
simply enter the pivaders subdirectory
(cd pivaders/pivaders) and type:
I python pivaders.py
Use the arrow keys to steer left and
right and the space bar to shoot. You
can quit with the Escape key.

Pivaders part 2: graphics and sound Create with Python

Code listing (starting from line 87) Animation & sound

O Compared with the game from
last month’s tutorial, you'll see

Game(): » X X
(self): it's now a much more dynamic project.
pygame.init() The ship now leans into the turns as
pygame.font.init() you change direction and corrects
self.clock = pygame.time.Clock() itself when stationary. When you shoot
self.game_font = pygame.font.Font(an alien ship, it explodes with several

frames of animation and should you
take fire, a smaller explosion occurs on
your ship. Music, lasers and explosion
sound effects also accompany the

self.intro_font = pyéame.font.Font(

, 72)
self.screen = pygame.display.set_mode([RES[?], RES[11I)
self.time = pygame.time.get_ticks()

self.refresh_rate = 20; self.rounds_won = 0 animations as they happen.
self.level_up = 50; self.score = 0 o . .
self.lives = 2 Finding images to animate
self.player_group = pygame.sprite.Group()
self.alien_group = pygame.sprite.Group() Before we can

! : program
self.bullet_group = pygame.sprite.Group() 0 anything, s wise 1o have

self.missile_group = pygame.sprite.Group()

self.barrier_group = pygame.sprite.Group() assets set up correctly. We've opted to

self.all_sprite_list = pygame.sprite.Group() use sprite sheets; these can be found
self.intro_screen = pygame.image.load(online or created with GIMP with a
).convert() little practice. They're a mosaic made
self.background = pygame.image.load(up of individual ‘frames’ of equally
3 ¢).convert() sized and spaced images representing
pygame.display.set_caption(each frame. We found ours at
pygame.mouse.set_visible(False) ’
Alien.image = pygame.image.load(opengameart.org.
.convert() .
Alien.image.set_colorkey(WHITE) Tweaklng assets
self.ani_pos = 5
self.ship_sheet = pygame.image.load(While many of the assets you'l
).convert_alpha() 06 find online can be used as is,

Player.image = self.ship_sheet.subsurface(
self.ani_pos*64, 0, 64, 61)
self.animate_right = False

you may want to import them into an
image-editing application like GIMP to

self.animate_left = False configure them to suit your needs. We
self.explosion_sheet = pygame.image.load(started with the central ship sprite and
).convert_alpha() centred it into a new window. We set
self.explosion_image = self.explosion_sheet.subsurface(the size and width of the frame and
9, 9, 79, 96) . X . then copy-pasted the other frames
self.alien_explosion_sheet = pygame.image.load(either side of it We ended up with 11

self.alien_explode_graphics = self.alien_explosion_sheet.s-! frames of exactly the same size and

subsurface(®, 0, 94, 96) width in a single document. Pixel-
self.explode = False perfect precision on size and width is
self.explode_pos = 0; self.alien_explode = False key, so we can just multiply it to find
self.alien_explode_pos = 0 the next frame.
pygame.mixer.music.load() —
pygame.mixer.music.play(-1) el =
pygame.mixer.music.set_volume(?.7) e

self.bullet_fx = pygame.mixer.Sound(
self.explosion_fx = pygame.mixer.Sound(

self.explosion_fx.set_volume(0.5)
self.explodey_alien = []

Continued on page 96

Create with Python

Loading the sprite sheet

07 Since we're inheriting from

the Sprite class to create our
Player class, we can easily alter how the
player looks on screen by changing
Player.image. First, we need to load our
ship sprite sheet with pygame.image.
load(). Since we made our sheet with

a transparent background, we can
append .convert_alpha() to the end

of the line so the ship frames render
correctly (without any background). We
then use subsurface to set the initial
Player.image to the middle ship sprite
on the sheet. This is set by selfani_pos,
which has an initial value of 5. Changing
this value will alter the ship image
drawn to the screen: ‘0" would draw it
leaning fully left, 11" fully to the right.

Animation flags

Slightly further down the list
O in the initialising code for the
Game class, we also set two flags for
our player animation: selfanimate_left
and selfanimate_right. As you'll see in
the Control method of our Game class,
we use these to ‘flag’ when we want
animations to happen with True and
False. It also allows us to ‘automatically’
animate the player sprite back to its
natural resting state (otherwise the
ship will continue to look as if it's flying
left when it has stopped).

The animation method

09 We use flags again in the code
for the player: animate_player().

Here we use nested if statements to
control the animation and physically
set the player image. It states that if the
animate_right flag is True and if the
current animation position is different
to what we want, we incrementally
increase the ani_pos variable and set
the player'simage. The Else statement
then animates the ship sprite back to
its resting state and the same logic is
then applied in the opposite direction.

Pivaders part 2: graphics and sound

GameState.end_game = False
GameState.start_screen = True
GameState.vector = 0
GameState.shoot_bullet = False

(self):
for event in pygame.event.get():
if event.type == pygame.QUIT:
GameState.start_screen = False
GameState.end_game = True
if event.type == pygame.KEYDOWN \
and event.key == pygame.K_ESCAPE:
if GameState.start_screen:
GameState.start_screen = False
GameState.end_game = True
self.kill_all()
else:
GameState.start_screen = True
self.keys = pygame.key.get_pressed()
if self.keys[pygame.K_LEFT]:
GameState.vector = -1
self.animate_left = True
self.animate_right = False
elif self.keys[pygame.K_RIGHT]:
GameState.vector = 1
self.animate_right = True
self.animate_left = False
else:
GameState.vector = 0
self.animate_right = False
self.animate_left = False

if self.keys[pygame.K_SPACE]:

if GameState.start_screen:
GameState.start_screen = False
self.lives = 2
self.score = 0
self.make_player()
self.make_defenses()
self.alien_wave(0)

else:
GameState.shoot_bullet = True
self.bullet_fx.play()

(self):
if self.animate_right:
if self.ani_pos < 10:
Player.image = self.ship_sheet.subsurface(
self.ani_pos*64, 0, 64, 61)
self.ani_pos += 1
else:
if self.ani_pos > 5:
self.ani_pos —= 1
Player.image = self.ship_sheet.subsurface(
self.ani_pos*64, 0, 64, 61)

if self.animate_left:
if self.ani_pos > 0:
self.ani_pos —= 1

Pivaders part 2: graphics and sound

» Player.image = self.ship_sheet.subsurface(
self.ani_pos*64, 0, 64, 61)
else:
if self.ani_pos < 5:
Player.image = self.ship_sheet.subsurface(
self.ani_pos*64, 0, 64, 61)
self.ani_pos += 1

(self):
if self.explode:
if self.explode_pos < 8:
self.explosion_image = self.explosion_sheet. «-!
subsurface(0, self.explode_pos*96, 79, 96)
self.explode_pos += 1
self.screen.blit(self.explosion_image, [self.player.
«Jrect.x -10, self.player.rect.y - 30])
else:
self.explode = False
self.explode_pos = 0

(self):
if self.alien_explode:
if self.alien_explode_pos < 9:
self.alien_explode_graphics = self.alien_
explosion_ «-Isheet.subsurface(®, self.alien_explode_posx96, 94,
96)
self.alien_explode_pos += 1
self.screen.blit(self.alien_explode_graphics, «!
[int(self. explodey_alien[@]) - 50 , (self.explodey_alien[1]) -
601)
else:
self.alien_explode = False
self.alien_explode_pos = 0
self.explodey_alien = []

(self):
while GameState.start_screen:

self.kill_all()
self.screen.blit(self.intro_screen, [0, 01)
self.screen.blit(self.intro_font.render(

. 1, WHITE), (265, 120))
self.screen.blit(self.game_font.render(

, 1, WHITE), (274, 191))

pygame.display.flip()
self.control()
self.clock.tick(self.refresh_rate / 2)

(self):
self.player = Player()

Find the rest of the code at github.com/russb78/pivaders

“Sprite sheets make it easy to draw to the
screen, but it also keeps the asset count
down and performance levels up”

Create with Python

Animating explosions
1 The player_explosion() and
alien_explosion() methods
that come after the player animation
block in the Game class are similar but
simpler executions of the same thing.
As we only need to run through the
same predefined set of frames (this
time vertically), we only need to see if
the selfexplode and self.alien_explode
flags are True before we increment the
variables that change the image.

Adding music
1 Pygame makes it easy to add a
musical score to a project. Just
obtain a suitable piece of music in
your preferred format (we found ours
via freemusicarchive.org) and load it
using the Mixer Pygame class. As it's
already been initialised via pygame.
init(), we can go ahead and load the
music. The music.play(-1) requests
that the music should start with the
app and continue to loop until it quits.
If we replaced -1 with 5, the music
would loop five times before ending.
Learn more about the Mixer class via
www.pygame.org/docs/ref/
mixer.html.

Using sound effects

1 Loading and using sounds
is similar to how we do so

forimages in Pygame. First we load

the sound effect using a simple

assignment. For the laser beam, the

initialisation looks like this:

l self.bullet_fx = pygame.
mixer.Sound(‘location/of/file’)
Then we simply trigger the sound
effect at the appropriate time. In the
case of the laser, we want it to play
whenever we press the space bar
to shoot, so we place it in the Game
class's Control method, straight
after we raise the shoot_bullet

flag. You can get different sounds
from www.freesound.org.

97

Create with Python

What you'll need...

Python

www.python.org/doc

Pygame

www.pygame.org/docs

IDLE Python IDE

Game assets

Code from FileSilo (optional)

Make a visual novel game

Make a visual
novel game

Bridge the gap between books and videogames by
creating an interactive novel with Python

Most people look for a compelling story in modern videogames, and
those that don't have one are appearing less and less. A great way to tell
a pure story is through the genre of visual novels, and you can make one
fairly simply in Python. These interactive novels are an extremely popular
form of entertainment in Japan, and usually work by having the player
click through a story and make decisions as they go along in order to
experience different plot points and endings.

In Python, this is a relatively simple project to create, but with the
addition of the Pygame module we can make it easier still, and even
more expandable for the future. Pygame adds better support for
positioning the images and text, creating display windows and using
mouse and keyboard inputs, thereby simplifying the coding process.

We'll be coding this in standard Python 2, so make sure to run it in IDLE
2 and not IDLE 3 while you are writing, testing and coding.

Py g -

Here's scane two!

Make a visual novel game

Create with Python

01 The best way to install Pygame
for your system is to compile

it. To do this you need to first install
the right dependencies. Open up

the terminal and install the following
packages, which in Ubuntu looks like:

l $ sudo apt-get install
mercurial python-dev
python-numpy libav-tools
libsdl-imagel.2-dev libsdl-
mixerl.2-dev libsdl-ttf2.0-dev
libsmpeg-dev libsdll.2-dev
libportmidi-dev libswscale-dev
libavformat-dev libavcodec-dev

Get the Pygame code

02 Next we need to download
the code for Pygame direct
from the source. Still in the terminal,

you can do this by typing in:

l $ hg clone https://bitbucket.
org/pygame/pygame

Which will download it to the folder
‘pygame’. Move to that using CD

pygame in the terminal so we can
continue building it.

Build the Pygame module

O Toinstall it, we need to do it in two
steps. First we need to prepare the

code to install using the terminal with:

s python setup.py build

Once that’s finished you can then actually
install it with:

l $ sudo python setup.py install

This won't take too long.

]
PRLEiIRY

O If the above doesn't work (or is

a bit daunting) you can check
the website for binary and executable
files that will work on other operating
systems and Linux distros. Head to
http://pygame.org/download.shtml to
get the files you need for your specific
system, including Windows and OS
X.The rest of the tutorial will work in
any OS.

0 We've uploaded the code to
FileSilo, and here we're going
to walk you through what we've
done to make it work. Download the
files for the visual novel and unzip
them. The two files we care about
for the moment are the visualnovel.
py and script.py python files — this is
where all the important code is.

Understand the script file

For the moment the
0 script file is small and
literally just holds the script for
the game. It's made up of events
for the visual novel to move
between, line by line, by splitting
it up into scenes. This includes
the location of each line, the
character, the actual line itself
and information on how the
game flows. These are matrices
with the information in, and are
completely customisable.

‘Pygame adds
better support for
positioning the
Images and text”

Create with Python

How the script relates

O In our game, the code pulls
in elements from the script

file as it goes. We'll explain how

that works later, but this also allows

us to implement decisions later

on to change which direction the

game might take you in.

| pygare, tize. scr
pygame . init ()
Starting the main game

O We don't need many

modules for the current
state of the visual novel. Here
we've imported the new Pygame
module, our script as a module
and the time module for aesthetic
reasons — we're going to have the
code pause in bits rather than just
instantly change scenes to the next
line. We also initialise Pygame with
a simple pygame.init()

Add variables and assets
o We add a mixture of
information we need to run
the novel. We define the size of the
display screen to use (1000 pixels
wide and 563 high), along with
some RGB colours for the code to
use. We're also telling Pygame what
font to use and how large for certain

sections and also loading images for
the game.

Start the game
1 Pygame works by constantly
updating the display with
new information. The menu
function adds elements to the
display (which we've titled screen),
like filling it with colour, adding
shapes and using blit to add images
or in this case text. With a buffer of
changes to the screen, update it
with the flip() function.

Make a visual novel game

mode (wlaw)

= pyyame,dirplay. et

See the mouse

1 As we've created the button
as a rectangle and now an
image on the menu, we need
to recognise when the mouse is
hovering over it to know when the
button is clicked. First we have to
use event.get() to see the mouse
in general, then we look for the
position with get_pos(). After that,
we wait for it to click, see where it
clicked (using the co-ordinates of
the rectangle) and make a decision
after that.

Start the story
1 Our start_game function is
called when the mouse clicks
the right position and we prepare
the game, getting the characters,
locations and progression through
the game script. The rest of this
function uses this info to pull in data
from the script to make the game
flow properly.

1 3 The first screen is handled
differently, and acts to get every
element up on the interface — it makes
the code take a little less time to process
as we begin. The getattr allows us to
use the string/integer associated with
our place in the story and call upon
the relevant scene function from the
script file.

We then use an if statement with an
iterative function to successively add
screen elements to give the illusion that
it’s building up the first screen. We finish
it by advancing the progression value.

"Our next if
statement and
iteration checks
what is different on
the next line”

drav.rect (pepeen

siar

ey .

Make a visual novel game

Add variables and assets

1 Similarly to the way that
our original startup code
works, our next if statement and
iteration checks to see what is
different on the next line, and
if it moves to a different scene
function. In addition, it will also
change anything that is different
without filling up the buffer more
than needed. Where we've made
no change is labelled with a 0 in
the scripts.

1)

ief game|() :
yiobal game_running
game_running == True:
menu_screen()
game ()
The starting function

1 We finish our code bit with

a simple function that starts
off the entire game. This is just to
encapsulate the entire code and
allows us to add different ways of
turning it off in the future. IDLE when
running the file will load everything
up and then run the game() function
at the end - this is similar to how you
canadd a__main__ function at the
end which will start the code in the
command line.

Create with Python

Expand your code
1 The code written is very
expandable, allowing you
to add decisions that are logged
to take you to different scenes (or
routes in visual novel terminology)
and make your game feel more
interactive. This would not require
much more code than the if
statements, and it would also be
a good way for you to look into
adding graphical buttons to click
and use the collide function.

Move the assets
1 Currently the code has the
script-specific assets in the
main visualnovel file. These can be
moved to the script, allowing you
to make the visualnovel file much
more modular so that can you
have multiple scripts with different
assets to load at startup.

Use Python with Pi Create amazing projects

Use Python with Pi

From the tutorials up to this point, you'll have a firm grounding in
Python. Now we're going to add the Raspberry Pi computer. You'll
discover exciting projects such as sending SMS texts from your
Raspberry Pito a mobile phone (p.102), a voice synthesiser (p.114), and
this quadcopter (right, p.116). You'll also learn how to code a Twitter
bot (p.122), and control an LED with Python (p.124).

Use Python with Pi

Create amazing projects

Use Python with Pi

What you'll need...

A Raspberry Pi with all
necessary peripherals

SD card with |
latest Debian image for Pi
www.raspberrypi.org/downloads

Using Python on Raspberry Pi

Using Python
on Raspberry Pi

Program in Python with the Raspberry Pi, and lay
the foundations for all your future projects

This tutorial follows on from the one last issue: ‘Setting up the Raspberry
Pi, where we showed you how to prepare your SD card for use with the
Raspberry Pi. The beauty of using an SD card image is that the operating
system is ready to go and a development environment is already
configured for us.

We'll use a lightweight integrated development environment (IDE)
called Geany for our Python development. Geany provides a friendlier
interface compared to text-based editors such as nano to make it easier
to get into the swing of things. This tutorial will cover topics such as:

- Basic arithmetic
- Comparison operators, for example ‘equal to’ and not equal to'
- Control structures, for example loops and if statements

By the end, we'll have an advanced version of our ‘hello world’
application. Let's dive straight in. ...

Fle Edit Go Bookmarks \iew Tools Help

+: DS~ D ’.'i fhomayjpi

16

W Dosktop i ‘ i t
1 Rubbesh Presktop Scralch
-"_j: Apphcations

_ 16 GB Filesystem

Staying organised

We don't want to have messy folders on our new Pi, so let’s go to the file
O manager and organise ourselves. Open the file manager by clicking the icon
next to the menu icon on the bottom left of the screen. Create a new folder by
right-clicking and selecting New>Folder, then type a name and click OK. We created
afolder called Python, and inside that created a folder called Hello World v2.

Using Python on Raspberry Pi Use Python with Pi

It's good practice to describe 1f ' "

2
what the program's purpose 3| #
is at the top of the file. This ‘,: L -
will help you out when 0
working on larger projects ; 1ngort bt
with multiple files 8| # Import everyth
10} from decimal import
11
12l * Go ne ar t @ ¥
13) firsthams rav_input | Fleass snter your first name
14 printi " Welcose = firstlams « n®)
E? nusber = -_-.; Enputi P upde ERTEF & numBer i
e i 18| number = Deciealimumber)
It's important to think about 181 Rinks it Ul e [Mt
data types. We convert the M| nusberDoubled.= nusber * 2

: 1 H'thval{ul!r!:' number * number
number to decimal to Make s eyttt i

sure that we Fill
\) 24| : sErie
don'tlose any decimal 25! print(-The g that nusbes s &t7{nunberdalved)
numbers during arithmetic 6| print(-The o ke ¢ = stri{numberfioubled])
AT| printi " The 1t r lnunberSquared) |
8 primt |
&9
9 # T
31} yeslirNo Falae
32
1] A ow G W
Miwhile yesOrNo == Falie
Thestoppingcondition !5 result = raw_inputi“Do you wani fo continue yeu/mal
for a while loop has to be i i result e ‘yes” or result == Cnot:
e _ FILO ™ | AE s M yasOrMa = True
satisfied at some point in the iy R
code; otherwise the loop will 44 priati*Error, please type yea oF na" « “\n")
never end! iz » vea
A% LT retult o= yes
44 pristi*\nCont inuing”)
4% elae
a5 printi wl
47 sys.enit
48
49| .
50| count =
The print function can only 51
accept string data types, '{': ;,“',, sfacrassntisg the, susber By S\s
sowe needtoconvertany gl
. . 55 while count == 5§
variables witha numberdata <& number
i n printi number = stricount) « = « strinumber))
type to a string before we HH

can printthemtothe screen <

: #
Lo count e

Bl
62} # ’
631 printi \nCaiting”|

Starting Geany

O Start Geany by going to the LXDE menu and going to Programs. From

here, select Geany. Once you're in the Geany interface, create a new
Python file from a template by selecting ‘New (with template)>main.py’. Delete
everything in this template apart from the first line: #!/usr/bin/env python. This
line is important because it means you can run the code from the command line
and the Bash shell will know to open it with the Python interpreter.

Use Python with Pi

Saving your work

0 It's always a good idea to keep
saving your work with Ctrl+S
as you program, because it would
be a shame to lose anything you've
been working on. To save your file for
the first time, either press Ctrl+S or
go to the File menu and select Save.
Give the file a sensible name and
save it in the tidy folder structure you
created before. It's a good habit to be
well organised when programming,
because it makes things much easier
when your projects become bigger
and more complicated.

Setting it up

O Having detailed comments
in your code is important
because it allows you to note down

things you find confusing and
document complex procedures. If
another programmer has to work
with your code in the future, they'll
be extremely grateful. Start by adding
a comment with a description of
what the program will do and your
name. All comment lines start with

a hash (#) and are not interpreted

as code by the Python interpreter.
We import the sys library so we can
use the sys.exit function to close the
program later on. We also import
everything from the decimal library
because we want to make use of the
decimal type.

i Frsae ks
import sys

from decimal import *

Programming in Python on the Raspberry Pi

Name:

1lefloworkdv] py

= Biowse [or olher lolders

4 T pl ython [Helle Weorld vi2 Create Folder

Paces Nama * size | Modified
% Semich
S Rocently Used
Tp
W Uesktop
Filss St srm e

& pdd

open fila in a new tab

“It's a good habit to be well organised
when programming”

Variables
0 A variable is data that is stored in memory and can be accessed via a
name. Our program is going to start by asking for your first name, store
that in a variable and then print out a welcome message. We're going to add a
comment that explains this and create a variable called firstName. Notice how
we've capitalised the first letter of the second word to make it easier to read.
We want the firstName variable to hold the value returned by a function
called raw_input, that will ask the user for input. The question is passed into the
print function within brackets, and because this is a string it is enclosed within
quotation marks. A string type is basically a collection of characters. Note the extra
space we've added after the colon because the user types their input straight
after this question.

Printing a message

O Now that we have a value in firstName, we need to output a welcome

message to the screen. We print to the screen in Python using the
print function. The print function is followed by a pair of brackets which
enclose the values to print. When using the addition operator with strings,
they are joined together. Note how firstName doesn't need to be enclosed
by quotation marks because it is the name of a variable. If it was enclosed in
quotation marks, the text firstName would be output. We finish off by adding
a'\n’ character (new line character) to our output to leave one blank line
before we start our next example.

Programming in Python on the Raspberry Pi

Use Python with Pi

& Preferences -
General Tool paths
Interface Enter tool paths below, Tools you do not need can be left
blank.
Toolbar
i Terminal: xterminal f| o
Files
Browser: sensible-browser fl o
Tools ¢
Templates Grep: grep f| o
Keybindings
yb g Commands
Prnting Context action: i ol
Terminal

Fixing a small issue

0 The Debian image that we're
currently using has a small
misconfiguration issue in Geany.
You'll know if you have this problem
by trying to run your program with
either the F5 key or going to the
Build menu and selecting Execute.
If the issue is present then nothing
will happen and you'll see a message
saying ‘Could not find terminal:
xterm’. Not to worry, it's easy to fix.
Go to the Edit menu and then select
Preferences. Go to the Tools tab and
change the value for Terminal from
xterm to Ixterminal.

Testing our program

Now we've done that part, why not test it? It's worth noting that you have
O to save before running the program, or anything you've done since you
last saved won't be interpreted by Python. Run the program by pressing the F5
key. Input your name by typing it and then pressing the Enter key. Once you have
done this, you'll see a welcome message. If the program exits with the code 0
then everything was run successfully. Press Enter to close the terminal.

Working with numbers

We're going to ask the user for a number by basically repeating the first
0 couple of lines we did. Once the user gives us a number, we'll halve,
square and double it. The raw_input function returns the value that the user input
as a string. A string is a text-based value so we can't perform arithmetic on it. The
integer type in Python can only store whole numbers whereas the decimal type
can store numbers with decimals. We're going to do something called a type
cast, which basically converts a value with one type to another type. We're going
to convert our number string to a decimal value because it's likely that decimals
will be involved if we are halving numbers. If the number was of an integer type,
any decimal values would simply be cut off the end, without any rounding. This is
called truncation.

107

Use Python with Pi

Below The Raspberry Pi takes the ‘Pi’ part
of its name from its compatibility with the
Python programming language

Programming in Python on the Raspberry Pi

Performing arithmetic

1 O The main arithmetic operators in Python are + -/ * the latter two being
divide and multiply respectively. We've created three new variables

called numberHalved, numberDoubled and numberSquared. Notice that we

don't need to specify that they should be decimal because Python gives a

type to its variables from the type of their initial value. The number variable is a

decimal type, so all values returned from performing arithmetic on that number

will also be of a decimal type.

@A

24 # t9 3

b} primkl*Tha renult ot ha g That toom + atr logmberral yedl
- primu(® It of deubling that musber: & gtrnumberioubled])
anr prambi*The e Tt tw * wir (number-Squared |
Ju Prim: o

Printing our numbers

Now that we have performed our arithmetic, we need to print the results
1 using the print function. The print function only accepts string values
passed to it. This means that we need to convert each decimal value to a string
using the str() function before they can be printed. We're using a print statement
with nothing between the quotation marks to print one blank line. This works
because the print function always adds a new line at the end of its output unless
told otherwise, so printing an empty string just prints a new line.

Input validation with While loops and If statements
1 To demonstrate a while loop and if statements, we will output a question
to the user that requires a yes or no answer. We're going to ask them if

they want to continue — and for this we require either a lower-case ‘yes’ or a

lower-case 'no’. A while loop is a loop that runs until a condition is met. In

this case, we will create a variable called yesOrNo and the while loop will
run while yesOrNo is false. The yesOrNo variable will be a Boolean type
that can be either True or False. The variable will be initialised with a
value of False, or the while loop will not run.

A while loop has the format ‘while [condition]:’ — where any code that
is part of the while loop needs to be indented in the lines below the
colon. Any code that is not indented will not be part of the while loop.

This is the same for an if statement. The condition is checked with

the comparison operator ==" A single ='is an assignment operator
whereas a double equals is a comparison operator. Another
common comparison operator is ‘I="— which means 'not equal to'
We create a variable called result, which holds the result of the
question, do you want to continue? We then check this result is
valid with an if statement. Notice the ‘or’ operator which allows
two conditions to be tested. If the user inputs a correct value
then we set yesOrNo to True, which stops the while loop on the
next run. Otherwise, we output an error message and the while loop will
run again. The user can use the Ctrl+C command at the terminal to exit the
program at any time.

Programming in Python on the Raspberry Pi

43 Bif resul

aq primt
45 Belse:

46 | print
a7 ' AN

Continue or exit?

1 Next we will deal with the
result that was stored during
the while loop with if statements.
If the user typed ‘yes’ then we will
print ‘Continuing’. Otherwise, we will
print ‘Exiting’ and then call the sys.
exit function. You don't have to do
anything else for the program to
continue because it will simply carry
on if the sys.exit function wasn't called.
This code also shows that the newline
character \n can be used anywhere in
a string, not just in separate quotation
marks like above.

Loops with numbers

1 We'll be using a while loop

that uses a number and a <=
(less than or equal to) operator as its
stopping condition. The while loop
will be used to increment the number
by 1, printing the change on each loop
until the stopping condition is met.
The count variable allows us to know
exactly how many times we have
been through the while loop.

Incrementing numbers
with a loop

1 The while loop will run until the

count is 6, meaning that it will
run for a total of 5 times because the
count begins at 1. On each run, the
while loop increments the number
variable and then prints what is
being added to the original number,
followed by the result. Finally, the
count is incremented.

Use Python with Pi

“The print function always adds a new
line at the end of its output”

L Bwhils count

2
%3
=3
v
o+

Finishing off

1 The final step is to print that the program is exiting. This is the last line and
we don't have to do anything else because Python simply finishes when
there are no more lines to interpret.

Admire your work

1 Now that we've finished coding, save any changes you have made and run
your program with the F5 key.

Use Python withPi = Send an SMS from your Pi

= Sendan SMS
from your Pi

Create a program combining Twilio and simple
Python code and send an SMS from your Pi

Text messaging, or SMS (Short Message Service),
has become a staple of everyday communication.
For many of us, not a day will go by without
sending a text message. What began life as a 40
pence message service is now offered by most
tariff providers as an unlimited service.

Twilio, a cloud communications company,
enables you to send SMS messages for free from
your Raspberry Pi to a mobile phone using just
six lines of code. So, you no longer need to be
chained to your mobile while you work, and can

Raspberry Pi focus on one screen rather than twol

4

Sent from the Twillio Sandbox
Number - Hey! Did you know you
can send text messages from your
59

Pi Left With this method, you could get your Pi to drop
you a text when it finishes running a script

Send an SMS fromyourPi ~ Use Python with Pi

VINCL, ki & WAL NUMBLRS r DIV TOOLS LOGE UEATH DO 4 WELP »

GETTRG STARTED COmT a CORTIRERCT§

VOICE, SMS & MMS e AP Crohigialy

API Credentials

ACCOUNT siD I AUTH TOKEN I

i A TIORSAC Sty S Dt m
sl ac sty [T

Sandbox App B Unied Slakes - Developer Tools e
Test Your App © Ganadalé your code fof 1he Twillo AP
e
[4ca | s
ICalln Fapiws
I -

Diy REQUIREL

App Details o

Above You will be able to find your
AccountSid and your Auth Token on the

Set up your Twilio account Twilio dashboard

O The first step of this project is to register for a Twilio account and Twilio
number. This is free and will enable you to send an SMS to a registered,
verified phone. Once signed up, you will receive a verification code via SMS to the
registered phone. When prompted, enter this onto the Twilio site to authenticate
your account and phone. Go to twilio.com/try-twilio and create your account.

Register and verify mobile numbers

0 Your Twilio account is a trial account (unless you pay the upgrade fee),
which means you can only send and receive communications from a

validated phone number. Enter the phone number of the mobile that you want

to verify, ensuring that you select the correct country code. Twilio will text you a

verification code. Enter this code into the website form and press submit.

The dashboard

O Once registered and logged in, visit the dashboard page, which will display
your AccountSid and your Auth Token. These are both required to use the
Twilio REST. Keep these secure and private, but be sure to make a note of them as you

will need them for your Python program later.

Use Python with Pi

=)

REST stands for Representational
State Transfer. (It is sometimes
spelt “ReST") It relieson a

stateless, client-server, cacheable
communications protocol —and
in virtually all cases, the HTTP
protocol is used. REST is an
architecture style for designing
networked applications.

Below Twilio, whose website is pictured,
has been used by large corporations like
Coca Cola, Uber and Nordstrom

Send an SMS from your Pi

Install the software

04 Boot up your Raspberry Piand connect it to the Internet. Before you install
the Twilio software, it is worth updating and upgrading your Pi. In the LX

Terminal, type sudo apt-get update, then sudo apt-get upgrade. Once complete,

type sudo easy_install twilio or sudo pip install twilio to install the software. (If you

need to install pip, type sudo apt-get install python-pip python-dev, press Enter,

then type sudo pip install -U pip.)

Twilio authentication
O Now you are ready to create the SMS program that will send the text
message to your mobile phone. Open your Python editor and import the

Twilio REST libraries (line one, below). Next, add your AccountSid and Auth Token,
replacing the X with yours, as you will find on your dashboard:

I from twilio.rest import TwilioRestClient
B account_sid = “XXXXXXXXXXXXXXXXXXXXXXXXXXXXX”
Enter Yours
B auth_token = “XXXXXXXXXXXXXXXXXXXXXXXXXX”
Enter Yours
I client = TwilioRestClient(account_sid, auth_token)

BUILD APPS THAT COMMUNICATE
WITH EVERYONE IN THE WORLD

Send an SMS from your Pi

“Twilio provides a wide range of AP
codes and reference documents to

Create other communication programs’

Create your message

O You will probably want to be able to change your text messages
rather than send the same one. Create a new variable in your program

called message. This will prompt you to enter the phrase that you want to

send to the mobile phone. When the program runs, this is the message that

will be sent:

I message = raw_input(“Please enter your message”)

Add your numbers

O To send the message, you need to add the code line below and your
two phone numbers. The first number is your mobile phone number,

which is registered and validated with Twilio (Step 2). The second number is

your Twilio account number, which can be retrieved from your dashboard page

under ‘Call the Sandbox number’. Change the Sandbox number to your country

location and remember to add the international country code.

fi message = client.messages.create(to=“+44YOURMOBNUMBER”,
from_=“+44YOURTWILIONUMBER”, body=message)

Voice, SMS & MMS

Hrnaty 1 TR 11l el

Sandbox App

s,
IS

e —

Womm i 0

o e g

A BIN] Ty T Bt

Py a—

Use Python with Pi

Send the message

Now send your message. The
0 code below is not required,
but useful to indicate your message
has been sent. Add the lines and save
your program. Ensure your Raspberry
Piis connected to the Internet and
that your mobile is on, then run your
program. You have just texted from
your Raspberry Pi!

[| print message.sid

il print “Your message is being
sent”

i print “Check your phone!”

Other APl and codes

0 Twilio provides a wide

range of APl codes and
reference documents to create
other communication programs
beyond sending SMS, such as making
phone calls, recording your calls, and
retrieving data including caller IDs and
call duration.

The APl also complements a
wide range of other programming
languages, including Ruby, PHP, Java
and Nodejs (twilio.com/api).

[+ [- P

113

Use Python with Pi

What you'll need...

Portable USB speakers
python-espeak module
eSpeak

Raspbian (latestimage)

Did you know...

Using eSpeak you can control

the way the words are spoken
to add emphasis or make the
voice sound different

Everything you'll need

O We'llinstall everything we plan
to use in this tutorial at once.
This includes the eSpeak library and the
Python modules we need to show it
off. Open the terminal and install with:
l $ sudo apt-get install espeak
python-espeak python-tk

Voice synthesizer

Voice
synthesizer

Add the power of speech to your Raspberry Pi
projects with the versatile eSpeak Python library

We've shown how the Raspberry Pi can be used to power all kinds
of projects, but as a tiny computer it can also be the centre of an
Internet of Things in your house too. For these reasons and more,
using the Raspberry Pi for text-to-voice commands could be just
what you're looking for. Due to the Debian base of Raspbian, the
powerful eSpeak library is easily available for anyone looking to
make use of it. There's also a module that allows you to use eSpeak
in Python, going beyond the standard command-line prompts so
you can perform automation tasks.

Pi’s first words

O The eSpeak library is pretty
simple to use —to get it to just

say something, type in the terminal:

I $ espeak “[messagel”

This will use the library’s defaults

to read whatever is written in the

message, with decent clarity. Though

this simple command is fun, there’s

much more you cando...

Say some more

You can change the way
0 eSpeak will read text with a
number of different options, such as
gender, read speed and even the way
it pronounces syllables. For example,
writing the command like so:
I $ espeak -vent+f3 -k5 -s150
“[message]”
...will turn the voice female,
emphasise capital letters and make
the reading slower.

Voice synthesizer Use Python with Pi

Taking command Full code listing
With Python ...
.. Import the
0 The most basic way to use necessary eSspeak [From espeak import espeak
eSpeak in Pythonis to use and GUI modules, as — from Tkinter import *
subprocess. Import it, then use: well as the module from datetime import datetime
I subprocess.call([“espeak”, tofindoutthetime |
“[options 11”7, “[option .. — | def hello_world():
217,...”[option n]”, “[your 4! Define the different espeak.synth(“Hello World”)
message herel”) functions that the
- interface will use, def time_now():
e TS includingasimple | t = datetime.now().strftime(“%k %M”)
fixed message, | espeak.synth(“The time is %s”%t)
Tkt telling the time, and
a custom message def read_text():

text_to_read = input_text.get()
espeak.synth(text_to_read)
Create the basic =
window with Tkinter | root = Tk()

. for your interface, root.title(“Voice box”)
Ll Ao T — aswellsscreating _| input_text = StringVar(
the variable for box = Frame(root, height = 200, width =
0 The Python eSpeak module text entry 500)
is quite simple to use to just]

| box.pack_propagate(0)

convert some text to speech. Try this box.pack(padx = 5, pady = 5)

sample code:
from espeak import espeak Label(box, text="Enter text”).pack()
espeak.synth(“[message]”) entry_text = Entry(box, exportselection = ..
You can then incorporate this into The text entry 0, textvariable = input_text)
Python, like you would any other appends to the entry_text.pack()
module, for automation. variable we created, entry_ready = Button(box, text = “Read
— and each button this”, command = read_text)
calls a specific | entry_ready.pack()
function that we
defined above in hello_button = Button(box, text = “Hello ..
e the code World”, command = hello_world)
- T | hello_button.pack()
time_button = Button(box, text = “What’s ..
the time?”, command = time_now)
time_button.pack()
A voice synthesiser root.mainloop()

0 Using the code listing, we're
creating a simple interface
with Tkinter with some predetermined

voicebutronsandacusomenty 1 NETE's even a module that allows

hod. We're showing h h H
?Szte(imoZLrJeIeSc;)r\waegm;)r\qptuI:ted yOU to use eSpeak In Python/ SO yOU
to change its output. This can be can perform au‘tomated taSkS"

used for reading tweets or automated
messages. Have fun!

115

Use Python with Pi

What you'll need...

Raspbian

www.raspberrypi.org/downloads

Python

www.python.org/doc

Did you know...

Andy Baker, the writer of this
article, keeps a blog at blog.
pistuffing.co.uk that gives

great insight into his project.

Right Put your
Raspberry Piin the
sky with our expert
coding guide!

Program a quadcopter

Program a
quadcopter

How do you push the limits of the Pi? You give it
wings. Andy Baker shows us how it's done. ..

The Raspberry Piis a fantastic project board. Since we love a challenge,
we set out looking for something that would really push the limits of our
hacking and coding skills. We chose a quadcopter.

This article uses the Python code available online as a guide through
what's needed to build a quadcopter, metaphorically bolting it together
so that by the end, you don't just understand the code but also the
interaction with the real-world to enable you to build your own
quadcopter with confidence. You can find Andy’s code on his blog.

Program a quadcopter

Sensor V|ewp0|nt dlagram

Hovv sensors in the quadcopter’s point of view are converted to the
Earth (horizontal/vertical) viewpoint to provide horizontal motion

Propulsion
Here we're seeing
the force from the

rel
propellers

a,= gravitational acceleration
= quadcopter acceleration

9

a

aq } = 3, (reorientated to Earth’s axes)
ay

©=angle of tilt derived from

accel +gyro

sesssssssssREEEn

sssssssas

Gravity
This term
denotes the force
of gravity

Interpreter

The command interpreter converts a series of commands either from a radio
O control or programmed into the code itself. The commands combine the
direction and speed compared to the horizon that the user want the quadcopter
to follow. The code converts these commands into a series of targets for vertical
speed, horizontal speed and yaw speed — any command from a pair of joysticks can
be broken down into a set of these targets.

In puts

The inputs to the quadcopter come from a series of electronic sensors
0 providing information about its movement in the air. The main two are an
accelerometer which measures acceleration force (including gravity) in the three
axes of the quadwcopter, and a gyroscope which measures the angular speed with
which the quadcopter is pitching (nose/tail up and down), rolling (left/right side up
and down), and yawing (spinning clockwise and anticlockwise around the central
axis of the quadcopter itself).

Use Python with Pi

* Vectors
Propeller force
lative to Earth’s axis

(horizontal / vertical)

== Angle
Thisis the angle of
tilt as defined by the
quads sensors

a,=tano
a
ay
for horizontal flight
a_=g=>
qz

horizontalaccela =g +a
ax

Axes

The accelerometer is
O relative to the orientation
of quadcopter axes, but the
command targets are relative to
the Earth’s axes — the horizon and
gravity. To convert the sensor
output between the quadcopter
axes and the Earth axes requires
the use of a bit of mathematics,
specifically trigonometry. You also
need knowledge of the tilt angles in
pitch and roll axes of the quadcopter
with respect to the Earth. It's pretty
complicated stuff, but the diagrams
on these pages should help you
understand the logic.

17

Use Python with Pi

Above Kits are available as ready-to-fly
(RTF) if you just want the joy of flight, but
where’s the challenge in that? We started
with an almost-ready-to-fly (ARF) kit - the
DJI Flame Wheel F450 - all the hardware,
but none of the control electronics

or software. Many enthusiasts have
created DIY quadcopters using Arduino
microcontrollers, so we knew a DIY build
was possible, but very few, if any, have
successfully used the Raspberry Pi

Did you know...

Ready To Fly (RTF)

r kits from a lot of

Program a quadcopter

Angles

O Both the accelerometer and

gyro can provide this angle
information, but both have flaws. The
accelerometer output can be used to
calculate the angle by using the Euler
algorithm. However, the accelerometer
output is plagued by noise from the
motors/propellers, meaning a single
reading can be hugely inaccurate;
on the plus side, the average reading
remains accurate over time.

In contrast, the gyro output
does not suffer from the noise, but
since it is the angular speed being
measured, it needs to be integrated
over time to find the absolute angle
of the quadcopter in comparison to
the horizon. Rounding errors in the
integration lead to ever increasing
errors over time, ultimately curtailing
the maximum length of a flight.

Filter
0 Although independently
they are both flawed, they

can be merged mathematically
such that each compensates for
the flaws in the other, resulting in
a noise-free, long-term accurate
reading. There are many versions
of these mathematical noise/drift
filters. The best common one is by
Kalman; the one we've chosen is
slightly less accurate, but easier to
understand and therefore to code:
the complementary filter.

Now with an accurate angle
in hand, it's possible to convert
accelerometer sensor data to inputs
relative to the Earth’s axes and
work out how fast the quadcopter
is moving up, down, left, right and
forwards and backwards compared
to the targets that have been set.

Program a quadcopter

PIDs

O So we now have a target for what we want the quadcopter to do, and

an input for what it's doing, and some motors to close the gap between
the two; all we need now is a way to join these together. A direct mathematical
algorithm is nigh on impossible — accurate weight of the quadcopter, power per
rotation of each blade, weight imbalance etc would need to be incorporated into
the equation. And yet none of these factors is stable: during flights (and crashes)),
blades get damaged, batteries move in the frame, grass/mud/moisture changes
the weight of the ‘copter, humidity and altitude would need to be accounted
for. Hopefully it's clear this approach simply won't fly.

Instead, an estimation method is used with feedback from the sensors to fine-
tune that estimate. Because the estimation/feedback code loop spins at over
100 times a second, this approach can react to ‘errors’ very quickly indeed, and
yet it knows nothing about all the factors which it is compensating for — that's
all handled blindly by the feedback; this is the PID algorithm. It takes the target,
subtracts the feedback input, resulting in the error. The error is then processed via
a Proportional, Integral and a Differential algorithm to produce the output.

Blender

The outputs are applied to each ESC in turn: the vertical speed output is
O applied equally to all blades; the pitch rate output is split 50/50 subtracting
from the front blades and adding to the back, producing the pitch. Roll is handled
similarly. Yaw too is handled in a similar way, but applied to diagonal blades which
spin in the same direction.
These ESCGspecific outputs are then converted to a PWM signal to feed to the
hardware ESCs with the updated propeller/motor speeds.

Propellers .. “
The propellers are setdl-
agonally to the x, y axes,
and rotate as shown to
reduce yaw (rotation
about the z-axis)

Back

Right

—_—

Quadcopter orlentatlon Fr or 11
The orientation of the quadcopter compared
to the direction of travel, the rotation of the
propellers and the axes used in the code

Use Python with Pi

Understanding
guadcopters...

Although this article focuses on software,
a very basic background in the hardware
from the kit is necessary to provide context.
A quadcopter has four propellers
(hence the name) pointing upwards to the
sky, each attached to its own brushless DC
motor at one of the four corners of (usually)
a square frame. Two motors spin clockwise,
two anticlockwise, to minimise angular
momentum of the quadcopter in flight.
Each motor is driven independently by
an electronic speed controller (ESC). The
motors themselves have three sets of coils
(phases), and the ESCs convert a pulse-
width-modulation (PWM) control signal
from software/hardware to the three phase
high-current output to drive the motors at
a speed determined by the control signal.
The power for the ESCs and everything
else on the system comes from a Lithium
Polymer battery (LiPo) rated at 12V, 3300mA
with peak surge current of 100A - herein
lies the power!

g « Sensors
The quadcopter 's sensors report data
according to these x, y and zaxes

Left

Orientation et

The overall orientation of the quadcopter
depicting front, back, left and right in rela-
tion to the sensor and propeller layouts

Use Python with Pi

Code and reality

08 In this code, there are nine PIDs in total. In the

horizontal plane, for both the X and Y axes, the
horizontal speed PID converts the user-defined desired
speed to required horizontal acceleration/ angle of tilt;
the angles PID then converts this desired tilt angle to
desired tilt rate which the rotation speed PID converts
to changes in motors speeds fed to the front/back or
left/right motors for pitch/roll respectively.

In the vertical direction, a single PID converts the
desired rate of ascent/descent to the acceleration
output applied to each plate equally.

Finally, prevention of yaw (like a spinning top) uses
two PIDs - one to set the desired angle of yaw, set to
0, and one to set the yaw rotation speed. The output
of these is fed to the diagonally opposing motors
which spin in the same direction. The most critical
of the nine are pitch/roll/yaw stability. These ensure
that whatever other requirements enforced by other
PIDs and external factors, the quadcopter is stable in
achieving those other targets; without this stability,
the rest of the PIDs cannot work. Pitch is controlled
by relative speed differences between the front and
back propellers; roll by left and right differences, and
yaw by clockwise/anticlockwise differences from
the corresponding PIDs" outputs. The net outputs
of all three PIDs are then applied to the appropriate
combination of motors’ PWM channels to set the
individual pulse widths.

With stability assured, some level of take-off, hover
and landing can be achieved using the vertical speed
PID. Placing the quadcopter on a horizontal surface,
set the target to 0.5 m/s and off she zooms into the
air, while the stability PID ensures that the horizontal
attitude on take-off is maintained throughout the
short flight, hover and landing.

Up to this stage, the PIDs are independent. But
what about for horizontal movement target, and
suppression of drifting in the wind?

This is where things get event more complicated.
Taking the drift suppression first, a quadcopter in a

Program a quadcopter

headwind will drift backwards due to the force applied

by the wind. To compensate for this, it must tilt nose
down at some angle so that some of the propellers’
thrust is applied horizontally to counteract the wind.
In doing so, some of the power keeping the ‘copter
hovering at a fixed height is now battling the wind;
unless the overall power is increased, the ‘copter will
start descending.

Horizontal movement is more complex still.

The target is to move forwards at say 1 metre per
second. Initially the requirement is similar to the
headwind compensation — nose down plus increased
power will apply a forward force leading to forward
acceleration. But once that horizontal speed is
attained, the quadcopter needs to level off to stop the
acceleration, but at the same time, friction in the air
will slow the movement. So there’s a dynamic tilting
fore/aft to maintain this stable forward velocity.

Both wind-drift suppression and controlled
horizontal movement use something called nested
PIDs; the X and Y axes horizontal speed PIDs" outputs
are used as the pitch and roll angle PIDs targets; their
output feeds the pitch and roll rate PIDs to ensure
stability while meeting those angular targets. The
sensor feedback ensures that as the desired horizontal
speed is approached, the horizontal speed PID errors
shrink, reducing the targets for the angular pitch
PID, thus bringing the quadcopters nose back up to
horizontal again.

Hopefully it now becomes clearer why accurate
angle tracking is critical: in the nose-down, headwind
example, the input to the vertical speed PID from
the sensors is reduced by the cosine of the measured
angle of ‘copter tilt with respect to the horizon.

Similarly, X and Y axis speed PID sensor inputs
need compensating by pitch and roll angles when
comparing target speeds against accelerometer
readings. Don't forget to check the diagrams in the
article for clear, graphical representations of many of
the themes we're covering.

“Taking the drift suppression first, a
quadcopter in a headwind will drift
backwards due to the force applied
by the wind”

Program a quadcopter

Experimentation and tuning

O While the code accurately reflects everything
we've described here, there's one critical set
of steps which can only be found through live testing;
these are the PID gains. For each PID running, there is an
independent Proportional, Integral and Differential gain that
can only be found with estimation/experimentation. The
results for every quadcopter will be different. Luckily there is
a relatively safe way to proceed.

First, find the PWM take-off speed: this is done by sitting
your quadcopter on the ground and slowly increasing the
PWM value until she starts looking light-footed — for your
expert, this was about the 1590us pulse width (or 1000us
+ 590us, as shown in the code).

Next, sorting out the stability PIDs — assuming your
quadcopter is square and its balance is roughly central,
then the result of pitch tuning also applies to yaw tuning.
For pitch tuning, disable two diagonally opposed motors
and rest these on a surface — the quadcopter sits horizontal
in between. Power up the dangling motors’ PWM to just
under take-off speed (1550us pulse width in our expert’s
case). Does the quad rock manically, wobble in some
pretence of control, self-right when nudged, or do nothing?

Use Python with Pi

Tweak the P gain accordingly. Once P gain is good, add

a touch of | gain — this will ensure return to 0 as well as
stability. D gain is optional, but adds firmness and crisp
response. Tapping a D-gain stable quad is like knocking on
a table — it doesn't move.

Vertical speed PID can be guesstimated. 1590us is taking
off; desired take-off speed is 0.5m/s so a P gain of 100 is
okay. No | or D gain needed. With that a real take-off, hover
and landing are safe, which is good as these are the only
way to tune the directional PIDs. Just be cautious here —
excessive gains lead to quadcopters slamming into walls
or performing somersaults in mid-air before powering
themselves into the ground. Best executed outside in a
large open field/garden/park where the ground is soft after
overnight rain!

There isn't a shortcut to this, so just accept there will
be crashes and damage and enjoy the carnage as best
you can!

Assuming all the above has gone to plan, then you
have a quadcopter that takes off, hovers and lands even
in breezy conditions. Next step is to add a remote control,
but we'll save that for another day!

121

Use Python with Pi

What you'll need...

Internet connectivity

Latest version of Raspbian
www.raspberrypi.org/ downloads

Installing the
required software

O Log into the Raspbian system

with the username Piand the
password raspberry. Get the latest
package lists using the command
sudo apt-get update. Then install
the Python Package installer using
sudo apt-get install python-pip. Once
you've done that, run sudo pip install
twython to install the Twitter library
wel'll be using.

Registering your ‘app’
with Twitter
2 We need to authenticate with
0 Twitter using OAuth. Before
this, you need to go to https:/dev.
twitter.com/apps and sign in with
the account you'd like your Pi to
tweet from. Click the ‘Create a new
application’ button. We called our
application 'LUD Pi Bot' and set the
website to www.linuxuser.co.uk.

Code your own Twitter bot

Code your own
Twitter bot

Create your very own Twitter bot that can retweet
chunks of wisdom from others

Twitter is a useful way of sharing information with the world and it's
our favourite method of giving our views quickly and conveniently.
Many millions of people use the microblogging platform from
their computers, mobile devices and possibly even have it on
their televisions.

You don't need to keep pressing that retweet button, though.
With a sprinkling of Python, you can have your Raspberry Pi do it for
you. Here’s how to create your own Twitter bot. ..

Full code listing

#!/usr/bin/env python2

A Twitter Bot for the Raspberry Pi that retweets any
content from

import sys

import time

from datetime import datetime
from twython import Twython

class bot:
def __init__(self, c_key, c_secret, a_token, a_token_ ..
secret):
Create a Twython API instance
self.api = Twython(c_key, c_secret, a_token, I
a_token_secret)

Make sure we are authenticated correctly
try:

self.api.verify_credentials()
except:

sys.exit(“Authentication Failed”)

self.last_ran = datetime.now()

@staticmethod

Creating an access token
O Go to the Settings tab and
change the Access type

from ‘Read only’ to ‘Read and Write'.
Then click the ‘Update this Twitter
application’s settings’ button. Next
we create an access token. Click the
‘Create my access token’ button. If you
refresh the details page, you should
have a consumer key, a consumer
secret and access token, plus an access
token secret. This is everything we
need to authenticate with Twitter.

Authenticating
with Twitter

04 We're going to create our
bot as a class, where we
authenticate with Twitter in the
constructor. We take the tokens from
the previous steps as parameters and
use them to create an instance of the
Twython API. We also have a variable,
last_ran, which is set to the current
time. This is used to check if there are
new tweets later on.

Retweeting a user
O The first thing we need to do
is get a list of the user’s latest
tweets. We then loop through each
tweet and get its creation time as a
string, which is then converted to a
datetime object. We then check that
the tweet's time is newer than the
time the function was last called —and
if so, retweet the tweet.

The main section
O The main section is
straightforward. We create
an instance of the bot class using our
tokens, and then go into an infinite
loop. In this loop, we check for any
new retweets from the users we are
monitoring (we could run the retweet
task with different users), then update
the time everything was last run, and
sleep for five minutes.

Code your own Twitter bot

Use Python with Pi

def timestr_to_datetime(timestr):
Convert a string like Sat Nov 09 09:29:55 +0000
2013 to a datetime object. Get rid of the timezone
and make the year the current one
timestr = “{0} {1}”.format(timestr[:19], datetime. I
now().year)

We now have Sat Nov 09 ©9:29:55 2013
return datetime.strptime(timestr, ‘%a %b %d %H:%M: I
%S %Y

def retweet_task(self, screen_name):
Retweets any tweets we’ve not seen
from a user
print “Checking for new tweets from ..
@{0}”.format(screen_name)

Get a list of the users latest tweets
timeline = self.api.get_user_timeline ..
(screen_name = screen_name)

Loop through each tweet and check if it was
posted since we were last called
for t in timeline:
tweet_time = bot.timestr_to_datetime ..
(t[‘created_at’])
if tweet_time > self.last_ran:
print “Retweeting {0}”.format(t[‘id’])
self.api.retweet(id = t[¢id’])

if __name__ == “__main__":
The consumer keys can be found on your application’s
Details page located at https://dev.twitter.com/
apps(under “OAuth settings”)
c_key=""
c_secret=""

The access tokens can be found on your applications’s
Details page located at https://dev.twitter.com/apps
(located under “Your access token”)

a_token=""

a_token_secret=""

Create an instance of the bot class
twitter = bot(c_key, c_secret, a_token, a_token_secret)

Retweet anything new by @LinuxUserMag every 5 minutes
while True:
Update the time after each retweet_task so we’re
only retweeting new stuff
twitter.retweet_task(“LinuxUserMag”)
twitter.last_ran = datetime.now()
time.sleep(5 * 60)

123

Use Python with Pi

What you'll need...

Breadboard:

www.proto-pic.co.uk/half-size-breadboard

3mm LED light:
www.ultraleds.co.uk/led-product-
catalogue/basic-leds-3-5-8-10mm.html

Wires:
www.picomake.com/product/breadboard-
wires

270-ohmrresistor:
http:/goo.gl/ox4FTp5ntj0091

[, I
.

Fig 1: All the items you will need to get
going adjusting an LED using PWM. The
wires should have a male and female ends

@

Fig 2: Place the female end onto the Pj,
noting pin number 1 being identified by
the small ‘P1". The blue wire is ground

R

Fig 3: Once everything is connected up,
plug in your USB power cable

r‘l

Fig 4: Switch the power on. The LED will
light up. If it's dim, use a lower-rated resistor

Control an LED using GPIO

Control an LED
using GPIO

An introduction into using an external output, such
as an LED, on the Pi

After you have fired up your Pi, maybe installed XBMC and had

a play around with streaming, you might be ready for your next
challenge. One route to go down is to find interesting uses for one
of the many desktop OSs available for the little computer, perhaps
using it as a web server, an NAS or retro arcade console. This is all
great fun, but an often-overlooked feature of the Piis its hardware
pinouts. If you've never done any electronics before, then the Pi is
a great place to start. Or maybe you have used a programmable
microcontroller such as Arduino in the past; the Pi, with its increased
CPU and RAM over the Arduino, opens up many more possibilities
for fun projects.

The Raspberry Pi features a single PWM (pulse width modulation)
output pin, along with a series of GPIO (General Purpose Input/
Output) pins. These enable electronic hardware such as buzzers,
lights and switches to be controlled via the Pi. For people who
are used to either just ‘using’ a computer, or only programming
software that only acts on the machine itself, controlling a real
physical item such as a light can be a revelation.

This tutorial will assume no prior knowledge of electronics or
programming, and will take you through the steps needed to
control an LED using the Raspberry Pi, from setting it up to coding a
simple application.

“We'll take you through the
steps needed to control

an LED using the Pj, from
setting it up to coding”

Breadboard -:eesiessssmsesmssiminiinananans
The breadboard, or prototype board,

provides an easy-to-use and solderless
environment for creating and changing your
development circuits

Breadboard wire

A must for any budding electrical engineer,
these male-to-male and male-to-female
wires make for fast and easy circuit building

GPIO header
This provides a mechanism for both gathering
inputand providing output to electrical

circuits, enabling reactive program design

The Pi’s pins

O Before we dive into writing
code, let’s take a look at the
layout of the pins on the Pi. If you have
your Piin a case, take it out and place
it in front of you with the USB ports
on the right. Over the next few steps
we'll look at some of the issues you'll
encounter when using the GPIO port.

Pi revision 1 or 2?

O Depending on when you
purchased your Pi, you may
have a 'revision 1" or revision 2" model.
The GPIO layout is slightly different
for each, although they do have the
same functionality. Here we have a
revision 1; revision 2s became available
towards the end of 2012.

R R R TEE

I '

o-uo-vo-.oc..-r..-t.

L R R LR

--t--t-o-o--.I.ooca

LA R R B B A R R L LA R B B
'

Control an LED using GPIO

gt “ e
@ LR
.w R
@ LR
-w LR
. w L

03 If you take a look at the top
left of the board you will see a
small white label, ‘P1’. This is pin 1 and
above it is pin 2. To the right of pin 1
is pin 3, and above 3 is 4. This pattern
continues until you get to pin 26 at
the end. As you'll see in the next step,
some pins have important uses.

Pin uses

04 Pin 1is 3V3, or 3.3 volts. This is
the main pin we will be using
in this guide to provide power to our
LED. Pins 2 and 4 are 5V. Pin 6 is the
other pin we will use here, which is
ground. Other ground pins are 9, 14,
20 and 25. You should always ensure
your project is properly grounded.

Use Python with Pi

L O
LI I O
D) :
D =
sessses, ColouredLED
® % &% # 8 & Different coloured
LSS ANE LEDs are a great way
to physically see which
part of the software

isrunning and help
you understand the
program flow

GPIO pins
0 The other pins on the board
are GPIO (General Purpose
Input/Output). These are used for
other tasks that you need to do as
your projects become more complex
and challenging. Be aware that the
USB power supply doesn't offer much
scope for powering large items.

Basic LED lighting

0 6 Okay, so let's get down

to business and start
making something. Firstly, get your
breadboard, two wires, a 270Q) resistor
and an LED. Note the slightly bent
leg on one side of the LED; this is
important for later on. Make sure your
Piis unplugged from the mains supply.

125

Use Python with Pi

Wiring the board

0 Plug one wire into the number
1 pin, and the other end into

the breadboard. Note that it doesn't

matter where on the breadboard

you plug it in, but make sure there

are enough empty slots around it to

add the LED and resistor to. Now get

another wire ready.

Add another wire
0 Place the female end of

the wire into pin number 6
(ground) and the other end into the
breadboard, making sure to leave
room for the resistor, depending on
how large it is. Next, get your resistor
ready. You can use a little higher or
lower than 270 ohms, but not using a
resistor at all will likely blow the LED.

Add the resistor

0 Next we need to add our
resistor. Place one end next to
the ground wire on the breadboard,
and the other one slot below the 3V3
wire connection. This will sit next to
the LED when we add it in a second.
Note that there is no correct or
incorrect way to add a resistor.

Add the LED

1 Grab your LED and place the
‘bent’ leg end next to the

3V3 wire in the breadboard. Place

the other leg next to the resistor leg

opposite the ground wire. This now

completes the circuit and we are ready

to test out our little task.

Power it up
1 Now get your micro-USB socket
and either plug the mains end
into the wall, or plug it into a computer
or laptop port (and powered onl). You
should see the LED light up. If not,
then check your connections on the
breadboard or Pj, or try a different LED.

126

Control an LED using GPIO

Set up programming environment
1 Now, we need to be able to do a little bit more than just turn a light
on —we want to be able to control it via code. Set up a new Raspbian
installation (a guide to this is found on page 28). You don't need a GUI for this — it
can all be done via the terminal if you so wish. Before starting, it's best to check
everything is up to date with:
sudo apt-get dist-upgrade

Open up terminal

1 Assuming we want to use the GUI, rather than SSH into the Pi, open up a
new terminal window by double-clicking on the LXTerminal icon. We need

root access to control the LEDs, so either enter su now, or remember to prefix any

commands with sudo.

lsu

followed by password or add

. sudo

to the start of each command.

Download GPIO library
1 There is a handy GPIO Python library that makes manipulating the
GPIO pins a breeze. From within your terminal window, use wget to

download the tarball file, then extract it using tar. This will give us all the files in a
new directory.
I wget https://pypi.python.org/packages
source/R/RPi.GPIO/RPi.GPI0-0.5.2a.tar.gz
| tar zxf Rpi.GPIO-0.5.2a.tar.gz

cd Rpi.GPI0-0.5.2a

Install the library

1 Now we need to install the library. This is simply a case of using Python's
install method; so we need the dev version of Python. Make sure you are in
the directory of the library before running this command.

sudo apt-get install python-dev
sudo python setup.py install

Import thelibrary i in a script

1 Create a new Python script. Next import the main GPIO Ilbrary and welll
put it in a try-except block. Save the file using Ctrl+X and choosing ‘yes'

. cd /
cd Desktop
sudo nano gpio.py
try:
import RPi.GPIO as GPIO
except RuntimeError:
print(“Error importing GPIO 1ib”)

Did you know...

The official Python docs are a
great resource for beginners
and professionals alike.
http://python.org/doc.

1 Now to make sure that the

scriptimported okay, we just
need to run the python command
and then tell it the name of the
script that we just created. If all goes
well, you shouldn’t see any error
messages. Don't worry if you do,
though. Just go back through the
previous steps to check everything is
as it should be.

I sudo python gpio.py

Set GPIO mode

1 8 Reload the script in nano again.
We will then set the GPIO
mode to BOARD. This method is the
safest for a beginner to adopt and
will work whichever revision of the Pi
you are using. It's best to pick a GPIO
convention and stick to it because this
will save confusion later on.

sudo nano gpio.py
GPIO.setmode (GPIO.BOARD)

Set pin mode

1 A pin has to be defined as

either an input or an output
before it can work. This is simplified
in the GPIO library by calling the
GPIO.setup method. You then pass
in the pin number, and then GPIO.
OUT or GPIO.IN. As we want to use
an LED, it's an output. You'll be
using these conventions frequently,
so learn them as best you can so
they soak in!

B cpro.setup(2, oP10.0UT)

Control an LED using GPIO

Use Python with Pi

Using PWM

2 The next step is to tell the pin to output and then set a way of escaping

our program. Here we call the GPIO class again and then the PWM
method, passing in the pin number; the second value is the frequency in hertz -
in this case, 0.5.

p = GPIO.PWM(12, @.5)
p.start(1)

input(‘Press return to stop:’)
p.stop()

GPIO.cleanup()

Adjust PWM

2 To add a timer to the LED so it fades out, we first need to import the time
library and then set the 12 pin to have 50Hz frequency to start off with.
import time
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)

GPIO.setup(12, GPIO.OUT)
p = GPIO.PWM(12, 50) # channel=12 frequency=50Hz
p.start(@)

Add the fade

2 Then we add in another try-except block, this time checking what power
the LED is at — and once it reaches a certain level, we reverse the process.
To run this code, simply save it from nano and then sudo python gpio.py.
while 1:
for dc in range(o, 101, 5):
p.ChangeDutyCycle(dc)
time.sleep(0.1)
for dc in range(100, -1, -5):
p.ChangeDutyCycle(dc)
time.sleep(@.1)
except KeyboardInterrupt:
pass
p.stop()
GPIO.cleanup()

"We'l set the GPIO mode
to BOARD. This will work
whichever revision of the
Pi you are using”

127

‘Python

The Complete Manual

Enjoyed s
this bo>c/>k? P

Exclusive offer for new

W

*This offer entitles new UK direct debit subscribers to receive their first three issues for £5. After these issues,
subscribers will then pay £25.15 every six issues. Subscribers can cancel this subscription at any time. New
subscriptions will start from the next available issue. Offer code ZGGZINE must be quoted to receive this special
subscriptions price. Direct debit guarantee available on request. This offer will expire 31 March 2017.

**This is a US subscription offer. The USA issue rate is based on an annual subscription price of £65 for 13 issues,
which is equivalent to approx $102 at the time of writing compared with the newsstand price of $16.99 for 13 issues
$220.87. Your subscription will start from the next available issue. This offer expires 31 March 2017.

The only magazine
all about Linux
Written for you

Linux User & Developer is the only

magazine dedicated to advanced users, developers
and IT professionals

In-depth guides & features
Written by grass-roots developers and
industry experts

Free assets every issue
D i F\'TH[H. Four of the hottest distros feature every month —
log in to FileSilo, download and test them all!

subscrlbers to...

Linuxuser

& DGVB|0I13I'

Try 3 issues for £5 in the UK*
or just $7.85 per issue in the USA**
(saving 54% off the newsstand price)

For amazing offers please visit

www.imaginesubs.co.uk/lud
Quote code ZGGZINE

Or telephone UK 0844 249 0282" Overseas +44 (0)1795 418 661

+Calls will cost 7p per minute plus your telephone company’s access charge

ToaccessFileSilo, please visit filesilo.co.uk/bks-893

Ol Followthe
on-screen
instructionstocreate
anaccountwithour

secure FileSilosystem,

loginandunlockthe
bookazine by
answeringasimple
questionaboutit.One
wordanswersonly!
Youcannowaccess
the contentforfreeat
anytime.

O Onceyouhave

loggedin,youare
freetoexplorethe
wealth of content
tutorialsandonline
guidestodownloadable
resources. Andthe
more bookazinesyou
purchase,themore
yourinstantly
accessiblecollection
ofdigital content will
buildup.

O Youcanaccess

FileSiloonany
desktop, tabletor
smartphonedevice
usingany popular
browse. However, we
recommendthatyou
useadesktopto
download content,
asyoumay notbe
abletodownload
filestoyour phone
ortablet.

O 4 Ifyouhave

any problems
withaccessingthe
contentonFileSilo, or
withtheregistration
process, takealookat
the FAQs
onlineor
email
filesilohelp@
imagine-
publishing.
co.uk

NEED HELP WITH THE TUTORIALS?

Having trouble with any of the techniques in this bookazine's
tutorials? Don't know how to make the best use of your free
resources? Want to have your work critiqued by those in the know?
Then why not visit the Linux User & Developer and Imagine
Bookazines Facebook pages for all your questions, concerns and
qualms. There is a friendly community of fellow Linux enthusiasts
waiting to help you out, as well as regular posts and updates from the
team behind Linux User & Developer magazine. Like us today and

start chatting!

Python

The Complete Manual

v’ Learn to use Python

Master the essentials and code simple projects
as you learn how to work with one of the most
versatile languages around

Program games

Use what you've learnt to create playable games,
and see just how powerful Python can be

v/ Essential tips

Discover everything you need to know about
writing clean code, getting the most from
Python's capabilities and much more

Amazing projects

Get creative and complete projects including
programming a drone and sending texts from Pi

v Master building apps

Make your own web and Android apps with
step-by-step tutorials

Create with Raspberry Pi
Unlock the real potential of your Raspberry Pi
computer using Python, its officially recognised
coding language

v/ Put Python to work

Use Python for functional projects such as
scientific computing and make reading websites
offline easier and more enjoyable

Free online resources
Download all of the tutorial files you need to
complete the steps in the book, plus watch
videos and more with your free FileSilo resources

www.imaginebookshop.co.uk

