THE EXPERT’S VOICE® IN WEB DEVELOPMENT 4

b .

Pro

JavaScript
Techniques

Real-world JavaScript™ techniques for
the modern, professional web developer

John Resig

Apress’




Pro JavaScript™
Techniques

John Resig

Apress’



Pro JavaScript™ Techniques
Copyright © 2006 by John Resig

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-727-9
ISBN-10 (pbk): 1-59059-727-3
Printed and bound in the United States of America 9 8 7 6 54 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc., in the
US and other countries. Apress, Inc., is not affiliated with Sun Microsystems, Inc., and this book was writ-
ten without endorsement from Sun Microsystems, Inc.

Lead Editor: Chris Mills

Technical Reviewer: Dan Webb

Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,
Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Tracy Brown Collins

Copy Edit Manager: Nicole Flores

Copy Editor: Jennifer Whipple

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Esterman

Compositor: Linda Weidemann, Wolf Creek Press

Proofreader: April Eddy

Indexer: Broccoli Information Management

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.comin the Source Code/
Download section and on the book’s web site at http://jspro.org.



Contents at a Glance

About the Author

................................................................. XV
About the Technical ReVIEWEr .. ... ... ... . Xvii
ACKNOWIBAGMENTS ... XiX
PART 1 Introducing Modern JavaScript
CHAPTER 1  Modern JavaScript Programming ............................... 3
PART 2 Professional JavaScript Development
CHAPTER 2  Object-Oriented JavaScript .................................... 19
CHAPTER 3  Creating Reusable Code ....................................... 39
CHAPTER 4 Tools for Debuggingand Testing............................... 59
PART 3 Unobtrusive JavaScript
CHAPTER 5 The Document ObjectModel ................................... 77
CHAPTER 6 Events .......... ... ... .. i 111
CHAPTER 7  JavaScriptand CSS........................................... 135
CHAPTER 8 ImprovingForms ............. ... ... ... .. ..., 169
CHAPTER 9 BuildinganlImage Gallery..................................... 191
PART 4 Ajax
CHAPTER 10 Introductionto Ajax.......................... ..., 215
CHAPTER 11 Enhancing Blogs with Ajax.................................... 233
CHAPTER 12 Autocomplete Search......................................... 247
CHAPTER 13 AnAjaxWikKi.............oooiii e 265



PART 5 The Future of JavaScript

CHAPTER 14 Where Is JavaScript Going?................................... 287
PART 6 Appendixes

APPENDIX A DOMREference. ....... ..o i 307

APPENDIX B Events Reference........... ... 325

APPENDIX C The BrOWSEIS .. ... 345



Contents

AboUt the AUTNOT ... XV
About the Technical ReVIEWET . .. ... XVii
Acknowledgments ... ... Xix

PART 1 Introducing Modern JavaScript

CHAPTER 1  Modern JavaScript Programming........................... 3
Object-Oriented JavaScript . ... 3
TestingYour Code..........coo oot 5
Packaging for Distribution . ............ ... ... ... ... 5
Unobtrusive DOM Scripting . ... 7

The Document Object Model . ................................. 8
EVeNntS ... 9
JavaScriptand CSS............. ... 10
A 10
Browser SUpport . ... 13
SUMMArY. ... 16

PART 2 Professional JavaScript

Development
CHAPTER 2  Object-Oriented JavaScript ................................ 19
Language Features ...t 19
ReferenCes ... . ... 19
Function Qverloading and Type-Checking...................... 21
SCOPE. o 25
ClOSUIES. .. oo 27



vi

CONTENTS

CHAPTER 3

CHAPTER 4

Object-Oriented BasSiCS. . ........oviir i 32
Objects. . ..o 32
Object Creation. ..............cooo i 32

SUMMAY. ... 38

Creating ReusableCode .................................... 39

Standardizing Object-Oriented Code . .............................. 39
Prototypal Inheritance............. .. .. ... ... ... ... 39
Classical Inheritance................. . ... ... L. 40
TheBase Library ........... ... ... . L 44
The Prototype Library ........... ... ... ... ... ... 45

Packaging.............. 49
Namespacing . .........oovinii 49
CleaningUp YourCode. ....... ...t 52
COMPIESSION. . ..o 54

Distribution. . ... 56

SUMMAY. ... 58

Tools for Debuggingand Testing .......................... 59

Debugging ... 59
ErrorConsole . ... 59
DOM INSPECIOrS .. ..o 64
Firebug. ... 67
Venkman. ... ... ... .. 67

TeStiNg. . ..o 68
JSUNIt. ..o 69
JUNt. ..o 71
Test.Simple. .. ..o 72

SUMMArY ... 73



PART 3

CHAPTER 5

CHAPTER 6

CONTENTS

Unobtrusive JavaScript

The Document ObjectModel ............................... 77
An Introduction to the Document Object Model . ..................... 77
Navigatingthe DOM . ...... ... ... o i, 77
Handling White Space inthe DOM ............................ 80
Simple DOM Navigation ................. ..., 82
Binding to Every HTML Element .............................. 84
Standard DOM Methods ..., 85
Waiting for the HTMLDOMtoLoad ................................ 87
Waiting for the PagetoLoad ................................. 87
Waiting for Most of the DOMto Load.......................... 87
Figuring Out When the DOM Is Loaded ........................ 88
Finding Elements in an HTML Document ........................... 91
Finding Elements by ClassName ............................. 91
Finding Elements by CSS Selector . ........................... 92
XPath .. 95
Getting the Contents of anElement . ............................... 96
Getting the Text Inside an Element. ........................... 96
Getting the HTML Inside anElement .......................... 98
Working with Element Attributes ............. ... ... ... .. ... 99
Getting and Setting an Attribute Value......................... 99
Modifyingthe DOM ... ... 103
Creating Nodes Usingthe DOM.. . ............................ 103
Inserting intothe DOM .......... ... ... ... .. ... ... .. ...... 104
Injecting HTML into the DOM................................. 105
Removing Nodes fromthe DOM ............................. 108
SUMMAY. . ... 110
Events..... ... ... 111
Introduction to JavaScript Events. .................. ... ... 11
Asynchronous Eventsvs. Threads ........................... 111
EventPhases ........... .. ... . . . 114
Common EventFeatures ...t 116
The Event Object ....... ... 116
ThethisKeyword............ ... .. ... .. ... .. .. ... 117
Canceling Event Bubbling. ................. ... .. ... . ... 118

Overriding the Browser’s Default Action ...................... 119

vii



viii CONTENTS

CHAPTER 7

CHAPTER 8

Binding Event Listeners ............ ... ... ...l 122
Traditional Binding. . ............ . ... . 122
DOMBInding:W3C ... 124
DOMBINding: IE. ... ... 125
addEventandremoveEvent........... . ... .. ... ... 126

Typesof Events ... ... 129

Unobtrusive DOM Scripting . ... 129
Anticipating JavaScript Being Disabled . ...................... 130
Making Sure Links Don’t Rely on JavaScript .................. 130
Watching for When CSS Is Disabled.......................... 131
Event Accessibility. ............ . ... 132

SUMMANY. .. 133

JavaScriptandCSS ... 135

Accessing Style Information ............. .. ... 135

Dynamic Elements........ ... ... ... . 137
An Element’s Position................. ... ... 137
AnElement'sSize ............... 147
An Element’s Visibility. . ............ ... .. ... 149

AnImations . ... 151
SlideIn. ... ... 152
FadeIn. ... ... . 152

The BrOWSEr . ... 153
Mouse Position. ............... .. . 153
TheViewport. .......... .. 155

Drag-and-Drop. ... 157

Libraries ... 163
moo.fixand JAUery . ... 163
Scriptaculous ... 164

SUMMANY. ... 167

Improving Forms.......................................... 169

FormValidation ............ .. .. ... ... . 169
Required Fields ................. i, 172
Pattern Matching .................. ... 174

Rule Set. ... 177



CHAPTER 9

PART 4

CHAPTER 10

CONTENTS

Displaying Error Messages ..., 179
Validation............ .. .. ... . .. 179
WhentoValidate ............... .. ... ... ... ..., 183

Usability Improvements ............ ... ... . 186
HoverLabels............ .. ... . i, 186
Marking Required Fields. .................... ... ... 188

SUMMANY. ... 189

Building an Image Gallery................................. 191

Example Galleries .............. .. 191
Lightbox. . ... 191
ThickBOX .. ... 193

Buildingthe Gallery............. .. ... 195
Loading Unobtrusively. ..., 198
TransparentOverlay ................ .. ... ... 200
Positioned BoX . ............ .. 203
Navigation.............. .. 207
Slideshow . ... 209

SUMMArY. . ... 212

Ajax

Introductionto Ajax........................................ 215
USING AjaX. ... 215
HTTPRequests. ... o 216
HTTPRESPONSE . ... ..o 221
HandlingResponseData ........................................ 225
The Complete AjaxPackage ..................... .. ..oiil.. 226
Examples of Different DataUsage ................................ 229
An XML-Based RSSFeed..................coiiiiiiiit. 229
AnHTML Injector. ... 231
JSON and JavaScript: Remote Execution ..................... 232

SUMMANY ... 232

ix



X

CONTENTS

CHAPTER 11

CHAPTER 12

CHAPTER 13

Enhancing Blogs with Ajax................................ 233
Never-Ending Blog ... 233
TheBlog Template.............. ... .. ... 234
TheDataSource ...............oo i 236
EventDetection ............ ... ... ... ... ... ... ..., 238
The Request ...... ... i 238
TheResult...... ... ... .. 239
Live Blogging . . ... oo 243
SUMMAY. ... 245
Autocomplete Search..................................... 247
Examples of Autocomplete Search................................ 247
Buildingthe Page .......... ... .. . .. . . . 249
Watching for Key Input............... ... . L 251
Retrievingthe Results. ... 254
Navigatingthe Result List ............. ... ... ... ... ... .. ......... 257
Keyboard Navigation................... ... .. ...l 257
Mouse Navigation ... 258
The FinalResult. ... 259
SUMMAY. . ... 264
AnAjax Wiki......................... ... 265
WhatlsaWiki? ... ... . 265
Talking Withthe Database.........................cooiiiiiit, 266
The Ajax Request............ ... . 267
The Server-Side Code. ...........ooi i 268
HandlingaRequest.............. ... .. 268
Executing and FormattingSQL .............................. 270
Handling the JSON Response . ...t 272
An Extra Case Study: A JavaScriptBlog ........................... 274
ApplicationCode ............ ... 275
Core JavaScriptCode ...t 276
JavaScript SQL Library . ............. .. 279
Ruby Server-Side Code. ...t 280

SUMMANY .. 283



CONTENTS

PART 5 The Future of JavaScript

CHAPTER 14 Where Is JavaScript Going?............................... 287
JavaScript1.6and 1.7............... 287

JavaScript 1.6 ... ... 288

dJavaScript 1.7 ... 291

Web Applications 1.0 ................ 294

Buildinga Clock................o i 294

Simple Planet Simulation................. ... .. ... ... ..... 298

COMEt .o 301

SUMMAY. . ..o 304

PART 6 Appendixes

APPENDIXA DOMReference...............................iii.. 307
RESOUICES. ... 307

Terminology .. ...coovii 307

Global Variables. .............co i 309

QOCUMENT ... . 309

HTMLElement. ... ... ... ... ... .. ... ... ... . . ... ... 310

DOM Navigation. . ... 310

body ... ... 310

childNodes ............ ... 311

documentElement .......... .. ... . 311

firstChild . ... ... 311
getElementByld(elemID ). ................... L 311
getElementsByTagName(tagName ) ......................... 312

lastChild............ ... 312

nextSibling ... 313

parentNode . ... 313

previousSibling. . ........ ... . 314

Node Information. .......... ... ... ... ... ... 314

MNEITeXt. .o 314

nodeName. ... ... 315

NOAETYPE. .o 315

nodeValue . ... 316

Xi



Xii CONTENTS

Attributes. . ... 316
className ......... ... .. . 316
getAttribute(attrName ) ................... L 317
removeAttribute( attrName ) ............... ... .. ... ... ..., 317
setAttribute( attrName, attrvValue ) ..................... ..., 318

DOM Modification ..............cc o 319
appendChild( nodeToAppend ). . ...t 319
cloneNode(truelfalse ) ............... o i 319
createElement(tagName ) ................ . ...l 320
createElementNS( namespace, tagName ) .................... 320
createTextNode(textString) ...l 321
innerHTML. . ... 321
insertBefore( nodeTolnsert, nodeTolnsertBefore ) .............. 322
removeChild( nodeToRemove ) .............................. 322
replaceChild( nodeTolnsert, nodeToReplace ).................. 323

APPENDIX B Events Reference ......................................... 325

RESOUICES. . ... 325

Terminology .. ...ovove 325

EventObject. .. .. ... 326
General Properties. ... 327
Mouse Properties. .............o i 329
Keyboard Properties .............. ... ... .. .l 332

Page Events ... ... ... 334
0ad . ... 334
beforeunload. . ............. ... .. 335
(0] 335
ESIZE . . e 336
T (0] | 336
unload . ... 336

ULEVeNtS. . ... 337
fOCUS .. o 337



APPENDIX C

CONTENTS

Mouse Events. . ........... 337
CliCK . 337
dblclick ....... ..o 338
MOUSBAOWN . ... e e 338
MOUSBUD . . . oo e et et e e e e e e e 338
MOUSEMOVE ...ttt ettt et e e e et 338
MOUSBOVEL ...\ttt et e 340
MOUSEOUL ... ... 340

Keyboard EVentS ... 341
keydown / KeYPress . .......oviriii 341
KEYUD . .o 341

FormEventS . ... 342
SeleCt. ... 342
change. ... ... 342
SUDMIE . .. 342
TBSBL. .. 343

TheBrowsers............................................... 345

MOdern BrOWSEI'S .. ...ttt e 345
Internet Explorer......... ... ... . 345
Mozilla........ ... 346
Safari ... 346
(00T 346

Xiii






About the Author

JOHN RESIG is a programmer and entrepreneur who has a passion for the
JavaScript programming language. He’s the creator and lead developer of
the jQuery JavaScript library and the lead developer on many web-based
projects. When he’s not programming, he enjoys watching movies, writing
in his web log (http://ejohn.org/), and spending time with his girlfriend,
Julia.

Xv






About the Technical Reviewer

DAN WEBB is a freelance web application developer who has most recently been working with
Vivabit, where he is developing Event Wax, a web-based event management system. He also
recently coauthored the Unobtrusive JavaScript Plugin for Rails and the Low Pro extension
to Prototype.

Dan is a JavaScript expert who has spoken at @media 2006, RailsConf, and The Ajax
Experience. He has written for A List Apart, HTML Dog, and SitePoint, and he is a member of
the UK web design group the Brit Pack. He blogs regularly about Ruby, Rails, and JavaScript at
his site, http://www.danwebb.net/. He recently became a member of the newly formed
Prototype Core Team.

Xvii






Acknowledgments

I’d like to take this opportunity to thank everyone who made this book possible. It was a
tremendous amount of work, and I appreciate all the help and guidance that I received along
the way.

I'd like to thank my editor, Chris Mills, for finding me and encouraging me to write this
book. He conceptualized much of its structure, flow, and groundwork; without him, this proj-
ect would not have happened.

I'd also like to thank my technical editor, Dan Webb, for thoroughly checking my code and
reminding me of the finer points of the JavaScript language. Due to his effort, the code in this
book should work as expected and be presented in a way that is correct and understandable.

I'd like to thank my copy editor, Jennifer Whipple, and my production editor, Laura Esterman,
for helping to keep the book readable and comprehensible, and for dealing with my many fol-
lies and inconsistencies.

I also want to thank Tracy Brown Collins, my project manager, for keeping me in line,
organized, and (generally) on top of my deadlines.

I'd also like to thank Julia West and Josh King for sticking with me through the long days
and weeks of writing, while I was shirking my other responsibilities. Julia was by my side every
day, making sure that I always met my deadlines, keeping me strong, and encouraging me to
work hard.

Finally, I would like to thank my family and friends for supporting me and encouraging
me throughout the years.

Xix






PART 1

Introducing Modern
JavaScript







CHAPTER 1

Modern JavaScript
Programming

The evolution of JavaScript has been gradual but persistent. Over the course of the past
decade, the perception of JavaScript has evolved from a simple toy language into a respected
programming language used by corporations and developers across the globe to make incred-
ible applications. The modern JavaScript programming language—as it has always been—is
solid, robust, and incredibly powerful. Much of what I'll be discussing in this book will show
what makes modern JavaScript applications so different from what they used to be. Many of
the ideas presented in this chapter aren’t new by any stretch, but their acceptance by thou-
sands of intelligent programmers has helped to refine their use and to make them what they
are today. So, without further ado, let’s look at modern JavaScript programming.

Object-Oriented JavaScript

From a language perspective, there is absolutely nothing modern about object-oriented
programming or object-oriented JavaScript; JavaScript was designed to be a completely
object-oriented language from the start. However, as JavaScript has “evolved” in its use and
acceptance, programmers of other languages (such as Ruby, Python, and Perl) have taken
note and begun to bring their programmatic idioms over to JavaScript.

Object-oriented JavaScript code looks and behaves differently from other object-capable
languages. I'll go into depth, discussing the various aspects of what makes it so unique, in
Chapter 2, but for now, let’s look at some of the basics to get a feel for how modern JavaScript
code is written. An example of two object constructors can be found in Listing 1-1, demon-
strating a simple object pairing that can be used for lectures in a school.

Listing 1-1. Object-Oriented JavaScript Representing a Lecture and a Schedule of Lectures

// The constructor for our 'Lecture'

// Takes two strings, name and teacher

function Lecture( name, teacher ) {
// Save them as local properties of the object
this.name = name;
this.teacher = teacher;



CHAPTER 1 ©° MODERN JAVASCRIPT PROGRAMMING

// A method of the Lecture class, used to generate
// a string that can be used to display Lecture information
Lecture.prototype.display = function(){

return this.teacher + " is teaching " + this.name;

};

// A Schedule constructor that takes in an

// array of lectures

function Schedule( lectures ) {
this.lectures = lectures;

}

// A method for constructing a string representing
// a Schedule of Lectures
Schedule.prototype.display = function(){

nn

var str = "";

// Go through each of the lectures, building up
// a string of information
for (var i = 0; 1 < this.lectures.length; i++ )

non

str += this.lectures[i].display() + ;

return str;

};

As you can probably see from the code in Listing 1-1, most of the object-oriented funda-
mentals are there but are structured differently from other more common object-oriented
languages. You can create object constructors and methods, and access and retrieve object
properties. An example of using the two classes in an application is shown in Listing 1-2.

Listing 1-2. Providing a User with List of Classes

// Create a new Schedule object and save it in
// the variable 'mySchedule’
var mySchedule = new Schedule([
// Create an array of the Lecture objects, which
// are passed in as the only argument to the Lecture object
new Lecture( "Gym", "Mr. Smith" ),
new Lecture( "Math", "Mrs. Jones" ),
new Lecture( "English", "TBD" )

D;

// Display the Schedule information as a pop-up alert
alert( mySchedule.display() );

With the acceptance of JavaScript among programmers, the use of well-designed object-
oriented code has also become more popular. Throughout the book I'll attempt to show
different pieces of object-oriented JavaScript code that I think best exemplifies code design
and implementation.



CHAPTER 1 © MODERN JAVASCRIPT PROGRAMMING

Testing Your Code

After establishing a good object-oriented code base, the second aspect of developing profes-
sional-quality JavaScript code is to make sure that you have a robust code-testing environ-
ment. The need for proper testing is especially apparent when you develop code that will be
actively used or maintained by other developers. Providing a solid basis for other developers
to test against is essential for maintaining code development practices.

In Chapter 4, you'll look at a number of different tools that can be used to develop a good
testing/use case regime along with simple debugging of complex applications. One such tool
is the Firebug plug-in for Firefox. Firebug provides a number of useful tools, such as an error
console, HTTP request logging, debugging, and element inspection. Figure 1-1 shows a live
screenshot of the Firebug plug-in in action, debugging a piece of code.

TOU Are CUITENUY USING £/ 1 MO | 1U7) OT YOUF £1£3 MD.
Gmail view: standard with chat | standard without chat | basic HTML Learn more

¥ Invite a friend
Terms of Use - Privacy Policy - Program Policies - Gooale Home

22006 Google
Clear Inspect Options¥ Console Debugger Inspector Q (<]
Iz
12 var BrowserSupport_ = { £
14 m
15 IsBrowserSupported : function() {
16 wvar agt = navigator.userAgent.tolowerCase();
@® 17 vor is_op = (agt.index0f("opera") != -1);
18 wvar is_ie = (agt.index0f("msie") != -1) && document.all && lis_op;
19 var is_ie5 = (agt.indexOf("msie 5") 1= -1) && document.all && !is_op;
28 var is_mac = (agt.index0f("mac") != -1); -
21 wvar is_gk = (agt.index0f("gecko") 1= -13; b
n Scripts: | http {/mail.google.com/mail/?view=page&name=browser&ver=h0ffbE8a351a99e6 v
Done © 26Errors By | ¢

Figure 1-1. A screenshot of the Firefox Firebug plug-in in action

The importance of developing clean, testable code cannot be overstated. Once you begin
developing some clean object-oriented code and pairing it together with a proper testing
suite, I'm sure you'll be inclined to agree.

Packaging for Distribution

The final aspect of developing modern, professional JavaScript code is the process of packag-
ing code for distribution or real-world use. As developers have started to use more and more
JavaScript code in their pages, the possibility for conflicts increases. If two JavaScript libraries
both have a variable named data or both decide to add events differently from one another,
disastrous conflicts and confusing bugs can occur.

The holy grail of developing a successful JavaScript library is the ability for the developer
to simply drop a <script> pointer to it and have it work with no changes. A number of tech-
niques and solutions exist that developers use to keep their code clean and universally
compatible.

The most popular technique for keeping your code from influencing or interfering with
other JavaScript code is the use of namespaces. The ultimate (but not necessarily the best or



CHAPTER 1 ©° MODERN JAVASCRIPT PROGRAMMING

most useful) example of this in action is a public user interface library developed by Yahoo,
which is available for anyone to use. An example of using the library is shown in Listing 1-3.

Listing 1-3. Adding an Event to an Element Using the Heavily Namespaced Yahoo UI Library

// Add a mouseover event listener to the element that has an

// ID of 'body'
YAHOO.util.Event.addListener('body", 'mouseover"',function(){

// and change the background color of the element to red
this.style.backgroundColor = 'red’;

};

One problem that exists with this method of namespacing, however, is that there is no
inherent consistency from one library to another on how it should be used or structured.
It is on this point that central code repositories such as JSAN (JavaScript Archive Network)
become immensely useful. JSAN provides a consistent set of rules for libraries to be struc-
tured against, along with a way to quickly and easily import other libraries that your code
relies upon. A screenshot of the main distribution center of JSAN is shown in Figure 1-2.

I will discuss the intricacies of developing clean, packageable code in Chapter 3. Addi-
tionally, the importance of other common stumbling points, such as event-handling collision,
will be discussed in Chapter 6.



CHAPTER 1 © MODERN JAVASCRIPT PROGRAMMING

7

JSAN 5 s A N
i rome |
[News |
[Fa | "CPAN".r‘eplace(/CP/, "JSs™)
JavaScript Archive Network is a comprehensive resource for Open Source JavaScript libraries and software.
[Contribute | This infrastructure is considered to be in befa stage. Everything should be usable, to a
[About | certain degree. You have three options if things don't work well for you: 1) Get involved
and fix it, 2) Complain, and 3) Wait.
Connect Search
. Documer!talion:'m, m Search JSAN
: gganer?ﬁm. : Mailing Lists, BT, IRC, Planet. View the Taa Cloud
Search Authors |
News For
Go |
Update - 2006-02-28
« JAUSE Uploads are now processed Distributions [RSS |

automatically, four times a day.
+ Rob Kinyon will be a JSAN Administrator, and

will help with the development and XML.ObjTree-0.22
deployment of new JSAN architecture. Animation.Resize-0.10
Ajax-0.10
Previous News Animation.Cube-0.04
Animation.Raster-0.02
L3 SVN Commits Feed Date W3CDTF-0.03

Effect. RoundedCorners-0.12
DOM.Ready-0.14
Sporx-0.10
Form.Validator-0.33
Jemplate-0.18
Test.Base-0.13
Subclass-0.10
Effect.DropShadow-0.01

Widget. TableOfContentGenerator-0.02
Data Enrm\falidatar0 N&

Figure 1-2. A screenshot of the public JSAN code repository

Unobtrusive DOM Scripting

Built upon a core of good, testable code and compliant distributions is the concept of unob-
trusive DOM scripting. Writing unobtrusive code implies a complete separation of your HTML
content: the data coming from the server, and the JavaScript code used to make it all dynamic.
The most important side effect of achieving this complete separation is that you now have
code that is perfectly downgradeable (or upgradeable) from browser to browser. You can use
this to offer advanced content to browsers that support it, while still downgrading gracefully
for browsers that don't.

Writing modern, unobtrusive code consists of two aspects: the Document Object Model
(DOM), and JavaScript events. In this book I explain both of these aspects in depth.



CHAPTER 1 ©° MODERN JAVASCRIPT PROGRAMMING

The Document Object Model

The DOM is a popular way of representing XML documents. It is not necessarily the fastest,
lightest, or easiest to use, but it is the most ubiquitous, with an implementation existing in
most web development programming languages (such as Java, Perl, PHP, Ruby, Python, and
JavaScript). The DOM was constructed to provide an intuitive way for developers to navigate
an XML hierarchy.

Since valid HTML is simply a subset of XML, having an efficient way to parse and
browse DOM documents is absolutely essential for making JavaScript development easier.
Ultimately, the majority of interaction that occurs in JavaScript is between JavaScript and
the different HTML elements contained within a web page; and the DOM is an excellent tool
for making this process simpler. Some examples of using the DOM to navigate and find dif-
ferent elements within a page and then manipulate them can be found in Listing 1-4.

Listing 1-4. Using the Document Object Model to Locate and Manipulate Different
DOM Elements

<html>
<head>
<title>Introduction to the DOM</title>
<script>
// We can't manipulate the DOM until the document
// is fully loaded
window.onload = function(){

// Find all the <li> elements in the document
var 1i = document.getElementsByTagName("1i");

// and add a ared border around all of them
for (var j = 0; j < li.length; j++ ) {

1li[j].style.border = "1px solid #000";
}

// Locate the element with an ID of 'everywhere'
var every = document.getElementById( "everywhere" );

// and remove it from the document
every.parentNode.removeChild( every );

15
</script>
</head>
<body>
<h1>Introduction to the DOM</h1>
<p class="test">There are a number of reasons why the
DOM is awesome, here are some:</p>



CHAPTER 1 © MODERN JAVASCRIPT PROGRAMMING

<wl>
<li id="everywhere">It can be found everywhere.</1i>
<li class="test">It's easy to use.</li>
<li class="test">It can help you to find what you want, really quickly.</1li>
</ul>
</body>
</html>

The DOM is the first step to developing unobtrusive JavaScript code. By being able to
quickly and simply navigate an HTML document, all resulting JavaScript/HTML interactions
become that much simpler.

Events

Events are the glue that holds together all user interaction within an application. In a nicely
designed JavaScript application, you're going to have your data source and its visual repre-
sentation (inside of the HTML DOM). In order to synchronize these two aspects, you're
going to have to look for user interactions and attempt to update the user interface accord-
ingly. The combination of using the DOM and JavaScript events is the fundamental union
that makes all modern web applications what they are.

All modern browsers provide a number of events that are fired whenever certain inter-
actions occur, such as the user moving the mouse, striking the keyboard, or exiting the page.
Using these events, you can register code that will be executed whenever the event occurs.
An example of this interaction is shown in Listing 1-5, where the background color of the
<li>s change whenever the user moves his mouse over them.

Listing 1-5. Using the DOM and Events to Provide Some Visual Effects

<html>
<head»
<title>Introduction to the DOM</title>
<script>
// We can't manipulate the DOM until the document
// is fully loaded
window.onload = function(){

// Find all the <li> elements, to attach the event handlers to them
var 1i = document.getElementsByTagName("1i");
for (var i = 0; 1 < li.length; i++ ) {

// Attach a mouseover event handler to the <li> element,

// which changes the <li>s background to blue.

1i[i].onmouseover = function() {
this.style.backgroundColor = 'blue';

};



10

CHAPTER 1 ©° MODERN JAVASCRIPT PROGRAMMING

// Attach a mouseout event handler to the <li> element
// which changes the <li>s background back to its default white
1i[i].onmouseout = function() {

this.style.backgroundColor = 'white';

};
}
};
</script>
</head>
<body>

<h1>Introduction to the DOM</h1>
<p class="test">There are a number of reasons why the
DOM is awesome, here are some:</p>
<wl>
<li id="everywhere">It can be found everywhere.</1i>
<li class="test">It's easy to use.</li>
<li class="test">It can help you to find what you want, really quickly.</1li>
</ul>
</body>
</html>

JavaScript events are complex and diverse. Much of the code and applications in this
book utilize events in one way or another. Chapter 6 and Appendix B are completely dedicated
to events and their interactions.

JavaScript and CSS

Building upon your base of DOM and event interactions comes dynamic HTML. At its core,
dynamic HTML represents the interactions that occur between JavaScript and the CSS infor-
mation attached to DOM elements.

Cascading style sheets (CSS) serve as the standard for laying out simple, unobtrusive web
pages that still afford you (the developer) the greatest amount of power while providing your
users with the least amount of compatibility issues. Ultimately, dynamic HTML is about
exploring what can be achieved when JavaScript and CSS interact with each other and how
you can best use that combination to create impressive results.

For some examples of advanced interactions, such as drag-and-drop elements and ani-
mations, take a look at Chapter 7, where they are discussed in depth.

Ajax

Ajax, or Asynchronous JavaScript and XML, is a term coined in the article “Ajax: A New
Approach to Web Applications” (http://www.adaptivepath.com/publications/essays/
archives/000385.php) by Jesse James Garrett, cofounder and president of Adaptive Path,

an information architecture firm. It describes the advanced interactions that occur between
the client and the server, when requesting and submitting additional information.



CHAPTER 1 © MODERN JAVASCRIPT PROGRAMMING 1

The term Ajax encompasses hundreds of permutations for data communication, but
all center around a central premise: that additional requests are made from the client to
the server even after the page has completely loaded. This allows application developers to
create additional interactions that can involve the user beyond the slow, traditional flow of
an application. Figure 1-3 is a diagram from Garrett’s Ajax article that shows how the flow
of interaction within an application changes due to the additional requests that are made
in the background (and most likely without the user’s knowledge).

classic web application model (synchronous)

user activity user activity user activity

5y 5 g s
<3 3 <3 ‘5
ot ] = ]
g & g &
[72} i~ 72 =
2 £ 2 £
23 8 8. 8
o < o [+

= © = =

system processing system processing

Ajax web application model (asynchronous)

user activity

ndut
display
jndut
dispig y
ndut
display
ndut
display

client-side processing

uoISSIWISUe.} Blep
UOISSIWISUB} eep
uoIssISUE1) B1ep
data transmission

data transmission
uossiwisuex eyep

data transmission
data transmission

server-side server-side server-side server-side
processing processing processing processing

Figure 1-3. A diagram from the article “Ajax: A New Approach to Web Applications,” showing the
advanced, asynchronous interaction that occurs between the client and a server



12

CHAPTER 1 ©° MODERN JAVASCRIPT PROGRAMMING

Since the original release of the Garrett article, the interest of users, developers,
designers, and managers has been piqued, allowing for an explosion of new applications
that make use of this advanced level of interaction. Ironically, while there has been this
resurgence in interest, the technology behind Ajax is rather old (having been used com-
mercially since around the year 2000). The primary difference, however, is that the older
applications utilized browser-specific means of communicating with the server (such as
Internet Explorer-only features). Since all modern browsers support XMLHttpRequest
(the primary method for sending or receiving XML data from a server), the playing field
has been leveled, allowing for everyone to enjoy its benefits.

If one company has been at the forefront of making cool applications using Ajax tech-
nology, it's Google. One highly interactive demo that it released just before the original Ajax
article came out is Google Suggest. The demo allows you to type your query and have it be
autocompleted in real time; this is a feature that could never be achieved using old page
reloads. A screenshot of Google Suggest in action is shown in Figure 1-4.

Suggest
Web Images Groups News Froogle Maps more »
'avascript .?d\rxancad Search
javascript 50,200,000 results | Lanquage Toals
javascript tutorial 6,100,000 results
javascript reference 7,880,000 results
As you ty ]:avascr?pts 1530000 resuits |0 e
javascript array 1,500,000 rasuts [ HOE
javascript alert 2,230,000 results
javascript window.open 528,000 results
javascript redirect 557,000 re
javascript substring 248,000 re
javascript tutorials 4,660,000

Figure 1-4. A screenshot of Google Suggest, an application available at the time of Garrett’s Ajax
article that utilized the asynchronous XML techniques

Additionally, another revolutionary application of Google is Google Maps, which allows
the user to move around a map and see relevant, local results displayed in real time. The level
of speed and usability that this application provides by using Ajax techniques is unlike any
other mapping application available and has completely revolutionized the online mapping
market as a result. A screenshot of Google Maps is shown in Figure 1-5.

Even though very little has physically changed within the JavaScript language, during the
past couple years, the acceptance of JavaScript as a full-blown programming environment by
such companies as Google and Yahoo shows just how much has changed in regard to its per-
ception and popularity.



CHAPTER 1 = MODERN JAVASCRIPT PROGRAMMING 13

Help
G l . Web |mages Groups News Froogle Maps more»
Search the map
008 e I search | Fing pusinessos
Maps .0, "hotels naar lax™ or 10 market st, san francisco” Get Directions
Maps Print (=] Email &= Link to this page
Starting at cambridge, ma - Clear N e 7 =
Example search #‘“’ (I z‘»"’ﬂ‘vﬁ-‘*‘“’
xam searches: I & L Y o Middlesex|Fells
p N ’ﬁ% RS Reservalio
Go to a location B i-.,, 2P «

kansas city

10 market st. san francisco
Find a business

hotels near lax

pi
Get directions

fk to 350 5th ave. new york

seattle to 98109

Drag the map with your mouse, or double-click to
center. Take a tour »

Figure 1-5. Google Maps, which utilizes a number of Ajax techniques to dynamically load
location information

Browser Support

The sad truth of JavaScript development is that since it is so tied to the browsers that imple-
ment and support it, it is also at the mercy of whichever browsers are currently the most
popular. Since users don't necessarily use the browsers with the best JavaScript support,
we're forced to pick and choose which features are most important.

What many developers have begun to do is cut off support for browsers that simply cause
too much trouble when developing for them. It’s a delicate balance between supporting
browsers due to the size of their user base and supporting them because they have a feature
that you like.

Recently Yahoo released a JavaScript library that can be used to extend your web appli-
cations. Along with the library, it also released some design pattern guidelines for web devel-
opers to follow. The most important document to come out of it (in my opinion) is Yahoo's



14

CHAPTER 1 ©° MODERN JAVASCRIPT PROGRAMMING

official list of browsers that it does and doesn’t support. While anyone, and any corporation,
can do something similar, having a document provided by one of the most trafficked web sites
on the Internet is entirely invaluable.

Yahoo developed a graded browser support strategy that assigns a certain grade to a
browser and provides different content to it based upon its capabilities. Yahoo gives browsers
three grades: A, X, and C:

e A-grade browsers are fully supported and tested, and all Yahoo applications are
guaranteed to work in them.

* An X-grade browser is an A-grade browser that Yahoo knows exists but simply does
not have the capacity to test thoroughly, or is a brand-new browser that it’s never
encountered before. X-grade browsers are served with the same content as A-grade
browsers, in hopes that they’ll be able to handle the advanced content.

* C-grade browsers are known as “bad” browsers that do not support the features neces-
sary to run Yahoo applications. These browsers are served the functional application
contents without JavaScript, as Yahoo applications are fully unobtrusive (in that they
will continue to work without the presence of JavaScript).

Incidentally, Yahoo's browser grade choices just so happen to coincide with my own,
which makes it particularly appealing. Within this book, I use the term modern browser a lot;
when I use that phrase, I mean any browser that has grade-A support deemed by the Yahoo
browser chart. By giving you a consistent set of features with which to work, the learning and
development experience will become much more interesting and much less painful (all by
avoiding browser incompatibilities).

I highly recommend that you read through graded browser support documents (which
can be found at http://developer.yahoo.com/yui/articles/gbs/gbs.html), including the
browser support chart shown in Figure 1-6, to get a feel for what Yahoo is attempting to
accomplish. By making this information available to the general web-developing public,
Yahoo is providing an invaluable “gold standard” for all others to reach, which is a great
thing to have.

For more information about all the browsers that are supported, see Appendix C of this
book where the shortcomings and advantages of each browser are discussed in depth. More
often than not, you'll find all of the A-grade browsers to be on the cutting edge of develop-
ment, providing more than enough features for you to develop with.

When choosing what browsers you wish to support, the end result ultimately boils down
to a set of features that your application is able to support. If you wish to support Netscape
Navigator 4 or Internet Explorer 5 (for example), it would severely limit the number of features
that you could use in your application, due to their lack of support for modern programming
techniques.



CHAPTER 1 © MODERN JAVASCRIPT PROGRAMMING 15

1IE 7.0 A-grade

IE 6.0 A-grade A-grade A-grade

IE5.5 A-grade A-grade

IE5.0 C-grade C-grade C-grade C-grade C-grade C-grade C-grade

Netscape 8.0 X-grade X-grade A-grade

Firefox 1.5 A-grade A-grade A-grade A-grade A-grade A-grade A-grade A-grade

Firefox 1.0.7 A-grade A-grade A-grade  A-grade A-grade A-grade A-grade A-grade

Mozilla 1.7.12 X-grade X-grade A-grade X-grade X-grade X-grade X-grade X-grade

Opera 8.5 X-grade X-grade A-grade = C-grade C-grade C-grade X-grade X-grade

Safari 1.0 X-grade

X-grade X-grade
X-grade X-grade X-grade

X-grade A-grade

A-grade

Figure 1-6. The graded browser support chart provided by Yahoo

However, knowing which browsers are modern allows you to utilize the powerful features
that are available in them, giving you a consistent base from which you can do further devel-
opment. This consistent development base can be defined by the following set of features:

Core JavaScript 1.5: The most current, accepted version of JavaScript. It has all the
features necessary to support fully functional object-oriented JavaScript. Internet
Explorer 5.0 doesn’t support full 1.5, which is the primary reason developers don't like
to support it.

XML Document Object Model (DOM) 2: The standard for traversing HTML and XML
documents. This is absolutely essential for writing fast applications.

XMLHttpRequest. The backbone of Ajax—a simple layer for initiating remote HTTP
requests. All browsers support this object by default, except for Internet Explorer 5.5-6.0;
however, they each support initiating a comparable object using ActiveX.

CSS: An essential requirement for designing web pages. This may seem like an odd
requirement, but having CSS is essential for web application developers. Since every
modern browser supports CSS, it generally boils down to discrepancies in presentation
that cause the most problems. This is the primary reason Internet Explorer for Mac is
less frequently supported.



CHAPTER 1 ©° MODERN JAVASCRIPT PROGRAMMING

The combination of all these browser features is what makes up the backbone of devel-
oping JavaScript web applications. Since all modern browsers support the previously listed
features (in one way or another), it gives you a solid platform to build off of for the rest of
this book. Everything discussed in this book will be based on the assumption that the
browser you're using supports these features, at the very least.

Summary

This book is an attempt to completely encompass all modern, professional JavaScript pro-
gramming techniques as they are used by everyone from individual developers to large
corporations, making their code more usable, understandable, and interactive.

In this chapter we looked at a brief overview of everything that we're going to discuss in
this book. This includes the foundations of professional JavaScript programming: writing
object-oriented code, testing your code, and packaging it for distribution. Next you saw the
fundamental aspects of unobtrusive DOM scripting, including a brief overview of the Docu-
ment Object Model, events, and the interaction between JavaScript and CSS. Finally you
looked at the premise behind Ajax and the support of JavaScript in modern browsers. All
together, these topics are more than enough to take you to the level of a professional
JavaScript programmer.



PART 2

Professional JavaScript
Development







CHAPTER 2

Object-Oriented JavaScript

Objects are the fundamental units of JavaScript. Virtually everything in JavaScript is an
object and takes advantage of that fact. However, to build up a solid object-oriented language,
JavaScript includes a vast arsenal of features that make it an incredibly unique language, both
in possibilities and in style.

In this chapter I'm going to begin by covering some of the most important aspects of the
JavaScript language, such as references, scope, closures, and context, that you will find sorely
lacking in other JavaScript books. After the important groundwork has been laid, we’ll begin
to explore the important aspects of object-oriented JavaScript, including exactly how objects
behave and how to create new ones and set up methods with specific permissions. This is
quite possibly the most important chapter in this book if taken to heart, as it will completely
change the way you look at JavaScript as a language.

Language Features

JavaScript has a number of language features that are fundamental to making the language
what it is. There are very few other languages like it. Personally, I find the combination of fea-
tures to fit just right, contributing to a deceptively powerful language.

References

A fundamental aspect of JavaScript is the concept of references. A referenceis a pointer to an
actual location of an object. This is an incredibly powerful feature The premise is that a physi-
cal object is never a reference. A string is always a string; an array is always an array. However,
multiple variables can refer to that same object. It is this system of references that JavaScript
is based around. By maintaining sets of references to other objects, the language affords you
much more flexibility.

Additionally, an object can contain a set of properties, all of which are simply references
to other objects (such as strings, numbers, arrays, etc.). When multiple variables point to the
same object, modifying the underlying type of that object will be reflected in all variables. An
example of this is shown in Listing 2-1, where two variables point to the same object, but the
modification of the object’s contents is reflected globally.

19



20

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

Listing 2-1. Example of Multiple Variables Referring to a Single Object

// Set obj to an empty object
var obj = new Object();

// objRef now refers to the other object
var objRef = obj;

// Modify a property in the original object
obj.oneProperty = true;

// We now see that that change is represented in both variables
// (Since they both refer to the same object)
alert( obj.oneProperty === objRef.oneProperty );

I mentioned before that self-modifying objects are very rare in JavaScript. Let’s look at
one popular instance where this occurs. The array object is able to add additional items to
itself using the push() method. Since, at the core of an Array object, the values are stored as
object properties, the result is a situation similar to that shown in Listing 2-1, where an object
becomes globally modified (resulting in multiple variables’ contents being simultaneously
changed). An example of this situation can be found in Listing 2-2.

Listing 2-2. Example of a Self-Modifying Object

// Create an array of items
var items = new Array( "one", "two", "three" );

// Create a reference to the array of items
var itemsRef = items;

// Add an item to the original array
items.push( "four" );

// The length of each array should be the same,
// since they both point to the same array object
alert( items.length == itemsRef.length );

It’s important to remember that references only point to the final referred object, not a
reference itself. In Perl, for example, it’s possible to have a reference point to another variable,
which also is a reference. In JavaScript, however, it traverses down the reference chain and
only points to the core object. An example of this situation can be seen in Listing 2-3, where
the physical object is changed but the reference continues to point back at the old object.

Listing 2-3. Changing the Reference of an Object While Maintaining Integrity

// Set items to an array (object) of strings
var items = new Array( "one", "two", "three" );



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

// Set itemsRef to a reference to items
var itemsRef = items;

// Set items to equal a new object
items = new Array( "new", "array" );

// items and itemsRef now point to different objects.

// items points to new Array( "new", "array" )

// itemsRef points to new Array( "one", "two", "three" )
alert( items !== itemsRef );

Finally, let’s look at a strange instance that appears to be one of object self-modification,
but results in a new nonreferential object. When performing string concatenation the result is
always a new string object rather than a modified version of the original string. This can be
seen in Listing 2-4.

Listing 2-4. Example of Object Modification Resulting in a New Object, Not a Self-Modified Object

// Set item equal to a new string object
var item = "test";

// itemRef now refers to the same string object
var itemRef = item;

// Concatenate some new text onto the string object

// NOTE: This creates a new object, and does not modify
// the original object.

item += "ing";

// The values of item and itemRef are NOT equal, as a whole
// new string object has been created
alert( item != itemRef );

References can be a tricky subject to wrap your mind around, if you're new to them.
Although, understanding how references work is paramount to writing good, clean JavaScript
code. In the next couple sections we’re going to look at a couple features that aren’t necessarily
new or exciting but are important to writing good, clean code.

Function Overloading and Type-Checking

A common feature in other object-oriented languages, such as Java, is the ability to “overload”
functions to perform different behaviors when different numbers or types of arguments are
passed to them. While this ability isn’t immediately available in JavaScript, a number of tools
are provided that make this quest entirely possible.

Function overloading requires two things: the ability to determine how many arguments
are provided, and the ability to determine the type of the arguments that are provided. Let’s
start by looking at the number of arguments provided.

21



22

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

Inside of every function in JavaScript there exists a contextual variable named arguments
that acts as a pseudo-array containing all the arguments passed into the function. Arguments
isn’t a true array (meaning that you can’t modify it, or call .push() to add new items), but you
can access items in the array, and it does have a .length property. There are two examples of
this in Listing 2-5.

Listing 2-5. Two Examples of Function Overloading in JavaScript

// A simple function for sending a message
function sendMessage( msg, obj ) {
// If both a message and an object are provided
if ( arguments.length == 2 )
// Send the message to the object
obj.handleMsg( msg );

// Otherwise, assume that only a message was provided
else
// So just display the default error message
alert( msg );
}

// Call the function with one argument - displaying the message using an alert
sendMessage( "Hello, World!" );

// Otherwise, we can pass in our own object that handles
// a different way of displaying information
sendMessage( "How are you?", {
handleMsg: function( msg ) {
alert( "This is a custom message:

+msg );
}
b

// A function that takes any number of arguments and makes
// an array out of them
function makeArray() {

// The temporary array

var arr = [];

// Go through each of the submitted arguments
for (var i = 0; 1 < arguments.length; i++ ) {
arr.push( arguments[i] );

}

// Return the resulting array
return arr;



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

Additionally, there exists another method for determining the number of arguments
passed to a function. This particular method uses a little more trickiness to get the job done,
however. We take advantage of the fact that any argument that isn’t provided has a value of
undefined. Listing 2-6 shows a simple function for displaying an error message and providing
a default message if one is not provided.

Listing 2-6. Displaying an Error Message and a Default Message

function displayError( msg ) {
// Check and make sure that msg is not undefined
if ( typeof msg == 'undefined' ) {
// If it is, set a default message
msg = "An error occurred.";

}

// Display the message
alert( msg );

The use of the typeof statement helps to lead us into the topic of type-checking. Since
JavaScript is (currently) a dynamically typed language, this proves to be a very useful and
important topic. There are a number of different ways to check the type of a variable; we're
going to look at two that are particularly useful.

The first way of checking the type of an object is by using the obvious-sounding typeof
operator. This utility gives us a string name representing the type of the contents of a variable.
This would be the perfect solution except that for variables of type object or array, or a custom
object such as user, it only returns object, making it hard to differentiate between all objects.
An example of this method can be seen in Listing 2-7.

Listing 2-7. Example of Using Typeof to Determine the Type of an Object

// Check to see if our number is actually a string
if ( typeof num == "string" )
// If it is, then parse a number out of it
num = parseInt( num );

// Check to see if our array is actually a string
if ( typeof arr == "string" )
// If that's the case, make an array, splitting on commas

non

arr = arr.split(",");

The second way of checking the type of an object is by referencing a property of all
JavaScript objects called constructor. This property is a reference to the function used to
originally construct this object. An example of this method can be seen in Listing 2-8.

23



24

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

Listing 2-8. Example of Using the Constructor Property to Determine the Type of an Object

// Check to see if our number is actually a string
if ( num.constructor == String )
// If it is, then parse a number out of it
num = parseInt( num );

// Check to see if our string is actually an array

if ( str.constructor == Array )
// If that's the case, make a string by joining the array using commas
str = str.join(',");

Table 2-1 shows the results of type-checking different object types using the two different
methods that I've described. The first column in the table shows the object that we're trying to
find the type of. The second column is the result of running typeof Variable (where Variable is
the value contained in the first column). The result of everything in this column is a string.
Finally, the third column shows the result of running Variable.constructor against the objects
contained in the first column. The result of everything in this column is an object.

Table 2-1. Type-Checking Variables

Variable typeof Variable Variable.constructor
{an: “object” } object Object

[ “an”, “array” | object Array

function() {} function Function

“a string” string String

55 number Number

true boolean Boolean

new User() object User

Using the information in Table 2-1 you can now build a generic function for doing type-
checking within a function. As may be apparent by now, using a variable’s constructor as an
object-type reference is probably the most foolproof way of valid type-checking. Strict type-
checking can help in instances where you want to make sure that exactly the right number of
arguments of exactly the right type are being passed into your functions. We can see an exam-
ple of this in action in Listing 2-9.

Listing 2-9. A Function That Can Be Used to Strictly Maintain All the Arguments Passed into
a Function

// Strictly check a list of variable types against a list of arguments
function strict( types, args ) {

// Make sure that the number of types and args matches
if ( types.length != args.length ) {



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

// If they do not, throw a useful exception
throw "Invalid number of arguments. Expected " + types.length +
", received " + args.length + " instead.";

n

}

// Go through each of the arguments and check their types
for (var i = 0; 1 < args.length; i++ ) {
//
if ( args[i].constructor != types[i] ) {
throw "Invalid argument type. Expected " + types[i].name +
", received " + args[i].constructor.name + " instead.";

}

// A simple function for printing out a list of users
function userList( prefix, num, users ) {
// Make sure that the prefix is a string, num is a number,
// and users is an array
strict( [ String, Number, Array ], arguments );

// Iterate up to 'num' users

for (var i = 0; i < num; i++ ) {
// Displaying a message about each user
print( prefix + ": " + users[i] );

Type-checking variables and verifying the length of argument arrays are simple concepts
at heart but can be used to provide complex methods that can adapt and provide a better
experience to the developer and users of your code. Next, we're going to look at scope within
JavaScript and how to better control it.

Scope

Scope is a tricky feature of JavaScript. All object-oriented programming languages have some
form of scope; it just depends on what context a scope is kept within. In JavaScript, scope is
kept within functions, but not within blocks (such as while, if, and for statements). The end
result could be some code whose results are seemingly strange (if you're coming from a block-
scoped language). Listing 2-10 shows an example of the implications of function-scoped code.

Listing 2-10. Example of How the Variable Scope in JavaScript Works

// Set a global variable, foo, equal to test
var foo = "test";

25



26

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

// Within an if block

if ( true ) {
// Set foo equal to 'new test'
// NOTE: This is still within the global scope!
var foo = "new test";

}

// As we can see here, as foo is now equal to 'new test'
alert( foo == "new test" );

// Create a function that will modify the variable foo
function test() {
var foo = "old test";

}

// However, when called, 'foo' remains within the scope
// of the function
test();

// Which is confirmed, as foo is still equal to 'new test'
alert( foo == "new test" );

You'll notice that in Listing 2-10, the variables are within the global scope. An interesting
aspect of browser-based JavaScript is that all globally scoped variables are actually just prop-
erties of the window object. Though some old versions of Opera and Safari don', it’s generally
a good rule of thumb to assume a browser behaves this way. Listing 2-11 shows an example of
this global scoping occurring.

Listing 2-11. Example of Global Scope in JavaScript and the Window Object

// A globally-scoped variable, containing the string 'test’
var test = "test";

// You'll notice that our 'global' variable and the test
// property of the the window object are identical
alert( window.test == test );

Finally, let’s see what happens when a variable declaration is misdefined. In Listing 2-12
avalue is assigned to a variable (foo) within the scope of the test() function. However, nowhere
in Listing 2-12 is the scope of the variable actually declared (using var foo). When the foo vari-
able isn't explicitly defined, it will become defined globally, even though it is only used within
the context of the function scope.



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

Listing 2-12. Example of Implicit Globally Scoped Variable Declaration

// A function in which the value of foo is set
function test() {
foo = "test";

}

// Call the function to set the value of foo
test();

// We see that foo is now globally scoped
alert( window.foo == "test" );

As should be apparent by now, even though the scoping in JavaScript is not as strict as
a block-scoped language, it is still quite powerful and featureful. Especially when combined
with the concept of closures, discussed in the next section, JavaScript reveals itself as a power-
ful scripting language.

Closures

Closures are means through which inner functions can refer to the variables present in their

outer enclosing function after their parent functions have already terminated. This particular

topic can be very powerful and very complex. I highly recommend referring to the site men-

tioned at the end of this section, as it has some excellent information on the topic of closures.
Let’s begin by looking at two simple examples of closures, shown in Listing 2-13.

Listing 2-13. Two Examples of How Closures Can Improve the Clarity of Your Code

// Find the element with an ID of 'main’
var obj = document.getElementById("main");

// Change it's border styling
obj.style.border = "1px solid red";

// Initialize a callback that will occur in one second
setTimeout (function(){

// Which will hide the object

obj.style.display = 'none';
}, 1000);

// A generic function for displaying a delayed alert message
function delayedAlert( msg, time ) {
// Initialize an enclosed callback
setTimeout (function(){
// Which utilizes the msg passed in from the enclosing function
alert( msg );
}, time );

27



28

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

// Call the delayedAlert function with two arguments
delayedAlert( "Welcome!", 2000 );

The first function call to setTimeout shows a popular instance where new JavaScript
developers have problems. It’s not uncommon to see code like this in a new developer’s
program:

setTimeout("otherFunction()", 1000);

// or even..
setTimeout("otherFunction(" + num + "," + num2 + ")", 1000);

Using the concept of closures, it’s entirely possible to circumnavigate this mess of code.
The first example is simple; there is a setTimeout callback being called 1,000 milliseconds
after when it’s first called, but still referring to the obj variable (which is defined globally as
the element with an ID of main). The second function defined, delayedAlert, shows a solu-
tion to the setTimeout mess that occurs, along with the ability to have closures within
function scopes.

You should be able to find that when using simple closures such as these in your code,
the clarity of what you're writing should increase instead of turning into a syntactical soup.

Let’s look at a fun side effect of what'’s possible with closures. In some functional pro-
gramming languages, there’s the concept of currying. Curryingis a way to, essentially, pre—
fill in a number of arguments to a function, creating a new, simpler function. Listing 2-14
has a simple example of currying, creating a new function that pre-fills in an argument to
another function.

Listing 2-14. Example of Function Currying Using Closures

// A function that generates a new function for adding numbers
function addGenerator( num ) {

// Return a simple function for adding two numbers
// with the first number borrowed from the generator
return function( toAdd ) {

return num + toAdd

};

// addFive now contains a function that takes one argument,
// adds five to it, and returns the resulting number
var addFive = addGenerator( 5 );

// We can see here that the result of the addFive function is 9,
// when passed an argument of 4
alert( addFive( 4 ) == 9 );

There’s another, common, JavaScript-coding problem that closures can solve. New
JavaScript developers tend to accidentally leave a lot of extra variables sitting in the global



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

scope. This is generally considered to be bad practice, as those extra variables could quietly
interfere with other libraries, causing confusing problems to occur. Using a self-executing,
anonymous function you can essentially hide all normally global variables from being seen
by other code, as shown in Listing 2-15.

Listing 2-15. Example of Using Anonymous Functions to Hide Variables from the Global Scope

// Create a new anonymous function, to use as a wrapper
(function(){
// The variable that would, normally, be global
var msg = "Thanks for visiting!";

// Binding a new function to a global object
window.onunload = function(){
// Which uses the 'hidden' variable
alert( msg );
b

// Close off the anonymous function and execute it

DIOK

Finally, let’s look at one problem that occurs when using closures. Remember that clo-
sures allow you to reference variables that exist within the parent function. However, it does
not provide the value of the variable at the time it is created; it provides the last value of the
variable within the parent function. The most common issue under which you'll see this
occur is during a for loop. There is one variable being used as the iterator (e.g., 7). Inside of
the for loop, new functions are being created that utilize the closure to reference the iterator
again. The problem is that by the time the new closured functions are called, they will refer-
ence the last value of the iterator (i.e., the last position in an array), not the value that you
would expect. Listing 2-16 shows an example of using anonymous functions to induce
scope, to create an instance where expected closure is possible.

Listing 2-16. Example of Using Anonymous Functions to Induce the Scope Needed to Create
Multiple Closure-Using Functions

// An element with an ID of main
var obj = document.getElementById("main");

// An array of items to bind to
var items = [ "click", "keypress" ];

// Iterate through each of the items
for (var i = 0; 1 < items.length; i++ ) {
// Use a self-executed anonymous function to induce scope
(function(){
// Remember the value within this scope
var item = items[i];

29



30

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

// Bind a function to the elment
obj[ "on" + item ] = function() {
// item refers to a parent variable that has been successfully
// scoped within the context of this for loop
alert( "Thanks for your " + item );
1
HO;

The concept of closures is not a simple one to grasp; it took me a lot of time and effort
to truly wrap my mind around how powerful closures are. Luckily, there exists an excellent
resource for explaining how closures work in JavaScript: “JavaScript Closures” by Jim Jey at
http://jibbering.com/faq/faq _notes/closures.html.

Finally, we're going to look at the concept of context, which is the building block upon
which much of JavaScript’s object-oriented functionality is built.

Context

Within JavaScript your code will always have some form on context (an object within which
it is operating). This is a common feature of other object-oriented languages too, but without
the extreme in which JavaScript takes it.

The way context works is through the this variable. The this variable will always refer to
the object that the code is currently inside of. Remember that global objects are actually prop-
erties of the window object. This means that even in a global context, the this variable will still
refer to an object. Context can be a powerful tool and is an essential one for object-oriented
code. Listing 2-17 shows some simple examples of context.

Listing 2-17. Examples of Using Functions Within Context and Then Switching Its Context to
Another Variable

var obj = {
yes: function(){
// this == obj
this.val = true;
b
no: function(){
this.val = false;
}
b

// We see that there is no val property in the 'obj' object
alert( obj.val == null );

// We run the yes function and it changes the val property
// associated with the 'obj' object

obj.yes();

alert( obj.val == true );



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

// However, we now point window.no to the obj.no method and run it
window.no = obj.no;
window.no();

// This results in the obj object staying the same (as the context was
// switched to the window object)
alert( obj.val == true );

// and window val property getting updated.
alert( window.val == false );

You may have noticed in Listing 2-17 when we switched the context of the obj.no method
to the window variable the clunky code needed to switch the context of a function. Luckily,
JavaScript provides a couple methods that make this process much easier to understand and
implement. Listing 2-18 shows two different methods, call and apply, that can be used to
achieve just that.

Listing 2-18. Examples of Changing the Context of Functions

// A simple function that sets the color style of its context
function changeColor( color ) {
this.style.color = color;

}

// Calling it on the window object, which fails, since it doesn't
// have a style object
changeColor( "white" );

// Find the element with an ID of main
var main = document.getElementById("main");

// Set its color to black, using the call method

// The call method sets the context with the first argument

// and passes all the other arguments as arguments to the function
changeColor.call( main, "black" );

// A function that sets the color on the body element

function setBodyColor() {
// The apply method sets the context to the body element
// with the first argument, the second argument is an array
// of arguments that gets passed to the function
changeColor.apply( document.body, arguments );

}

// Set the background color of the body to black
setBodyColor( "black" );

While the usefulness of context may not be immediately apparent, it will become more
visible when we look at object-oriented JavaScript in the next section.

31



32

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

Object-Oriented Basics

The phrase object-oriented JavaScript is somewhat redundant, as the JavaScript language is com-
pletely object-oriented and is impossible to use otherwise. However, a common shortcoming of
most new programmers (JavaScript programmers included) is to write their code functionally
without any context or grouping. To fully understand how to write optimal JavaScript code, you
must understand how JavaScript objects work, how they’re different from other languages, and
how to use that to your advantage.

In the rest of this chapter we will go through the basics of writing object-oriented code in
JavaScript, and then in upcoming chapters look at the practicality of writing code this way.

Objects

Objects are the foundation of JavaScript. Virtually everything within the language is an object.
Much of the power of the language is derived from this fact. At their most basic level, objects
exist as a collection of properties, almost like a hash construct that you see in other languages.
Listing 2-19 shows two basic examples of the creation of an object with a set of properties.

Listing 2-19. Two Examples of Creating a Simple Object and Setting Properties

// Creates a new Object object and stores it in 'obj'
var obj = new Object();

// Set some properties of the object to different values
obj.val = 5;
obj.click = function(){

alert( "hello" );

};

// Here is some equivalent code, using the {..} shorthand
// along with key-value pairs for defining properties
var obj = {

// Set the property names and values use key/value pairs
val: 5,
click: function(){

alert( "hello" );

}
};

In reality there isn't much more to objects than that. Where things get tricky, however, is
in the creation of new objects, especially ones that inherit the properties of other objects.

Object Creation

Unlike most other object-oriented languages, JavaScript doesn’t actually have a concept
of classes. In most other object-oriented languages you would instantiate an instance of



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

a particular class, but that is not the case in JavaScript. In JavaScript, objects can create
new objects, and objects can inherit from other objects. This whole concept is called
prototypal inheritance and will be discussed more later in the “Public Methods” section.

Fundamentally, though, there still needs to be a way to create a new object, no matter
what type of object scheme JavaScript uses. JavaScript makes it so that any function can also
be instantiated as an object. In reality, it sounds a lot more confusing than it is. It’s a lot like
having a piece of dough (which is a raw object) that is molded using a cookie cutter (which
is an object constructor, using an object’s prototype).

Let’s look at Listing 2-20 for an example of how this works.

Listing 2-20. Creation and Usage of a Simple Object

// A simple function which takes a name and saves
// it to the current context
function User( name ) {

this.name = name;

}

// Create a new instance of that function, with the specified name
var me = new User( "My Name" );

// We can see that its name has been set as a property of itself
alert( me.name == "My Name" );

// And that it is an instance of the User object
alert( me.constructor == User );

// Now, since User() is just a function, what happens
// when we treat it as such?
User( "Test" );

// Since its 'this' context wasn't set, it defaults to the global 'window'
// object, meaning that window.name is equal to the name provided
alert( window.name == "Test" );

Listing 2-20 shows the use of the constructor property. This property exists on every object
and will always point back to the function that created it. This way, you should be able to effec-
tively duplicate the object, creating a new one of the same base class but not with the same
properties. An example of this can be seen in Listing 2-21.

Listing 2-21. An Example of Using the Constructor Property

// Create a new, simple, User object
function User() {}

// Create a new User object
var me = new User();

33



34

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

// Also creates a new User object (from the
// constructor reference of the first)
var you = new me.constructor();

// We can see that the constructors are, in fact, the same
alert( me.constructor == you.constructor );

Now that we know how to create simple objects, it’s time to add on what makes objects
so useful: contextual methods and properties.

Public Methods

Public methods are completely accessible by the end user within the context of the object. To
achieve these public methods, which are available on every instance of a particular object, you
need to learn about a property called profotype, which simply contains an object that will act
as a base reference for all new copies of its parent object. Essentially, any property of the pro-
totype will be available on every instance of that object. This creation/reference process gives
us a cheap version of inheritance, which I discuss in Chapter 3.

Since an object prototype is just an object, you can attach new properties to them, just
like any other object. Attaching new properties to a prototype will make them a part of every
object instantiated from the original prototype, effectively making all the properties public
(and accessible by all). Listing 2-22 shows an example of this.

Listing 2-22. Example of an Object with Methods Attached Via the Prototype Object

// Create a new User constructor
function User( name, age ){
this.name = name;
this.age = age;

}

// Add a new function to the object prototype
User.prototype.getName = function(){
return this.name;

};

// And add another function to the prototype
// Notice that the context is going to be within
// the instantiated object
User.prototype.getAge = function(){

return this.age;

};

// Instantiate a new User object
var user = new User( "Bob", 44 );



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

// We can see that the two methods we attached are with the
// object, with proper contexts

alert( user.getName() == "Bob" );

alert( user.getAge() == 44 );

Simple constructors and simple manipulation of the prototype object is as far as most
JavaScript developers get when building new applications. In the rest of this section I'm going
to explain a couple other techniques that you can use to get the most out of your object-
oriented code.

Private Methods

Private methods and variables are only accessible to other private methods, private vari-
ables, and privileged methods (discussed in the next section). This is a way to define code
that will only be accessible within the object itself, and not outside of it. This technique is
based on the work of Douglas Crockford, whose web site provides numerous documents
detailing how object-oriented JavaScript works and how it should be used:

e List of JavaScript articles: http://javascript.crockford.com/

e “Private Members in JavaScript” article:
http://javascript.crockford.com/private.html

Let’s now look at an example of how a private method could be used within an applica-
tion, as shown in Listing 2-23.

Listing 2-23. Example of a Private Method Only Usable by the Constructor Function

// An Object constructor that represents a classroom
function Classroom( students, teacher ) {
// A private method used for displaying all the students in the class
function disp() {
alert( this.names.join(", ") );

}

// Store the class data as public object properties
this.students = students;
this.teacher = teacher;

// Call the private method to display the error
disp();
}

// Create a new classroom object
var class = new Classroom( [ "John", "Bob" ], "Mr. Smith" );

// Fails, as disp is not a public property of the object
class.disp();

35



36

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

While simple, private methods and variables are important for keeping your code free
of collisions while allowing greater control over what your users are able to see and use. Next,
we're going to take a look at privileged methods, which are a combination of private and pub-
lic methods that you can use in your objects.

Privileged Methods

Privileged methods is a term coined by Douglas Crockford to refer to methods that are able
to view and manipulate private variables (within an object) while still being accessible to
users as a public method. Listing 2-24 shows an example of using privileged methods.

Listing 2-24. Example of Using Privileged Methods

// Create a new User object constructor

function User( name, age ) {
// Attempt to figure out the year that the user was born
var year = (new Date()).getFullYear() - age;

// Create a new Privileged method that has access to
// the year variable, but is still publically available
this.getYearBorn = function(){
return year;
1
}

// Create a new instance of the user object
var user = new User( "Bob", 44 );

// Verify that the year returned is correct
alert( user.getYearBorn() == 1962 );

// And notice that we're not able to access the private year
// property of the object

alert( user.year == null );

In essence, privileged methods are dynamically generated methods, because they're added
to the object at runtime, rather than when the code is first compiled. While this technique is
computationally more expensive than binding a simple method to the object prototype, it is
also much more powerful and flexible. Listing 2-25 is an example of what can be accomplished
using dynamically generated methods.



CHAPTER 2 © OBJECT-ORIENTED JAVASCRIPT

Listing 2-25. Example of Dynamically Generated Methods That Are Created When a New Object
Is Instantiated

// Create a new user object that accepts an object of properties
function User( properties ) {
// Iterate through the properties of the object, and make sure
// that it's properly scoped (as discussed previously)
for ( var i in properties ) { (function(){
// Create a new getter for the property
this[ "get" + i ] = function() {
return properties[i];

};

// Create a new setter for the property
this[ "set" + i ] = function(val) {
properties[i] = val;
b
HO; 3
}

// Create a new user object instance and pass in an object of
// properties to seed it with
var user = new User({
name: "Bob",
age: 44
1);

// Just note that the name property does not exist, as it's private
// within the properties object
alert( user.name == null );

// However, we're able to access its value using the new getname()
// method, that was dynamically generated
alert( user.getname() == "Bob" );

// Finally, we can see that it's possible to set and get the age using
// the newly generated functions

user.setage( 22 );

alert( user.getage() == 22 );

The power of dynamically generated code cannot be understated. Being able to build
code based on live variables is incredibly useful; it's what makes macros in other languages
(such as Lisp) so powerful, but within the context of a modern programming language. Next
we'll look at a method type that is useful purely for its organizational benefits.

37



38

CHAPTER 2 = OBJECT-ORIENTED JAVASCRIPT

Static Methods

The premise behind static methods is virtually identical to that of any other normal function.
The primary difference, however, is that the functions exist as static properties of an object.
As a property, they are not accessible within the context of an instance of that object; they are
only available in the same context as the main object itself. For those familiar with traditional
classlike inheritance, this is sort of like a static class method.

In reality, the only advantage to writing code this way is to keep object namespaces clean,
a concept that I discuss more in Chapter 3. Listing 2-26 shows an example of a static method
attached to an object.

Listing 2-26. A Simple Example of a Static Method

// A static method attached to the User object
User.cloneUser = function( user ) {
// Create, and return, a new user
return new User(
// that is a clone of the other user object
user.getName(),
user.getAge()
)s
};

Static methods are the first methods that we’'ve encountered whose purpose is purely
organizationally related. This is an important segue to what we’ll be discussing in the next
chapter. A fundamental aspect of developing professional quality JavaScript is its ability to
quickly, and quietly, interface with other pieces of code, while still being understandably
accessible. This is an important goal to strive for, and one that we will look to achieve in the
next chapter.

Summary

The importance of understanding the concepts outlined in this chapter cannot be understated.
The first half of the chapter, giving you a good understanding of how the JavaScript language
behaves and how it can be best used, is the starting point for fully grasping how to use JavaScript
professionally. Simply understanding how objects act, references are handled, and scope is
decided can unquestionably change how you write JavaScript code.

With the skill of knowledgeable JavaScript coding, the importance of writing clean
object-oriented JavaScript code should become all the more apparent. In the second half
of this chapter I covered how to go about writing a variety of object-oriented code to suit
anyone coming from another programming language. It is this skill that much of modern
JavaScript is based upon, giving you a substantial edge when developing new and inno-
vative applications.



CHAPTER 3

Creating Reusable Code

When developing code with other programmers, which is standard for most corporate or
team projects, it becomes fundamentally important to maintain good authoring practices in
order to maintain your sanity. As JavaScript has begun to come into its own in recent years,
the amount of JavaScript code developed by professional programmers has increased dra-
matically. This shift in the perception and use of JavaScript has resulted in important
advances in the development practices surrounding it.

In this chapter, we're going to look at a number of ways in which you can clean up your
code, organize it better, and improve the quality so that others can use it.

Standardizing Object-Oriented Code

The first and most important step in writing reusable code is to write the code in a way that
is standard across your entire application, object-oriented code especially. When you saw
how object-oriented JavaScript behaved in the previous chapter, you saw that the JavaScript
language is rather flexible, allowing you to simulate a number of different programming
styles.

To start with, it is important to devise a system of writing object-oriented code and
implementing object inheritance (cloning object properties into new objects) that best
suits your needs. Seemingly, however, everyone who'’s ever written some object-oriented
JavaScript has built their own scheme of doing this, which can be rather confusing. In this
section, we're going to look at how inheritance works in JavaScript followed by a look at
how a number of different, alternative helper methods work and how to use them in your
application.

Prototypal Inheritance

JavaScript uses a unique form of object creation and inheritance called prototypal inheritance.

The premise behind this method (as opposed to the classical class/object scheme that most
programmers are familiar with) is that an object constructor can inherit methods from one
other object, creating a prototype object from which all other new objects are built.

This entire process is facilitated by the prototype property (which exists as a property
of every function, and since any function can be a constructor, it’s a property of them, too).
Prototypal inheritance is designed for single, not multiple, inheritance; however, there are
ways that this can be worked around, which I'll discuss in the next section.

39



40

CHAPTER 3 = CREATING REUSABLE CODE

The part that makes this form of inheritance especially tricky to grasp is that prototypes
do not inherit their properties from other prototypes or other constructors; they inherit them
from physical objects. Listing 3-1 shows some examples of how exactly the prototype property
is used for simple inheritance.

Listing 3-1. Examples of Prototypal Inheritance

// Create the constructor for a Person object
function Person( name ) {
this.name = name;

}

// Add a new method to the Person object
Person.prototype.getName = function() {
return this.name;

};

// Create a new User object constructor
function User( name, password ) {
// Notice that this does not support graceful overloading/inheritance
// e.g. being able to call the super class constructor
this.name = name;
this.password = password;

};

// The User object inherits all of the Person object's methods
User.prototype = new Person();

// We add a method of our own to the User object
User.prototype.getPassword = function() {
return this.password;

};

The most important line in the previous example is User.prototype = new Person();.
Let’s look in depth at what exactly this means. User is a reference to the function constructor
of the User object. new Person() creates a new Person object, using the Person constructor.
You set the result of this as the value of the User constructor’s prototype. This means that any-
time you do new User(), the new User object will have all the methods that the Person object
had when you did new Person().

With this particular technique in mind, let’s look at a number of different wrappers that
developers have written to make the process of inheritance in JavaScript simpler.

Classical Inheritance

Classical inheritance is the form that most developers are familiar with. You have classes
with methods that can be instantiated into objects. It’s very typical for new object-oriented
JavaScript programmers to attempt to emulate this style of program design, however few
truly figure out how to do it correctly.



CHAPTER 3 © CREATING REUSABLE CODE

Thankfully, one of the masters of JavaScript, Douglas Crockford, set it as a goal of his
to develop a simple set of methods that can be used to simulate classlike inheritance
with JavaScript, as explained on his web site at http://javascript.crockford.com/
inheritance.html

Listing 3-2 shows three functions that he built to create a comprehensive form of classi-
cal JavaScript inheritance. Each of the functions implement a different aspect of inheritance:
inheriting a single function, inheriting everything from a single parent, and inheriting indi-
vidual methods from multiple parents.

Listing 3-2. Douglas Crockford’s Three Functions for Simulating Classical-Style Inheritance Using
JavaScript

// A simple helper that allows you to bind new functions to the
// prototype of an object
Function.prototype.method = function(name, func) {
this.prototype[name] = func;
return this;

};

// A (rather complex) function that allows you to gracefully inherit
// functions from other objects and be able to still call the 'parent'
// object's function
Function.method('inherits', function(parent) {

// Keep track of how many parent-levels deep we are

var depth = 0;

// Inherit the parent's methods
var proto = this.prototype = new parent();

// Create a new 'priveledged' function called 'uber', that when called
// executes any function that has been written over in the inheritance
this.method('uber', function uber(name) {

var func; // The function to be execute
var ret; // The return value of the function
var v = parent.prototype; // The parent's prototype

// If we're already within another 'uber' function
if (depth) {
// Go the necessary depth to find the orignal prototype
for (var i =d; i >0; 1+=1) {
v = v.constructor.prototype;

}

// and get the function from that prototype
func = v[name];

41



42 CHAPTER 3 = CREATING REUSABLE CODE

1

// Otherwise, this is the first 'uber' call

} else {
// Get the function to execute from the prototype
func = proto[name];

// If the function was a part of this prototype
if ( func == this[name] ) {
// Go to the parent's prototype instead
func = v[name];

}

// Keep track of how 'deep' we are in the inheritance stack
depth += 1;

// Call the function to execute with all the arguments but the first
// (which holds the name of the function that we're executing)
ret = func.apply(this, Array.prototype.slice.apply(arguments, [1]));

// Reset the stack depth
depth -= 1;

// Return the return value of the execute function
return ret;

return this;

1

// A function for inheriting only a couple functions from a parent object,
// not every function using new parent()
Function.method('swiss', function(parent) {

// Go through all of the methods to inherit

for (var i = 1; i < arguments.length; i += 1) {

}

// The name of the method to import
var name = arguments[i];

// Import the method into this object's prototype
this.prototype[name] = parent.prototype[name];

return this;

1

Let’s look at what exactly these three functions provide us with and why we should use
them instead of attempting to write our own prototypal inheritance model. The premise for
the three functions is simple:



CHAPTER 3 = CREATING REUSABLE CODE

Function.prototype.method: This serves as a simple way of attaching a function to the
prototype of a constructor. This particular clause works because all constructors are
functions, and thus gain the new “method” method.

Function.prototyope.inherits: This function can be used to provide simple single-parent
inheritance. The bulk of the code in this function centers around the ability to call
this.uber('methodName") in any of your object methods, and have it execute the parent
object’s method that it’s overwriting. This is one aspect that is not built into JavaScript’s
inheritance model.

Function.prototype.swiss: This is an advanced version of the .method() function which
can be used to grab multiple methods from a single parent object. When used together
with multiple parent objects, you can have a form of functional, multiple inheritance.

Now that you have a fair idea of what it is that these functions provide us with, Listing 3-3

revisits the Person/User example that you saw in Listing 3-1, only with this new classical-style
form of inheritance. Additionally, you can see what additional functionality this library can
provide, along with any improved clarity.

Listing 3-3. Examples of Douglas Crockford’s Classical Inheritance-Style JavaScript Functions

// Create a new Person object constructor
function Person( name ) {

}

this.name = name;

// Add a new method to the Person object
Person.method( 'getName', function(){

};

return name;

// Create a new User object constructor
function User( name, password ) {

}

this.name = name;
this.password = password;

// Inherit all the methods from the Person object
User.inherits( Person );

// Add a new method to the User object
User.method( 'getPassword', function(){

};

return this.password;

43



44

CHAPTER 3 = CREATING REUSABLE CODE

// Overwrite the method created by the Person object,
// but call it again using the uber function
User.method( 'getName', function(){

return "My name is: " + this.uber('getName');

1

Now that you've had a taste for what is possible with a solid inheritance-enhancing
JavaScript library, you should take a look at some of the other popular methods that are
commonly used.

The Base Library

A recent addition to the space of JavaScript object creation and inheritance is the Base
library developed by Dean Edwards. This particular library offers a number of different
ways to extend the functionality of objects. Additionally, it even provides an intuitive
means of object inheritance. Dean originally developed Base for use with some of his side
projects, including the IE7 project, which serves as a complete set of upgrades to Internet
Explorer. The examples listed on Dean’s web site are rather comprehensive and really show
the capabilities of the library quite well: http://dean.edwards.name/weblog/2006/03/base/.
Additionally, you can find more examples in the Base source code directory: http://dean.
edwards.name/base/.

While Base is rather long and quite complex, it deserves some additional comments for
clarification (which are included in the code provided in the Source Code/Download section
of the Apress web site, http://www.apress.com). It is highly recommended that, in addition to
reading through the commented code, you look through the examples that Dean provides on
his web site, as they can be quite helpful for clarifying common confusions.

As a starting point, however, I'm going to walk you through a couple important aspects
of Base that can be very helpful to your development. Specifically, in Listing 3-4, there are
examples of class creation, single-parent inheritance, and overriding parent functions.

Listing 3-4. Examples of Dean Edwards’s Base Library for Simple Class Creation and Inheritance

// Create a new Person class
var Person = Base.extend({
// The constructor of the Person class
constructor: function( name ) {
this.name = name;

}

A simple method of the Person class
getName: function() {
return this.name;
}
1;



CHAPTER 3 = CREATING REUSABLE CODE

// Create a new User class that inherits from the Person class
var User = Person.extend({
// Create the User class constructor
constructor: function( name, password ) {
// which, in turn calls the parent classes' constructor method
this.base( name );
this.password = password;

1

// Create another, simple, method for the User
getPassword: function() {
return this.password;
}
D;

Let’s look at how it is that Base achieved the three goals outlined in Listing 3-4 to create
a simple form of object creation and inheritance:

Base.extend( ... );: This expression is used to create a new base constructor object. This
function takes one property, a simple object containing properties and values, all of
which are added to the object and used as its prototypal methods.

Person.extend( ... );: This is an alternate version of the Base.extend() syntax. All con-
structors created using the .extend() method gain their own .extend() method, meaning
that it’s possible to inherit directly from them. In Listing 3-4 you create the User con-
structor by inheriting directly from the original Person constructor.

this.base();: Finally, the this.base() method is used to call a parent function that has
been overridden. You'll notice that this is rather different from the this.uber() function
that Crockford’s classical library used, as you don’t need to provide the name of the
parent function (which can help to really clean up and clarify your code). Of all the
object-oriented JavaScript libraries, Base’s overridden parent method functionality

is the best.

Personally, I find that Dean’s Base library produces the most readable, functional, and
understandable object-oriented JavaScript code. Ultimately, it is up to a developer to
choose a library that best suits him. Next you're going to see how object-oriented code is
implemented in the popular Prototype library.

The Prototype Library

Prototype is a JavaScript library that was developed to work in conjunction with the popular
Ruby on Rails web framework. The name of the library shouldn’t be confused with the proto-
type constructor property—it’s just an unfortunate naming situation.

Naming aside, Prototype makes JavaScript look and behave a lot more like Ruby. To
achieve this, Prototype’s developers took advantage of JavaScript’s object-oriented nature
and attached a number of functions and properties to the core JavaScript objects. Unfortu-
nately, the library itself isn't documented at all by its creator; fortunately it’s written very

45



46

CHAPTER 3 = CREATING REUSABLE CODE

clearly, and a number of its users have stepped in to write their own versions of the docu-
mentation. You can feel free to look through the entire code base on the Prototype web site:
http://prototype.conio.net/. You can get Prototype documentation from the article
“Painless JavaScript Using Prototype” at http://www.sitepoint.com/article/
painless-javascript-prototype/.

In this section, we're going to only look at the specific functions and objects that Proto-
type uses to create its object-oriented structure and provide basic inheritance. Listing 3-5 has
all the code that Prototype uses to achieve this goal.

Listing 3-5. Two Functions Used by Prototype to Simulate Object-Oriented JavaScript Code

// Create a global object named 'Class’

var Class = {
// it has a single function that creates a new object constructor
create: function() {

// Create an anonymous object constructor
return function() {
// This calls its own initialization method
this.initialize.apply(this, arguments);

}

// Add a static method to the Object object which copies
// properties from one object to another
Object.extend = function(destination, source) {
// Go through all of the properties to extend
for (property in source) {
// and add them to the destination object
destination[property] = source[property];

}

// return the modified object
return destination;

Prototype really only uses two distinct functions to create and manipulate its whole
object-oriented structure. You may notice, simply from looking at the code, that it is also
decidedly less powerful than Base or Crockford’s classical method. The premises for the two
functions are simple:



CHAPTER 3 = CREATING REUSABLE CODE

Class.create(): This function simply returns an anonymous function wrapper that can be
used as a constructor. This simple constructor does one thing: it calls and executes the
initialize property of the object. This means that there should be, at the very least, an ini-
tialize property containing a function on your object; otherwise, the code will throw an
exception.

Object.extend(): This simply copies all properties from one object into another. When you
use the prototype property of constructors you can devise a simpler form of inheritance
(simpler than the default prototypal inheritance that’s available in JavaScript).

Now that you know how the underlying code works in Prototype, Listing 3-6 shows some
examples of how it’s used in Prototype itself to extend native JavaScript objects with additional
layers of functionality.

Listing 3-6. Examples of How Prototype Uses Object-Oriented Functions to Extend the Default
Operations of a String in JavaScript

// Add additional methods to the String prototype
Object.extend(String.prototype, {
// A new Strip Tags function that removes all HTML tags from the string
stripTags: function() {
return this.replace(/<\/2?[*>]+>/gi, '');

1

// Converts a string to an array of characters
toArray: function() {
return this.split('');

1

// Converts "foo-bar" text to "fooBar" 'camel' text
camelize: function() {

// Break up the string on dashes

var oStringlist = this.split('-');

// Return early if there are no dashes
if (oStringlList.length == 1)
return oStringlist[o];

// Optionally camelize the start of the string

var camelizedString = this.indexOf('-") ==
? oStringlList[0].charAt(0).toUpperCase() + oStringlist[0].substring(1)
: oStringlist[o];

// Capitalize each subsequent portion
for (var i = 1, len = oStringlist.length; i < len; i++) {
var s = oStringlist[i];
camelizedString += s.charAt(0).toUpperCase() + s.substring(1);

47



CHAPTER 3 = CREATING REUSABLE CODE

// and return the modified string
return camelizedString;
}
D;

// An example of the stripTags() method

// You can see that it removes all the HTML from the string
// and leaves us with a clean text-only string
"<b><i>Hello</i>, world!".stripTags() == "Hello, world!"

// An example of toArray() method
// We get the fourth character in the string
"abcdefg".toArray()[3] == "d"

// An example of the camelize() method
// It converts the old string to the new format.
"background-color".camelize() == "backgroundColor"

Next let’s revisit the example that I've been using in this chapter of having a Person and
User object with the User object inheriting from the Person object. This code, using Proto-
type’s object-oriented style, is shown in Listing 3-7.

Listing 3-7. Prototype’s Helper Functions for Creating Classes and Implementing Simple
Inheritance

// Create a new Person object with dummy constructor
var Person = Class.create();

// Copy the following functions into the Person prototype
Object.extend( Person.prototype, {

// The function called immediately by the Person constructor
initialize: function( name ) {
this.name = name;

1

// A simple function for the Person object
getName: function() {
return this.name;

}
};

// Create a new User object with a dummy constructor
var User = Class.create();



CHAPTER 3 = CREATING REUSABLE CODE

// The User object inherits all the functions of its parent class
User.prototype = Object.extend( new Person(), {

// Overwrite the old initialize function with the new one
initialize: function( name, password ) {

this.name = name;

this.password = password;

1

// and add a new function to the object
getPassword: function() {
return this.password;

}
1

While the object-oriented techniques proposed by the Prototype library aren’t revolu-
tionary, they are powerful enough to help a developer create simpler, easier-to-write code.
Ultimately, however, if you're writing a significant amount of object-oriented code, you'll
most likely want to choose a library such as Base to help your writing efforts.

Next we're going to look at how you can take your object-oriented code and get it ready
for other developers and libraries to use and interact with it.

Packaging

After (or during, if you're smart) you finish writing your beautiful object-oriented, JavaScript
code, it comes time to improve it such that it will play nicely with other JavaScript libraries.
Additionally, it becomes important to realize that your code will need to be used by other
developers and users whose requirements may be different than yours. Writing the cleanest
code possible can help with this, but so can learning from what others have done.

In this section you're going to see a couple, large libraries that are used by thousands of
developers daily. Each of these libraries provides unique ways of managing their structure
that make it easy to use and learn. Additionally you're going to look at some ways in which
you can clean up your code, to provide the best possible experience for others.

Namespacing

An important but simple technique that you can use to clean up and simplify your code is
the concept of namespacing. JavaScript currently does not support namespacing by default
(unlike Java or Python, for example), so we have to make do with an adequate but similar
technique.

In reality, there is no such thing as proper namespacing in JavaScript. However, using
the premise that in JavaScript, all objects can have properties, which can in turn contain
other objects, you can create something that appears and works very similarly to the name-
spacing that you're used to in other languages. Using this technique, you can create unique
structures like those shown in Listing 3-8.

49



50

CHAPTER 3 = CREATING REUSABLE CODE

Listing 3-8. Namespacing in JavaScript and How It’s Implemented

// Create a default, global, namespace
var YAHOO = {};

// Setup some child namespaces, using objects
YAHOO.util = {};

// Create the final namespace, which contains a property with a function
YAHOO.util.Event = {
addEventListener: function(){ .. }

};

// Call the function within that particular namespace
YAHOO.util.Event.addEventlListener( .. )

Let’s look at some examples of namespacing used within some different, popular libraries
and how that plays into a solid, expandable, plug-in architecture.

Dojo
Dojo is an incredibly popular framework that provides everything that a developer needs
to build a full web application. This means that there are a lot of sublibraries that need to
be included and evaluated individually, otherwise the whole library would simply be too
large to handle gracefully. More information about Dojo can be found on its project site:
http://dojotoolkit.org/.

Dojo has an entire package system built around JavaScript namespacing. You can
import new packages dynamically, upon which they’re automatically executed and ready
for use. Listing 3-9 shows an example of the namespacing that is used within Dojo.

Listing 3-9. Packaging and Namespacing in Dojo

<html>
<head>
<title>Accordion Widget Demo</title>
<!-- Include the Dojo Framework -->
<script type="text/javascript" src="dojo.js"></script>
<!-- Include the different Dojo Packages -->
<script type="text/javascript">
// Two different packages are imported and used to create
// an Accordian Container widget
dojo.require("dojo.widget.AccordionContainer");
dojo.require("dojo.widget.ContentPane");
</script>
</head>



CHAPTER 3 = CREATING REUSABLE CODE

<body>
<div dojoType="AccordionContainer" labelNodeClass="label">
<div dojoType="ContentPane" open="true" label="Pane 1">
<h2>Pane 1</h2>
<p>Nunc consequat nisi vitae quam. Suspendisse sed nunc. Proin..</p>
</div>
<div dojoType="ContentPane" label="Pane 2">
<h2>Pane 2</h2>
<p>Nunc consequat nisi vitae quam. Suspendisse sed nunc. Proin..</p>
</div>
<div dojoType="ContentPane" label="Pane 3">
<h2>Pane 3</h2>
<p>Nunc consequat nisi vitae quam. Suspendisse sed nunc. Proin..</p>
</div>
</div>
</body>
</html>

Dojo’s package architecture is very powerful and deserves a look if you're interested in
attempts at maintaining large code bases with JavaScript. Additionally, considering the sheer
vastness of the library, you're bound to find some functionality that can benefit you.

YUl

Another library that maintains a large namespaced package architecture is the JavaScript
library Yahoo Ul library (http://developer.yahoo.com/yui/). This library is designed to
implement and provide solutions to a number of common web application idioms (such as
dragging and dropping). All of these UI elements are broken up and distributed among the
hierarchy. The documentation for the Yahoo Ul library is quite good and deserves some
attention for its completeness and detail.

Much like Dojo, Yahoo UT uses the deep namespace hierarchy to organize its functions
and features. However, unlike Dojo, any "importing” of external code is done expressly by
you, and not through an import statement. Listing 3-10 shows an example of how name-
spacing looks and operates within the Yahoo UI library.

Listing 3-10. Packaging and Namespacing Within the Yahoo Ul Library

<html>
<head>
<title>Yahoo! UI Demo</title>
<!-- Import the main Yahoo UI library -->
<script type="text/javascript" src="YAHO00.js"></script>

<!-- Import the events package -->
<script type="text/javascript" src="event.js"></script>

51



52 CHAPTER 3 = CREATING REUSABLE CODE

<!-- Use the imported Yahoo UI library -->

<script type="text/javascript">
// All Yahoo events and utilities are contained within the YAHOO
// namespace, and subdivided into smaller namespaces (like 'util')
YAHOO.util.Event.addListener( 'button', 'click', function() {

alert( "Thanks for clicking the button!" );

D;

</script>

</head>

<body>

<input type="button" id="button" value="Click Me!"/>
</body>
</html>

Both Dojo and Yahoo UI do a very good job of organizing and maintaining a lot of code
within a single large package. Understanding how they accomplish this with JavaScript name-
spacing can be extremely helpful when it comes time to implement a package architecture of
your own.

Cleaning Up Your Code

Before I get to the topic of debugging or writing test cases (which I'll be doing in the next
chapter) it’s important to first look at how you write your code, getting it ready for others

to use. If you want your code to survive the use and modification of other developers, you're
going to need to make sure that there are no statements that could be misconstrued or used
wrongly. While you could go through and clear things up by hand, it’s often more efficient
to use a tool to help spot tricky pieces of code that could be troublesome later. This is where
JSLint comes in. JSLint has a set of built-in rules that spot pieces of code that could cause
you or others problems later. There is a full analyzer available on the JSLint web site: http://
www.jslint.com/. Additionally, all of JSLint’s rules and settings can be found here:
http://www.jslint.com/lint.html.

JSLint is another tool developed by Douglas Crockford and it’s written to embody his
style of coding, so if you don’t enjoy or particularly believe in some of the changes that he
requires, then simply don’t follow them. However, some of the rules make particularly good
sense, so I'm going to cover them here for additional clarification.

Variable Declaration

One smart requirement that JSLint puts forth is that all variables used in your program must
be declared before they are used. While JavaScript does not explicitly require you to declare
variables, not doing so can cause confusion as to its actual scope. For example, if you were to
set a value to an undeclared variable inside of a function, would the variable be scoped within
the function or within the global scope? That isn’'t immediately apparent just by looking at the
code and is a good item to clarify. An example of JSLint’s variable declaration practice is shown
in Listing 3-11.



CHAPTER 3 = CREATING REUSABLE CODE

Listing 3-11. Variable Delcaration That JSLint Requires

// Incorrect variable use
foo = 'bar';

// Correct variable delcaration
var foo;

foo = 'bar';

I=and == vs. I==and ===

A common mistake that developers are susceptible to is the lack of understanding of false
values in JavaScript. In JavaScript, null, 0, , false, and undefined are all equal (==) to each
other, since they all evaluate to false. This means that if you use the code test == false, it
will evaluate true if test is also undefined or equal to null, which may not be what you want.

This is where !== and === become useful. Both of these operators look at the explicit
value of the variable (such as null), not just what it is equivalent to (such as false). JSLint
requires that anytime you use != or == against a falselike value, you must use !== or ===
instead. Listing 3-12 shows some examples of how these operators differ.

Listing 3-12. Examples of How != and == Differ from == and ===

// Both of these are true
null == false
0 == undefined

// You should use !== or === instead
null !== false
false === false

Blocks and Brackets

This is a clause that I have some difficulty accepting, but nonetheless, it does make sense to
follow if you're in a shared code environment. The premise behind this rule is that single-line
blocks cannot be used. When you have a clause (such as if (dog == cat )) and there’s only
one statement inside of it (dog = false;) you can leave off the brackets that the clause would
normally require. The same is true for while() and for() blocks. While this is a great shortcut
that JavaScript provides, leaving off the brackets in your code can cause some strange conse-
quences for those who don't realize which code is under the block and which code is not.
Listing 3-13 explains this situation quite well.

Listing 3-13. Improperly Indented Single-Statement Code Blocks

// This code is legal, normal, Javascript
if ( dog == cat )

if ( cat == mouse )

mouse = "cheese";

53



54

CHAPTER 3 = CREATING REUSABLE CODE

// JSLint requires that it be written like this:
if ( dog == cat ) {
if ( cat == mouse ) {
mouse = "cheese";

}

Semicolons

This last point will prove to be most useful in the next section, when we look at code com-
pression. In JavaScript, semicolons on the end of statements are optional, if you have one
statement per line. Leaving semicolons off of your uncompressed code may seem fine, but
once you begin removing end lines to cut down your file size, problems begin to occur. To
avoid this, you should always remember to include semicolons at the end of all your state-
ments, as shown in Listing 3-14.

Listing 3-14. Statements That Need to Have Semicolons

// Be sure to include semicolons at the end of all statements, if you plan on
// compressing your Javascript code
var foo = 'bar’';
var bar = function(){
alert('hello');
1
bar();

Finally, this last point will help to carry us over to the concept of JavaScript compression.
Whereas using JSLint to write clean code is beneficial for other developers, and for yourself,
compression is ultimately most useful for your users, such that they will be able to begin
using your site faster.

Compression

An essential aspect of JavaScript library distribution is the use of code compressors to save on
bandwidth. Compression should be used as the final step, just before putting your code into
production, as your code will frequently become obfuscated beyond recognition. There are
three types of JavaScript compressors:

e Compressors that simply remove all extraneous white space and comments, leaving
nothing but the essential code.

* Compressors that remove the white space and comments but also change all variable
names to be smaller.

» Compressors that do the previous, but also minimize the size of all words in your code,
not just variable names.

I'm going to discuss two separate libraries: JSMin and Packer. JSMin falls under the first
compressor classification (extraneous noncode removal) while Packer falls under the third
(complete compression of all words).



CHAPTER 3 © CREATING REUSABLE CODE

JSMin

The premise behind JSMin is simple. It goes through a block of JavaScript code and removes
all nonessential characters, leaving only the purely functional code. JSMin does this by simply
removing all extraneous white-space characters (this includes tabs and end lines) and all com-
ments. An online version of the compressor can be found here: http://www.crockford.com/
javascript/jsmin.html

To get a feel for what happens to the code once it’s been passed through JSMin, we're
going to take a sample block of code (shown in Listing 3-15), pass it through the minifier, and
see its resulting output in Listing 3-16.

Listing 3-15. Code for Determining a User’s Browser

// (c) 2001 Douglas Crockford

// 2001 June 3

// The -is- object is used to identify the browser. Every browser edition
// identifies itself, but there is no standard way of doing it, and some of
// the identification is deceptive. This is because the authors of web

// browsers are liars. For example, Microsoft's IE browsers claim to be

// Mozilla 4. Netscape 6 claims to be version 5.

var is = {
ie: navigator.appName == 'Microsoft Internet Explorer',
java: navigator.javaEnabled(),
ns: navigator.appName == 'Netscape’,
ua: navigator.userAgent.tolLowerCase(),

version: parseFloat(navigator.appVersion.substr(21)) ||
parseFloat(navigator.appVersion),
win: navigator.platform == 'Win32'
}
is.mac = is.ua.indexOf('mac') >= 0;
if (is.ua.indexOf('opera') >= 0) {
is.ie = is.ns = false;
is.opera = true;

if (is.ua.indexOf('gecko") >= 0) {
is.ie = is.ns = false;
is.gecko = true;

Listing 3-16. A Compressed Copy of the Code in Listing 3-15

// Compressed code

var is={ie:navigator.appName=='Microsoft Internet Explorer',java:
navigator.javaknabled(),ns:navigator.appName=="Netscape',ua:
navigator.userAgent.tolLowerCase(),version:parseFloat(
navigator.appVersion.substr(21))||parseFloat(navigator.appVersion),win:

55



56

CHAPTER 3 = CREATING REUSABLE CODE

navigator.platform=="Win32'} is.mac=is.ua.index0f('mac"')>=0;if(
is.ua.indexOf('opera')>=0){is.ie=is.ns=false;is.opera=true;}
if(is.ua.index0f('gecko')>=0){is.ie=is.ns=false;is.gecko=true;}

Notice that all of the white space and comments have been removed, dramatically cutting
down on the overall size of the code.

JSMin is perhaps the simplest JavaScript compression utility. It's a great way to get started
using compression within your production code. When you're ready to save additional band-
width, however, you'll want to graduate to using Packer, which is a formidable and extremely
powerful JavaScript compression library.

Packer

Packer is by far the most powerful JavaScript compressor available. Developed by Dean
Edwards, it serves as a way to completely reduce the size of your code and expand and exe-
cute it again on the fly. By using this technique, Packer creates the optimally smallest code
possible. You can think of it as a self-extracting ZIP file for JavaScript code. An online version
of the script is available at http://dean.edwards.name/packer/.

The Packer script is quite large and very complicated, so it's recommended that you not
try to implement this on your own. Additionally, the code that it generates has a couple hun-
dred bytes of overhead (in order to be able to extract itself), so it’s not perfect for extremely
small code (JSMin would be better for that). However, for large files, it is absolutely perfect.
Listing 3-17 shows an extract of the self-extracting code that is generated by Packer.

Listing 3-17. Portion of Code Compressed Using Packer

eval(function(p,a,c,k,e,d){e=function(c){return c.toString(36)};if(!"".replace(/*/,
String)){while(c--){d[c.toString(a)]=k[c]||c.toString(a)}k=[ (function(e){return
dlel})];e=(function(){return'\\w+'});c=1};while(c--){if(k[c]){p=p.replace(new
RegExp('\\b'+e(c)+'\\b',"'g"),k[c])}}return p}('u 1={5:2.f==\"t s
\',h:2.5(),4:2.F==\"k\",3:2.1.m(),n:7(2.d.o(p)) | | 7(2.d),q:2.g==\"i\"}1.
b=1.3.6(\'b\")>=0;a(1.3.6(\"'c\"')>=0){1.5=1.4=9;1.c=e}a(1.3.6(\"8\")>=0){1.5=
1.4=9;1.8=e}"',31,31, " |is|navigator|ua|ns|ie...

The usefulness of compressing your code, and especially of using Packer to do so, cannot
be understated. Depending on how your code is written, you'll frequently be able to reduce its
size by more than 50%, which can result in improved page load times for your users, which
should be a top goal for any JavaScript application.

Distribution

The final step of the JavaScript writing process is an optional one and depends mostly
upon your particular situation. If you're simply writing code for yourself or a company,
you’ll most likely be simply distributing your code to other developers or uploading it to
your web site for use.

However, if you develop an interesting piece of code and wish to let the world use it
however they wish, this is where a service such as the JavaScript Archive Network (JSAN)



CHAPTER 3 = CREATING REUSABLE CODE

comes into play. JSAN was started by a couple of Perl developers who enjoyed the function-
ality and usefulness of CPAN (Comprehensive Perl Archive Network). More information
about JSAN can be found on its site: http://openjsan.org/.

JSAN asks that all modules submitted be written in a nicely formatted object-oriented
style, conforming to its particular module architecture. JSAN, in addition to its central
repository of code, has a means through which you can import external JSAN module depen-
dencies, which are required by your code. This can make it extremely simple to write inter-
dependent applications without worrying about which modules the user already has installed.
To understand how a typical JSAN module works, let’s look at a simple one, DOM.Insert,
which is available here: http://openjsan.org/doc/r/rk/rkinyon/DOM/Insert/0.02/1ib/
DOM/Insert.html.

This particular module takes an HTML string and inserts it into a web page at a particular
point. In addition to it being nicely object-oriented, this module also requires and loads two
other JSAN modules, both of which are shown in Listing 3-18.

Listing 3-18. A Sample JSAN Module (DOM.Insert)

// We're going to try and include some other modules using JSAN
try {

// Load in the two required JSAN libraries

JSAN.use( 'Class' )

JSAN.use( 'DOM.Utils"' )

// If JSAN isn't loaded, it will throw an exception
} catch (e) {
throw "DOM.Insert requires JSAN to be loaded";

}

// Make sure that the DOM namespace exists
if ( typeof DOM == 'undefined' )
DOM = {};

// Create a new DOM.Insert constructor, which inherits from 'Object’
DOM.Insert = Class.create( 'DOM.Insert', Object, {
// The constructor which takes two arguments
initialize: function(element, content) {
// An element to insert HTML into
this.element = $(element);

// The HTML string to insert
this.content = content;

// Try inserting the HTML using the Internet Explorer way
if (this.adjacency 8& this.element.insertAdjacentHTML) {
this.element.insertAdjacentHTML(this.adjacency, this.content);

57



58

CHAPTER 3 = CREATING REUSABLE CODE

// Otherwise, try it the W3C way
} else {
this.range = this.element.ownerDocument.createRange();
if (this.initializeRange) this.initializeRange();
this.fragment = this.range.createContextualFragment(this.content);
this.insertContent();

}
1

The power of having cleanly written object-oriented, easily intractable JavaScript code
should be the hallmark of development for you, or any other web developer. It is through
this means that we are going to build upon and explore the rest of the JavaScript language.
As JavaScript continues to come into its own, the importance of this style of writing will only
increase and become more useful and prevalent.

Summary

In this chapter you saw different ways of building reusable code structures. Using the object-
oriented techniques that you learned in the previous chapter, you were able to apply them
and create clean data structures that are perfectly suited to multideveloper environments.
Additionally, you saw the best ways to create maintainable code, reduce JavaScript file size,
and package code for distribution. Knowing how to write nicely formatted, maintainable
code will save you countless hours of frustration.



CHAPTER 4

Tools for Debugging
and Testing

Perhaps the most time-consuming process when developing in any programming language
is that of testing and debugging your code. With professional-grade code it becomes of the
utmost importance to make sure that what you create is fully tested, verifiable, and bug-free.
One aspect that makes JavaScript so different from other programming languages is that it
isn't owned or backed by any one company or organization (unlike C#, PHP, Perl, Python, or
Java). This difference can make it challenging to have a consistent base with which you can
test and debug your code.
To cut down on the amount of stress and work that you may have to endure, when

catching JavaScript bugs, any one of a number of powerful development tools can be used.

There exist tools (often in varying quality) for every modern browser. Using them makes
JavaScript development become a much more consistent picture, and one that seems
much more promising.

In this chapter I discuss the different tools that can be used to debug your JavaScript
code, then build solid, reusable testing suites with which to verify future developments.

Debugging

Testing and debugging are two processes that go hand in hand. While you should be building
comprehensive test cases for your code, you'll most definitely hit strange errors that require
more attention. This is where the debugging process comes in. By knowing how to use the
best tools available, to find and fix bugs in your code, you can get your code back up and
working faster.

Error Console

The most accessible tool that’s available in all modern browsers is some form of an error
console. The quality of the console, the accessibility of the interface, and the quality of the
error messages all vary from browser to browser. Ultimately, you'll probably find it best to
begin your debugging process with a single browser whose error console (or other debug-
ging extension) is best suited for developers.

59



60

CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

Internet Explorer

Having the most popular browser does not imply a correlation between that and having the
best debugging tools. Unfortunately, Internet Explorer’s error console is quite lacking. Among
other issues, the console is disabled by default, making the hunt for errors all the more con-
fusing if you don't use Internet Explorer as your default browser (and it’s doubtful that any
self-respecting JavaScript developer would).

Beyond the aforementioned usability issue, the most troubling problems with the Inter-
net Explorer error console are the following:

e Only one error is displayed at a time; you must toggle through the menu system to find
other error messages.

» Error messages are particularly cryptic, making little logical sense. They very infre-
quently give an accurate description of the problem that’s occurring.

e The line that an error is reported as being on is always “off by one,” meaning that the
actual error line is really one less than the reported line. Combining this with the cryp-
tic error messages, you may be in for quite a bug hunt.

An example of an error occurring in the Internet Explorer error console can be seen in
Figure 4-1.

3 Internet Explorer [ %]

Frablems with this “Web page might prevent it from being displayed properly
& or functioning properly. I the future, you can display this message by
double-clicking the warning icon displayed in the status bar,

r Blwayps display thiz message when a page containg emors. §

QK I Hide Details <<

Line: 9

Char: 17

Ermor: Expected identifier

Code: 0

URL: http:/fjquery. comdtest/ermarz. html

Brevious | st |

Figure 4-1. The JavaScript error console in Internet Explorer

As I mentioned at the beginning of this section, it'll probably be a very good idea to begin
your JavaScript debugging process in another browser (one that isn't Internet Explorer). Once
you've completely eliminated all bugs in that browser you should have an easier time locating
the strange intricacies of Internet Explorer.

Firefox

The Firefox web browser has made many great UI advancements in the past couple years,
helping web developers develop better web sites with greater ease. The JavaScript error con-
sole has gone through a number of revisions, resulting in something that is quite usable.

A couple points to consider about the Firefox error console are the following:



CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

» The console allows you to enter arbitrary JavaScript commands. This can be extremely
useful to figure out what the value of a variable is after page load.

¢ The console gives you the ability to sort messages based upon the type of message that
they are, for example, errors, warnings, or messages.

¢ The latest version of the console provides additional style-sheet warnings and errors
along with the JavaScript errors. This can provide an unnecessary flood of error mes-
sages on poorly designed sites, but is generally helpful for finding strange layout bugs
on your own.

* One drawback of the console is that it does not filter based on what page you're cur-
rently looking at, meaning that you'll have a mixture of errors from different pages.
(The Firebug extension, which I discuss in the next section, solves this.)

A screenshot of the Firefox error console is shown in Figure 4-2. Notice the different but-
tons you can use to toggle between the different message types.

806 JavaScript Console [=)

"-Q A @ (¢

All  Errors Warnings Messages @ Clear

|Eva| uatel

Error: missing formal parameter

@ Source File: http:/fjguery.com/test/error.html Line:9

function foo( {

Figure 4-2. The JavaScript error console in Firefox

While the Firefox error console is quite good, it isn’t perfect. It is for this reason that devel-
opers tend to turn to various Firefox extensions to better debug their applications. I discuss
some of these extensions later in this debugging section.



62

CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

Safari

The Safari browser is one of the newest browsers on the market, and also one that’s grown
quite fast. With that growth, JavaScript support (both in development and in execution) has
been rather shaky at times. Due to this fact, the JavaScript console is not easily accessible
within the browser. It isn’t even an option that can be easily enabled. It is completely hidden
away in a secret debug menu that is unavailable to the average user.

To enable the debug menu (and, therefore, the JavaScript console) you'll need to execute
the command shown in Listing 4-1 inside of a terminal (while Safari isn’t running).

Listing 4-1. The Command for Safari to Reveal the Debug Menu

defaults write com.apple.Safari IncludeDebugMenu 1

The next time you open Safari, you'll have a new debug menu option that will include a
JavaScript console.

As you can probably imagine from its obscure location, the console is still in a very poor
state. A couple points to consider about the console are the following:

» Error messages are frequently quite cryptic, about on the same level of quality as Inter-
net Explorer’s errors.

e Line numbers are present for the errors but frequently will just reset to zero, leaving you
back where you started.

» There is no filtering of error messages by page, but all messages have the script that
threw the error listed next to them.

A screenshot of the error console running in Safari 2.0 is shown in Figure 4-3.

800 JavaScript Console

SyntaxError - Parse error

http: {/jquery.com /test/error.html Line: @

[ Clear | 1 message A

Figure 4-3. The JavaScript error console in Safari



CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

As a web development platform, Safari is still rather far behind. However, the WebKit
development team (those who develop the rendering engine for Safari) has been making good
progress bringing the browser up to speed. Look for many new developments in the browser
in the upcoming months and years.

Opera

The last error console that we're going to look at is the one contained within the Opera
browser. Thankfully Opera put a lot of time and effort into making it quite functional and
useful. In addition to all the features available in the Firefox error console, it additionally
provides the following:

» Descriptive error messages, giving you a good understanding of what the problem is.
e Inline code snippets, showing you where the problem is in the code itself.
» Error messages filterable by type (e.g., JavaScript, CSS, etc.).

Unfortunately, the console lacks the ability to execute JavaScript commands, which is a
shame, as it’s such a useful feature. All of this together, however, provides you with an excel-
lent error console. Figure 4-4 shows a screenshot of the console in Opera 9.0.

ra o6 Error Console

( Expand all ) ( Collapse all )

- Q.JavaScript - http:/ fjguery.com/test/error.html
Inline script compilation
Syntax error while loading: line 2 of inline script at http:/ fjquery.com/test/error.html : @
alert(*mising a bracket”)
A

All | :] Message | :]

( Close ) ( Clear \J

A4

Figure 4-4. The JavaScript error console in Opera

Opera has long taken web development seriously. With a large number of active, avid
developers and specification authors on its development team, its platform has strived to
serve web developers well.

Next I will show you a couple JavaScript-related browser extensions that are very powerful
and capable of improving your development abilities.

63



64

CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

DOM Inspectors

DOM inspection is one of the most useful but underused tools available to a JavaScript devel-
oper. DOM inspection can be thought of as an advanced version of viewing a page’s source
code, allowing you to see the current state of a page after your code has already modified its
contents.

Different DOM inspectors behave differently in each browser, some providing you with
additional functionality, allowing you to peer deeper into what you're manipulating. I discuss
three inspectors in this section and what makes them so different from each other.

Firefox DOM Inspector

The Firefox DOM Inspector is a Firefox extension that comes prepackaged with all installa-
tions of Firefox (but disabled in the installer by default). This extension allows you to navigate
the HTML document after it’s already been built and manipulated. A screenshot of the exten-
sion is shown in Figure 4-5.

‘8006 DOM Inspector (=]
#h [ http://enwikipedia.org/wiki/Plain_Old_Documentation Inspect
~ Document - DOM Nodes 8 + Object - Computed Style
nodeName id class 5| [Property Value &
¥ #document 4 background-attachment scroll +
html M backaround-color transparent
v HTML background-image none
> HEAD background-repeat repeat
¥ BODY ns-0 Itr border-bottom-color rgh(47,111,171)
#Hext border-bottom-style none
v DV globalWra... border-bottom-width opx
#ext border-collapse collapse
» DIV column-c... border-left-color rght47,111,171)
#rext border-left-style none
v DV column-o... border-left-width Opx
#ext barder-right-calor rgh(47,111,171)
» DIV p-cactions  portlet border-right-style none
#rext barder-right-width 0px
¥ DIV p-persanal portlet barder-spacing 0px Opx
#text “ border-top-calor rgh(47,111,171)
P> H5 border-top-style none
#rext barder-top-width Opx
v DIV pBody battam auta
#text caption-side top
L clear none
#text ¥ cip auto
#text color rgh(47,111,171)
#text counter-increment none
> DIV p-logo portlet counter-reset none
#text cursor default
b SCRIPT direction her
#rext display block
b DIV p-navigati... portlet empty-cells show
#rext float none
b DIV p-search  portlet font-family sans
Hrext ~ font-size 11.4px -
(Y nth meerlar T fanrcizaadiner nnna 4

Figure 4-5. The built-in Firefox DOM Inspector

When navigating a document, not only do you get to see the structure of the modified
HTML elements, but you can also see each element’s style properties along with their physical
object properties. This helps you to know exactly what the web page looks and feels like after
you modify it. The result is a tool that is completely indispensable.



CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

Safari Web Inspector

Safari has a new DOM inspector included with the latest builds of its browser. In some ways
it's better than Firefox DOM Inspector, in that you can right-click any element of the page and
have it instantly navigate to the element in the inspector. A screenshot of the (quite elegantly
designed) Safari DOM inspector can be seen in Figure 4-6.

Web Inspector

F Node Style Metrics |

Node Type: Element
Node Name: D
Namespace URL: http

Element Attributes
id = "column-one”

Figure 4-6. The built-in DOM inspector in Safari

While this extension is included in the latest builds of Safari, it's even more of a hassle
to enable than the aforementioned JavaScript console. It’s rather mind-boggling as to why the
Safari team put so much effort into writing and adding these components and then hiding
them from developers who wish to use them. Regardless, to enable the DOM inspector, you
must execute the statement shown in Listing 4-2.

Listing 4-2. Enabling the Safari DOM Inspector

defaults write com.apple.Safari WebKitDeveloperExtras -bool true

The Safari DOM inspector still has a lot of room to grow and improve, which is good, as
the Safari development team is quite talented. However, for now, you'd most likely be better
off starting with Firefox as your base for development until Safari is completely finished and
properly released.

65



66 CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

View Rendered Source

Finally, I'd like to introduce the most accessible DOM inspector available to web develop-
ers. The View Rendered Source Firefox extension provides you with an alternate menu
item, below the normal View Source option, providing you with a complete representation
of the new HTML document, presented in an intuitive and accessible manner. More infor-
mation about the extension can be found on its web site: http://jennifermadden.com/
scripts/ViewRenderedSource.html.

In addition to providing a view of the source code that feels and looks very natural, it
additionally provides hierarchical color coding for each level of the document, giving you
a better feel as to where exactly you are in the code, as shown in Figure 4-7.

<body>
<div>
<table>
<tbody>
<tr>
<td>
<blockgquote>
<span>
<ul>
<li>

<p>
</p>

</1li>
</ul>
</span>
</blockquote>
</td>
</tr>
</tbody>

</table>

</div>

Figure 4-7. The View Rendered Source extension for Firefox

The View Rendered Source extension should be standard in every web developer’s
toolkit; its basic usefulness far exceeds anything presented by the basic View Source while
still allowing a graceful graduation to the more complicated DOM inspector extension in
Firefox.



CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

Firebug

Firebug is one of the most important JavaScript development extensions to come along
in recent history. Created by Joe Hewitt, this extension serves as a complete package for
aJavaScript developer. It has an error console, a debugger, and a DOM inspector. More
information about the extension can be found on its web site: http://www.joehewitt.com/
software/firebug/.

The primary advantage of having so many tools integrated together is that you can get a
better understanding of where problems are occurring. For example, when clicking an error
message you are presented with the JavaScript file and line where the error occurred. From
there you have the ability to set stop points, which can be used to allow you to step through
the execution of a script, getting a better feel for where errors occur. A screenshot of the exten-
sion can be seen in Figure 4-8.

FireBug lets you explore the far corners of the

[ X W T P DDA P [ All o f ol bom e oo I\ A
« == —3 I
Clear Inspect Options ¥ Console Debugger Inspector Q (%]
<div class="blogPost"> -
<div class="imageHeader">
<div style="float: right;"s
<p class="lead">FireBug lets you explore the far corners of th...</p> m
<h2>5Some Fun Features</hZ>
<h3>Logging for web pages</h3>
<p>Web developers have suffered with "alert debug...</p>
<h3>JavaScript Debugging</h3>
<p>Wont to stop your JavaScript and step through ... </p> v
] Jhtmlf body/div/div[2]/div/div/div/div[2]/p Source || Style || Layout Events DOM
Done Q

Figure 4-8. The Firebug debugging extension

As far as modern tools go, there is none better than Firebug. I highly recommend that you
choose Firefox as your base JavaScript programming platform, combined with the Firebug
extension.

Venkman

The last piece of the JavaScript development puzzle is the Venkman extension. Originating as
a part of the Mozilla browser, Venkman is the code name for the JavaScript debugger project
started by Mozilla. More information about the project and the renovated Firefox extension
can be found at the following web sites:

* Mozilla Venkman project: http://www.mozilla.org/projects/venkman/
» Venkman for Firefox: https://addons.mozilla.org/firefox/216/

e Venkman tutorial: http://www.mozilla.org/projects/venkman/venkman-walkthrough.
html

67



68

CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

The importance of using an extension like this, over the Firebug extension, is that since
it’s integrated deep into the JavaScript engine itself, it’s able to give you advanced controls
over what exactly your code is doing. A screenshot of the Venkman extension for Firefox can
be seen in Figure 4-9.

‘@06 JavaScript Debugger (=N
x Stop ’ Continue { } Step Over {_"} Step Into {.['} Step Out Profile & Pretty Print
~Of Toaded Scripts S O [ Source Code | x
Search 'eflec(s.js x 1
Name Line =] 21 } 4
» 71358 T 22 return(color.length==7 ? color : (arguments[0] ||
< 23 @
» J 7055 m 24
» J actionMenu js 25 | /o e
b J controls js 26
» Jdojojs 27 Element.collectTextNodes = function(element)
¥ Jeffects s - 28 return $A($(element).childNodes).collect( function
O anonymous 27 - 29 return (node.nodeType==3 ? node.nodeValue :
L 28 - 30 (node. has(;hq.ldl:]:?des () ? Element.collectTextNod
[= S 2 Y = gzlz ) }).flatten().join("");
| Loaded Scripts | ©pen Windows | 33
t 34 Element.collectTextNodesIgnoreClass = function(eleme
O [ Cocal Variables = - 35 return SA($(element).childNodes).collect( function
N =7 = - 36 return (node.nodeType==3 ? node.nodeValue :
ame aue - o 37 ({ (node.hasChildNodes() && !Element.hasClassNaw
el = 38 Element.collectTextNodesIgnoreClass(node, cl
- 39 }y.flatten().join("");
40 }
41
19 Flamant catCantantZaam = funmtianialamant  marsant) ||
- - - - >
http:/f fwikiscript.aculo.us fjavascripts / effects js
| Local Variables lWat(”‘ES | o | Interactive Session [context: venk ul, scope: [object ChromeWindow]] x
O [ Breakpoints [
Name Line/PC
| Breakpoints ] _Call stack |
x-vloc:/mainwindow/top-tab?target=view&id=scripts&height=177&before=windows Y

Figure 4-9. The long-standing Venkman JavaScript debugger ported to Firefox

With all the additional controls presented in this extension, you can know exactly what
variables are available to you in a certain scope and the exact information about the state of
properties or variables, in addition to being able to step through your code and analyze its
progress.

Testing

Personally I see the process of testing and building test cases as “future-proofing” your code.
When you create reliable test cases for your code base or libraries, you can save yourself
countless hours of debugging, trying to find that one weird bug, or even worse, unknowingly
introducing bugs into your code.



CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

By having a solid set of test cases, a common practice in most modern programming
environments, you can help not only yourself, but others who use your code base, add new
features, and fix bugs.

In this section I introduce three different libraries that can be used to build suites of
JavaScript test cases, all of which can be executed in a cross-browser, automated manner.

JSUnit

JSUnit has long been something of a gold standard for JavaScript unit testing. It bases most
of its functionality on the popular JUnit package for Java, meaning that if you're familiar
with how JUnit works with Java you’ll have an easy time with this library. There’s plenty of
information and documentation (http://www.jsunit.net/documentation/) available on its
web site: http://www.jsunit.net/.

As is the case with most unit testing suites (or at least all the ones I discuss in this section),
this particular one has three basic components:

Test runner. This portion of the suite provides a nice graphical output of how far along in
the tests the full operation is. It provides the ability to load test suites and execute their
contents, logging all the output that they provide.

Test suite: This is a collection of test cases (sometimes split among multiple web pages).

Test cases: These are individual commands that evaluate to a simple true/false expression,
giving you a quantifiable result to determine whether your code is operating properly.
Alone, a test case may not be entirely useful, but when used together with a test runner
you can get a useful interactive experience.

All of these together create the full, automated test suite that can be used to run and add
further tests. An example of a simple test suite is shown in Listing 4-3, and a set of test cases
are shown in Listing 4-4.

Listing 4-3. A Test Suite Built Using JSUnit

<html>
<head>
<title>JsUnit Test Suite</title>
<script src="../app/jsUnitCore.js"></script>
<script>
function suite() {
var newsuite = new top.jsUnitTestSuite();
newsuite.addTestPage("jsUnitTests.html");
return newsuite;
}
</script>
</head>
<body></body>
</html>

69



70

CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

Listing 4-4. Various Test Cases That Can Be Used in a Typical Test Page in JSUnit

<html>
<head>
<title>JsUnit Assertion Tests</title>
<script src="../app/jsUnitCore.js"></script>
<script>
// Test that an expression is true
function testAssertTrue() {
assertTrue("true should be true", true);
assertTrue(true);

// Test that an expression is false

function testAssertFalse() {
assertFalse("false should be false", false);
assertFalse(false);

// Tests to see if two arguments are equal to each other
function testAssertEquals() {
assertEquals("1 should equal 1", 1, 1);
assertEquals(1, 1);

// Tests to see if they're not equal to each other

function testAssertNotEquals() {
assertNotEquals("1 should not equal 2", 1, 2);
assertNotEquals(1, 2);

}

// Tests to see if the argument is equal to null

function testAssertNull() {
assertNull("null should be null", null);
assertNull(null);

// 0f is not equal to null

function testAssertNotNull() {
assertNotNull("1 should not be null", 1);
assertNotNull(1);

// plus many many more..
</script>

</head>

<body></body>

</html>



CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

The documentation for JSUnit is quite good, and since it’s been around for quite a while,
you're quite likely to find good examples of it in use.

J3Unit

J3Unit is a newcomer to the world of JavaScript unit testing. What this particular library pro-
vides over JSUnit is that it can be integrated directly with a server-side testing suite, such as
JUnit or Jetty. For Java developers, this can be immensely useful, as they can quickly go through
all of their test cases for both their client- and server-side code. However, since not everyone
uses Java, J3Unit also provides a static mode that can be executed in your browser like other
unit testing libraries. More information about J3Unit can be found on its web site: http://
j3unit.sourceforge.net/

Since hooking the client-side test cases in with server-side code is rather a rare example,
let’s take a look at how the static client-side unit tests work in J3Unit. Thankfully, they behave
virtually identically to other test suites, making the switch quite simple, as shown by the code
in Listing 4-5.

Listing 4-5. A Simple Test Performed Using J3Unit

<html>
<head>
<title>Sample Test</title>
<script src="js/unittest.js" type="text/javascript"></script>
<script src="js/suiterunner.js" type="text/javascript"></script>
</head>
<body>
<p id="title">Sample Test</p>
<script type="text/javascript">
new Test.Unit.Runner({
// Test hiding and showing an element
testToggle: function() {with(this) {
var title = document.getElementById("title");
title.style.display = 'none';
assertNotVisible(title, "title should be invisible");
element.style.display = 'block';
assertVisible(title, "title should be visible");

1

// Test appending an element to another
testAppend: function() {with(this) {
var title = document.getElementById("title");
var p = document.createElement("p");
title.appendChild( p );

7



72

CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

assertNotNull( title.lastChild );
assertEqual( title.lastChild, p );
1}
D;

</script>
</body>
</html>

J3Unit, while relatively new, shows a lot of promise for a unit-testing framework. If you're
interested in its object-oriented style, I recommend that you check it out.

Test.Simple

The last sample of JavaScript unit testing is another relative newcomer. Test.Simple was
introduced with the creation of JSAN as a way to standardize the testing of all the Java-
Script modules submitted. Due to its broad use, Test.Simple has a lot of documentation
and a lot of examples of it in use, both of which are very important aspects when using a
testing framework. More information about Test.Simple (and Test.More, its companion
library) can be found here:

o Test.Simple: http://openjsan.org/doc/t/th/theory/Test/Simple/

* Test.Simple documentation: http://openjsan.org/doc/t/th/theory/Test/Simple/0.21/
lib/Test/Simple.html

e Test.More documentation: http://openjsan.org/doc/t/th/theory/Test/Simple/0.21/
lib/Test/More.html

The Test.Simple library provides a large number of methods to test with along with a full
test runner to provide automated test execution. An example of a sample Test.Simple test suite
is shown in Listing 4-6.

Listing 4-6. Using Test.Simple and Test.More to Perform Tests
// Load the Test More module (to test itself!)
new JSAN('../1ib").use('Test.More");

// Plan for six tests to occur (to know when something goes wrong)
plan({tests: 6});

// Test three simple cases

ok( 2 == 2, "two is two is two is two' );
is( "foo", "foo", "foo is foo' );
isnt( "foo", "bar", 'foo isnt bar');

// Test using regular expressions

like("fooble", /~foo/,  'foo is like fooble');

like("FooBle", /foo/i,  'foo is like FooBle');

like("/usr/local/", '"\/usr\/local', 'regexes with slashes in like' );



CHAPTER 4 = TOOLS FOR DEBUGGING AND TESTING

Personally, I enjoy the simplicity of Test.Simple and Test.More, as they don't provide
much overhead and help to keep your code simple. Ultimately, however, it is up to you to
decide upon a test suite that suits you best, as having a test suite for your code is far too
important a topic to ignore.

Summary

While nothing presented in this chapter should be particularly new for a seasoned program-
mer, combining these concepts with the use of JavaScript ultimately improves JavaScript’s
usability and stature as a professional programming language. I highly recommend that you
give the debugging and testing process a try. I'm sure it'll only help you write better, clearer
JavaScript code.

73






PART 3

Unobtrusive JavaScript






CHAPTER 5

The Document Object Model

Of all the advances made in web development during the past decade, DOM (Document
Object Model) scripting is one of the most important techniques that a developer can use
to improve the quality of experience for his users.

Using DOM scripting to add unobtrusive JavaScript to a page (meaning that it doesn’t
interfere with unsupported browsers nor people who have JavaScript disabled) you will be
able to provide all sorts of modern enhancements that your users will be able to enjoy with-
out harming those who are unable to utilize them. A side effect of doing this is that all of your
code ends up being nicely separated and easier to manage—all thanks to DOM scripting.

Thankfully, all modern browsers support the DOM and additionally support a built-
in DOM representation of the current HTML document. All of this is easily accessible via
JavaScript, which gives a huge advantage to modern web developers. Understanding how
to use this technology and how to best wield it can give you a head start toward developing
your next web application.

In this chapter I discuss a number of topics relating to the DOM. In case you're new to
the DOM, I'll be starting out with the basics and moving through all the important concepts.
For those of you already familiar with the DOM, I make sure to provide a number of cool
techniques that I'm sure you'll enjoy and start using in your own web pages.

An Introduction to the Document Object Model

The DOM is a standard way of representing XML documents (instituted by the W3C). It is
not necessarily the fastest, lightest, or easiest to use, but it is the most ubiquitous, with an
implementation existing in most web development programming languages (such as Java,
Perl, PHP, Ruby, Python, and JavaScript). The DOM was constructed to provide an intuitive
way for developers to navigate an XML hierarchy. Even if you're not completely familiar with
XML, you will get great satisfaction knowing that all HTML documents (which are, in the
eyes of the browser, XML documents) have a DOM representation that is ready to use.

Navigating the DOM

The way that the XML structure is represented in the DOM is as a navigable tree. All the ter-
minology used is akin to that of a genealogical tree (parents, children, siblings, etc.). Unlike
a typical family tree, all XML documents start with a single root node (called the document
element), which contains pointers to its children. Each child node then contains pointers
back to its parent, its fellow siblings, and its children.

77



78

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

The DOM uses some special terminology to refer to the different objects within the XML
tree. Every object in a DOM tree is a node. Each node can have a different fype, such as ele-
ment, text, or document. In order to continue, we need to know how a DOM document looks
and how to navigate it once it's been constructed. Let’s examine how this DOM construction
works by looking at a simple HTML snippet:

<p><strong>Hello</strong> how are you doing?</p>

Each portion of this snippet breaks down into a DOM node with pointers from each node
pointing to its direct relatives (parents, children, siblings). If you were to completely map out
the relations that exist, it would look something like Figure 5-1. Each portion of the snippet
(rounded boxes represent elements, regular boxes represent text nodes) is displayed along
with its available references.

>

parentNode parentNode

lastChild

firstChild

how are you

nextSibling ——— | doing?

previousSibling —

firstChild,
parentNode lastChild

hello

Figure 5-1. Relationships between nodes

Every single DOM node contains a collection of pointers that it can use to refer to its
relatives. You'll be using these pointers to learn how to navigate the DOM. All the available
pointers are displayed in Figure 5-2. Each of these properties, available on every DOM node,
is a pointer to another DOM element (or null if one doesn’t exist).



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

parentNode
previousSibling 32('1\2 nextSibling
firstChild lastChild

Figure 5-2. Navigating the DOM tree using pointers

Using nothing but the different pointers, it's possible to navigate to any element or text
block on a page. The best way to understand how this would work in a practical setting is to
take alook at a common HTML page, as shown in Listing 5-1.

Listing 5-1. A Simple HTML Web Page, Which Doubles As a Simple XML Document

<html>
<head>
<title>Introduction to the DOM</title>
</head>
<body>
<h1>Introduction to the DOM</h1>
<p class="test">There are a number of reasons why the
DOM is awesome, here are some:</p>
<ul>
<1i id="everywhere">It can be found everywhere.</1i>
<1i class="test">It's easy to use.</li>
<1i class="test">It can help you to find what you want, really quickly.</1i>
</ul>
</body>
</html>

In the example document, the root element is the <html> element. Accessing this root
element is trivial in JavaScript:

document.documentElement

79



80

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

The root node has all the pointers used for navigation, just like any other DOM node.
Using these pointers you have the ability to start browsing the entire document, navigating
to any element that you desire. For example, to get the <h1> element, you could use the
following:

// Does not work!
document.documentElement.firstChild.nextSibling.firstChild

But we've just hit our first snag: The DOM pointers can point to both text nodes and
elements. Well, the previous statement doesn’t actually point to the <h1> element; it points
to the <title> element instead. Why did this happen? It happened due to one of the stickiest
and most-debated aspects of XML: white space. If you'll notice, in between the <html> and
<head> elements there is actually an end line, which is considered white space, which
means that there’s actually a text node first, not the <head> element. There are three things
that we can learn from this:

* Writing nice, clean HTML markup can actually make things very confusing when
attempting to browse the DOM using nothing but pointers.

* Using nothing but DOM pointers to navigate a document can be very verbose and
impractical.

* Frequently, you don't need to access text nodes directly, only the elements that sur-
round them.

This leads us to the question: Is there a better way to find elements in a document? Yes,
there is! With a couple helpful functions in your toolbox, you can easily improve upon the
existing methods and make DOM navigation much simpler.

Handling White Space in the DOM

Let’s go back to our example HTML document. Previously, you attempted to locate the sin-
gle <h1> element and had difficulties due to the extraneous text nodes. This may be fine for
one single element, but what if you want to find the next element after the <h1> element?
You still hit the infamous white space bug causing you to have to do .nextSibling.
nextSibling to skip past the end lines between the <h1> and the <p> elements. All is not
lost though. There is one technique that can act as a workaround for the white-space bug,
shown in Listing 5-2. This particular technique removes all white space—only text nodes
from a DOM document, making it easier to traverse. Doing this will have no noticeable
effects on how your HTML renders, but it will make it easier for you to navigate by hand. It
should be noted that the results of this function are not permanent and will need to be re-
run every time the HTML document is loaded.



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Listing 5-2. A Workaround for the White-Space Bug in XML Documents

function cleanhWhitespace( element ) {
// If no element is provided, do the whole HTML document
element = element || document;
// Use the first child as a starting point
var cur = element.firstChild,

// Go until there are no more child nodes
while ( cur != null ) {

// If the node is a text node, and it contains nothing but whitespace
if ( cur.nodeType == 3 8& | /\S/.test(cur.nodevValue) ) {

// Remove the text node

element.removeChild( cur );

// Otherwise, if it's an element

} else if ( cur.nodeType == 1) {
// Recurse down through the document
cleanWhitespace( cur );

cur = cur.nextSibling; // Move through the child nodes

Let’s say that you want to use this function in your example document to find the element
after the first <h1> element. The code to do so would look something like this:

cleanWhitespace();

// Find the H1 Element
document.documentElement

.firstChild // Find the Head Element
.nextSibling // Find the <body> Element
.firstChild // Get the H1 Element
.nextSibling // Get the adjacent Paragraph

This technique has both advantages and disadvantages. The greatest advantage is that
you get to maintain some level of sanity when trying to navigate your DOM document.
However, this technique is particularly slow, considering that you have to traverse every
single DOM element and text node looking for the text nodes that contain nothing but
white space. If you have a document with a lot of content in it, it could significantly slow
down the loading of your site. Additionally, every time you inject new HTML into your doc-
ument, you'll need to rescan that portion of the DOM, making sure that no additional
space-filled text nodes were added.

81



82 CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

One important aspect in this function is the use of node types. A node’s type can be deter-
mined by checking its nodeType property for a particular value. There are a number of possi-
ble values, but the three that you'll encounter the most are the following:

Element (nodeType = 1): This matches most elements in an XML file. For example, <li>,
<a>, <p>, and <body> elements all have a nodeType of 1.

Text (nodeType = 3): This matches all text segments within your document. When navigat-
ing through a DOM structure using previousSibling and nextSibling you'll frequently
encounter pieces of text inside and in between elements.

Document (nodeType = 9): This matches the root element of a document. For example,
in an HTML document it’s the <html> element.

Additionally, you can use constants to refer to the different DOM node types (but only in
non-IE browsers). For example, instead of having to remember 1, 3, or 9, you could just use
document.ELEMENT_NODE, document.TEXT_NODE, or document. DOCUMENT_NODE.
Since constantly cleaning the DOM’s white space has the potential to be cumbersome, you
should explore other ways to navigate a DOM structure.

Simple DOM Navigation

Using the principle of pure DOM navigation (having pointers in every navigable direction)
you can develop functions that might better suit you when navigating an HTML DOM docu-
ment. This particular principle is based around the fact that most web developers only need
to navigate around DOM elements and very rarely navigate through sibling text nodes. To aid
you, there are a number of helpful functions that can be used in place of the standard
previousSibling, nextSibling, firstChild, lastChild, and parentNode. Listing 5-3 shows a func-
tion that returns the element previous to the current element, or null if no previous element
is found, similar to the previousSibling element property.

Listing 5-3. A Function for Finding the Previous Sibling Element in Relation to an Element

function prev( elem ) {
do {
elem = elem.previousSibling;
} while ( elem && elem.nodeType != 1 );
return elem;

Listing 5-4 shows a function that returns the element next to the current element, or null
if no next element is found, similar to the nextSibling element property.



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Listing 5-4. A Function for Finding the Next Sibling Element in Relation to an Element

function next( elem ) {
do {
elem = elem.nextSibling;
} while ( elem &3 elem.nodeType != 1 );
return elem;

Listing 5-5 shows a function that returns the first element child of an element, similar to
the firstChild element property.

Listing 5-5. A Function for Finding the First Child Element of an Element

function first( elem ) {
elem = elem.firstChild;
return elem 88 elem.nodeType != 1 ?
next ( elem ) : elem;

Listing 5-6 shows a function that returns the last element child of an element, similar to
the lastChild element property.

Listing 5-6. A Function for Finding the Last Child Element of an Element

function last( elem ) {
elem = elem.lastChild;
return elem && elem.nodeType != 1 ?
prev ( elem ) : elem;

Listing 5-7 shows a function that returns the parent element of an element, similar to the
parentNode element property. You can optionally provide a number to navigate up multiple
parents at a time—for example, parent(elem,2) is equivalent to parent(parent(elem)).

Listing 5-7. A Function for Finding the Parent of an Element

function parent( elem, num ) {
num = num || 1;
for (var i = 0; 1 < num; i++ )
if ( elem != null ) elem = elem.parentNode;
return elem;

Using these new functions you can quickly browse through a DOM document without
having to worry about the text in between each element. For example, to find the element next
to the <h1> element, like before, you can now do the following:

83



84

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

// Find the Element next to the <hi> Element
next( first( document.body ) )

You should notice two things with this code. One, there is a new reference:
document.body. All modern browsers provide a reference to the <body> element inside the
body parameter of an HTML DOM document. You can use this to make your code shorter
and more understandable. The other thing you might notice is that the way the functions
are written is very counterintuitive. Normally, when you think of navigating you might say,
“Start at the <body> element, get the first element, then get the next element,” but with the
way it’s physically written, it seems backward. To work around this, I'll now discuss some
ways to make your custom navigation code clearer.

Binding to Every HTML Element

In Firefox and Opera there is a powerful object prototype that’s available named
HTMLElement, which allows you to attach functions and data to every single HTML DOM
element. The functions described in the previous section are particularly obtuse and could
stand for some cleaning up. One perfect way to do this is to attach your functions directly to
the HTMLElement prototype, thus attaching your function to every individual HTML DOM
element directly. There are three changes that you have to make to the functions that you
created in the previous section in order for this to work:

1. You need to add a single line to the top of the functions to refer to the element as this,
as opposed to retrieving it from the list of arguments.

2. You need to remove the element argument that you are no longer using.

3. You need to bind the function to the HTMLElement prototype, so that you can use it
on every HTML element in the DOM.

For example, the new next function looks something like Listing 5-8.

Listing 5-8. Dynamically Binding a New DOM Navigation Function to All HTML DOM Elements

HTMLElement.prototype.next = function() {
var elem = this;
do {
elem = elem.nextSibling;
} while ( elem && elem.nodeType != 1 );
return elem;

};

Now you can use the next function (and all the other functions, after the previous tweak-
ing) like this:

// A simple example - gets the first <p> element
document.body.first().next()



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

This makes your code much cleaner and easier to understand. Now that you can write
your code in the order in which you naturally think, your JavaScript as a whole becomes
much more understandable. If this style of writing interests you, I highly recommend that
you check into the jQuery JavaScript library (http://jquery.com), which makes great use of
this technique.

Note Since the HTMLElement only exists in three of the modern browsers (Firefox, Safari, and Opera)
you need to take special precautions to make it work in Internet Explorer. There is a particularly handy
library available written by Jason Karl Davis (http://browserland.org) that provides access to the
HTMLElement (among other features) in the two unsupported browsers. More information about this library
can be found here: http://www.browserland.org/scripts/htmlelement/.

Standard DOM Methods

All modern DOM implementations contain a couple methods that make life more sane.
Using these together with some custom functions, navigating the DOM can become a much
smoother experience. To start with, let’s look at two powerful methods included with the
JavaScript DOM:

getElementByld(“everywhere”): This method, which can only be run on the document
object, finds all elements that have an ID equal to everywhere. This is a very powerful
function and is the fastest way to immediately access an element.

getElementsByTagName(“li”): This method, which can be run on any element, finds all
descendant elements that have a tag name of li and returns them as a NodeList (which is
nearly identical to an array).

Caution getElementByld works as you would imagine with HTML documents: it looks through all ele-
ments and finds the one single element that has an attribute named id with the specified value. However,
if you are loading in a remote XML document and using getElementByld (or using a DOM implementation in
any other language besides JavaScript), it doesn’t use the id attribute by default. This is by design; an XML
document must explicitly specify what the id attribute is, generally using an XML definition or a schema.

Caution getElementsByTagName returns a NodeList. This structure looks and behaves a lot like a nor-
mal JavaScript array, with an important exception: it does not have any of the normal .push(), .pop(), .shift(),
and so on, methods that come with normal JavaScript arrays. Simply keep this in mind when working with
getElementsByTagName; it will save you from a lot of confusion.

85



86

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

These three methods are available in all modern browsers and can be immensely helpful
for locating specific elements. Going back to the previous example where we tried to find the
<h1> element, we can now do the following:

document.getElementsByTagName("h1")[0]

This code is guaranteed to work and will always return the first <h1> element in the
document. Going back to the example document, let’s say that you want to get all the <li>
elements and add a border to them:

var 1i = document.getElementsByTagName("1i");

for (var j = 0; j < li.length; j++ ) {
1li[j].style.border = "1px solid #000";

}

Finally, let’s say that you want to make text in the first <li> element bold, which just so
happens to have a convenient ID associated with it:

document.getElementById("everywhere").style.fontWeight = 'bold";

You might've noticed by now that the process of getting a single element with a spe-
cific ID requires a lot of overhead text, as does retrieving elements by tag name. To work
around this, you can create a wrapper function to simplify the retrieval process:

function id(name) {
return document.getElementById(name);

}

Listing 5-9 shows a simple function for locating elements by tag name within an HTML
DOM document. The function takes one to two arguments. If one argument is provided,
and it’s a tag name, the entire HTML document will be searched. Otherwise you can pro-
vide a DOM element as context as the optional first argument.

Listing 5-9. A Function for Locating Elements by Tag Name Within an HTML DOM Document

function tag(name, elem) {
// If the context element is not provided, search the whole document
return (elem || document).getElementsByTagName(name);

Once again, let’s revisit the problem of finding the element after the first <h1> element.
Thankfully, the code to do this can be shortened even more:

// Find the element after the first <hi> Element
next( tag("h1")[0] );

These functions provide you with the power needed to quickly get to the elements that
you need to work with in a DOM document. Before you learn about using this power to mod-
ify the DOM, you need to quickly look at the problem of the DOM loading after your scripts
first execute.



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Waiting for the HTML DOM to Load

One of the difficulties that exist when working with HTML DOM documents is that your
JavaScript code is able to execute before the DOM is completely loaded, potentially causing a
number of problems in your code. The order of operation inside a browser looks something
like this:

e HTML is parsed.

» External scripts/style sheets are loaded.

 Scripts are executed as they are parsed in the document.
e HTML DOM is fully constructed.

* Images and external content are loaded.

* The page is finished loading.

Scripts that are in the header and loaded from an external file are executed before the
HTML DOM is actually constructed. As mentioned previously, this is a significant problem
because all script executed in those two places won’t have access to the DOM. However,
thankfully, there exist a number of workarounds for this problem.

Waiting for the Page to Load

By far, the most common technique is simply waiting for the entire page to load before per-
forming any DOM operations. This technique can be utilized by simply attaching a function,
to be fired on page load, to the load event of the window object. I'll discuss events in greater
detail in Chapter 6. Listing 5-10 shows an example of executing DOM-related code after the
page has finished loading.

Listing 5-10. The addEvent Function for Attaching a Callback onto the window.onload Property

// Wait until the page is loaded
// (Uses addEvent, described in the next chapter)
addEvent(window, "load", function() {

// Perform HTML DOM operations

next( id("everywhere") ).style.background = 'blue';

1

While this operation may be the simplest, it will always be the slowest. From the order
of loading operations, you'll notice that the page being loaded is the absolute last step taken.
This means that if you have a significant amount of images, videos, and so on, on your page,
your users might be waiting quite a while until the JavaScript finally executes.

Waiting for Most of the DOM to Load

The second technique is particularly devious and isn’'t completely recommended. If you'll
remember, in the previous section I say that inline scripts are executed after the DOM is con-
structed. This is a half-truth. The scripts are actually executed as theyre encountered, when

87



88

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

the DOM is constructed. This means that if you have an inline script embedded in your page,
halfway through, that script would only have immediate access to the first half of the DOM.
However, embedding a script as the very last element in the page means that you will effec-
tively have access to all the previous elements in the DOM, giving you a fake way to simulate
the DOM loading. An implementation of this method typically looks something like the docu-
ment presented in Listing 5-11.

Listing 5-11. Determining Whether the DOM Is Loaded by Injecting a <script> Tag (Containing
a Function Call) at the End of Your HTML DOM

<html>
<head>
<title>Testing DOM Loading</title>
<script type="text/javascript">
function init() {
alert( "The DOM is loaded!" );
tag("h1")[0].style.border = "4px solid black";
}
</script>
</head>
<body>
<h1>Testing DOM Loading</h1>
<!--Lots of HTML goes here -->
<script type="text/javascript">init();</script>
</body>
</html>

In this sample you have the inline script as the last element in the DOM,; it will be the last
thing to be parsed and executed. The only thing that it’s executing is the init function, which
should contain any DOM-related code that you want handled. The biggest problem that exists
with this solution is that it’s messy: you've now added extraneous markup to your HTML only
for the sake of determining whether the DOM is loaded. This technique is generally consid-
ered to be messy since you're adding additional, unnecessary code to your web page just to
check its load state.

Figuring Out When the DOM Is Loaded

The final technique, which can be used for watching the DOM load, is probably the most
complex (from an implementation standpoint) but also the most effective. You get the sim-
plicity of binding to the window load event combined with the speed of the inline script
technique.

This technique works by checking as fast as physically possible without blocking the
browser to see if the HTML DOM document has the features that you need. There are a few
things to test for to see if the HTML document is ready to be worked with:



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

1. document: You need to see whether the DOM document even exists yet. If you check
it quickly enough, chances are good that it will simply be undefined.

2. document.getElementsByTagName and document.getElementByld: Check to see
whether the document has the frequently used getElementsByTagName and
getElementByld functions; these functions will exist when they’re ready to be used.

3. document.body: For good measure, check to see whether the <body> element has
been fully loaded. Theoretically the previous check should’ve caught it, but I've
found instances where that check wasn’t good enough.

Using these checks you're able to get a good enough picture of when the DOM will be
ready for use (good enough in that you might be off by a few milliseconds). This method is
nearly flawless. Using the previous checks alone, the script should run relatively well in all
modern browsers. Recently, however, with some recent caching improvements implemented
by Firefox, the window load event is actually capable of firing before your script is able to
determine whether the DOM is ready. To account for this advantage, I also attach the check
to the window load event, hoping to gain some extra speed.

Finally, the domReady function has been collecting references to all the functions that
need to be run whenever the DOM is ready. Whenever the DOM is deemed to be ready, run
through all of these references and execute them one by one. Listing 5-12 shows a function
that can be used to watch for when the DOM has completely loaded.

Listing 5-12. A Function for Watching the DOM Until It's Ready

function domReady( f ) {
// If the DOM is already loaded, execute the function right away
if ( domReady.done ) return f();

// 1f we've already added a function

if ( domReady.timer ) {
// Add it to the list of functions to execute
domReady.ready.push( f );

} else {
// Attach an event for when the page finishes loading,
// just in case it finishes first. Uses addEvent.
addEvent( window, "load", isDOMReady );

// Initialize the array of functions to execute
domReady.ready = [ f ];

// Check to see if the DOM is ready as quickly as possible
domReady.timer = setInterval( isDOMReady, 13 );

89



90 CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

// Checks to see if the DOM is ready for navigation

function isDOMReady() {
// If we already figured out that the page is ready, ignore
if ( domReady.done ) return false;

// Check to see if a number of functions and elements are

// able to be accessed

if ( document &3 document.getElementsByTagName &&
document.getElementById &3 document.body ) {

// If they're ready, we can stop checking
clearInterval( domReady.timer );
domReady.timer = null;

// Execute all the functions that were waiting
for ( var i = 0; 1 < domReady.ready.length; i++ )
domReady.ready[1]();

// Remember that we're now done
domReady.ready = null;
domReady.done = true;

We should now look at how this might look in an HTML document. The domReady func-
tion should be used just as if you were using the addEvent function (discussed in Chapter 6),
binding your particular function to be fired when the document is ready for navigation and
manipulation. For this sample I've placed the domReady function in an external JavaScript file
named domready.js. Listing 5-13 shows how you can use your new domReady function to
watch for when the DOM has loaded.

Listing 5-13. Using the domReady Function to Determine When the DOM Is Ready to Navigate
and Modify

<html>
<head>

<title>Testing DOM Loading</title>

<script type="text/javascript" src="domready.js"></script>

<script type="text/javascript">

function tag(name, elem) {
// If the context element is not provided, search the whole document
return (elem || document).getElementsByTagName(name);

}



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

domReady (function() {
alert( "The DOM is loaded!" );
tag("h1")[0].style.border = "4px solid black";
D
</script>
</head>
<body>
<h1>Testing DOM Loading</h1>
<!--Lots of HTML goes here -->
</body>
</html>

Now that you know a couple ways to navigate a generic XML DOM document and how
to work around the difficulties of a loading HTML DOM document, the question should be
posed: Are there better ways to find elements in an HTML document? Thankfully, the
answer to this is a resounding yes.

Finding Elements in an HTML Document

How you would want to find elements in an HTML document is often very different from
how you would in an XML document. This seems like an oxymoron, considering that modern
HTML is virtually a subset of XML; however HTML documents contain a number of funda-
mental differences that can be used to your advantage.

The two most important advantages to the JavaScript/ HTML developer are the uses of
classes and the knowledge of CSS selectors. With this in mind, there are a number of powerful
functions that you can create to make DOM navigation simpler and more understandable.

Finding Elements by Class Name

Locating elements by their class name is a widespread technique popularized by Simon
Willison (http://simon.incutio.com) in 2003 and originally written by Andrew Hayward
(http://www.mooncalf.me.uk). The technique is pretty straightforward: you search through
all elements (or a subset of all elements) looking for any that have the specified class. A pos-
sible implementation is shown in Listing 5-14.

Listing 5-14. A Function That Searches for All Elements That Have a Particular Class Name

function hasClass(name,type) {
var r = [];
// Locate the class name (allows for multiple class names)
var re = new RegExp("(*[\\s)" + name + "(\\s|$)");

91



92

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

// Limit search by type, or look through all elements
var e = document.getElementsByTagName(type || "*");
for (var j = 0; j < e.length; j++ )
// If the element has the class, add it for return
if ( re.test(e[j]) ) r.push( e[]] );

// Return the list of matched elements
return r;

You can now use this function to quickly find any element, or any element of a specific
type (e.g., <li> or <p>), with a specified class name. Specifying a tag name to search for will
always be faster than searching for everything (*), as there will be fewer elements to hunt
through to find the correct ones. For example, in our HTML document, if you want to find
all elements that have a class of test you could do the following:

hasClass("test"")

If you want to find only the <li> elements that have a class of test, do this:
hasClass("test","1i")

Finally, if you want to find the first <li> with a class of test you could do the following:
hasClass("test","1i")[0]

This function alone is very powerful. But when combined with getElementById and
getElementsByTagName, you can have a very powerful set of tools that could be used to get
most tricky DOM jobs done.

Finding Elements by CSS Selector

As a web developer, you already know of a way to select HTML elements: CSS selectors. A CSS
selector is the expression used to apply CSS styles to a set of elements. With each revision of
the CSS standard (1, 2, and 3) more features have been added to the selector specification,
allowing developers to more easily locate the exact elements that they desire. Unfortunately,
browsers have been incredibly slow to provide full implementations of CSS 2 and 3 selectors,
meaning that you may not know of some of the cool new features that they provide. If you're
interested in all the cool new features in CSS, I recommend exploring the W3C’s pages on the
subject:

e CSS I selectors: http://www.w3.0rg/TR/REC-CSS1#basic-concepts/
e CSS 2 selectors: http://www.w3.0rg/TR/REC-CSS2/selector.html
e CSS 3selectors: http://www.w3.0rg/TR/2005/WD-css3-selectors-20051215/

The features that are available from each CSS selector specification are generally similar,
in that each subsequent release contains all the features from the past ones, too. However,
with each release a number of new features are added. As a sample, CSS 2 contains attribute
and child selectors while CSS 3 provides additional language support, selecting by attribute
type, and negation. For example, all of these are valid CSS selectors:



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

#main <div> p: This expression finds an element with an ID of main, all <div> element
descendants, and then all <p> element descendants. All of this is a proper CSS 1 selector.

div.items > p: This expression finds all <div> elements that have a class of items, then
locates all child <p> elements. This is a valid CSS 2 selector.

div:not(.items): This locates all <div> elements that do not have a class of items. This is
avalid CSS 3 selector.

Now, you may be wondering why I'm discussing CSS selectors if you can't actually use
them to locate elements (only to apply CSS styles). This is where a number of enterprising
developers have stepped up to the plate and created CSS selector implementations that are
capable of handling CSS 1 all the way up to full CSS 3. Using these libraries you'll be able to
quickly and easily select any element and perform operations on them.

cssQuery

The first publicly available library with full CSS 1-3 support was called cssQuery, created
by Dean Edwards (dean.edwards.name). The premise behind it is simple: you provide a CSS
selector and cssQuery finds all matching elements. Additionally, cssQuery is broken down
into multiple sublibraries, one for each CSS selector stage, meaning that you can optionally
exclude CSS 3 support if you don't need it. This particular library is completely comprehen-
sive and works in all modern browsers (Dean is a stickler for cross-browser support). To use
this library you need to provide a selector and, optionally, a context element to search
within. The following are samples:

// Find all <p> children of <div> elements
cssQuery("div > p");

// Find all <div>s, <p>s, and <form>s
cssQuery("div,p,form");

// Find all <p>s and <div>s then find all <a>s inside of them
var p = cssQuery("p,div");
cssQuery("a",p);

Executing the cssQuery function returns an array of matched elements. You can now per-
form operations against it as if you had just done a getElementsByTagName. For example, to
add a border around all links to Google, you can do the following:

// Add a border around all links to Google
var g = cssQuery("a[href*="google.com']");
for (var i = 0; 1 < g.length; i++ ) {

g[i].style.border = "1px dashed red";
}

More information about cssQuery can be found on Dean Edwards’s site, along with a
download of the complete source code: http://dean.edwards.name/my/cssQuery/.

93



94

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

Tip Dean Edwards is a JavaScript wizard; his code is absolutely amazing. | highly recommend poking
around in his cssQuery library, at the very least, to see how great extensible JavaScript code is written.

jQuery

This is a recent entrant into the world of JavaScript libraries, but provides some significantly
new ways of writing JavaScript code. I first wrote it to be a “simple” CSS selector library, much
like cssQuery, until Dean Edwards released his excellent cssQuery library, forcing this code in
a different direction. The library provides full CSS 1-3 support along with some basic XPath
functionality. On top of this, it additionally provides the ability to do further DOM navigation
and manipulation. Like cssQuery, jQuery has complete support for modern web browsers.
Here are some examples of how to select elements using jQuery’s custom blend of CSS and
XPath:

// Find all <div>s that have a class of 'links' and a <p> element inside of them
$("div.links[p]")

// Find all descendants of all <p>s and <div>s
$("p,div").find("*")

// Find every other link that points to Google
$("a[@href"="google.com']:even"

Now, to use the results from jQuery, you have two options. First, you can do
$(“expression”).get() to get an array of matched elements—the same exact result as cssQuery.
The second thing that you can do is use jQuery’s special built-in functions for manipulating
CSS and the DOM. So, going back to the example with cssQuery of adding a border to all
Google links you could do the following:

// Add a border around all links to Google

$("a[@href~=google.com]").css("border","1px dashed red");

Alot of examples, demos, and documentation can be found on the jQuery project site,
in addition to a customizable download: http://jquery.com/.

Note It should be stated that neither cssQuery nor jQuery actually require the use of an HTML document
for navigation; they may be used on any XML document. For a pure XML form of navigation, read the next
section on XPath.




CHAPTER 5 © THE DOCUMENT OBJECT MODEL

XPath

XPath expressions are an incredibly powerful way of navigating XML documents. Having
existed now for quite a few years, it’s almost assumed that where there’s a DOM implemen-

tation, XPath is soon behind. XPath expressions are much more powerful than anything that

can be written using a CSS selector, even though they are more verbose. Table 5-1 shows
a side-by-side comparison between some different CSS selectors and XPath expressions.

Table 5-1. Comparision of CSS 3 Selectors and XPath Expressions

Goal CSS 3 XPath

All elements * /1*

All <p> elements P /1p

All child elements p>* /1pl*

Element by ID #foo [ 1*[@id="fo0’]

Element by class foo /*[contains(@class, fo0’)]
Element with attribute *[title] /I*|@title]

First child of all <p> p > *first-child /1p/*[0]

All <p> with an A child Not possible /Iplal

Next element p+* / Ip/following-sibling::*[0]

If the previous expressions have sparked your interest, I recommend browsing through
the two XPath specifications (however, XPath 1.0 is generally the only one fully supported in
modern browsers) to get a feel for how the expressions work:

e XPath 1.0: http://www.w3.0rg/TR/xpath/
* XPath 2.0: http://www.w3.0rg/TR/xpath20/

If you're looking to really dive into the topic, I recommend that you pick up O’Reilly’s
XML in a Nutshell by Elliotte Harold and Scott Means (2004), or Apress’ Beginning XSLT 2.0:
From Novice to Professional by Jeni Tennison (2005). Additionally, there are some excellent
tutorials that will help you get started using XPath:

e W3Schools XPath Tutorial: http://w3schools.com/xpath/
e ZVON XPath Tutorial: http://zvon.org/xx1/XPathTutorial/General/examples.html

Currently, XPath support in browsers is spotty; IE and Mozilla both have full (albeit,
different) XPath implementations, while Safari and Opera both have versions in develop-
ment. To get around this, there are a couple of XPath implementations written completely
in JavaScript. They're generally slow (in comparison to browser-based XPath implementa-
tions), but will work consistently in all modern browsers:

e XML for Script: http://xmljs.sf.net/

* Google AJAXSLT: http://goog-ajaxslt.sf.net/

95



96

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

Additionally, a project named Sarissa (http://sarissa.sf.net/) aims to create a com-
mon wrapper around each browser implementation. This can give you the ability to write
your XML-accessing code once, but still get all the speed benefits of having browser-
supported XML parsing. The largest problem with this technique is that it’s still lacking
support for XPath in the Opera and Safari browsers, something that the previous XPath
implementations fix.

Using in-browser XPath is generally considered to be an experimental technique when
compared to pure JavaScript solutions, which are widely supported. However, the use and
popularity of XPath is only rising and it should definitely be considered as a strong con-
tender to the CSS selector throne.

Since you have the knowledge and tools necessary to locate any DOM element, or even
a set of DOM elements, we should now discuss what you could do with that power. Every-
thing is possible, from manipulation of attributes to the adding and removing of DOM
elements.

Getting the Contents of an Element

All DOM elements can contain one of three things: text, more elements, or a mixture of text
and elements. Generally speaking, the most common situations are the first and last. In
this section you're going to see the common ways that exist for retrieving the contents of
an element.

Getting the Text Inside an Element

Getting the text inside an element is probably the most confusing task for those who are new
to the DOM. However, it is also a task that works in HTML DOM documents and XML DOM
documents, so knowing how to do this will suit you well. In the example DOM structure
shown in Figure 5-3, there is a root <p> element that contains a <strong> element and a block
of text. The <strong> element itself also contains a block of text.

how are you
doing?

strong [

Y

hello

Figure 5-3. A sample DOM structure containing both elements and text



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Let’s look at how get the text of each of these elements. The <strong> element is the easi-
est to start with, since it only contains one text node and nothing else.

It should be noted that there exists a property called innerText that captures the text
inside an element in all non-Mozilla-based browsers. It’s incredibly handy, in that respect.
Unfortunately, since it doesn’t work in a noticeable portion of the browser market, and it
doesn’'t work in XML DOM documents, you still need to explore viable alternatives.

The trick with getting the text contents of an element is that you need to remember that
text is not contained within the element directly; it’s contained within the child text node,
which may seem a little bit strange. It is assumed that the variable strongElem contains a ref-
erence to the <strong> element. Listing 5-15 shows how to extract text from inside of an
element using the DOM.

Listing 5-15. Getting the Text Contents of the <strong> Element

// Non-Mozilla Browsers:
strongElem.innerText

// All platforms:
strongElem.firstChild.nodeValue

Now that you know how to get the text contents of a single element, you need to look at
how to get the combined text contents of the <p> element. In doing so, you might as well
develop a generic function to get the text contents of any element, regardless of what they
actually contain, as shown in Listing 5-16. Calling text(Element) will return a string contain-
ing the combined text contents of the element and all child elements that it contains.

Listing 5-16. A Generic Function for Retreiving the Text Contents of an Element

function text(e) {

nn

var t = "";

// If an element was passed, get its children,
// otherwise assume it's an array
e = e.childNodes || e;

// Look through all child nodes
for (var j = 0; j < e.length; j++ ) {
// If it's not an element, append its text value
// Otherwise, recurse through all the element's children
t += e[j].nodeType !=1 ?
e[j].nodevValue : text(e[]j].childNodes);

// Return the matched text
return t;

97



98

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

With a function that can be used to get the text contents of any element, you can retrieve
the text contents of the <p> element, used in the previous example. The code to do so would
look something like this:

// Get the text contents of the <p> Element
text( pElem );

The particularly nice thing about this function is that it’s guaranteed to work in both
HTML and XML DOM documents, meaning that you now have a consistent way of retrieving
the text contents of any element.

Getting the HTML Inside an Element

As opposed to getting the text inside an element, getting the HTML inside of an element is
one of the easiest DOM tasks that can be performed. Thankfully, due to a feature developed
by the Internet Explorer team, all modern browsers now include an extra property on every
HTML DOM element: innerHTML. With this property you can get all the HTML and text
inside of an element. Additionally, using the innerHTML property is very fast—often times
much faster than doing a recursive search to find all the text contents of an element. How-
ever, it isn't all roses. It’s up to the browser to figure out how to implement the innerHTML
property, and since there’s no true standard for this, the browser can return whatever con-
tents it deems worthy. For example, here are some of the weird bugs you can look forward
to when using the innerHTML property:

e Mozilla-based browsers don't return the <style> elements in an innerHTML statement.

e Internet Explorer returns its elements in all caps, which if you're looking for consistency
can be frustrating.

e The innerHTML property is only consistently available as a property on elements of
HTML DOM documents; trying to use it on XML DOM documents will result in retriev-
ing null values.

Using the innerHTML property is straightforward; accessing the property gives you
a string containing the HTML contents of the element. If the element doesn’t contain any
subelements and only text, the returned string will only contain the text. To look at how it
works, we're going to examine the two elements shown in Figure 5-2:

// Get the innerHTML of the <strong> element
// Should return "Hello"
strongElem.innerHTML

// Get the innerHTML of the <p> element
// Should return "<strong>Hello</strong> how are you doing?"
pElem.innerHTML

If you're certain that your element contains nothing but text, this method could serve as
a super simple replacement to the complexities of getting the element text. On the other hand,
being able to retrieve the HTML contents of an element means that you can now build some
cool dynamic applications that take advantage of in-place editing—more on this topic can be
found in Chapter 10.



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Working with Element Attributes

Next to retrieving the contents of an element, getting and setting the value of an element’s
attribute is one of the most frequently completed operations. Typically, the list of attributes
that an element has is preloaded with information collected from the XML representation of
the element itself and stored in an associative array for later access, as in this example of an
HTML snippet inside a web page:

<form name="myForm" action="/test.cgi" method="POST">
</form>
Once loaded into the DOM, and the variable formElem, the HTML form element would

have an associative array from which you could collect name/value attribute pairs. The result
of this would look something like this:

formElem.attributes = {
name: "myForm",
action: "/test.cgi",
method: "POST"

};

Figuring out whether an element’s attribute exists should be absolutely trivial using the
attributes array, but there’s one problem: for whatever reason Safari doesn't support this. On
top of that, the potentially useful hasAttribute function isn’t supported in Internet Explorer.
So how are you supposed to find out if an attribute exists? One possible way is to use the
getAttribute function (which I talk about in the next section) and test to see whether the
return value is null, as shown in Listing 5-17.

Listing 5-17. Determining Whether an Element Has a Certain Attribute

function hasAttribute( elem, name ) {
return elem.getAttribute(name) != null;

}

With this function in hand, and knowing how attributes are used, you are now ready to
begin retrieving and setting attribute values.

Getting and Setting an Attribute Value

To retrieve attribute data from an element, two different methods exist, depending on the
type of DOM document you're using. If you wish to be safe and always use generic XML
DOM-compatible methods, there are getAttribute and setAttribute. They can be used in
this manner:

// Get an attribute
id("everywhere").getAttribute("id")

// Set an attribute value
tag("input")[0].setAttribute("value","Your Name");

99



100

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

In addition to this standard getAttribute/setAttribute pair, HTML DOM documents
have an extra set of properties that act as quick getters/setters for your attributes. These
are universally available in modern DOM implementations (but only guaranteed for HTML
DOM documents), so using them can give you a big advantage when writing short code.
The following code shows how you can use DOM properties to both access and set DOM
attributes:

// Quick get an attribute
tag("input")[0].value

// Quick set an attribute
tag("div")[0].id = "main";

There are a couple strange cases with attributes that you should be aware of. The one
that’s most frequently encountered is that of accessing the class name attribute. To work
with class names consistently in all browsers you must access the className attribute using
elem.className, instead of using the more appropriately named getAttribute(“class”). This
problem is also the case for the for attribute, which gets renamed to htmlFor. Additionally,
this is also the case with a couple CSS attributes: cssFloat and cssText. This particular nam-
ing convention arose due to the fact that words such as class, for, float, and text are all
reserved words in JavaScript.

To work around all these strange cases and simplify the whole process of dealing with get-
ting and setting the right attributes, you should use a function that will take care of all those
particulars for you. Listing 5-18 shows a function for getting and setting the values of element
attributes. Calling the function with two parameters, for example attr(element, id), returns
that value of that attribute. Calling the function with three parameters, such as attr(element,
class, test), will set the value of the attribute and return its new value.

Listing 5-18. Getting and Setting the Values of Element Attributes

function attr(elem, name, value) {
// Make sure that a valid name was provided
if ( !'name || name.constructor != String ) return '';

// Figure out if the name is one of the weird naming cases
name = { 'for': 'htmlFor', 'class': 'className' }[name] || name;

// 1f the user is setting a value, also

if ( typeof value != 'undefined' ) {
// Set the quick way first
elem[name] = value;

// If we can, use setAttribute
if ( elem.setAttribute )
elem.setAttribute(name,value);



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

// Return the value of the attribute
return elem[name] || elem.getAttribute(name) || '";

Having a standard way to both access and change attributes, regardless of their imple-
mentation, is a powerful tool. Listing 5-19 shows some examples of how you could use the attr
function in a number of common situations to simplify the process of dealing with attributes.

Listing 5-19. Using the attr Function to Set and Retreive Attribute Values from DOM Elements

// Set the class for the first <hi> Element
attr( tag("h1")[0], "class", "header" );

// Set the value for each <input> element

var input = tag("input");

for (var i = 0; 1 < input.length; i++ ) {
attr( input[i], "value", "" );

}

// Add a border to the <input> Element that has a name of 'invalid'
var input = tag("input");
for (var i = 0; 1 < input.length; i++ ) {
if ( attr( input[i], "name" ) == 'invalid' ) {
input[i].style.border = "2px solid red";

}

Up until now, I've only discussed getting/setting attributes that are commonly used in
the DOM (e.g., ID, class, name, etc.). However, a very handy technique is to set and get non-
traditional attributes. For example, you could add a new attribute (which can only be seen
by accessing the DOM version of an element) and then retrieve it again later, all without
modifying the physical properties of the document. For example, let’s say that you want to
have a definition list of items, and whenever a term is clicked have the definition expand.
The HTML for this setup would look something like Listing 5-20.

Listing 5-20. An HTML Document with a Definition List, with the Definitions Hidden

<html>
<head»
<title>Expandable Definition List</title>
<style>dd { display: none; }</style>
</head>
<body>
<h1>Expandable Definition List</h1>

101



102

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

<dl>
<dt>Cats</dt>
<dd>A furry, friendly, creature.</dd>
<dt>Dog</dt>
<dd>Like to play and run around.</dd>
<dt>Mice</dt>
<dd>Cats like to eat them.</dd>
</dL>
</body>
</html>

I'll be talking more about the particulars of events in Chapter 6, but for now I'll try to keep
our event code simple enough. What follows is a quick script that allows you to click the defi-
nition terms and show (or hide) the definitions themselves. This script should be included in
the header of your page or included from an external file. Listing 5-21 shows the code required
to build an expandable definition list.

Listing 5-21. Allowing for Dynamic Toggling to the Definitions

// Wait until the DOM is Ready
domReady (function(){

// Find all the definition terms
var dt = tag("dt");
for (var i = 0; 1 < dt.length; i++ ) {

// Watch for a user click on the term
addEvent( dt[i], "click", function() {

// See if the definition is already open, or not
var open = attr( this, "open" );

// Toggle the display of the definition
next( this ).style.display = open ? 'none' : 'block';

// Remember if the defnition is open
attr( this, "open", open ? '' : 'yes' );
1;
¥
1;

Now that you know how to traverse the DOM and how to examine and modify attrib-
utes, you need to learn how to create new DOM elements, insert them where you desire, and
remove elements that you no longer need.



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Modifying the DOM

By knowing how to modify the DOM, you can do anything from creating custom XML docu-
ments on the fly to building dynamic forms that adapt to user input; the possibilities are
nearly limitless. Modifying the DOM comes in three steps: first you need to learn how to create
anew element, then you need to learn how to insert it into the DOM, then you need to learn
how to remove it again.

Creating Nodes Using the DOM

The primary method behind modifying the DOM is the createElement function, which gives
you the ability to create new elements on the fly. However, this new element is not immedi-
ately inserted into the DOM when you create it (a common point of confusion for people just
starting with the DOM). First, I'll focus on creating a DOM element.

The createElement method takes one parameter, the tag name of the element, and
returns the virtual DOM representation of that element—no attributes or styling included. If
you're developing applications that use XSLT-generated XHTML pages (or are XHTML pages
served with an accurate content type), you have to remember that you're actually using an
XML document and that your elements need to have the correct XML namespace associated
with them. To seamlessly work around this, you can have a simple function that quietly tests
to see whether the HTML DOM document that you're using has the ability to create new ele-
ments with a namespace (a feature of XHTML DOM documents). If this is the case, you must
create a new DOM element with the correct XHTML namespace, as shown in Listing 5-22.

Listing 5-22. A Generic Function for Creating a New DOM Element

function create( elem ) {
return document.createElementNS ?
document.createElementNS( "http://www.w3.01g/1999/xhtml"', elem ) :
document.createElement( elem );

For example, using the previous function you can create a simple <div> element and
attach some additional information to it:

var div = create("div");
div.className = "items";
div.id = "all";

Additionally, it should be noted that there is a DOM method for creating new text nodes
called createTextNode. It takes a single argument, the text that you want inside the node, and
it returns the created text node.

Using the newly created DOM elements and text nodes, you can now insert them into
your DOM document right where you need them.

103



104

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

Inserting into the DOM

Inserting into the DOM is very confusing and can feel very clumsy at times, even for those
experienced with the DOM. You have two functions in your arsenal that you can use to get
the job done.

The first function, insertBefore, allows you to insert an element before another child ele-
ment. When you use the function, it looks something like this:

parentOfBeforeNode.insertBefore( nodeToInsert, beforeNode );

The mnemonic that I use to remember the order of the arguments is the phrase “You're
inserting the first element, before the second.” I'll show you an easier way of remembering
this in just a minute.

Now that you have a function to insert nodes (this includes both elements and text
nodes) before other nodes, you should be asking yourself: “How do I insert a node as the last
child of a parent?” There is another function that you can use called appendChild that allows
you to do just that. appendChild is called on an element, appending the specified node to the
end of the list of child nodes. Using the function looks something like this:

parentElem.appendChild( nodeToInsert );

To help you avoid having to remember the particular order of the arguments to
insertBefore and appendChild, you can use two helper functions that I created to solve this
problem: Using the new functions shown in Listings 5-23 and 5-24, the arguments are always
called in the order of the element/node you're inserting in relation to and then the element/
node that you're inserting. Additionally, the before function allows you to optionally provide
the parent element, potentially saving you some code. Finally, both of these functions allow
you to pass in a string to be inserted/appended and it will automatically be converted into
a text node for you. It is recommended that you provide a parent element as reference (in
case elem happens to be null).

Listing 5-23. A Function for Inserting an Element Before Another Element

function before( parent, before, elem ) {
// Check to see if no parent node was provided
if ( elem == null ) {
elem = before;
before = parent;
parent = before.parentNode;

}

parent.insertBefore( checkElem( elem ), before );

Listing 5-24. A Function for Appending an Element As a Child of Another Element

function append( parent, elem ) {
parent.appendChild( checkElem( elem ) );

}

The helper function in Listing 5-25 allows you to easily insert both elements and text
(which is automatically converted to its proper text node).



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Listing 5-25. A Helper Function for the before and append() Functions

function checkElem( elem ) {
// If only a string was provided, convert it into a Text Node
return elem &% elem.constructor == String ?
document.createTextNode( elem ) : elem;

Now, using the before and append() functions, and by creating new DOM elements, you
can add more information into the DOM for the user to view, as shown in Listing 5-26.

Listing 5-26. Using the append and before Functions

// Create a new <li> element
var 1li = create("1i");
attr( 1i, "class", "new" );

// Create some new text contents and add it to the <li>
append( 1i, "Thanks for visiting!" );

// Add the <1i> onto the top of the first Ordered List
before( first( tag("ol")[0] ), 1i );

// Running these statements will convert an empty <ol>
<ol></ol>

// Into the following:
<ol>

<li class="new'>Thanks for visiting!</1i>
</ol>

The instant you “insert” this information into the DOM (either with insertBefore or
appendChild) it will be immediately rendered and seen by the user. Because of this, you can
use it to provide instantaneous feedback. This is especially helpful in interactive applications
that require user input.

Now that you've seen how to create and insert nodes using nothing but DOM-based
methods, it should be especially beneficial to look at alternative methods of injecting con-
tent into the DOM.

Injecting HTML into the DOM

A technique that is even more popular than creating normal DOM elements and inserting
them into the DOM is that of injecting HTML straight into the document. The simplest
method for achieving this is by using the previously discussed innerHTML method. In
addition to it being a way to retrieve the HTML inside of an element, it is also a way to set
the HTML inside of an element. As an example of its simplicity, let’s assume that you have
an empty <ol> element and you want to add some <li>s to it; the code to do so would look
like this:

105



106

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

// Add some LIs to an OL element
tag("ol")[0].innerHTML = "<li>Cats.</1i><1i>Dogs.</1i><1i>Mice.</1i>";

Isn’t that so much simpler than obsessively creating a number of DOM elements and
their associated text nodes? You'll be happy to know that (according to http://www.
quirksmode.org) it'’s much faster than using the DOM methods, too. It’s not all perfect, how-
ever—there are a number of tricky problems that exist with using the innerHTML injection
method:

e As mentioned previously, the innerHTML method doesn’t exist in XML DOM docu-
ments, meaning that you'll have to continue to use the traditional DOM creation
methods.

e XHTML documents that are created using client-side XSLT don’t have an innerHTML
method, as they too are a pure XML document.

e innerHTML completely removes any nodes that already exist inside of the element,
meaning that there’s no way to conveniently append or insert before, as with the pure
DOM methods.

The last point is especially troublesome, as inserting before another element or append-
ing onto the end of a child list is a particularly useful feature. Spinning some DOM magic,
however, you can adapt your append and before methods to work with regular HTML strings,
in addition to regular DOM elements. The transition comes in two steps. First you create a
new checkElem function, which is capable of handling HTML strings, DOM elements, and
arrays of DOM elements, as shown in Listing 5-27.

Listing 5-27. Converting an Array of Mixed DOM Node/HTML String Arguments into a
Pure Array of DOM Nodes

function checkElem(a) {
var ¥ = [];
// Force the argument into an array, if it isn't already
if ( a.constructor != Array ) a=1[a ];

for (var i = 0; 1 < a.length; i++ ) {
// If there's a String
if ( a[i].constructor == String ) {
// Create a temporary element to house the HTML
var div = document.createElement("div");

// Inject the HTML, to convert it into a DOM structure
div.innerHTML = a[i];



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

// Extract the DOM structure back out of the temp DIV
for (var j = 0; j < div.childNodes.length; j++ )
r[r.length] = div.childNodes[j];
} else if (a[i].length ) { // If it's an array
// Assume that it's an array of DOM Nodes
for (var j = 0; j < a[i].length; j++ )
r[r.length] = a[i][j];
} else { // Otherwise, assume it's a DOM Node
r[r.length] = a[i];
}
}

return r;

Second, you need to adapt the two insertion functions to work with this modified check-
Elem, accepting arrays of elements, as shown in Listing 5-28.

Listing 5-28. Enhanced Functions for Inserting and Appending into the DOM

function before( parent, before, elem ) {
// Check to see if no parent node was provided
if ( elem == null ) {
elem = before;
before = parent;
parent = before.parentNode;

}

// Get the new array of elements
var elems = checkElem( elem );

// Move through the array backwards,
// because we're prepending elements
for ( var i = elems.length - 1; i >=0; i-- ) {
parent.insertBefore( elems[i], before );
}
}

function append( parent, elem ) {
// Get the array of elements
var elems = checkElem( elem );

// Append them all to the element

for (var i = 0; 1 <= elems.length; i++ ) {
parent.appendChild( elems[i] );

}

107



108

CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

Now, using these new functions, appending an <li> onto an ordered list can become an
incredibly simple task:

append( tag("ol")[0], "<li>Mouse trap.</1i>" );

// Running that simple line could add append HTML onto this <ol>
<ol>

<li>Cats.</1i>

<1i>Dogs.</1i>

<li>Mice.</1i>
</ol>

// Turning it into the following:
<ol>
<li>Cats.</1i>
<1i>Dogs.</1i>
<li>Mice.</1i>
<li>Mouse trap.</1i>
</ol>

// And running a similar statement for the before() function
before( last( tag("ol")[0] ), "<li>Zebra.</1i>" );

// Would instead turn the <ol> into:
<ol>

<li>Cats.</1i>

<1i>Dogs.</1i>

<li>Zebra.</1i>

<li>Mice.</1i>
</ol>

This really helps to make your code phenomenally shorter, and saner to develop. How-
ever, what if you want to move the other way and remove nodes from the DOM? As always,
there’s another method to handle that, too.

Removing Nodes from the DOM

Removing nodes from the DOM is nearly as frequent as the create and insert counterparts.
When creating a dynamic form asking for an unlimited number of items (for example), it
becomes important to allow the user to be able to remove portions of the page that they no
longer wish to deal with. The ability to remove a node is encapsulated into one function:
removeChild. It’s used just like appendChild, but has the opposite effect. The function in
action looks something like this:

NodeParent.removeChild( NodeToRemove );

With this in mind, you can create two separate functions to quickly remove Nodes, as
shown in Listing 5-29.



CHAPTER 5 © THE DOCUMENT OBJECT MODEL

Listing 5-29. Function for Removing a Node from the DOM

// Remove a single Node from the DOM
function remove( elem ) {
if ( elem ) elem.parentNode.removeChild( elem );

}

Listing 5-30 shows a function for removing all child nodes from an element, using only
a reference to the DOM element.

Listing 5-30. A Function for Removing All Child Nodes from an Element

// Remove all of an Element's children from the DOM
function empty( elem ) {
while ( elem.firstChild )
remove( elem.firstChild );

As an example, let’s say you want to remove an <li> that you added in a previous section,
assuming that you've already given the user enough time to view the <li> and that it can be
removed without implication. The following code shows the JavaScript code that you can use
to perform such an action, creating a desirable result:

// Remove the last <1i> from an <ol>
remove( last( tag("ol")[0] ) )

// The above will convert this:

<ol>
<li>Learn Javascript.</1i>
<1i>??2</1i>
<li>Profit!</1i>

</ol>

// Into this:

<ol>
<li>Learn Javascript.</1i>
<1i>??2</1i>

</ol>

// If we were to run the empty() function instead of remove()
empty( last( tag("ol")[0] ) )

// It would simply empty out our <ol>, leaving:
<ol></ol>

Having learned the ability to remove a node from the DOM, you have completed your
lesson on how the Document Object Model works, and how to make the most out of it.

109



110 CHAPTER 5 ° THE DOCUMENT OBJECT MODEL

Summary

In this chapter I discussed a lot relating to the Document Object Model. Unfortunately, some
of the topics are more complex than others, such as waiting for the DOM to load, and will con-
tinue to be into the foreseeable future. However, using what you've learned, you'll be able to
build just about any dynamic web application.

If you'd like to see some examples of DOM scripting in action, look at Appendix A, as it
includes plenty of additional code through which to browse. Additionally, more DOM script-
ing examples can be found online on the book’s web site, http://jspro.org, or in the Source
Code/Download section of the Apress web site, http://www.apress.com. Next, I'm going
to turn your attention to the next component of unobtrusive DOM scripting: events.



CHAPTER 6

Events

The most important aspect to unobtrusive DOM scripting is the use of dynamically bound
events. The ultimate goal of writing usable JavaScript code is to have a web page that will
work for the users, no matter what browser they're using or what platform they’re on. To
accomplish this, you set a goal of the features that you want to use, and exclude any brow-
sers that do not support them. For the unsupported browsers, you then give them a func-
tional, albeit less interactive, version of the site. The benefits to writing JavaScript and
HTML interactions in this manner include cleaner code, more accessible web pages, and
better user interactions. All of this is accomplished by using DOM events to improve the
interaction that occurs in web applications.

The concept of events in JavaScript has advanced through the years—to the reliable,
semiusable plateau where we now stand. Thankfully, due to the general similarities that
exist, you can develop some excellent tools to help you build powerful, cleanly written web
applications.

In this chapter I'm going to start with an introduction to how events work in JavaScript
and how it compares to event models in other languages. Then you're going to look at what
information the event model provides you with and how you can best control it. After looking
at binding events to DOM elements and the different types of events that are available, I con-
clude by showing how to integrate some effective unobtrusive scripting techniques into any
web page.

Introduction to JavaScript Events

If you look at the core of any JavaScript code, you'll see that events are the glue that holds
everything together. In a nicely designed JavaScript application, you're going to have your
data source and its visual representation (inside of the HTML DOM). In order to synchronize
these two aspects, you're going to have to look for user interactions and attempt to update
your web site accordingly. The combination of using the DOM and JavaScript events is the
fundamental union that makes all modern web applications what they are.

Asynchronous Events vs. Threads

The event system in JavaScript is rather unique. It operates completely asynchronously using
no threads at all. This means that all code in your application will be reliant upon other
actions—such as a user’s click or a page loading—triggering your code.

mn



112

CHAPTER 6 = EVENTS

The fundamental difference between threaded program design and asynchronous pro-
gram design is in how you wait for things to happen. In a threaded program you would keep
checking over and over whether your condition has been met. Whereas in an asynchronous
program you would simply register a callback function with an event handler, and then when-
ever that event occurs, the handler would let you know by executing your callback function.
Let’s explore how a JavaScript program could be written if it used threads, and how a Java-
Script program is written using asynchronous callbacks.

JavaScript Threads

As it stands today, JavaScript threads do not exist. The closest that you can get is by using

a setTimeout() callback, but even then, it’s less than ideal. If JavaScript were a traditional
threaded programming language, something like the code shown in Listing 6-1 would work.
It is a mock piece of code in which you're waiting until the page has completely loaded. If
JavaScript were a threaded programming language, you would have to do something like
this. Thankfully, that is not the case.

Listing 6-1. Mock JavaScript Code for Simulating a Thread

// NOTE: This code DOES NOT work!
// Wait until the page is loaded, checking constantly
while ( ! window.loaded() ) { }

// The page is loaded now, so start doing stuff
document.getElementById("body").style.border = "1px solid #000";

If you'll notice, in this code there is a loop that’s continually checking to see if
window.loaded() returns true or not. Regardless of the fact that there’s no loaded() function
on the window object, having a loop like that doesn’t work in JavaScript. This is due to the
fact that all loops in JavaScript are blocking (this means that nothing else can happen until
they finish running). If JavaScript were able to handle threads, you would see something like
Figure 6-1. In the figure, the while loop in your code continually checks to see if the window
isloaded. This does not work in JavaScript due to the fact that all loops are blocking (in that
no other operations can be executed while the loop is operating).

while (! window.loaded() ) {}

false false false false false false false false false false false false false false false false false true

Figure 6-1. What youd see if JavaScript were able to handle threads



CHAPTER 6 = EVENTS

In reality, since our while loop continues running and blocking the normal flow of the
application, it'll never reach a true value. The result is that the user’s browser will hang and
stall and possibly crash. The lesson that you can take away from this is that if you ever see
anyone claiming that using a while loop to wait for an action works (in JavaScript), they're
probably lying or very confused.

Asynchronous Callbacks

The programmatic alternative to using threads to constantly check for updates is to use
asynchronous callbacks, which is what JavaScript uses. Using plain terminology, you tell

a DOM element that anytime an event of a specific type is called, you want a function to be
called to handle it. This means that you can provide a reference to the code that you wish
to be executed when needed and the browser takes care of all the details. A sample piece
of code using event handlers and callbacks is shown in Listing 6-2. You see the actual code
required to bind a function to an event handler (window.onload) in JavaScript.
window.onload() will be called whenever the page has been loaded. This is also the case
for other common events such as click, mousemove, and submit.

Listing 6-2. Asynchronous Callbacks in JavaScript

// Register a function to be called whenever the page is loaded
window.onload = loaded;

// The function to call whenever the page is loaded.

function loaded() {
// The page is loaded now, so start doing stuff
document.getElementById("body").style.border = "1px solid #000";

Comparing the code in Listing 6-2 to the code shown in Listing 6-1, you see a distinct
difference. The only code that is executed right away is the binding of the event handler (the
loaded function) to the event listener (the onload property). The browser, whenever the page
is completely loaded, calls the function associated with window.onload and executes it. The
flow of the JavaScript code looks something like what’s shown in Figure 6-2. The figure shows
a representation of using callbacks to wait for the page to load in JavaScript. Since it’s actually
impossible to wait for something, you register a callback (loaded) with a handler
(window.onload), which will be called whenever the page is fully loaded.

One point that isn't immediately apparent with our simple event listener and handler is
that the order of events can vary and can be handled differently depending on the type of
event and where in the DOM the element exists. We'll look at the two different phases of
events in the next section and what makes them so different.

113



114

CHAPTER 6 = EVENTS

window.onload = loaded;

loaded();

Figure 6-2. A representation of using callbacks to wait for the page to load

Event Phases

JavaScript events are executed in two phases called the capturing and bubbling phases.
What this means is that when an event is fired from an element (e.g., the user clicking a link
causing the click event to fire), the elements that are allowed to handle it, and in what order,
vary. You can see an example of the execution order in Figure 6-3. The figure shows what
event handlers are fired, in what order, whenever a user clicks the first <a> element on the

page.
Capturing

<body>
<div id="body">
<ul class="links">
L><Ii>
<a href="/">Home</a>
</li>
<li><a href="/about/">About</a></li>
</ul>
</div>
</body>

Figure 6-3. The two phases of event handling

Looking at a simple example of someone clicking a link (in Figure 6-3), you can see the
order of execution for an event. Pretending that the user clicked the <a> element, the click
handler for the document is fired first, then the <body>’s handler, then the <div>'s handler,
and so on, down to the <a> element; this is called the capturing phase. Once that finishes, it



CHAPTER 6 = EVENTS

moves back up the tree again, and the <li>, <ul>, <div>, <body>, and document event handlers
are all fired, in that order.

There are very specific reasons why event handling is built this way, and it works very
well. Let’s look at a simple example. Say you want each of the <li> elements to change its back-
ground color whenever a user moves his mouse over them, and change back again when the
mouse moves off—a common need for most menus. The code shown in Listing 6-3 does
exactly this.

Listing 6-3. A Tabbed-Navigation Scenario with Hovering Effects

// Find all the <1i> elements, to attach the event handlers to them
var 1i = document.getElementsByTagName("1i");
for (var i = 0; 1 < li.length; i++ ) {

// Attach a mouseover event handler to the <li> element,

// which changes the <li>s background to blue.

1i[i].onmouseover = function() {
this.style.backgroundColor = 'blue’;

};

// Attach a mouseout event handler to the <li> element
// which changes the <li>s background back to its default white
1i[i].onmouseout = function() {

this.style.backgroundColor = 'white';

};

This code behaves exactly as you'd imagine: you mouse over an <li> element and its back-
ground color is changed; you move your mouse off of it, and the color goes back. However,
what you don't realize is that you're actually toggling two different elements every time you
move your mouse over the <li>. Since the <li> element also contains an <a> element, you're
moving your mouse over it, instead of just the <li>. Let’s look at the exact flow of the event
calls:

1. <li> mouseover: You move your mouse over the <li> element.

2. <li> mouseout. You move from the <li> to the <a> contained inside of it.

3. <a> mouseover: Your mouse is now over the <a> element.

4. <li> mouseover: The <a> mouseover event bubbles up to the <li> mouseover.

You may notice from the way that you're calling the events, that you're completely ignor-
ing the capturing event phase; don't worry, I haven’t forgotten about it. The way that you're
binding the event listeners is by using an old “traditional” means of binding events by setting
the onevent property of an element, which only supports event bubbling, not capturing. This
way of event binding, and others, is discussed in the next section.

115



116

CHAPTER 6 = EVENTS

In addition to the strange order of event calls, you may have noticed two unexpected
actions: the mouseout of the <li> element and the <a> to <li> mouseover bubbling. Let’s look
at those in detail.

The first mouseout event occurs because, as far as the browser is concerned, you've left
the realm of the parent <li> element and have moved into another element. This is due to the
fact that whichever element is currently on top of the elements beneath them (as the <a> ele-
ment is to its <li> parent) receives the immediate focus of the mouse.

The <a> mouseover bubbling to the parent <li> element ends up becoming our saving
grace in this piece of code. Since you haven't actually bound any sort of listener to the <a> ele-
ment, the event simply continues on up the DOM tree, looking for another element that is
listening. The first element that it encounters in its bubbling process is the <li> element,
which is listening for incoming mouseover events (and which is exactly what you want).

One point that you should consider is, what if you did bind an event handler to the <a>
element’s mouseover event? Is there any way that you could stop the bubbling of the event?
This is an important and useful topic that I will be covering next.

Common Event Features

A great aspect of JavaScript events is that they have a number of relatively consistent features
that give you more power and control when developing. The simplest and oldest concept is
that of the event object, which provides you with a set of metadata and contextual functions
to allow you to deal with things such as mouse events and keyboard presses. Additionally,
there are functions that can be used to modify the normal capture/bubbling flow of an event.
Learning these features inside and out can make your life much simpler.

The Event Object

One standard feature of event handlers is some way to access an event object, which contains
contextual information about the current event. This object serves as a very valuable resource
for certain events. For example, when handling keyboard presses you can access the keyCode
property of the object to get the specific key that is pressed. More details concerning the
specifics of the event object can be found in Appendix B.

The tricky part of the event object, however, is that Internet Explorer’s implementation
is different from the W3C’s specification. Internet Explorer has a single global event object
(which can be reliably found in the global variable property window.event), whereas every
other browser has a single argument passed to it, containing the event object. An example of
reliably using the event object is shown in Listing 6-4. The listing is an example of modifying
a common <textarea> element to behave differently. Typically, users can hit the Enter key
inside of a textarea, causing there to be extra end lines. But what if you don’t want that and
instead only want a large text box? This function provides just that.



CHAPTER 6 = EVENTS

Listing 6-4. Overriding Functionality Using DOM Events

// Find the first <textarea> on the page and bind a keypress listener

document.getElementsByTagName("textarea")[0].onkeypress = function(e){
// If no event object exists, then grab the global (IE-only) one
e = e || window.event;

// If the Enter key is pressed, return false (causing it to do nothing)
return e.keyCode != 13;

};

There are a lot of attributes and functions contained within the event object, and what
they’re named or how they behave varies from browser to browser. I won't go into the particu-
lars right now, but I highly recommend that you read Appendix B, which has a large list of all
the event object features, how to use them, and examples of them in use.

The this Keyword

The this keyword (as discussed in Chapter 2) serves as a way to access the current object within
the scope of a function. Modern browsers give all event handlers some context using the this
keyword. As usual, only some of them (and only some methods) play nice and set it equal to the
current element; this will be discussed in depth in a minute. For example, in Listing 6-5, I can
take advantage of this fact by only creating one generic function for handling clicks but using
the this keyword to determine which element is currently being affected. The listing shows an
example of using only one function to handle a click event, but since it uses the this keyword

to reference the element, it will work as intended.

Listing 6-5. Changing the Background and Foreground Color of All <li> Elements Whenever
They Are Clicked

// Find all <1i> elements and bind the click handler to each of them
var 1i = document.getElementsByTagName("1i");
for (var i = 0; 1 < li.length; i++ ) {
li[i].onclick = handleClick;
}

// The click handler - when called it changes the background and
// foreground color of the specified element
function handleClick() {

this.style.backgroundColor = "blue";

this.style.color = "white";

The this keyword really is nothing more than a convenience, however, I think you'll find
that it can greatly reduce the complexity of your JavaScript code when using it properly. I try
to write all the event-related code in this book using the this keyword.

117



118

CHAPTER 6 = EVENTS

Canceling Event Bubbling

Since you know how event capturing/bubbling works, let’s explore how you can take control
of it. An important point brought up in the previous example is that if you want an event to
only occur on its target and not its parent elements, you have no way to stop it. Stopping the
flow of an event bubble would cause an occurrence similar to what is shown in Figure 6-4,
which shows the result of an event being captured by the first <a> element and the subse-
quent bubbling being canceled.

Capturing

<body>
<div id="body">
<ul class="links">

L; <li>
Ly<a href="/">Home</a> @
</li>

<li><a href="/about/">About</a></li>
</ul>
</div>
</body>

Figure 6-4. The result of an event being captured by the first <a> element

Stopping the bubbling (or capturing) of an event can prove immensely useful in complex
applications. Unfortunately, Internet Explorer offers a different way than all other browsers to
stop an event from bubbling. A generic function to cancel event bubbling can be found in
Listing 6-6. The function takes a single argument: the event object passed into an event han-
dler. The function handles the two different ways of canceling the event bubbling: the
standard W3C way, and the nonstandard Internet Explorer way.

Listing 6-6. A Generic Function for Stopping Event Bubbling

function stopBubble(e) {

// If an event object is provided, then this is a non-IE browser

if ( e & e.stopPropagation )
// and therefore it supports the W3C stopPropagation() method
e.stopPropagation();

else
// Otherwise, we need to use the Internet Explorer
// way of cancelling event bubbling
window.event.cancelBubble = true;



CHAPTER 6 = EVENTS

What you're probably wondering now is, when would I want to stop the bubble of events?
Honestly, the majority of the time you’ll probably never have to worry about it. The need for
it begins to arise when you start developing dynamic applications (especially ones that deal
with the keyboard or mouse).

Listing 6-7 shows a brief snippet that adds a red border around the current element that
you're hovered over. You do this by adding a mouseover and a mouseout event handler to
every DOM element. If you don'’t stop the event bubbling, every time you move your mouse
over an element, the element and all of its parent elements will have the red border, which
isn't what you want.

Listing 6-7. Using stopBubble() to Create an Interactive Set of Elements

// Locate, and traverse, all the elements in the DOM
var all = document.getElementsByTagName("*");
for (var i = 0; 1 < all.length; i++ ) {

// Watch for when the user moves his mouse over the element
// and add a red border around the element
all[i].onmouseover = function(e) {

this.style.border = "1px solid red";

stopBubble( e );

};

// Watch for when the user moves back out of the element
// and remove the border that we added
all[i].onmouseout = function(e) {

this.style.border = "Opx";

stopBubble( e );

};

With the ability to stop the event bubbling, you now have complete control over which
elements get to see and handle an event. This is a fundamental tool necessary for exploring
the development of dynamic web applications. The final aspect is to cancel the default action
of the browser, allowing you to completely override what the browser does and implement
new functionality instead.

Overriding the Browser’s Default Action

For most events that take place, the browser has some default action that will always occur.
For example, clicking an <a> element will take you to its associated web page; this is a default
action in the browser. This action will always occur after both the capturing and the bubbling
event phases, as shown in Figure 6-5. This particular example shows the results of a user click-
ing an <a> element in a web page. The event begins by traveling through the DOM in both a
capturing and bubbling phase (as discussed previously). However, once the event has finished
traversing, the browser attempts to execute the default action for that event and element. In
this case, it’s visiting the / web page.

119



120 CHAPTER 6 = EVENTS

Capturing —— > Default
(window.location = '/")
<body>
<div id="body">
L><ul class="links">
<li>
L,<a href="/">Home</a>
</li>
<li><a href="/about/">About</a></li>
</ul>
</div>
</body>

Figure 6-5. The full life cycle of an event

Default actions can be summarized as anything that the browser does that you do not
explicitly tell it to do. Here’s a sampling of the different types of default actions that occur, and
on what events:

* Clicking an <a> element will redirect you to a URL provided in its href attribute.

* Using your keyboard and pressing Ctrl+S, the browser will attempt to save a physical
representation of the site.

e Submitting an HTML <form> will submit the query data to the specified URL and redi-
rect the browser to that location.

* Moving your mouse over an <img> with an alt or a title attribute (depending on the
browser) will cause a tool tip to appear, providing a description of the <img>.

All of the previous actions are executed by the browser even if you stop the event bub-
bling or if you have no event handler bound at all. This can lead to significant problems in
your scripts. What if you want your submitted forms to behave differently? Or what if you
want <a> elements to behave differently than their intended purpose? Since canceling
event bubbling isn’t enough to prevent the default action, you need some specific code to
handle that directly. As with canceling event bubbling, there are two ways of stopping the
default action from occurring: the IE-specific way and the W3C way. Both ways are shown
in Listing 6-8. The function shown takes a single argument: the event object that’s passed
in to the event handler. This function should be used at the very end of your event handler,
like so: return stopDefault( e );—as your handler needs to also return false (which is,
itself, returned from stopDefault for you).



CHAPTER 6 = EVENTS

Listing 6-8. A Generic Function for Preventing the Default Browser Action from Occurring

function stopDefault( e ) {
// Prevent the default browser action (W3C)
if ( e 8& e.preventDefault )
e.preventDefault();

// A shortcut for stoping the browser action in IE
else
window.event.returnValue = false;

return false;

Using the stopDefault function, you can now stop any default action presented by the
browser. This allows you to script some neat interactions for the user, such as the one shown
in Listing 6-9. The code makes all the links on a page load in a self-contained <iframe>, rather
than opening up a whole new page. Doing this allows you to keep the user on the page, and
for possibly a more interactive experience.

Note Preventing a default action works for 95% of all cases in which you will want to use it. Things start
to get really tricky when you move from browser to browser, due to the fact that it's up to the browser to
prevent the default action (which they don’t always do correctly), especially when working with preventing
actions from key presses in text areas and preventing actions inside <iframe>s; other than that, things
should be pretty sane though.

Listing 6-9. Using stopDefault() to Override Browser Functionality

// Let's assume that we already have an IFrame in the page
// with an ID of 'iframe'
var iframe = document.getElementById("iframe");

// Locate all <a> elements on the page
var a = document.getElementsByTagName("a");
for (var i = 0; 1 < a.length; i++ ) {

// Bind a click handler to the <a>
a[i].onclick = function(e) {
// Set the IFrame's location
iframe.src = this.href;

121



122

CHAPTER 6 = EVENTS

// Prevent the browser from ever visiting the web site pointed to from
// the <a> (which is the default action)
return stopDefault( e );

};

Overriding default events is at the absolute crux of the DOM and events, which come
together to form unobtrusive DOM scripting. I'll talk more about how this works, in a func-
tional sense, in the section “Unobtrusive DOM Scripting” later in this chapter. However, it’s
not all perfect; a major point of contention arrives when it comes time to actually bind your
event handlers to a DOM element. There are actually three different ways of binding events,
some of which are better than others, all of which are discussed in the next section.

Binding Event Listeners

How to bind event handlers to elements has been a constantly evolving quest in JavaScript.
It began with browsers forcing users to write their event handler code inline, in their HTML
document. Thankfully that technique has since become much less popular (which is good,
considering that it goes against the data abstraction principles of unobtrusive DOM scripting).
When Netscape and Internet Explorer were actively competing with each other, they each
developed two separate, but very similar, event registration models. In the end, Netscape’s
model was modified to become a W3C standard, and Internet Explorer’s stayed the same.
Today, there remain three ways of reliably registering events. The traditional method is
an offshoot of the old inline way of attaching event handlers, but it’s reliable and works con-
sistently. The other methods are the IE and W3C ways of registering events. Finally, I present
areliable set of methods that developers can use to register and remove events and no longer
worry about what browser is lying underneath.

Traditional Binding

The traditional way of binding events is the one that I've been using up until now in this
chapter. It is by far the simplest, most compatible way of binding event handlers. To use
this particular method, you attach a function as a property to the DOM element that you
wish to watch. Some samples of attaching events using the traditional method are shown
in Listing 6-10.

Listing 6-10. Artaching Events Using the Traditional Method of Event Binding

// Find the first <form> element and attach a 'submit' event handler to it
document.getElementsByTagName("form")[0].onsubmit = function(e){

// Stop all form submission attempts

return stopDefault( e );

};



CHAPTER 6 = EVENTS

// Attach a keypress event handler to the <body> element of the document
document.body.onkeypress = myKeyPressHandler;

// Attach an load event hanlder to the page
window.onload = function(){ .. };

This particular technique has a number of advantages and disadvantages, which you
must be aware of when using them.

Advantages of Traditional Binding

The following are the advantages of using the traditional method:

* The biggest advantage of using the traditional method is that it’s incredibly simple and
consistent, in that you're pretty much guaranteed that it'll work the same no matter
what browser you use it in.

* When handling an event, the this keyword refers to the current element, which can be
very useful (as demonstrated in Listing 6-5).

Disadvantages of Traditional Binding

The disadvantages of the traditional method are as follows:
e The traditional method only works with event bubbling, not capturing and bubbling.

e It’s only possible to bind one event handler to an element at a time. This has the poten-
tial to cause confusing results when working with the popular window.onload property
(effectively overwriting other pieces of code that have used the same method of binding
events). An example of this problem is shown in Listing 6-11, where an event handler
overwrites an old event handler.

* The event object argument is only available in non-Internet Explorer browsers.

Listing 6-11. Event Handlers Overwriting Each Other

// Bind your initial load handler
window.onload = myFirstHandler;

// somewhere, in another library that you've included,

// your first handler is overwritten

// only 'mySecondHandler' is called when the page finishes loading
window.onload = mySecondHandler;

Knowing that it’s possible to blindly override other events, you should probably opt to
only use the traditional means of event binding in simple situations, where you can trust all
the other code that is running alongside yours. One way to get around this troublesome mess,
however, is to use the modern event binding methods provided by browsers.

123



124

CHAPTER 6 = EVENTS

DOM Binding: W3C

The W3C'’s method of binding event handlers to DOM elements is the only truly standardized
means of doing so. With that in mind, every modern browser supports this way of attaching
events except for Internet Explorer.

The code for attaching a new handler function is simple. It exists as a function of every
DOM element (named addEventListener) and takes three parameters: the name of the event
(e.g., click), the function that will handle the event, and a Boolean flag to enable or disable
event capturing. An example of addEventListener in use is shown in Listing 6-12.

Listing 6-12. Sample Pieces of Code That Use the W3C Way of Binding Event Handlers

// Find the first <form> element and attach a 'submit' event handler to it
document.getElementsByTagName("form")[0].addEventListener('submit',function(e){
// Stop all form submission attempts
return stopDefault( e );
}, false);

// Attach a keypress event handler to the <body> element of the document
document.body.addEventListener('keypress', myKeyPressHandler, false);

// Attach an load event hanlder to the page
window.addEventlListener('load', function(){ .. }, false);

Advantages of W3C Binding
The advantages to the W3C event-binding method are the following:

* This method supports both the capturing and bubbling phases of event handling. The
event phase is toggled by setting the last parameter of addEventListener to false (for
bubbling) or true (for capturing).

e Inside of the event handler function, the this keyword refers to the current element.
e The event object is always available in the first argument of the handling function.

* You can bind as many events to an element as you wish, with none overwriting previ-
ously bound handlers.

Disadvantage of W3C Binding
The disadvantage to the W3C event-binding method is the following:

e It does not work in Internet Explorer; you must use IE’s attachEvent function instead.

If Internet Explorer utilized the W3C’s method of attaching event handlers, this chapter
would be much shorter than it is now, as there would be virtually no need to discuss alterna-
tive methods of binding events. Until that day, however, the W3C'’s event-binding methods
are still the most comprehensive and easy to use.



CHAPTER 6 = EVENTS

DOM Binding: IE

In a lot of ways, the Internet Explorer way of binding events appears to be very similar to the
W3C’s. However, when you get down to the details, it begins to differ in some very signifi-
cant ways. Some examples of attaching event handlers in Internet Explorer can be found in
Listing 6-13.

Listing 6-13. Samples of Attaching Event Handlers to Elements Using the Internet Explorer Way
of Binding Events

// Find the first <form> element and attach a 'submit' event handler to it
document.getElementsByTagName("form")[0].attachEvent('onsubmit',function(){
// Stop all form submission attempts
return stopDefault();

5)s

// Attach a keypress event handler to the <body> element of the document
document.body.attachEvent('onkeypress', myKeyPressHandler);

// Attach an load event hanlder to the page
window.attachEvent('onload', function(){ .. });

Advantage of IE Binding

The advantage to Internet Explorer’s event-binding method is the following:

* You can bind as many events to an element as you desire, with none overwriting previ-
ously bound handlers.

Disadvantages of IE Binding
The disadvantages to Internet Explorer’s event-binding method are the following:
* Internet Explorer only supports the bubbling phase of event capturing.

» The this keyword inside of event listener functions points to the window object, not the
current element (a huge drawback of IE).

* The event object is only available in the window.event parameter.

¢ The name of the event must be named as ontype—for example, onclick instead of just
requiring click.

e It only works in Internet Explorer. You must use the W3C’s addEventListener for

non-IE browsers.

As far as semistandard event features go, Internet Explorer’s event-binding implemen-
tation is sorely lacking. Due to its many shortcomings, workarounds will continue to have to
exist to force it to behave reasonably. However, all is not lost: A standard function for adding
events to the DOM does exist and it will greatly ease our pain.

125



126

CHAPTER 6 = EVENTS

addEvent and removeEvent

In a contest run by Peter-Paul Koch (of http://quirksmode.org) in late 2005, he asked

the general JavaScript-coding public to develop a new pair of functions, addEvent and
removeEvent, which would provide a reliable way for users to add and remove events onto
a DOM element. I ended up winning that contest with a very concise piece of code that
worked well enough. However, afterward, one of the judges (Dean Edwards) then came out
with another version of the functions that far surpassed what I wrote. His implementation
uses the traditional means of attaching event handlers, completely ignoring the modern
methods. Due to this fact, his implementation is able to work in a large number of brow-
sers, while still providing all the necessary event niceties (such as the this keyword and
standard event object). Listing 6-14 shows a sample piece of code, using all of the different
aspects of event handling, which makes great use of the new addEvent function, including
the prevention of the default browser event, the inclusion of the correct event object, and
the inclusion of the correct this keyword.

Listing 6-14. A Sample Piece of Code Using the addEvent Function

// Wait for the page to finish loading
addEvent( window, "load", function(){

// Watch for any keypresses done by the user

addEvent( document.body, "keypress", function(e){
// If the user hits the Spacebar + Ctrl key
if ( e.keyCode == 32 &8 e.ctrlkey ) {

// Display our special form
this.getElementsByTagName("form")[0].style.display = 'block';

// Make sure that nothing strange happens
e.preventDefault();

}
};

};

The addEvent function provides an incredibly simple but powerful way of working
with DOM events. Just looking at the advantages and disadvantages, it becomes quite clear
that this function can serve as a consistent and reliable way to deal with events. The full
source code to it can be found in Listing 6-15, which works in all browsers, doesn’t leak any
memory, handles the this keyword and the event object, and normalizes common event
object functions.



CHAPTER 6 = EVENTS

Listing 6-15. The addEvent/removeEvent Library Written by Dean Edwards

// addEvent/removeEvent written by Dean Edwards, 2005
// with input from Tino Zijdel
// http://dean.edwards.name/weblog/2005/10/add-event/

function addEvent(element, type, handler) {
// assign each event handler a unique ID
if (!handler.$$guid) handler.$$guid = addEvent.guid++;

// create a hash table of event types for the element
if (lelement.events) element.events = {};

// create a hash table of event handlers for each element/event pair
var handlers = element.events[type];
if (!'handlers) {

handlers = element.events[type] = {};

// store the existing event handler (if there is one)
if (element["on" + type]) {
handlers[0] = element["on" + type];

}
}

// store the event handler in the hash table
handlers[handler.$$guid] = handler;

// assign a global event handler to do all the work
element["on" + type] = handleEvent;

};

// a counter used to create unique IDs
addEvent.guid = 1;

function removeEvent(element, type, handler) {
// delete the event handler from the hash table
if (element.events && element.events[type]) {
delete element.events[type][handler.$$guid];
}
};

function handleEvent(event) {
var returnValue = true;

// grab the event object (IE uses a global event object)
event = event || fixEvent(window.event);

127



128

CHAPTER 6 = EVENTS

// get a reference to the hash table of event handlers
var handlers = this.events[event.type];

// execute each event handler
for (var i in handlers) {
this.$$handleEvent = handlers[i];
if (this.$$handleEvent(event) === false) {
returnValue = false;

}
}

return returnValue;

};

// Add some "missing" methods to IE's event object
function fixEvent(event) {
// add W3C standard event methods
event.preventDefault = fixEvent.preventDefault;
event.stopPropagation = fixEvent.stopPropagation;
return event;

};

fixEvent.preventDefault = function() {
this.returnvalue = false;

};

fixEvent.stopPropagation = function() {
this.cancelBubble = true;

};

Advantages of addEvent

The advantages of Dean Edwards’s addEvent event-binding method are the following:
e It works in all browsers, even older unsupported browsers.
* The this keyword is available in all bound functions, pointing to the current element.

 All browser-specific functions for preventing the default browser action and for stop-
ping event bubbling are neutralized.

* The event object is always passed in as the first argument, regardless of the browser
type.

Disadvantage of addEvent

The disadvantage of Dean Edwards’s addEvent event-binding method is the following:

e It only works during the bubbling phase (since it uses the traditional method of event
binding under the hood).



CHAPTER 6 = EVENTS

Considering just how powerful the addEvent/removeEvent functions are, there is
absolutely no reason not to use them in your code. On top of what’s shown in Dean’s default
code, it’s really trivial to add things such as better event object normalization, event triggering,
and bulk event removal, all things that are very difficult to do with the normal event structure.

Types of Events

Common JavaScript events can be classified into a couple different categories. Probably the
most commonly used category is that of mouse interaction, followed closely by keyboard and
form events. The following list provides a broad overview of the different classes of events that
exist and can be handled in a web application. For a lot of examples of the events in action,
please refer to Appendix B.

Mouse events: These fall into two categories: events that track where the mouse is cur-
rently located (mouseover, mouseout), and events that track where the mouse is clicking
(mouseup, mousedown, click).

Keyboard events: These are responsible for tracking when keyboard keys are pressed and
within what context—for example, tracking keyboard presses inside of form elements as
opposed to key presses that occur within the entire page. As with the mouse, three event
types are used to track the keyboard: keyup, keydown, and keypress.

Ul events: These are used to track when users are utilizing one aspect of the page over
another. With this you can reliably know when a user has begun input into a form ele-
ment, for example. The two events used to track this are focus and blur (for when an
object losses focus).

Form events: These relate directly to interactions that only occur with forms and form
input elements. The submit event is used to track when a form is submitted; the change
event watches for user input into an element; and the select event fires when a <select>
element has been updated.

Loading and error events: The final class of events are those that relate to the pageitself,
observing its load state. They are tied to when the user first loads the page (the load event)
and when the user finally leaves the page (the unload and beforeunload events). Addi-
tionally, JavaScript errors are tracked using the error event, giving you the ability to
handle errors individually.

With these general classes of events in mind, I recommend that you actively look over the
material in Appendix B where I dissect all the popular events, how they work, and how they
behave in different browsers, and describe all the intricacies needed to make them do what
you want.

Unobtrusive DOM Scripting

Everything that you've learned up to this point comes to one incredibly important goal: writ-
ing your JavaScript so that it interacts with your users unobtrusively and naturally. The driving
force behind this style of scripting is that you can now focus your energy on writing good code
that will work in modern browsers while failing gracefully for older (unsupported) browsers.

129



130 CHAPTER 6 = EVENTS

To achieve this, you could combine three techniques that you've learned to make an applica-
tion unobtrusively scripted:

1. All functionality in your application should be verified. For example, if you wish to
access the HTML DOM you need to verify that it exists and has all the functions that
you need to use it (e.g., if ( document &% document.getElementById ) ). This tech-
nique is discussed in Chapter 2.

2. Use the DOM to quickly and uniformly access elements in your document. Since you
already know that the browser supports DOM functions, you can feel free to write your
code simply and without hacks or kludges.

3. Finally, you dynamically bind all events to the document using the DOM and your
addEvent function. Nowhere must you have something such as this: <a href="#"
onclick="doStuff();">..</a>. This is very bad in the eyes of coding unobtrusively, as
that code will effectively do nothing if JavaScript is turned off or if the user has an old
version of a browser that you don’'t support. Since you're just pointing the user to a
nonsensical URL, it will give no interaction to users who are unable to support your
scripting functionality.

Ifitisn’t apparent already, you need to pretend that the user does not have JavaScript
installed at all, or that his browser may be inferior in some way. Go ahead, open your browser,
visit your favorite web page, and turn off JavaScript; does it still work? How about all CSS; can
you still navigate to where you need to go? Finally, is it possible to use your site without a mouse?
All of these should be part of the ultimate goal for your web site. Thankfully, since you've built up
an excellent understanding of how to code really efficient JavaScript code, the cost of this transi-
tion is negligible and can be done with minimal effort.

Anticipating JavaScript Being Disabled

The first goal that you should achieve is the complete removal of all inline event binding
inside your HTML documents. There are a couple problem areas that you can look for in your
document that frequently arise:

e Ifyou disable JavaScript on your page and click any/all links, do they take you to a web
page? Frequently developers will have URLs such as href="" or href="#", meaning that
they’re working some additional JavaScript voodoo to get the users their results.

* Ifyou disable JavaScript, do all of your forms work and submit properly? A common
problem occurs when using <select>s as dynamic menus (that only work with
JavaScript enabled).

Using these important lessons, you now have a web page that is completely usable for
people who have JavaScript disabled and who continue to use unsupported browsers.

Making Sure Links Don’t Rely on JavaScript

Now that the user can perform all the actions on the page, you need to make sure that the user
is provided with adequate notice before any action is performed. When Google released
Google Accelerator, which goes through all the links of a page and caches them for you, users



CHAPTER 6 = EVENTS

found that their e-mail, posts, and messages were magically being deleted for no apparent
reason. This was due to the fact that developers were putting links in their pages to delete a
message (for example), and then popping up a confirmation box (using JavaScript) to confirm
the deletion. But Google Accelerator completely ignored that pop-up, as it should, and tra-
versed the link anyway.

This scenario is an elaborate way of pointing you toward the HTTP specification, which
is used to transport all documents and files over the Web. Most simply, a GET request occurs
when you click a link; a POST occurs when you submit a form. In the specification it is stated
that no GET request should have damaging side effects (such as deleting a message), which
is why the Google Accelerator did what it did. It wasn’t due to bad programming on Google’s
part, but on the part of the web application developers who created the links in the first
place.

In a nutshell, all links on your site must be nondestructive. If by clicking a link you are
able to delete, edit, or modify any user-owned data, you should probably be using a form
to achieve that goal instead.

Watching for When CSS Is Disabled

One particularly sticky situation is the intersection between old and new browsers: browsers
that are too old to support modern JavaScript techniques but are new enough to support CSS
styling. A popular DHTML technique is to have an element start off as hidden (either with dis-
play set to none, or visibility set to hidden) and then have it fade in (using JavaScript) when
the user first visits the page. However, if the user does not have JavaScript enabled, he will
never see that element. A solution to this problem is shown in Listing 6-16.

Listing 6-16. Providing a Fade-in-on-Load Technique Without Failing if JavaScript Is Disabled

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />

<!--The instant the script is run, a new class is attached to the <html> element
giving us the ability to know if JavaScript is enabled, or not.-->
<script>document.documentElement.className = "js";</script>

<!--If JavaScript is enabled, hide the block of text,
which we will fade in later.--»>
<style>.js #fadein { display: none }</style>
</head>
<body>
<div id="fadein">Block of stuff to fade in..</div>
</body>
</html>

131



132

CHAPTER 6 = EVENTS

This technique goes way beyond simple fade-in DHTML, however. The ability to know
whether JavaScript is disabled/enabled and to apply styles is a huge win for careful web
developers.

Event Accessibility

The final piece to take into consideration when developing a purely unobtrusive web applica-
tion is to make sure that your events will work even without the use of a mouse. By doing this,
you help two groups of people: those in need of accessibility assistance (vision-impaired users),
and people who don'’t like to use a mouse. (Sit down one day, disconnect your mouse from
your computer, and learn how to navigate the Web using only a mouse. It’s a real eye-opening
experience.)

To make your JavaScript events more accessible, anytime you use the click, mouseover,
and mouseout events, you need to strongly consider providing alternative nonmouse bind-
ings. Thankfully there are easy ways to quickly remedy this situation:

Click event. One smart move on the part of browser developers was to make the click
event work whenever the Enter key is pressed. This completely removes the need to pro-
vide an alternative to this event. One point to note, however, is that some developers like
to bind click handlers to submit buttons in forms to watch for when a user submits a web
page. Instead of using that event, the developer should bind to the submit event on the
form object, a smart alternative that works reliably.

Mouseover event: When navigating a web page using a keyboard, you're actually changing
the focus to different elements. By attaching event handlers to both the mouseover and
focus events you can make sure that you'll have a comparable solution for both keyboard
and mouse users.

Mouseout event: Like the focus event for the mouseover event, the blur event occurs
whenever the user’s focus moves away from an element. You can then use the blur event
as a way to simulate the mouseout event with the keyboard.

Now that you know which event pairs behave the way you want them to, you can
revisit Listing 6-3 to build a hoverlike effect that works, even without a mouse, as shown
in Listing 6-17.

Listing 6-17. Attaching Pairs of Events to Elements to Allow for Accessible Web Page Use

// Find all the <a> elements, to attach the event handlers to them
var 1i = document.getElementsByTagName("a");
for (var i = 0; 1 < a.length; i++ ) {

// Attach a mouseover and focus event handler to the <a> element,
// which changes the <a>s background to blue when the user either
// mouses over the link, or focuses on it (using the keyboard)
a[i].onmouseover = a[i].onfocus = function() {
this.style.backgroundColor = 'blue';

};



CHAPTER 6 = EVENTS

// Attach a mouseout and blur event handler to the <a> element

// which changes the <li>s background back to its default white

// when the user moves away from the link

a[i].onmouseout = a[i].onblur = function() {
this.style.backgroundColor = 'white';

};

In reality, adding the ability to handle keyboard events, in addition to typical mouse
events, is completely trivial. If nothing else, this can help to serve as a way to help keyboard-
dependant users better use your site, which is a huge win for everyone.

Summary

Now that you know how to traverse the DOM, and bind event handlers to DOM elements, and
you know about the benefits of writing your JavaScript code unobtrusively, you can begin to
tackle some larger applications and cooler effects.

In this chapter I started with an introduction to how events work in JavaScript and
compared them to event models in other languages. Then you saw what information the
event model provides and how you can best control it. We then explored binding events to
DOM elements, and the different types of events that are available. I concluded by showing
how to integrate some effective unobtrusive scripting techniques into any web page.

Next you're going to look at how to perform a number of dynamic effects and inter-
actions, which make great use of the techniques that you just learned.

133






CHAPTER 7

JavaScript and CSS

The interaction between JavaScript and CSS is a mainstay of modern JavaScript program-
ming. It is virtually a requirement that all modern web applications use at least some form

of dynamic interaction. When they do, the user is able to move faster and waste less time wait-
ing for pages to load. Combining dynamic techniques with the ideas presented in Chapter 6
on events is fundamental to creating a seamless and powerful user experience.

Cascading style sheets are the de facto standard for styling and laying out usable, attrac-
tive web pages that still afford you (the developer) the greatest amount of power while provid-
ing your users with the least amount of difficulties. Interestingly, when you combine that
power with JavaScript, you are then able to build powerful interfaces, including such things
as animations, widgets, or dynamic displays.

Accessing Style Information

The combination of JavaScript and CSS is all about the resulting interaction that occurs.
Understanding what is available to you is very important to achieving the exact set of inter-
actions that you want.

Your primary tool for both setting and getting the CSS properties of an element is its style
property. For example, if you want to get the height of an element you could write the follow-
ing code: elem.style.height. And if you want to set the height of the element to a certain
dimension you would execute the following code: elem.style.height = '100px".

There are two problems that you encounter when working with CSS properties on DOM
elements, since they behave unlike how you would expect. First, JavaScript requires that you
specify the unit of size for setting any dimensional property (such as what you did for the
height property previously). While at the same time, any dimensional property also returns
a string representation of the element’s style property instead of a number (e.g., 100px instead
of 100).

Second, if an element is 100 pixels high, and you attempt to retrieve its current height,
you would expect to receive 100px from the style property, but that won’t necessarily be the
case. This is due to the fact that any style information that you've preset using style sheets
or inline CSS will not be reliably reflected in your style property.

This brings us to an important function for dealing with CSS in JavaScript: a method for
retrieving the actual, current style properties of an element, giving you an exact, expected
value. To handle the problem of computed style values there exists a fairly reliable set of meth-
ods that you can use to get the actual, computed style properties of a DOM element. When
calling these methods (which come in W3C- and IE-specific varieties) you receive the actual

135



136

CHAPTER 7 © JAVASCRIPT AND CSS

computed style value of an element. This takes into account all past style sheets and element-
specific properties along with your current JavaScript modifications. Using these methods can
be immensely helpful when developing an accurate view of the elements that you're working
with.

It’s also important to take into account the numerous differences that exist between
browsers when getting the computed style value of an element. As with most things, Internet
Explorer has one means of getting the current computed style of an element, while all other
browsers use the W3C-defined way of doing so.

A function for finding the computed style value of an element is shown in Listing 7-1, and
an example of your new function in action is shown in Listing 7-2.

Listing 7-1. A Function for Finding the Actual Computed Value of a CSS Style Property on
an Element

// Get a style property (name) of a specific element (elem)
function getStyle( elem, name ) {
// If the property exists in style[], then it's been set
// recently (and is current)
if (elem.style[name])
return elem.style[name];

// Otherwise, try to use IE's method
else if (elem.currentStyle)
return elem.currentStyle[name];

// 0r the W3C's method, if it exists
else if (document.defaultView && document.defaultView.getComputedStyle) {
// It uses the traditional 'text-align' style of rule writing,
// instead of textAlign
name = name.replace(/([A-Z])/g,"-$1");
name = name.tolowerCase();

// Get the style object and get the value of the property (if it exists)
var s = document.defaultView.getComputedStyle(elem,"");
return s 88 s.getPropertyValue(name);

// Otherwise, we're using some other browser
} else
return null;



CHAPTER 7 © JAVASCRIPT AND CSS

Listing 7-2. A Situation Where the Computed Value of an Element’s CSS Is Not Necessarily the
Same As the Values Made Available in the Style Object

<html>
<head>
<style>p { height: 100px; }</style>
<script>
window.onload = function(){
// Locate the paragraph to check the height of
var p = document.getElementsByTagName("p")[0];

// Check the height the traditional way
alert( p.style.height + " should be null" );

// Check the computed value of the height
alert( getStyle( p, "height" ) + " should be 100px" );
b
</script>
</head>
<body>
<p>I should be 100 pixels tall.</p>
</body>
</html>

Listing 7-2 shows how you can get the actual computed value of a CSS property on
a DOM element. In this case you get an actual height of an element in pixels, even though
that height is set via a CSS in the header of the file. It’'s important to note that your function
ignores alternative units of measurement (such as using percentages). So while this solu-
tion isn't completely foolproof, it does make for an excellent starting point.

With this tool in hand you can now look at how to get and set the properties that you need
to build some basic DHTML interactions.

Dynamic Elements

The premise behind a dynamic element is that it’s an element that is manipulated using
JavaScript and CSS to create nonstatic effects (a simple example is a check box indicating
you're interested in a newsletter, and an e-mail input area pops up).

Fundamentally, there are three critical properties that are used to create dynamic
effects: position, size, and visibility. Using these three properties you can simulate most
common user interactions in a modern web browser.

An Element’s Position

Working with the position of an element is an important building block for developing inter-
active elements within a page. Accessing and modifying the CSS position properties lets you
effectively simulate a number of popular animations and interactions (such as dragging and
dropping).

137



138 CHAPTER 7 © JAVASCRIPT AND CSS

An important step to working with element positioning is to know how the positioning
system works in CSS, which you'll be using extensively. In CSS, elements are positioned using
offsets. The measurement used is the amount of offset from the top-left corner of an element’s
parent. An example of the coordinate system used in CSS is shown in Figure 7-1.

X (Left)

Google

Web |Images Groups MNews Froogle Maps more »

Advanced Search
Preferances

Google Search | I'm Feeling Lucky _

Advertising Programs - Business Solutions - About Google

Y (Top)

E2006 Google

Figure 7-1. An example of the coordinate system on a web page using CSS

All elements on a page have some form of a top (vertical coordinate) and a left (horizon-
tal coordinate) offset. Generally speaking, most elements are simply positioned statically in
relation to the elements surrounding them. An element can have a number of different posi-
tioning schemes, as proposed by the CSS standard. To understand this better, take a look at
the simple HTML web page shown in Listing 7-3.

Listing 7-3. An HTML Web Page You Can Use to Show Differences in Positioning

<html>

<head>

<style>

pi{
border: 3px solid red;
padding: 10px;
width: 400px;
background: #FFF;



CHAPTER 7 © JAVASCRIPT AND CSS

p.odd {
/* Positioning information goes in here */
position: static;

top: Opx;
left: opx;
}
</style>
</head>
<body>
<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam ..p>
<p class="odd'>Phasellus dictum dignissim justo. Duis nec risus id nunc..p>
<p>Sed vel leo. Nulla iaculis, tortor non laoreet dictum, turpis diam ..</p>
</body>
</html>

With your simple HTML page all set up, let’s look at how changing the positioning of the
second paragraph results in different layouts for the site:

Static positioning This is the default way that an element is positioned; it simply follows
the normal flow of the document. The top and left properties have no effect when an ele-
ment has static positioning. Figure 7-2 shows a paragraph that has CSS positioning of
position: static; top: Opx; left: Opx;.

139



140

CHAPTER 7 © JAVASCRIPT AND CSS

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam
mi justo, aliquam id, tempus in, gravida ut, eros. Curabitur in
sapien. Integer sodales. Curabitur sed tortor. Sed neque. Nulla
nunc ipsum, commodo et, ultrices at, feugiat eget, dui.
Curabitur nec eros sit amet quam sodales sodales. Vivamus non
est. Quisque vulputate venenatis est. Vivamus at urna. Ut
dolor. Curabitur vestibulum malesuada metus. Duis posuere, mi
sit amet dictum vehicula, pede sem adipiscing pede, vel iaculis
lorem nibh vitae justo. Integer nisl mauris, ultricies vitae, lacinia
ut, varius ut, nibh.

Phasellus dictum dignissim justo. Duis nec risus id nunc
ultrices eleifend. Morbi posuere lobortis massa. Morbi et urna
nec pede eleifend dapibus. Curabitur sit amet nibh in tortor
rutrum lobortis. Aliquam fringilla tellus nec lorem. Mauris
eleifend odio in nibh. Morbi magna dui, faucibus luctus, auctor
ac, imperdiet nec, sem. Praesent ullamcorper arcu ut lacus.
Phasellus feugiat velit sit amet mi. Quisque scelerisque. Duis
lacinia tellus semper purus. Morbi et leo. Aliquam posuere
imperdiet nibh. Pellentesque quis neque. In sed velit quis orci
rutrum rhoncus.

Sed vel leo. Nulla iaculis, tortor non laoreet dictum, turpis diam
lacinia massa, ornare luctus leo eros sit amet sem. Integer
bibendum dapibus purus. Donec magna tellus, molestie ut,
dapibus sed, feugiat nec, est. Nam faucibus lorem non ante.
Integer ut ipsum. Duis facilisis mi non eros. Nulla sollicitudin
orci at turpis luctus pharetra. Proin lobortis purus nec tortor.
Quisque non metus. Nunc enim est, placerat nec, tristique sed,
aliqguam in, lectus. Aliquam viverra. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus
mus. Proin vehicula venenatis odio. Donec viverra commodo
lectus. Suspendisse potenti.

Figure 7-2. Paragraphs within the normal (static) flow of a page

Relative positioning: This means the positioning is very similar to static positioning, as the
element will continue to follow the normal flow of the document until instructed to do
otherwise. However, setting the top or left properties will cause the element to be shifted
in relation to its original (static) position. An example of relative positioning is shown in
Figure 7-3, with the CSS positioning of position: relative; top: -50px; left: 50px;.



CHAPTER 7 © JAVASCRIPT AND CSS 141

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam
mi justo, aliquam id, tempus in, gravida ut, eros. Curabitur in
sapien. Integer sodales. Curabitur sed tortor. Sed neque. Nulla
nunc ipsum, commodo et, ultrices at, feugiat eget, dui.
Curabitur nec eros sit amet quam sodales sodales. Vivamus non
est. Quisque vulputate venenatis est. Vivamus at urna. Ut
dolor. Curabitur vestibulum malesuada metus. Duis posuere, mi
sit amet dictum vehicula, pede sem adipiscing pede, vel iaculis
lorem nibh vitae i i i icies yi ini
ut, val

Phasellus dictum dignissim justo. Duis nec risus id nunc
ultrices eleifend. Morbi posuere lobortis massa. Morbi et urna
nec pede eleifend dapibus. Curabitur sit amet nibh in tortor
rutrum lobortis. Aliquam fringilla tellus nec lorem. Mauris
eleifend odio in nibh. Morbi magna dui, faucibus luctus, auctor
ac, imperdiet nec, sem. Praesent ullamcorper arcu ut lacus.
Phasellus feugiat velit sit amet mi. Quisque scelerisque. Duis
lacinia tellus semper purus. Morbi et leo. Aliquam posuere
imperdiet nibh. Pellentesque quis neque. In sed velit quis orci
rutrum rhoncus.

Sed vel leo. Nulla iaculis, tortor non laoreet dictum, turpis diam
lacinia massa, ornare luctus leo eros sit amet sem. Integer
bibendum dapibus purus. Donec magna tellus, molestie ut,
dapibus sed, feugiat nec, est. Nam faucibus lorem non ante.
Integer ut ipsum. Duis facilisis mi non eros. Nulla sollicitudin
orci at turpis luctus pharetra. Proin lobortis purus nec tortor.
Quisque non metus. Nunc enim est, placerat nec, tristique sed,
aliqguam in, lectus. Aliquam viverra. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus
mus. Proin vehicula venenatis odio. Donec viverra commodo
lectus. Suspendisse potenti.

Figure 7-3. Relative positioning, with the element shifted up and over the previous element,
rather than following the normal flow of the document

Absolute positioning: Positioning an element absolutely completely breaks it out of the
normal flow of page layout. An element that’s been positioned absolutely will be dis-
played in relation to the first parent element that has a nonstatic position. If no parent
exists, it’s positioned in relation to the entire document. An example of absolute position-
ing is shown in Figure 7-4, with the CSS positioning of position: absolute; top: 20px;
left: opx;.



142

CHAPTER 7 © JAVASCRIPT AND CSS

Phasellus dictum dignissim justo. Duis nec risus id nunc
ultrices eleifend. Morbi posuere lobortis massa. Morbi et urna
nec pede eleifend dapibus. Curabitur sit amet nibh in tortor
rutrum lobortis. Aliquam fringilla tellus nec lorem. Mauris
eleifend odio in nibh. Morbi magna dui, faucibus luctus, auctor
ac, imperdiet nec, sem. Praesent ullamcorper arcu ut lacus.
Phasellus feugiat velit sit amet mi. Quisque scelerisque. Duis
lacinia tellus semper purus. Morbi et leo. Aliquam posuere
imperdiet nibh. Pellentesque quis neque. In sed velit quis orci
rutrum rhoncus.

Sed vel leo. Nulla iaculis, tortor non laoreet dictum, turpis diam
lacinia massa, ornare luctus leo eros sit amet sem. Integer
bibendum dapibus purus. Donec magna tellus, molestie ut,
dapibus sed, feugiat nec, est. Nam faucibus lorem non ante.
Integer ut ipsum. Duis facilisis mi non eros. Nulla sollicitudin
orci at turpis luctus pharetra. Proin lobortis purus nec tortor.
Quisque non metus. Nunc enim est, placerat nec, tristique sed,
aliqguam in, lectus. Aliquam viverra. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus
mus. Proin vehicula venenatis odio. Donec viverra commodo
lectus. Suspendisse potenti.

Figure 7-4. Absolute positioning, with the element positioned toward the upper-left corner
of the page, on top of the element already displayed there

Fixed Positioning: Fixed positioning works by positioning an element relative to the

browser window. Setting an element’s top and left to 0 pixels will display that element
in the top-left corner of the browser for as long as the user is on that page, completely
ignoring any use of the browser’s scrollbars. An example of fixed positioning is shown
in Figure 7-5, with the CSS positioning of position: fixed; top: 20px; right: opx;.

Knowing how an element can be positioned is important for knowing where an element
should be located within a DOM structure, or what means of positioning you should use to

achieve the best effect.
We will now look at how to extract and manipulate the exact position of an element,

regardless of what layout is used or what CSS properties are set.



CHAPTER 7 © JAVASCRIPT AND CSS

OO VT IO TV O T OO TIOT IO GG T O T T Py OO T

lacinia massa, ornare luctus leo eros sit amet gasal

I 'y

rutrum rhoncus.

bibendum dapibus purus. Donec magna tellud  phagellus dictum dignissim justo. Duis nec risus id nunc
dapibus sed, feugiat nec, est. Nam faucibus I yirices eleifend. Morbi posuere lobortis massa. Morbi et urna
Integer ut ipsum. Duis facilisis mi non eros. N pec pede eleifend dapibus. Curabitur sit amet nibh in tortor
orci at turpis luctus pharetra. Proin lobortis py rygrum lobortis. Aliquam fringilla tellus nec lorem. Mauris
Quisque non metus. Nunc enim est, placerat § eleifend odio in nibh. Morbi magna dui, faucibus luctus, auctor
aliquam in, lectus. Aliquam viverra. Cum soq| gc, imperdiet nec, sem. Praesent ullamcorper arcu ut lacus.
penatibus et magnis dis parturient montes, n3y Phasellus feugiat velit sit amet mi. Quisque scelerisque. Duis
mus. Proin vehicula venenatis odio. Donec v [acinia tellus semper purus. Morbi et leo. Aliquam posuere
lectus. Suspendisse potenti. imperdiet nibh. Pellentesque quis neque. In sed velit quis orci

Sed vel leo. Nulla iaculis, tortor non laoreet dictum, turpis diam
lacinia massa, ornare luctus leo eros sit amet sem. Integer
bibendum dapibus purus. Donec magna tellus, molestie ut,
dapibus sed, feugiat nec, est. Nam faucibus lorem non ante.
Integer ut ipsum. Duis facilisis mi non eros. Nulla sollicitudin
orci at turpis luctus pharetra. Proin lobortis purus nec tortor.
Quisque non metus. Nunc enim est, placerat nec, tristique sed,
aliqguam in, lectus. Aliquam viverra. Cum sociis natoque
penatibus et magnis dis parturient montes, nascetur ridiculus
mus. Proin vehicula venenatis odio. Donec viverra commodo
lectus. Suspendisse potenti.

| v

Figure 7-5. Fixed positioning, with the element positioned in the upper-right corner of the page,
even though the browser window has been scrolled down the page

Getting the Position

Where an element is located varies depending on its CSS parameters and the content immedi-
ately adjacent to it. One thing that accessing CSS properties or their actual computed values
does not afford you is the ability to know an element’s exact position within the page or even

within another element.

To start with, let’s look at finding an element’s position within a page. You have a couple
element properties at your disposal that you can use to find this information. All modern
browsers support the following three properties; how they handle them, however, is another

matter:

offsetParent: Theoretically, this is the parent that an element is positioned within. How-
ever, in practice, the element that offsetParent refers to depends on the browser (for
example, in Firefox it refers to the root node, and in Opera, the immediate parent).

offsetLeft and offsetTop: These parameters are the horizontal and vertical offsets of the
element within the context of the offsetParent. Thankfully, this is always accurate in

modern browsers.

The trick, now, is to find a way that you can determine a consistent cross-browser meas-
ure of an element’s location. The most consistent way to do this is by using the methods
presented in Listing 7-4, traversing up the DOM tree using the offsetParent property and

adding up the offset values along the way.

143



144

CHAPTER 7 © JAVASCRIPT AND CSS

Listing 7-4. Two Helper Functions for Determining the x and y Locations of an Element Relative
to the Entire Document

// Find the X (Horizontal, Left) position of an element
function pageX(elem) {

// See if we're at the root element, or not

return elem.offsetParent ?

// If we can still go up, add the current offset and recurse upwards
elem.offsetLeft + pageX( elem.offsetParent ) :

// Otherwise, just get the current offset
elem.offsetleft;

}

// Find the Y (Vertical, Top) position of an element
function pageY(elem) {
// See if we're at the root element, or not
return elem.offsetParent ?

// If we can still go up, add the current offset and recurse upwards
elem.offsetTop + pageY( elem.offsetParent ) :

// Otherwise, just get the current offset
elem.offsetTop;

The next piece of the positioning puzzle is figuring out the horizontal and vertical posi-
tioning of an element within its parent. It’s important to note that it’s not sufficient to simply
use an element’s style.left or style.top properties, as you may want to find an element’s posi-
tion that has not yet been styled using JavaScript or CSS.

Using the position of an element relative to its parent, you can add additional elements
to the DOM, positioned relative to the parent. This value is perfect for building contextual
tooltips, for example.

In order to find the positioning of an element relative to its parent element, you must
again turn to the offsetParent property. Since that property is not guaranteed to return the
actual parent of the specified element, you must use your pageX and pageY functions to
find the difference between the parent element and the child element. In the two functions
shown in Listing 7-5, I attempt to first use offsetParent, if it is the actual parent of the cur-
rent element; otherwise, I continue to traverse up the DOM using the pageX and pageY
methods to determine its actual positioning.



CHAPTER 7 © JAVASCRIPT AND CSS

Listing 7-5. Two Functions for Determining the Position of an Element Relative to Its
Parent Element

// Find the horizontal positioing of an element within its parent
function parentX(elem) {
// If the offsetParent is the element's parent, break early
return elem.parentNode == elem.offsetParent ?
elem.offsetleft :

// Otherwise, we need to find the position relative to the entire
// page for both elements, and find the difference
pageX( elem ) - pageX( elem.parentNode );

}

// Find the vertical positioning of an element within its parent
function parentY(elem) {
// If the offsetParent is the element's parent, break early
return elem.parentNode == elem.offsetParent ?
elem.offsetTop :

// Otherwise, we need to find the position relative to the entire
// page for both elements, and find the difference
pageY( elem ) - pageY( elem.parentNode );

The final piece to working with an element’s positioning is finding out the position of
an element relative to its CSS container. As discussed previously, an element can actually be
contained within one element but be positioned relative to another parent (with the use of
relative and absolute positioning). With this in mind, you can turn back to the getStyle func-
tion to find the computed value of the CSS offsets, since that is what the positioning is
equivalent to.

To handle this, there are two simple wrapper functions, shown in Listing 7-6, that you
can use. They both simply call the getStyle function, but also remove any “extraneous”
(unless you're using a non-pixel-based layout, then it’'s important) unit information (for
example 100px would become 100).

Listing 7-6. Helper Functions for Finding the CSS Positioning of an Element

// Find the left position of an element

function posX(elem) {
// Get the computed style and get the number out of the value
return parseInt( getStyle( elem, "left" ) );

145



146

CHAPTER 7 © JAVASCRIPT AND CSS

// Find the top position of an element

function posY(elem) {
// Get the computed style and get the number out of the value
return parseInt( getStyle( elem, "top" ) );

Setting the Position

Unlike with getting the position of an element, setting the position is much less flexible. But
when used in combination with the various means of layout (absolute, relative, fixed) you can
achieve comparable, and usable, results.

Currently, the only way to adjust the position of an element is through the modification
of its CSS properties. To keep your methodology consistent, you will only modify the left and
top properties, even though other properties exist (such as bottom and right). To begin with,
you can easily create a pair of functions, as shown in Listing 7-7, that you can use to set the
position of an element, regardless of its current location.

Listing 7-7. A Pair of Functions for Setting the x and y Positions of an Element, Regardless of
Its Current Position

// A function for setting the horizontal position of an element
function setX(elem, pos) {
// Set the 'left' CSS property, using pixel units
elem.style.left = p