
Matt NeuburgMatt Neuburg

Covers iOS 13,

Xcode 11, and Swift 5.1
Programming

iOS 13
Dive Deep into Views, View Controllers,
and Frameworks

Matt Neuburg

Boston

Programming iOS 13
Dive Deep into Views, View Controllers,

and Frameworks

TENTH EDITION

978-1-492-07461-8

[MBP]

Programming iOS 13, Tenth Edition
by Matt Neuburg

Copyright © 2020 Matt Neuburg. All rights reserved.

Printed in Canada.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Rachel Roumeliotis
Production Editor: Kristen Brown

Proofreader: O’Reilly Production Services
Indexer: Matt Neuburg
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Matt Neuburg

May 2011: First Edition
March 2012: Second Edition
March 2013: Third Edition
December 2013: Fourth Edition
December 2014: Fifth Edition
November 2015: Sixth Edition
November 2016: Seventh Edition
December 2017: Eighth Edition
October 2018: Ninth Edition
October 2019: Tenth Edition

Revision History for the Tenth Edition:
2019-12-05: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781492074618 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming iOS 13, the cover image
of a kingbird, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492074618

Table of Contents

Preface. xxi

Part I. Views

1. Views. 3
Window and Root View 4

How an App Launches 4
App Without a Storyboard 6
Referring to the Window 8

Experimenting with Views 8
Subview and Superview 9
Color 12
Visibility and Opacity 14
Frame 15
Bounds and Center 16
Transform 20
Transform3D 24
Window Coordinates and Screen Coordinates 26
Trait Collections 27

Interface Style 29
Size Classes 30
Overriding Trait Collections 31

Layout 32
Autoresizing 33
Autolayout and Constraints 35
Implicit Autoresizing Constraints 38
Creating Constraints in Code 40
Constraints as Objects 45
Margins and Guides 47

iii

Intrinsic Content Size 53
Self-Sizing Views 55
Stack Views 56
Internationalization 60
Mistakes with Constraints 60

Configuring Layout in the Nib 63
Autoresizing in the Nib 64
Creating a Constraint 65
Viewing and Editing Constraints 66
Problems with Nib Constraints 68
Varying the Screen Size 71
Conditional Interface Design 71

Xcode View Features 74
View Debugger 74
Previewing Your Interface 75
Designable Views and Inspectable Properties 75

Layout Events 78

2. Drawing. 81
Images and Image Views 81

Image Files 82
Image Views 88
Resizable Images 90
Transparency Masks 93
Reversible Images 95

Graphics Contexts 96
Drawing on Demand 98
Drawing a UIImage 99

UIImage Drawing 100
CGImage Drawing 103
Snapshots 105
CIFilter and CIImage 106
Blur and Vibrancy Views 111
Drawing a UIView 112
Graphics Context Commands 114

Graphics Context Settings 115
Paths and Shapes 116
Clipping 120
Gradients 121
Colors and Patterns 122
Graphics Context Transforms 125
Shadows 127

iv | Table of Contents

Erasing 128
Points and Pixels 129
Content Mode 129

3. Layers. 131
View and Layer 132
Layers and Sublayers 133

Manipulating the Layer Hierarchy 136
Positioning a Sublayer 137
CAScrollLayer 138

Layer and Delegate 139
Layout of Layers 139
Drawing in a Layer 140

Drawing-Related Layer Properties 142
Content Resizing and Positioning 143
Layers that Draw Themselves 145

Transforms 146
Affine Transforms 147
3D Transforms 148
Depth 149

Further Layer Features 153
Shadows 153
Borders and Rounded Corners 154
Masks 154

Layer Efficiency 156
Layers and Key–Value Coding 157

4. Animation. 159
Drawing, Animation, and Threading 160
Image View and Image Animation 162
View Animation 164

A Brief History of View Animation 164
Property Animator Basics 165
View Animation Basics 168
View Animation Configuration 171
Timing Curves 176
Canceling a View Animation 179
Frozen View Animation 183
Custom Animatable View Properties 184
Keyframe View Animation 185
Transitions 188

Implicit Layer Animation 190

Table of Contents | v

Animatable Layer Properties 191
Animation Transactions 191
Media Timing Functions 193

Core Animation 194
CABasicAnimation and Its Inheritance 194
Using a CABasicAnimation 196
Springing Animation 199
Keyframe Animation 200
Making a Property Animatable 201
Grouped Animations 203
Freezing an Animation 206
Transitions 207
Animations List 209

Actions 211
What an Action Is 211
Action Search 211
Hooking Into the Action Search 213
Making a Custom Property Implicitly Animatable 216
Nonproperty Actions 217

Emitter Layers 219
CIFilter Transitions 224
UIKit Dynamics 226

The Dynamics Stack 226
Custom Behaviors 230
Animator and Behaviors 232

Motion Effects 239
Animation and Layout 240

5. Touches. 243
Touch Events and Views 244
Receiving Touches 246
Restricting Touches 248
Interpreting Touches 249
Gesture Recognizers 253

Gesture Recognizer Classes 253
Gesture Recognizer Conflicts 259
Gesture Recognizer Delegate 261
Subclassing Gesture Recognizers 263
Gesture Recognizers in the Nib 266

3D Touch Press Gesture 266
Touch Delivery 268
Hit-Testing 269

vi | Table of Contents

Performing Hit-Testing 270
Hit-Test Munging 271
Hit-Testing for Layers 272
Hit-Testing for Drawings 273
Hit-Testing During Animation 274

Initial Touch Event Delivery 276
Gesture Recognizer and View 277
Touch Exclusion Logic 278
Gesture Recognition Logic 279

Part II. Interface

6. View Controllers. 285
View Controller Responsibilities 286
View Controller Hierarchy 287

Automatic Child View Placement 290
Manual Child View Placement 291
Presented View Placement 293
Ensuring a Coherent Hierarchy 295

View Controller Creation 296
How a View Controller Obtains Its View 297

Manual View 299
Generic Automatic View 300
View in a Separate Nib 301
Summary 304

How Storyboards Work 304
How a Storyboard View Controller Nib is Loaded 305
How a Storyboard View Nib is Loaded 307

View Resizing 307
View Size in the Nib Editor 308
Bars and Underlapping 308
Resizing and Layout Events 312

Rotation 314
Uses of Rotation 314
Permitting Compensatory Rotation 315
Initial Orientation 317
Detecting Rotation 317

View Controller Manual Layout 318
Initial Manual Layout 318
Manual Layout During Rotation 319

Presented View Controller 321

Table of Contents | vii

Presentation and Dismissal 321
Configuring a Presentation 324
Communication with a Presented View Controller 330
Adaptive Presentation 332
Presentation, Rotation, and the Status Bar 334

Tab Bar Controller 335
Tab Bar Items 335
Configuring a Tab Bar Controller 337

Navigation Controller 339
Bar Button Items 341
Navigation Items and Toolbar Items 342
Configuring a Navigation Controller 346

Custom Transition 350
Noninteractive Custom Transition Animation 351
Interactive Custom Transition Animation 356
Custom Presented View Controller Transition 361
Transition Coordinator 367

Page View Controller 368
Preparing a Page View Controller 369
Page View Controller Navigation 371
Other Page View Controller Configurations 374

Container View Controllers 375
Adding and Removing Children 376
Status Bar, Traits, and Resizing 380

Previews and Context Menus 382
Storyboards 386

Triggered Segues 390
Container Views and Embed Segues 395
Storyboard References 396
Unwind Segues 397

View Controller Lifetime Events 401
Order of Events 403
Appear and Disappear Events 404
Event Forwarding to a Child View Controller 405

View Controller Memory Management 406
Lazy Loading 407
NSCache, NSPurgeableData, and Memory-Mapping 408
Background Memory Usage 410

7. Scroll Views. 411
Content Size 411
Creating a Scroll View in Code 412

viii | Table of Contents

Manual Content Size 412
Automatic Content Size with Autolayout 413

Scroll View Layout Guides 414
Using a Content View 416
Scroll View in a Nib 419
Content Inset 422
Scrolling 424

Scrolling in Code 426
Paging 427
Tiling 429

Zooming 430
Zooming Programmatically 432
Zooming with Detail 433

Scroll View Delegate 436
Scroll View Touches 438
Floating Scroll View Subviews 442
Scroll View Performance 443

8. Table Views and Collection Views. 445
Table View Controller 448
Table View Cells 449

Built-In Cell Styles 450
Registering a Cell Class 456
Custom Cells 460

Table View Data 466
The Three Big Questions 467
Reusing Cells 469

Table View Sections 471
Section Headers and Footers 472
Table View Section Example 475
Section Index 477

Variable Row Heights 478
Manual Row Height Measurement 479
Measurement and Layout with Constraints 480
Estimated Height 481
Automatic Row Height 482

Table View Selection 484
Managing Cell Selection 485
Responding to Cell Selection 486
Navigation from a Table View 487

Table View Scrolling and Layout 489
Refreshing a Table View 489

Table of Contents | ix

Cell Choice and Static Tables 491
Direct Access to Cells 493
Refresh Control 494

Editing a Table View 495
Toggling a Table View’s Edit Mode 496
Edit Mode and Selection 498
Changing a Table View’s Structure 498
Deleting a Cell 500
Deleting Multiple Cells 501

Table View Diffable Data Source 502
Populating a Diffable Data Source 504
Subclassing a Diffable Data Source 507
Changing a Diffable Data Source 508
Pros and Cons of the Diffable Data Source 509

More Table View Editing 510
Rearranging Cells 510
Editable Content in Cells 511
Expandable Cell 513

Table View Swipe Action Buttons 514
Table View Menus 515
Table View Searching 517

Configuring a Search Controller 517
Using a Search Controller 519

Collection Views 524
Collection View Classes 527
Flow Layout 529
Compositional Layout 532

Size, Count, Spacing, and Insets 533
Supplementary Items 536
Multiple Section Layouts 537
Other Compositional Layout Features 538

Collection View Diffable Data Source 541
Basic Cell Manipulation 544

Selecting Cells 544
Deleting Cells 545
Menu Handling 545
Rearranging Cells 546

Custom Collection View Layouts 548
Tweaking a Layout 548
Collection View Layout Subclass 551
Decoration Views 552

Switching Layouts 554

x | Table of Contents

Collection Views and UIKit Dynamics 555

9. iPad Interface. 557
Popovers 557

Arrow Source and Direction 560
Popover Size 560
Popover Appearance 561
Passthrough Views 564
Popover Presentation, Dismissal, and Delegate 565
Adaptive Popovers 566
Popover Segues 567
Popover Presenting a View Controller 568

Split Views 569
Expanded Split View Controller (iPad) 570
Collapsed Split View Controller (iPhone) 573
Expanding Split View Controller (Big iPhone) 575
Customizing a Split View Controller 577
Split View Controller in a Storyboard 580
Setting the Collapsed State 582
View Controller Message Percolation 583

iPad Multitasking 586
Drag and Drop 588

Drag and Drop Architecture 589
Basic Drag and Drop 590
Item Providers 593
Slow Data Delivery 597
Additional Delegate Methods 598
Table Views and Collection Views 601
Spring Loading 605
iPhone and Local Drag and Drop 607

Multiple Windows 608
The Window Architecture 608
Scene Creation 609
Window Creation and Closing 611
State Saving and Restoration 612
Further Multiple Window Considerations 616

10. Text. 619
Fonts and Font Descriptors 620

Fonts 620
Symbol Images and Text 624
Font Descriptors 624

Table of Contents | xi

Choosing a Font 628
Adding Fonts 628

Attributed Strings 631
Attributed String Attributes 631
Making an Attributed String 634
Modifying and Querying an Attributed String 640
Custom Attributes 641
Drawing and Measuring an Attributed String 642

Labels 643
Number of Lines 644
Wrapping and Truncation 644
Fitting Label and Text 645
Customized Label Drawing 647

Text Fields 647
Summoning and Dismissing the Keyboard 650
Keyboard Covers Text Field 651
Text Field Delegate and Control Event Messages 655
Text Field Menu 658
Drag and Drop 660
Keyboard and Input Configuration 660

Text Views 667
Links, Text Attachments, and Data 668
Self-Sizing Text View 671
Text View and Keyboard 671

Text Kit 672
Text View and Text Kit 673
Text Container 673
Alternative Text Kit Stack Architectures 676
Layout Manager 678
Text Kit Without a Text View 681

11. Web Views. 687
WKWebView 688

Web View Content 689
Tracking Changes in a Web View 691
Web View Navigation 692
Communicating with a Web Page 694
Custom Schemes 697
Web View Previews and Context Menus 699

Safari View Controller 700
Developing Web View Content 701

xii | Table of Contents

12. Controls and Other Views. 703
UIActivityIndicatorView 703
UIProgressView 705

Progress View Alternatives 707
The Progress Class 708

UIPickerView 709
UISearchBar 711
UIControl 715

UISwitch 719
UIStepper 720
UIPageControl 722
UIDatePicker 722
UISlider 725
UISegmentedControl 728
UIButton 731
Custom Controls 736

Bars 738
Bar Position 739
Bar Metrics 740
Bar and Item Appearance 740
Bar Background and Shadow 742
Bar Button Items 743
Navigation Bar 746
Toolbar 748
Tab Bar 749

Tint Color 752
Appearance Proxy 754

13. Modal Dialogs. 757
Alerts and Action Sheets 757

Alerts 758
Action Sheets 761
Alert Alternatives 763

Quick Actions 764
Local Notifications 768

Authorization for Local Notifications 771
Notification Categories 775
Scheduling a Local Notification 778
Hearing About a Local Notification 780
Grouped Notifications 783
Managing Notifications 784
Notification Content Extensions 785

Table of Contents | xiii

Today Extensions 788
Activity Views 791

Presenting an Activity View 792
Custom Activities 795
Action Extensions 798
Share Extensions 801

Part III. Some Frameworks

14. Audio. 807
System Sounds 807
Audio Session 809

Category 809
Activation and Deactivation 810
Ducking 811
Interruptions 812
Secondary Audio 813
Routing Changes 814

Audio Player 815
Remote Control of Your Sound 818
Playing Sound in the Background 821
AVAudioRecorder 822
AVAudioEngine 823
MIDI Playback 829
Text to Speech 829
Speech to Text 830
Further Topics in Sound 833

15. Video. 835
AVPlayerViewController 836

Other AVPlayerViewController Properties 838
Picture-in-Picture 840

Introducing AV Foundation 842
Some AV Foundation Classes 842
Things Take Time 843
Time Is Measured Oddly 846
Constructing Media 847
AVPlayerLayer 852
Further Exploration of AV Foundation 855

UIVideoEditorController 855

xiv | Table of Contents

16. Music Library. 859
Music Library Authorization 859
Exploring the Music Library 861

Querying the Music Library 862
Persistence and Change in the Music Library 866

Music Player 866
Setting the Queue 867
Modifying the Queue 869
Player State 869

MPVolumeView 871
Playing Songs with AV Foundation 871
Media Picker 874

17. Photo Library and Camera. 877
Browsing with UIImagePickerController 877

Image Picker Controller Presentation 878
Image Picker Controller Delegate 879
Dealing with Image Picker Controller Results 881

Photos Framework 882
Querying the Photo Library 884
Modifying the Library 885
Being Notified of Changes 888
Fetching Images 889
Editing Images 893
Photo Editing Extension 898

Using the Camera 900
Capture with UIImagePickerController 900
Capture with AV Foundation 903

18. Contacts. 909
Contact Classes 909
Fetching Contact Information 911

Fetching a Contact 911
Repopulating a Contact 912
Labeled Values 913
Contact Formatters 913

Saving Contact Information 915
Contact Sorting, Groups, and Containers 915
Contacts Interface 916

CNContactPickerViewController 917
CNContactViewController 919

Table of Contents | xv

19. Calendar. 923
Calendar Database Contents 924

Calendars 924
Calendar Items 925
Calendar Database Changes 925

Creating Calendars, Events, and Reminders 926
Events 926
Alarms 927
Recurrence 928
Reminders 929
Proximity Alarms 931

Fetching Events and Reminders 931
Calendar Interface 932

EKEventViewController 933
EKEventEditViewController 934
EKCalendarChooser 934

20. Maps. 937
Map Views 937

Displaying a Region 938
Scrolling and Zooming 939
Other Map View Customizations 941
Map Images 941

Annotations 942
Customizing an MKMarkerAnnotationView 943
Changing the Annotation View Class 945
Custom Annotation View Class 947
Custom Annotation Class 948
Annotation View Hiding and Clustering 949
Other Annotation Features 951

Overlays 952
Custom Overlay Class 954
Custom Overlay Renderer 956
Other Overlay Features 958

Map Kit and Current Location 959
Communicating with the Maps App 961
Geocoding, Searching, and Directions 962

Geocoding 963
Searching 964
Directions 965

xvi | Table of Contents

21. Sensors. 967
Core Location 968

Location Manager and Delegate 968
Location Services Authorization 969
Location Tracking 973
Where Am I? 976
Continuous Background Location 977
Location Monitoring 978
Heading 983

Acceleration, Attitude, and Activity 984
Shake Events 985
Using Core Motion 986
Raw Acceleration 987
Gyroscope 991
Other Core Motion Data 996

Part IV. Final Topics

22. Persistent Storage. 1005
The Sandbox 1005

Standard Directories 1005
Inspecting the Sandbox 1006
Basic File Operations 1007
Saving and Reading Files 1008
File Coordinators 1014
File Wrappers 1014

User Defaults 1015
Simple Sharing and Previewing of Files 1018

File Sharing 1018
Document Types and Receiving a Document 1018
Handing Over a Document 1021
Previewing a Document 1022
Quick Look Previews 1023

Document Architecture 1024
A Basic Document Example 1026
iCloud 1031
Document Browser 1033
Custom Thumbnails 1036
Custom Previews 1037
Document Picker 1038

XML 1039

Table of Contents | xvii

JSON 1041
Coding Keys 1043
Custom Decoding 1044

SQLite 1046
Core Data 1047
PDFs 1054
Image Files 1055

23. Basic Networking. 1059
HTTP Requests 1059

Obtaining a Session 1059
Session Configuration 1060
Session Tasks 1062
Session Delegate 1064
HTTP Request with Task Completion Function 1066
HTTP Request with Session Delegate 1068
One Session, One Delegate 1070
Delegate Memory Management 1071
Session and Delegate Encapsulation 1072
Downloading Table View Data 1076
Background Session 1079

On-Demand Resources 1081
In-App Purchases 1084

24. Threads. 1089
Main Thread 1089
Background Threads 1091
Why Threading Is Hard 1093
Blocking the Main Thread 1094
Manual Threading 1097
Operation 1099
Grand Central Dispatch 1103

Commonly Used GCD Methods 1106
Synchronous Execution 1106
Dispatch Groups 1107
One-Time Execution 1108
Concurrent Queues 1109
Checking the Queue 1110

App Backgrounding 1110
Background Processing 1113

xviii | Table of Contents

25. Undo. 1117
Target–Action Undo 1117
Undo Grouping 1120
Functional Undo 1121
Undo Interface 1123

Shake-To-Edit 1123
Built-In Gestures 1124
Undo Menu 1125

A. Lifetime Events. 1127

B. Some Useful Utility Functions. 1137

C. How Asynchronous Works. 1143

Index. 1147

Table of Contents | xix

Preface

Aut lego vel scribo; doceo scrutorve sophian.
—Sedulius Scottus

With the arrival of Swift 5 in early 2019, the stamp of maturity has been placed upon
the Swift language. When Swift was introduced to the public in 2014, it was a sort of
second-class citizen. The Cocoa frameworks that give an iOS app its functionality
expect to be spoken to in Objective-C, and several megabytes of libraries had to be
included in every Swift app, effectively containing the whole of the Swift language
and translating everything into Objective-C. But Swift 5 introduces ABI stability,
which means that, since iOS 12.2, the Swift language has become part of the system.
Swift is now on a par with Objective-C, and Swift apps are smaller and faster.

Swift is the programming language used throughout this book. Still, some awareness
of Objective-C (including C) can be useful. The Foundation and Cocoa APIs are still
written in C and Objective-C. In order to interact with them, you might have to know
what those languages would expect.

The Scope of This Book
Programming iOS 13 is the second of a pair with my other book, iOS 13 Programming
Fundamentals with Swift; it picks up where the other book leaves off. If writing an
iOS program is like building a house of bricks, iOS 13 Programming Fundamentals
with Swift teaches you what a brick is and how to handle it, while Programming iOS
13 hands you some actual bricks and tells you how to assemble them.

So this book, like Homer’s Iliad, begins in the middle of the story. The reader is
expected to jump with all four feet into views and view controllers. Topics such as the
Swift programming language, the Xcode IDE, including the nature of nibs, outlets,
and actions, and the mechanics of nib loading, and the fundamental conventions,
classes, and architectures of the Cocoa Touch framework, including delegation, the

xxi

http://shop.oreilly.com/product/0636920310068.do
http://shop.oreilly.com/product/0636920310068.do

responder chain, key–value coding, key–value observing, memory management, and
so on, were all taught in iOS 13 Programming Fundamentals with Swift.

So if something appears to be missing from this book, that’s why! If you start reading
Programming iOS 13 and wonder about such unexplained matters as Swift language
basics, the UIApplicationMain function, the nib-loading mechanism, Cocoa patterns
of delegation and notification, and retain cycles, wonder no longer! I don’t explain
them here because I have already explained them in iOS 13 Programming Fundamen‐
tals with Swift. If you’re not sufficiently conversant with those topics, you might want
to read that book first; you will then be completely ready for this one.

Here’s a summary of the major sections of Programming iOS 13:

• Part I describes views, the fundamental units of an iOS app’s interface. Views are
what the user can see and touch in an iOS app. To make something appear
before the user’s eyes, you need a view. To let the user interact with your app,
you need a view. This part of the book explains how views are created, arranged,
drawn, layered, animated, and touched.

• Part II starts by discussing view controllers. Perhaps the most important aspect
of Cocoa programming, view controllers enable views to come and go coherently
within the interface, allowing a single-windowed app running on what may be a
tiny screen to contain multiple screens of material. View controllers are used to
manage interface and to respond to user actions; most of your app’s code will be
in a view controller. This part of the book talks about how view controllers work,
and the major built-in types of view controller that Cocoa gives you. It also
describes every kind of view provided by the UIKit framework — the primary
building blocks with which you’ll construct an app’s interface.

• Part III surveys the most commonly used frameworks provided by iOS. These are
clumps of code, sometimes with built-in interface, that are not part of your app
by default, but are there for the asking if you need them, allowing you to work
with such things as sound, video, user libraries, maps, and the device’s sensors.

• Part IV wraps up the book with some miscellaneous but significant topics: files,
networking, threading, and how to implement undo.

• Appendix A summarizes the basic lifetime event messages sent to your app.
• Appendix B catalogs some useful utility functions that I’ve written. My example

code takes advantage of these functions, so you should keep an eye on this
appendix, consulting it whenever a mysterious method name appears.

• Appendix C is an excursus discussing an often misunderstood aspect of iOS pro‐
gramming: asynchronous code.

Someone who has read this book and is conversant with the material in iOS 13 Pro‐
gramming Fundamentals with Swift should be capable of writing a real-life iOS app
with a clear understanding of the underlying fundamentals and techniques and a

xxii | Preface

good sense of where the app is going as it grows and develops. The book itself doesn’t
show how to write any particularly interesting iOS apps, but it is backed by dozens of
example projects that you can download from my GitHub site, http://github.com/
mattneub/Programming-iOS-Book-Examples, and it uses my own real apps and real
programming situations to illustrate and motivate its explanations.

What’s Not in This Book
iOS programming is a vast subject. I can’t possibly cover it all, so this book is
intended to prepare you for your own further explorations. Certain chapters, espe‐
cially in Parts III and IV, introduce a topic, providing an initial basic survey of its
concepts, its capabilities, and its documentation, along with some code examples; but
the topic itself may be far more extensive. My goal is to set your feet firmly on the
path; after reading the discussion here, you’ll be equipped to proceed on your own
whenever the need or interest arises.

In addition, many entire areas of iOS have had to be excluded from this book
entirely:

SpriteKit
SpriteKit provides a built-in framework for designing 2D animated games.

SceneKit
Ported from macOS, the SceneKit framework makes it much easier to create 3D
games and interactive graphics.

GameplayKit
This framework provides the architectural underpinnings for writing a game
app.

Metal
Metal performs intensive computation, especially for 3D graphics. It supersedes
OpenGL and GLKit.

GameKit
The GameKit framework covers areas that can enhance your user’s multiplayer
game experience, such as peer-to-peer device communication (including voice
communication) and Game Center.

Printing
See the “Printing” chapter of Apple’s Drawing and Printing Guide for iOS.

Security
This book does not discuss security topics such as keychains, certificates, and
encryption. See Apple’s Security Overview and the Security framework.

Preface | xxiii

http://github.com/mattneub/Programming-iOS-Book-Examples
http://github.com/mattneub/Programming-iOS-Book-Examples

Accessibility
VoiceOver assists visually impaired users by describing the interface aloud. To
participate, views must be configured to describe themselves usefully. Built-in
views already do this to a large extent, and you can extend this functionality. See
Apple’s Accessibility Programming Guide for iOS.

Telephone
The Core Telephony framework lets your app get information about a particular
cellular carrier and call. CallKit allows VoIP apps to integrate with the built-in
Phone app.

PassKit
The PassKit framework allows creation of downloadable passes to go into the
user’s Wallet app.

HealthKit
The HealthKit framework lets your app obtain, store, share, and present data and
statistics related to body activity and exercise.

Externalities
The user can attach an external accessory to the device, either directly via USB or
wirelessly via Bluetooth. Your app can communicate with such an accessory. See
Apple’s External Accessory Programming Topics. The HomeKit framework lets
the user communicate with devices in the physical world, such as light switches
and door locks. This book also doesn’t discuss iBeacon or near field communica‐
tion (the Core NFC framework).

Handoff
Handoff permits your app to communicate a record of what the user is doing, so
that the user can switch to another copy of your app on another device and
resume doing the same thing. See Apple’s Handoff Programming Guide.

Spotlight
The user’s Spotlight search results can include data supplied by your app. See
Apple’s App Search Programming Guide.

SiriKit
The SiriKit framework lets you configure your app so that the user can talk to the
device to tell it what to do.

Augmented Reality
Certain devices can impose drawn objects into the world viewed live through the
device’s camera by means of the ARKit framework.

xxiv | Preface

Machine Learning
The Core ML framework embraces image analysis (the Vision framework) as
well as decision trees (GameplayKit). Language analysis classes (such as Founda‐
tion NSLinguisticTagger) are now part of the Natural Language framework.

Low-Level Networking
The Network framework lets you implement low-level networking protocols
such as TLS, TCP, and UDP without resorting to BSD sockets.

PencilKit
New in iOS 13, PencilKit provides tools for implementing drawing and graphical
annotations.

SwiftUI
SwiftUI, introduced to the public in mid-2019, is a domain-specific language
wrapped around Swift plus a framework that uses its own hooks into the iOS
interface and its own characteristic data-driven messaging. It promises to make it
easier to program for multiple platforms (not only iOS but also tvOS, watchOS,
and so on) and to escape the dictates of Cocoa’s event-driven architecture. But it
is not Cocoa and is not discussed in this book. This is a Cocoa book! However,
even if you’re using SwiftUI, you are likely to use other frameworks as well, so
there are many topics in this book that might be of interest to you, especially
starting in Part III.

From the Programming iOS 4 Preface
A programming framework has a kind of personality, an overall flavor that provides
an insight into the goals and mindset of those who created it. When I first encoun‐
tered Cocoa Touch, my assessment of its personality was: “Wow, the people who
wrote this are really clever!” On the one hand, the number of built-in interface
objects was severely and deliberately limited; on the other hand, the power and flexi‐
bility of some of those objects, especially such things as UITableView, was greatly
enhanced over their OS X counterparts. Even more important, Apple created a par‐
ticularly brilliant way (UIViewController) to help the programmer make entire
blocks of interface come and go and supplant one another in a controlled, hierarchi‐
cal manner, thus allowing that tiny iPhone display to unfold virtually into multiple
interface worlds within a single app without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their
emphasis shifted from OS X to iOS instruction.

Preface | xxv

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
iOS gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. I often see questions online from programmers
who are evidently deep into the creation of some interesting app, but who are sty‐
mied in a way that reveals quite clearly that they are unfamiliar with the basics of the
very world in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Here I have attempted to marshal and expound, in what I hope is a pedagogi‐
cally helpful and instructive yet ruthlessly Euclidean and logical order, the principles
and elements on which sound iOS programming rests. My hope, as with my previous
books, is that you will both read this book cover to cover (learning something new
often enough to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time
goes on. I have depended heavily on them in the preparation of this book. But I also
find that they don’t fulfill the same function as a reasoned, ordered presentation of
the facts. The online documentation must make assumptions as to how much you
already know; it can’t guarantee that you’ll approach it in a given order. And online
documentation is more suitable to reference than to instruction. A fully written
example, no matter how well commented, is difficult to follow; it demonstrates, but it
does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can
assume you know views before you know view controllers for the simple reason that
Part I precedes Part II. And along with facts, I also bring to the table a degree of expe‐
rience, which I try to communicate to you. Throughout this book you’ll find me
referring to “common beginner mistakes”; in most cases, these are mistakes that I
have made myself, in addition to seeing others make them. I try to tell you what the
pitfalls are because I assume that, in the course of things, you will otherwise fall into
them just as naturally as I did as I was learning. You’ll also see me construct many
examples piece by piece or extract and explain just one tiny portion of a larger app. It
is not a massive finished program that teaches programming, but an exposition of the
thought process that developed that program. It is this thought process, more than
anything else, that I hope you will gain from reading this book.

Versions
This book is geared to Swift 5.1, iOS 13, and Xcode 11.

xxvi | Preface

In general, only very minimal attention is given to earlier versions of iOS and Xcode.
Earlier versions can be very different from the current version, and it would be
impossible to go into detail about all that has changed over the years. Besides, that
information is readily and compendiously available in my earlier books. Recent inno‐
vations are called out clearly. The book does contain some advice about backward
compatibility, especially with regard to scene support.

I generally give method names in Swift, in the style of a function reference — the
name plus parentheses containing the parameter labels followed by colon. Now and
then, if a method is already under discussion and there is no ambiguity, I’ll use the
bare name. In a few places, where the Objective-C language is explicitly under discus‐
sion, I use Objective-C method names.

I have tried to keep my code up-to-date right up to the moment when the manuscript
left my hands; but if, at some future time, a new version of Xcode is released along
with a new version of Swift or with revisions to the Cocoa APIs, some of the code in
this book might be slightly incorrect. Please make allowances, and be prepared to
compensate.

Screenshots of Xcode were taken using Xcode 11 under macOS 10.14 Mojave. The
interface on 10.15 Catalina is slightly different from the screenshots (especially if
you’re using “dark mode”), but this difference will be minimal and shouldn’t cause
any confusion.

Acknowledgments
This book was written with the aid of some wonderful software:

• git (http://git-scm.com)
• Sourcetree (http://www.sourcetreeapp.com)
• TextMate (http://macromates.com)
• AsciiDoc (http://www.methods.co.nz/asciidoc)
• Asciidoctor (http://asciidoctor.org)
• BBEdit (http://barebones.com/products/bbedit)
• EasyFind (https://www.devontechnologies.com/support/download)
• Snapz Pro X (http://www.ambrosiasw.com)
• GraphicConverter (http://www.lemkesoft.com)
• OmniGraffle (http://www.omnigroup.com)

The book was typed and edited almost entirely on my faithful Unicomp Model M
keyboard (http://pckeyboard.com).

Preface | xxvii

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://asciidoctor.org
http://barebones.com/products/bbedit
https://www.devontechnologies.com/support/download
http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com
http://pckeyboard.com

At O’Reilly Media, many people have made writing this book fun and easy; particular
thanks go to Kristen Brown, Rachel Roumeliotis, Dan Fauxsmith, Adam Witwer,
Nick Adams, Heather Scherer, Melanie Yarbrough, Sarah Schneider, and Sanders
Kleinfeld. My first editor was Brian Jepson; his influence is present throughout.

Finally, a special thanks to my beloved wife, Charlotte Wilson, for her sharp eye, her
critical ear, and her unflagging encouragement. This book could not have been writ‐
ten without her.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mattneub/Programming-iOS-Book-Examples.

xxviii | Preface

https://github.com/mattneub/Programming-iOS-Book-Examples

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming iOS 13 by Matt Neu‐
burg (O’Reilly). Copyright 2020 Matt Neuburg, 978-1-492-07461-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technology and business
training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xxix

mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com
http://oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/programming_iOS13.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxx | Preface

https://oreil.ly/programming_iOS13
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Views

Views are what your user sees on the screen and interacts with by touching the
screen. The book begins by explaining how they work:

• Chapter 1 discusses views in their most general aspect — their hierarchy, visibil‐
ity, position, and layout.

• Chapter 2 is about drawing. A view knows how to draw itself; this chapter
explains how to tell a view what you want it to draw.

• Chapter 3 explains about layers. The drawing power of a view comes ultimately
from its layer.

• Chapter 4 talks about animation, which you’ll use to enliven your app’s interface.
• Chapter 5 explains how your app senses and responds to the user touching the

screen.

CHAPTER 1

Views

A view (an object whose class is UIView or a subclass of UIView) knows how to draw
itself into a rectangular area of the interface. Your app has a visible interface thanks
to views; everything the user sees is ultimately because of a view. Creating and config‐
uring a view can be extremely simple: “Set it and forget it.” You can configure a
UIButton in the nib editor; when the app runs, the button appears, and works prop‐
erly. But you can also manipulate views in powerful ways, in real time. Your code can
do some or all of the view’s drawing of itself (Chapter 2); it can make the view appear
and disappear, move, resize itself, and display many other physical changes, possibly
with animation (Chapter 4).

A view is also a responder (UIView is a subclass of UIResponder). This means that a
view is subject to user interactions, such as taps and swipes. Views are the basis not
only of the interface that the user sees, but also of the interface that the user touches
(Chapter 5). Organizing your views so that the correct view reacts to a given touch
allows you to allocate your code neatly and efficiently.

The view hierarchy is the chief mode of view organization. A view can have subviews;
a subview has exactly one immediate superview. We may say there is a tree of views.
This hierarchy allows views to come and go together. If a view is removed from the
interface, its subviews are removed; if a view is hidden (made invisible), its subviews
are hidden; if a view is moved, its subviews move with it; and other changes in a view
are likewise shared with its subviews. The view hierarchy is also the basis of, though it
is not identical to, the responder chain.

A view may come from a nib, or you can create it in code. On balance, neither
approach is to be preferred over the other; it depends on your needs and inclinations
and on the overall architecture of your app.

3

Window and Root View
The top of the view hierarchy is a window. It is an instance of UIWindow (or your
own subclass thereof), which is a UIView subclass. At launch time, a window is cre‐
ated and displayed; otherwise, the screen would be black. New in iOS 13, your app
might support multiple windows on an iPad (Chapter 9); if it doesn’t, or if we’re run‐
ning on an iPhone, your app will have exactly one window (the main window). A
visible window forms the background to, and is the ultimate superview of, all your
other visible views. Conversely, all visible views are visible by virtue of being sub‐
views, at some depth, of a visible window.

In Cocoa programming, you do not manually or directly populate a window with
subviews. Rather, the link between your window and the interface that it contains is
the window’s root view controller. A view controller is instantiated, and that instance
is assigned to the window’s rootViewController property. That view controller’s
main view — its view — henceforth occupies the entirety of the window. It is the
window’s sole subview; all other visible views are subviews (at some depth) of the
root view controller’s view. (The root view controller itself will be the top of the view
controller hierarchy, of which I’ll have much more to say in Chapter 6.)

How an App Launches
How does your app, at launch time, come to have its window in the first place, and
how does that window come to be populated and displayed? If your app uses a main
storyboard, it all happens automatically. But “automatically” does not mean “by
magic!” The procedure at launch is straightforward and deterministic, and your code
can take a hand in it. It is useful to know how an app launches, not least because, if
you misconfigure something and app launch goes wrong, you’ll be able to figure out
why.

Your app consists, ultimately, of a single call to the UIApplicationMain function.
(Unlike an Objective-C project, a typical Swift project doesn’t make this call explic‐
itly, in code; it is called for you, behind the scenes.) This call creates some of your
app’s most important initial instances; if your app uses a main storyboard, those
instances include the window and its root view controller.

Exactly how UIApplicationMain proceeds depends on what it discovers as it gets
going. New in iOS 13, your app can use scenes and scene-related classes and proto‐
cols (UISceneSession, UIScene, UIWindowScene, UIWindowSceneDelegate). The
runtime knows whether your app does this because of the presence of the “Applica‐
tion Scene Manifest” dictionary in the Info.plist. By default, new app projects that you
create from Xcode’s built-in app templates have this dictionary and use scenes (even
if they do not support multiple windows on iPad). But you might also have older
projects, or you might want your app to be backward compatible to iOS 12 and

4 | Chapter 1: Views

before. So I’ll show two different launch trajectories — what happens in iOS 12 and
before, and what happens in iOS 13 in an app that supports window scenes.

iOS 12 and before

Here’s how UIApplicationMain bootstraps your app as it launches on iOS 12 and
before:

1. UIApplicationMain instantiates UIApplication and retains this instance, to serve
as the shared application instance, which your code can later refer to as
UIApplication.shared. It then instantiates the app delegate class; it knows
which class that is because it is marked @UIApplicationMain. It retains the app
delegate instance, ensuring that it will persist for the lifetime of the app, and
assigns it as the application instance’s delegate.

2. UIApplicationMain looks to see whether your app uses a main storyboard; it
knows whether you are using a main storyboard, and what its name is, by look‐
ing at the Info.plist key “Main storyboard file base name” (UIMainStoryboard-
File). If so, it instantiates that storyboard’s initial view controller. (I’ll talk more
about that in Chapter 6.)

3. If your app uses a main storyboard, UIApplicationMain instantiates UIWindow
and assigns the window instance to the app delegate’s window property, which
retains it, ensuring that the window will persist for the lifetime of the app.

4. If your app uses a main storyboard, UIApplicationMain assigns the initial view
controller instance to the window’s rootViewController property, which retains
it. The view controller’s view becomes the window’s sole subview.

5. UIApplicationMain calls the app delegate’s application(_:didFinish-

LaunchingWithOptions:).
6. Your app’s interface is not visible until the window, which contains it, is made

the app’s key window. Therefore, if your app uses a main storyboard,
UIApplicationMain calls the window’s instance method makeKeyAndVisible.

iOS 13 with window scene support

Here’s how UIApplicationMain bootstraps your app with window scene support as it
launches on iOS 13:

1. UIApplicationMain instantiates UIApplication and retains this instance, to serve
as the shared application instance, which your code can later refer to as
UIApplication.shared. It then instantiates the app delegate class; it knows
which class that is because it is marked @UIApplicationMain. It retains the app
delegate instance, ensuring that it will persist for the lifetime of the app, and
assigns it as the application instance’s delegate.

Window and Root View | 5

2. UIApplicationMain calls the app delegate’s application(_:didFinish-

LaunchingWithOptions:).
3. UIApplicationMain creates a UISceneSession, a UIWindowScene, and an

instance that will serve as the window scene’s delegate. The Info.plist specifies, as
a string, what the class of the window scene delegate instance should be (“Dele‐
gate Class Name” inside the “Application Scene Manifest” dictionary’s “Scene
Configuration”). In the built-in app templates, it is the SceneDelegate class; this
is written in the Info.plist as $(PRODUCT_MODULE_NAME).SceneDelegate to take
account of Swift “name mangling.”
(In iOS 13, UIApplicationMain always creates a UISceneSession and a UIWin‐
dowScene even if your app does not declare support for window scenes — in fact,
even if your app is linked against iOS 12 or earlier. They are present as part of the
architecture even if your app never needs to refer to them.)

4. UIApplicationMain looks to see whether your initial scene uses a storyboard.
The Info.plist specifies, as a string, the name of its storyboard (“Storyboard
Name” inside the “Application Scene Manifest” dictionary’s “Scene Configura‐
tion”). If so, it instantiates that storyboard’s initial view controller.

5. If the scene uses a storyboard, UIApplicationMain instantiates UIWindow and
assigns the window instance to the scene delegate’s window property, which
retains it.

6. If the scene uses a storyboard, UIApplicationMain assigns the initial view con‐
troller instance to the window instance’s rootViewController property, which
retains it. The view controller’s view becomes the window’s sole subview.

7. UIApplicationMain causes your app’s interface to appear, by calling the
UIWindow instance method makeKeyAndVisible.

8. The scene delegate’s scene(_:willConnectTo:options:) is called.
The most important differences between this procedure and the iOS 12 procedure
are:

• The call to application(_:didFinishLaunchingWithOptions:) is much earlier
in the sequence. This won’t matter if you confine your use of this method to ini‐
tializations that affect the app as a whole. If you need to know that the launch
process is over and your window is visible, implement scene(_:willConnect-
To:options:).

• The window property belongs to the scene delegate, not the app delegate.

App Without a Storyboard
It is possible to write an app that lacks a main storyboard:

6 | Chapter 1: Views

• In iOS 12 and before, this means that the Info.plist contains no “Main storyboard
file base name” entry.

• In iOS 13 with scene support, it means that there is no “Storyboard Name” entry
under “Application Scene Configuration” in the “Application Scene Manifest”
dictionary.

Such an app simply does in code everything that UIApplicationMain does automati‐
cally if the app has a main storyboard. In iOS 12 and before, you would do that in the
app delegate’s application(_:didFinishLaunchingWithOptions:). In iOS 13, with
a window scene, you do it in the scene delegate’s scene(_:willConnect-

To:options:):

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 if let windowScene = scene as? UIWindowScene {
 self.window = UIWindow(windowScene: windowScene)
 let vc = // ...
 self.window!.rootViewController = vc
 self.window!.makeKeyAndVisible()
 }
}

Instantiate UIWindow and assign it as the scene delegate’s window property. It is
crucial to make the connection between the window scene and the window by
calling init(windowScene:).

Instantiate a view controller and configure it as needed.

Assign the view controller as the window’s rootViewController property.

Call makeKeyAndVisible on the window, to show it.

(That’s how a SwiftUI app works. SwiftUI doesn’t use storyboards; step 2 creates a
UIHostingController that hosts the app’s initial View, and after that the SwiftUI code
takes over.)

A variant that is sometimes useful is an app that has a storyboard but doesn’t let
UIApplicationMain see it at launch. That way, we can dictate at launch time which
view controller from within that storyboard should be the window’s root view con‐
troller. A typical scenario is that our app has something like a login or registration
screen that appears at launch if the user has not logged in, but doesn’t appear on sub‐
sequent launches once the user has logged in:

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 if let windowScene = scene as? UIWindowScene {

Window and Root View | 7

 self.window = UIWindow(windowScene: windowScene)
 let userHasLoggedIn : Bool = // ...
 let vc = UIStoryboard(name: "Main", bundle: nil)
 .instantiateViewController(identifier: userHasLoggedIn ?
 "UserHasLoggedIn" : "LoginScreen") // *
 self.window!.rootViewController = vc
 self.window!.makeKeyAndVisible()
 }
}

Referring to the Window
Once the app is running, there are various ways for your code to refer to the window:

From a view
If a UIView is in the interface, it automatically has a reference to the window that
contains it, through its own window property. Your code will probably be run‐
ning in a view controller with a main view, so self.view.window is usually the
best way to refer to the window.

You can also use a UIView’s window property as a way of asking whether it is ulti‐
mately embedded in the window; if it isn’t, its window property is nil. A UIView
whose window property is nil cannot be visible to the user.

From the scene delegate
The scene delegate instance maintains a reference to the window through its
window property.

From the application
The shared application maintains a reference to the window through its windows
property:

let w = UIApplication.shared.windows.first!

Do not expect that the window you know about is the app’s only window. The
runtime can create additional mysterious windows, such as the UITextEffects‐
Window and the UIRemoteKeyboardWindow.

Experimenting with Views
In the course of this and subsequent chapters, you may want to experiment with
views in a project of your own. If you start your project with the Single View App
template, it gives you the simplest possible app — a main storyboard containing one
scene consisting of one view controller instance along with its main view. As I
described in the preceding section, when the app runs, that view controller will
become the window’s rootViewController, and its main view will become the

8 | Chapter 1: Views

window’s root view. If you can get your views to become subviews of that view con‐
troller’s main view, they will be present in the app’s interface when it launches.

In the nib editor, you can drag a view from the Library into the main view as a sub‐
view, and it will be instantiated in the interface when the app runs. However, my ini‐
tial examples will all create views and add them to the interface in code. So where
should that code go? The simplest place is the view controller’s viewDidLoad method,
which is provided as a stub by the project template code; it runs once, before the view
appears in the interface for the first time.

The viewDidLoad method can refer to the view controller’s main view by saying
self.view. In my code examples, whenever I say self.view, you can assume we’re in
a view controller and that self.view is this view controller’s main view:

override func viewDidLoad() {
 super.viewDidLoad() // this is template code
 let v = UIView(frame:CGRect(x:100, y:100, width:50, height:50))
 v.backgroundColor = .red // small red square
 self.view.addSubview(v) // add it to main view
}

Try it! Make a new project from the Single View App template, and make the View‐
Controller class’s viewDidLoad look like that. Run the app. You will actually see the
small red square in the running app’s interface.

Subview and Superview
Once upon a time, and not so very long ago, a view owned precisely its own rectan‐
gular area. No part of any view that was not a subview of this view could appear
inside it, because when this view redrew its rectangle, it would erase the overlapping
portion of the other view. No part of any subview of this view could appear outside it,
because the view took responsibility for its own rectangle and no more.

Those rules were gradually relaxed, and starting in OS X 10.5, Apple introduced an
entirely new architecture for view drawing that lifted those restrictions completely.
iOS view drawing is based on this revised architecture. In iOS, some or all of a sub‐
view can appear outside its superview, and a view can overlap another view and can
be drawn partially or totally in front of it without being its subview.

Figure 1-1 shows three overlapping views. All three views have a background color,
so each is completely represented by a colored rectangle. You have no way of know‐
ing, from this visual representation, exactly how the views are related within the view
hierarchy. In actual fact, View 1 is a sibling view of View 2 (they are both direct sub‐
views of the root view), and View 3 is a subview of View 2.

When views are created in the nib, you can examine the view hierarchy in the nib
editor’s document outline to learn their actual relationship (Figure 1-2). When views

Subview and Superview | 9

Figure 1-1. Overlapping views

Figure 1-2. A view hierarchy as displayed in the nib editor

are created in code, you know their hierarchical relationship because you created that
hierarchy. But the visible interface doesn’t tell you, because view overlapping is so
flexible.

Nevertheless, a view’s position within the view hierarchy is extremely significant. For
one thing, the view hierarchy dictates the order in which views are drawn. Sibling
subviews of the same superview have a definite order; an earlier sibling is drawn
before a later sibling, so if they overlap, the earlier one will appear to be behind the
later one. Similarly, a superview is drawn before its subviews, so if the subviews over‐
lap their superview, the superview will appear to be behind them.

You can see this illustrated in Figure 1-1. View 3 is a subview of View 2 and is drawn
on top of it. View 1 is a sibling of View 2, but it is a later sibling, so it is drawn on top
of View 2 and on top of View 3. View 1 cannot appear behind View 3 but in front of
View 2, because Views 2 and 3 are subview and superview and are drawn together —
both are drawn either before or after View 1, depending on the ordering of the
siblings.

This layering order can be governed in the nib editor by arranging the views in the
document outline. (If you click in the canvas, you may be able to use the menu items
of the Editor → Arrange menu instead — Send to Front, Send to Back, Send Forward,

10 | Chapter 1: Views

Send Backward.) In code, there are methods for arranging the sibling order of views,
which we’ll come to in a moment.

Here are some other effects of the view hierarchy:

• If a view is removed from or moved within its superview, its subviews go with it.
• A view’s degree of transparency is inherited by its subviews.
• A view can optionally limit the drawing of its subviews so that any parts of them

outside the view are not shown. This is called clipping and is set with the view’s
clipsToBounds property.

• A superview owns its subviews, in the memory-management sense, much as an
array owns its elements; it retains its subviews, and is responsible for releasing a
subview when that subview is removed from the collection of this view’s sub‐
views, or when the superview itself goes out of existence.

• If a view’s size is changed, its subviews can be resized automatically (and I’ll have
much more to say about that later in this chapter).

A UIView has a superview property (a UIView) and a subviews property (an array
of UIView objects, in back-to-front order), allowing you to trace the view hierarchy
in code. There is also a method isDescendant(of:) letting you check whether one
view is a subview of another at any depth.

If you need a reference to a particular view, you will probably arrange it beforehand
as a property, perhaps through an outlet. Alternatively, a view can have a numeric tag
(its tag property), and can then be referred to by sending any view higher up the view
hierarchy the viewWithTag(_:) message. Seeing that all tags of interest are unique
within their region of the hierarchy is up to you.

Manipulating the view hierarchy in code is easy. This is part of what gives iOS apps
their dynamic quality. It is perfectly reasonable for your code to rip an entire hierar‐
chy of views out of the superview and substitute another, right before the user’s very
eyes! You can do this directly; you can combine it with animation (Chapter 4); you
can govern it through view controllers (Chapter 6).

The method addSubview(_:) makes one view a subview of another; removeFrom-
Superview takes a subview out of its superview’s view hierarchy. In both cases, if the
superview is part of the visible interface, the subview will appear or disappear respec‐
tively at that moment; and of course the subview may have subviews of its own that
accompany it. Removing a subview from its superview releases it; if you intend to
reuse that subview later on, you will need to retain it first by assigning it to a variable.

Events inform a view of these dynamic changes. To respond to these events requires
subclassing. Then you’ll be able to override any of these methods:

• willRemoveSubview(_:), didAddSubview(_:)

Subview and Superview | 11

• willMove(toSuperview:), didMoveToSuperview
• willMove(toWindow:), didMoveToWindow

When addSubview(_:) is called, the view is placed last among its superview’s sub‐
views, so it is drawn last, meaning that it appears frontmost. That might not be what
you want. A view’s subviews are indexed, starting at 0 which is rearmost, and there
are methods for inserting a subview at a given index or below (behind) or above (in
front of) a specific view; for swapping two sibling views by index; and for moving a
subview all the way to the front or back among its siblings:

• insertSubview(_:at:)

• insertSubview(_:belowSubview:), insertSubview(_:aboveSubview:)
• exchangeSubview(at:withSubviewAt:)

• bringSubviewToFront(_:), sendSubviewToBack(_:)
Oddly, there is no command for removing all of a view’s subviews at once. However,
a view’s subviews array is an immutable copy of the internal list of subviews, so it is
legal to cycle through it and remove each subview one at a time:

myView.subviews.forEach {$0.removeFromSuperview()}

Color
A view can be assigned a background color through its backgroundColor property. A
view distinguished by nothing but its background color is a colored rectangle, and is
an excellent medium for experimentation, as in Figure 1-1.

A view whose background color is nil (the default) has a transparent background. If
this view does no additional drawing of its own, it will be invisible! Such a view is
perfectly reasonable; a view with a transparent background might act as a convenient
superview to other views, making them behave together.

A color is a UIColor, which will typically be specified using .red, .blue, .green,
and .alpha components, which are CGFloat values between 0 and 1:

v.backgroundColor = UIColor(red: 0, green: 0.1, blue: 0.1, alpha: 1)

There are also numerous named colors, vended as static properties of the UIColor
class:

v.backgroundColor = .red

New in iOS 13, you may need to be rather more circumspect about the colors you
assign to things. The problem is that the user can switch the device between light and
dark modes. This can cause a cascade of color changes that can make hard-coded col‐
ors look bad. Suppose (in a new project created in Xcode 11) we give the view con‐
troller’s main view a subview with a dark color:

12 | Chapter 1: Views

override func viewDidLoad() {
 super.viewDidLoad()
 let v = UIView(frame:CGRect(x:100, y:100, width:50, height:50))
 v.backgroundColor = UIColor(red: 0, green: 0.1, blue: 0.1, alpha: 1)
 self.view.addSubview(v)
}

If we run the project in the simulator, we see a small very dark square against a white
background. But now suppose we switch to dark mode. Now the background
becomes black, and we don’t see our dark square any longer. The reason is that the
view controller’s main view has a dynamic color, which is white in light mode but
black in dark mode, and now our dark square is black on black.

One solution is to make our UIColor dynamic. We can do this with the initializer
init(dynamicProvider:), giving it as parameter a function that takes a trait collec‐
tion and returns a color. I’ll explain more about what a trait collection is later in this
chapter; right now, all you need to know is that its userInterfaceStyle may or may
not be .dark:

v.backgroundColor = UIColor { tc in
 switch tc.userInterfaceStyle {
 case .dark:
 return UIColor(red: 0.3, green: 0.4, blue: 0.4, alpha: 1)
 default:
 return UIColor(red: 0, green: 0.1, blue: 0.1, alpha: 1)
 }
}

We have created our own custom dynamic color, which is different depending what
mode we’re in. In dark mode, our view’s color is now a dark gray that is visible
against a black background.

To switch to dark mode in the simulator, click the Environment Overrides but‐
ton in the debug bar. In the popover that appears, click the first switch, at the
upper right.

A more compact way to get a dynamic color is to use one of the many dynamic colors
vended as static properties by UIColor in iOS 13. Most of these have names that start
with .system, such as .systemYellow; others have semantic names describing their
role, such as .label. For details, see Apple’s Human Interface Guidelines.

You can also design a custom named color in the asset catalog. When you do, you
can choose from the Appearances pop-up menu in the Attributes inspector and
switch to Any, Dark. Now there are two colors, one for dark mode and the other for
everything else, just as in our earlier code. Let’s say we’ve done that, and our color in
the asset catalog is called myDarkColor. Then you could say:

v.backgroundColor = UIColor(named: "myDarkColor")

Color | 13

https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/color/

Custom named colors from the asset catalog also appear in the Library and in the
color pop-up menus in the Attributes inspector when you select a view.

Visibility and Opacity
Three properties relate to the visibility and opacity of a view:

isHidden

A view can be made invisible by setting its isHidden property to true, and visible
again by setting it to false. Hiding a view takes it (and its subviews, of course)
out of the visible interface without actually removing it from the view hierarchy.
A hidden view does not (normally) receive touch events, so to the user it really is
as if the view weren’t there. But it is there, so it can still be manipulated in code.

alpha

A view can be made partially or completely transparent through its alpha prop‐
erty: 1.0 means opaque, 0.0 means transparent, and a value may be anywhere
between them, inclusive. This property affects both the apparent transparency of
the view’s background color and the apparent transparency of its contents. If a
view displays an image and has a background color and its alpha is less than 1,
the background color will seep through the image (and whatever is behind the
view will seep through both). Moreover, it affects the apparent transparency of
the view’s subviews! If a superview has an alpha of 0.5, none of its subviews can
have an apparent opacity of more than 0.5, because whatever alpha value they
have will be drawn relative to 0.5. A view that is completely transparent (or very
close to it) is like a view whose isHidden is true: it is invisible, along with its sub‐
views, and cannot (normally) be touched.

(Just to make matters more complicated, colors have an alpha value as well. A
view can have an alpha of 1.0 but still have a transparent background because its
backgroundColor has an alpha less than 1.0.)

isOpaque

This property is a horse of a different color; changing it has no effect on the
view’s appearance. Rather, it is a hint to the drawing system. If a view is com‐
pletely filled with opaque material and its alpha is 1.0, so that the view has no
effective transparency, then it can be drawn more efficiently (with less drag on
performance) if you inform the drawing system of this fact by setting its
isOpaque to true. Otherwise, you should set its isOpaque to false. The
isOpaque value is not changed for you when you set a view’s backgroundColor or
alpha! Setting it correctly is entirely up to you; the default, perhaps surprisingly,
is true.

14 | Chapter 1: Views

Core Graphics Initializers
Starting in Swift 3, access to Core Graphics convenience constructor functions such
as CGRectMake is blocked. You can no longer say:

let v1 = UIView(frame:CGRectMake(113, 111, 132, 194)) // compile error

Instead, you are forced to use an initializer with labeled parameters, like this:

let v1 = UIView(frame:CGRect(x:113, y:111, width:132, height:194))

I find that tedious and verbose, so I’ve written a CGRect extension (Appendix B) that
adds an initializer whose parameters have no labels. Now I can continue to speak
compactly, just as CGRectMake allowed me to do:

let v1 = UIView(frame:CGRect(113, 111, 132, 194)) // thanks to my extension

I use this extension, along with similar extensions on CGPoint, CGSize, and CGVec‐
tor, throughout this book. If my code doesn’t compile on your machine, you might
need to add those extensions. I’m not going to comment on this again!

Frame
A view’s frame property, a CGRect, is the position of its rectangle within its super‐
view, in the superview’s coordinate system. By default, the superview’s coordinate sys‐
tem will have the origin at its top left, with the x-coordinate growing positively
rightward and the y-coordinate growing positively downward.

Setting a view’s frame to a different CGRect value repositions the view, or resizes it,
or both. If the view is visible, this change will be visibly reflected in the interface. On
the other hand, you can also set a view’s frame when the view is not visible, such as
when you create the view in code. In that case, the frame describes where the view
will be positioned within its superview when it is given a superview.

UIView’s designated initializer is init(frame:), and you’ll often assign a frame this
way, especially because the default frame might otherwise be CGRect.zero, which is
rarely what you want. A view with a zero-size frame is effectively invisible (though
you might still see its subviews). Forgetting to assign a view a frame when creating it
in code, and then wondering why it isn’t appearing when added to a superview, is a
common beginner mistake. If a view has a standard size that you want it to adopt,
especially in relation to its contents (like a UIButton in relation to its title), an alter‐
native is to call its sizeToFit method.

We are now in a position to generate programmatically the interface displayed in
Figure 1-1; we determine the layering order of v1 and v3 (the middle and left views,
which are siblings) by the order in which we insert them into the view hierarchy:

Frame | 15

Figure 1-3. A subview inset from its superview

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:CGRect(41, 56, 132, 194))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView(frame:CGRect(43, 197, 160, 230))
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
self.view.addSubview(v1)
v1.addSubview(v2)
self.view.addSubview(v3)

That code, and all subsequent code in this book, uses a custom CGRect initializer
with no argument labels. Please read the sidebar “Core Graphics Initializers” on
page 14 right now!

When a UIView is instantiated from a nib, its init(frame:) is not called —
init(coder:) is called instead. Implementing init(frame:) in a UIView subclass,
and then wondering why your code isn’t called when the view is instantiated from a
nib, is a common beginner mistake.

Bounds and Center
Suppose we have a superview and a subview, and the subview is to appear inset by 10
points, as in Figure 1-3. So we want to set the subview’s frame. But to what value?
CGRect methods like insetBy(dx:dy:) make it easy to derive one rectangle as an
inset from another. But what rectangle should we inset from? Not from the super‐
view’s frame; the frame represents a view’s position within its superview, and in that
superview’s coordinates. What we’re after is a CGRect describing our superview’s
rectangle in its own coordinates, because those are the coordinates in which the sub‐
view’s frame is to be expressed. The CGRect that describes a view’s rectangle in its
own coordinates is the view’s bounds property.

So, the code to generate Figure 1-3 looks like this:

16 | Chapter 1: Views

Figure 1-4. A subview exactly covering its superview

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
self.view.addSubview(v1)
v1.addSubview(v2)

You’ll very often use a view’s bounds in this way. When you need coordinates for
positioning content inside a view, whether drawing manually or placing a subview,
you’ll refer to the view’s bounds.

If you change a view’s bounds size, you change its frame. The change in the view’s
frame takes place around its center, which remains unchanged:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
self.view.addSubview(v1)
v1.addSubview(v2)
v2.bounds.size.height += 20
v2.bounds.size.width += 20

What appears is a single rectangle; the subview completely and exactly covers its
superview, its frame being the same as the superview’s bounds. The call to insetBy
started with the superview’s bounds and shaved 10 points off the left, right, top, and
bottom to set the subview’s frame (Figure 1-3). But then we added 20 points to the
subview’s bounds height and width, which added 20 points to the subview’s frame
height and width as well (Figure 1-4). The subview’s center didn’t move, so we effec‐
tively put the 10 points back onto the left, right, top, and bottom of the subview’s
frame.

If you change a view’s bounds origin, you move the origin of its internal coordinate
system. When you create a UIView, its bounds coordinate system’s zero point
(0.0,0.0) is at its top left. Because a subview is positioned in its superview with
respect to its superview’s coordinate system, a change in the bounds origin of the

Bounds and Center | 17

Figure 1-5. The superview’s bounds origin has been shifted

superview will change the apparent position of a subview. To illustrate, we start once
again with our subview inset evenly within its superview, and then change the
bounds origin of the superview:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
self.view.addSubview(v1)
v1.addSubview(v2)
v1.bounds.origin.x += 10
v1.bounds.origin.y += 10

Nothing happens to the superview’s size or position. But the subview has moved up
and to the left so that it is flush with its superview’s top-left corner (Figure 1-5). Basi‐
cally, what we’ve done is to say to the superview, “Instead of calling the point at your
upper left (0.0,0.0), call that point (10.0,10.0).” Because the subview’s frame ori‐
gin is itself at (10.0,10.0), the subview now touches the superview’s top-left corner.
The effect of changing a view’s bounds origin may seem directionally backward — we
increased the superview’s origin in the positive direction, but the subview moved in
the negative direction — but think of it this way: a view’s bounds origin point coin‐
cides with its frame’s top left.

We have seen that changing a view’s bounds size affects its frame size. The converse
is also true: changing a view’s frame size affects its bounds size. What is not affected
by changing a view’s bounds size is the view’s center.

A view’s center is a single point establishing the positional relationship between the
view’s bounds and its superview’s bounds. It represents a subview’s position within
its superview, in the superview’s coordinates; in particular, it is the position within
the superview of the subview’s own bounds center, the point derived from the bounds
like this:

let c = CGPoint(theView.bounds.midX, theView.bounds.midY)

18 | Chapter 1: Views

Changing a view’s bounds does not change its center; changing a view’s center does
not change its bounds. A view’s bounds and center are orthogonal (independent),
and completely describe the view’s size and its position within its superview. The
view’s frame is therefore superfluous! In fact, the frame property is merely a conve‐
nient expression of the center and bounds values. In most cases, this won’t matter to
you; you’ll use the frame property anyway. When you first create a view from scratch,
the designated initializer is init(frame:). You can change the frame, and the bounds
size and center will change to match. You can change the bounds size or the center,
and the frame will change to match. Nevertheless, the proper and most reliable way
to position and size a view within its superview is to use its bounds and center, not its
frame; there are some situations in which the frame is meaningless (or will at least
behave very oddly), but the bounds and center will always work.

We have seen that every view has its own coordinate system, expressed by its bounds,
and that a view’s coordinate system has a clear relationship to its superview’s coordi‐
nate system, expressed by its center. This is true of every view in a window, so it is
possible to convert between the coordinates of any two views in the same window.
Convenience methods are supplied to perform this conversion both for a CGPoint
and for a CGRect:

• convert(_:to:)

• convert(_:from:)

The first parameter is either a CGPoint or a CGRect. The second parameter is a
UIView; if the second parameter is nil, it is taken to be the window. The recipient is
another UIView; the CGPoint or CGRect is being converted between its coordinates
and the second view’s coordinates. If v1 is the superview of v2, then to center v2
within v1 you could say:

v2.center = v1.convert(v1.center, from:v1.superview)

A more common approach is to place the subview’s center at the superview’s bounds
center, like this:

v2.center = CGPoint(v1.bounds.midX, v1.bounds.midY)

That’s such a common thing to do that I’ve written an extension that provides the
center of a CGRect as its center property (see Appendix B), allowing me to talk like
this:

v2.center = v1.bounds.center

Observe that the following is not the way to center a subview v2 in a superview v1:

v2.center = v1.center // that won't work!

Bounds and Center | 19

Trying to center one view within another like that is a common beginner mistake. It
can’t succeed, and will have unpredictable results, because the two center values are
in different coordinate systems.

When setting a view’s position by setting its center, if the height or width of the view
is not an integer (or, on a single-resolution screen, not an even integer), the view can
end up misaligned: its point values in one or both dimensions are located between the
screen pixels. This can cause the view to be displayed incorrectly; if the view contains
text, the text may be blurry. You can detect this situation in the Simulator by check‐
ing Debug → Color Misaligned Images. A simple solution is to set the view’s frame to
its own integral.

Transform
A view’s transform property alters how the view is drawn, changing the view’s appa‐
rent size, location, or orientation, without affecting its actual bounds and center. A
transformed view continues to behave correctly: a rotated button is still a button, and
can be tapped in its apparent location and orientation. Transforms are useful particu‐
larly as temporary visual indicators. You might call attention to a view by applying a
transform that scales it up slightly, and then reversing that transform to restore it to
its original size, and animating those changes (Chapter 4).

A transform value is a CGAffineTransform, which is a struct representing six of the
nine values of a 3×3 transformation matrix (the other three values are constants, so
there’s no need to represent them in the struct). You may have forgotten your high-
school linear algebra, so you may not recall what a transformation matrix is. For the
details, which are quite simple really, see the “Transforms” chapter of Apple’s Quartz
2D Programming Guide in the documentation archive, especially the section called
“The Math Behind the Matrices.” But you don’t really need to know those details,
because initializers are provided for creating three of the basic types of transform:
rotation, scale (size), and translation (location). A fourth basic transform type, skew‐
ing or shearing, has no initializer and is rarely used.

By default, a view’s transformation matrix is CGAffineTransform.identity, the
identity transform. It has no visible effect, so you’re unaware of it. Any transform that
you do apply takes place around the view’s center, which is held constant.

Here’s some code to illustrate use of a transform:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)

20 | Chapter 1: Views

Figure 1-6. A rotation transform

self.view.addSubview(v1)
v1.addSubview(v2)
v1.transform = CGAffineTransform(rotationAngle: 45 * .pi/180)
print(v1.frame)

The transform property of the view v1 is set to a rotation transform. The result
(Figure 1-6) is that the view appears to be rocked 45 degrees clockwise. (I think in
degrees, but Core Graphics thinks in radians, so my code has to convert.) Observe
that the view’s center property is unaffected, so that the rotation seems to have
occurred around the view’s center. Moreover, the view’s bounds property is unaffec‐
ted; the internal coordinate system is unchanged, so the subview is drawn in the same
place relative to its superview.

The view’s frame is now useless, as no mere rectangle can describe the region of the
superview apparently occupied by the view; the frame’s actual value, roughly
(63.7,92.7,230.5,230.5), describes the minimal bounding rectangle surrounding
the view’s apparent position. The rule is that if a view’s transform is not the identity
transform, you should not set its frame; also, automatic resizing of a subview, dis‐
cussed later in this chapter, requires that the superview’s transform be the identity
transform.

Suppose, instead of a rotation transform, we apply a scale transform, like this:

v1.transform = CGAffineTransform(scaleX:1.8, y:1)

The bounds property of the view v1 is still unaffected, so the subview is still drawn in
the same place relative to its superview; this means that the two views seem to have
stretched horizontally together (Figure 1-7). No bounds or centers were harmed by
the application of this transform!

Methods are provided for transforming an existing transform. This operation is not
commutative; order matters. (That high school math is starting to come back to you
now, isn’t it?) If you start with a transform that translates a view to the right and then

Transform | 21

Figure 1-7. A scale transform

Figure 1-8. Translation, then rotation

apply a rotation of 45 degrees, the rotated view appears to the right of its original
position; on the other hand, if you start with a transform that rotates a view 45
degrees and then apply a translation to the right, the meaning of “right” has changed,
so the rotated view appears 45 degrees down from its original position. To demon‐
strate the difference, I’ll start with a subview that exactly overlaps its superview:

let v1 = UIView(frame:CGRect(20, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds)
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
self.view.addSubview(v1)
v1.addSubview(v2)

Then I’ll apply two successive transforms to the subview, leaving the superview to
show where the subview was originally. In this example, I translate and then rotate
(Figure 1-8):

v2.transform =
 CGAffineTransform(translationX:100, y:0).rotated(by: 45 * .pi/180)

In this example, I rotate and then translate (Figure 1-9):

22 | Chapter 1: Views

Figure 1-9. Rotation, then translation

v2.transform =
 CGAffineTransform(rotationAngle: 45 * .pi/180).translatedBy(x: 100, y: 0)

The concatenating method concatenates two transform matrices using matrix mul‐
tiplication. Again, this operation is not commutative. The order is the opposite of the
order when chaining transforms. This code gives the same result as the previous
example (Figure 1-9):

let r = CGAffineTransform(rotationAngle: 45 * .pi/180)
let t = CGAffineTransform(translationX:100, y:0)
v2.transform = t.concatenating(r) // not r.concatenating(t)

To remove a transform from a combination of transforms, apply its inverse. The
inverted method lets you obtain the inverse of a given affine transform. Again, order
matters. In this example, I rotate the subview and shift it to its “right,” and then
remove the rotation, demonstrating how to translate a view at an angle (Figure 1-10):

let r = CGAffineTransform(rotationAngle: 45 * .pi/180)
let t = CGAffineTransform(translationX:100, y:0)
v2.transform = t.concatenating(r)
v2.transform = r.inverted().concatenating(v2.transform)

CGPoint, CGSize, and CGRect all have an applying(_:) method that permits you to
apply an affine transform to them. With it, you can calculate what the result would be
if you were to apply the transform to a view. However, the transform is centered at
the origin, so if that isn’t what you want, you have to translate the rotation point to
the origin, apply the real transform, and then invert the translation transform. Earlier
we rotated a view and printed its frame, like this:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.transform = CGAffineTransform(rotationAngle: 45 * .pi/180)
print(v1.frame) // 63.7,92.7,230.5,230.5

We can get the same result without actually rotating any views:

Transform | 23

Figure 1-10. Rotation, then translation, then inversion of the rotation

let rect = CGRect(113, 111, 132, 194)
let shift = CGAffineTransform(translationX: -rect.midX, y: -rect.midY)
let rotate = v1.transform
let transform = shift.concatenating(rotate).concatenating(shift.inverted())
let rect2 = rect.applying(transform)
print(rect2) // 63.7,92.7,230.5,230.5

Transform3D
New in iOS 13, a UIView has a transform3D property. This is actually the underlying
layer’s transform property (Chapter 3), but since it is now exposed through the view,
I’ll explain it here.

As the name implies, a transform3D takes place in three-dimensional space; its
description includes a z-axis, perpendicular to both the x-axis and y-axis. (By default,
the positive z-axis points out of the screen, toward the viewer’s face.) The result of
such a transformation does not necessarily look three-dimensional; but it operates in
three dimensions, quite sufficiently to give a cartoonish but effective sense of reality,
especially when performing an animation. We’ve all seen the screen image flip like
turning over a piece of paper to reveal what’s on the back; that’s a rotation in three
dimensions.

Like a view’s transform, a transform3D takes place by default around the view’s cen‐
ter, which is unaffected. (You can get finer control by dropping down to the level of
the layer.) The transform itself is described mathematically by a struct called a
CATransform3D. The Core Animation Transforms documentation lists the functions
for working with these transforms. They are a lot like the CGAffineTransform func‐
tions, except they’ve got a third dimension. A 2D scale transform depends upon two
values, the scale on the x-axis and the y-axis; for a 3D scale transform, there’s also a
z-axis so you have to supply a third parameter.

24 | Chapter 1: Views

https://developer.apple.com/documentation/quartzcore/transforms

Figure 1-11. An anchor point plus a vector defines a rotation plane

The rotation 3D transform is a little more complicated. In addition to the angle, you
also have to supply three coordinates describing the vector around which the rotation
is to take place. Perhaps you’ve forgotten from your high-school math what a vector
is, or perhaps trying to visualize three dimensions boggles your mind, so here’s
another way to think of it.

For purposes of discussion, imagine a coordinate system in which the center of the
rotation (by default, the view’s center) is at the origin (0.0,0.0,0.0). Now imagine
an arrow emanating from that origin; its other end, the pointy end, is described by
the three coordinates you provide in that coordinate system. Now imagine a plane
that intersects the origin, perpendicular to the arrow. That is the plane in which the
rotation will take place; a positive angle is a clockwise rotation, as seen from the side
of the plane with the arrow (Figure 1-11). In effect, the three coordinates you supply
describe (relative to the origin) where your eye would have to be to see this rotation
as an old-fashioned two-dimensional rotation.

A vector specifies a direction, not a point. It makes no difference on what scale you
give the coordinates: (1.0,1.0,1.0) means the same thing as (10.0,10.0,10.0), so
you might as well say (1.0,1.0,1.0), sticking to the unit scale; when you do, the vec‐
tor is said to be normalized.

If the three normalized values are (0.0,0.0,1.0), with all other things being equal,
the case is collapsed to a simple CGAffineTransform, because the rotational plane is
the screen. If the three normalized values are (0.0,0.0,-1.0), it’s a backward
CGAffineTransform, so that a positive angle looks counterclockwise (because we are
looking at the “back side” of the rotational plane).

Transform3D | 25

Figure 1-12. A backward label

In this example, I’ll flip a UIView around its vertical axis. If this view is a UILabel
whose text is "Hello, world", the result is that we see the words “Hello, world”
written backward (Figure 1-12):

v.transform3D = CATransform3DMakeRotation(.pi, 0, 1, 0)

Window Coordinates and Screen Coordinates
The device screen has no frame, but it has bounds. The window has no superview,
but its frame is set automatically to match the screen’s bounds. The window starts out
life filling the screen, and generally continues to fill the screen, and so, for the most
part, window coordinates are screen coordinates. (I’ll discuss the possible exceptions
on an iPad in Chapter 9.)

In iOS 7 and before, the screen’s coordinates were invariant. The transform property
lay at the heart of an iOS app’s ability to rotate its interface: the window’s frame and
bounds were locked to the screen, and an app’s interface rotated to compensate for a
change in device orientation by applying a rotation transform to the root view, so
that its origin moved to what the user now saw as the top left of the view.

But iOS 8 introduced a major change: when the app rotates to compensate for the
rotation of the device, the screen (and with it, the window) is what rotates. None of
the views in the story — neither the window, nor the root view, nor any of its sub‐
views — receives a rotation transform when the app’s interface rotates. Instead, there
is a transposition of the dimensions of the screen’s bounds (and a corresponding
transposition of the dimensions of the window’s bounds and its root view’s bounds):
in portrait orientation, the size is taller than wide, but in landscape orientation, the
size is wider than tall.

Therefore, there are actually two sets of screen coordinates. Each is reported through
a UICoordinateSpace, a protocol (also adopted by UIView) that provides a bounds
property:

UIScreen’s coordinateSpace property
This coordinate space rotates. Its bounds height and width are transposed when
the app rotates to compensate for a change in the orientation of the device; its
bounds origin is at the top left of the app.

26 | Chapter 1: Views

UIScreen’s fixedCoordinateSpace property
This coordinate space is invariant. Its bounds origin stays at the top left of the
physical device, remaining always in the same relationship to the device’s hard‐
ware buttons regardless of how the device itself is held.

To help you convert between coordinate spaces, UICoordinateSpace provides meth‐
ods parallel to the coordinate-conversion methods I listed earlier:

• convert(_:from:)

• convert(_:to:)

The first parameter is either a CGPoint or a CGRect. The second parameter is a
UICoordinateSpace, which might be a UIView or the UIScreen; so is the recipient.
Suppose we have a UIView v in our interface, and we wish to learn its position in
fixed device coordinates. We could do it like this:

let screen = UIScreen.main.fixedCoordinateSpace
let r = v.superview!.convert(v.frame, to: screen)

Imagine that we have a subview of our main view, at the exact top left corner of the
main view. When the device and the app are in portrait orientation, the subview’s top
left is at (0.0,0.0) both in window coordinates and in screen fixedCoordinate-
Space coordinates. When the device is rotated left into landscape orientation, and if
the app rotates to compensate, the window rotates, so the subview is still at the top
left from the user’s point of view, and is still at the top left in window coordinates. But
in screen fixedCoordinateSpace coordinates, the subview’s top left x-coordinate will
have a large positive value, because the origin is now at the lower left and its x grows
positively upward.

Occasions where you need such information will be rare. Indeed, my experience is
that it is rare even to worry about window coordinates. All of your app’s visible
action takes place within your root view controller’s main view, and the bounds of
that view, which are adjusted for you automatically when the app rotates to compen‐
sate for a change in device orientation, are probably the highest coordinate system
that will interest you.

New in iOS 13, the window’s UIWindowScene also vends a coordinateSpace. It
isn’t clear to me under what circumstances this would differ from the window’s
coordinate space.

Trait Collections
Because of the dynamic nature of the larger environment in which views live, it is
useful to have an object describing that environment that propagates down through
the hierarchy of view controllers and views, along with a way of alerting each element

Trait Collections | 27

of that hierarchy that the environment has changed. This is managed through the
trait collection.

The trait collection originates in the screen (UIScreen) and works its way down
through the window and any view controllers whose view is part of the interface all
the way down to every individual subview. All the relevant classes (UIScreen,
UIViewController and UIPresentationController, and UIView) implement the
UITraitEnvironment protocol, which supplies the traitCollection property and the
traitCollectionDidChange method.

The traitCollection is a UITraitCollection, a value class. It is freighted with a con‐
siderable number of properties describing the environment. Its displayScale tells
you the screen resolution; its userInterfaceIdiom states the general device type,
iPhone or iPad; it reports such things as the device’s force touch capability and dis‐
play gamut; and so on.

Both at app launch time and if any property of the trait collection changes while the
app is running, the traitCollectionDidChange(_:) message is propagated down the
hierarchy of UITraitEnvironments; the old trait collection (if any) is provided as the
parameter, and the new trait collection can be retrieved as self.traitCollection.

If you implement traitCollectionDidChange(_:), always call super in the first
line. Forgetting to do this is a common beginner mistake.

It is also possible to construct a trait collection yourself. Oddly, though, you can’t set
any trait collection properties directly; instead, you form a trait collection through an
initializer that determines just one property, and if you want to add further property
settings, you have to combine trait collections by calling init(traitsFrom:) with an
array of trait collections:

let tcdisp = UITraitCollection(displayScale: UIScreen.main.scale)
let tcphone = UITraitCollection(userInterfaceIdiom: .phone)
let tc1 = UITraitCollection(traitsFrom: [tcdisp, tcphone])

The init(traitsFrom:) array works like inheritance: an ordered intersection is per‐
formed. If two trait collections are combined, and they both set the same property,
the winner is the trait collection that appears later in the array or further down the
inheritance hierarchy. If one sets a property and the other doesn’t, the one that sets
the property wins. If you create a trait collection, the value for any unspecified prop‐
erty will be inherited if the trait collection finds itself in the inheritance hierarchy.

To compare trait collections, call containsTraits(in:). This returns true if the
value of every specified property of the parameter trait collection matches that of this
trait collection.

28 | Chapter 1: Views

The trait collection properties that are of chief concern with regard to UIViews in
general are the interface style and the size classes, so I’ll talk about those now.

Interface Style
The trait collection’s userInterfaceStyle (a UIUserInterfaceStyle, new in iOS 13)
reports whether the environment is in light mode (.light) or dark mode (.dark).
For the significance of these for your app, see the discussion of colors earlier in this
chapter. If your colors are dynamic colors, then for the most part everything will hap‐
pen automatically; the user switches modes, and your colors change in response.
However, there are circumstances under which you may be managing some colors
manually, and you’ll want to know when the interface style changes so that you can
change a color in response.

Let’s say we’re applying a custom named dynamic color from the asset catalog to the
border of a view. This is actually done at the level of the view’s layer (Chapter 3), and
requires that we take the color’s cgColor property:

self.otherView.layer.borderWidth = 4
self.otherView.layer.borderColor =
 UIColor(named: "myDarkColor")?.cgColor

The problem is that neither a layer nor a color’s cgColor knows anything about the
trait collection. So it is up to us to listen for trait collection changes and apply our
dynamic color again. We can save ourselves from doing unnecessary work, thanks to
the trait collection hasDifferentColorAppearance method:

override func traitCollectionDidChange(_ prevtc: UITraitCollection?) {
 super.traitCollectionDidChange(prevtc)
 if prevtc?.hasDifferentColorAppearance(
 comparedTo: self.traitCollection) ?? true {
 self.otherView.layer.borderColor =
 UIColor(named: "myDarkColor")?.cgColor
 }
}

Observe that we don’t have to know what the userInterfaceStyle actually is; we
simply take our dynamic color’s cgColor and apply it, exactly as we did before. How
can this be? It’s because the act of accessing the named color from the asset catalog —
UIColor(named: "myDarkColor") — takes place in the presence of a global value,
UITraitCollection.current. In traitCollectionDidChange and various other
places, the runtime sets this value for us, and so our dynamic color arrives in the cor‐
rect interface style variant and our derived cgColor is the correct color. In contexts
where UITraitCollection.current is not set automatically, you are free to set it
manually, ensuring that subsequent operations involving dynamic colors will take
place in the correct environment.

Trait Collections | 29

The trait collection is also the key to understanding what color a named dynamic
color really is. What color is .systemYellow? Well, it depends on the trait collection.
So to find out, you have to supply a trait collection. That’s easy, because you can make
a trait collection. Now you can call resolvedColor:

let yellow = UIColor.systemYellow
let light = UITraitCollection(userInterfaceStyle: .light)
let dark = UITraitCollection(userInterfaceStyle: .dark)
let yellowLight = yellow.resolvedColor(with: light)
// 1 0.8 0 1
let yellowDark = yellow.resolvedColor(with: dark)
// 1 0.839216 0.0392157 1

In addition to the userInterfaceStyle, the trait collection also has a userInterface-
Level, which is .base or .elevated. This affects dynamic background colors. Only
confined regions in front of the main interface are normally affected. An alert (Chap‐
ter 13) has an .elevated interface level, even if the main interface behind the alert
does not.

Size Classes
The salient fact about app rotation and the like is not the rotation per se but the
change in the app’s dimensional proportions. Consider a subview of the root view,
located at the bottom right of the screen when the device is in portrait orientation. If
the root view’s bounds width and bounds height are effectively transposed, then that
poor old subview will now be outside the bounds height, and therefore off the screen
— unless your app responds in some way to this change to reposition it. (Such a
response is called layout, a subject that will occupy most of the rest of this chapter.)

The dimensional characteristics of the environment are embodied in a pair of size
classes which are vended as trait collection properties:

horizontalSizeClass

verticalSizeClass

A UIUserInterfaceSizeClass value, either .regular or .compact.

In combination, the size classes have the following meanings when, as will usually be
the case, your app’s window occupies the entire screen:

Both the horizontal and vertical size classes are .regular
We’re running on an iPad.

The horizontal size class is .compact and the vertical size class is .regular
We’re running on an iPhone with the app in portrait orientation.

The horizontal size class is .regular and the vertical size class is .compact
We’re running on a “big” iPhone with the app in landscape orientation.

30 | Chapter 1: Views

Both the horizontal and vertical size classes are .compact
We’re running on an iPhone (other than a “big” iPhone) with the app in land‐
scape orientation.

The “big” iPhones are the iPhone 6/7/8 Plus, iPhone XR, and iPhone XS Max.
New at the time of this writing, the iPhone 11 and iPhone 11 Pro Max are also
“big” iPhones.

Clearly, a change in the size classes detected through traitCollectionDidChange is
not the way to learn simply that the interface has rotated. Size classes don’t distin‐
guish between an iPad in portrait orientation and an iPad in landscape orientation.
They distinguish between the most important extreme situations: if the horizontal
size class goes from .regular to .compact, the app is suddenly tall and narrow, and
you might want to compensate by changing the interface in some way. In my experi‐
ence, however, you won’t typically implement traitCollectionDidChange in order
to hear about a change in size classes; rather, the size classes are something you’ll
consult in response to some other event. (I’ll talk more in Chapter 6 about how to
detect actual rotation at the level of the view controller.)

Overriding Trait Collections
Under certain circumstances, it can be useful to isolate part of the UITraitEnviron‐
ment hierarchy and lie to it about what the trait collection is. You might like part of
the hierarchy to believe that we are on an iPhone in landscape when in fact we are on
an iPhone in portrait. (I’ll give an example in Chapter 6.) Or there might be some
area of your app that should not respond to a change between light and dark mode.

You cannot insert a trait collection directly into the inheritance hierarchy simply by
setting a view’s trait collection; traitCollection isn’t a settable property. However,
in a UIViewController you can inject your own trait collection by way of the
overrideTraitCollection property (and UIPresentationController has a method
that is similar).

For the user interface style, there is a simpler facility available both for a UIView‐
Controller and for a UIView: the overrideUserInterfaceStyle property (new in
iOS 13). It isn’t a trait collection; it’s a UIUserInterfaceStyle. The default value
is .unspecified, which means that the interface style of the trait collection should
just pass on down the hierarchy. But if you set it to .light or .dark, you block inher‐
itance of just the userInterfaceStyle property of the trait collection starting at that
point in the hierarchy, substituting your own custom setting.

To make your entire app unresponsive to the user’s specified interface style, set
the “User Interface Style” key (UIUserInterfaceStyle) in the Info.plist to Light
or Dark.

Trait Collections | 31

Layout
We have seen that a subview moves when its superview’s bounds origin is changed.
But what happens to a subview when its superview’s size is changed?

Of its own accord, nothing happens. The subview’s bounds and center haven’t
changed, and the superview’s bounds origin hasn’t moved, so the subview stays in the
same position relative to the top left of its superview. In real life, that usually won’t be
what you want. You’ll want subviews to be resized and repositioned when their
superview’s size is changed. This is called layout.

Here are some ways in which a superview might be resized dynamically:

• Your app might compensate for the user rotating the device 90 degrees by rotat‐
ing itself so that its top moves to the new top of the screen, matching its new ori‐
entation — and, as a consequence, transposing the width and height values of its
bounds.

• An iPhone app might launch on screens with different aspect ratios: for instance,
the screen of the iPhone SE is relatively shorter than the screen of later iPhone
models, and the app’s interface may need to adapt to this difference.

• A universal app might launch on an iPad or on an iPhone. The app’s interface
may need to adapt to the size of the screen on which it finds itself running.

• A view instantiated from a nib, such as a view controller’s main view or a table
view cell, might be resized to fit the interface into which it is placed.

• A view might respond to a change in its surrounding views. For instance, when a
navigation bar is shown or hidden dynamically, the remaining interface might
shrink or grow to compensate, filling the available space.

• The user might alter the width of your app’s window on an iPad, as part of the
iPad multitasking interface.

In any of those situations, and others, layout will probably be needed. Subviews of the
view whose size has changed will need to shift, change size, redistribute themselves,
or compensate in other ways so that the interface still looks good and remains usable.

Layout is performed in three primary ways:

Manual layout
The superview is sent the layoutSubviews message whenever it is resized; so, to
lay out subviews manually, provide your own subclass and override layout-
Subviews. Clearly this could turn out to be a lot of work, but it means you can do
anything you like.

32 | Chapter 1: Views

Autoresizing
Autoresizing is the oldest way of performing layout automatically. When its
superview is resized, a subview will respond in accordance with the rules prescri‐
bed by its own autoresizingMask property value, which describes the resizing
relationship between the subview and its superview.

Autolayout
Autolayout depends on the constraints of views. A constraint is a full-fledged
object with numeric values describing some aspect of the size or position of a
view, often in terms of some other view; it is much more sophisticated, descrip‐
tive, and powerful than the autoresizingMask. Multiple constraints can apply to
an individual view, and they can describe a relationship between any two views
(not just a subview and its superview). Autolayout is implemented behind the
scenes in layoutSubviews; in effect, constraints allow you to write sophisticated
layoutSubviews functionality without code.

Your layout strategy can involve any combination of those. The need for manual lay‐
out is rare, but you can implement it if you need it. Autoresizing is the default. Auto‐
layout is an opt-in alternative to autoresizing. But in real life, it is quite likely that all
your views will opt in to autolayout, because it’s so powerful and best suited to help
your interface adapt to a great range of screen sizes.

The default layout behavior for a view depends on how it was created:

In code
A view that your code creates and adds to the interface, by default, uses autore‐
sizing, not autolayout. If you want such a view to use autolayout, you must delib‐
erately suppress its use of autoresizing.

In a nib file
All new .storyboard and .xib files opt in to autolayout. Their views are ready for
autolayout. But a view in the nib editor can still use autoresizing if you prefer.

Autoresizing
Autoresizing is a matter of conceptually assigning a subview “springs and struts.” A
spring can expand and contract; a strut can’t. Springs and struts can be assigned
internally or externally, horizontally or vertically. With two internal springs or struts,
you specify whether and how the view can be resized; with four external springs or
struts, you specify whether and how the view can be repositioned:

• Imagine a subview that is centered in its superview and is to stay centered, but is
to resize itself as the superview is resized. It would have four struts externally and
two springs internally.

Layout | 33

• Imagine a subview that is centered in its superview and is to stay centered, and is
not to resize itself as the superview is resized. It would have four springs exter‐
nally and two struts internally.

• Imagine an OK button that is to stay in the lower right of its superview. It would
have two struts internally, two struts externally from its right and bottom, and
two springs externally from its top and left.

• Imagine a text field that is to stay at the top of its superview. It is to widen as the
superview widens. It would have three struts externally and a spring from its bot‐
tom; internally it would have a vertical strut and a horizontal spring.

In code, a combination of springs and struts is set through a view’s autoresizing-
Mask property, which is a bitmask (UIView.AutoresizingMask) so that you can com‐
bine options. The options represent springs; whatever isn’t specified is a strut. The
default is the empty set, apparently meaning all struts — but of course it can’t really
be all struts, because if the superview is resized, something needs to change, so in real‐
ity an empty autoresizingMask is the same as .flexibleRightMargin together
with .flexibleBottomMargin (and the view is pinned by struts to the top left).

In debugging, when you log a UIView to the console, its autoresizingMask is
reported using the word autoresize and a list of the springs. The external springs are
LM, RM, TM, and BM; the internal springs are W and H. autoresize = LM+TM means there
are external springs from the left and top; autoresize = W+BM means there’s an
internal horizontal spring and a spring from the bottom.

To demonstrate autoresizing, I’ll start with a view and two subviews, one stretched
across the top, the other confined to the lower right (Figure 1-13):

let v1 = UIView(frame:CGRect(100, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:CGRect(0, 0, 132, 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v1b = v1.bounds
let v3 = UIView(frame:CGRect(v1b.width-20, v1b.height-20, 20, 20))
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
self.view.addSubview(v1)
v1.addSubview(v2)
v1.addSubview(v3)

To that example, I’ll add code applying springs and struts to the two subviews to
make them behave like the text field and the OK button I was hypothesizing earlier:

v2.autoresizingMask = .flexibleWidth
v3.autoresizingMask = [.flexibleTopMargin, .flexibleLeftMargin]

Now I’ll resize the superview, bringing autoresizing into play; as you can see
(Figure 1-14), the subviews remain pinned in their correct relative positions:

34 | Chapter 1: Views

Figure 1-13. Before autoresizing

Figure 1-14. After autoresizing

v1.bounds.size.width += 40
v1.bounds.size.height -= 50

If autoresizing isn’t sophisticated enough to achieve what you want, you have two
choices:

• Combine it with manual layout in layoutSubviews. Autoresizing happens before
layoutSubviews is called, so your layoutSubviews code is free to come march‐
ing in and tidy up whatever autoresizing didn’t get quite right.

• Use autolayout. This is actually the same solution, because autolayout is in fact a
way of injecting functionality into layoutSubviews. But using autolayout is a lot
easier than writing your own layoutSubviews code!

Autolayout and Constraints
Autolayout is an opt-in technology, at the level of each individual view. You can use
autoresizing and autolayout in different areas of the same interface; one sibling view
can use autolayout while another sibling view does not, and a superview can use
autolayout while some or all of its subviews do not. However, autolayout is imple‐
mented through the superview chain, so if a view uses autolayout, then automatically
so do all its superviews; and if (as will almost certainly be the case) one of those views
is the main view of a view controller, that view controller receives autolayout-related
events.

Layout | 35

But how does a view opt in to using autolayout? Simply by becoming involved with a
constraint. Constraints are your way of telling the autolayout engine that you want it
to perform layout on this view, as well as how you want the view laid out.

An autolayout constraint, or simply constraint, is an NSLayoutConstraint instance,
and describes either the absolute width or height of a view, or else a relationship
between an attribute of one view and an attribute of another view. In the latter case,
the attributes don’t have to be the same attribute, and the two views don’t have to be
siblings (subviews of the same superview) or parent and child (superview and sub‐
view) — the only requirement is that they share a common ancestor (a superview
somewhere up the view hierarchy).

Here are the chief properties of an NSLayoutConstraint:

firstItem, firstAttribute, secondItem, secondAttribute
The two views and their respective attributes (NSLayoutConstraint.Attribute)
involved in this constraint. The possible attribute values are:

• .width, .height
• .top, .bottom
• .left, .right, .leading, .trailing
• .centerX, .centerY
• .firstBaseline, .lastBaseline

If the constraint is describing a view’s absolute height or width, the secondItem
will be nil and the secondAttribute will be .notAnAttribute.

.firstBaseline applies primarily to multiline labels, and is some distance down
from the top of the label (Chapter 10); .lastBaseline is some distance up from
the bottom of the label.

The meanings of the other attributes are intuitively obvious, except that you
might wonder what .leading and .trailing mean: they are the international
equivalent of .left and .right, automatically reversing their meaning on sys‐
tems for which your app is localized and whose language is written right-to-left.
The entire interface is automatically reversed on such systems — but that will
work properly only if you’ve used .leading and .trailing constraints through‐
out the interface.

multiplier, constant
These numbers will be applied to the second attribute’s value to determine the
first attribute’s value. The second attribute’s value is multiplied by the
multiplier; the constant is added to that product; and the first attribute is set to
the result. Basically, you’re writing an equation a1 = ma2 + c, where a1 and a2 are

36 | Chapter 1: Views

the two attributes, and m and c are the multiplier and the constant. In the degen‐
erate case where the first attribute’s value is to equal the second attribute’s value,
the multiplier will be 1 and the constant will be 0. If you’re describing a view’s
width or height absolutely, the multiplier will be 1 and the constant will be the
width or height value.

relation

How the two attribute values are to be related to one another, as modified by the
multiplier and the constant. This is the operator that goes in the spot where I
put the equal sign in the equation in the preceding paragraph. Possible values are
(NSLayoutConstraint.Relation):

• .equal

• .lessThanOrEqual

• .greaterThanOrEqual

priority

Priority values range from 1000 (required) down to 1, and certain standard
behaviors have standard priorities. Constraints can have different priorities,
determining the order in which they are applied. Starting in iOS 11, a priority is
not a number but a UILayoutPriority struct wrapping the numeric value as its
rawValue.

A constraint belongs to a view. A view can have many constraints: a UIView has a
constraints property, along with these instance methods:

• addConstraint(_:), addConstraints(_:)
• removeConstraint(_:), removeConstraints(_:)

The question then is which view a given constraint should belong to. The answer is:
the view that is closest up the view hierarchy from both views involved in the con‐
straint. If possible, it should be one of those views. If the constraint dictates a view’s
absolute width, it belongs to that view; if it sets the top of a view in relation to the top
of its superview, it belongs to that superview; if it aligns the tops of two sibling views,
it belongs to their common superview.

However, you’ll probably never call any of those methods! Starting in iOS 8, instead
of adding a constraint to a particular view explicitly, you can activate the constraint.
An activated constraint is added to the correct view automatically, relieving you from
having to determine what view that would be. A constraint has an isActive property;
you can set it to activate or deactivate a single constraint, plus it tells you whether a
given constraint is part of the interface at this moment. There is also an NSLayout‐
Constraint class method activate(_:), which takes an array of constraints, along

Layout | 37

with deactivate(_:). Deactivating a constraint is like removing a subview: the con‐
straint is removed from its view, and will go out of existence if you haven’t retained it.

NSLayoutConstraint properties are read-only, except for priority, constant, and
isActive. If you want to change anything else about an existing constraint, you must
remove the constraint and replace it with a new one.

An NSLayoutConstraint also has a writable string identifier property. It can be set
to any value you like, and can be useful for debugging or for finding a constraint later
— so useful, in fact, that it might be good to have on hand an extension that lets you
activate a constraint and set its identifier at the same time:

extension NSLayoutConstraint {
 func activate(withIdentifier id: String) {
 (self.identifier, self.isActive) = (id, true)
 }
}

(I owe that idea to Stack Overflow user Exquisitian; see https://stackoverflow.com/a/
57102973/341994.)

Once you are using explicit constraints to position and size a view, do not set its
frame (or bounds and center); use constraints alone. Otherwise, when layout-
Subviews is called, the view will jump back to where its constraints position it.
(However, you may set a view’s frame from within an implementation of layout-
Subviews, and it is perfectly normal to do so.)

Implicit Autoresizing Constraints
The mechanism whereby individual views can opt in to autolayout can suddenly
involve other views in autolayout, even though those other views were not using
autolayout previously. Therefore, there needs to be a way, when such a view becomes
involved in autolayout, to generate constraints for it — constraints that will deter‐
mine that view’s position and size identically to how its frame and autoresizingMask
were determining them. The autolayout engine takes care of this for you: it reads the
view’s frame and autoresizingMask settings and translates them into implicit con‐
straints (of class NSAutoresizingMaskLayoutConstraint). The autolayout engine
treats a view in this special way only if the view has its translatesAutoresizingMask-
IntoConstraints property set to true — which happens to be the default.

To demonstrate, I’ll construct an example in two stages. In the first stage, I add to my
interface, in code, a UILabel (“Hello”) that doesn’t use autolayout. I’ll decide that this
view’s position is to be somewhere near the top right of the screen. To keep it in
position near the top right, its autoresizingMask will be [.flexibleLeft-

Margin, .flexibleBottomMargin]:

38 | Chapter 1: Views

https://stackoverflow.com/a/57102973/341994
https://stackoverflow.com/a/57102973/341994

let lab1 = UILabel(frame:CGRect(270,20,42,22))
lab1.autoresizingMask = [.flexibleLeftMargin, .flexibleBottomMargin]
lab1.text = "Hello"
self.view.addSubview(lab1)

If we now rotate the device (or Simulator window), and the app rotates to compen‐
sate, the label stays correctly positioned near the top right corner by autoresizing.

Now I’ll add a second label (“Howdy”) that does use autolayout — and in particular,
I’ll attach it by a constraint to the first label (the meaning of this code will be made
clear in subsequent sections; just accept it for now):

let lab2 = UILabel()
lab2.translatesAutoresizingMaskIntoConstraints = false
lab2.text = "Howdy"
self.view.addSubview(lab2)
NSLayoutConstraint.activate([
 lab2.topAnchor.constraint(
 equalTo: lab1.bottomAnchor, constant: 20),
 lab2.trailingAnchor.constraint(
 equalTo: self.view.trailingAnchor, constant: -20)
])

This causes the first label (“Hello”) to be involved in autolayout. Therefore, the first
label magically acquires four automatically generated implicit constraints of class
NSAutoresizingMaskLayoutConstraint, such as to give the label the same size and
position, and the same behavior when its superview is resized, that it had when it was
configured by its frame and autoresizingMask:

<NSAutoresizingMaskLayoutConstraint H:[UILabel:'Hello']-(63)-|>
<NSAutoresizingMaskLayoutConstraint UILabel:'Hello'.minY == 20>
<NSAutoresizingMaskLayoutConstraint UILabel:'Hello'.width == 42>
<NSAutoresizingMaskLayoutConstraint UILabel:'Hello'.height == 22>

Recall that the original frame was (270,20,42,22). I’m on an iPhone 8 simulator, so
the main view width is 375. I’ve simplified and rearranged the output, but what it says
is that the label’s right edge is 63 points from the main view’s right (the label’s origi‐
nal x value of 270 plus its width of 42 is 312, and the main view’s width of 375 minus
312 is 63), its top is 20 points from the main view’s top, and it is 42×22 in size.

But within this helpful automatic behavior lurks a trap. Suppose a view has acquired
automatically generated implicit constraints, and suppose you then proceed to attach
further constraints to this view, explicitly setting its position or size. There will then
almost certainly be a conflict between your explicit constraints and the implicit con‐
straints. The solution is to set the view’s translatesAutoresizingMaskInto-

Constraints property to false, so that the implicit constraints are not generated,
and the view’s only constraints are your explicit constraints.

The trouble is most likely to arise when you create a view in code and then position or
size that view with constraints, forgetting that you also need to set its translates-

Layout | 39

AutoresizingMaskIntoConstraints property to false. If that happens, you’ll get a
conflict between constraints. (To be honest, I usually do forget, and am reminded
only when I do get a conflict between constraints.)

Creating Constraints in Code
We are now ready to write some code that creates constraints! I’ll start by using the
NSLayoutConstraint initializer:

• init(item:attribute:relatedBy:toItem:attribute:multiplier:constant:)

This initializer sets every property of the constraint, as I described them a moment
ago — except the priority, which defaults to .required (1000), and the identifier,
both of which can be set later if desired.

I’ll generate the same views and subviews and layout behavior as in Figures 1-13 and
1-14, but using constraints. First, I’ll create the views and add them to the interface.
Observe that I don’t bother to assign the subviews v2 and v3 explicit frames as I cre‐
ate them, because constraints will take care of positioning them. Also, I remember
(for once) to set their translatesAutoresizingMaskIntoConstraints properties to
false, so that they won’t sprout additional implicit NSAutoresizingMaskLayout‐
Constraints:

let v1 = UIView(frame:CGRect(100, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView()
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView()
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
self.view.addSubview(v1)
v1.addSubview(v2)
v1.addSubview(v3)
v2.translatesAutoresizingMaskIntoConstraints = false
v3.translatesAutoresizingMaskIntoConstraints = false

And here come the constraints; I’ll add them to their views manually, just to show
how it’s done:

v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .leading,
 relatedBy: .equal,
 toItem: v1,
 attribute: .leading,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .trailing,
 relatedBy: .equal,

40 | Chapter 1: Views

 toItem: v1,
 attribute: .trailing,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .top,
 relatedBy: .equal,
 toItem: v1,
 attribute: .top,
 multiplier: 1, constant: 0)
)
v2.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .height,
 relatedBy: .equal,
 toItem: nil,
 attribute: .notAnAttribute,
 multiplier: 1, constant: 10)
)
v3.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .width,
 relatedBy: .equal,
 toItem: nil,
 attribute: .notAnAttribute,
 multiplier: 1, constant: 20)
)
v3.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .height,
 relatedBy: .equal,
 toItem: nil,
 attribute: .notAnAttribute,
 multiplier: 1, constant: 20)
)
v1.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .trailing,
 relatedBy: .equal,
 toItem: v1,
 attribute: .trailing,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .bottom,
 relatedBy: .equal,
 toItem: v1,
 attribute: .bottom,
 multiplier: 1, constant: 0)
)

Layout | 41

Now, I know what you’re thinking. You’re thinking: “What are you, nuts? That is a
boatload of code!” (Except that you probably used another four-letter word instead of
“boat.”) But that’s something of an illusion. I’d argue that what we’re doing here is
actually simpler than the code with which we created Figure 1-13 using explicit
frames and autoresizing.

After all, we merely create eight constraints in eight simple commands. (I’ve broken
each command into multiple lines, but that’s mere formatting.) They’re verbose, but
they are the same command repeated with different parameters, so creating them is
simple. Moreover, our eight constraints determine the position, size, and layout
behavior of our two subviews, so we’re getting a lot of bang for our buck. Even more
telling, these constraints are a far clearer expression of what’s supposed to happen
than setting a frame and autoresizingMask. The position of our subviews is
described once and for all, both as they will initially appear and as they will appear if
their superview is resized. And we don’t have to use arbitrary math. Recall what we
had to say before:

let v1b = v1.bounds
let v3 = UIView(frame:CGRect(v1b.width-20, v1b.height-20, 20, 20))

That business of subtracting the view’s height and width from its superview’s bounds
height and width in order to position the view is confusing and error-prone. With
constraints, we can speak the truth directly; our constraints say, plainly and simply,
“v3 is 20 points wide and 20 points high and flush with the bottom-right corner of v1.”

In addition, constraints can express things that autoresizing can’t. Instead of applying
an absolute height to v2, we could require that its height be exactly one-tenth of v1’s
height, regardless of how v1 is resized. To do that without autolayout, you’d have to
implement layoutSubviews and enforce it manually, in code.

Anchor notation

The NSLayoutConstraint(item:...) initializer is rather verbose, though it has the
virtue of singularity: one method can create any constraint. There’s another way to
do everything I just did, making exactly the same eight constraints and adding them
to the same views, using a much more compact notation that takes the opposite
approach: it concentrates on brevity but sacrifices singularity. Instead of focusing on
the constraint, the compact notation focuses on the attributes to which the constraint
relates. These attributes are expressed as anchor properties of a UIView:

• widthAnchor, heightAnchor
• topAnchor, bottomAnchor
• leftAnchor, rightAnchor, leadingAnchor, trailingAnchor
• centerXAnchor, centerYAnchor

42 | Chapter 1: Views

• firstBaselineAnchor, lastBaselineAnchor
The anchor values are instances of NSLayoutAnchor subclasses. The constraint-
forming methods are anchor instance methods. There are three possible relations —
equal to, greater than or equal to, and less than or equal to — and the relationship
might be with a constant or another anchor, yielding six combinations:

A constant alone
These methods are for an absolute width or height constraint:

• constraint(equalToConstant:)

• constraint(greaterThanOrEqualToConstant:)

• constraint(lessThanOrEqualToConstant:)

Another anchor
In a relationship with another anchor, we need both a constant and a multiplier.
But for brevity you can omit the multiplier:, the constant:, or both. If the
constant is omitted, it is 0; if the multiplier is omitted, it is 1:

• constraint(equalTo:multiplier:constant:)

• constraint(greaterThanOrEqualTo:multiplier:constant:)

• constraint(lessThanOrEqualTo:multiplier:constant:)

In iOS 10, a method was added that generates, not a constraint, but a new width or
height anchor expressing the distance between two anchors; you can then set a view’s
width or height anchor in relation to that distance:

• anchorWithOffset(to:)

Starting in iOS 11, additional methods create a constraint based on a constant value
provided by the runtime. This is helpful for getting the standard spacing between
views, and is especially valuable when connecting text baselines vertically, because the
system spacing will change according to the text size:

• constraint(equalToSystemSpacingAfter:multiplier:)

• constraint(greaterThanOrEqualToSystemSpacingAfter:multiplier:)

• constraint(lessThanOrEqualToSystemSpacingAfter:multiplier:)

• constraint(equalToSystemSpacingBelow:multiplier:)

• constraint(greaterThanOrEqualToSystemSpacingBelow:multiplier:)

• constraint(lessThanOrEqualToSystemSpacingBelow:multiplier:)

All of that may sound very elaborate when I describe it, but when you see it in action,
you will appreciate immediately the benefit of this compact notation: it’s easy to write
(especially thanks to Xcode’s code completion), easy to read, and easy to maintain.

Layout | 43

Here we generate exactly the same constraints as in the preceding example; I’ll call
activate instead of adding each constraint to its view manually:

NSLayoutConstraint.activate([
 v2.leadingAnchor.constraint(equalTo:v1.leadingAnchor),
 v2.trailingAnchor.constraint(equalTo:v1.trailingAnchor),
 v2.topAnchor.constraint(equalTo:v1.topAnchor),
 v2.heightAnchor.constraint(equalToConstant:10),
 v3.widthAnchor.constraint(equalToConstant:20),
 v3.heightAnchor.constraint(equalToConstant:20),
 v3.trailingAnchor.constraint(equalTo:v1.trailingAnchor),
 v3.bottomAnchor.constraint(equalTo:v1.bottomAnchor)
])

That’s eight constraints in eight lines of code.

Visual format notation
Another way to abbreviate your creation of constraints is to use a text-based short‐
hand called a visual format. This has the advantage of allowing you to describe multi‐
ple constraints simultaneously, and is appropriate particularly when you’re arranging
a series of views horizontally or vertically. I’ll start with a simple example:

"V:|[v2(10)]"

In that expression, V: means that the vertical dimension is under discussion; the
alternative is H:, which is also the default (so you can omit it). A view’s name appears
in square brackets, and a pipe (|) signifies the superview, so we’re portraying v2’s top
edge as butting up against its superview’s top edge. Numeric dimensions appear in
parentheses, and a numeric dimension accompanying a view’s name sets that dimen‐
sion of that view, so we’re also setting v2’s height to 10.

To use a visual format, you have to provide a dictionary that maps the string name of
each view mentioned by the visual format string to the actual view. The dictionary
accompanying the preceding expression might be ["v2":v2].

Here, then, is yet another way of expressing the preceding examples, generating
exactly the same eight constraints using four commands instead of eight, thanks to
the visual format shorthand:

let d = ["v2":v2,"v3":v3]
NSLayoutConstraint.activate([
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[v2]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[v2(10)]", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:

44 | Chapter 1: Views

 "H:[v3(20)]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v3(20)]|", metrics: nil, views: d)
].flatMap{$0})

(The constraints(withVisualFormat:...) class method yields an array of con‐
straints, so my literal array is an array of arrays of constraints. But activate(_:)
expects an array of constraints, so I flatten my literal array.)

Here are some further things to know when generating constraints with the visual
format syntax:

• The metrics: parameter is a dictionary with numeric values. This lets you use a
name in the visual format string where a numeric value needs to go.

• The options: parameter, omitted in the preceding example, is a bitmask
(NSLayoutConstraint.FormatOptions) chiefly allowing you to specify alignments
to be applied to all the views mentioned in the visual format string.

• To specify the distance between two successive views, use hyphens surrounding
the numeric value, like this: "[v1]-20-[v2]". The numeric value may optionally
be surrounded by parentheses.

• A numeric value in parentheses may be preceded by an equality or inequality
operator, and may be followed by an at sign with a priority. Multiple numeric
values, separated by comma, may appear in parentheses together, as in
"[v1(>=20@400,<=30)]".

For formal details of the visual format syntax, see the “Visual Format Syntax” appen‐
dix of Apple’s Auto Layout Guide in the documentation archive.

The visual format syntax shows itself to best advantage when multiple views are laid
out in relation to one another along the same dimension; in that situation, you can
get many constraints generated by a single compact visual format string. However, it
hasn’t been updated for recent iOS versions, so there are some important types of
constraint that visual format syntax can’t express (such as pinning a view to the safe
area, discussed later in this chapter).

Constraints as Objects
The examples so far have involved creating constraints and adding them directly to
the interface — and then forgetting about them. But it is frequently useful to form
constraints and keep them on hand for future use, typically in a property. A common
use case is where you intend, at some future time, to change the interface in some
radical way, such as by inserting or removing a view; you’ll probably find it conve‐
nient to keep multiple sets of constraints on hand, each set being appropriate to a
particular configuration of the interface. It is then trivial to swap constraints out of
and into the interface along with views that they affect.

Layout | 45

In this example, we create within our main view (self.view) three views, v1, v2, and
v3, which are red, yellow, and blue rectangles respectively. For some reason, we will
later want to remove the yellow view (v2) dynamically as the app runs, moving the
blue view to where the yellow view was; and then, still later, we will want to insert the
yellow view once again (Figure 1-15). So we have two alternating view configurations.

To prepare for this, we create two sets of constraints, one describing the positions of
v1, v2, and v3 when all three are present, the other describing the positions of v1 and
v3 when v2 is absent. For purposes of maintaining these sets of constraints, we have
already prepared two properties, constraintsWith and constraintsWithout, initial‐
ized as empty arrays of NSLayoutConstraint. We will also need a strong reference to
v2, so that it doesn’t vanish when we remove it from the interface:

var v2 : UIView!
var constraintsWith = [NSLayoutConstraint]()
var constraintsWithout = [NSLayoutConstraint]()

Here’s the code for creating the views:

let v1 = UIView()
v1.backgroundColor = .red
v1.translatesAutoresizingMaskIntoConstraints = false
let v2 = UIView()
v2.backgroundColor = .yellow
v2.translatesAutoresizingMaskIntoConstraints = false
let v3 = UIView()
v3.backgroundColor = .blue
v3.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(v1)
self.view.addSubview(v2)
self.view.addSubview(v3)
self.v2 = v2 // retain

Now we create the constraints. In what follows, c1, c3, and c4 are in common to both
situations (v2 is present or v2 is absent), so we simply activate them once and for all.
The remaining constraints we store in two groups, one for each of the two situations:

// construct constraints
let c1 = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v1])
let c2 = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v2])
let c3 = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v3])
let c4 = NSLayoutConstraint.constraints(withVisualFormat:
 "V:|-(100)-[v(20)]", metrics: nil, views: ["v":v1])
let c5with = NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v1]-(20)-[v2(20)]-(20)-[v3(20)]", metrics: nil,
 views: ["v1":v1, "v2":v2, "v3":v3])
let c5without = NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v1]-(20)-[v3(20)]", metrics: nil, views: ["v1":v1, "v3":v3])

46 | Chapter 1: Views

Figure 1-15. Alternate sets of views and constraints

// apply common constraints
NSLayoutConstraint.activate([c1, c3, c4].flatMap{$0})
// first set of constraints (for when v2 is present)
self.constraintsWith.append(contentsOf:c2)
self.constraintsWith.append(contentsOf:c5with)
// second set of constraints (for when v2 is absent)
self.constraintsWithout.append(contentsOf:c5without)

Now we’re ready to start alternating between constraintsWith and constraints-
Without. We start with v2 present, so it is constraintsWith that we initially make
active:

// apply first set
NSLayoutConstraint.activate(self.constraintsWith)

All that preparation may seem extraordinarily elaborate, but the result is that when
the time comes to swap v2 out of or into the interface, it’s trivial to swap the appro‐
priate constraints at the same time:

func doSwap() {
 if self.v2.superview != nil {
 self.v2.removeFromSuperview()
 NSLayoutConstraint.deactivate(self.constraintsWith)
 NSLayoutConstraint.activate(self.constraintsWithout)
 } else {
 self.view.addSubview(v2)
 NSLayoutConstraint.deactivate(self.constraintsWithout)
 NSLayoutConstraint.activate(self.constraintsWith)
 }
}

In that code, I deactivate the old constraints before activating the new ones. Always
proceed in that order; activating the new constraints with the old constraints still in
force will cause a conflict (as I’ll explain later in this chapter).

Margins and Guides
So far, I’ve been assuming that the anchor points of your constraints represent the
literal edges and centers of views. Sometimes, however, you want a view to vend a set
of secondary edges, with respect to which other views can be positioned. You might
want subviews to keep a minimum distance from the edge of their superview, and the

Layout | 47

superview should be able to dictate what that minimum distance is. This notion of
secondary edges is expressed in two different ways:

Edge insets
A view vends secondary edges as a UIEdgeInsets, a struct consisting of four floats
representing inset values starting at the top and proceeding counterclockwise —
top, left, bottom, right. This is useful when you need to interface with the secon‐
dary edges as numeric values — perhaps to set them or to perform manual layout
based on them.

Layout guides
The UILayoutGuide class represents secondary edges as a kind of pseudoview. It
has a frame (its layoutFrame) with respect to the view that vends it, but its
important properties are its anchors, which are the same as for a view. This, obvi‐
ously, is useful for autolayout.

Safe area
An important set of secondary edges (starting in iOS 11) is the safe area. This is a
feature of a UIView, but it is imposed by the UIViewController that manages this
view. One reason the safe area is needed is that the top and bottom of the interface
are often occupied by a bar (status bar, navigation bar, toolbar, tab bar — see Chap‐
ter 12). Your layout of subviews will typically occupy the region between these bars.
But that’s not easy, because:

• A view controller’s main view will typically extend vertically to the edges of the
window behind those bars.

• The bars can come and go dynamically, and can change their heights. By default,
in an iPhone app, the status bar will be present when the app is in portrait orien‐
tation, but will vanish when the app is in landscape orientation; similarly, a navi‐
gation bar is taller when the app is in portrait orientation than when the app is in
landscape orientation.

Therefore, you need something else, other than the literal top and bottom of a view
controller’s main view, to which to anchor the vertical constraints that position its
subviews — something that will move dynamically to reflect the current location of
the bars. Otherwise, an interface that looks right under some circumstances will look
wrong in others. Consider a view whose top is literally constrained to the top of the
view controller’s main view, which is its superview:

let arr = NSLayoutConstraint.constraints(withVisualFormat:
 "V:|-0-[v]", metrics: nil, views: ["v":v])

When the app is in landscape orientation, with the status bar removed by default, this
view will be right up against the top of the screen, which is fine. But when the app is

48 | Chapter 1: Views

in portrait orientation, this view will still be right up against the top of the screen —
which might look bad, because the status bar reappears and overlaps it.

To solve this problem, a UIViewController imposes the safe area on its main view,
describing the region of the main view that is overlapped by the status bar and other
bars. The top of the safe area matches the bottom of the lowest top bar, or the top of
the main view if there is no top bar; the bottom of the safe area matches the top of the
bottom bar, or the bottom of the main view if there is no bottom bar. The safe area
changes as the situation changes — when the top or bottom bar changes its height, or
vanishes entirely. On a device without a bezel, such as the iPhone X, the safe area is of
even greater importance; its boundaries help keep your views away from the rounded
corners of the screen, and prevent them from being interfered with by the sensors
and the home indicator, both in portrait and in landscape.

In real life, therefore, you’ll be particularly concerned to position subviews of a view
controller’s main view with respect to the main view’s safe area. Your views con‐
strained to the main view’s safe area will avoid being overlapped by bars, and will
move to track the edges of the main view’s visible area. But any view — not just the
view controller’s main view — can participate in the safe area. When a view performs
layout, it imposes the safe area on its own subviews, describing the region of each
subview that is overlapped by its own safe area; so every view “knows” where the bars
are. (There are some additional complexities that I’m omitting, because for practical
purposes you probably won’t encounter them.)

To retrieve a view’s safe area as edge insets, fetch its safeAreaInsets. To retrieve a
view’s safe area as a layout guide, fetch its safeAreaLayoutGuide. You can learn that
a subclassed view’s safe area has changed by overriding safeAreaInsetsDidChange,
or that a view controller’s main view’s safe area has changed by overriding the view
controller’s viewSafeAreaInsetsDidChange; in real life, however, using autolayout,
you probably won’t need that information — you’ll just allow views pinned to a safe
area layout guide to move as the safe area changes.

In this example, v is a view controller’s main view, and v1 is its subview; we construct
a constraint between the top of v1 and the top of the main view’s safe area:

let c = v1.topAnchor.constraint(equalTo: v.safeAreaLayoutGuide.topAnchor)

A view controller can inset even further the safe area it imposes on its main view; set
its additionalSafeAreaInsets. This, as the name implies, is added to the automatic
safe area. It is a UIEdgeInsets. If you set a view controller’s additionalSafeArea-
Insets to a UIEdgeInsets with a top of 50, and if the status bar is showing and there
is no other top bar, the default safe area top would be 20, so now it’s 70. The
additionalSafeAreaInsets is helpful if your main view has material at its edge that
must always remain visible.

Layout | 49

Margins
A view also has margins of its own. Unlike the safe area, which propagates down the
view hierarchy from the view controller, you are free to set an individual view’s mar‐
gins. The idea is that a subview might be positioned with respect to its superview’s
margins, especially through an autolayout constraint. By default, a view has a margin
of 8 on all four edges.

A view’s margins are available as a UILayoutGuide through the UIView layout-
MarginsGuide property. Here’s a constraint between a subview’s leading edge and its
superview’s leading margin:

let c = v.leadingAnchor.constraint(equalTo:
 self.view.layoutMarginsGuide.leadingAnchor)

In visual format syntax, a view pinned to its superview’s edge using a single hyphen,
with no explicit distance value, is interpreted as a constraint to the superview’s
margin:

let arr = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-[v]", metrics: nil, views: ["v":v])

The layoutMarginsGuide property is read-only. To allow you to set a view’s margins,
a UIView has a layoutMargins property, a writable UIEdgeInsets. Starting in iOS 11,
Apple would prefer that you set the directionalLayoutMargins property instead;
this has the feature that when your interface is reversed in a right-to-left system lan‐
guage for which your app is localized, its leading and trailing values behave correctly.
It is expressed as an NSDirectionalEdgeInsets struct, whose properties are top,
leading, bottom, and trailing.

Optionally, a view’s layout margins can propagate down to its subview, in the follow‐
ing sense: a subview that overlaps its superview’s margin may acquire the amount of
overlap as a minimum margin of its own. To switch on this option, set the subview’s
preservesSuperviewLayoutMargins to true. Suppose we set the superview’s
directionalLayoutMargins to an NSDirectionalEdgeInsets with a leading value of
40. And suppose the subview is pinned 10 points from the superview’s leading edge,
so that it overlaps the superview’s leading margin by 30 points. Then, if the subview’s
preservesSuperviewLayoutMargins is true, the subview’s leading margin is 30.

By default, a view’s margin values are treated as insets from the safe area. Suppose a
view’s top margin is 8. And suppose this view underlaps the entire status bar, acquir‐
ing a safe area top of 20. Then its effective top margin value is 28 — meaning that a
subview whose top is pinned exactly to this view’s top margin will appear 28 points
below this view’s top. If you don’t like that behavior (perhaps because you have code
that predates the existence of the safe area), you can switch it off by setting the view’s
insetsLayoutMarginsFromSafeArea property to false; now a top margin value of 8
means an effective top margin value of 8.

50 | Chapter 1: Views

A view controller also has a systemMinimumLayoutMargins property; it imposes these
margins on its main view as a minimum, meaning that you can increase the main
view’s margins beyond these limits, but an attempt to decrease a margin below them
will fail silently. You can evade that restriction, however, by setting the view control‐
ler’s viewRespectsSystemMinimumLayoutMargins property to false. The system-
MinimumLayoutMargins default value is a top and bottom margin of 0 and side
margins of 16 on a smaller device, with side margins of 20 on a larger device.

A second set of margins, a UIView’s readableContentGuide (a UILayoutGuide),
which you cannot change, enforces the idea that a subview consisting of text should
not be allowed to grow as wide as an iPad in landscape, because that’s too wide to
read easily, especially if the text is small. By constraining such a subview horizontally
to its superview’s readableContentGuide, you ensure that that won’t happen.

Custom layout guides
You can add your own custom UILayoutGuide objects to a view, for whatever pur‐
pose you like. They constitute a view’s layoutGuides array, and are managed by call‐
ing addLayoutGuide(_:) or removeLayoutGuide(_:). Each custom layout guide
object must be configured entirely using constraints.

Why would you want to do that? Well, you can constrain a view to a UILayoutGuide,
by means of its anchors. Since a UILayoutGuide is configured by constraints, and
since other views can be constrained to it, it can participate in autolayout exactly as if
it were a subview — but it is not a subview, and therefore it avoids all the overhead
and complexity that a UIView would have.

Consider the question of how to distribute views equally within their superview. This
is easy to arrange initially, but it is not obvious how to design evenly spaced views
that will remain evenly spaced when their superview is resized. The problem is that
constraints describe relationships between views, not between constraints; there is no
way to constrain the spacing constraints between views to remain equal to one
another automatically as the superview is resized.

You can, on the other hand, constrain the heights or widths of views to remain equal
to one another. The traditional solution, therefore, is to resort to spacer views with
their isHidden set to true. Suppose I have four views of equal heights that are to
remain equally distributed vertically. Between them, I interpose three spacer views,
also of equal heights. If we pin every view to the view below it, and the first and last
view to the top and bottom of the superview, and hide the spacer views, they become
the equal spaces between the visible views.

But spacer views are views; hidden or not, they add overhead with respect to drawing,
memory, touch detection, and more. Custom UILayoutGuides solve the problem;
they can serve the same purpose as spacer views, but they are not views.

Layout | 51

Figure 1-16. Equal distribution

I’ll demonstrate. We have four views that are to remain equally distributed vertically.
I constrain the left and right edges of the four views, their heights, and the top of the
first view and the bottom of the last view. Now we want to set the vertical position of
the two middle views such that they are always equidistant from their vertical neigh‐
bors (Figure 1-16).

To solve the problem, I introduce three UILayoutGuide objects between my real
views. A custom UILayoutGuide object is added to a UIView, so I’ll add mine to the
view controller’s main view. I then involve my three layout guides in the layout.
Remember, they must be configured entirely using constraints! The four views are
referenced through an array, views:

var guides = [UILayoutGuide]()
// one fewer guides than views
for _ in views.dropLast() {
 let g = UILayoutGuide()
 self.view.addLayoutGuide(g)
 guides.append(g)
}
// guides leading and width are arbitrary
let anc = self.view.leadingAnchor
for g in guides {
 g.leadingAnchor.constraint(equalTo:anc).isActive = true
 g.widthAnchor.constraint(equalToConstant:10).isActive = true
}
// guides top to previous view
for (v,g) in zip(views.dropLast(), guides) {
 v.bottomAnchor.constraint(equalTo:g.topAnchor).isActive = true
}
// guides bottom to next view
for (v,g) in zip(views.dropFirst(), guides) {
 v.topAnchor.constraint(equalTo:g.bottomAnchor).isActive = true
}

52 | Chapter 1: Views

// guide heights equal to each other!
let h = guides[0].heightAnchor
for g in guides.dropFirst() {
 g.heightAnchor.constraint(equalTo:h).isActive = true
}

I create the layout guides and add them to the interface.

I constrain the leading edges of the layout guides (arbitrarily, to the leading edge
of the main view) and their widths (arbitrarily).

I constrain each layout guide to the bottom of the view above it.

I constrain each layout guide to the top of the view below it.

Finally, our whole purpose is to distribute our views equally, so the heights of our
layout guides must be equal to one another.

In real life, if the problem is equal distribution, you are unlikely to use this tech‐
nique directly, because you will use a UIStackView instead, and let the UIStack‐
View generate all of that code for you — as I will explain a little later.

Constraint alignment
You can also change the location of your view’s anchors themselves. Constraints are
measured by default from a view’s edges, but consider a view that draws, internally, a
rectangle with a shadow; you probably want to pin other views to that drawn rectan‐
gle, not to the outside of the shadow.

To effect this, you can override your view’s alignmentRectInsets property (or, more
elaborately, its alignmentRect(forFrame:) and frame(forAlignmentRect:) meth‐
ods). When you change a view’s alignmentRectInsets, you are effectively changing
where the view’s edges are for purposes of all constraints involving those edges. If a
view’s alignment rect has a left inset of 30, then all constraints involving that
view’s .leading attribute or leadingAnchor are reckoned from that inset.

By the same token, you may want to be able to align your custom UIView with
another view by their baselines. The assumption here is that your view has a subview
containing text that itself has a baseline. Your custom view will return that subview in
its implementation of forFirstBaselineLayout or forLastBaselineLayout.

Intrinsic Content Size
Certain built-in interface objects, when using autolayout, have an inherent size in one
or both dimensions, dependent upon the object type and its content. Here are some
examples:

Layout | 53

• A UIButton has a standard height, and its width is determined by the length of
its title.

• A UIImageView adopts the size of the image that it is displaying.
• A UILabel consisting of a single line of text adopts the size of the text that it is

displaying.
This inherent size is the object’s intrinsic content size. The intrinsic content size is
used to generate constraints implicitly (of class NSContentSizeLayoutConstraint).

A change in the characteristics or content of a built-in interface object — a button’s
title, an image view’s image, a label’s text or font, and so forth — may cause its intrin‐
sic content size to change. This, in turn, may alter your layout. You will want to con‐
figure your autolayout constraints so that your interface responds gracefully to such
changes.

You do not have to supply explicit constraints configuring a dimension of a view
whose intrinsic content size configures that dimension. But you might! And when
you do, the tendency of an interface object to size itself to its intrinsic content size
must not be allowed to conflict with its obedience to your explicit constraints. There‐
fore, the constraints generated from a view’s intrinsic content size have a lowered pri‐
ority, and come into force only if no constraint of a higher priority prevents them.
The following methods allow you to access these priorities (the parameter is an
NSLayoutConstraint.Axis, either .horizontal or .vertical):

contentHuggingPriority(for:)

A view’s resistance to growing larger than its intrinsic size in this dimension. In
effect, there is an inequality constraint saying that the view’s size in this dimen‐
sion should be less than or equal to its intrinsic size. The default priority is usu‐
ally .defaultLow (250), though some interface classes will default to a higher
value if created in a nib.

contentCompressionResistancePriority(for:)

A view’s resistance to shrinking smaller than its intrinsic size in this dimension.
In effect, there is an inequality constraint saying that the view’s size in this
dimension should be greater than or equal to its intrinsic size. The default prior‐
ity is usually .defaultHigh (750).

Those methods are getters; there are corresponding setters, because you might need
to change the priorities. Here are visual formats configuring two horizontally adja‐
cent labels (lab1 and lab2) to be pinned to the superview and to one another:

"V:|-20-[lab1]"
"V:|-20-[lab2]"
"H:|-20-[lab1]"
"H:[lab2]-20-|"
"H:[lab1(>=100)]-(>=20)-[lab2(>=100)]"

54 | Chapter 1: Views

Figure 1-17. A self-sizing view

The inequalities ensure that as the superview becomes narrower or the text of the
labels becomes longer, a reasonable amount of text will remain visible in both labels.
At the same time, one label will be squeezed down to 100 points width, while the
other label will be allowed to grow to fill the remaining horizontal space. The ques‐
tion is: which label is which? You need to answer that question. To do so, it suffices
to give the two labels different compression resistance priorities; even a tiny differ‐
ence will do:

let p = lab2.contentCompressionResistancePriority(for: .horizontal)
lab1.setContentCompressionResistancePriority(p+1, for: .horizontal)

You can supply an intrinsic size in your own custom UIView subclass by overriding
intrinsicContentSize. Obviously you should do this only if your view’s size some‐
how depends on its content. If you need the runtime to ask for your intrinsic-
ContentSize again, because the contents have changed and the view needs to be laid
out afresh, it’s up to you to call your view’s invalidateIntrinsicContentSize
method.

Self-Sizing Views
So far, I have talked about layout (and autolayout in particular) as a way of solving
the problem of what should happen to a superview’s subviews when the superview is
resized. However, autolayout also works in the opposite direction. If a superview’s
subviews determine their own size, they can also determine the size of the superview.

Consider this simple example. We have a plain vanilla UIView, which has as its sole
subview a UIButton. And suppose this UIButton is pinned by constraints from all
four edges to its superview, the plain vanilla UIView. Well, as I’ve already said, a
UIButton under autolayout has an intrinsic size: its height is standard, and its width
is dependent upon its title. So, all other things being equal, the size of the button is
determined. Then, all other things being equal, the size of the plain vanilla view is also
determined, from the inside out, by the size of the button, its subview. (See
Figure 1-17; the inner rectangle with the black border is the button, and the outer
rectangle is the plain vanilla UIView.)

What I mean by “all other things being equal” is simply that you don’t determine the
size of the plain vanilla superview in any other way. Let’s say you pin the leading and

Layout | 55

top edges of the superview to its superview. Now we know the position of the super‐
view. But we do not pin its trailing or bottom edges, and we don’t give it a width or
height constraint. You might say: Then the width and height of the superview are
unknown! But not so. In this situation, the autolayout engine simply gets the width
and height of the superview from the width and height of its subview, the button —
because the width and height of the button are known, and there is a complete con‐
straint relationship between the width and height of the button and the width and
height of the superview.

I call a view such as our plain vanilla superview a self-sizing view. In effect, it has an
intrinsic content size — not literally (we have not configured its instrinsicContent-
Size), but in the sense that it is, in fact, sized by its content. A self-sizing view’s size
does not have to be determined solely by its content; it is fine to give a self-sizing view
a width constraint (or pin it on both sides) but allow its height to be determined by
its content. If the superview is also pinned to its subview(s) horizontally to determine
its width, that could result in a conflict between constraints — but in many cases it
won’t. Our plain vanilla superview can have its width determined by a hard-coded
width constraint without causing a conflict; its subview is pinned to it horizontally,
but its subview is a button whose width is determined by its intrinsic content size at a
lower priority than the superview’s width constraint, so the superview’s width wins
without a struggle (and the button subview is widened to match).

When a view is self-sizing based on the constraints of its subviews, you can ask it in
code to size itself immediately in order to discover what its size would be if the auto‐
layout engine were to perform layout at this moment. Send the view the system-
LayoutSizeFitting(_:) message. The system will attempt to reach or at least
approach the size you specify, at a very low priority. This call is relatively slow and
expensive, because a temporary autolayout engine has to be created, set to work, and
discarded. But sometimes that’s the best way to get the information you need. Mostly
likely you’ll specify either UIView.layoutFittingCompressedSize or UIView.layout-
FittingExpandedSize, depending on whether what you’re after is the smallest or
largest size the view can legally attain. There are a few situations where the iOS run‐
time actually does size a view that way (most notably with regard to UITableView‐
Cells and UIBarButtonItems). I’ll show an example in Chapter 7.

Stack Views
A stack view (UIStackView) is a kind of pseudoview whose job is to generate con‐
straints for some or all of its subviews. These are its arranged subviews. In particular,
a stack view solves the problem of providing constraints when subviews are to be
configured linearly in a horizontal row or a vertical column. In practice, it turns out
that many layouts can be expressed as an arrangement, possibly nested, of simple

56 | Chapter 1: Views

rows and columns of subviews. You are likely to resort to stack views to make your
layout easier to construct and maintain.

You can supply a stack view with arranged subviews by calling its initializer
init(arrangedSubviews:). The arranged subviews become the stack view’s
arrangedSubviews read-only property. You can also manage the arranged subviews
with these methods:

• addArrangedSubview(_:)

• insertArrangedSubview(_:at:)

• removeArrangedSubview(_:)

The arrangedSubviews array is different from, but is a subset of, the stack view’s
subviews. It’s fine for the stack view to have subviews that are not arranged (for
which you’ll have to provide constraints yourself); on the other hand, if you set a view
as an arranged subview and it is not already a subview, the stack view will adopt it as
a subview at that moment.

The order of the arrangedSubviews is independent of the order of the subviews; the
subviews order, you remember, determines the order in which the subviews are
drawn, but the arrangedSubviews order determines how the stack view will position
those subviews.

Using its properties, you configure the stack view to tell it how it should arrange its
arranged subviews:

axis

Which way should the arranged subviews be arranged? Your choices are
(NSLayoutConstraint.Axis):

• .horizontal

• .vertical

alignment

This describes how the arranged subviews should be laid out with respect to the
other dimension. Your choices are (UIStackView.Alignment):

• .fill

• .leading (or .top)
• .center

• .trailing (or .bottom)
• .firstBaseline or .lastBaseline (if the axis is .horizontal)

Layout | 57

If the axis is .vertical, you can still involve the subviews’ baselines in their
spacing by setting the stack view’s isBaselineRelativeArrangement to true.

distribution

How should the arranged subviews be positioned along the axis? This is why
you are here! You’re using a stack view because you want this positioning per‐
formed for you. Your choices are (UIStackView.Distribution):

.fill

The arranged subviews can have real size constraints or intrinsic content
sizes along the arranged dimension. Using those sizes, the arranged subviews
will fill the stack view from end to end. But there must be at least one view
without a real size constraint, so that it can be resized to fill the space not
taken up by the other views. If more than one view lacks a real size con‐
straint, one of them must have a lowered priority for its content hugging (if
stretching) or compression resistance (if squeezing) so that the stack view
knows which view to resize.

.fillEqually

No view may have a real size constraint along the arranged dimension. The
arranged subviews will be made the same size in the arranged dimension, so
as to fill the stack view.

.fillProportionally

All arranged subviews must have an intrinsic content size and no real size
constraint along the arranged dimension. The views will then fill the stack
view, sized according to the ratio of their intrinsic content sizes.

.equalSpacing

The arranged subviews can have real size constraints or intrinsic content
sizes along the arranged dimension. Using those sizes, the arranged subviews
will fill the stack view from end to end with equal space between each adja‐
cent pair.

.equalCentering

The arranged subviews can have real size constraints or intrinsic content
sizes along the arranged dimension. Using those sizes, the arranged subviews
will fill the stack view from end to end with equal distance between the cen‐
ters of each adjacent pair.

The stack view’s spacing property determines the spacing (or minimum spac‐
ing) between all the views. Starting in iOS 11, you can set the spacing for individ‐
ual views by calling setCustomSpacing(_:after:); if you need to turn
individual spacing back off for a view, reverting to the overall spacing property
value, set the custom spacing to UIStackView.spacingUseDefault. To impose

58 | Chapter 1: Views

the spacing that the system would normally impose, set the spacing to UIStack-
View.spacingUseSystem.

isLayoutMarginsRelativeArrangement

If true, the stack view’s internal layoutMargins are involved in the positioning
of its arranged subviews. If false (the default), the stack view’s literal edges are
used.

Do not manually add constraints positioning an arranged subview! Adding those
constraints is precisely the job of the stack view. Your constraints will conflict
with the constraints created by the stack view. On the other hand, you must con‐
strain the stack view itself; otherwise, the layout engine has no idea what to do.
Trying to use a stack view without constraining it is a common beginner
mistake.

To illustrate, I’ll rewrite the equal distribution code from earlier in this chapter
(Figure 1-16). I have four views, with height constraints. I want to distribute them
vertically in my main view. This time, I’ll have a stack view do all the work for me:

// give the stack view arranged subviews
let sv = UIStackView(arrangedSubviews: views)
// configure the stack view
sv.axis = .vertical
sv.alignment = .fill
sv.distribution = .equalSpacing
// constrain the stack view
sv.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(sv)
let marg = self.view.layoutMarginsGuide
let safe = self.view.safeAreaLayoutGuide
NSLayoutConstraint.activate([
 sv.topAnchor.constraint(equalTo:safe.topAnchor),
 sv.leadingAnchor.constraint(equalTo:marg.leadingAnchor),
 sv.trailingAnchor.constraint(equalTo:marg.trailingAnchor),
 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),
])

Inspecting the resulting constraints, you can see that the stack view is doing for us
effectively just what we did earlier (generating UILayoutGuide objects and using
them as spacers). But letting the stack view do it is a lot easier!

Another nice feature of UIStackView is that it responds intelligently to changes. Hav‐
ing configured things with the preceding code, if we were subsequently to make one
of our arranged subviews invisible (by setting its isHidden to true), the stack view
would respond by distributing the remaining subviews evenly, as if the hidden sub‐
view didn’t exist. Similarly, we can change properties of the stack view itself in real
time. Such flexibility can be very useful for making whole areas of your interface
come and go and rearrange themselves at will.

Layout | 59

A stack view, in certain configurations, can behave as a self-sizing view: its size, if not
determined in any other way, in one or both dimensions, can be based on its
subviews.

Internationalization
Your app’s entire interface and its behavior are reversed when the app runs on a sys‐
tem for which the app is localized and whose language is right-to-left. Wherever you
use leading and trailing constraints instead of left and right constraints, or if your
constraints are generated by stack views or are constructed using the visual format
language, your app’s layout will participate in this reversal more or less automatically.

There may, however, be exceptions. Apple gives the example of a horizontal row of
transport controls that mimic the buttons on a CD player: you wouldn’t want the
Rewind button and the Fast Forward button to be reversed just because the user’s
language reads right-to-left. Therefore, a UIView is endowed with a semantic-
ContentAttribute property stating whether it should be flipped; the default
is .unspecified, but a value of .playback or .spatial will prevent flipping, and you
can also force an absolute direction with .forceLeftToRight or .forceRightToLeft.
This property can also be set in the nib editor (using the Semantic pop-up menu in
the Attributes inspector).

Interface directionality is a trait, a trait collection’s layoutDirection; and a UIView
has an effectiveUserInterfaceLayoutDirection property that reports the direc‐
tion that it will use to lay out its contents. You can consult this property if you are
constructing a view’s subviews in code.

You can test your app’s right-to-left behavior easily by changing the scheme’s
Run option Application Language to “Right to Left Pseudolanguage.”

Mistakes with Constraints
Creating constraints manually, as I’ve been doing so far in this chapter, is an invita‐
tion to make a mistake. Your totality of constraints constitute instructions for view
layout, and it is all too easy, as soon as more than one or two views are involved, to
generate faulty instructions. You can (and will) make two major kinds of mistake
with constraints:

Conflict
You have applied constraints that can’t be satisfied simultaneously. This will be
reported in the console (at great length).

60 | Chapter 1: Views

Underdetermination (ambiguity)
A view uses autolayout, but you haven’t supplied sufficient information to deter‐
mine its size and position. This is a far more insidious problem, because nothing
bad may seem to happen. If you’re lucky, the view will at least fail to appear, or
will appear in an undesirable place, alerting you to the problem.

Only .required constraints (priority 1000) can contribute to a conflict, as the run‐
time is free to ignore lower-priority constraints that it can’t satisfy. Constraints with
different priorities do not conflict with one another. Nonrequired constraints with
the same priority can contribute to ambiguity.

Under normal circumstances, layout isn’t performed until your code finishes running
— and even then only if needed. Ambiguous layout isn’t ambiguous until layout
actually takes place; it is perfectly reasonable to cause an ambiguous layout temporar‐
ily, provided you resolve the ambiguity before layoutSubviews is called. On the other
hand, a conflicting constraint conflicts the instant it is added. That’s why, when
replacing constraints in code, you should deactivate first and activate second, and not
the other way round.

To illustrate, let’s start by generating a conflict. In this example, we return to our
small red square in the lower right corner of a big magenta square (Figure 1-13) and
append a contradictory constraint:

let d = ["v2":v2,"v3":v3]
NSLayoutConstraint.activate([
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[v2]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[v2(10)]", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:[v3(20)]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v3(20)]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v3(10)]|", metrics: nil, views: d) // *
].flatMap{$0})

The height of v3 can’t be both 10 and 20. The runtime reports the conflict, and tells
you which constraints are causing it:

Unable to simultaneously satisfy constraints. Probably at least one of the
constraints in the following list is one you don't want...

<NSLayoutConstraint:0x60008b6d0 UIView:0x7ff45e803.height == 20 (active)>,
<NSLayoutConstraint:0x60008bae0 UIView:0x7ff45e803.height == 10 (active)>

Assigning a constraint (or a UILayoutGuide) an identifier string can make it
easier to determine which constraint is which in a conflict report.

Layout | 61

Figure 1-18. View debugging

Now we’ll generate an ambiguity. Here, we neglect to give our small red square a
height:

let d = ["v2":v2,"v3":v3]
NSLayoutConstraint.activate([
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[v2]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[v2(10)]", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:[v3(20)]|", metrics: nil, views: d)
].flatMap{$0})

No console message alerts us to our mistake. Fortunately, v3 fails to appear in the
interface, so we know something’s wrong. If your views fail to appear, suspect ambigu‐
ity. In a less fortunate case, the view might appear, but (if we’re lucky) in the wrong
place. In a truly unfortunate case, the view might appear in the right place, but not
consistently.

Suspecting ambiguity is one thing; tracking it down and proving it is another. Fortu‐
nately, the view debugger will report ambiguity instantly (Figure 1-18). With the app
running, choose Debug → View Debugging → Capture View Hierarchy, or click the
Debug View Hierarchy button in the debug bar. The exclamation mark in the Debug
navigator, at the left, is telling us that this view (which does not appear in the canvas)
has ambiguous layout; moreover, the Issue navigator, in the Runtime pane, tells us
more explicitly, in words: “Height and vertical position are ambiguous for UIView.”

Another useful trick is to pause in the debugger and engage in the following mystical
conversation in the console:

(lldb) e -l objc -- [[UIApplication sharedApplication] windows][0]
(UIWindow *) $1 = ...
(lldb) e -l objc -O -- [$1 _autolayoutTrace]

The result is a graphical tree describing the view hierarchy and calling out any ambig‐
uously laid out views:

62 | Chapter 1: Views

•UIView:0x7f9fa36045c0
| +UIView:0x7f9fa3604930
| | *UIView:0x7f9fa3604a90
| | *UIView:0x7f9fa3604e20- AMBIGUOUS LAYOUT
 for UIView:.minY{id: 33}, UIView:.Height{id: 34}

UIView also has a hasAmbiguousLayout property. I find it useful to set up a utility
method that lets me check a view and all its subviews at any depth for ambiguity; see
Appendix B.

To get a full list of the constraints responsible for positioning a particular view within
its superview, log the results of calling the UIView instance method constraints-
AffectingLayout(for:). The parameter is an axis (NSLayoutConstraint.Axis),
either .horizontal or .vertical. These constraints do not necessarily belong to this
view (and the output doesn’t tell you what view they do belong to). If a view doesn’t
participate in autolayout, the result will be an empty array. Again, a utility method
can come in handy; see Appendix B.

Given the notions of conflict and ambiguity, it is easier to understand what priorities
are for. Imagine that all constraints have been placed in boxes, where each box is a
priority value, in descending order. Now pretend that we are the runtime, performing
layout in obedience to these constraints. How do we proceed?

The first box (.required, 1000) contains all the required constraints, so we obey
them first. (If they conflict, that’s bad, and we report this in the log.) If there still isn’t
enough information to perform unambiguous layout given the required priorities
alone, we pull the constraints out of the next box and try to obey them. If we can,
consistently with what we’ve already done, fine; if we can’t, or if ambiguity remains,
we look in the next box — and so on.

For a box after the first, we don’t care about obeying exactly the constraints it con‐
tains; if an ambiguity remains, we can use a lower-priority constraint value to give us
something to aim at, resolving the ambiguity, without fully obeying the lower-
priority constraint’s desires. An inequality is an ambiguity, because an infinite num‐
ber of values will satisfy it; a lower-priority equality can tell us what value to prefer,
resolving the ambiguity, but there’s no conflict even if we can’t fully achieve that pre‐
ferred value.

Configuring Layout in the Nib
The focus of the discussion so far has been on configuring layout in code. But that
will often be unnecessary; instead, you’ll set up your layout in the nib, using the nib
editor. It would not be strictly true to say that you can do absolutely anything in the
nib that you could do in code, but the nib editor is certainly a remarkably powerful
way of configuring layout (and where it falls short, you can supplement it with code).

Configuring Layout in the Nib | 63

In the File inspector when a .storyboard or .xib file is selected, you can make two
major choices related to layout, by way of checkboxes. The default is that these check‐
boxes are checked, and I recommend that you leave them that way:

Use Trait Variations
If checked, various settings in the nib editor, such as the value of a constraint’s
constant, can be made to depend upon the environment’s size classes at run‐
time; moreover, the modern repertoire of segues, such as popover and detail
segues, springs to life.

Use Safe Area Layout Guides
If checked, the safe area is present, and you can construct constraints pinned to
it. By default, only a view controller’s main view’s safe area can have constraints
pinned to it, but you can change that.

What you actually see in the nib editor canvas depends also on the checked menu
items in the Editor → Canvas hierarchical menu (or use the Editor Options pop-up
menu at the top right of the editor pane). If Layout Rectangles is unchecked, you
won’t see the outline of the safe area, though you can still construct constraints to it.
If Constraints is unchecked, you won’t see any constraints, though you can still con‐
struct them.

Autoresizing in the Nib
When you drag a view from the Library into the canvas, it uses autoresizing by
default, and will continue to do so unless you involve it in autolayout by adding a
constraint that affects it.

When editing a view that uses autoresizing, you can assign it springs and struts in the
Size inspector. A solid line externally represents a strut; a solid line internally repre‐
sents a spring. A helpful animation shows you the effect on your view’s position and
size as its superview is resized.

New in Xcode 11, in the nib editor an individual view has a Layout pop-up menu in
the Size inspector allowing you specify its behavior with regard to constraints:

Automatic
The default. The view’s translatesAutoresizingMaskIntoConstraints is true,
and you can position the view with autoresizing, until the view becomes involved
in constraints, at which point its translatesAutoresizingMaskInto-

Constraints becomes false and you will have to position and size this view
entirely with constraints.

Translates Mask Into Constraints
The view’s translatesAutoresizingMaskIntoConstraints is true, and it will
stay true. This view will resist becoming involved in constraints within the nib; it

64 | Chapter 1: Views

Figure 1-19. Creating a constraint by Control-dragging

wants to use autoresizing only. You can’t give it a width constraint or a con‐
straint to its superview. You can involve the view in constraints from other views,
as long as these would not cause a problem.

You can cause problems yourself by behaving irrationally; if a view starts out as
Automatic and you give it constraints, and then you switch it to Translates Mask Into
Constraints, you can readily create a conflict at runtime. Don’t do that.

Creating a Constraint
The nib editor provides two primary ways to create a constraint:

Control-drag
Control-drag from one view to another. A HUD (heads-up display) appears, list‐
ing constraints that you can create (Figure 1-19). Either view can be in the canvas
or in the document outline. To create an internal width or height constraint,
Control-drag from a view to itself.

When you Control-drag within the canvas, the direction of the drag is used to
winnow the options presented in the HUD: if you Control-drag horizontally
within a view in the canvas, the HUD lists Width but not Height.

While viewing the HUD, you might want to toggle the Option key to see some
alternatives; this might make the difference between an edge or safe area con‐
straint and a margin-based constraint. Holding the Shift key lets you create mul‐
tiple constraints simultaneously.

Layout bar buttons
Click the Align or Add New Constraints button at the right end of the layout bar
below the canvas. These buttons summon little popover dialogs where you can
choose multiple constraints to create (possibly for multiple views, if that’s what
you’ve selected beforehand) and provide them with numeric values
(Figure 1-20). Constraints are not actually added until you click Add Constraints
at the bottom!

Configuring Layout in the Nib | 65

Figure 1-20. Creating constraints from the layout bar

A constraint that you create in the nib does not have to be perfect immediately
upon creation. You will subsequently be able to edit the constraint and configure
it further, as I’ll explain in the next section.

If you create constraints and then move or resize a view affected by those constraints,
the constraints are not automatically changed. This means that the constraints no
longer match the way the view is portrayed; if the constraints were now to position
the view, they wouldn’t put it where you’ve put it. The nib editor will alert you to this
situation (a Misplaced Views issue), and can readily resolve it for you, but it won’t
change anything unless you explicitly ask it to.

There are additional view settings in the Size inspector:

• To set a view’s layout margins explicitly, change the Layout Margins pop-up
menu to Fixed (or better, to Language Directional).

• To make a view’s layout margins behave as readableContentGuide margins,
check Follow Readable Width.

• To allow construction of a constraint to the safe area of a view that isn’t a view
controller’s main view, check its Safe Area Layout Guide.

Viewing and Editing Constraints
Constraints in the nib are full-fledged objects. They can be selected, edited, and
deleted. Moreover, you can create an outlet to a constraint (and there are reasons
why you might want to do so).

Constraints in the nib are visible in three places (Figure 1-21):

66 | Chapter 1: Views

Figure 1-21. A view’s constraints displayed in the nib

In the document outline
Constraints are listed in a special category, “Constraints,” under the view to
which they belong. (You’ll have a much easier time distinguishing these con‐
straints if you give your views meaningful labels!)

In the canvas
Constraints appear graphically as dimension lines when you select a view that
they affect (unless you uncheck Editor → Canvas → Constraints).

In the Size inspector
When a view affected by constraints is selected, the Size inspector lists those con‐
straints, along with a grid that displays the view’s constraints graphically. Click‐
ing a constraint in the grid filters the constraints listed below it.

When you select a constraint in the document outline or the canvas, or when you
double-click a constraint in a view’s Size inspector, you can view and edit that con‐
straint’s values in the Attributes or Size inspector. The inspector gives you access to
almost all of a constraint’s features: the anchors involved in the constraint (the First
Item and Second Item pop-up menus), the relation between them, the constant and
multiplier, and the priority. You can also set the identifier here (useful when debug‐
ging, as I mentioned earlier).

The First Item and Second Item pop-up menus may list alternative constraint types; a
width constraint may be changed to a height constraint, for example. These pop-up
menus may also list alternative objects to constrain to, such as other sibling views, the
superview, and the safe area. Also, these pop-up menus may have a “Relative to mar‐
gin” option, which you can check or uncheck to toggle between an edge-based and a
margin-based constraint.

So if you accidentally created the wrong constraint, or if you weren’t quite able to
specify the desired constraint at creation time, editing will usually permit you to fix
things. When you constrain a subview to the view controller’s main view, the HUD

Configuring Layout in the Nib | 67

offers no way to constrain to the main view’s edge; your choices are to constrain to
the main view’s safe area (the default) or to its margin (if you hold Option). But hav‐
ing constrained the subview to the main view’s safe area, you can then change Safe
Area to Superview in the pop-up menu.

For simple editing of a constraint’s constant, relation, priority, and multiplier,
double-click the constraint in the canvas to summon a little popover dialog. When a
constraint is listed in a view’s Size inspector, double-click it to edit it in its own
inspector, or click its Edit button to summon the little popover dialog.

A view’s Size inspector also provides access to its content hugging and content com‐
pression resistance priority settings. Beneath these, there’s an Intrinsic Size pop-up
menu. The idea here is that your custom view might have an intrinsic size, but the
nib editor doesn’t know this, so it will report an ambiguity when you fail to provide
(say) a width constraint that you know isn’t actually needed; choose Placeholder to
supply an intrinsic size and relieve the nib editor’s worries.

In a constraint’s Attributes or Size inspector, there is a Placeholder checkbox
(“Remove at build time”). If you check this checkbox, the constraint you’re editing
won’t be instantiated when the nib is loaded: in effect, you are deliberately generating
ambiguous layout when the views and constraints are instantiated from the nib. You
might do this because you want to simulate your layout in the nib editor, but you
intend to provide a different constraint in code; perhaps you weren’t quite able to
describe this constraint in the nib, or the constraint depends upon circumstances that
won’t be known until runtime.

Unfortunately, a custom UILayoutGuide can be created and configured only in
code. If you want to configure a layout entirely in the nib editor, and if this con‐
figuration requires the use of spacer views and cannot be constructed by a
UIStackView, you’ll have to use spacer views — you cannot replace them with
UILayoutGuide objects, because there are no UILayoutGuide objects in the nib
editor.

Problems with Nib Constraints
I’ve already said that generating constraints manually, in code, is error-prone. But it
isn’t error-prone in the nib editor! The nib editor knows whether it contains prob‐
lematic constraints. If a view is affected by any constraints, the Xcode nib editor will
permit them to be ambiguous or conflicting, but it will also complain helpfully. You
should pay attention to such complaints! The nib editor will bring the situation to
your attention in various places:

In the canvas
Constraints drawn in the canvas when you select a view that they affect use color
coding to express their status:

68 | Chapter 1: Views

Figure 1-22. Layout issues in the document outline

Satisfactory constraints
Drawn in blue.

Problematic constraints
Drawn in red.

Misplacement constraints
Drawn in orange; these constraints are valid, but they are inconsistent with
the frame you have imposed upon the view. I’ll discuss misplaced views in
the next paragraph.

In the document outline
If there are layout issues, the document outline displays a right arrow in a red or
orange circle. Click it to see a detailed list of the issues (Figure 1-22). Hover the
mouse over a title to see an Info button which you can click to learn more about
the nature of this issue. The icons at the right are buttons: click one for a list of
things the nib editor is offering to do to fix the issue for you. The chief issues are:

Conflicting Constraints
A conflict between constraints.

Missing Constraints
Ambiguous layout.

Misplaced Views
If you manually change the frame of a view that is affected by constraints
(including its intrinsic size), then the canvas may be displaying that view dif‐
ferently from how it would really appear if the current constraints were
obeyed. A Misplaced Views situation is also described in the canvas:

• The constraints in the canvas, drawn in orange, display the numeric dif‐
ference between their values and the view’s frame.

Configuring Layout in the Nib | 69

• A dotted outline in the canvas may show where the view would be drawn
if the existing constraints were obeyed.

(You can turn off ambiguity checking for a particular view; use the Ambiguity pop-
up menu in the view’s Size inspector. This means you can omit a needed constraint
and not be notified by the nib editor that there’s a problem. You will need to generate
the missing constraint in code, obviously, or you’ll have ambiguous layout.)

Having warned you of problems with your layout, the nib editor also provides tools
to fix them.

The Update Frames button in the layout bar (or Editor → Update Frames) changes
the way the selected views or all views are drawn in the canvas, to show how things
would really appear in the running app under the constraints as they stand. Alterna‐
tively, if you have resized a view with intrinsic size constraints, such as a button or a
label, and you want it to resume the size it would have according to those intrinsic
size constraints, select the view and choose Editor → Size to Fit Content.

Be careful with Update Frames: if constraints are ambiguous, this can cause a
view to disappear.

The Resolve Auto Layout Issues button in the layout bar (or the Editor → Resolve
Auto Layout Issues hierarchical menu) proposes large-scale moves involving all the
constraints affecting either selected views or all views:

Update Constraint Constants
Choose this menu item to change numerically all the existing constraints affect‐
ing a view to match the way the canvas is currently drawing the view’s frame.

Add Missing Constraints
Create new constraints so that the view has sufficient constraints to describe its
frame unambiguously. The added constraints correspond to the way the canvas
is currently drawing the view’s frame. This command may not do what you ulti‐
mately want; you should regard it as a starting point. After all, the nib editor
can’t read your mind! It doesn’t know whether you think a certain view’s width
should be determined by an internal width constraint or by pinning it to the left
and right of its superview; and it may generate alignment constraints with other
views that you never intended.

Reset to Suggested Constraints
This is as if you chose Clear Constraints followed by Add Missing Constraints: it
removes all constraints affecting the view, and replaces them with a complete set
of automatically generated constraints describing the way the canvas is currently
drawing the view’s frame.

70 | Chapter 1: Views

Clear Constraints
Removes all constraints affecting the view.

Varying the Screen Size
The purpose of constraints will usually be to design a layout that responds to the pos‐
sibility of the app launching on devices of different sizes, and perhaps subsequently
being rotated. Imagining how this is going to work in real life is not always easy, and
you may doubt that you are getting the constraints right as you configure them in the
nib editor. Have no fear: Xcode is here to help.

There’s a View As button at the lower left of the canvas. Click it to reveal (if they are
not already showing) menus or buttons representing a variety of device types and ori‐
entations. Choose one, and the canvas’s main views are resized accordingly. When
that happens, the layout dictated by your constraints is obeyed immediately. So you
can try out the effect of your constraints under different screen sizes right there in the
canvas.

(This feature works only if the view controller’s Simulated Size pop-up menu in the
Size inspector says Fixed. If it says Freeform, the view won’t be resized when you
click a device type or orientation button.)

Conditional Interface Design
The View As button at the lower left of the canvas states the size classes for the cur‐
rently chosen device and orientation, using a notation like this: wC hR. The w and h
stand for “width” and “height,” corresponding to the trait collection’s .horizontal-
SizeClass and .verticalSizeClass respectively; the R and C stand for .regular
and .compact.

The reason you’re being given this information is that you might want the configura‐
tion of your constraints and views in the nib editor to be conditional upon the size
classes that are in effect at runtime. You can arrange in the nib editor for your app’s
interface to detect the traitCollectionDidChange notification and respond to it:

• You can design your interface to rearrange itself when an iPhone app rotates to
compensate for a change in device orientation.

• A single .storyboard or .xib file can be used to design the interface of a universal
app, even if the iPad interface and the iPhone interface are quite different from
one another.

The idea when constructing a conditional interface is that you design first for the
most general case. When you’ve done that, and when you want to do something dif‐
ferent for a particular size class situation, you’ll describe that difference in the
Attributes or Size inspector, or design that difference in the canvas:

Configuring Layout in the Nib | 71

In the Attributes or Size inspector
Look for a Plus symbol to the left of a value in the Attributes or Size inspector.
This is a value that you can vary conditionally, depending on the environment’s
size class at runtime. The Plus symbol is a button! Click it to see a popover from
which you can choose a specialized size class combination. When you do, that
value now appears twice: once for the general case, and once for the specialized
case which is marked using wC hR notation. You can now provide different val‐
ues for those two cases.

In the canvas
Click the Vary for Traits button, to the right of the device types buttons (click
View As if you don’t see the Vary for Traits button). Two checkboxes appear,
allowing you to specify that you want to match the width or height size class (or
both) of the current size class. Any designing you now do in the canvas will be
applied only to that width or height size class (or both), and the Attributes or
Size inspector will be modified as needed.

I’ll illustrate these approaches with a little tutorial. You’ll need to have an example
project on hand; make sure it’s a universal app.

Size classes in the inspectors
Suppose we have a button in the canvas, and we want this button to have a yellow
background on iPad only. (This is improbable but dramatic.) You can configure this
directly in the Attributes inspector:

1. Select the button in the interface.
2. Switch to the Attributes inspector, and locate the Background pop-up menu in

the View section of the inspector.
3. Click the Plus button to bring up a popover with pop-up menus for specifying

size classes. An iPad has width (horizontal) size class Regular and height (verti‐
cal) size class Regular, so change the first two pop-up menus so that they both
say Regular. Click Add Variation.

4. A second Background pop-up menu has appeared! It is marked wR hR. Change it
to yellow (or any desired color).

The button now has a colored background on iPad but not on iPhone. To see that
this is true, without running the app on different device types, use the View As but‐
ton and the device buttons at the lower left of the canvas to switch between different
screen sizes. When you click an iPad button, the button in the canvas has a yellow
background. When you click an iPhone button, the button in the canvas has its
default clear background.

Now that you know what the Plus button means, look over the Attributes and Size
inspectors. Anything with a Plus button can be varied in accordance with the size

72 | Chapter 1: Views

class environment. A button’s text can be a different font and size; this makes sense
because you might want the text to be larger on an iPad. A button’s Hidden checkbox
can be different for different size classes, so that the button is invisible on some
device types. And at the bottom of the Attributes inspector is the Installed checkbox;
unchecking this for a particular size class combination causes the button to be
entirely absent from the interface.

Size classes in the canvas
Suppose your interface has a button pinned to the top left of its superview. And sup‐
pose that, on iPad devices only, you want this button to be pinned to the top right of
its superview. (Again, this is improbable but dramatic.) That means the button’s lead‐
ing constraint will exist only on iPhone devices, to be replaced by a trailing constraint
on iPad devices. The constraints are different objects. The way to configure different
objects for different size classes is to use the Vary for Traits button:

1. Among the device type buttons, click one of the iPhone buttons (furthest to the
right). Configure the button so that it’s pinned by its top and left to the top left of
the main view.

2. Among the device type buttons, click one of the iPad buttons (furthest to the
left). The size classes are now listed as wR hR.

3. Click Vary for Traits. In the little popover that appears, check both boxes: we
want the change we are about to make to apply only when both the width size
class and the height size class match our current size class (they should both
be .regular). The entire layout bar becomes blue, to signify that we are operat‐
ing in a special conditional design mode.

4. Make the desired change: Select the button in the interface; select the left con‐
straint; delete the left constraint; slide the button to the right of the interface;
Control-drag from the button to the right and create a new trailing constraint. If
necessary, click the Update Frames button to make the orange Misplaced Views
warning symbol go away.

5. Click Done Varying. The layout bar ceases to be blue.
We’ve created a conditional constraint. To see that this is true, click an iPhone device
button and then click an iPad device button. As you do, the button in the interface
jumps between the left and right sides of the interface. Its position depends upon the
device type!

The inspectors for this button accord with the change we’ve just made. To see that
this is true, click the button, select the trailing or leading constraint (depending on
the device type), and look in the Attributes or Size inspector. The constraint has two
Installed checkboxes, one for the general case and one for wR hR. Only one of these
checkboxes is checked; the constraint is present in one case but not the other.

Configuring Layout in the Nib | 73

Figure 1-23. View debugging (again)

In the document outline, a constraint or view that is not installed for the current
set of size classes is listed with a faded icon.

Xcode View Features
This section summarizes some miscellaneous view-related features of Xcode that are
worth knowing about.

View Debugger
To enter the view debugger, choose Debug → View Debugging → Capture View
Hierarchy, or click the Debug View Hierarchy button in the debug bar. The result is
that your app’s current view hierarchy is analyzed and displayed (Figure 1-23):

• On the left, in the Debug navigator, the views and their constraints are listed
hierarchically. (View controllers are also listed as part of the hierarchy.)

• In the center, in the canvas, the views and their constraints are displayed graphi‐
cally. The window starts out facing front, much as if you were looking at the
screen with the app running; but if you swipe sideways a little in the canvas (or
click the Orient to 3D button at the bottom of the canvas, or choose Editor →
Orient to 3D), the window rotates and its subviews are displayed in front of it, in
layers. You can adjust your perspective in various ways:
▪ The slider at the lower left changes the distance between the layers.
▪ The double-slider at the lower right lets you eliminate the display of views

from the front or back of the layering order (or both).

74 | Chapter 1: Views

▪ You can Option-double-click a view to focus on it, eliminating its superviews
from the display. Double-click outside the view to exit focus mode.

▪ You can switch to wireframe mode.
▪ You can display constraints for the currently selected view.

• On the right, the Object inspector and the Size inspector tell you details about the
currently selected object (view or constraint).

When a view is selected in the Debug navigator or in the canvas, the Size inspector
lists its bounds and the constraints that determine those bounds. This, along with the
layered graphical display of your views and constraints in the canvas, can help you
ferret out the cause of any constraint-related difficulties.

Previewing Your Interface
When you’re displaying the nib editor in Xcode, you’re already seeing the results of
your constraints in the current device size. You can change device size using the but‐
tons or menu that appears when you click View As at the lower left. That same inter‐
face lets you toggle orientation and, new in Xcode 11, switch between light and dark
mode.

For an even more realistic display, choose Editor → Preview (or choose Preview from
the Editor Options pop-up menu). You’ll see a preview of the currently selected view
controller’s view (or, in a .xib file, the top-level view).

At the bottom of each preview, a label tells you what device you’re seeing, and a
rotate button lets you toggle its orientation. At the lower left, a Plus button lets you
add previews for different devices and device sizes, so you can view your interface on
different devices simultaneously. The previews take account of constraints and condi‐
tional interface. At the lower right, a language pop-up menu lets you switch your
app’s text (buttons and labels) to another language for which you have localized your
app, or to an artificial “double-length” language. To remove a previewed device, click
to select it and press Delete.

Designable Views and Inspectable Properties
Your custom view can be drawn in the nib editor canvas and preview even if it is con‐
figured in code. To take advantage of this feature, you need a UIView subclass
declared @IBDesignable. If an instance of this UIView subclass appears in the nib
editor, then its self-configuration methods, such as willMove(toSuperview:), will be
compiled and run as the nib editor prepares to portray your view. In addition, your
view can implement the special method prepareForInterfaceBuilder to perform
visual configurations aimed specifically at how it will be portrayed in the nib editor;
in this way, you can portray in the nib editor a feature that your view will adopt later
in the life of the app. If your view contains a UILabel that is created and configured

Xcode View Features | 75

Figure 1-24. A designable view

empty but will eventually contain text, you could implement prepareForInterface-
Builder to give the label some sample text to be displayed in the nib editor.

In Figure 1-24, I refactor a familiar example. Our view subclass gives itself a magenta
background, along with two subviews, one across the top and the other at the lower
right — all designed in code. The nib contains an instance of this view subclass.
When the app runs, willMove(toSuperview:) will be called, the code will run, and
the subviews will be present. But because willMove(toSuperview:) is also called by
the nib editor, the subviews are displayed in the nib editor as well:

@IBDesignable class MyView: UIView {
 func configure() {
 self.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
 let v2 = UIView()
 v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
 let v3 = UIView()
 v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
 v2.translatesAutoresizingMaskIntoConstraints = false
 v3.translatesAutoresizingMaskIntoConstraints = false
 self.addSubview(v2)
 self.addSubview(v3)
 NSLayoutConstraint.activate([
 v2.leftAnchor.constraint(equalTo:self.leftAnchor),
 v2.rightAnchor.constraint(equalTo:self.rightAnchor),
 v2.topAnchor.constraint(equalTo:self.topAnchor),
 v2.heightAnchor.constraint(equalToConstant:20),
 v3.widthAnchor.constraint(equalToConstant:20),
 v3.heightAnchor.constraint(equalTo:v3.widthAnchor),
 v3.rightAnchor.constraint(equalTo:self.rightAnchor),
 v3.bottomAnchor.constraint(equalTo:self.bottomAnchor),

76 | Chapter 1: Views

])
 }
 override func willMove(toSuperview newSuperview: UIView?) {
 self.configure()
 }
}

In addition, you can configure a custom view property directly in the nib editor. To
do that, your UIView subclass needs a property that’s declared @IBInspectable, and
this property’s type needs to be one of a limited list of inspectable property types (I’ll
tell you what they are in a moment). Now let’s say there’s an instance of this UIView
subclass in the nib: that property will get a field of its own at the top of the view’s
Attributes inspector, where you can set the initial value of that property in the nib
editor rather than its having to be set in code. (This feature is actually a convenient
equivalent of setting a nib object’s User Defined Runtime Attributes in the Identity
inspector.)

The inspectable property types are: Bool, number, String, CGRect, CGPoint, CGSize,
NSRange, UIColor, or UIImage. The property won’t be displayed in the Attributes
inspector unless its type is declared explicitly. You can assign a default value in code;
the Attributes inspector won’t portray this value as the default, but you can tell it to
use the default by leaving the field empty (or, if you’ve entered a value, by deleting
that value).

An IBInspectable property’s value, as set in the nib editor, is not applied until
after init(coder:) and willMove(toSuperview:) have run. The earliest your
code can retrieve this value at runtime is in awakeFromNib.

@IBDesignable and @IBInspectable are unrelated, but the former is aware of the lat‐
ter. This means you can use an inspectable property to change the nib editor’s display
of your interface.

In this example, we use @IBDesignable and @IBInspectable to work around an
annoying limitation of the nib editor. A UIView can draw its own border automati‐
cally, by setting its layer’s borderWidth (Chapter 3). But this can be configured only
in code. There’s nothing in a view’s Attributes inspector that lets you set a layer’s
borderWidth, and special layer configurations are not normally portrayed in the can‐
vas. @IBDesignable and @IBInspectable to the rescue:

@IBDesignable class MyButton : UIButton {
 @IBInspectable var borderWidth : Int {
 set {
 self.layer.borderWidth = CGFloat(newValue)
 }
 get {

Xcode View Features | 77

Figure 1-25. A designable view with an inspectable property

 return Int(self.layer.borderWidth)
 }
 }
}

The result is that, in the nib editor, our button’s Attributes inspector has a Border
Width custom property, and when we change the Border Width property setting, the
button is redrawn with that border width (Figure 1-25). Moreover, we are setting this
property in the nib, so when the app runs and the nib loads, the button really does
have that border width in the running app.

Layout Events
This section summarizes three chief UIView events related to layout. These are
events that you can receive and respond to by overriding them in your UIView sub‐
class. You might want to do this in situations where layout is complex — when you
need to supplement autoresizing or autolayout with manual layout in code, or when
your layout configuration needs to change in response to changing conditions.
(Closely related to these UIView events are some layout-related events you can
receive and respond to in a UIViewController; I’ll discuss them in Chapter 6.)

updateConstraints

If your interface involves autolayout and constraints, then updateConstraints is
propagated up the hierarchy, starting at the deepest subview, when the runtime
thinks your code might need an opportunity to configure constraints. You might
override updateConstraints because you have a UIView subclass capable of
altering its own constraints. If you do, you must finish up by calling super or the
app will crash (with a helpful error message).

updateConstraints is called at launch time, but rarely after that unless you cause
it to be called. You should never call updateConstraints directly. To trigger an
immediate call to updateConstraints, send a view the updateConstraintsIf-
Needed message. To force updateConstraints to be sent to a particular view,
send it the setNeedsUpdateConstraints message.

traitCollectionDidChange(_:)

At launch time, and if the environment’s trait collection changes thereafter, the
traitCollectionDidChange(_:) message is propagated down the hierarchy of
UITraitEnvironments. The incoming parameter is the old trait collection; to get
the new trait collection, ask for self.traitCollection.

78 | Chapter 1: Views

Earlier in this chapter I showed some code for swapping a view into or out of the
interface together with the entire set of constraints laying out that interface. But I
left open the matter of the conditions under which we wanted such swapping to
occur; traitCollectionDidChange might be an appropriate moment, if the idea
is to change the interface when the app rotates on an iPhone.

layoutSubviews

The layoutSubviews message is the moment when layout actually takes place. It
is propagated down the hierarchy, starting at the top (typically the root view) and
working down to the deepest subview. Layout can be triggered even if the trait
collection didn’t change; perhaps a constraint was changed, or the text of a label
was changed, or a superview’s size changed.

You can override layoutSubviews in a UIView subclass in order to take a hand
in the layout process. If you’re not using autolayout, layoutSubviews does noth‐
ing by default; layoutSubviews is your opportunity to perform manual layout
after autoresizing has taken place. If you are using autolayout, you must call
super or the app will crash (with a helpful error message).

You should never call layoutSubviews directly; to trigger an immediate call to
layoutSubviews, send a view the layoutIfNeeded message (which may cause
layout of the entire view tree, not only below but also above this view), or send
setNeedsLayout to trigger a call to layoutSubviews later on, after your code fin‐
ishes running, when layout would normally take place.

When you’re using autolayout, what happens in layoutSubviews? The runtime,
having examined and resolved all the constraints affecting this view’s subviews,
and having worked out values for their center and bounds, now simply assigns
center and bounds values to them. In other words, layoutSubviews performs
manual layout!

Knowing this, you might override layoutSubviews when you’re using autolay‐
out, in order to tweak the outcome. A typical structure is: first you call super,
causing all the subviews to adopt their new frames; then you examine those
frames; if you don’t like the outcome, you can change things; and finally you call
super again, to get a new layout outcome. As I mentioned earlier, setting a view’s
frame (or bounds or center) explicitly in layoutSubviews is perfectly fine, even if
this view uses autolayout; that, after all, is what the autolayout engine itself is
doing. Keep in mind, however, that you must cooperate with the autolayout
engine. Do not call setNeedsUpdateConstraints — that moment has passed —
and do not stray beyond the subviews of this view. (Disobeying those rules can
cause your app to hang.)

Layout Events | 79

CHAPTER 2

Drawing

The views illustrated in Chapter 1 were mostly colored rectangles; they had a
backgroundColor and no more. But that’s not what a real iOS program looks like.
Everything the user sees is a UIView, and what the user sees is a lot more than a
bunch of colored rectangles. That’s because the views that the user sees have content.
They contain drawing.

Many UIView subclasses, such as a UIButton or a UILabel, know how to draw them‐
selves. Sooner or later, you’re also going to want to do some drawing of your own.
You can prepare your drawing as an image file beforehand. You can draw an image
as your app runs, in code. You can display an image in a UIView subclass that knows
how to show an image, such as a UIImageView or a UIButton. A pure UIView is all
about drawing, and it leaves that drawing largely up to you; your code determines
what the view draws, and hence what it looks like in your interface.

This chapter discusses the mechanics of drawing. Don’t be afraid to write drawing
code of your own! It isn’t difficult, and it’s often the best way to make your app look
the way you want it to. (I’ll discuss how to draw text in Chapter 10.)

Images and Image Views
The basic general UIKit image class is UIImage. UIImage knows how to deal with
many standard image types, such as HEIC, TIFF, JPEG, GIF, and PNG. A UIImage
can be used wherever an image is to be displayed; it knows how to provide the image
data, and may be thought of loosely as wrapping the image data. It also provides sup‐
plementary information about its image, and lets you tweak certain aspects of the
image’s behavior.

Where will the image data inside a UIImage come from? There are three main
sources:

81

• An image file previously stored on disk.
• An image that your app draws as it runs.
• Image data that your app downloads from the network.

The first two are what this chapter is about. Downloading image data is discussed in
Chapter 23.

Image Files
UIImage can read a stored file, so if an image does not need to be created dynami‐
cally, but has already been created before your app runs, then drawing may be as sim‐
ple as providing an image file as a resource inside your app itself. When an image file
is to be included inside your app, iOS has a special affinity for PNG files, and you
should prefer them whenever possible. (The converse operation, saving image data as
an image file, is discussed in Chapter 22.)

A pre-existing image file in your app’s bundle is most commonly obtained in code
through the UIImage initializer init(named:), which takes a string and returns a
UIImage wrapped in an Optional, in case the image doesn’t exist. This method looks
in two places for the image:

Asset catalog
We look in the asset catalog for an image set with the supplied name. The name
is case-sensitive.

Top level of app bundle
We look at the top level of the app’s bundle for an image file with the supplied
name. The name is case-sensitive and should include the file extension; if it
doesn’t, .png is assumed.

When calling init(named:), an asset catalog is searched before the top level of the
app’s bundle. If there are multiple asset catalogs, they are all searched, but the search
order is indeterminate, so avoid multiple image sets with the same name.

The Image library lists images both in the asset catalog and at the app bundle’s
top level. Instead of calling init(named:), which takes a literal string that you
might type incorrectly, you can drag or double-click an image in the Image
library to enter an image literal directly into your code. The resulting token rep‐
resents a call to the UIImage initializer init(imageLiteralResourceName:), and
produces a UIImage, not an Optional.

With init(named:), the image data may be cached in memory, and if you ask for the
same image by calling init(named:) again later, the cached data may be supplied
immediately. Caching is usually good, because decoding the image on disk into usa‐
ble bitmap data is expensive.

82 | Chapter 2: Drawing

Nevertheless, sometimes caching may not be what you want; if you know you’re just
going to fetch the image once and put it into the interface immediately, caching
might represent an unnecessary strain on your app’s memory. If so, there’s another
way: you can read an image file from your app bundle (not the asset catalog) directly
and without caching, by calling init(contentsOfFile:), which expects a pathname
string. To obtain that pathname string, you can get a reference to your app’s bundle
with Bundle.main, and Bundle then provides instance methods for getting the path‐
name of a file within the bundle, such as path(forResource:ofType:).

Hardware-related image variants
An image file can come in multiple variants for use on different hardware. When the
image file is stored in the app bundle, these variants are distinguished through the
use of special name suffixes:

High-resolution variants
On a device with a double-resolution screen, when an image is obtained by name
from the app bundle, a file with the same name extended by @2x, if there is one,
will be used automatically, with the resulting UIImage marked as double-
resolution by assigning it a scale property value of 2.0. Similarly, if there is a file
with the same name extended by @3x, it will be used on a device with a triple-
resolution screen, with a scale property value of 3.0.

Double- and triple-resolution variants of an image file should have dimensions
double and triple those of the base file. But thanks to the UIImage scale prop‐
erty, a high-resolution variant of an image has the same CGSize as the single-
resolution image. On a high-resolution screen, your code and your interface
continue to work without change, but your images look sharper.

This works for UIImage init(named:) and init(contentsOfFile:). If there is a
file called pic.png and a file called pic@2x.png, then on a device with a double-
resolution screen, these methods will access pic@2x.png as a UIImage with a scale
of 2.0:

let im = UIImage(named:"pic") // uses pic@2x.png
if let path = Bundle.main.path(forResource: "pic", ofType: "png") {
 let im2 = UIImage(contentsOfFile:path) // uses pic@2x.png
}

Device type variants
A file with the same name extended by ~ipad will automatically be used if the
app is running natively on an iPad. You can use this in a universal app to supply
different images automatically depending on whether the app runs on an iPhone
(or iPod touch), on the one hand, or on an iPad, on the other. (This is true not

Images and Image Views | 83

just for images but for any resource obtained by name from the bundle. See
Apple’s Resource Programming Guide in the documentation archive.)

This works for UIImage init(named:) and Bundle path(forResource:of-
Type:). If there is a file called pic.png and a file called pic~ipad.png, then on an
iPad, these methods will access pic~ipad.png:

let im = UIImage(named:"pic") // uses pic~ipad.png
let path = Bundle.main.path(
 forResource: "pic", ofType: "png") // uses pic~ipad.png

If possible, however, you will probably prefer to supply your image in an asset catalog
rather than in the app bundle. This has the advantage, among other things, that you
can forget all about those name suffix conventions! An asset catalog knows when to
use an alternate image within an image set, not from its name, but from its place in
the catalog:

• Put the single-, double-, and triple-resolution alternatives into the slots marked
“1x,” “2x,” and “3x” respectively.

• For a distinct iPad variant of an image, check iPhone and iPad in the Attributes
inspector for the image set, and separate slots for those device types will appear
in the asset catalog.

• An image set in an asset catalog can make numerous further distinctions based
on a device’s processor type, wide color capabilities, and more.

Many of these distinctions are used not only by the runtime when the app runs, but
also by the App Store when thinning your app for a specific target device.

Vector images
An image file in the asset catalog can be a vector-based PDF:

• If you switch the Scales pop-up menu to Single Scale and put the image into the
single slot, it will be resized automatically for double or triple resolution, and
because it’s a vector image, the resizing will be sharp.

• If you switch the Scales pop-up menu to Individual and Single Scales and put the
image also into the “1x” slot, and if you check Preserve Vector Data for this slot,
the image will be resized sharply for any size, either when scaled automatically
(by a UIImageView or other interface item), or when your code scales the image
by redrawing it (as I’ll describe later in this chapter).

New in Xcode 11 and iOS 13, the system supplies more than 1500 standard named
SVG symbol images intended for use both as icons and in conjunction with text. To
obtain one as a UIImage in code, call the UIImage initializer init(systemName:).
The symbol images are displayed along with their names in the SF Symbols app,
available for download from Apple.

84 | Chapter 2: Drawing

https://developer.apple.com/design/human-interface-guidelines/sf-symbols/overview/

A few symbol images are so commonly used that they are vended directly as class
properties of UIImage: .add, .remove, .close, .actions, .checkmark, and .stroked-
Checkmark. In the nib editor, an interface object that accepts an image, such as a
UIButton, lets you specify a symbol image by name using a pop-up menu.

Certain details of how a symbol image is drawn may be dictated through its symbol-
Configuration (UIImage.SymbolConfiguration). You can supply this when you cre‐
ate the image, or you can change it by calling the UIImage instance
methods .withConfiguration(_:) or .applyingSymbolConfiguration(_:). Alter‐
natively, you can attach a symbol configuration to the image view that displays the
symbol image. Configurations can involve one of nine weights, one of three scales, a
font or text style, and a point size, in various combinations; this is to facilitate associ‐
ation with text. I’ll talk about that in detail in Chapter 10.

Asset catalogs and trait collections
An asset catalog can distinguish between variants of an asset intended for different
trait collections (“Trait Collections” on page 27). The chief distinctions you might
want to draw will involve size classes or user interface style (light and dark mode).

Consider an image that is to appear in different variants depending on the size class
situation. In the Attributes inspector for your image set, use the Width Class and
Height Class pop-up menus to specify which size class possibilities you want slots for.
If we’re on an iPhone with the app rotated to landscape orientation, and if there’s
both an Any Height and a Compact Height alternative in the image set, the Compact
Height variant is used. These features are live as the app runs; if the app rotates from
landscape to portrait, and there’s both an Any height and a Compact height alterna‐
tive in the image set, the Compact Height variant is replaced with the Any Height
variant in your interface, there and then, automatically.

In the same way, an image can vary depending on whether the environment is in
light mode or dark mode. To display the necessary slots, in the Attributes inspector,
use the Appearance pop-up menu. If you choose Any, Dark, you’ll get a slot for light
or unspecified mode and a slot for dark mode, which is usually what you want.
Again, a UIImage obtained from the asset catalog is live, and will switch automati‐
cally to the appropriate variant when the interface style changes. A named color
defined in the asset catalog can make the same distinction, making it a dynamic color
(as I described in Chapter 1).

If you need a specific trait collection variant of an image or named color in an asset
catalog, and you know its name, you can call init(named:in:compatibleWith:); the
third parameter is the trait collection. But what if you already have this UIImage or
UIColor and you don’t know its name? For that matter, how does the interface in
your running app, which already contains a UIImage or a UIColor, automatically

Images and Image Views | 85

change when the trait collection changes? This magic is baked into UIImage and
UIColor.

Let’s start with UIImage. When an image is obtained from an asset catalog through
UIImage init(named:), its imageAsset property is a UIImageAsset that effectively
points back into the asset catalog at the image set that it came from. Each image in
the image set has a trait collection associated with it (its traitCollection). By calling
the UIImageAsset method image(with:), passing a trait collection, you can ask an
image’s imageAsset for the image from the same image set appropriate to that trait
collection.

A built-in interface object that displays an image, such as a UIImageView, is auto‐
matically trait collection–aware; it receives the traitCollectionDidChange(_:) mes‐
sage and responds accordingly. To demonstrate how this works under the hood, we
can build a custom UIView with an image property that behaves the same way:

class MyView: UIView {
 var image : UIImage!
 override func traitCollectionDidChange(_ prevtc: UITraitCollection?) {
 super.traitCollectionDidChange(prevtc)
 self.setNeedsDisplay() // causes draw(_:) to be called
 }
 override func draw(_ rect: CGRect) {
 if var im = self.image {
 if let asset = self.image.imageAsset {
 im = asset.image(with:self.traitCollection)
 }
 im.draw(at:.zero)
 }
 }
}

The really interesting part is that no actual asset catalog is needed. You can treat
images as trait-based alternatives for one another without using an asset catalog. You
might do this because your code has constructed the images from scratch or has
obtained them over the network while the app is running. The technique is to instan‐
tiate a UIImageAsset and then associate each image with a different trait collection by
registering it with this same UIImageAsset. Here’s an example:

let tcreg = UITraitCollection(verticalSizeClass: .regular)
let tccom = UITraitCollection(verticalSizeClass: .compact)
let moods = UIImageAsset()
let frowney = UIImage(named:"frowney")!
let smiley = UIImage(named:"smiley")!
moods.register(frowney, with: tcreg)
moods.register(smiley, with: tccom)

The amazing thing is that if we now display either frowney or smiley in a UIImage‐
View, we see the image associated with the environment’s current vertical size class,

86 | Chapter 2: Drawing

and it automatically switches to the other image when the app changes orientation on
an iPhone. Moreover, this works even though I didn’t keep any persistent reference
to frowney, smiley, or the UIImageAsset! (The reason is that the images are cached
by the system and they maintain a strong reference to the UIImageAsset with which
they are registered.)

UIColor works in a simpler way. There is no UIColorAsset class. A dynamic color is
declared by calling init(dynamicProvider:), whose parameter is a function that
takes a trait collection and returns a color. The knowledge of the color corresponding
to a trait collection is baked directly into the dynamic color, and you can extract it by
calling resolvedColor(with:), passing a trait collection.

Namespacing image files
When image files are numerous or need to be clumped into groups, the question ari‐
ses of how to divide them into namespaces. Here are some possibilities:

Folder reference
Instead of keeping images at the top level of your app bundle, you can keep them
in a folder in the app bundle. This is easiest to maintain if you put a folder refer‐
ence into your project; the folder itself is then copied into the app bundle at build
time, along with all its contents. There are various ways to retrieve an image in
such a folder:

• Call UIImage init(named:) with the folder name and a forward slash in
front of the image’s name in the name string. If the folder is called pix and
the image file is called pic.png, then the “name” of the image is "pix/
pic.png".

• Call Bundle path(forResource:ofType:inDirectory:) to get the image
file’s path, followed by UIImage init(contentsOfFile:).

• Obtain the bundle path (Bundle.main.bundlePath) and use NSString path‐
name and FileManager methods to drill down to the desired file.

Asset catalog folder
An asset catalog can provide virtual folders that function as namespaces. Suppose
that an image set myImage is inside an asset catalog folder called pix; if you check
Provides Namespace in the Attributes inspector for that folder, then the image
can be accessed through UIImage init(name:) by the name "pix/myImage".

Bundle
A fuller form of init(named:) is init(named:in:), where the second parameter
is a bundle. This means you can keep images in a secondary bundle, such as a
framework, and specify that bundle as a way of namespacing the image. This

Images and Image Views | 87

approach works regardless of whether the image comes from an asset catalog or
sits at the top level of the bundle.

Image files in the nib editor
Many built-in Cocoa interface objects will accept a UIImage as part of how they draw
themselves; a UIButton can display an image, a UINavigationBar or a UITabBar can
have a background image (Chapter 12), and so on. The image you want to supply will
often come from an image file.

The nib editor stands ready to help you. The Attributes inspector of an interface
object that can have an image will have a pop-up menu from which you can choose
an image in your project — or, new in iOS 13, a built-in symbol image. Your project’s
images, as well as the built-in symbol images, are also listed in the Image library;
from here, you can drag an image onto an interface object in the canvas, such as a
button.

Image Views
When you want an image to appear in your interface, not inside a button or other
interface object but purely as an image, you’ll probably hand it to an image view — a
UIImageView — which has the most knowledge and flexibility with regard to dis‐
playing images and is intended for this purpose. An image view is the displayer of
images par excellence. In code, just set the image as the image view’s image. In the nib
editor, drag the image from the Image library onto an image view or set its image
through the Image pop-up menu, or drag an image from the Image library directly
into a plain UIView to get a UIImageView whose image is that image.

New in iOS 13, an image view (or a UIButton, because its image is contained in
an image view) can be configured to display a particular variant of any symbol
image assigned to it by setting its preferredSymbolConfiguration; you can do
that in code or in the nib editor.

A UIImageView can actually have two images, one assigned to its image property and
the other assigned to its highlightedImage property; the value of the UIImageView’s
isHighlighted property dictates which of the two is displayed at any given moment.
A UIImageView does not automatically highlight itself merely because the user taps
it, the way a button does. However, there are certain situations where a UIImageView
will respond to the highlighting of its surroundings; within a table view cell, for
instance, a UIImageView will show its highlighted image when the cell is highlighted
(Chapter 8).

A UIImageView is a UIView, so it can have a background color in addition to its
image, it can have an alpha (transparency) value, and so forth (see Chapter 1). An
image may have areas that are transparent, and a UIImageView will respect this, so

88 | Chapter 2: Drawing

an image of any shape can appear. A UIImageView without a background color is
invisible except for its image, so the image simply appears in the interface, without
the user being aware that it resides in a rectangular host. A UIImageView without an
image and without a background color is invisible, so you could start with an empty
UIImageView in the place where you will later need an image and subsequently
assign the image in code. You can assign a new image to substitute one image for
another, or set the image view’s image property to nil to remove its image.

How a UIImageView draws its image depends upon the setting of its contentMode
property (UIView.ContentMode); this property is actually inherited from UIView,
and I’ll discuss its more general purpose later in this chapter. .scaleToFill means
the image’s width and height are set to the width and height of the view, filling the
view completely even if this alters the image’s aspect ratio; .center means the image
is drawn centered in the view without altering its size; and so on. Most commonly
you’ll use .scaleAspectFit or .scaleAspectFill; they both keep the image’s aspect
ratio while filling the image view. The difference is that .scaleAspectFill fills the
image view in both dimensions, permitting some of the image to fall outside the
image view. The best way to get a feel for the meanings of the various contentMode
settings is to experiment with an image view in the nib editor: in the image view’s
Attributes inspector, change the Content Mode pop-up menu to see where and how
the image draws itself.

You should also pay attention to a UIImageView’s clipsToBounds property; if it is
false, its image, even if it is larger than the image view and even if it is not scaled
down by the contentMode, may be displayed in its entirety, extending beyond the
image view itself.

When creating a UIImageView in code, you can take advantage of a convenience ini‐
tializer, init(image:). The default contentMode is .scaleToFill, but the image is
not initially scaled; rather, the image view itself is sized to match its image. You will
still probably need to position the UIImageView correctly in its superview. In this
example, I’ll put a picture of the planet Mars in the center of the app’s interface
(Figure 2-1; for the CGRect center property, see Appendix B):

let iv = UIImageView(image:UIImage(named:"Mars"))
self.view.addSubview(iv)
iv.center = iv.superview!.bounds.center
iv.frame = iv.frame.integral

What happens to the size of an existing UIImageView when you assign a new image
to it depends on whether the image view is using autolayout. Under autolayout, the
size of the image becomes the image view’s intrinsicContentSize, so the image
view adopts the image’s size unless other constraints prevent.

Images and Image Views | 89

Figure 2-1. Mars appears in my interface

An image view automatically acquires its alignmentRectInsets (see Chapter 1) from
its image’s alignmentRectInsets. If you’re going to be aligning the image view to
some other object using autolayout, you can attach appropriate alignmentRect-
Insets to the image that the image view will display, and the image view will do the
right thing. To do so in code, derive a new image by calling the original image’s with-
AlignmentRectInsets(_:) method; alternatively, you can set an image’s alignment-
RectInsets in the asset catalog (use the four Alignment fields).

Resizable Images
Certain interface contexts require an image that can be coherently resized to any
desired proportions. A custom image that serves as the track of a slider or progress
view (Chapter 12) must be able to fill a space of any length. Such an image is called a
resizable image.

To make a resizable image in code, start with a normal image and call its resizable-
Image(withCapInsets:resizingMode:) method. The capInsets: argument is a
UIEdgeInsets, whose components represent distances inward from the edges of the
image. In a context larger than the image, a resizable image can behave in one of two
ways, depending on the resizingMode: value (UIImage.ResizingMode):

.tile

The interior rectangle of the inset area is tiled (repeated) in the interior; each
edge is formed by tiling the corresponding edge rectangle outside the inset area.
The four corner rectangles outside the inset area are drawn unchanged.

.stretch

The interior rectangle of the inset area is stretched once to fill the interior; each
edge is formed by stretching the corresponding edge rectangle outside the inset
area once. The four corner rectangles outside the inset area are drawn
unchanged.

In these examples, assume that self.iv is a UIImageView with absolute height and
width (so that it won’t adopt the size of its image) and with a contentMode of .scale-
ToFill (so that the image will exhibit resizing behavior). First, I’ll illustrate tiling an
entire image (Figure 2-2); note that the capInsets: is .zero, meaning no insets at all:

90 | Chapter 2: Drawing

Figure 2-2. Tiling the entire image of Mars

Figure 2-3. Tiling the interior of Mars

let mars = UIImage(named:"Mars")!
let marsTiled =
 mars.resizableImage(withCapInsets:.zero, resizingMode: .tile)
self.iv.image = marsTiled

Now we’ll tile the interior of the image, changing the capInsets: argument from the
previous code (Figure 2-3):

let marsTiled = mars.resizableImage(withCapInsets:
 UIEdgeInsets(
 top: mars.size.height / 4.0,
 left: mars.size.width / 4.0,
 bottom: mars.size.height / 4.0,
 right: mars.size.width / 4.0
), resizingMode: .tile)

Next, I’ll illustrate stretching. We’ll start by changing just the resizingMode: from
the previous code (Figure 2-4):

let marsTiled = mars.resizableImage(withCapInsets:
 UIEdgeInsets(
 top: mars.size.height / 4.0,
 left: mars.size.width / 4.0,
 bottom: mars.size.height / 4.0,
 right: mars.size.width / 4.0
), resizingMode: .stretch)

A common stretching strategy is to make almost half the original image serve as a cap
inset, leaving just a tiny rectangle in the center that must stretch to fill the entire inte‐
rior of the resulting image (Figure 2-5):

Images and Image Views | 91

Figure 2-4. Stretching the interior of Mars

Figure 2-5. Stretching a few pixels at the interior of Mars

Figure 2-6. Mars, stretched and clipped

let marsTiled = mars.resizableImage(withCapInsets:
 UIEdgeInsets(
 top: mars.size.height / 2.0 - 1,
 left: mars.size.width / 2.0 - 1,
 bottom: mars.size.height / 2.0 - 1,
 right: mars.size.width / 2.0 - 1
), resizingMode: .stretch)

In the preceding example, if the image view’s contentMode is .scaleAspectFill, and
if the image view’s clipsToBounds is true, we get a sort of gradient effect, because the
top and bottom of the stretched image are outside the image view and aren’t drawn
(Figure 2-6).

Alternatively, you can configure a resizable image in the asset catalog. It is often the
case that a particular image will be used in your app chiefly as a resizable image, and
always with the same capInsets: and resizingMode:, so it makes sense to configure
this image once rather than having to repeat the same code.

To configure an image in an asset catalog as a resizable image, select the image and,
in the Slicing section of the Attributes inspector, change the Slices pop-up menu to
Horizontal, Vertical, or Horizontal and Vertical. When you do this, additional inter‐
face appears. You can specify the resizingMode with the Center pop-up menu. You

92 | Chapter 2: Drawing

Figure 2-7. Mars, sliced in the asset catalog

Figure 2-8. Mars, sliced and stretched

can work numerically, or click Show Slicing at the lower right of the canvas and work
graphically.

This feature is even more powerful than resizableImage(withCapInsets:resizing-
Mode:). It lets you specify the end caps separately from the tiled or stretched region,
with the rest of the image being sliced out. In Figure 2-7, the dark areas at the top left,
top right, bottom left, and bottom right will be drawn as is; the narrow bands will be
stretched, and the small rectangle at the top center will be stretched to fill most of the
interior; but the rest of the image, the large central area covered by a sort of gauze
curtain, will be omitted entirely. The result is shown in Figure 2-8.

Transparency Masks
Certain interface contexts, such as buttons and button-like interface objects, want to
treat an image as a transparency mask, also known as a template. This means that the
image color values are ignored, and only the transparency (alpha) values of each pixel
matter. The image shown on the screen is formed by combining the image’s transpar‐
ency values with a single tint color.

The way an image will be treated is a property of the image, its renderingMode. This
property is read-only; to change it in code, start with an image and generate a new
image with a different rendering mode, by calling its withRenderingMode(_:)
method.

The rendering mode values (UIImage.RenderingMode) are:

Images and Image Views | 93

Figure 2-9. One image in two rendering modes

• .automatic

• .alwaysOriginal

• .alwaysTemplate

The default is .automatic, which means that the image is drawn normally except in
those particular contexts that want to treat it as a transparency mask. With the other
two rendering mode values, you can force an image to be drawn normally, even in a
context that would usually treat it as a transparency mask, or you can force an image
to be treated as a transparency mask, even in a context that would otherwise treat it
normally.

To accompany this feature, iOS gives every UIView a tintColor, which will be used
to tint any template images it contains. Moreover, this tintColor by default is inher‐
ited down the view hierarchy, and indeed throughout the entire app, starting with the
window (Chapter 1). Assigning your app’s main window a tint color is probably one
of the few changes you’ll make to the window; otherwise, your app adopts the sys‐
tem’s blue tint color. (Alternatively, if you’re using a main storyboard, set the Global
Tint color in the File inspector.) Individual views can be assigned their own tint
color, which is inherited by their subviews. Figure 2-9 shows two buttons displaying
the same background image, one in normal rendering mode, the other in template
rendering mode, in an app whose window tint color is red. (I’ll say more about tem‐
plate images and tintColor in Chapter 12.)

You can assign an image a rendering mode in the asset catalog. Select the image set in
the asset catalog, and use the Render As pop-up menu in the Attributes inspector to
set the rendering mode to Default (.automatic), Original Image (.alwaysOriginal),
or Template Image (.alwaysTemplate). This is an excellent approach whenever you
have an image that you will use primarily in a specific rendering mode, because it
saves you from having to remember to set that rendering mode in code every time
you fetch the image. Instead, any time you call init(named:), this image arrives with
the rendering mode already set.

(The symbol images introduced in iOS 13 have no color of their own, so in effect they
are always template images.)

Also new in iOS 13, a tint color can be applied to a UIImage directly; call withTint-
Color(_:) or withTintColor(_:renderingMode:). This is useful particularly when
you want to draw a symbol image or a template image in a context where there is no

94 | Chapter 2: Drawing

inherited tint color (such as a graphics context). Nonetheless, I find the behavior of
these methods rather weird:

Original images become template images
If you apply withTintColor to an ordinary image, it is then treated as a template
image — even if you also set the rendering mode to .alwaysOriginal.

Template images may ignore the assigned tint color
If you apply withTintColor(_:) to a template image — because it’s a symbol
image, or because you said .alwaysTemplate, or because we’re in a context that
treats an image as a transparency mask — then if you assign it into an view with
a tintColor of its own, the tint color you specify is ignored! The view’s tint color
wins. If you want the tint color you specify to be obeyed, you must also set the
rendering mode to .alwaysOriginal.

For example, the following code specifically sets a symbol image’s tint color to red;
nevertheless, what appears on the screen is a blue symbol image (because the default
image view tintColor is blue):

let im = UIImage(systemName:"circle.fill")?.withTintColor(.red)
let iv = UIImageView(image:im)
self.view.addSubview(iv)

To get a red symbol image, you have to say this:

let im = UIImage(systemName:"circle.fill")?.withTintColor(.red,
 renderingMode: .alwaysOriginal) // *
let iv = UIImageView(image:im)
self.view.addSubview(iv)

Reversible Images
The entire interface is automatically reversed when your app runs on a system for
which your app is localized if the system language is right-to-left. In general, this
probably won’t affect your images. The runtime assumes that you don’t want images
to be reversed when the interface is reversed, so its default behavior is to leave them
alone.

Nevertheless, you might want an image to be reversed when the interface is reversed.
Suppose you’ve drawn an arrow pointing in the direction from which new interface
will arrive when the user taps a button. If the button pushes a view controller onto a
navigation interface, that direction is from the right on a left-to-right system, but
from the left on a right-to-left system. This image has directional meaning within the
app’s own interface; it needs to flip horizontally when the interface is reversed.

To make this possible in code, call the image’s imageFlippedForRightToLeftLayout-
Direction method and use the resulting image in your interface. On a left-to-right
system, the normal image will be used; on a right-to-left system, a reversed variant of

Images and Image Views | 95

the image will be created and used automatically. You can override this behavior,
even if the image is reversible, for a particular UIView displaying the image, such as a
UIImageView, by setting that view’s semanticContentAttribute to prevent
mirroring.

You can make the same determination for an image in the asset catalog using the
Direction pop-up menu (choose one of the Mirrors options). Moreover, the layout
direction (as I mentioned in Chapter 1) is a trait, so you can have pairs of images to
be used under left-to-right or right-to-left layout. The easy way to configure such
pairs is to choose Both in the asset catalog’s Direction pop-up menu; now there are
left-to-right and right-to-left image slots where you can place your images. Alterna‐
tively, you can register the paired images with a UIImageAsset in code, as I demon‐
strated earlier in this chapter.

You can also force an image to be flipped horizontally without regard to layout direc‐
tion or semantic content attribute by calling its withHorizontallyFlipped-

Orientation method.

Graphics Contexts
Instead of plopping an image from an existing image file directly into your interface,
you may want to create some drawing yourself, in code. To do so, you will need a
graphics context. This is where the fun really begins!

A graphics context is basically a place you can draw. Conversely, you can’t draw in
code unless you’ve got a graphics context. There are several ways in which you might
obtain a graphics context; these are the most common:

Cocoa creates the graphics context
You subclass UIView and override draw(_:). At the time your draw(_:) imple‐
mentation is called, Cocoa has already created a graphics context and is asking
you to draw into it, right now; whatever you draw is what the UIView will
display.

Cocoa passes you a graphics context
You subclass CALayer and override draw(in:), or else you give a CALayer a del‐
egate and implement the delegate’s draw(_:in:). The in: parameter is a graph‐
ics context. (Layers are discussed in Chapter 3.)

You create an image context
The preceding two ways of getting a graphics context amount to drawing on
demand: you slot your drawing code into the right place, and it is called when‐
ever drawing needs to happen. The other major way to draw is just to make a
UIImage yourself, once and for all. To create the graphics context that generates
the image, you use a UIGraphicsImageRenderer.

96 | Chapter 2: Drawing

Moreover, at any given moment there either is or is not a current graphics context:

• When UIView’s draw(_:) is called, the UIView’s drawing context is already the
current graphics context.

• When CALayer’s draw(in:) or its delegate’s draw(_:in:) is called, the in:
parameter is a graphics context, but it is not the current context. It’s up to you to
make it current if you need to.

• When you create an image context, that image context automatically becomes
the current graphics context.

What beginners find most confusing about drawing is that there are two sets of tools
for drawing, which take different attitudes toward the context in which they will
draw. One set needs a current context; the other just needs a context:

UIKit
Various Cocoa classes know how to draw themselves; these include UIImage,
NSString (for drawing text), UIBezierPath (for drawing shapes), and UIColor.
Some of these classes provide convenience methods with limited abilities; others
are extremely powerful. In many cases, UIKit will be all you’ll need.

With UIKit, you can draw only into the current context. If there’s already a cur‐
rent context, you just draw. But with CALayer, where you are handed a context
as a parameter, if you want to use the UIKit convenience methods, you’ll have to
make that context the current context; you do this by calling UIGraphicsPush-
Context(_:) (and be sure to restore things with UIGraphicsPopContext later).

Core Graphics
This is the full drawing API. Core Graphics, often referred to as Quartz, or
Quartz 2D, is the drawing system that underlies all iOS drawing; UIKit drawing
is built on top of it. It is low-level and consists of C functions (though in Swift
these are mostly “renamified” to look like method calls). There are a lot of them!
This chapter will familiarize you with the fundamentals; for complete informa‐
tion, you’ll want to study Apple’s Quartz 2D Programming Guide in the docu‐
mentation archive.

With Core Graphics, you must specify a graphics context (a CGContext) to draw
into, explicitly, for each bit of your drawing. With CALayer, you are handed the
context as a parameter, and that’s the graphics context you want to draw into.
But if there is already a current context, you have no reference to it until you call
UIGraphicsGetCurrentContext to obtain it.

You don’t have to use UIKit or Core Graphics exclusively. On the contrary, you can
intermingle UIKit calls and Core Graphics calls in the same chunk of code to operate
on the same graphics context. They merely represent two different ways of telling a
graphics context what to do.

Graphics Contexts | 97

Figure 2-10. A blue circle

We have two sets of tools and three ways in which a context might be supplied; that
makes six ways of drawing. I’ll now demonstrate all six of them! To do so, I’ll draw a
blue circle (Figure 2-10). Without worrying just yet about the actual drawing com‐
mands, focus your attention on how the context is specified and on whether we’re
using UIKit or Core Graphics.

Drawing on Demand
There are four ways of drawing on demand, and I’ll start with those. First, I’ll imple‐
ment a UIView subclass’s draw(_:), using UIKit to draw into the current context,
which Cocoa has already prepared for me:

override func draw(_ rect: CGRect) {
 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))
 UIColor.blue.setFill()
 p.fill()
}

Now I’ll do the same thing with Core Graphics; this will require that I first get a refer‐
ence to the current context:

override func draw(_ rect: CGRect) {
 let con = UIGraphicsGetCurrentContext()!
 con.addEllipse(in:CGRect(0,0,100,100))
 con.setFillColor(UIColor.blue.cgColor)
 con.fillPath()
}

Next, I’ll implement a CALayer delegate’s draw(_:in:). In this case, we’re handed a
reference to a context, but it isn’t the current context. So I have to make it the current
context in order to use UIKit (and I must remember to stop making it the current
context when I’m done drawing):

override func draw(_ layer: CALayer, in con: CGContext) {
 UIGraphicsPushContext(con)
 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))
 UIColor.blue.setFill()
 p.fill()
 UIGraphicsPopContext()
}

98 | Chapter 2: Drawing

To use Core Graphics in a CALayer delegate’s draw(_:in:), I simply keep referring
to the context I was handed:

override func draw(_ layer: CALayer, in con: CGContext) {
 con.addEllipse(in:CGRect(0,0,100,100))
 con.setFillColor(UIColor.blue.cgColor)
 con.fillPath()
}

Drawing a UIImage
Now I’ll make a UIImage of a blue circle. We can do this at any time (we don’t need
to wait for some particular method to be called) and in any class (we don’t need to be
in a UIView subclass).

To construct a UIImage in code, use a UIGraphicsImageRenderer. The basic techni‐
que is to create the renderer and call its image method to obtain the UIImage, hand‐
ing it a function containing your drawing instructions.

In this example, I draw my image using UIKit:

let r = UIGraphicsImageRenderer(size:CGSize(100,100))
let im = r.image { _ in
 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))
 UIColor.blue.setFill()
 p.fill()
}
// im is the blue circle image, do something with it here ...

And here’s the same thing using Core Graphics:

let r = UIGraphicsImageRenderer(size:CGSize(100,100))
let im = r.image { _ in
 let con = UIGraphicsGetCurrentContext()!
 con.addEllipse(in:CGRect(0,0,100,100))
 con.setFillColor(UIColor.blue.cgColor)
 con.fillPath()
}
// im is the blue circle image, do something with it here ...

In those examples, we’re calling UIGraphicsImageRenderer’s init(size:) and
accepting its default configuration, which is usually what’s wanted. To configure the
image context further, call the UIGraphicsImageRendererFormat class method
default, configure the format through its properties, and pass it to UIGraphicsImage‐
Renderer’s init(size:format:). Those properties are:

opaque

By default, false; the image context is transparent. If true, the image context is
opaque and has a black background, and the resulting image has no
transparency.

Graphics Contexts | 99

scale

By default, the same as the scale of the main screen, UIScreen.main.scale. This
means that the resolution of the resulting image will be correct for the device
we’re running on.

preferredRange

The color gamut. Your choices are (UIGraphicsImageRendererFormat.Range):

• .standard

• .extended

• .automatic (same as .extended if we’re running on a device that supports
“wide color”)

A single parameter (ignored in the preceding examples) arrives into the UIGraphics‐
ImageRenderer’s image function. It’s a UIGraphicsImageRendererContext. This pro‐
vides access to the configuring UIGraphicsImageRendererFormat (its format). It also
lets you obtain the graphics context (its cgContext); you can alternatively get this by
calling UIGraphicsGetCurrentContext, and the preceding code does so, for consis‐
tency with the other ways of drawing. In addition, the UIGraphicsImageRenderer‐
Context can hand you a copy of the image as drawn up to this point (its
currentImage); also, it implements a few basic drawing commands of its own.

UIImage Drawing
A UIImage provides methods for drawing itself into the current context. We already
know how to obtain a UIImage, and we already know how to obtain a graphics con‐
text and make it the current context, so we are ready to experiment with these meth‐
ods.

Here, I’ll make a UIImage consisting of two pictures of Mars side by side
(Figure 2-11):

let mars = UIImage(named:"Mars")!
let sz = mars.size
let r = UIGraphicsImageRenderer(size:CGSize(sz.width*2, sz.height),
 format:mars.imageRendererFormat)
let im = r.image { _ in
 mars.draw(at:CGPoint(0,0))
 mars.draw(at:CGPoint(sz.width,0))
}

Observe that image scaling works perfectly in that example. If we have multiple reso‐
lution variants of our original Mars image, the correct one for the current device is
used, and is assigned the correct scale value. The image context that we are drawing
into also has the correct scale by default. And the resulting image im has the correct

100 | Chapter 2: Drawing

Figure 2-11. Two images of Mars combined side by side

Figure 2-12. Two images of Mars in different sizes, composited

scale as well. Our code produces an image that looks correct on the current device,
whatever its screen resolution may be.

If your purpose in creating an image graphics context is to draw an existing
UIImage into it, you can gain some efficiency by initializing the image renderer’s
format to the image’s imageRendererFormat.

Additional UIImage methods let you scale an image into a desired rectangle as you
draw (effectively resizing the image), and specify the compositing (blend) mode
whereby the image should combine with whatever is already present. To illustrate, I’ll
create an image showing Mars centered in another image of Mars that’s twice as
large, using the .multiply blend mode (Figure 2-12):

let mars = UIImage(named:"Mars")!
let sz = mars.size
let r = UIGraphicsImageRenderer(size:CGSize(sz.width*2, sz.height*2),
 format:mars.imageRendererFormat)
let im = r.image { _ in
 mars.draw(in:CGRect(0,0,sz.width*2,sz.height*2))
 mars.draw(in:CGRect(sz.width/2.0, sz.height/2.0, sz.width, sz.height),
 blendMode: .multiply, alpha: 1.0)
}

Redrawing an image at a smaller size is of particular importance in iOS program‐
ming, because it is a waste of valuable memory to hand a UIImageView a large image
and ask the image view to display it smaller. Some frameworks such as Image I/O
(Chapter 22) and PhotoKit (Chapter 17) allow you to load a downsized image

UIImage Drawing | 101

Figure 2-13. Half the original image of Mars

thumbnail directly, but sometimes you’ll need to downscale an image to fit within a
given size yourself. For a general utility method that downsizes a UIImage to fit
within a given CGSize, see Appendix B.

Sometimes, you may want to extract a smaller region of the original image — effec‐
tively cropping the image as you draw it. Unfortunately, there is no UIImage drawing
method for specifying the source rectangle. You can work around this by creating a
smaller graphics context and positioning the image drawing so that the desired
region falls into it. There is no harm in doing this, and it’s a perfectly standard strat‐
egy; what falls outside the graphics context simply isn’t drawn.

To obtain an image of the right half of Mars, you can make a graphics context half
the width of the mars image, and then draw mars shifted left, so that only its right half
intersects the graphics context (Figure 2-13):

let mars = UIImage(named:"Mars")!
let sz = mars.size
let r = UIGraphicsImageRenderer(size:CGSize(sz.width/2.0, sz.height),
 format:mars.imageRendererFormat)
let im = r.image { _ in
 mars.draw(at:CGPoint(-sz.width/2.0,0))
}

A nice feature of UIGraphicsImageRenderer is that we can initialize it with a bounds
instead of a size. Instead of drawing mars shifted left, we can achieve the same effect
by drawing mars at .zero into a bounds that is shifted right:

let mars = UIImage(named:"Mars")!
let sz = mars.size
let r = UIGraphicsImageRenderer(
 bounds:CGRect(sz.width/2.0, 0, sz.width/2.0, sz.height),
 format:mars.imageRendererFormat)
let im = r.image { _ in
 mars.draw(at:.zero)
}

Vector images work like normal images. A PDF vector image in the asset catalog for
which you have checked Preserve Vector Data will scale sharply when you call
draw(in:), and a symbol image always scales sharply:

102 | Chapter 2: Drawing

let symbol = UIImage(systemName:"rhombus")!
let sz = CGSize(100,100)
let r = UIGraphicsImageRenderer(size:sz)
let im = r.image {_ in
 symbol.withTintColor(.purple).draw(in:CGRect(origin:.zero, size:sz))
}

The resulting rhombus is purple (because we gave the image a tint color before draw‐
ing it) and smoothly drawn at 100×100 (because it’s a vector image). But of course,
once you’ve drawn the vector image into a UImage (like our im), that image is not a
vector image, so it doesn’t scale sharply.

It is better, however, not to do what I just did. You really should try not to call
draw(in:) on a symbol image. Instead, generate a UIImage with a custom symbol
configuration, specifying a point size, and call draw(at:), letting the symbol image
size itself according to the point size you provided.

CGImage Drawing
The Core Graphics analog to UIImage is CGImage. In essence, a UIImage is (usually)
a wrapper for a CGImage: the UIImage is bitmap image data plus scale, orientation,
and other information, whereas the CGImage is the bare bitmap image data alone.
The two are easily converted to one another: a UIImage has a cgImage property that
accesses its Quartz image data, and you can make a UIImage from a CGImage using
init(cgImage:) or init(cgImage:scale:orientation:).

A CGImage lets you create a new image cropped from a rectangular region of the
original image, which you can’t do with UIImage. (A CGImage has other powers a
UIImage doesn’t have; for instance, you can apply an image mask to a CGImage.) I’ll
demonstrate by splitting the image of Mars in half and drawing the two halves
separately (Figure 2-14):

let mars = UIImage(named:"Mars")!
// extract each half as CGImage
let marsCG = mars.cgImage!
let sz = mars.size
let marsLeft = marsCG.cropping(to:
 CGRect(0,0,sz.width/2.0,sz.height))!
let marsRight = marsCG.cropping(to:
 CGRect(sz.width/2.0,0,sz.width/2.0,sz.height))!
let r = UIGraphicsImageRenderer(size: CGSize(sz.width*1.5, sz.height),
 format:mars.imageRendererFormat)
let im = r.image { ctx in
 let con = ctx.cgContext
 con.draw(marsLeft, in:
 CGRect(0,0,sz.width/2.0,sz.height))
 con.draw(marsRight, in:
 CGRect(sz.width,0,sz.width/2.0,sz.height))
}

CGImage Drawing | 103

Figure 2-14. Image of Mars split in half (badly)

Well, that was a train wreck! In the first place, the drawing is upside-down. It isn’t
rotated; it’s mirrored top to bottom, or, to use the technical term, flipped. This
phenomenon can arise when you create a CGImage and then draw it, and is due to a
mismatch in the native coordinate systems of the source and target contexts.

In the second place, we didn’t split the image of Mars in half; we seem to have split it
into quarters instead. The reason is that we’re using a high-resolution device, and
there is a high-resolution variant of our image file. When we call UIImage’s
init(named:), we get a UIImage that compensates for the increased size of a high-
resolution image by setting its own scale property to match. But a CGImage doesn’t
have a scale property, and knows nothing of the fact that the image dimensions are
increased! Therefore, on a high-resolution device, the CGImage that we extract from
our Mars UIImage as mars.cgImage is larger (in each dimension) than mars.size,
and all our calculations after that are wrong.

The simplest solution, when you drop down to the CGImage world to perform some
transmutation, is to wrap the resulting CGImage in a UIImage and draw the UIImage
instead of the CGImage. The UIImage can be formed in such a way as to compensate
for scale — call init(cgImage:scale:orientation:) — and by drawing a UIImage
instead of a CGImage, we avoid the flipping problem:

let mars = UIImage(named:"Mars")!
let sz = mars.size
let marsCG = mars.cgImage!
let szCG = CGSize(CGFloat(marsCG.width), CGFloat(marsCG.height))
let marsLeft =
 marsCG.cropping(to:
 CGRect(0,0,szCG.width/2.0,szCG.height))
let marsRight =
 marsCG.cropping(to:
 CGRect(szCG.width/2.0,0,szCG.width/2.0,szCG.height))
let r = UIGraphicsImageRenderer(size:CGSize(sz.width*1.5, sz.height),
 format:mars.imageRendererFormat)
let im = r.image { _ in
 UIImage(cgImage: marsLeft!,
 scale: mars.scale,
 orientation: mars.imageOrientation).draw(at:CGPoint(0,0))

104 | Chapter 2: Drawing

 UIImage(cgImage: marsRight!,
 scale: mars.scale,
 orientation: mars.imageOrientation).draw(at:CGPoint(sz.width,0))
}

Snapshots
An entire view — anything from a single button to your whole interface, complete
with its contained hierarchy of views — can be drawn into the current graphics con‐
text by calling the UIView instance method drawHierarchy(in:afterScreen-
Updates:). The result is a snapshot of the original view: it looks like the original view,
but it’s basically just a bitmap image of it, a lightweight visual duplicate.

drawHierarchy(in:afterScreenUpdates:) is much faster than the CALayer
method render(in:); nevertheless, the latter does still come in handy, as I’ll
show in Chapter 5.

An even faster way to obtain a snapshot of a view is to use the UIView (or UIScreen)
instance method snapshotView(afterScreenUpdates:). The result is a UIView, not
a UIImage; it’s rather like a UIImageView that knows how to draw only one image,
namely the snapshot. Such a snapshot view will typically be used as is, but you can
enlarge its bounds and the snapshot image will stretch. If you want the stretched
snapshot to behave like a resizable image, call resizableSnapshotView(from:after-
ScreenUpdates:withCapInsets:) instead. It is perfectly reasonable to make a snap‐
shot view from a snapshot view.

Snapshots are useful because of the dynamic nature of the iOS interface. You might
place a snapshot of a view in your interface in front of the real view to hide what’s
happening, or use it during an animation to present the illusion of a view moving
when in fact it’s just a snapshot.

Here’s an example from one of my apps. It’s a card game, and its views portray cards.
I want to animate the removal of all those cards from the board, flying away to an
offscreen point. But I don’t want to animate the views themselves! They need to stay
put, to portray future cards. So I make a snapshot view of each of the card views; I
then make the card views invisible, put the snapshot views in their place, and animate
the snapshot views. This code will mean more to you after you’ve read Chapter 4, but
the strategy is evident:

for v in views {
 let snapshot = v.snapshotView(afterScreenUpdates: false)!
 let snap = MySnapBehavior(item:snapshot, snapto:CGPoint(
 x: self.anim.referenceView!.bounds.midX,
 y: -self.anim.referenceView!.bounds.height)
)
 self.snaps.append(snapshot) // keep a list so we can remove them later
 snapshot.frame = v.frame

Snapshots | 105

 v.isHidden = true
 self.anim.referenceView!.addSubview(snapshot)
 self.anim.addBehavior(snap)
}

CIFilter and CIImage
The “CI” in CIFilter and CIImage stands for Core Image, a technology for transform‐
ing images through mathematical filters. Core Image started life on the desktop
(macOS), and when it was originally migrated into iOS 5, some of the filters available
on the desktop were not available in iOS, presumably because they were then too
intensive mathematically for a mobile device. Over the years, more and more macOS
filters were added to the iOS repertoire, and now the two have complete parity: all
macOS filters are available in iOS, and the two platforms have nearly identical APIs.

A filter is a CIFilter. There are more than 200 available filters; they fall naturally into
several broad categories:

Patterns and gradients
These filters create CIImages that can then be combined with other CIImages,
such as a single color, a checkerboard, stripes, or a gradient.

Compositing
These filters combine one image with another, using compositing blend modes
familiar from image processing programs.

Color
These filters adjust or otherwise modify the colors of an image. You can alter an
image’s saturation, hue, brightness, contrast, gamma and white point, exposure,
shadows and highlights, and so on.

Geometric
These filters perform basic geometric transformations on an image, such as scal‐
ing, rotation, and cropping.

Transformation
These filters distort, blur, or stylize an image.

Transition
These filters provide a frame of a transition between one image and another; by
asking for frames in sequence, you can animate the transition (I’ll demonstrate in
Chapter 4).

Special purpose
These filters perform highly specialized operations such as face detection and
generation of barcodes.

106 | Chapter 2: Drawing

A CIFilter is a set of instructions for generating a CIImage — the filter’s output
image. Moreover, most CIFilters operate on a CIImage — the filter’s input image. So
the output image of one filter can be the input image of another filter. In this way,
filters can be chained. As you build a chain of filters, nothing actually happens; you’re
just configuring a sequence of instructions.

If the first CIFilter in the sequence needs an input image, you can get a CIImage from
a CGImage with init(cgImage:), or from a UIImage with init(image:). When the
last CIFilter in the sequence produces a CIImage, you can transform it into a bitmap
drawing — a CGImage or a UIImage. In this way, you’ve transformed an image into
another image, using CIImages and CIFilters as intermediaries. The final step, when
you generate the bitmap drawing, is called rendering the image. When you render the
image, the entire calculation described by the chain of filters is actually performed.
Rendering the last CIImage in the sequence is the only calculation-intensive move.

A common beginner mistake is trying to obtain a CIImage directly from a
UIImage through the UIImage’s ciImage property. In general, that’s not going to
work. That property does not transform a UIImage into a CIImage; it is applica‐
ble only to a UIImage that already wraps a CIImage, and most UIImages don’t
(they wrap a CGImage).

The basic use of a CIFilter is quite simple:

1. Obtain a CIFilter object. You can specify a CIFilter by its string name, by calling
init(name:); to learn the names, consult Apple’s Core Image Filter Reference in
the documentation archive, or call the CIFilter class method filterNames(in-
Categories:) with a nil argument. New in iOS 13, you can obtain a CIFilter
object by calling a CIFilter convenience class method named after the string
name:

let filter = CIFilter(name: "CICheckerboardGenerator")!
// or, new in iOS 13:
let filter = CIFilter.checkerboardGenerator()

2. A filter has keys and values that determine its behavior. These are its parameters.
You set them as desired. You can learn about a filter’s parameters entirely in
code, but typically you’ll consult the documentation. To set a parameter, call set-
Value(_:forKey:). New in iOS 13, you can set a convenience property of the
CIFilter:

filter.setValue(30, forKey: "inputWidth")
// or, new in iOS 13:
filter.width = 30

There are several variations on those steps:

CIFilter and CIImage | 107

• Instead of calling setValue(_:forKey:) repeatedly, you can call setValuesFor-
Keys(_:) with a dictionary to set multiple parameters at once.

• Instead of obtaining the filter and then setting parameters, you can do both in a
single move by calling init(name:withInputParameters:).

• If a CIFilter requires an input CIImage, you can call applying-

Filter(_:parameters:) on the CIImage to obtain the filter, set its parameters,
and receive the output image, in a single move.

Now let’s talk about how to render a CIImage. This, as I’ve said, is the only
calculation-intensive move; it can be slow and expensive. There are three main ways:

With a CIContext
Create a CIContext by calling init() or init(options:); this itself is expensive,
so try to make just one CIContext and retain and reuse it. Then call the CICon‐
text’s createCGImage(_:from:). The first parameter is the CIImage. The second
parameter is a CGRect specifying the region of the CIImage to be rendered. A
CIImage does not have a frame or bounds; its CGRect is its extent. The output is
a CGImage.

With a UIImage
Create a UIImage wrapping the CIImage by calling init(ciImage:) or init(ci-
Image:scale:orientation:). You then draw the UIImage into some graphics
context; that is what causes the image to be rendered.

With a UIImageView
This is a shortcut for the preceding approach. Create a UIImage wrapping the
CIImage and use it to set a UIImageView’s image. The display of the image view
causes the image to be rendered. In general, this approach works only on a
device, though it might work in the simulator in Xcode 11.

There are other ways of rendering a CIImage that have the advantage of being
very fast and suitable for animated or rapid rendering. In particular, you could
use Metal. But that’s outside the scope of this book.

We’re ready for an example! I’ll start with an ordinary photo of myself (it’s true I’m
wearing a motorcycle helmet, but it’s still ordinary) and create a circular vignette
effect (Figure 2-15). I’ll take advantage of the new iOS 13 convenience methods and
properties; to bring these to life, we must import CoreImage.CIFilterBuiltins:

let moi = UIImage(named:"Moi")!
let moici = CIImage(image:moi)!
let moiextent = moici.extent
let smaller = min(moiextent.width, moiextent.height)
let larger = max(moiextent.width, moiextent.height)
// first filter
let grad = CIFilter.radialGradient()

108 | Chapter 2: Drawing

Figure 2-15. A photo of me, vignetted

grad.center = moiextent.center
grad.radius0 = Float(smaller)/2.0 * 0.7
grad.radius1 = Float(larger)/2.0
let gradimage = grad.outputImage!
// second filter
let blend = CIFilter.blendWithMask()
blend.inputImage = moici
blend.maskImage = gradimage
let blendimage = blend.outputImage!

From the image of me (moi), we derive a CIImage (moici).

We use a CIFilter (grad) to form a radial gradient between the default colors of
white and black.

We use a second CIFilter (blend) to treat the radial gradient as a mask for blend‐
ing between the photo of me and a default clear background: where the radial
gradient is white (everything inside the gradient’s inner radius) we see just me,
and where the radial gradient is black (everything outside the gradient’s outer
radius) we see just the clear color, with a gradation in between, so that the image
fades away in the circular band between the gradient’s radii.

We have obtained the final CIImage in the chain (blendimage), and the processor has
not yet performed any rendering. Now we want to generate the final bitmap and dis‐
play it. Let’s say we’re going to display it as the image of a UIImageView self.iv. I’ll
demonstrate two of the ways of doing that.

First, the CIContext approach. self.context is a property initialized to a CIContext.
The starred line is the actual rendering:

let moicg = self.context.createCGImage(blendimage, from: moiextent)! // *
self.iv.image = UIImage(cgImage: moicg)

Second, the UIImage drawing approach; the starred line is the actual rendering:

CIFilter and CIImage | 109

let r = UIGraphicsImageRenderer(size:moiextent.size)
self.iv.image = r.image { _ in
 UIImage(ciImage: blendimage).draw(in:moiextent) // *
}

A filter chain can be encapsulated into a single custom filter by subclassing CIFilter.
Your subclass just needs to override the outputImage property (and possibly other
methods such as setDefaults), with additional properties to make it key–value
coding compliant for any input keys. Here’s our vignette filter as a simple CIFilter
subclass with two input keys; inputImage is the image to be vignetted, and input-
Percentage is a percentage (between 0 and 1) adjusting the gradient’s inner radius:

class MyVignetteFilter : CIFilter {
 @objc var inputImage : CIImage?
 @objc var inputPercentage : NSNumber? = 1.0
 override var outputImage : CIImage? {
 return self.makeOutputImage()
 }
 private func makeOutputImage () -> CIImage? {
 guard let inputImage = self.inputImage else {return nil}
 guard let inputPercentage = self.inputPercentage else {return nil}
 let extent = inputImage.extent
 let smaller = min(extent.width, extent.height)
 let larger = max(extent.width, extent.height)
 let grad = CIFilter.radialGradient()
 grad.center = extent.center
 grad.radius0 = Float(smaller)/2.0 * inputPercentage.floatValue
 grad.radius1 = Float(larger)/2.0
 let gradimage = grad.outputImage!
 let blend = CIFilter.blendWithMask()
 blend.inputImage = self.inputImage
 blend.maskImage = gradimage
 return blend.outputImage
 }
}

And here’s how to use our CIFilter subclass and display its output in a UIImageView:

let vig = MyVignetteFilter()
let moici = CIImage(image: UIImage(named:"Moi")!)!
vig.setValuesForKeys([
 "inputImage":moici,
 "inputPercentage":0.7
])
let outim = vig.outputImage!
let outimcg = self.context.createCGImage(outim, from: outim.extent)!
self.iv.image = UIImage(cgImage: outimcg)

CIImage is a powerful class in its own right, with many valuable convenience meth‐
ods. You can apply a transform to a CIImage, crop it, and even apply a Gaussian blur
directly to it. Also, CIImage understands EXIF orientations and can use them to
reorient itself.

110 | Chapter 2: Drawing

Blur and Vibrancy Views
Certain views on iOS, such as navigation bars and the control center, are translucent
and display a blurred rendition of what’s behind them. You can create similar effects
using the UIVisualEffectView class.

A UIVisualEffectView is initialized by calling init(effect:); the parameter is a
UIVisualEffect. UIVisualEffect is an abstract superclass; the concrete subclasses are
UIBlurEffect and UIVibrancyEffect. You’ll use a visual effect view with a blur effect
to blur what’s behind it; then if you like you can add a visual effect with a vibrancy
effect along with subviews. The vibrancy effect view goes inside the blur effect view’s
contentView. Any subviews of the vibrancy effect view go inside its contentView,
and they will be treated as templates: all that matters is their opacity or transparency,
as their color is replaced. Never give a UIVisualEffectView a direct subview!

UIBlurEffect is initialized by calling init(style:). New in iOS 13, the styles are
adaptive to light and dark user interface style, and are called materials. There are five
of them (plus each material has two nonadaptive variants with Light or Dark
appended to the name):

• .systemUltraThinMaterial

• .systemThinMaterial

• .systemMaterial

• .systemThickMaterial

• .systemChromeMaterial

UIVibrancyEffect is initialized by calling init(blurEffect:style:) (new in iOS 13).
The first parameter will be the blur effect of the underlying UIVisualEffectView. The
style: will be one of these:

• .label

• .secondaryLabel

• .tertiaryLabel

• .quaternaryLabel

• .fill

• .secondaryFill

• .tertiaryFill

• .separator

Here’s an example of a blur effect view covering and blurring the interface
(self.view), and containing a UILabel wrapped in a vibrancy effect view:

Blur and Vibrancy Views | 111

Figure 2-16. A blurred background and a vibrant label

let blurEffect = UIBlurEffect(style: .systemThinMaterial)
let blurView = UIVisualEffectView(effect: blurEffect)
blurView.frame = self.view.bounds
blurView.autoresizingMask = [.flexibleWidth, .flexibleHeight]
self.view.addSubview(blurView)
let vibEffect = UIVibrancyEffect(
 blurEffect: blurEffect, style: .label)
let vibView = UIVisualEffectView(effect:vibEffect)
let lab = UILabel()
lab.text = "Hello, world!"
lab.sizeToFit()
vibView.bounds = lab.bounds
vibView.center = self.view.bounds.center
vibView.autoresizingMask =
 [.flexibleTopMargin, .flexibleBottomMargin,
 .flexibleLeftMargin, .flexibleRightMargin]
blurView.contentView.addSubview(vibView)
vibView.contentView.addSubview(lab)

Figure 2-16 shows the result in light and dark mode.

Both a blur effect view and a blur effect view with an embedded vibrancy effect view
are available as Library objects in the nib editor.

Drawing a UIView
Most of the examples of drawing so far in this chapter have produced UIImage
objects. But, as I’ve already explained, a UIView itself provides a graphics context;
whatever you draw into that graphics context will appear directly in that view. The
technique here is to subclass UIView and implement the subclass’s draw(_:) method.
The result is that, from time to time, or whenever you send it the setNeedsDisplay
message, your view’s draw(_:) will be called. This is your subclass and your code, so
you get to say how this view draws itself at that moment. Whatever drawing you do
in draw(_:), that’s what the interface will display.

112 | Chapter 2: Drawing

When you override draw(_:), there will usually be no need to call super, since
UIView’s own implementation of draw(_:) does nothing. At the time that draw(_:)
is called, the current graphics context has already been set to the view’s own graphics
context. You can use Core Graphics functions or UIKit convenience methods to draw
into that context. I gave some basic examples earlier in this chapter (“Graphics Con‐
texts” on page 96).

The need to draw in real time, on demand, surprises some beginners, who worry that
drawing may be a time-consuming operation. This can indeed be a reasonable con‐
sideration, and where the same drawing will be used in many places in your interface,
it may make sense to construct a UIImage instead, once, and then reuse that UIImage
by drawing it in a view’s draw(_:).

In general, though, you should not optimize prematurely. The code for a drawing
operation may appear verbose and yet be extremely fast. Moreover, the iOS drawing
system is efficient; it doesn’t call draw(_:) unless it has to (or is told to, through a call
to setNeedsDisplay), and once a view has drawn itself, the result is cached so that
the cached drawing can be reused instead of repeating the drawing operation from
scratch. (Apple refers to this cached drawing as the view’s bitmap backing store.) You
can readily satisfy yourself of this fact with some caveman debugging, logging in your
draw(_:) implementation; you may be amazed to discover that your custom
UIView’s draw(_:) code is called only once in the entire lifetime of the app!

In fact, moving code to draw(_:) is commonly a way to increase efficiency. This is
because it is more efficient for the drawing engine to render directly onto the screen
than for it to render offscreen and then copy those pixels onto the screen.

Here are three important caveats with regard to UIView’s draw(_:) method:

• Don’t call draw(_:) yourself. If a view needs updating and you want its draw(_:)
called, send the view the setNeedsDisplay message. This will cause draw(_:) to
be called at the next proper moment.

• Don’t override draw(_:) unless you are assured that this is legal. It is not legal to
override draw(_:) in a subclass of UIImageView, for instance; you cannot com‐
bine your drawing with that of the UIImageView.

• Don’t do anything in draw(_:) except draw. That sort of thing is a common
beginner mistake. Other configurations, such as setting the view’s background
color, or adding subviews or sublayers, should be performed elsewhere, such as
its initializer override.

Where drawing is extensive and can be compartmentalized into sections, you may be
able to gain some additional efficiency by paying attention to the parameter passed
into draw(_:). This parameter is a CGRect designating the region of the view’s
bounds that needs refreshing. Normally, this is the view’s entire bounds; but if you

Drawing a UIView | 113

call setNeedsDisplay(_:), which takes a CGRect parameter, it will be the CGRect
that you passed in as argument. You could respond by drawing only what goes into
those bounds; but even if you don’t, your drawing will be clipped to those bounds, so,
while you may not spend less time drawing, the system will draw more efficiently.

When a custom UIView subclass has a draw(_:) implementation and you create an
instance of this subclass in code, you may be surprised (and annoyed) to find that the
view has a black background! This is a source of considerable confusion among
beginners. The black background arises particularly when two things are true:

• The view’s backgroundColor is nil.
• The view’s isOpaque is true.

When a UIView is created in code with init(frame:), by default both those things
are true. If this issue arises for you and you want to get rid of the black background,
override init(frame:) and have the view set its own isOpaque to false:

class MyView : UIView {
 override init(frame: CGRect) {
 super.init(frame:frame)
 self.isOpaque = false
 }
 required init?(coder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
}

With a UIView created in the nib, on the other hand, the black background problem
doesn’t arise. This is because the UIView’s backgroundColor is not nil. The nib
assigns it some actual background color, even if that color is UIColor.clear.

Graphics Context Commands
Whenever you draw, you are giving commands to the graphics context into which
you are drawing. This is true regardless of whether you use UIKit methods or Core
Graphics functions. Learning to draw is really a matter of understanding how a
graphics context works. That’s what this section is about.

Under the hood, Core Graphics commands to a graphics context are global C func‐
tions with names like CGContextSetFillColor; but Swift “renamification” recasts
them as if a CGContext were a genuine object representing the graphics context, with
the Core Graphics functions appearing as methods of the CGContext. Moreover,
thanks to Swift overloading, multiple functions are collapsed into a single command;
for example, CGContextSetFillColor and CGContextSetFillColorWithColor and
CGContextSetRGBFillColor and CGContextSetGrayFillColor all become the same
command, setFillColor.

114 | Chapter 2: Drawing

Graphics Context Settings
As you draw in a graphics context, the drawing obeys the context’s current settings.
For this reason, the procedure is always to configure the context’s settings first, and
then draw. To draw a red line and then a blue line, you would first set the context’s
line color to red, and draw the first line; then you’d set the context’s line color to blue,
and draw the second line. To the eye, it appears that the redness and blueness are
properties of the individual lines, but in fact, at the time you draw each line, line color
is a feature of the entire graphics context.

A graphics context has, at every moment, a state, which is the sum total of all its cur‐
rent settings; the way a piece of drawing looks is the result of what the graphics con‐
text’s state was at the moment that piece of drawing was performed. To help you
manipulate entire states, the graphics context provides a stack for holding states.
Every time you call saveGState, the context pushes the current state onto the stack;
every time you call restoreGState, the context retrieves the state from the top of the
stack (the state that was most recently pushed) and sets itself to that state. A common
pattern is:

1. Call saveGState.
2. Manipulate the context’s settings, changing its state.
3. Draw.
4. Call restoreGState to restore the state and the settings to what they were before

you manipulated them.
You do not have to do this before every manipulation of a context’s settings, because
settings don’t necessarily conflict with one another or with past settings. You can set
the context’s line color to red and then later to blue without any difficulty. But in cer‐
tain situations you do want your manipulation of settings to be undoable, and I’ll
point out several such situations later in this chapter.

Many of the settings that constitute a graphics context’s state, and that determine the
behavior and appearance of drawing performed at that moment, are similar to those
of any drawing application. Here are some of them, along with some of the com‐
mands that determine them (and some UIKit properties and methods that call them):

Line thickness and dash style
setLineWidth(_:), setLineDash(phase:lengths:)
UIBezierPath lineWidth, setLineDash(_:count:phase:)

Line end-cap style and join style
setLineCap(_:), setLineJoin(_:), setMiterLimit(_:)
UIBezierPath lineCapStyle, lineJoinStyle, miterLimit

Graphics Context Commands | 115

Line color or pattern
setStrokeColor(_:), setStrokePattern(_:colorComponents:)
UIColor setStroke

Fill color or pattern
setFillColor(_:), setFillPattern(_:colorComponents:)
UIColor setFill

Shadow
setShadow(offset:blur:color:)

Overall transparency and compositing
setAlpha(_:), setBlendMode(_:)

Anti-aliasing
setShouldAntialias(_:)

Additional settings include:

Clipping area
Drawing outside the clipping area is not physically drawn.

Transform (or “CTM,” for “current transform matrix”)
Changes how points that you specify in subsequent drawing commands are map‐
ped onto the physical space of the canvas.

Many of these settings will be illustrated by examples later in this chapter.

Paths and Shapes
By issuing a series of instructions for moving an imaginary pen, you construct a path,
tracing it out from point to point. You must first tell the pen where to position itself,
setting the current point; after that, you issue commands telling the pen how to trace
out each subsequent piece of the path, one by one. Each new piece of the path starts
by default at the current point; its end becomes the new current point.

A path can be compound, meaning that it consists of multiple independent pieces. A
single path might consist of two separate closed shapes: say, a rectangle and a circle.
When you call move(to:) in the middle of constructing a path, you pick up the imag‐
inary pen and move it to a new location without tracing a segment, preparing to start
an independent piece of the same path.

If you’re worried, as you begin to trace out a path, that there might be an existing
path and that your new path might be seen as a compound part of that existing path,
you can call beginPath to specify that this is a different path; many of Apple’s exam‐
ples do this, but in practice I usually do not find it necessary.

Here are some path-drawing commands you’re likely to give:

116 | Chapter 2: Drawing

Position the current point
move(to:)

Trace a line
addLine(to:), addLines(between:)

Trace a rectangle
addRect(_:), addRects(_:)

Trace an ellipse or circle
addEllipse(in:)

Trace an arc
addArc(tangent1End:tangent2End:radius:)

Trace a Bezier curve with one or two control points
addQuadCurve(to:control:), addCurveTo(to:control1:control2:)

Close the current path
closePath. This appends a line from the last point of the path to the first point.
There’s no need to do this if you’re about to fill the path, since it’s done for you.

Note that a path, in and of itself, does not constitute drawing! First you provide a
path; then you draw. Drawing can mean stroking the path or filling the path, or both.
Again, this should be a familiar notion from certain drawing applications. The
important thing is that stroking or filling a path clears the path. That path is now
gone and we’re ready to begin constructing a new path if desired:

Stroke or fill the current path (and clear the path)
strokePath, fillPath(using:), drawPath. Use drawPath if you want both to fill
and to stroke the path in a single command, because if you merely stroke it first
with strokePath, the path is cleared and you can no longer fill it. There are also
some convenience functions that create a path from a CGRect or similar and
stroke or fill it, in a single move:

• stroke(_:), strokeLineSegments(between:)
• fill(_:)

• strokeEllipse(in:)

• fillEllipse(in:)

If a path needs to be reused or shared, you can encapsulate it as a CGPath. Like
CGContext, CGPath and its mutable partner CGMutablePath are treated as class
types under “renamification,” and the global C functions that manipulate them are
treated as methods. You can copy the graphics context’s current path using the
CGContext path method, or you can create a new CGMutablePath and construct the

Graphics Context Commands | 117

Figure 2-17. A simple path drawing

path using various functions, such as move(to:transform:) and add-

Line(to:transform:), that parallel the CGContext path-construction functions.
Also, there are ways to create a path based on simple geometry or on an existing path:

• init(rect:transform:)

• init(ellipseIn:transform:)

• init(roundedRect:cornerWidth:cornerHeight:transform:)

• copy(strokingWithWidth:lineCap:lineJoin:miterLimit:transform:)

• copy(dashingWithPhase:lengths:transform:)

• copy(using:) (takes a pointer to a CGAffineTransform)
To illustrate the typical use of path-drawing commands, I’ll generate the up-pointing
arrow shown in Figure 2-17. This might not be the best way to create the arrow, and
I’m deliberately avoiding use of the convenience functions, but it’s clear and shows a
nice basic variety of typical commands:

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()!
// draw a black (by default) vertical line, the shaft of the arrow
con.move(to:CGPoint(100, 100))
con.addLine(to:CGPoint(100, 19))
con.setLineWidth(20)
con.strokePath()
// draw a red triangle, the point of the arrow
con.setFillColor(UIColor.red.cgColor)
con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()
// snip a triangle out of the shaft by drawing in Clear blend mode
con.move(to:CGPoint(90, 101))
con.addLine(to:CGPoint(100, 90))
con.addLine(to:CGPoint(110, 101))
con.setBlendMode(.clear)
con.fillPath()

118 | Chapter 2: Drawing

The UIKit class UIBezierPath is actually a wrapper for CGPath; the wrapped path is
its cgPath property. It provides methods parallel to the CGContext and CGPath
functions for constructing a path, such as:

• init(rect:)

• init(ovalIn:)

• init(roundedRect:cornerRadius:)

• move(to:)

• addLine(to:)

• addArc(withCenter:radius:startAngle:endAngle:clockwise:)

• addQuadCurve(to:controlPoint:)

• addCurve(to:controlPoint1:controlPoint2:)

• close

When you call the UIBezierPath instance methods fill or stroke or
fill(with:alpha:) or stroke(with:alpha:), the current graphics context settings
are saved, the wrapped CGPath is made the current graphics context’s path and
stroked or filled, and the current graphics context settings are restored.

Using UIBezierPath together with UIColor, we could rewrite our arrow-drawing rou‐
tine entirely with UIKit methods:

let p = UIBezierPath()
// shaft
p.move(to:CGPoint(100,100))
p.addLine(to:CGPoint(100, 19))
p.lineWidth = 20
p.stroke()
// point
UIColor.red.set()
p.removeAllPoints()
p.move(to:CGPoint(80,25))
p.addLine(to:CGPoint(100, 0))
p.addLine(to:CGPoint(120, 25))
p.fill()
// snip
p.removeAllPoints()
p.move(to:CGPoint(90,101))
p.addLine(to:CGPoint(100, 90))
p.addLine(to:CGPoint(110, 101))
p.fill(with:.clear, alpha:1.0)

There’s no savings of code here over calling Core Graphics functions, so your choice
of Core Graphics or UIKit is a matter of taste.

Graphics Context Commands | 119

Clipping
A path can be used to mask out areas, protecting them from future drawing. This is
called clipping. By default, a graphics context’s clipping region is the entire graphics
context, meaning that you can draw anywhere within the context.

The clipping area is a feature of the context as a whole, and any new clipping area is
applied by intersecting it with the existing clipping area. To restore your clipping area
to the default, call resetClip.

To illustrate, I’ll rewrite the code that generated our original arrow (Figure 2-17) to
use clipping instead of a blend mode to “punch out” the triangular notch in the tail of
the arrow. This is a little tricky, because what we want to clip to is not the region
inside the triangle but the region outside it. To express this, we’ll use a compound
path consisting of more than one closed area — the triangle, and the drawing area as
a whole (which we can obtain as the context’s boundingBoxOfClipPath).

Both when filling a compound path and when using it to express a clipping region,
the system follows one of two rules:

Winding rule
The fill or clipping area is denoted by an alternation in the direction (clockwise
or counterclockwise) of the path demarcating each region.

Even-odd rule (EO)
The fill or clipping area is denoted by a simple count of the paths demarcating
each region.

Our situation is extremely simple, so it’s easier to use the even-odd rule:

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()!
// punch triangular hole in context clipping region
con.move(to:CGPoint(90, 100))
con.addLine(to:CGPoint(100, 90))
con.addLine(to:CGPoint(110, 100))
con.closePath()
con.addRect(con.boundingBoxOfClipPath)
con.clip(using:.evenOdd)
// draw the vertical line
con.move(to:CGPoint(100, 100))
con.addLine(to:CGPoint(100, 19))
con.setLineWidth(20)
con.strokePath()
// draw the red triangle, the point of the arrow
con.setFillColor(UIColor.red.cgColor)
con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()

120 | Chapter 2: Drawing

How Big Is My Context?
At first blush, it appears that there’s no way to learn a graphics context’s size. Typi‐
cally, this doesn’t matter, because either you created the graphics context or it’s the
graphics context of some object whose size you know, such as a UIView. But in fact,
because the default clipping region of a graphics context is the entire context, you can
use boundingBoxOfClipPath to learn the context’s “bounds.”

The UIBezierPath clipping commands are usesEvenOddFillRule and addClip.

Gradients
Gradients can range from the simple to the complex. A simple gradient (which is all
I’ll describe here) is determined by a color at one endpoint along with a color at the
other endpoint, plus (optionally) colors at intermediate points; the gradient is then
painted either linearly between two points or radially between two circles. You can’t
use a gradient as a path’s fill color, but you can restrict a gradient to a path’s shape by
clipping, which will sometimes be good enough.

To illustrate, I’ll redraw our arrow, using a linear gradient as the “shaft” of the arrow
(Figure 2-18):

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()!
// punch triangular hole in context clipping region
con.move(to:CGPoint(10, 100))
con.addLine(to:CGPoint(20, 90))
con.addLine(to:CGPoint(30, 100))
con.closePath()
con.addRect(con.boundingBoxOfClipPath)
con.clip(using: .evenOdd)
// draw the vertical line, add its shape to the clipping region
con.move(to:CGPoint(20, 100))
con.addLine(to:CGPoint(20, 19))
con.setLineWidth(20)
con.replacePathWithStrokedPath()
con.clip()
// draw the gradient
let locs : [CGFloat] = [0.0, 0.5, 1.0]
let colors : [CGFloat] = [
 0.8, 0.4, // starting color, transparent light gray
 0.1, 0.5, // intermediate color, darker less transparent gray
 0.8, 0.4, // ending color, transparent light gray
]
let sp = CGColorSpaceCreateDeviceGray()
let grad = CGGradient(
 colorSpace:sp, colorComponents: colors, locations: locs, count: 3)!
con.drawLinearGradient(grad,

Graphics Context Commands | 121

Figure 2-18. Drawing with a gradient

 start: CGPoint(89,0), end: CGPoint(111,0), options:[])
con.resetClip() // done clipping
// draw the red triangle, the point of the arrow
con.setFillColor(UIColor.red.cgColor)
con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()

The call to replacePathWithStrokedPath pretends to stroke the current path, using
the current line width and other line-related context state settings, but then creates a
new path representing the outside of that stroked path. Instead of a thick line we now
have a rectangular region that we can use as the clip region.

We then create the gradient and paint it. The procedure is verbose but simple; every‐
thing is boilerplate. We describe the gradient as an array of locations on the contin‐
uum between one endpoint (0.0) and the other endpoint (1.0), along with the color
components of the colors corresponding to each location; in this case, I want the gra‐
dient to be lighter at the edges and darker in the middle, so I use three locations, with
the dark one at 0.5. We must also supply a color space; this will tell the gradient how
to interpret our color components. Finally, we create the gradient and paint it into
place.

(See also the discussion of gradient CIFilters earlier in this chapter. For yet another
way to create a simple gradient, see the discussion of CAGradientLayer in the next
chapter.)

Colors and Patterns
A color is a CGColor. CGColor is not difficult to work with, and can be converted to
and from a UIColor through UIColor’s init(cgColor:) and its cgColor property.

New in iOS 13, drawRect(_:) is called when the user interface style (light or dark)
changes, and UITraitCollection.current is set for you, so any dynamic UIColors
you use while drawing will be correct for the current interface style. But there’s no
such thing as a dynamic CGColor, so if you’re using CGColor in some other situa‐
tion, you might need to trigger a redraw manually. For an example, see “Interface
Style” on page 29.

122 | Chapter 2: Drawing

Figure 2-19. A patterned fill

A pattern is also a kind of color. You can create a pattern color and stroke or fill with
it. The simplest way is to draw a minimal tile of the pattern into a UIImage and create
the color by calling UIColor’s init(patternImage:). To illustrate, I’ll create a pat‐
tern of horizontal stripes and use it to paint the point of the arrow instead of a solid
red color (Figure 2-19):

// create the pattern image tile
let r = UIGraphicsImageRenderer(size:CGSize(4,4))
let stripes = r.image { ctx in
 let imcon = ctx.cgContext
 imcon.setFillColor(UIColor.red.cgColor)
 imcon.fill(CGRect(0,0,4,4))
 imcon.setFillColor(UIColor.blue.cgColor)
 imcon.fill(CGRect(0,0,4,2))
}
// paint the point of the arrow with it
let stripesPattern = UIColor(patternImage:stripes)
stripesPattern.setFill()
let p = UIBezierPath()
p.move(to:CGPoint(80,25))
p.addLine(to:CGPoint(100,0))
p.addLine(to:CGPoint(120,25))
p.fill()

The Core Graphics equivalent, CGPattern, is considerably more powerful, but also
much more elaborate:

con.saveGState()
let sp2 = CGColorSpace(patternBaseSpace:nil)!
con.setFillColorSpace(sp2)
let drawStripes : CGPatternDrawPatternCallback = { _, con in
 con.setFillColor(UIColor.red.cgColor)
 con.fill(CGRect(0,0,4,4))
 con.setFillColor(UIColor.blue.cgColor)
 con.fill(CGRect(0,0,4,2))
}
var callbacks = CGPatternCallbacks(
 version: 0, drawPattern: drawStripes, releaseInfo: nil)
let patt = CGPattern(info:nil, bounds: CGRect(0,0,4,4),
 matrix: .identity,
 xStep: 4, yStep: 4,
 tiling: .constantSpacingMinimalDistortion,

Graphics Context Commands | 123

 isColored: true, callbacks: &callbacks)!
var alph : CGFloat = 1.0
con.setFillPattern(patt, colorComponents: &alph)
con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()
con.restoreGState()

To understand that code, it helps to read it backward. Everything revolves around the
creation of patt using the CGPattern initializer. A pattern is a drawing in a rectangu‐
lar “cell”; we have to state both the size of the cell (bounds:) and the spacing between
origin points of cells (xStep:, yStep:). In this case, the cell is 4×4, and every cell
exactly touches its neighbors both horizontally and vertically. We have to supply a
transform to be applied to the cell (matrix:); in this case, we’re not doing anything
with this transform, so we supply the identity transform. We supply a tiling rule
(tiling:). We have to state whether this is a color pattern or a stencil pattern; it’s a
color pattern, so isColored: is true. And we have to supply a pointer to a callback
function that actually draws the pattern into its cell (callbacks:).

Except that that’s not what we have to supply as the callbacks: argument. What we
actually have to supply here is a pointer to a CGPatternCallbacks struct. This struct
consists of a version: whose value is fixed at 0, along with pointers to two functions,
the drawPattern: to draw the pattern into its cell, and the releaseInfo: called when
the pattern is released. We’re not specifying the second function here; it is for mem‐
ory management, and we don’t need it in this simple example.

As you can see, the actual pattern-drawing function (drawStripes) is very simple.
The only tricky issue is that it must agree with the CGPattern as to the size of a cell,
or the pattern won’t come out the way you expect. We know in this case that the cell
is 4×4. So we fill it with red, and then fill its lower half with blue. When these cells are
tiled touching each other horizontally and vertically, we get the stripes that you see in
Figure 2-19.

Having generated the CGPattern, we call the context’s setFillPattern; instead of
setting a fill color, we’re setting a fill pattern, to be used the next time we fill a path (in
this case, the triangular arrowhead). The colorComponents: parameter is a pointer to
a CGFloat, so we have to set up the CGFloat itself beforehand.

The only thing left to explain is the first three lines of our code. It turns out that
before you can call setFillPattern with a colored pattern, you have to set the con‐
text’s fill color space to a pattern color space. If you neglect to do this, you’ll get an
error when you call setFillPattern. This means that the code as presented has left
the graphics context in an undesirable state, with its fill color space set to a pattern
color space. This would cause trouble if we were later to try to set the fill color to a

124 | Chapter 2: Drawing

normal color. The solution is to wrap the code in calls to saveGState and restore-
GState.

You may have observed in Figure 2-19 that the stripes do not fit neatly inside the tri‐
angle of the arrowhead: the bottommost stripe is something like half a blue stripe.
This is because a pattern is positioned not with respect to the shape you are filling (or
stroking), but with respect to the graphics context as a whole. We could shift the pat‐
tern position by calling setPatternPhase before drawing.

Graphics Context Transforms
Just as a UIView can have a transform, so can a graphics context. Applying a trans‐
form to a graphics context has no effect on the drawing that’s already in it; like other
graphics context settings, it affects only the drawing that takes place after it is applied,
altering the way the coordinates you provide are mapped onto the graphics context’s
area. A graphics context’s transform is called its CTM, for “current transform
matrix.”

It is quite usual to take full advantage of a graphics context’s CTM to save yourself
from performing even simple calculations. You can multiply the current transform
by any CGAffineTransform using concatCTM; there are also convenience functions
for applying a translate, scale, or rotate transform to the current transform.

The base transform for a graphics context is already set for you when you obtain the
context; that’s how the system is able to map context drawing coordinates onto
screen coordinates. Whatever transforms you apply are applied to the current trans‐
form, so the base transform remains in effect and drawing continues to work. You
can return to the base transform after applying your own transforms by wrapping
your code in calls to saveGState and restoreGState.

Here’s an example. We have hitherto been drawing our upward-pointing arrow with
code that knows how to place that arrow at only one location: the top left of its rec‐
tangle is hard-coded at (80,0). This is silly. It makes the code hard to understand, as
well as inflexible and difficult to reuse. Surely the sensible thing would be to draw the
arrow at (0,0), by subtracting 80 from all the x-values in our existing code. Now it is
easy to draw the arrow at any position, simply by applying a translate transform
beforehand, mapping (0,0) to the desired top-left corner of the arrow. To draw it at
(80,0), we would say:

con.translateBy(x:80, y:0)
// now draw the arrow at (0,0)

A rotate transform is particularly useful, allowing you to draw in a rotated orienta‐
tion without any nasty trigonometry. It’s a bit tricky because the point around which
the rotation takes place is the origin. This is rarely what you want, so you have to
apply a translate transform first, to map the origin to the point around which you

Graphics Context Commands | 125

Figure 2-20. Drawing rotated

really want to rotate. But then, after rotating, in order to figure out where to draw,
you will probably have to reverse your translate transform.

To illustrate, here’s code to draw our arrow repeatedly at several angles, pivoting
around the end of its tail (Figure 2-20). Since the arrow will be drawn multiple times,
I’ll start by encapsulating the drawing of the arrow as a UIImage. This is not merely
to reduce repetition and make drawing more efficient; it’s also because we want the
entire arrow to pivot, including the pattern stripes, and this is the simplest way to
achieve that:

lazy var arrow : UIImage = {
 let r = UIGraphicsImageRenderer(size:CGSize(40,100))
 return r.image { _ in
 self.arrowImage()
 }
}()
func arrowImage () {
 // obtain the current graphics context
 let con = UIGraphicsGetCurrentContext()!
 // draw the arrow into the graphics context
 // draw it at (0,0)! adjust all x-values by subtracting 80
 // ... actual code omitted ...
}

In our draw(_:) implementation, we draw the arrow image multiple times:

override func draw(_ rect: CGRect) {
 let con = UIGraphicsGetCurrentContext()!
 self.arrow.draw(at:CGPoint(0,0))
 for _ in 0..<3 {
 con.translateBy(x: 20, y: 100)
 con.rotate(by: 30 * .pi/180.0)
 con.translateBy(x: -20, y: -100)
 self.arrow.draw(at:CGPoint(0,0))
 }
}

126 | Chapter 2: Drawing

Figure 2-21. Drawing with a shadow

Shadows
To add a shadow to a drawing, give the context a shadow value before drawing. The
shadow position is expressed as a CGSize, where the positive direction for both values
indicates down and to the right. The blur value is an open-ended positive number;
Apple doesn’t explain how the scale works, but experimentation shows that 12 is nice
and blurry, 99 is so blurry as to be shapeless, and higher values become problematic.

Figure 2-21 shows the result of the same code that generated Figure 2-20, except that
before we start drawing the arrow repeatedly, we give the context a shadow:

let con = UIGraphicsGetCurrentContext()!
con.setShadow(offset: CGSize(7, 7), blur: 12)
self.arrow.draw(at:CGPoint(0,0))
// ... and so on

It may not be evident from Figure 2-21, but we are adding a shadow each time we
draw. This means the arrows are able to cast shadows on one another. Suppose,
instead, that we want all the arrows to cast a single shadow collectively. The way to
achieve this is with a transparency layer; this is basically a subcontext that accumu‐
lates all drawing and then adds the shadow. Our code for drawing the shadowed
arrows now looks like this:

let con = UIGraphicsGetCurrentContext()!
con.setShadow(offset: CGSize(7, 7), blur: 12)
con.beginTransparencyLayer(auxiliaryInfo: nil)
self.arrow.draw(at:CGPoint(0,0))
for _ in 0..<3 {
 con.translateBy(x: 20, y: 100)
 con.rotate(by: 30 * .pi/180.0)
 con.translateBy(x: -20, y: -100)
 self.arrow.draw(at:CGPoint(0,0))
}
con.endTransparencyLayer()

Graphics Context Commands | 127

Figure 2-22. The very strange behavior of the clear function

Erasing
The CGContext clear(_:) function erases all existing drawing in a CGRect; com‐
bined with clipping, it can erase an area of any shape. The result can “punch a hole”
through all existing drawing.

The behavior of clear(_:) depends on whether the context is transparent or opaque.
This is particularly obvious and intuitive when drawing into an image context. If the
image context is transparent, clear(_:) erases to transparent; otherwise it erases to
black.

When drawing directly into a view, if the view’s background color is nil or a color
with even a tiny bit of transparency, the result of clear(_:) will appear to be trans‐
parent, punching a hole right through the view including its background color; if the
background color is completely opaque, the result of clear(_:) will be black. This is
because the view’s background color determines whether the view’s graphics context
is transparent or opaque, so this is essentially the same behavior that I described in
the preceding paragraph.

Figure 2-22 illustrates; the blue square on the left has been partly cut away to black,
while the blue square on the right has been partly cut away to transparency. Yet these
are instances of the same UIView subclass, drawn with exactly the same code! The
UIView subclass’s draw(_:) looks like this:

let con = UIGraphicsGetCurrentContext()!
con.setFillColor(UIColor.blue.cgColor)
con.fill(rect)
con.clear(CGRect(0,0,30,30))

The difference between the views in Figure 2-22 is that the backgroundColor of the
first view is solid red with an alpha of 1, while the backgroundColor of the second
view is solid red with an alpha of 0.99. This difference is imperceptible to the eye —
not to mention that the red color never appears, as it is covered with a blue fill! Nev‐
ertheless, it completely changes the effect of clear(_:).

If you find this as confusing as I do, the simplest solution may be to drop down to the
level of the view’s layer and set its isOpaque property after setting the view’s back‐
ground color:

128 | Chapter 2: Drawing

self.backgroundColor = .red
self.layer.isOpaque = false

That gives you a final and dependable say on the behavior of clear(_:). If layer.is-
Opaque is false, clear(_:) erases to transparency; if it is true, it erases to black.

Points and Pixels
A point is a dimensionless location described by an x-coordinate and a y-coordinate.
When you draw in a graphics context, you specify the points at which to draw, and
this works regardless of the device’s resolution, because Core Graphics maps your
drawing nicely onto the physical output using the base CTM and anti-aliasing.
Therefore, throughout this chapter I’ve concerned myself with graphics context
points, disregarding their relationship to screen pixels.

Nonetheless, pixels do exist. A pixel is a physical, integral, dimensioned unit of dis‐
play in the real world. Whole-numbered points effectively lie between pixels, and this
can matter if you’re fussy, especially on a single-resolution device. If a vertical path
with whole-number coordinates is stroked with a line width of 1, half the line falls on
each side of the path, and the drawn line on the screen of a single-resolution device
will seem to be 2 pixels wide (because the device can’t illuminate half a pixel).

You may sometimes encounter the suggestion that if this effect is objectionable, you
should try shifting the line’s position by 0.5, to center it in its pixels. This advice may
appear to work, but it makes some simpleminded assumptions. A more sophisticated
approach is to obtain the UIView’s contentScaleFactor property. You can divide by
this value to convert from pixels to points. Consider also that the most accurate way
to draw a vertical or horizontal line is not to stroke a path but to fill a rectangle. This
UIView subclass code will draw a perfect 1-pixel-wide vertical line on any device (con
is the current graphics context):

con.fill(CGRect(100,0,1.0/self.contentScaleFactor,100))

Content Mode
A view that draws something within itself, as opposed to merely having a background
color and subviews (as in the previous chapter), has content. This means that its
contentMode property becomes important whenever the view is resized. As I men‐
tioned earlier, the drawing system will avoid asking a view to redraw itself from
scratch if possible; instead, it will use the cached result of the previous drawing opera‐
tion (the bitmap backing store). If the view is resized, the system may simply stretch
or shrink or reposition the cached drawing, if your contentMode setting instructs it to
do so.

Points and Pixels | 129

Figure 2-23. Automatic stretching of content

It’s a little tricky to illustrate this point when the view’s content is coming from
draw(_:), because I have to arrange for the view to obtain its content from draw(_:)
and then cause it to be resized without draw(_:) being called again. As the app starts
up, I’ll create an instance of a UIView subclass, MyView, that knows how to draw our
arrow; then I’ll use delayed performance to resize the instance after the window has
shown and the interface has been initially displayed (for my delay function, see
Appendix B):

delay(0.1) {
 mv.bounds.size.height *= 2 // mv is the MyView instance
}

We double the height of the view without causing draw(_:) to be called. The result is
that the view’s drawing appears at double its correct height. If our view’s draw(_:)
code is the same as the code that generated Figure 2-18, we get Figure 2-23.

Sooner or later, however, draw(_:) will be called, and the drawing will be refreshed
in accordance with our code. Our code doesn’t say to draw the arrow at a height that
is relative to the height of the view’s bounds; it draws the arrow at a fixed height.
Therefore, the arrow will snap back to its original size.

A view’s contentMode property should therefore usually be in agreement with how
the view draws itself. Our draw(_:) code dictates the size and position of the arrow
relative to the view’s bounds origin, its top left; so we could set its contentMode
to .topLeft. Alternatively, we could set it to .redraw; this will cause automatic scal‐
ing of the cached content to be turned off — instead, when the view is resized, its set-
NeedsDisplay method will be called, ultimately triggering draw(_:) to redraw the
content.

130 | Chapter 2: Drawing

CHAPTER 3

Layers

The tale told in Chapters 1 and 2 of how a UIView draws itself is only half the story.
A UIView has a partner called its layer, a CALayer. A UIView does not actually draw
itself onto the screen; it draws itself into its layer, and it is the layer that is portrayed
on the screen. As I’ve already mentioned, a view is not redrawn frequently; instead,
its drawing is cached, and the cached version of the drawing (the bitmap backing
store) is used where possible. The cached version is, in fact, the layer. What I spoke of
in Chapter 2 as the view’s graphics context is actually the layer’s graphics context.

This might seem to be a mere implementation detail, but layers are important and
interesting in their own right. To understand layers is to understand views more
deeply; layers extend the power of views:

Layers have properties that affect drawing
Layers have drawing-related properties beyond those of a UIView. Because a
layer is the recipient and presenter of a view’s drawing, you can modify how a
view is drawn on the screen by accessing the layer’s properties. By reaching down
to the level of its layer, you can make a view do things you can’t do through
UIView methods alone.

Layers can be combined within a single view
A UIView’s partner layer can contain additional layers. Since the purpose of lay‐
ers is to draw, portraying visible material on the screen, this allows a UIView’s
drawing to be composited of multiple distinct pieces. This can make drawing
easier, with the constituents of a drawing being treated as objects.

Layers are the basis of animation
Animation allows you to add clarity, emphasis, and just plain coolness to your
interface. Layers are made to be animated; the “CA” in “CALayer” stands for
“Core Animation.” Animation is the subject of Chapter 4.

131

Figure 3-1. A compass, composed of layers

Suppose we want to add a compass indicator to our app’s interface. Figure 3-1 por‐
trays a simple version of such a compass. It takes advantage of the arrow that we drew
in Chapter 2; the arrow is drawn into a layer of its own. The other parts of the com‐
pass are layers too: the circle is a layer, and each of the cardinal point letters is a layer.
The drawing is easy to assemble in code (and later in this chapter, that’s exactly what
we’ll do); even more intriguing, the pieces can be repositioned and animated sepa‐
rately, so it’s easy to rotate the arrow without moving the circle (and in Chapter 4,
that’s exactly what we’ll do).

View and Layer
A UIView instance has an accompanying CALayer instance, accessible as the view’s
layer property. This layer has a special status: it is partnered with this view to
embody all of the view’s drawing. The layer has no corresponding view property, but
the view is the layer’s delegate (adopting CALayerDelegate). The documentation
sometimes speaks of this layer as the view’s underlying layer.

Because every view has an underlying layer, there is a tight integration between the
two. The layer portrays all the view’s drawing; if the view draws, it does so by contri‐
buting to the layer’s drawing. The view is the layer’s delegate. And the view’s proper‐
ties are often merely a convenience for accessing the layer’s properties. When you set
the view’s backgroundColor, you are really setting the layer’s backgroundColor, and
if you set the layer’s backgroundColor directly, the view’s backgroundColor is set to
match. Similarly, the view’s frame is really the layer’s frame and vice versa.

The view draws into its layer, and the layer caches that drawing; the layer can then be
manipulated, changing the view’s appearance, without necessarily asking the view to
redraw itself. This is a source of great efficiency in the drawing system. It also
explains such phenomena as the content stretching that we encountered in the last
section of Chapter 2: when the view’s bounds size changes, the drawing system, by

132 | Chapter 3: Layers

default, simply stretches or repositions the cached layer image, until such time as the
view is told to draw freshly, replacing the layer’s content.

By default, when a UIView is instantiated, its layer is a plain vanilla CALayer. But
that might not be what you want. Suppose you have declared a UIView subclass, and
you want your subclass’s underlying layer to be an instance of a CALayer subclass
(built-in or your own). Then override your UIView subclass’s layerClass class prop‐
erty to return that CALayer subclass.

That is how the compass in Figure 3-1 is created. We have a UIView subclass,
CompassView, and a CALayer subclass, CompassLayer. Here is CompassView’s
implementation:

class CompassView : UIView {
 override class var layerClass : AnyClass {
 return CompassLayer.self
 }
}

When CompassView is instantiated, its underlying layer is a CompassLayer. In this
example, there is no drawing in CompassView; its job — in this case, its only job — is
to give CompassLayer a place in the visible interface, because a layer cannot appear
without a view.

Layers and Sublayers
A layer can have sublayers, and a layer has at most one superlayer. We may say there
is a tree of layers. This is similar and parallel to the tree of views (Chapter 1). In fact,
so tight is the integration between a view and its underlying layer that these hierar‐
chies are effectively the same hierarchy. Given a view and its underlying layer, that
layer’s superlayer is the view’s superview’s underlying layer, and that layer has as sub‐
layers all the underlying layers of all the view’s subviews. Indeed, because the layers
are how the views actually get drawn, one might say that the view hierarchy really is a
layer hierarchy (Figure 3-2).

At the same time, the layer hierarchy can go beyond the view hierarchy. A view has
exactly one underlying layer, but a layer can have sublayers that are not the underly‐
ing layers of any view. So the hierarchy of layers that underlie views exactly matches
the hierarchy of views, but the total layer tree may be a superset of that hierarchy. In
Figure 3-3, we see the same view-and-layer hierarchy as in Figure 3-2, but two of the
layers have additional sublayers that are theirs alone (that is, sublayers that are not
any view’s underlying layers).

From a visual standpoint, there may be nothing to distinguish a hierarchy of views
from a hierarchy of layers. In Chapter 1 we drew three overlapping rectangles using

Layers and Sublayers | 133

Figure 3-2. A hierarchy of views and the hierarchy of layers underlying it

Figure 3-3. Layers that have sublayers of their own

a hierarchy of views (Figure 1-1). This code gives exactly the same visible display by
manipulating layers (Figure 3-4):

let lay1 = CALayer()
lay1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1).cgColor
lay1.frame = CGRect(113, 111, 132, 194)
self.view.layer.addSublayer(lay1)
let lay2 = CALayer()
lay2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1).cgColor
lay2.frame = CGRect(41, 56, 132, 194)
lay1.addSublayer(lay2)
let lay3 = CALayer()
lay3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1).cgColor
lay3.frame = CGRect(43, 197, 160, 230)
self.view.layer.addSublayer(lay3)

In Figure 3-4, Layer 1 and Layer 2 are siblings — they are sublayers of the main view’s
underlying layer — while Layer 3 is a sublayer of Layer 2. That’s exactly parallel to the
situation in Figure 1-1.

134 | Chapter 3: Layers

Figure 3-4. Overlapping layers

A view’s subview’s underlying layer is a sublayer of the view’s underlying layer.
Therefore, it can be positioned anywhere in the drawing order among any other sub‐
layers the view may have. The fact that a view can be interspersed among layers is
surprising to beginners. To illustrate, let’s construct Figure 3-4 again, but between
adding lay2 and lay3 to the interface, we’ll add a subview:

// ...
lay1.addSublayer(lay2) // Layer 3
let iv = UIImageView(image:UIImage(named:"smiley"))
self.view.addSubview(iv) // Smiley view
iv.frame.origin = CGPoint(180,180)
let lay3 = CALayer() // Layer 1
// ...

The result is Figure 3-5. The smiley face (iv) was added to the interface before Layer
1 (lay3), so it appears behind it. The smiley face is a view, whereas Layer 1 is just a
layer; so they are not siblings as views, since Layer 1 is not a view. But the smiley face
is both a view and a layer; as layers, the smiley face and Layer 1 are siblings, since they
have the same superlayer, namely the main view’s layer. As siblings, either one can be
made to appear in front of the other.

Whether a layer displays regions of its sublayers that lie outside that layer’s own
bounds depends upon the value of its masksToBounds property. This is parallel to a
view’s clipsToBounds property, and indeed, for a layer that is a view’s underlying
layer, they are the same thing. In Figures 3-4 and 3-5, the layers all have clipsTo-
Bounds set to false (the default); that’s why Layer 3 is visible beyond the bounds of
Layer 2, which is its superlayer.

Like a UIView, a CALayer has an isHidden property that can be set to take it and its
sublayers out of the visible interface without actually removing it from its superlayer.

Layers and Sublayers | 135

Figure 3-5. Overlapping layers and a view

Manipulating the Layer Hierarchy
Layers come with a full set of methods for reading and manipulating the layer hierar‐
chy, parallel to the methods for reading and manipulating the view hierarchy. A layer
has a superlayer property and a sublayers property, along with these methods:

• addSublayer(_:)

• insertSublayer(_:at:)

• insertSublayer(_:below:), insertSublayer(_:above:)
• replaceSublayer(_:with:)

• removeFromSuperlayer

Unlike a view’s subviews property, a layer’s sublayers property is writable. You can
give a layer multiple sublayers in a single move, by assigning to its sublayers prop‐
erty. To remove all of a layer’s sublayers, set its sublayers property to nil.

Although a layer’s sublayers have an order, reflected in the sublayers order and
regulated with the methods I’ve just mentioned, this is not necessarily the same as
their back-to-front drawing order. By default, it is, but a layer also has a zPosition
property, a CGFloat, and this also determines drawing order. The rule is that all sub‐
layers with the same zPosition are drawn in the order they are listed among their
sublayers siblings, but lower zPosition siblings are drawn before higher zPosition
siblings. (The default zPosition is 0.0.)

Sometimes, the zPosition property is a more convenient way of dictating drawing
order than sibling order is. If layers represent playing cards laid out in a solitaire
game, it will likely be a lot easier and more flexible to determine how the cards over‐
lap by setting their zPosition than by rearranging their sibling order.

136 | Chapter 3: Layers

Moreover, a subview’s layer is itself just a layer, so you can rearrange the drawing
order of subviews by setting the zPosition of their underlying layers! In our code
constructing Figure 3-5, if we assign the image view’s underlying layer a zPosition of
1, it is drawn in front of Layer 1:

self.view.addSubview(iv)
iv.layer.zPosition = 1

Positioning a Sublayer
Layer coordinate systems and positioning are similar to those of views. A layer’s own
internal coordinate system is expressed by its bounds, just like a view; its size is its
bounds size, and its bounds origin is the internal coordinate at its top left.

A sublayer’s position within its superlayer is not described by its center, like a view; a
layer does not have a center. Instead, a sublayer’s position within its superlayer is
defined by a combination of two properties:

position

A point expressed in the superlayer’s coordinate system.

anchorPoint

Where the position point is located, with respect to the layer’s own bounds. It is
a CGPoint describing a fraction (or multiple) of the layer’s own bounds width
and bounds height. (0.0,0.0) is the top left of the layer’s bounds, and
(1.0,1.0) is the bottom right of the layer’s bounds.

Here’s an analogy; I didn’t make it up, but it’s pretty apt. Think of the sublayer as
pinned to its superlayer; then you have to say both where the pin passes through the
sublayer (the anchorPoint) and where it passes through the superlayer (the
position).

If the anchorPoint is (0.5,0.5) (the default), the position property works like a
view’s center property. A view’s center is actually a special case of a layer’s
position. This is quite typical of the relationship between view properties and layer
properties; the view properties are often a simpler — but less powerful — version of
the layer properties.

A layer’s position and anchorPoint are orthogonal (independent); changing one
does not change the other. Therefore, changing either of them without changing the
other changes where the layer is drawn within its superlayer.

In Figure 3-1, the most important point in the circle is its center; all the other objects
need to be positioned with respect to it. Therefore, they all have the same position:
the center of the circle. But they differ in their anchorPoint. The arrow’s anchor-
Point is (0.5,0.8), the middle of the shaft, near the tail. But the anchorPoint of a

Layers and Sublayers | 137

cardinal point letter is (0.5,3.0), well outside the letter’s bounds, so as to place the
letter near the edge of the circle.

A layer’s frame is a purely derived property. When you get the frame, it is calculated
from the bounds size along with the position and anchorPoint. When you set the
frame, you set the bounds size and position. In general, you should regard the frame
as a convenient façade and no more. Nevertheless, it is convenient! To position a sub‐
layer so that it exactly overlaps its superlayer, you can just set the sublayer’s frame to
the superlayer’s bounds.

A layer created in code (as opposed to a view’s underlying layer) has a frame and
bounds of CGRect.zero and will not be visible on the screen even when you add
it to a superlayer that is on the screen. Be sure to give your layer a nonzero width
and height if you want to be able to see it! Creating a layer and adding it to a
superlayer and then wondering why it isn’t appearing in the interface is a com‐
mon beginner error.

CALayer instance methods are provided for converting between the coordinate sys‐
tems of layers within the same layer hierarchy; the first parameter can be a CGPoint
or a CGRect, and the second parameter is another CALayer:

• convert(_:from:)

• convert(_:to:)

CAScrollLayer
If you’re going to be moving a layer’s bounds origin as a way of repositioning its sub‐
layers en masse, you might like to make the layer a CAScrollLayer, a CALayer sub‐
class that provides convenience methods for this sort of thing. (Despite the name, a
CAScrollLayer provides no scrolling interface; the user can’t scroll it by dragging.) By
default, a CAScrollLayer’s masksToBounds property is true, so that the CAScrollLayer
acts like a window through which you see only what is within its bounds. (You can
set its masksToBounds to false, but this would be an odd thing to do, as it somewhat
defeats the purpose.)

To move the CAScrollLayer’s bounds, you can talk either to it or to a sublayer (at any
depth):

Talking to the CAScrollLayer
Call this CAScrollLayer method:

scroll(to:)

If the parameter is a CGPoint, changes the CAScrollLayer’s bounds origin to
that point. If the parameter is a CGRect, changes the CAScrollLayer’s bounds
origin minimally so that the given portion of the bounds rect is visible.

138 | Chapter 3: Layers

Talking to a sublayer
Call these CALayer methods on sublayers of the CAScrollLayer:

scroll(_:)

Changes the CAScrollLayer’s bounds origin so that the given point of the
sublayer is at the top left of the CAScrollLayer.

scrollRectToVisible(_:)

Changes the CAScrollLayer’s bounds origin so that the given rect of the sub‐
layer’s bounds is within the CAScrollLayer’s bounds area. You can also ask
the sublayer for its visibleRect, the part of this sublayer now within the
CAScrollLayer’s bounds.

Layer and Delegate
A CALayer’s delegate property is settable (to an instance of any class adopting
CALayerDelegate). If a layer is not the underlying layer of a view, it can be useful to
give it a delegate; you might do this in order to give another object a hand in the
layer’s layout or its drawing, both of which I’ll discuss later. A layer’s delegate can
also participate in certain aspects of animation, as I’ll explain in Chapter 4.

But be careful! Do not, under any circumstances, set the delegate of a layer that is
the underlying layer of a UIView; and do not make a UIView the delegate of any
layer other than its underlying layer. A UIView must be the delegate of its underlying
layer; moreover, it must not be the delegate of any other layer. Don’t do anything to
mess this up. If you do, extremely bad things will happen; for instance, drawing will
stop working correctly.

Layout of Layers
The view hierarchy is actually a layer hierarchy (Figure 3-2). The positioning of a
view within its superview is actually the positioning of its layer within its superlayer
(the superview’s layer). A view can be repositioned and resized automatically in
accordance with its autoresizingMask or through autolayout based on its con‐
straints. So there is automatic layout of layers if they are the underlying layers of views.
Otherwise, there is no automatic layout of layers in iOS; the only option for layout of
layers that are not the underlying layers of views is manual layout that you perform in
code.

When a layer needs layout, either because its bounds have changed or because you
called setNeedsLayout, you can respond in either of two ways:

• The layer’s layoutSublayers method is called; to respond, override layout-
Sublayers in your CALayer subclass.

Layer and Delegate | 139

• Alternatively, implement layoutSublayers(of:) in the layer’s delegate.
(Remember, if the layer is a view’s underlying layer, the view is its delegate.)

For your layer to do effective manual layout of its sublayers, you’ll probably need a
way to identify or refer to the sublayers. There is no layer equivalent of viewWith-
Tag(_:), so such identification and reference is entirely up to you. A CALayer does
have a name property that you might misuse for your own purposes. Key–value cod‐
ing can also be helpful here; layers implement key–value coding in a special way, dis‐
cussed at the end of this chapter.

For a view’s underlying layer, layoutSublayers or layoutSublayers(of:) is called
after the view’s layoutSubviews. Under autolayout, you must call super or else auto‐
layout will break. Moreover, these methods may be called more than once during the
course of autolayout; if you’re looking for an automatically generated signal that it’s
time to do manual layout of sublayers, a view layout event might be a better choice
(see “Layout Events” on page 78).

Drawing in a Layer
The simplest way to make something appear in a layer is through its contents prop‐
erty. This is parallel to the image in a UIImageView (Chapter 2). It is expected to be a
CGImage (or nil, signifying no image). Here’s how we might modify the code that
generated Figure 3-5 in such a way as to generate the smiley face as a layer rather
than a view:

let lay4 = CALayer()
let im = UIImage(named:"smiley")!
lay4.frame = CGRect(origin:CGPoint(180,180), size:im.size)
lay4.contents = im.cgImage
self.view.layer.addSublayer(lay4)

Unfortunately, the CALayer contents property is typed as Any (wrapped in an
Optional). That means you can assign anything to it. Setting a layer’s contents to
a UIImage, rather than a CGImage, will fail silently — the image doesn’t appear,
but there is no error either. This is absolutely maddening, and I wish I had a
nickel for every time I’ve done it and then wasted hours figuring out why my
layer isn’t appearing.

There are also four methods that can be implemented to provide or draw a layer’s
content on demand, similar to a UIView’s draw(_:). A layer is very conservative
about calling these methods (and you must not call any of them directly). When a
layer does call these methods, I will say that the layer redisplays itself. Here is how
a layer can be caused to redisplay itself:

• If the layer’s needsDisplayOnBoundsChange property is false (the default), then
the only way to cause the layer to redisplay itself is by calling setNeedsDisplay

140 | Chapter 3: Layers

(or setNeedsDisplay(_:), specifying a CGRect). Even this might not cause the
layer to redisplay itself right away; if that’s crucial, then you will also call display-
IfNeeded.

• If the layer’s needsDisplayOnBoundsChange property is true, then the layer will
also redisplay itself when the layer’s bounds change (rather like a view’s .redraw
content mode).

Here are the four methods that can be called when a layer redisplays itself; pick one
to implement (don’t try to combine them, you’ll just confuse things):

display in a subclass
Your CALayer subclass can override display. There’s no graphics context at this
point, so display is pretty much limited to setting the contents image.

display(_:) in the delegate
You can set the CALayer’s delegate property and implement display(_:) in
the delegate. As with CALayer’s display, there’s no graphics context, so you’ll
just be setting the contents image.

draw(in:) in a subclass
Your CALayer subclass can override draw(in:). The parameter is a graphics
context into which you can draw directly; it is not automatically made the cur‐
rent context.

draw(_:in:) in the delegate
You can set the CALayer’s delegate property and implement draw(_:in:) in
the delegate. The second parameter is a graphics context into which you can
draw directly; it is not automatically made the current context.

Assigning a layer a contents image and drawing directly into the layer are, in effect,
mutually exclusive:

• If a layer’s contents is assigned an image, this image is shown immediately and
replaces whatever drawing may have been displayed in the layer.

• If a layer redisplays itself and draw(in:) or draw(_:in:) draws into the layer, the
drawing replaces whatever image may have been displayed in the layer.

• If a layer redisplays itself and none of the four methods provides any content, the
layer will be empty.

If a layer is a view’s underlying layer, you usually won’t use any of the four methods
to draw into the layer: you’ll use the view’s draw(_:). But you can use these methods
if you really want to. In that case, you will probably want to implement draw(_:)
anyway, leaving that implementation empty. The reason is that this causes the layer
to redisplay itself at appropriate moments. When a view is sent setNeedsDisplay —

Drawing in a Layer | 141

including when the view first appears — the view’s underlying layer is also sent set-
NeedsDisplay, unless the view has no draw(_:) implementation (because in that case,
it is assumed that the view never needs redrawing). If you’re drawing a view entirely
by drawing to its underlying layer directly, and if you want the underlying layer to be
redisplayed automatically when the view is told to redraw itself, you should imple‐
ment draw(_:) to do nothing. (This technique has no effect on sublayers of the
underlying layer.) These are legitimate (but unusual) techniques for drawing into a
view:

• The view subclass implements an empty draw(_:), along with either display-
Layer: or draw(_:in:).

• The view subclass implements an empty draw(_:) plus layerClass, to give the
view a custom layer subclass — and the custom layer subclass implements either
display or draw(in:).

Drawing-Related Layer Properties
A layer has a scale, its contentsScale, which maps point distances in the layer’s
graphics context to pixel distances on the device. A layer that’s managed by Cocoa, if
it has contents, will adjust its contentsScale automatically as needed; if a view
implements draw(_:), then on a device with a double-resolution screen its
underlying layer is assigned a contentsScale of 2. But a layer that you are creating
and managing yourself has no such automatic behavior; it’s up to you, if you plan to
draw into the layer, to set its contentsScale appropriately. Content drawn into a
layer with a contentsScale of 1 may appear pixellated or fuzzy on a high-resolution
screen. And when you’re starting with a UIImage and assigning its CGImage as a
layer’s contents, if there’s a mismatch between the UIImage’s scale and the layer’s
contentsScale, then the image may be displayed at the wrong size.

Three further layer properties strongly affect what the layer displays:

backgroundColor

Equivalent to a view’s backgroundColor (and if this layer is a view’s underlying
layer, it is the view’s backgroundColor). Changing the backgroundColor takes
effect immediately. Think of the backgroundColor as separate from the layer’s
own drawing, and as painted behind the layer’s own drawing.

opacity

Affects the overall apparent transparency of the layer. It is equivalent to a view’s
alpha (and if this layer is a view’s underlying layer, it is the view’s alpha). It
affects the apparent transparency of the layer’s sublayers as well. It affects the
apparent transparency of the background color and the apparent transparency of

142 | Chapter 3: Layers

the layer’s content separately (just as with a view’s alpha). Changing the opacity
property takes effect immediately.

isOpaque

Determines whether the layer’s graphics context is opaque. An opaque graphics
context is black; you can draw on top of that blackness, but the blackness is still
there. A nonopaque graphics context is clear; where no drawing is, it is com‐
pletely transparent.

Changing the isOpaque property has no effect until the layer redisplays itself. A
view’s underlying layer’s isOpaque property is independent of the view’s
isOpaque property; they are unrelated and do entirely different things. But if the
view implements draw(_:), then setting the view’s backgroundColor changes the
layer’s isOpaque! The latter becomes true if the new background color is opaque
(alpha component of 1), and false otherwise. That’s the reason behind the
strange behavior of CGContext’s clear(_:) method, described in Chapter 2.

When drawing directly into a layer, the behavior of clear(_:) differs from what
was described in Chapter 2 for drawing into a view: instead of punching a hole
through the background color, it effectively paints with the layer’s background
color. This can have curious side effects, and I regard it as deeply weird.

Content Resizing and Positioning
A layer’s content is stored (cached) as a bitmap which is then treated like an image:

• If the content came from setting the layer’s contents property to an image, the
cached content is that image; its size is the point size of the CGImage we started
with.

• If the content came from drawing directly into the layer’s graphics context, the
cached content is the layer’s entire graphics context; its size is the point size of
the layer itself at the time the drawing was performed.

The layer’s content is drawn in relation to the layer’s bounds in accordance with vari‐
ous layer properties, which cause the cached content to be resized, repositioned,
cropped, and so on, as it is displayed. The properties are:

contentsGravity

This property (CALayerContentsGravity) is parallel to a UIView’s contentMode
property, and describes how the content should be positioned or stretched in
relation to the bounds. .center means the content is centered in the bounds
without resizing; .resize (the default) means the content is sized to fit the
bounds, even if this means distorting its aspect; and so forth.

Drawing in a Layer | 143

For historical reasons, the terms bottom and top in the names of the contents-
Gravity settings have the opposite of their expected meanings. Reverse them in
your mind: when you mean the top, say .bottom; when you mean the top left,
say .bottomLeft; and so on.

contentsRect

A CGRect expressing the proportion of the content that is to be displayed. The
default is (0.0,0.0,1.0,1.0), meaning the entire content is displayed. The
specified part of the content is sized and positioned in relation to the bounds in
accordance with the contentsGravity. By setting the contentsRect, you can
scale up part of the content to fill the bounds, or slide part of a larger image into
view without redrawing or changing the contents image.

You can also use the contentsRect to scale down the content, by specifying a
larger contentsRect such as (-0.5,-0.5,1.5,1.5); but any content pixels that
touch the edge of the contentsRect will then be extended outward to the edge of
the layer (to prevent this, make sure that the outermost pixels of the content are
all empty).

contentsCenter

A CGRect, structured like contentsRect, expressing the central region of nine
rectangular regions of the contentsRect that are variously allowed to stretch if
the contentsGravity calls for stretching. The central region (the actual value of
the contentsCenter) stretches in both directions. Of the other eight regions
(inferred from the value you provide), the four corner regions don’t stretch, and
the four side regions stretch in one direction. (This should remind you of how a
resizable image stretches; see Chapter 2.)

If a layer’s content comes from drawing directly into its graphics context, then the
layer’s contentsGravity, of itself, has no effect, because the size of the graphics con‐
text, by definition, fits the size of the layer exactly; there is nothing to stretch or repo‐
sition. But the contentsGravity will have an effect on such a layer if its
contentsRect is not (0.0,0.0,1.0,1.0), because now we’re specifying a rectangle of
some other size; the contentsGravity describes how to fit that rectangle into the
layer.

Again, if a layer’s content comes from drawing directly into its graphics context, then
when the layer is resized, if the layer is asked to display itself again, the drawing is
performed again, and once more the layer’s content fits the size of the layer exactly.
But if the layer’s bounds are resized when needsDisplayOnBoundsChange is false,
then the layer does not redisplay itself, so its cached content no longer fits the layer,
and the contentsGravity matters.

144 | Chapter 3: Layers

Figure 3-6. One way of resizing the compass arrow

By a judicious combination of settings, you can get the layer to perform some clever
drawing for you that might be difficult to perform directly. Figure 3-6 shows the
result of the following settings:

arrow.needsDisplayOnBoundsChange = false
arrow.contentsCenter = CGRect(0.0, 0.4, 1.0, 0.6)
arrow.contentsGravity = .resizeAspect
arrow.bounds = arrow.bounds.insetBy(dx: -20, dy: -20)

Because needsDisplayOnBoundsChange is false, the content is not redisplayed when
the arrow’s bounds are increased; instead, the cached content is used. The contents-
Gravity setting tells us to resize proportionally; therefore, the arrow is both longer
and wider than in Figure 3-1, but not in such a way as to distort its proportions.
Notice that although the triangular arrowhead is wider, it is not longer; the increase
in length is due entirely to the stretching of the arrow’s shaft. That’s because the
contentsCenter region is within the shaft.

A layer’s masksToBounds property has the same effect on its content that it has on its
sublayers. If it is false, the whole content is displayed, even if that content (after
taking account of the contentsGravity and contentsRect) is larger then the layer. If
it is true, only the part of the content within the layer’s bounds will be displayed.

The value of a layer’s bounds origin does not affect where its content is drawn. It
affects only where its sublayers are drawn.

Layers that Draw Themselves
A few built-in CALayer subclasses provide some basic but helpful self-drawing
ability:

Drawing in a Layer | 145

CATextLayer
A CATextLayer has a string property, which can be an NSString or
NSAttributedString (Chapter 10), along with other text formatting properties,
somewhat like a simplified UILabel; it draws its string. The default text color,
the foregroundColor property, is white, which is unlikely to be what you want.
The text is different from the contents and is mutually exclusive with it: either
the contents image or the text will be drawn, but not both, so in general you
should not give a CATextLayer any contents image. In Figures 3-1 and 3-6, the
cardinal point letters are CATextLayer instances.

CAShapeLayer
A CAShapeLayer has a path property, which is a CGPath. It fills or strokes this
path, or both, depending on its fillColor and strokeColor values, and displays
the result; the default is a fillColor of black and no strokeColor. It has proper‐
ties for line thickness, dash style, end-cap style, and join style, similar to a graph‐
ics context; it also has the remarkable ability to draw only part of its path
(strokeStart and strokeEnd), making it very easy to draw things like an arc of
an ellipse. A CAShapeLayer may also have contents; the shape is displayed on
top of the contents image, but there is no property permitting you to specify a
compositing mode. In Figures 3-1 and 3-6, the background circle is a CAShape‐
Layer instance, stroked with gray and filled with a lighter, slightly transparent
gray.

CAGradientLayer
A CAGradientLayer covers its background with a gradient, whose type (CAGra‐
dientLayerType) can be .axial (linear), .radial, or .conic (starting in iOS 12).
It’s an easy way to draw a gradient in your interface. The gradient is defined
much as in the Core Graphics gradient example in Chapter 2, an array of loca‐
tions and an array of corresponding colors, along with a start and end point. To
clip the gradient’s shape, you can add a mask to the CAGradientLayer (masks are
discussed later in this chapter). A CAGradientLayer’s contents are not
displayed. Figure 3-7 shows our compass drawn with a linear CAGradientLayer
behind it.

Transforms
The way a layer is drawn on the screen can be modified though a transform. This is
not surprising, because a view can have a transform (see Chapter 1), and a view is
drawn on the screen by its layer. You can treat a layer’s transform as two-dimensional
or as three-dimensional; with some additional preparation, you can even make a
three-dimensional transform look three-dimensional (in a cartoony way).

146 | Chapter 3: Layers

Figure 3-7. A gradient drawn behind the compass

Affine Transforms
In the simplest case, when a transform is two-dimensional, you can access a layer’s
transform through the affineTransform method (and the corresponding setter, set-
AffineTransform(_:)). The value is a CGAffineTransform, familiar from Chapters 1
and 2.

A layer’s affineTransform is analogous to a view’s transform. For details, see
“Transform” on page 20. The chief difference is that a view’s transform is applied
around its center, whereas a layer’s transform is applied around the anchorPoint,
which might not be at its center. (So the anchorPoint has a second purpose that I
didn’t tell you about when discussing it earlier.)

You now know everything needed to understand the code that generated Figure 3-7.
In this code, self is the CompassLayer; it does no drawing of its own, but merely
assembles and configures its sublayers. The four cardinal point letters are each drawn
by a CATextLayer; they are drawn at the same coordinates, but they have different
rotation transforms, and are anchored so that their rotation is centered at the center
of the circle. For the arrow, CompassLayer adopts CALayerDelegate, makes itself the
arrow layer’s delegate, and calls setNeedsDisplay on the arrow layer; this causes
draw(_:in:) to be called in CompassLayer (that code is just the same code we devel‐
oped for drawing the arrow in Chapter 2, and is not repeated here). The arrow layer
is positioned by an anchorPoint pinning its tail to the center of the circle, and rotated
around that pin by a transform:

// the gradient
let g = CAGradientLayer()
g.contentsScale = UIScreen.main.scale
g.frame = self.bounds
g.colors = [
 UIColor.black.cgColor,
 UIColor.red.cgColor
]

Transforms | 147

g.locations = [0.0,1.0]
self.addSublayer(g)
// the circle
let circle = CAShapeLayer()
circle.contentsScale = UIScreen.main.scale
circle.lineWidth = 2.0
circle.fillColor = UIColor(red:0.9, green:0.95, blue:0.93, alpha:0.9).cgColor
circle.strokeColor = UIColor.gray.cgColor
let p = CGMutablePath()
p.addEllipse(in: self.bounds.insetBy(dx: 3, dy: 3))
circle.path = p
self.addSublayer(circle)
circle.bounds = self.bounds
circle.position = self.bounds.center
// the four cardinal points
let pts = "NESW"
for (ix,c) in pts.enumerated() {
 let t = CATextLayer()
 t.contentsScale = UIScreen.main.scale
 t.string = String(c)
 t.bounds = CGRect(0,0,40,40)
 t.position = circle.bounds.center
 let vert = circle.bounds.midY / t.bounds.height
 t.anchorPoint = CGPoint(0.5, vert)
 t.alignmentMode = .center
 t.foregroundColor = UIColor.black.cgColor
 t.setAffineTransform(
 CGAffineTransform(rotationAngle:CGFloat(ix) * .pi/2.0))
 circle.addSublayer(t)
}
// the arrow
let arrow = CALayer()
arrow.contentsScale = UIScreen.main.scale
arrow.bounds = CGRect(0, 0, 40, 100)
arrow.position = self.bounds.center
arrow.anchorPoint = CGPoint(0.5, 0.8)
arrow.delegate = self // we will draw the arrow in the delegate method
arrow.setAffineTransform(CGAffineTransform(rotationAngle:.pi/5.0))
self.addSublayer(arrow)
arrow.setNeedsDisplay() // draw, please

3D Transforms
A layer’s affineTransform is merely a façade for accessing its transform. A layer’s
transform is a three-dimensional transform, a CATransform3D; when the layer is a
view’s underlying layer, this property is exposed at the level of the view through the
view’s transform3D. For details, see “Transform3D” on page 24. The chief difference
is that a view’s transform3D takes place around the view’s center, whereas a layer’s
three-dimensional transform takes place around a three-dimensional extension of

148 | Chapter 3: Layers

the anchorPoint, whose z-component is supplied by the anchorPointZ property.
Most of the time, you’ll probably leave the anchorPointZ at its default of 0.0.

The following rotation flips a layer around its y-axis:

someLayer.transform = CATransform3DMakeRotation(.pi, 0, 1, 0)

What will we see after we do that? By default, the layer is considered double-sided, so
when it is flipped to show its “back,” what’s drawn is an appropriately reversed ver‐
sion of the content of the layer (along with its sublayers, which by default are still
drawn in front of the layer, but reversed and positioned in accordance with the layer’s
transformed coordinate system). But if the layer’s isDoubleSided property is false,
then when it is flipped to show its “back,” the layer disappears (along with its sublay‐
ers); its “back” is transparent and empty.

Layers do not magically give you realistic three-dimensional rendering — for that
you would use Metal, which is beyond the scope of this discussion. Layers are two-
dimensional objects, and they are designed for speed and simplicity. But read on,
because I’m about to talk about adding an illusion of depth.

Depth
There are two ways to place layers at different nominal depths with respect to their
siblings:

• Through the z-component of their position, which is the zPosition property.
(So the zPosition has a second purpose that I didn’t tell you about earlier.)

• By applying a transform that translates the layer’s position in the z-direction.
These two values, the z-component of a layer’s position and the z-component of its
translation transform, are related; in some sense, the zPosition is a shorthand for a
translation transform in the z-direction. (If you provide both a zPosition and a
z-direction translation, you can rapidly confuse yourself.)

In the real world, changing an object’s zPosition would make it appear larger or
smaller, as it is positioned closer or further away; but this, by default, is not the case
in the world of layer drawing. There is no attempt to portray perspective; the layer
planes are drawn at their actual size and flattened onto one another, with no illusion
of distance. (This is called orthographic projection, and is the way blueprints are often
drawn to display an object from one side.) If we want to portray a visual sense of
depth using layers, we’re going to need some additional techniques, as I shall now
explain.

Sublayer transform
Here’s a widely used trick for introducing a quality of perspective into the way layers
are drawn: make them sublayers of a layer whose sublayerTransform property maps

Transforms | 149

Figure 3-8. A disappointing page-turn rotation

all points onto a “distant” plane. (This is probably just about the only thing the
sublayerTransform property is ever used for.) Combined with orthographic projec‐
tion, the effect is to apply one-point perspective to the drawing, so that things get
perceptibly smaller in the negative z-direction.

Let’s try applying a sort of “page-turn” rotation to our compass: we’ll anchor it at its
right side and then rotate it around the y-axis. Here, the sublayer we’re rotating
(accessed through a property, rotationLayer) is the gradient layer, and the circle and
arrow are its sublayers so that they rotate with it:

self.rotationLayer.anchorPoint = CGPoint(1,0.5)
self.rotationLayer.position = CGPoint(self.bounds.maxX, self.bounds.midY)
self.rotationLayer.transform = CATransform3DMakeRotation(.pi/4.0, 0, 1, 0)

The results are disappointing (Figure 3-8); the compass looks more squashed than
rotated. But now we’ll also apply the distance-mapping transform. The superlayer
here is self:

var transform = CATransform3DIdentity
transform.m34 = -1.0/1000.0
self.sublayerTransform = transform

The results (shown in Figure 3-9) are better, and you can experiment with values to
replace 1000.0; for an even more exaggerated effect, try 500.0. Also, the zPosition
of the rotationLayer will now affect how large it is.

Transform layers
Another way to draw layers with depth is to use CATransformLayer. This CALayer
subclass doesn’t do any drawing of its own; it is intended solely as a host for other
layers. It has the remarkable feature that you can apply a transform to it and it will
maintain the depth relationships among its own sublayers. In this example, how
things look depends on whether or not lay1 is a CATransformLayer:

150 | Chapter 3: Layers

Figure 3-9. A dramatic page-turn rotation

let lay2 = CALayer()
lay2.frame = f // some CGRect
lay2.backgroundColor = UIColor.blue.cgColor
lay1.addSublayer(lay2)
let lay3 = CALayer()
lay3.frame = f.offsetBy(dx: 20, dy: 30)
lay3.backgroundColor = UIColor.green.cgColor
lay3.zPosition = 10
lay1.addSublayer(lay3)
lay1.transform = CATransform3DMakeRotation(.pi, 0, 1, 0)

In that code, the superlayer lay1 has two sublayers, lay2 and lay3. The sublayers are
added in that order, so lay3 is drawn in front of lay2. Then lay1 is flipped like a
page being turned by setting its transform:

• If lay1 is a normal CALayer, the sublayer drawing order doesn’t change; lay3 is
still drawn in front of lay2, even after the transform is applied.

• If lay1 is a CATransformLayer, lay3 is drawn behind lay2 after the transform;
they are both sublayers of lay1, so their depth relationship is maintained.

Figure 3-10 shows our page-turn rotation yet again, still with the sublayerTransform
applied to self, but this time the only sublayer of self is a CATransformLayer:

var transform = CATransform3DIdentity
transform.m34 = -1.0/1000.0
self.sublayerTransform = transform
let master = CATransformLayer()
master.frame = self.bounds
self.addSublayer(master)
self.rotationLayer = master

The CATransformLayer, to which the page-turn transform is applied, holds the gra‐
dient layer, the circle layer, and the arrow layer. Those three layers are at different

Transforms | 151

Figure 3-10. Page-turn rotation applied to a CATransformLayer

depths (using different zPosition settings), and I’ve tried to emphasize the arrow’s
separation from the circle by adding a shadow (discussed in the next section):

circle.zPosition = 10
arrow.shadowOpacity = 1.0
arrow.shadowRadius = 10
arrow.zPosition = 20

You can see from its apparent offset that the circle layer floats in front of the gradient
layer, but I wish you could see this page-turn as an animation, which makes the circle
jump right out from the gradient as the rotation proceeds.

Even more remarkable, I’ve added a little white peg sticking through the arrow and
running into the circle! It is a CAShapeLayer, rotated to be perpendicular to the
CATransformLayer (I’ll explain the rotation code later in this chapter):

let peg = CAShapeLayer()
peg.contentsScale = UIScreen.main.scale
peg.bounds = CGRect(0,0,3.5,50)
let p2 = CGMutablePath()
p2.addRect(peg.bounds)
peg.path = p2
peg.fillColor = UIColor(red:1.0, green:0.95, blue:1.0, alpha:0.95).cgColor
peg.anchorPoint = CGPoint(0.5,0.5)
peg.position = master.bounds.center
master.addSublayer(peg)
peg.setValue(Float.pi/2, forKeyPath:"transform.rotation.x")
peg.setValue(Float.pi/2, forKeyPath:"transform.rotation.z")
peg.zPosition = 15

In that code, the peg runs straight out of the circle toward the viewer, so it is initially
seen end-on, and because a layer has no thickness, it is invisible. But as the

152 | Chapter 3: Layers

CATransformLayer pivots in our page-turn rotation, the peg maintains its orienta‐
tion relative to the circle, and comes into view. In effect, the drawing portrays a 3D
model constructed entirely out of layers!

There is, I think, a slight additional gain in realism if the same sublayerTransform is
applied also to the CATransformLayer, but I have not done so here.

Further Layer Features
A CALayer has many additional properties that affect details of how it is drawn. Since
these drawing details can be applied to a UIView’s underlying layer, they are effec‐
tively view features as well.

Shadows
A CALayer can have a shadow, defined by its shadowColor, shadowOpacity, shadow-
Radius, and shadowOffset properties. To make the layer draw a shadow, set the
shadowOpacity to a nonzero value. The shadow is normally based on the shape of the
layer’s nontransparent region, but deriving this shape can be calculation-intensive (so
much so that in early versions of iOS, layer shadows weren’t implemented). You can
vastly improve performance by defining the shape yourself as a CGPath and assign‐
ing it to the layer’s shadowPath property.

If a layer’s masksToBounds is true, no part of its shadow lying outside its bounds is
drawn. (This includes the underlying layer of a view whose clipsToBounds is true.)
Wondering why the shadow isn’t appearing for a layer that masks to its bounds is a
common beginner mistake.

This in turn poses a puzzle. Suppose we have a view for which clipsToBounds must
be true, but we want that view to cast a shadow anyway. How can we do that?
Figure 3-11 shows an example. The kitten image is shown in an image view whose
contentMode is .scaleAspectFill. The original kitten image is rectangular, not
square; the scaled image is therefore larger than the image view. But we don’t want
the excess part of the image to be visible, so the image view’s clipsToBounds is true.
Yet we also want the image view to cast a shadow. How can that be done?

It can’t be done. Figure 3-11 may look like that’s what it’s doing, but it isn’t. It’s a
trick. There’s another view that you don’t see. It has the same frame as the image
view, its background color is black, and it’s behind the image view. Its clipsToBounds
is false, and its layer has a shadow.

Further Layer Features | 153

Figure 3-11. A clipping view with a shadow?

Borders and Rounded Corners
A CALayer can have a border (borderWidth, borderColor); the borderWidth is
drawn inward from the bounds, potentially covering some of the content unless you
compensate.

A CALayer’s corners can be rounded, effectively bounding the layer with a rounded
rectangle, by giving it a cornerRadius greater than zero. If the layer has a border, the
border has rounded corners too. If the layer has a backgroundColor, that background
is clipped to the shape of the rounded rectangle. If the layer’s masksToBounds is true,
the layer’s content and its sublayers are clipped by the rounded corners.

Starting in iOS 11, you can round individual corners of a CALayer rather than having
to round all four corners at once. To do so, set the layer’s maskedCorners property to
a CACornerMask, a bitmask whose values have these dreadful names:

• layerMinXMinYCorner

• layerMaxXMinYCorner

• layerMinXMaxYCorner

• layerMaxXMaxYCorner

Even if you set the maskedCorners, you won’t see any corner rounding unless you
also set the cornerRadius to a nonzero number.

Masks
A CALayer can have a mask. This is itself a layer, whose content must be provided
somehow. The transparency of the mask’s content in a particular spot becomes (all

154 | Chapter 3: Layers

Figure 3-12. A layer with a mask

other things being equal) the transparency of the layer at that spot. The mask’s colors
(hues) are irrelevant; only transparency matters. To position the mask, pretend it’s a
sublayer.

Figure 3-12 shows our arrow layer, with the gray circle layer behind it, and a mask
applied to the arrow layer. The mask is silly, but it illustrates very well how masks
work: it’s an ellipse, with an opaque fill and a thick, semitransparent stroke. Here’s
the code that generates and applies the mask:

let mask = CAShapeLayer()
mask.frame = arrow.bounds
let path = CGMutablePath()
path.addEllipse(in: mask.bounds.insetBy(dx: 10, dy: 10))
mask.strokeColor = UIColor(white:0.0, alpha:0.5).cgColor
mask.lineWidth = 20
mask.path = path
arrow.mask = mask

Using a mask, we can do more generally what the cornerRadius and masksToBounds
properties do. Here’s a utility method that generates a CALayer suitable for use as a
rounded rectangle mask:

func mask(size sz:CGSize, roundingCorners rad:CGFloat) -> CALayer {
 let rect = CGRect(origin:.zero, size:sz)
 let r = UIGraphicsImageRenderer(bounds:rect)
 let im = r.image { ctx in
 let con = ctx.cgContext
 con.setFillColor(UIColor(white:0, alpha:0).cgColor)
 con.fill(rect)
 con.setFillColor(UIColor(white:0, alpha:1).cgColor)
 let p = UIBezierPath(roundedRect:rect, cornerRadius:rad)
 p.fill()
 }
 let mask = CALayer()
 mask.frame = rect
 mask.contents = im.cgImage
 return mask
}

The CALayer returned from that method can be placed as a mask anywhere in a layer
by adjusting its frame origin and assigning it as the layer’s mask. The result is that all
of that layer’s content drawing and its sublayers (including, if this layer is a view’s

Further Layer Features | 155

underlying layer, the view’s subviews) are clipped to the rounded rectangle shape;
everything outside that shape is not drawn.

A mask drawing can have values between opaque and transparent, and can mask to
any shape. The transparent region doesn’t have to be on the outside of the mask; you
can use a mask that’s opaque on the outside and transparent on the inside to “punch
a hole” in a layer (or a view).

A mask is like a sublayer, in that there is no built-in mechanism for automatically
resizing the mask as the layer is resized. If you don’t resize the mask when the layer is
resized, the mask won’t be resized. A common beginner mistake is to apply a mask to
a view’s underlying layer before the view has been fully laid out; when the view is laid
out, its size changes, but the mask’s size doesn’t, and now the mask doesn’t “fit.”

Alternatively, you can apply a mask as a view directly to another view through the
view’s mask property, rather than having to drop down to the level of layers. This is
not functionally distinct from applying the mask view’s layer to the view’s layer —
under the hood, in fact, it is applying the mask view’s layer to the view’s layer. Using a
mask view does nothing directly to help with the problem of resizing the mask when
the view’s size changes; a mask view isn’t a subview, so it is not subject to autoresizing
or autolayout. On the other hand, if you resize a mask view manually, you can do so
using view properties; that’s very convenient if you’re already resizing the view itself
manually (such as when using view property animation, as discussed in the next
chapter).

Layer Efficiency
By now, you’re probably envisioning all sorts of compositing fun, with layers mask‐
ing sublayers and laid semitransparently over other layers. There’s nothing wrong
with that, but when an iOS device is asked to shift its drawing from place to place, the
movement may stutter because the device lacks the necessary computing power to
composite repeatedly and rapidly. This sort of issue is likely to emerge particularly
when your code performs an animation (Chapter 4) or when the user is able to ani‐
mate drawing through touch, as when scrolling a table view (Chapter 8).

You may be able to detect these problems by eye, and you can quantify them on a
device by using the Core Animation template in Instruments, which shows the frame
rate achieved during animation. Also, the Simulator’s Debug menu lets you summon
colored overlays that provide clues as to possible sources of inefficient drawing that
can lead to such problems; when running on a device, similar overlays are available
by choosing from the hierarchical menu under Debug → View Debugging →
Rendering.

Tricks like shadows and rounded corners and masks may be easy and fun, but in gen‐
eral, opaque drawing is most efficient. (Nonopaque drawing is what the Simulator

156 | Chapter 3: Layers

marks when you check Debug → Color Blended Layers.) You may think that for
some particular use case you have to do nonopaque drawing, but think again, because
you might be wrong about that. If a layer will always be shown over a background
consisting of a single color, you can give the layer its own background of that same
color; when additional layer content is supplied, the visual effect will be the same as if
that additional layer content were composited over a transparent background.

Another way to gain some efficiency is by “freezing” the entirety of the layer’s draw‐
ing as a bitmap. In effect, you’re drawing everything in the layer to a secondary cache
and using the cache to draw to the screen. Copying from a cache is less efficient than
drawing directly to the screen, but this inefficiency may be compensated for, if there’s
a deep or complex layer tree, by not having to composite that tree every time we ren‐
der. To do this, set the layer’s shouldRasterize to true and its rasterizationScale
to some sensible value (probably UIScreen.main.scale). You can always turn raster‐
ization off again by setting shouldRasterize to false, so it’s easy to rasterize just
before some massive or sluggish rearrangement of the screen and then unrasterize
afterward.

In addition, there’s a layer property drawsAsynchronously. The default is false. If
set to true, the layer’s graphics context accumulates drawing commands and obeys
them later on a background thread; the drawing commands themselves run very
quickly, because they are not being obeyed at the time you issue them. I haven’t had
occasion to use this, but presumably there could be situations where it keeps your
app responsive when drawing would otherwise be time-consuming.

Layers and Key–Value Coding
All of a layer’s properties are accessible through Cocoa key–value coding by way of
keys with the same name as the property. These are two ways of doing the same
thing:

layer.mask = mask
// or:
layer.setValue(mask, forKey: "mask")

In addition, CATransform3D and CGAffineTransform values can be expressed
through key–value coding and key paths. Again, these are equivalent:

self.rotationLayer.transform = CATransform3DMakeRotation(.pi/4.0, 0, 1, 0)
// or:
self.rotationLayer.setValue(.pi/4.0, forKeyPath:"transform.rotation.y")

That notation is possible because CATransform3D is key–value coding compliant for
a repertoire of keys and key paths. These are not properties; a CATransform3D
doesn’t have a rotation property. It doesn’t have any properties, because it isn’t even
an object. You cannot say:

Layers and Key–Value Coding | 157

self.rotationLayer.transform.rotation.y = //... no, sorry

The transform key paths you’ll use most often are:

• "rotation.x", "rotation.y", "rotation.z"
• "rotation" (same as "rotation.z")
• "scale.x", "scale.y", "scale.z"
• "translation.x", "translation.y", "translation.z"
• "translation" (two-dimensional, a CGSize)

The Quartz Core framework also injects key–value coding compliance into CGPoint,
CGSize, and CGRect, allowing you to use keys and key paths matching their struct
component names. For a complete list of KVC compliant classes related to CALayer,
along with the keys and key paths they implement, see “Core Animation Extensions
to Key-Value Coding” in Apple’s Core Animation Programming Guide in the docu‐
mentation archive.

Moreover, you can treat a CALayer as a kind of dictionary, and get and set the value
for any key. This means you can attach arbitrary information to an individual layer
instance and retrieve it later. Earlier I mentioned that to apply manual layout to a
layer’s sublayers, you will need a way of identifying those sublayers. This feature
could provide a way of doing that:

myLayer1.setValue("manny", forKey:"pepboy")
myLayer2.setValue("moe", forKey:"pepboy")

A layer doesn’t have a pepboy property; the "pepboy" key is something I’m attaching
to these layers arbitrarily. Now I can identify them later by getting the value of their
respective "pepboy" keys.

Also, CALayer has a defaultValue(forKey:) class method; to implement it, you’ll
need to subclass and override. In the case of keys whose value you want to provide a
default for, return that value; otherwise, return the value that comes from calling
super. In this way, a key can have a non-nil value even if no value has ever been
explicitly provided for that key.

The truth is that this feature, though delightful (and I often wish that all classes
behaved like this), is not put there solely for your convenience and enjoyment. It’s
there to serve as the basis for animation, which is the subject of the next chapter.

158 | Chapter 3: Layers

CHAPTER 4

Animation

Animation is an attribute changing over time. This will typically be a visible attribute
of something in the interface. The changing attribute might be positional: something
moves or changes size, not jumping abruptly, but sliding smoothly. Other kinds of
attribute can animate as well. A view’s background color might change from red to
green, not switching colors abruptly, but blending from one to the other. A view
might change from opaque to transparent, not vanishing abruptly, but fading away.

Without help, most of us would find animation beyond our reach. There are just too
many complications — complications of calculation, of timing, of screen refresh, of
threading, and many more. Fortunately, help is provided. You don’t perform an ani‐
mation yourself; you describe it, you order it, and it is performed for you. You get
animation on demand.

Asking for an animation can be as simple as setting a property value; under some cir‐
cumstances, a single line of code will result in animation:

myLayer.backgroundColor = UIColor.red.cgColor // animate to red

Animation is easy because Apple wants to facilitate your use of it. Animation isn’t
just cool and fun; it clarifies that something is changing or responding. It is crucial to
the character of the iOS interface.

One of my first apps was based on a macOS game in which the user clicks cards to
select them. In the macOS version, a card was highlighted to show it was selected,
and the computer would beep to indicate a click on an ineligible card. On iOS, these
indications were insufficient: the highlighting felt weak, and you can’t use a sound
warning in an environment where the user might have the volume turned off or be
listening to music. So in the iOS version, animation is the indicator for card selection
(a selected card waggles eagerly) and for tapping on an ineligible card (the whole
interface shudders, as if to shrug off the tap).

159

The purpose of this chapter is to explain the basics of animation itself; how you use it
is another matter. Using animation effectively, especially in relation to touch (the
subject of the next chapter), is a deep and complex subject involving psychology,
biology, and other fields outside mere programming. Apple’s own use of animation is
deep and pervasive. It is used to make the interface feel live, fluid, responsive, intu‐
itive, and natural. It helps to provide the user with a sense of what the user can do
and is doing, of where the user is, of how things on the screen are related. Many
WWDC videos go into depth about what Apple achieves with animation, and these
can assist you in your own design.

Drawing, Animation, and Threading
Here’s an interesting fact about how iOS draws to the screen: drawing doesn’t
actually take place at the time you give your drawing commands (Chapter 2). When
you give a command that requires a view to be redrawn, the system remembers your
command and marks the view as needing to be redrawn. Later, when all your code
has run to completion and the system has, as it were, a free moment, then it redraws
all views that need redrawing. Let’s call this the redraw moment. (I’ll explain what the
redraw moment really is later in this chapter.)

Animation works the same way, and is part of the same process. When you ask for an
animation to be performed, the animation doesn’t start happening on the screen until
the next redraw moment. (You can force an animation to start immediately, but this
is unusual.)

Like a movie (especially an old-fashioned animated cartoon), an animation has
“frames.” An animated value does not change smoothly and continuously; it changes
in small, individual increments that give the illusion of smooth, continuous change.
This illusion works because the device itself undergoes periodic, rapid, more or less
regular screen refreshes — a perpetual succession of redraw moments — and the
incremental changes are made to fall between these refreshes. Apple calls the system
component responsible for this the animation server.

Think of the “animation movie” as being interposed between the user and the “real”
screen. While the animation lasts, this movie is superimposed onto the screen. When
the animation is finished, the movie is removed, revealing the state of the “real”
screen behind it. The user is unaware of all this, because (if you’ve done things cor‐
rectly) at the time that it starts, the movie’s first frame looks just like the state of the
“real” screen at that moment, and at the time that it ends, the movie’s last frame looks
just like the state of the “real” screen at that moment.

When you animate a view’s movement from position 1 to position 2, you can envi‐
sion a typical sequence of events like this:

160 | Chapter 4: Animation

1. You reposition the view. The view is now set to position 2, but there has been no
redraw moment, so it is still portrayed at position 1.

2. You order an animation of the view from position 1 to position 2.
3. The rest of your code runs to completion.
4. The redraw moment arrives. If there were no animation, the view would now

suddenly be portrayed at position 2. But there is an animation, and so the “ani‐
mation movie” appears. It starts with the view portrayed at position 1, so that is
still what the user sees.

5. The animation proceeds, each “frame” portraying the view at intermediate posi‐
tions between position 1 and position 2. (The documentation describes the ani‐
mation as in-flight.)

6. The animation ends, portraying the view ending up at position 2.
7. The “animation movie” is removed, revealing the view indeed at position 2 —

where you put it in the first step.
Realizing that the “animation movie” is different from what happens to the real view
is key to configuring an animation correctly. A frequent complaint of beginners is
that a position animation is performed as expected, but then, at the end, the view
“jumps” to some other position. This happens because you set up the animation but
failed to move the view to match its final position in the “animation movie”; when
the “movie” is whipped away at the end of the animation, the real situation that’s
revealed doesn’t match the last frame of the “movie,” so the view appears to jump.

There isn’t really an “animation movie” in front of the screen — but it’s a good anal‐
ogy, and the effect is much the same. To explain what’s actually happening, I have to
reveal something about layers that I omitted from Chapter 3. It is not a layer itself
that is portrayed on the screen; it’s a derived layer called the presentation layer. When
you animate the change of a view’s position or a layer’s position from position 1 to
position 2, its nominal position changes immediately; meanwhile, the presentation
layer’s position remains unchanged until the redraw moment, and then changes over
time, and because that’s what’s actually drawn on the screen, that’s what the user sees.

(A layer’s presentation layer can be accessed through its presentation method —
and the layer itself may be accessed through the presentation layer’s model method.
I’ll give examples, in this chapter and the next, of situations where accessing the pre‐
sentation layer is a useful thing to do.)

The animation server operates on an independent thread. You don’t have to worry
about that fact (thank heavens, because multithreading is generally rather tricky and
complicated), but you can’t ignore it either. Your code runs independently of and
possibly simultaneously with the animation — that’s what multithreading means —
so communication between the animation and your code can require some planning.

Drawing, Animation, and Threading | 161

Arranging for your code to be notified when an animation ends is a common need.
Most of the animation APIs provide a way to set up such a notification. One use of an
“animation ended” notification might be to chain animations together: one anima‐
tion ends and then another begins, in sequence. Another use is to perform some sort
of cleanup. A very frequent kind of cleanup has to do with handling of touches: what
a touch means while an animation is in-flight might be quite different from what a
touch means when no animation is taking place.

Since your code can run even after you’ve set up an animation, or might start run‐
ning while an animation is in-flight, you need to be careful about setting up conflict‐
ing animations. Multiple animations can be set up (and performed) simultaneously,
but an attempt to animate or change a property that’s already in the middle of being
animated may be incoherent. You’ll want to take care not to let your animations step
on each other’s feet accidentally.

Outside forces can interrupt your animations. The user might send your app to the
background, or an incoming phone call might arrive while an animation is in-flight.
The system deals neatly with this situation by simply canceling all in-flight anima‐
tions when an app is backgrounded; you’ve already arranged before the animation for
your views to assume the final states they will have after the animation, so no harm is
done — when your app resumes, everything is in the final state that you arranged
beforehand. But if you wanted your app to resume an animation where it left off
when it was interrupted, that would require some canny coding on your part.

Image View and Image Animation
UIImageView (Chapter 2) provides a form of animation so simple as to be scarcely
deserving of the name; still, sometimes it might be all you need. You supply a
UIImageView with an array of UIImages, as the value of its animationImages or
highlightedAnimationImages property. This array represents the “frames” of a sim‐
ple cartoon; when you send the startAnimating message, the images are displayed in
turn, at a frame rate determined by the animationDuration property, repeating as
many times as specified by the animationRepeatCount property (the default is 0,
meaning to repeat forever), or until the stopAnimating message is received. Before
and after the animation, the image view continues displaying its image (or
highlightedImage).

Suppose we want an image of Mars to appear out of nowhere and flash three times on
the screen. This might seem to require some sort of Timer-based solution, but it’s far
simpler to use an animating UIImageView:

let mars = UIImage(named: "Mars")!
let empty = UIGraphicsImageRenderer(size:mars.size).image {_ in}
let arr = [mars, empty, mars, empty, mars]
let iv = UIImageView(image:empty)

162 | Chapter 4: Animation

iv.frame.origin = CGPoint(100,100)
self.view.addSubview(iv)
iv.animationImages = arr
iv.animationDuration = 2
iv.animationRepeatCount = 1
iv.startAnimating()

You can combine UIImageView animation with other kinds of animation. You could
flash the image of Mars while at the same time sliding the UIImageView rightward,
using view animation as described in the next section.

UIImage provides a form of animation parallel to that of UIImageView: an image can
itself be an animated image. Just as with UIImageView, this means that you’ve pre‐
pared multiple images that form a sequence serving as the “frames” of a simple car‐
toon. You can create an animated image with one of these UIImage class methods:

animatedImage(with:duration:)

As with UIImageView’s animationImages, you supply an array of UIImages.
You also supply the duration for the whole animation.

animatedImageNamed(_:duration:)

You supply the name of a single image file, as with init(named:), with no file
extension. The runtime appends "0" (or, if that fails, "1") to the name you sup‐
ply and makes that image file the first image in the animation sequence. Then it
increments the appended number, gathering images and adding them to the
sequence (until there are no more, or we reach "1024").

animatedResizableImageNamed(_:capInsets:resizingMode:duration:)

Combines an animated image with a resizable image (Chapter 2).

You do not tell an animated image to start animating, nor are you able to tell it how
long you want the animation to repeat. Rather, an animated image is always animat‐
ing, repeating its sequence once every duration seconds, so long as it appears in your
interface; to control the animation, add the image to your interface or remove it from
the interface, possibly exchanging it for a similar image that isn’t animated.

An animated image can appear in the interface anywhere a UIImage can appear as a
property of some interface object. In this example, I construct a sequence of red cir‐
cles of different sizes, in code, and build an animated image which I then display in a
UIButton:

var arr = [UIImage]()
let w : CGFloat = 18
for i in 0 ..< 6 {
 let r = UIGraphicsImageRenderer(size:CGSize(w,w))
 arr += [r.image { ctx in
 let con = ctx.cgContext
 con.setFillColor(UIColor.red.cgColor)
 let ii = CGFloat(i)

Image View and Image Animation | 163

 con.addEllipse(in:CGRect(0+ii,0+ii,w-ii*2,w-ii*2))
 con.fillPath()
 }]
}
let im = UIImage.animatedImage(with:arr, duration:0.5)
b.setImage(im, for:.normal) // b is a button in the interface

Images are memory hogs, and an array of images can cause your app to run
completely out of memory. Confine your use of image view and image animation
to a few small images.

View Animation
All animation is ultimately layer animation, which I’ll discuss later in this chapter.
However, for a limited range of properties, you can animate a UIView directly: these
are its alpha, bounds, center, frame, transform, transform3D, and, if the view
doesn’t implement draw(_:), its backgroundColor (Chapter 1). You can also animate
a UIView’s change of contents. In addition, the UIVisualEffectView effect property
is animatable between nil and a UIBlurEffect (Chapter 2); and, starting in iOS 11, a
view’s underlying layer’s cornerRadius (Chapter 3) is animatable under view anima‐
tion as well. This list of animatable features, despite its brevity, will often prove quite
sufficient.

A Brief History of View Animation
The view animation API has evolved historically by way of three distinct major
stages:

Begin and commit
Way back at the dawn of iOS time, a view animation was constructed impera‐
tively using a sequence of UIView class methods. To use this API, you call begin-
Animations, configure the animation, set an animatable property, and commit
the animation by calling commitAnimations:

UIView.beginAnimations(nil, context: nil)
UIView.setAnimationDuration(1)
self.v.backgroundColor = .red
UIView.commitAnimations()

Block-based animation
When Objective-C blocks were introduced in iOS 4, the entire operation of con‐
figuring a view animation was reduced to a single UIView class method, to which
you pass a block in which you set an animatable property. In Swift, an Objective-
C block is a function — usually an anonymous function. We can call this the
animations function:

164 | Chapter 4: Animation

UIView.animate(withDuration:1) {
 self.v.backgroundColor = .red
}

Property animator
iOS 10 introduced a new object — a property animator (UIViewPropertyAnima‐
tor). It, too, receives an animations function in which you set an animatable
property:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
}
anim.startAnimation()

Although begin-and-commit animation still exists, it is deprecated and you’re
unlikely to use it; block-based animation completely supersedes it. The property ani‐
mator does not supersede block-based animation; rather, it supplements and expands
it. There are certain kinds of animation (repeating animation, autoreversing anima‐
tion, transition animation) where a property animator can’t help you, and you’ll go
on using block-based animation. For the bulk of basic view animations, however, the
property animator brings some valuable advantages — a full range of timing curves,
multiple completion functions, and the ability to pause, resume, and reverse the ani‐
mation, and to interact by touch with the animated view.

Property Animator Basics
The UIViewPropertyAnimator class adopts the UIViewImplicitlyAnimating proto‐
col, which itself adopts the UIViewAnimating protocol:

UIViewAnimating protocol
A UIViewAnimating adopter can have its animation started, paused, and
stopped:

• startAnimation

• pauseAnimation

• stopAnimation(_:)

• finishAnimation(at:)

Its state property reflects its current animation state (UIViewAnimatingState):

• .inactive

• .active

• .stopped

Its isRunning property distinguishes whether it is .active but paused.

View Animation | 165

UIViewAnimating also provides two settable properties:

fractionComplete

Essentially, the current “frame” of the animation.

isReversed

Determines whether the animation is running forward or backward.

UIViewImplicitlyAnimating protocol
A UIViewImplicitlyAnimating adopter can be given animations functions:

• addAnimations(_:)

• addAnimations(_:delayFactor:)

It can be given completion functions:

• addCompletion(_:)

UIViewImplicitlyAnimating also provides a continueAnimation(withTiming-
Parameters:durationFactor:) method that allows a paused animation to be
resumed with altered timing and duration; the durationFactor is the desired
fraction of the animation’s original duration, or zero to mean whatever remains
of the original duration.

UIViewPropertyAnimator
UIViewPropertyAnimator’s own methods consist solely of initializers; I’ll discuss
those later, when I talk about timing curves. It has some read-only properties
describing how it was configured and started (such as its animation’s duration),
along with five settable properties:

isInterruptible

If true (the default), the animator can be paused or stopped.

isUserInteractionEnabled

If true (the default), animated views can be tapped midflight.

scrubsLinearly

If true (the default), then when the animator is paused, the animator’s ani‐
mation curve is temporarily replaced with a linear curve.

isManualHitTestingEnabled

If true, hit-testing is up to you; the default is false, meaning that the anima‐
tor performs hit-testing on your behalf, which is usually what you want. (See
Chapter 5 for more about hit-testing animated views.)

166 | Chapter 4: Animation

pausesOnCompletion

If true, then when the animation finishes, it does not revert to .inactive;
the default is false.

As you can see, a property animator comes packed with power for controlling the
animation after it starts. You can pause the animation in midflight, allow the user to
manipulate the animation gesturally, resume the animation, reverse the animation,
and much more. I’ll illustrate those features in this and subsequent chapters.

In the simplest case, you’ll just launch the animation and stand back, as I demon‐
strated earlier:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
}
anim.startAnimation()

In that code, the UIViewPropertyAnimator object anim is instantiated as a local vari‐
able, and we are not retaining it in a persistent property; yet the animation works
because the animation server retains it. We can keep a persistent reference to the
property animator if we’re going to need it elsewhere, and I’ll give examples later
showing how that can be a useful thing to do.

When a property animator’s animation is started, it transitions through state
changes:

1. The animator starts life in the .inactive state with isRunning set to false.
2. When startAnimation is called, the animator enters the .active state with

isRunning still set to false (paused).
3. The animator then immediately transitions to the .active state with isRunning

set to true.
The “animation movie” starts running at the next redraw moment. Once the anima‐
tion is set in motion, it continues to its finish and then passes through those same
states in reverse:

1. The running animator was in the .active state with isRunning set to true.
2. When the animation finishes, the animator switches to .active with isRunning

set to false (paused).
3. The animator then immediately transitions back to the .inactive state with

isRunning set to false.
If you have set the animator’s pausesOnCompletion to true, the final step is omitted;
the animation pauses, without transitioning back to the .inactive state. Ultimately
returning the animator to .inactive is then left up to you. To do that, you first send
the animator the stopAnimation(_:) message, causing the animator to enter the

View Animation | 167

special .stopped state. What happens next depends on the parameter you passed to
stopAnimation(_:); it’s a Bool:

stopAnimation(_:) parameter is false
You will ultimately call finishAnimation(at:), after which the animator returns
to .inactive.

stopAnimation(_:) parameter is true
You want to dispense with finishAnimation(at:) and let the runtime clean up
for you. The runtime will bring the animator back to .inactive immediately,
without running any completion handlers.

It is a runtime error to let an animator go out of existence while paused (.active but
isRunning is false) or stopped (.stopped). Your app will crash unceremoniously if
you allow that to happen. If you pause an animator, you must eventually bring it back
to the .inactive state in good order before the animator goes out of existence.

When the animator finishes and reverts to the .inactive state, it jettisons its anima‐
tions. This means that the animator, if you’ve retained it, is reusable after finishing
only if you supply new animations.

View Animation Basics
The most important elements of view animation are the animations function and the
completion function:

Animations function
Any change to an animatable view property made within an animations function
will be animated.

Completion function
The completion function lets us specify what should happen after the animation
ends.

More than one animatable view property can be animated at the same time. Here, we
animate simultaneous changes both in a view’s color and in its position:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
 self.v.center.y += 100
}
anim.startAnimation()

More than one view can be animated at the same time. Suppose we want to replace a
view in the view hierarchy with another view, not suddenly, but making the first view
dissolve into the second. We start by placing the second view into the view hierarchy,
with the same frame as the first view, but with an alpha of 0, so that it is invisible.

168 | Chapter 4: Animation

Then we animate the change of the first view’s alpha to 0 and the second view’s
alpha to 1. Finally, in the completion function, we remove the first view after the ani‐
mation ends (invisibly, because its alpha ends at 0):

let v2 = UIView()
v2.backgroundColor = .black
v2.alpha = 0
v2.frame = self.v.frame
self.v.superview!.addSubview(v2)
let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.alpha = 0
 v2.alpha = 1
}
anim.addCompletion { _ in
 self.v.removeFromSuperview()
}
anim.startAnimation()

Another way to remove a view from the view hierarchy with animation is to call
the UIView class method perform(_:on:options:animations:completion:)
with .delete as its first argument (this is, in fact, the only possible first argu‐
ment). This causes the view to blur, shrink, and fade, and sends it removeFrom-
Superview() afterward.

Preventing animation
Code that isn’t about animatable view properties can appear in an animations func‐
tion with no problem. But we must be careful to keep any changes to animatable
properties that we do not want animated out of the animations function. In the pre‐
ceding example, in setting v2.alpha to 0, I just want to set it right now, instantly; I
don’t want that change to be animated. So I’ve put that line outside the animations
function (and in particular, before it).

Sometimes, though, that’s not so easy; perhaps, within the animations function, we
must call a method that might perform unwanted animatable changes. The UIView
class method performWithoutAnimation(_:) solves the problem; it goes inside an
animations function, but whatever happens in its function is not animated. In this
rather artificial example, the view jumps to its new position and then slowly turns
red:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
 UIView.performWithoutAnimation {
 self.v.center.y += 100
 }
}
anim.startAnimation()

View Animation | 169

Conflicts and additive animations

The material inside an animations function (but not inside a performWithout-
Animation function) orders the animation — that is, it gives instructions for what the
animation will be when the redraw moment comes. If you change an animatable view
property as part of the animation, you should not change that property again after‐
ward; the results can be confusing, because there’s a conflict with the animation
you’ve already ordered. This code is essentially incoherent:

let anim = UIViewPropertyAnimator(duration: 2, curve: .linear) {
 self.v.center.y += 100
}
self.v.center.y += 300
anim.startAnimation()

What actually happens is that the view jumps 300 points down and then animates 100
points further down. That’s probably not what you intended. After you’ve ordered an
animatable view property to be animated inside an animations function, don’t change
that view property’s value again until after the animation is over.

On the other hand, this code, while somewhat odd, nevertheless does a smooth single
animation to a position 400 points further down:

let anim = UIViewPropertyAnimator(duration: 2, curve: .linear) {
 self.v.center.y += 100
 self.v.center.y += 300
}
anim.startAnimation()

That’s because basic positional view animations are additive by default. This means
that the second animation is run simultaneously with the first, and is blended with it.

To illustrate what it means for animations to be additive, let’s take advantage of the
fact that a property animator allows us to add a second animation that doesn’t take
effect until some amount of the first animation has elapsed:

let anim = UIViewPropertyAnimator(duration: 2, curve: .easeInOut) {
 self.v.center.y += 100
}
anim.addAnimations({
 self.v.center.x += 100
}, delayFactor: 0.5)
anim.startAnimation()

The delayFactor: of 0.5 means that the second animation will start halfway through
the duration, which is 2 seconds. So the animated view heads straight downward for
1 second and then smoothly swoops off to the right while continuing down for
another second, ending up 100 points down and 100 points to the right of where it
started. The two animations might appear to conflict — they are both changing the

170 | Chapter 4: Animation

center of our view, and they have different durations and therefore different speeds
— but instead they blend together seamlessly.

An even stronger example is what happens when the two animations directly oppose
one another:

let yorig = self.v.center.y
let anim = UIViewPropertyAnimator(duration: 2, curve: .easeInOut) {
 self.v.center.y += 100
}
anim.addAnimations({
 self.v.center.y = yorig
}, delayFactor: 0.5)
anim.startAnimation()

Amazingly, there’s no conflict; instead, we get a smooth autoreversing animation.
The animated view starts marching toward a point 100 points down from its original
position, but at about the halfway point it smoothly — not abruptly or sharply —
slows and reverses itself and returns to its original position.

View Animation Configuration
The details of how you configure a view animation differ depending on whether
you’re using a property animator or calling one of the UIView class methods. With a
property animator, you configure the animator before telling it to start animating.
With a UIView class method, on the other hand, everything has to be supplied in a
single command, which both configures and orders the animation. The full form of
the chief UIView class method is:

• animate(withDuration:delay:options:animations:completion:)

There are shortened versions of the same command; you can omit the delay: and
options: parameters, and even the completion: parameter. But it’s still the same
command, and the configuration of the animation is effectively complete at this
point.

Animations function
The animations function contains the commands that set animatable view properties:

• With a block-based UIView class method, you supply the animations function as
the animations: parameter.

• With a property animator, the animations function is usually provided as the
animations: argument when the property animator is instantiated. But you can
add an animations function to a property animator after instantiating it; indeed,
the init(duration:timingParameters:) initializer requires that you do this, as
it lacks an animations: parameter. And you can do that more than once:

View Animation | 171

let anim = UIViewPropertyAnimator(duration: 1,
 timingParameters: UICubicTimingParameters(animationCurve:.linear))
anim.addAnimations {
 self.v.backgroundColor = .red
}
anim.addAnimations {
 self.v.center.y += 100
}
anim.startAnimation()

Completion function
A completion function contains commands that are to be executed when the
animation finishes:

• With a UIView class method, you supply the completion function as the
completion: parameter. It takes one parameter, a Bool reporting whether the
animation finished.

• A property animator can have multiple completion functions, provided by call‐
ing addCompletion(_:). As with the animations functions, a property animator
can be assigned more than one completion function; the completion functions
are executed in the order in which they were added:

var anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
 self.v.center.y += 100
}
anim.addCompletion {_ in
 print("hey")
}
anim.addCompletion {_ in
 print("ho")
}
anim.startAnimation() // animates, finishes, then prints "hey" and "ho"

A property animator’s completion function takes one parameter, a UIViewAnima‐
tingPosition reporting where the animation ended up: .end, .start, or .current.
(I’ll talk later about what those values mean.)

A property animator that is told to stop its animation with stopAnimation(_:) does
not execute its completion functions at that time:

• If you called stopAnimation(false), the animator’s completion functions are
executed when you call finishAnimation(at:).

• If you called stopAnimation(true), the animator’s completion functions are not
executed at all.

172 | Chapter 4: Animation

Animation duration
The duration of an animation represents how long it takes (in seconds) to run from
start to finish:

• With a block-based UIView class method, the animation duration is the
duration: parameter.

• With a property animator, the animation duration is the duration: parameter
when the property animator is initialized.

You can also think of the duration as the animation’s speed. Obviously, if two views
are told to move different distances in the same time, the one that must move further
must move faster.

A duration of 0 doesn’t really mean 0. It means “use the default duration.” This fact
will be of interest later when we talk about nesting animations. Outside of a nested
animation, the default is two-tenths of a second.

Animation delay
It is permitted to order the animation along with a delay before the animation goes
into action. The default is no delay. A delay is not the same as applying the animation
using delayed performance; the animation is applied immediately, but when it starts
running it spins its wheels, with no visible change, until the delay time has elapsed:

• With a block-based UIView class method, the delay is the delay: parameter.
• To apply a delay to an animation with a property animator, call start-
Animation(afterDelay:) instead of startAnimation.

Animation timing
Specifying a change in a value and a time over which it should be changed is insuffi‐
cient to describe what should happen. Should we change at a constant rate the whole
time? Should we change slowly at first and more quickly later? Questions like these
are answered by timing curves. An animation’s timing curve maps interpolated values
to time:

• With a UIView class method, you get a choice of just four timing curves (sup‐
plied as part of the options: argument, as I’ll explain in a moment).

• A property animator gives you very broad powers to configure the timing curve
the way you want. This is such an important topic that I’ll deal with it in a sepa‐
rate section later.

View Animation | 173

Animation options

In a UIView class method, the options: argument is a bitmask combining additional
options. Here are some of the chief options: values (UIView.AnimationOptions)
that you might wish to use:

Timing curve
When supplied in this way, only four built-in timing curves are available. The
term “ease” means that there is a gradual acceleration or deceleration between
the animation’s central speed and the zero speed at its start or end. Specify one at
most:

• .curveEaseInOut (the default)
• .curveEaseIn

• .curveEaseOut

• .curveLinear (constant speed throughout)

.repeat

If included, the animation will repeat indefinitely.

.autoreverse

If included, the animation will run from start to finish (in the given duration
time), and will then run from finish to start (also in the given duration time). The
documentation’s claim that you can autoreverse only if you also repeat is incor‐
rect; you can use either or both (or neither).

When using .autoreverse, you will want to clean up at the end so that the view is
back in its original position when the animation is over. To see what I mean, consider
this code:

let opts : UIView.AnimationOptions = .autoreverse
let xorig = self.v.center.x
UIView.animate(withDuration:1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
}, completion: nil)

The view animates 100 points to the right and then animates 100 points back to its
original position — and then jumps 100 points back to the right. The reason is that
the last actual value we assigned to the view’s center x is 100 points to the right, so
when the animation is over and the “animation movie” is whipped away, the view is
revealed still sitting 100 points to the right. The solution is to move the view back to
its original position in the completion function:

174 | Chapter 4: Animation

let opts : UIView.AnimationOptions = .autoreverse
let xorig = self.v.center.x
UIView.animate(withDuration:1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
}, completion: { _ in
 self.v.center.x = xorig // *
})

There seems to be a major hole in the design of the block-based animation API; if
you say .repeat, you must repeat indefinitely. What if your goal is to repeat a finite
number of times? In the past, the solution was to resort to a command from the earli‐
est generation of animation methods:

let opts : UIView.AnimationOptions = .autoreverse
let xorig = self.v.center.x
UIView.animate(withDuration:1, delay: 0, options: opts, animations: {
 UIView.setAnimationRepeatCount(3) // *
 self.v.center.x += 100
}, completion: { _ in
 self.v.center.x = xorig
})

New in iOS 13, the solution is to omit .autoreverse and .repeat from the anima‐
tion options, and instead call another UIView class method, modifyAnimations(with-
RepeatCount:autoreverses:), inside the animations function, containing the actual
animations:

let xorig = self.v.center.x
UIView.animate(withDuration:1, delay: 0, options: [], animations: {
 UIView.modifyAnimations(withRepeatCount: 3, autoreverses: true) {
 self.v.center.x += 100
 }
}, completion: { _ in
 self.v.center.x = xorig
})

There are also some options saying what should happen if we order an animation
when another animation is already ordered or in-flight (so that we are effectively
nesting animations):

.overrideInheritedDuration

Prevents inheriting the duration from a surrounding or in-flight animation (the
default is to inherit it).

.overrideInheritedCurve

Prevents inheriting the timing curve from a surrounding or in-flight animation
(the default is to inherit it).

View Animation | 175

.beginFromCurrentState

Suppose this animation animates a property already being animated by an ani‐
mation that is previously ordered or in-flight. Starting this animation might can‐
cel the previous animation, completing the requested change instantly. But
with .beginFromCurrentState, this animation will use the presentation layer to
decide where to start, and, if possible, will “blend” its animation with the previ‐
ous animation. There is usually little need for .beginFromCurrentState, because
simple view animations are additive by default; however, I’ll demonstrate one
possible use later in this chapter.

Timing Curves
A timing curve describes how an animation’s speed should vary during the course of
the animation. It does this by mapping the fraction of the animation’s time that has
elapsed (the x-axis) against the fraction of the animation’s change that has occurred
(the y-axis); its endpoints are therefore at (0.0,0.0) and (1.0,1.0), because at the
beginning of the animation there has been no elapsed time and no change, and at the
end of the animation all the time has elapsed and all the change has occurred. There
are two kinds of timing curve: cubic Bézier curves and springing curves.

Cubic timing curves
A cubic Bézier curve is defined by its endpoints, where each endpoint needs only one
Bézier control point to define the tangent to the curve. Because the curve’s endpoints
are known, defining the two control points is sufficient to describe the entire curve.
That is, in fact, how a cubic timing curve is expressed.

The built-in ease-in-out timing function is defined by the two control points
(0.42,0.0) and (0.58,1.0) — that is, it’s a Bézier curve with one endpoint at
(0.0,0.0), whose control point is (0.42,0.0), and the other endpoint at (1.0,1.0),
whose control point is (0.58,1.0) (Figure 4-1).

With a UIView class method, you have a choice of four built-in timing curves; you
specify one of them through the options: argument, as I’ve already explained.

With a property animator, you specify a timing curve as part of initialization. That’s
why I postponed telling you how to initialize a property animator until now. Here are
three property animator initializers and how the timing curve is expressed:

init(duration:curve:animations:)

The curve: is a built-in timing curve, specified as a UIView.AnimationCurve
enum. These are the same built-in timing curves as for a UIView class method:

• .easeInOut

• .easeIn

176 | Chapter 4: Animation

Figure 4-1. An ease-in-out Bézier curve

• .easeOut

• .linear

init(duration:controlPoint1:controlPoint2:animations:)

The timing curve is supplied as the two control points that define it.

init(duration:timingParameters:)

This is most general form of initializer; the other two are convenience initializers
that call it. There’s no animations: parameter, so you’ll have to call add-
Animations later to supply the animations function. The timingParameters: is
an object adopting the UITimingCurveProvider protocol, which can be a
UICubicTimingParameters instance or a UISpringTimingParameters instance
(I’ll talk about springing timing curves in a moment). The UICubicTimingPara‐
meters initializers are:

init(animationCurve:)

The value is one of the four built-in timing curves that I already mentioned,
specified as a UIView.AnimationCurve enum.

init()

Provides a fifth built-in timing curve, used as the default for many built-in
behaviors.

init(controlPoint1:controlPoint2:)

Defines the timing curve by its control points.

Defining a custom cubic timing curve is not difficult. Here’s a cubic timing curve that
eases in very slowly and finishes up all in a rush, whipping quickly into place after
about two-thirds of the time has elapsed. I call this the “clunk” timing function:

View Animation | 177

anim = UIViewPropertyAnimator(
 duration: 1, timingParameters:
 UICubicTimingParameters(
 controlPoint1:CGPoint(0.9,0.1),
 controlPoint2:CGPoint(0.7,0.9)))

Springing timing curves
A springing timing curve is the solution to a physics problem whose initial condi‐
tions describe a mass attached to a stretched spring. The animation mimics releasing
the spring and letting it rush toward and settle down at the destination value.

Springing timing curves are much more useful and widespread than you might sup‐
pose. A springing animation doesn’t have to animate a view from place to place, and
doesn’t have to look particularly springy to be effective. A small initial spring velocity
and a high damping gives a normal animation that wouldn’t particularly remind any‐
one of a spring, but that does have a pleasingly rapid beginning and slow ending;
many of Apple’s own system animations are actually spring animations of that type
(consider the way folders open in the home screen).

To use a springing timing curve with UIView block-based animation, you call a dif‐
ferent class method:

• animate(withDuration:delay:usingSpringWithDamping:initialSpring-

Velocity:options:animations:completion:)

You’re supplying two parameters that vary the nature of the initial conditions, and
hence the behavior of the animation over time:

Damping ratio
The damping: parameter is a number between 0.0 and 1.0 that describes the
amount of final oscillation. A value of 1.0 is critically damped and settles directly
into place; lower values are underdamped. A value of 0.8 just barely overshoots
and snaps back to the final value. A value of 0.1 waggles around the final value
for a while before settling down.

Initial velocity
The default is zero, and you’ll usually leave it there. A nonzero initial velocity is
useful particularly when converting from a gesture to an animation — that is,
where the user is moving a view and releases it, and you want a springing anima‐
tion to take over from there, starting out at the same velocity that the user was
applying at the moment of release. Higher values cause greater overshoot,
depending on the damping ratio. With a damping ratio of 0.3, an initial velocity
value of 1 overshoots a little and bounces about twice before settling into place, a
value of 10 overshoots a bit further, and a value of 100 overshoots by more than
twice the distance.

178 | Chapter 4: Animation

With a property animator, once again, you’ll supply the timing curve as part of
initialization:

init(duration:dampingRatio:animations:)

The dampingRatio: argument is the same as the damping: in the UIView class
method I just described. The initial velocity is zero.

init(duration:timingParameters:)

This is the same initializer I discussed in connection with cubic timing curves.
Recall that the timingParameters: is a UITimingCurveProvider; this can be a
UISpringTimingParameters object, whose initializers are:

init(dampingRatio:)

You supply a damping ratio, and the initial velocity is zero.

init(dampingRatio:initialVelocity:)

The initialVelocity: is similar to the initialSpringVelocity: in the
UIView class method I described a moment ago, except that it is a
CGVector. Normally, only the x-component matters, in which case they are
effectively the same thing; the y-component is considered only if what’s
being animated follows a two-dimensional path, as when you’re changing
both components of a view’s center.

init(mass:stiffness:damping:initialVelocity:)

A slightly different way of looking at the initial conditions. The overall
duration: value is ignored; the actual duration will be calculated from the
other parameters (and this calculated duration can be discovered by reading
the resulting property animator’s duration). The first three parameters are
in proportion to one another. A high mass: can cause a vast overshoot. A
low stiffness: or a low damping: can result in a long settle-down time. The
mass is usually quite small, while the stiffness and damping are usually quite
large.

init()

The default spring animation; it is quite heavily damped, and settles into
place in about half a second. The overall duration: value is ignored. In
terms of the previous initializer, the mass: is 3, the stiffness: is 1000, the
damping: is 500, and the initialVelocity: is (0,0).

Canceling a View Animation
Once a view animation is in-flight, how can you cancel it? And what should “cancel”
mean in the first place? This is one of the key areas where a property animator shows
off its special powers. To illustrate why, I’ll start by showing what you have to do to
cancel a block-based animation.

View Animation | 179

Canceling a block-based animation
Imagine a simple unidirectional positional animation, with a long duration so that we
can interrupt it in midflight. To facilitate the explanation, I’ll conserve both the view’s
original position and its final position in properties:

self.pOrig = self.v.center
self.pFinal = self.v.center
self.pFinal.x += 100
UIView.animateWithDuration(4, animations: {
 self.v.center = self.pFinal
})

We have a button that we can tap during that animation, and this button is supposed
to cancel the animation. How can we do that?

One possibility is to reach down to the CALayer level and call removeAllAnimations:

self.v.layer.removeAllAnimations()

That has the advantage of simplicity, but the effect is jarring: the “animation movie”
is whipped away instantly, “jumping” the view to its final position, effectively doing
what the system does automatically when the app goes into the background.

So let’s try to devise a more subtle form of cancellation: the view should hurry to its
final position. This is a case where the additive nature of animations actually gets in
our way. We cannot merely impose another animation that moves the view to its
final position with a short duration, because this doesn’t cancel the existing anima‐
tion. Therefore, we must remove the first animation manually. We already know how
to do that: call removeAllAnimations. But we also know that if we do that, the view
will jump to its final position; we want it to remain, for the moment, at its current
position — meaning the animation’s current position. But where on earth is that?

To find out, we have to ask the view’s presentation layer where it currently is. We
reposition the view at the location of its presentation layer, and then remove the ani‐
mation, and then perform the final “hurry home” animation:

self.v.layer.position = self.v.layer.presentation()!.position
self.v.layer.removeAllAnimations()
UIView.animate(withDuration:0.1) {
 self.v.center = self.pFinal
}

Another alternative is that cancellation means hurrying the view back to its original
position. In that case, animate the view’s center to its original position instead of its
destination position:

180 | Chapter 4: Animation

self.v.layer.position = self.v.layer.presentation()!.position
self.v.layer.removeAllAnimations()
UIView.animate(withDuration:0.1) {
 self.v.center = self.pOrig
}

Yet another possibility is that cancellation means just stopping wherever we happen
to be. In that case, omit the final animation:

self.v.layer.position = self.v.layer.presentation()!.position
self.v.layer.removeAllAnimations()

Canceling a property animator’s animation
Now I’ll show how do those things with a property animator. We don’t have to reach
down to the level of the layer. We don’t call removeAllAnimations. We don’t query
the presentation layer. We don’t have to memorize the start position or the end posi‐
tion. The property animator does all of that for us!

For the sake of ease and generality, let’s hold the animator in an instance property
where all of our code can see it. Here’s how it is configured:

self.anim = UIViewPropertyAnimator(
 duration: 4, timingParameters: UICubicTimingParameters())
self.anim.addAnimations {
 self.v.center.x += 100
}
self.anim.startAnimation()

Here’s how to cancel the animation by hurrying home to its end:

self.anim.pauseAnimation()
self.anim.continueAnimation(withTimingParameters: nil, durationFactor: 0.1)

We first pause the animation, because otherwise we can’t make changes to it. But the
animation does not visibly pause, because we resume at once with a modification of
the original animation, which is smoothly blended into the existing animation. The
short durationFactor: is the “hurry” part; we want a much shorter duration than
our animation’s original duration. We don’t have to tell the animator where to ani‐
mate to; in the absence of any other commands, it animates to its original destina‐
tion. The nil value for the timingParameters: tells the animation to use the existing
timing curve.

What about canceling the animation by hurrying home to its beginning? It’s exactly
the same, except that we reverse the animation:

self.anim.pauseAnimation()
self.anim.isReversed = true
self.anim.continueAnimation(withTimingParameters: nil, durationFactor: 0.1)

View Animation | 181

Again, we don’t have to tell the animator where to animate to; it knows where we
started, and reversing means to go there.

Using the same technique, we could interrupt the animation and hurry to anywhere
we like — by adding another animations function before continuing. Here, cancella‐
tion causes us to rush right off the screen:

self.anim.pauseAnimation()
self.anim.addAnimations {
 self.v.center = CGPoint(-200,-200)
}
self.anim.continueAnimation(withTimingParameters: nil, durationFactor: 0.1)

What about canceling the animation by stopping wherever we are? Just stop the
animation:

self.anim.stopAnimation(false)
self.anim.finishAnimation(at: .current)

Recall that the false argument means: “Please allow me to call finish-

Animation(at:).” We want to call finishAnimation(at:) in order to specify where
the view should end up when the “animation movie” is removed. By passing
in .current, we state that we want the animated view to end up right where it is now.
If we were to pass in .start or .end, the view would jump to that position (if it
weren’t there already).

We can now understand the incoming parameter in the completion function! It is the
position where we ended up:

• If the animation finished by proceeding to its end, the completion function
parameter is .end.

• If we reversed the animation and it finished by proceeding back to its start, as in
our second cancellation example, the parameter is .start.

• If we called finishAnimation(at:), the parameter is the at: argument we speci‐
fied in the call.

Canceling a repeating animation
Suppose that the animation we want to cancel is an infinitely repeating autoreversing
animation. It will presumably be created with the UIView class method:

self.pOrig = self.v.center
let opts : UIView.AnimationOptions = [.autoreverse, .repeat]
UIView.animate(withDuration:1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
})

Let’s say our idea of cancellation is to have the animated view hurry back to its origi‐
nal position; that is why we have saved the original position as an instance property.

182 | Chapter 4: Animation

This is a situation where the .beginFromCurrentState option is useful! That’s
because a repeating animation is not additive with a further animation. It is therefore
sufficient simply to impose the “hurry” animation on top of the existing repeating
animation, because it contradicts the repeating animation and therefore also cancels
it. The .beginFromCurrentState option prevents the view from jumping momentar‐
ily to the “final” position, 100 points to the right, to which we set it when we initiated
the repeating animation:

let opts : UIView.AnimationOptions = .beginFromCurrentState
UIView.animate(withDuration:0.1, delay:0, options:opts, animations: {
 self.v.center = self.pOrig
})

Frozen View Animation
Another important feature of a property animator is that its animation can be frozen.
We already know that the animation can be paused — or never even started. A frozen
animation is simply left in this state. It can be started or resumed at any time subse‐
quently; or we can keep the animation frozen, but move it to a different “frame” of
the animation by setting its fractionComplete, controlling the frozen animation
manually.

In this simple example, we have in the interface a slider (a UISlider) and a small red
square view. As the user slides the slider from left to right, the red view follows along
— and gradually turns green, depending how far the user slides the slider. If the user
slides the slider all the way to the right, the view is at the right and is fully green. If the
user slides the slider all the way back to the left, the view is at the left and is fully red.
To the user, this doesn’t look like it involves any animation; it looks like the view just
obeys the slider. But in fact a frozen animation is the way accomplish it.

The property animator is configured with an animation moving the view all the way
to right and turning it all the way green. But the animation is never started:

self.anim = UIViewPropertyAnimator(duration: 1, curve: .easeInOut) {
 self.v.center.x = self.pTarget.x
 self.v.backgroundColor = .green()
}

The slider, whenever the user moves it, simply changes the animator’s fraction-
Complete to match its own percentage:

self.anim.fractionComplete = CGFloat(slider.value)

Apple refers to this technique of manually moving a frozen animation back and forth
from frame to frame as scrubbing. A common use case is that the user will touch and
move the animated view itself. This will come in handy in connection with interactive
view controller transitions in Chapter 6.

View Animation | 183

In that example, I deliberately set the timing curve to .easeInOut in order to illus‐
trate the real purpose of the scrubsLinearly property. You would think that a non‐
linear timing curve would affect the relationship between the position of the slider
and the position of the view: with an .easeInOut timing curve, the view would arrive
at the far right before the slider does. But that doesn’t happen, because a nonrunning
animation switches its timing curve to .linear automatically for as long as it is non‐
running. The purpose of the scrubsLinearly property, whose default property is
true, is to allow you to turn off that behavior by setting it to false on the rare occa‐
sions when this might be desirable.

Custom Animatable View Properties
By default, as I explained earlier, only a few basic view properties are animatable
through view animation. Changing some other view property in an animations func‐
tion won’t animate anything. But you can define a custom view property that can be
animated in an animations function, provided the custom view property itself
changes an animatable view property.

Imagine a UIView subclass, MyView, which has a Bool swing property. All this does
is reposition the view: when swing is set to true, the view’s center x-coordinate is
increased by 100; when swing is set to false, it is decreased by 100. A view’s center
is animatable, so the swing property itself can be animatable.

The trick (suggested by an Apple WWDC 2014 video) is to implement MyView’s
swing setter with a zero-duration animation:

class MyView : UIView {
 var swing : Bool = false {
 didSet {
 var p = self.center
 p.x = self.swing ? p.x + 100 : p.x - 100
 UIView.animate(withDuration:0) {
 self.center = p
 }
 }
 }
}

If we now change a MyView’s swing directly, the view jumps to its new position;
there is no animation. But if an animations function changes the swing property, the
swing setter’s animation inherits the duration of the surrounding animations func‐
tion — because such inheritance is, as I mentioned earlier, the default. So the change
in position is animated, with the specified duration:

184 | Chapter 4: Animation

Figure 4-2. A zig-zag animation

let anim = UIViewPropertyAnimator(duration: 1, curve: .easeInOut) {
 self.v.swing.toggle()
}
anim.startAnimation()

Keyframe View Animation
A view animation can be described as a set of keyframes. This means that, instead of a
simple beginning and end point, you specify multiple stages in the animation and
those stages are joined together for you. This can be useful as a way of chaining ani‐
mations together, or as a way of defining a complex animation that can’t be described
as a single change of value.

To create a keyframe animation, you call this UIView class method:

• animateKeyframes(withDuration:delay:options:animations:completion:)

It takes an animations function, and inside that function you call this UIView class
method multiple times to specify each stage:

• addKeyframe(withRelativeStartTime:relativeDuration:animations:)

Each keyframe’s start time and duration is between 0 and 1, relative to the animation
as a whole. (Giving a keyframe’s start time and duration in seconds is a common
beginner mistake.)

To illustrate, I’ll oscillate a view back and forth horizontally while moving it down the
screen vertically, forming a zig-zag (Figure 4-2):

var p = self.v.center
let dur = 0.25
var start = 0.0
let dx : CGFloat = 100
let dy : CGFloat = 50
var dir : CGFloat = 1

View Animation | 185

UIView.animateKeyframes(withDuration:4, delay: 0, animations: {
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }
 start += dur; dir *= -1
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }
 start += dur; dir *= -1
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }
 start += dur; dir *= -1
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }
})

In that code, there are four keyframes, evenly spaced: each is 0.25 in duration (one-
fourth of the whole animation) and each starts 0.25 later than the previous one (as
soon as the previous one ends). In each keyframe, the view’s center x-coordinate
increases or decreases by 100, alternately, while its center y-coordinate keeps
increasing by 50.

The keyframe values are points in space and time; the actual animation interpolates
between them. How this interpolation is done depends upon the options: parameter
(omitted in the preceding code). Several UIView.KeyframeAnimationOptions values
have names that start with calculationMode; pick one. The default is .calculation-
ModeLinear. In our example, this means that the path followed by the view is a sharp
zig-zag; the view seems to bounce off invisible walls at the right and left. But if our
choice is .calculationModeCubic, our view describes a smooth S-curve, starting at
the view’s initial position and ending at the last keyframe point, and passing through
the three other keyframe points like the maxima and minima of a sine wave.

Because my keyframes are perfectly even, I could achieve the same effects by
using .calculationModePaced or .calculationModeCubicPaced, respectively. The
paced options ignore the relative start time and relative duration values of the key‐
frames; you might as well pass 0 for all of them. Instead, they divide up the times and
durations evenly, exactly as my code has done.

186 | Chapter 4: Animation

Finally, .calculationModeDiscrete means that the changed animatable properties
don’t animate: the animation jumps to each keyframe.

The outer animations function can contain other changes to animatable view proper‐
ties, as long as they don’t conflict with the addKeyframe animations; these are
animated over the total duration:

UIView.animateKeyframes(withDuration:4, delay: 0, animations: {
 self.v.alpha = 0
 // ...

The result is that as the view zigzags back and forth down the screen, it also gradually
fades away.

It is legal and meaningful, although the documentation fails to make this clear, to
supply a timing curve as part of the options: argument. If you don’t do that, the
default is .curveEaseInOut, which may not be what you want. Unfortunately Swift’s
obsessive-compulsive attitude toward data types resists folding a UIView.Animation‐
Options timing curve directly into a value that is typed as a UIView.Keyframe‐
AnimationOptions; so you have to trick the compiler into letting you do it. Here’s
how to combine .calculationModeLinear with .curveLinear:

var opts : UIView.KeyframeAnimationOptions = .calculationModeLinear
let opt2 : UIView.AnimationOptions = .curveLinear
opts.insert(UIView.KeyframeAnimationOptions(rawValue:opt2.rawValue))

That’s two different senses of linear! The first means that the path described by the
moving view is a sequence of straight lines. The second means that the moving view’s
speed along that path is steady.

You might want to pause or reverse a keyframe view animation by way of a property
animator. To do so, nest your call to UIView.animateKeyframes... inside the prop‐
erty animator’s animations function. The property animator’s duration and timing
curve are then inherited, so this is another way to dictate the keyframe animation’s
timing.

The power and utility of keyframe animations often goes unappreciated by beginners.
Keyframes do not have to be sequential, nor do they all have to involve the same
property. They can be used to coordinate different animations; they are a good way to
chain animations, or to overlap animations. In this example, our view animates
slowly to the right, and changes color suddenly in the middle of its movement:

let anim = UIViewPropertyAnimator(
 duration: 4, timingParameters: UICubicTimingParameters())
anim.addAnimations {
 UIView.animateKeyframes(withDuration: 0, delay: 0, animations: {
 UIView.addKeyframe(withRelativeStartTime: 0,
 relativeDuration: 1) {
 self.v.center.x += 100

View Animation | 187

 }
 UIView.addKeyframe(withRelativeStartTime: 0.5,
 relativeDuration: 0.25) {
 self.v.backgroundColor = .red
 }
 })
}
anim.startAnimation()

There are other ways to arrange the same outward effect, but this way, the entire ani‐
mation is placed under the control of a single property animator, and is easy to pause,
scrub, reverse, and so on.

Transitions
A transition is an animation that emphasizes a view’s change of content. Transitions
are ordered using one of two UIView class methods:

• transition(with:duration:options:animations:completion:)

• transition(from:to:duration:options:completion:)

The transition animation types are expressed as part of the options: bitmask:

• .transitionFlipFromLeft, .transitionFlipFromRight
• .transitionCurlUp, .transitionCurlDown
• .transitionFlipFromBottom, .transitionFlipFromTop
• .transitionCrossDissolve

Transitioning one view

transition(with:...) takes one UIView parameter, and performs the transition
animation on that view. In this example, a UIImageView containing an image of
Mars flips over as its image changes to a smiley face; it looks as if the image view were
two-sided, with Mars on one side and the smiley face on the other:

let opts : UIView.AnimationOptions = .transitionFlipFromLeft
UIView.transition(with:self.iv, duration: 0.8, options: opts, animations: {
 self.iv.image = UIImage(named:"Smiley")
})

In that example, I’ve put the content change inside the animations function. That’s
conventional but misleading; the truth is that if all that’s changing is the content,
nothing needs to go into the animations function. The change of content can be any‐
where, before or even after this entire line of code. It’s the flip that’s being animated.
You might use the animations function here to order additional animations, such as a
change in a view’s center.

188 | Chapter 4: Animation

You can do the same sort of thing with a custom view that does its own drawing.
Let’s say that I have a UIView subclass, MyView, that draws either a rectangle or an
ellipse depending on the value of its Bool reverse property:

class MyView : UIView {
 var reverse = false
 override func draw(_ rect: CGRect) {
 let f = self.bounds.insetBy(dx: 10, dy: 10)
 let con = UIGraphicsGetCurrentContext()!
 if self.reverse {
 con.strokeEllipse(in:f)
 }
 else {
 con.stroke(f)
 }
 }
}

This code flips a MyView instance while changing its drawing from a rectangle to an
ellipse or vice versa:

let opts : UIView.AnimationOptions = .transitionFlipFromLeft
self.v.reverse.toggle()
UIView.transition(with:self.v, duration: 1, options: opts, animations: {
 self.v.setNeedsDisplay()
})

By default, if a view has subviews whose layout changes as part of a transition anima‐
tion, that change in layout is not animated: the layout changes directly to its final
appearance when the transition ends. If you want to display a subview of the transi‐
tioning view being animated as it assumes its final state, include .allowAnimated-
Content in the options: bitmask.

Transitioning two views and their superview

transition(from:to:...) takes two UIView parameters; the first view is replaced by
the second, while their superview undergoes the transition animation. There are two
possible configurations, depending on the options: you provide:

Remove one subview, add the other
If .showHideTransitionViews is not one of the options:, then the second sub‐
view is not in the view hierarchy when we start; the transition removes the first
subview from its superview and adds the second subview to that same superview.

Hide one subview, show the other
If .showHideTransitionViews is one of the options:, then both subviews are in
the view hierarchy when we start; the isHidden of the first is false, the isHidden
of the second is true, and the transition reverses those values.

View Animation | 189

In this example, a label self.lab is already in the interface. The animation causes the
superview of self.lab to flip over, while at the same time a different label, lab2, is
substituted for the existing label:

let lab2 = UILabel(frame:self.lab.frame)
lab2.text = self.lab.text == "Hello" ? "Howdy" : "Hello"
lab2.sizeToFit()
UIView.transition(from:self.lab, to: lab2,
 duration: 0.8, options: .transitionFlipFromLeft) { _ in
 self.lab = lab2
}

It’s up to you to make sure beforehand that the second view has the desired position,
so that it will appear in the right place in its superview.

Transitions are another handy but probably underutilized iOS animation feature.
Earlier, I demonstrated how to replace one view with another by adding the second
view, animating the alpha values of both views, and removing the first view in the
completion function. That’s a common technique for implementing a dissolve, but
calling transition(from:to:...) with a .transitionCrossDissolve animation is
simpler and does the same thing.

Implicit Layer Animation
All animation is ultimately layer animation. Up to now, we’ve been talking about
view animation, which uses layer animation under the hood. Now we’re going to talk
about how to animate a layer directly.

Amazingly, animating a layer can be as simple as setting a layer property. A change in
what the documentation calls an animatable property of a CALayer is automatically
interpreted as a request to animate that change. In other words, animation of layer
property changes is the default! Multiple property changes are considered part of the
same animation. This mechanism is called implicit animation.

In Chapter 3 we constructed a compass out of layers. Suppose we have created that
interface, and that we have a reference to the arrow layer (arrow). If we rotate the
arrow layer by changing its transform property, the arrow rotation is animated:

arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

You may be wondering: if implicit animation is the default, why didn’t we notice it
happening in any of the layer examples in Chapter 3? It’s because there are two com‐
mon situations where implicit layer animation doesn’t happen:

Underlying layer
Implicit layer animation doesn’t operate on a UIView’s underlying layer. You
can animate a UIView’s underlying layer directly, but you must use explicit layer
animation (discussed later in this chapter).

190 | Chapter 4: Animation

During layer tree preparation
Implicit layer animation doesn’t affect a layer as it is being created, configured,
and added to the interface. Implicit animation comes into play when you change
an animatable property of a layer that is already present in the interface.

Animatable Layer Properties
CALayer properties listed in the documentation as animatable are anchorPoint and
anchorPointZ, backgroundColor, borderColor, borderWidth, bounds, contents,
contentsCenter, contentsRect, cornerRadius, isDoubleSided, isHidden, masksTo-
Bounds, opacity, position and zPosition, rasterizationScale and should-
Rasterize, shadowColor, shadowOffset, shadowOpacity, shadowRadius, and
sublayerTransform and transform.

In addition, a CAShapeLayer’s path, strokeStart, strokeEnd, fillColor, stroke-
Color, lineWidth, lineDashPhase, and miterLimit are animatable; so are a CAText‐
Layer’s fontSize and foregroundColor, and a CAGradientLayer’s colors,
locations, and endPoint.

Basically, a property is animatable because there’s some sensible way to interpolate
the intermediate values between one value and another. The nature of the animation
attached to each property is therefore generally just what you would intuitively
expect. When you change a layer’s isHidden property, it fades out of view (or into
view). When you change a layer’s contents, the old contents are dissolved into the
new contents. And so forth.

A layer’s cornerRadius is animatable by explicit layer animation, or by view
animation, but not by implicit layer animation.

Animation Transactions
Animation operates with respect to a transaction (a CATransaction), which collects
all animation requests and hands them over to the animation server in a single batch.
Every animation request takes place in the context of some transaction. You can
make this explicit by wrapping your animation requests in calls to the CATransaction
class methods begin and commit; the result is a transaction block. Additionally, there
is always an implicit transaction surrounding your code, and you can operate on this
implicit transaction without any begin and commit.

To modify the characteristics of an implicit animation, you modify the transaction
that surrounds it. Typically, you’ll use these CATransaction class methods:

setAnimationDuration(_:)

The duration of the animation.

Implicit Layer Animation | 191

setAnimationTimingFunction(_:)

A CAMediaTimingFunction; layer timing functions are discussed in the next
section.

setDisableActions(_:)

Toggles implicit animations for this transaction.

setCompletionBlock(_:)

A function (taking no parameters) to be called when the animation ends; it is
called even if no animation is triggered during this transaction.

flush()

Pauses subsequent code until the current transaction has finished.

CATransaction also implements key–value coding to allow you to set and retrieve a
value for an arbitrary key, similar to CALayer.

By nesting transaction blocks, you can apply different animation characteristics to
different elements of an animation. You can also use transaction commands outside
of any transaction block to modify the implicit transaction. In our previous example,
we could slow down the animation of the arrow like this:

CATransaction.setAnimationDuration(0.8)
arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

An important use of transactions is to turn implicit animation off. This is valuable
because implicit animation is the default, and can be unwanted (and a performance
drag). To turn off implicit animation, call setDisableActions(true). There are
other ways to turn off implicit animation (discussed later in this chapter), but this is
the simplest.

setCompletionBlock(_:) establishes a completion function that signals the end, not
only of the implicit layer property animations you yourself have ordered as part of
this transaction, but of all animations ordered during this transaction, including
Cocoa’s own animations. It’s a way to be notified when any and all animations come
to an end.

The flush method can solve the problem of implicit animation not working during
preparation of the layer tree. This attempt to add a layer and make it appear by grow‐
ing from a point doesn’t animate:

// ... create and configure lay ...
lay.bounds.size = .zero
self.view.layer.addSublayer(lay)
CATransaction.setAnimationDuration(2)
lay.bounds.size = CGSize(100,100) // no animation

But this does animate:

192 | Chapter 4: Animation

// ... create and configure lay ...
lay.bounds.size = .zero
self.view.layer.addSublayer(lay)
CATransaction.flush() // *
CATransaction.setAnimationDuration(2)
lay.bounds.size = CGSize(100,100) // animation

A better alternative, perhaps, would be to use explicit layer animation (discussed in
the next section) rather than implicit layer animation.

And now for a revelation. The “redraw moment” that I’ve spoken of earlier is actually
the end of the current transaction:

• You set a view’s background color; the displayed color of the background is
changed when the transaction ends.

• You call setNeedsDisplay; draw(_:) is called when the transaction ends.
• You call setNeedsLayout; layout happens when the transaction ends.
• You order an animation; the animation starts when the transaction ends.

What’s really happening is this. Your code runs within an implicit transaction. Your
code comes to an end, and the transaction commits itself. It is then, as part of the
transaction commit procedure, that the screen is updated: first layout, then drawing,
then obedience to layer property changes, then the start of any animations. The ani‐
mation server then continues operating on a background thread; it has kept a refer‐
ence to the transaction, and calls its completion function, if any, when the animations
are over.

An explicit transaction block that orders an animation to a layer, if the block is
not preceded by any other changes to the layer, can cause animation to begin
immediately when the CATransaction class method commit is called, without
waiting for the redraw moment, while your code continues running. In my expe‐
rience, this can cause trouble (animation delegate messages cannot arrive, and
the presentation layer can’t be queried properly) and should be avoided.

Media Timing Functions
The CATransaction class method setAnimationTimingFunction(_:) takes as its
parameter a media timing function (CAMediaTimingFunction). This is the Core
Animation way of describing the same cubic Bézier timing curves I discussed earlier.

To specify a built-in timing curve, call the CAMediaTimingFunction initializer
init(name:) with one of these parameters (CAMediaTimingFunctionName):

• .linear

• .easeIn

• .easeOut

Implicit Layer Animation | 193

• .easeInEaseOut

• .default

To define your own timing curve, supply the coordinates of the two Bézier control
points by calling init(controlPoints:). Here we define the “clunk” timing curve
and apply it to the rotation of the compass arrow:

let clunk = CAMediaTimingFunction(controlPoints: 0.9, 0.1, 0.7, 0.9)
CATransaction.setAnimationTimingFunction(clunk)
arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

Core Animation
Core Animation is the fundamental underlying iOS animation technology. View ani‐
mation and implicit layer animation are both merely convenient façades for Core
Animation. Core Animation is explicit layer animation.

Core Animation is vastly more powerful than simple implicit layer animation. Also, it
works on a view’s underlying layer, so it’s the only way to apply full-on layer property
animation to a view, letting you transcend the limited repertoire of animatable view
properties. On the other hand, animating a view’s underlying layer with Core Anima‐
tion is layer animation, not view animation, so you don’t get any automatic layout of
that view’s subviews; that can be a reason for preferring view animation.

CABasicAnimation and Its Inheritance
The simplest way to animate a property with Core Animation is with a CABasic‐
Animation object. CABasicAnimation derives much of its power through its inheri‐
tance, so I’ll describe that inheritance along with CABasicAnimation itself. You will
readily see that all the property animation features we have met already are embodied
in a CABasicAnimation instance:

CAAnimation
CAAnimation is an abstract class, meaning that you’ll only ever use a subclass of
it. Some of CAAnimation’s powers come from its implementation of the
CAMediaTiming protocol.

delegate

An adopter of the CAAnimationDelegate protocol. The delegate messages
are:

• animationDidStart(_:)

• animationDidStop(_:finished:)

A CAAnimation instance retains its delegate; this is very unusual behavior
and can cause trouble if you’re not conscious of it (as I know all too well

194 | Chapter 4: Animation

from experience). Alternatively, don’t set a delegate; to make your code run
after the animation ends, call the CATransaction class method set-
CompletionBlock(_:) before configuring the animation.

duration, timingFunction
The length of the animation, and its timing function (a CAMediaTiming‐
Function). A duration of 0 (the default) means 0.25 seconds unless overrid‐
den by the transaction.

autoreverses, repeatCount, repeatDuration
For an infinite repeatCount, use Float.greatestFiniteMagnitude. The
repeatDuration property is a different way to govern repetition, specifying
how long the repetition should continue rather than how many repetitions
should occur; don’t specify both a repeatCount and a repeatDuration.

beginTime

The delay before the animation starts. To delay an animation with respect to
now, call CACurrentMediaTime and add the desired delay in seconds. The
delay does not eat into the animation’s duration.

timeOffset

A shift in the animation’s overall timing; looked at another way, specifies the
starting frame of the “animation movie,” which is treated as a loop. An ani‐
mation with a duration of 8 and a time offset of 4 plays its second half fol‐
lowed by its first half.

CAAnimation, along with all its subclasses, implements key–value coding to allow
you to set and retrieve a value for an arbitrary key, similar to CALayer (Chapter 3)
and CATransaction.

CAPropertyAnimation
CAPropertyAnimation is a subclass of CAAnimation. It too is abstract, and adds
the following:

keyPath

The all-important string specifying the CALayer key that is to be animated.
Recall from Chapter 3 that CALayer properties are accessible through KVC
keys; now we are using those keys! The convenience initializer init(key-
Path:) creates the instance and assigns it a keyPath.

isAdditive

If true, the values supplied by the animation are added to the current pre‐
sentation layer value.

Core Animation | 195

isCumulative

If true, a repeating animation starts each repetition where the previous repe‐
tition ended rather than jumping back to the start value.

valueFunction

Converts a simple scalar value that you supply into a transform.

There is no animatable CALayer key called "frame". To animate a layer’s frame
using explicit layer animation, if both its position and bounds are to change,
you must animate both. Similarly, you cannot use explicit layer animation to ani‐
mate a layer’s affineTransform property, because affineTransform is not a
property (it’s a pair of convenience methods); you must animate its transform
instead. Attempting to form an animation with a key path of "frame" or "affine-
Transform" is a common beginner error.

CABasicAnimation
CABasicAnimation is a subclass (not abstract!) of CAPropertyAnimation. It adds
the following:

fromValue, toValue
The starting and ending values for the animation. These values must be
Objective-C objects, so numbers and structs will have to be wrapped accord‐
ingly, using NSNumber and NSValue; fortunately, Swift will automatically
take care of this for you. If neither fromValue nor toValue is provided, the
former and current values of the property are used. If just one of them is
provided, the other uses the current value of the property.

byValue

Expresses one of the endpoint values as a difference from the other rather
than in absolute terms. So you would supply a byValue instead of a from-
Value or instead of a toValue, and the actual fromValue or toValue would
be calculated for you by subtraction or addition with respect to the other
value. If you supply only a byValue, the fromValue is the property’s current
value.

Using a CABasicAnimation
Having constructed and configured a CABasicAnimation, the way you order it to be
performed is to add it to a layer. This is done with the CALayer instance method
add(_:forKey:). (I’ll discuss the purpose of the forKey: parameter later; it’s fine to
ignore it and use nil, as I do in the examples that follow.)

But there’s a slight twist. A CAAnimation is merely an animation; all it does is
describe the hoops that the presentation layer is to jump through, the “animation
movie” that is to be presented. It has no effect on the layer itself. If you naïvely create

196 | Chapter 4: Animation

a CABasicAnimation and add it to a layer with add(_:forKey:), the animation hap‐
pens and then the “animation movie” is whipped away to reveal the layer sitting there
in exactly the same state as before. It is up to you to change the layer to match what
the animation will ultimately portray. The converse, of course, is that you don’t have
to change the layer if it doesn’t change as a result of the animation.

To ensure good results, start by taking a plodding, formulaic approach to the use of
CABasicAnimation, like this:

1. Capture the start and end values for the layer property you’re going to change,
because you’re likely to need these values in what follows.

2. Change the layer property to its end value, first calling setDisable-

Actions(true) if necessary to prevent implicit animation.
3. Construct the explicit animation, using the start and end values you captured

earlier, and with its keyPath corresponding to the layer property you just
changed.

4. Add the explicit animation to the layer. An explicit animation is copied when it is
added to a layer, and the copy added to the layer is immutable, so the animation
must be configured beforehand.

Here’s how you’d use this approach to animate our compass arrow rotation:

// capture the start and end values
let startValue = arrow.transform
let endValue = CATransform3DRotate(startValue, .pi/4.0, 0, 0, 1)
// change the layer, without implicit animation
CATransaction.setDisableActions(true)
arrow.transform = endValue
// construct the explicit animation
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
anim.fromValue = startValue
anim.toValue = endValue
// ask for the explicit animation
arrow.add(anim, forKey:nil)

Once you’re comfortable with the full form, you will find that in many cases it can be
condensed. When the fromValue and toValue are not set, the former and current
values of the property are used automatically. (This magic is possible because, at the
time the CABasicAnimation is added to the layer, the presentation layer still has the
former value of the property, while the layer itself has the new value — and so the
CABasicAnimation is able to retrieve them.) In our example, therefore, there is no
need to set the fromValue and toValue, and no need to capture the start and end val‐
ues beforehand. We can also omit disabling implicit animations, perhaps because the

Core Animation | 197

explicit animation of the transform cancels the implicit animation for us. Here’s the
condensed version:

arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
arrow.add(anim, forKey:nil)

There’s no need to change the layer if it doesn’t change as a result of the animation.
Let’s make the compass arrow appear to vibrate rapidly, without ultimately changing
its current orientation. To do this, we’ll waggle it back and forth, using a repeated
animation, between slightly clockwise from its current position and slightly counter‐
clockwise from its current position. The “animation movie” neither starts nor stops
at the current position of the arrow, but for this animation it doesn’t matter, because
it all happens so quickly as to appear natural:

// capture the start and end values
let nowValue = arrow.transform
let startValue = CATransform3DRotate(nowValue, .pi/40.0, 0, 0, 1)
let endValue = CATransform3DRotate(nowValue, -.pi/40.0, 0, 0, 1)
// construct the explicit animation
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.05
anim.timingFunction = CAMediaTimingFunction(name:.linear)
anim.repeatCount = 3
anim.autoreverses = true
anim.fromValue = startValue
anim.toValue = endValue
// ask for the explicit animation
arrow.add(anim, forKey:nil)

That code, too, can be shortened considerably from its full form. We can avoid calcu‐
lating the new rotation values based on the arrow’s current transform by setting our
animation’s isAdditive property to true; the animation’s property values are then
added to the existing property value for us (they are relative, not absolute). For a
transform, “added” means “matrix-multiplied,” so we can describe the waggle
without any reference to the arrow’s current rotation. Moreover, because our rotation
is so simple (around a cardinal axis), we can take advantage of CAProperty‐
Animation’s valueFunction; the animation’s property values can then be simple
scalars (in this case, angles), because the valueFunction tells the animation to inter‐
pret them as rotations around the z-axis:

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.05
anim.timingFunction = CAMediaTimingFunction(name:.linear)
anim.repeatCount = 3
anim.autoreverses = true
anim.isAdditive = true

198 | Chapter 4: Animation

anim.valueFunction = CAValueFunction(name:.rotateZ)
anim.fromValue = Float.pi/40
anim.toValue = -Float.pi/40
arrow.add(anim, forKey:nil)

Instead of using a valueFunction, we could have set the animation’s key path to
"transform.rotation.z" to achieve the same effect. Apple advises against this,
though, as it can result in mathematical trouble when there is more than one
rotation.

Let’s return once more to our arrow “clunk” rotation for another implementation,
this time using the isAdditive and valueFunction properties. We set the arrow
layer to its final transform at the outset, so when the time comes to configure the
animation, its toValue, in isAdditive terms, will be 0; the fromValue will be its cur‐
rent value expressed negatively, like this:

let rot = CGFloat.pi/4.0
CATransaction.setDisableActions(true)
arrow.transform = CATransform3DRotate(arrow.transform, rot, 0, 0, 1)
// construct animation additively
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
anim.fromValue = -rot
anim.toValue = 0
anim.isAdditive = true
anim.valueFunction = CAValueFunction(name:.rotateZ)
arrow.add(anim, forKey:nil)

That is an interesting way of describing the animation; in effect, it expresses the ani‐
mation in reverse, regarding the final position as correct and the current position as
an aberration to be corrected. It also happens to be how additive view animations are
rewritten behind the scenes, and explains their behavior.

Springing Animation
Springing animation is exposed at the Core Animation level through the CASpring‐
Animation class (a CABasicAnimation subclass). Its properties are the same as the
parameters of the fullest form of the UISpringTimingParameters initializer, except
that its initialVelocity is a CGFloat, not a CGVector. The duration is ignored, but
don’t omit it. The actual duration calculated from your specifications can be extrac‐
ted as the settlingDuration property:

CATransaction.setDisableActions(true)
self.v.layer.position.y += 100
let anim = CASpringAnimation(keyPath: #keyPath(CALayer.position))
anim.damping = 0.7
anim.initialVelocity = 20

Core Animation | 199

anim.mass = 0.04
anim.stiffness = 4
anim.duration = 1 // ignored, but you need to supply something
self.v.layer.add(anim, forKey: nil)

Keyframe Animation
Keyframe animation (CAKeyframeAnimation) is an alternative to basic animation
(CABasicAnimation); they are both subclasses of CAPropertyAnimation, and they
are used in similar ways. The difference is that you need to tell the keyframe anima‐
tion what the keyframes are. In the simplest case, you can just set its values array.
This tells the animation its starting value, its ending value, and some specific values
through which it should pass on the way between them.

Here’s a new version of our animation for waggling the compass arrow, expressing it
as a keyframe animation. The stages include the start and end states along with eight
alternating waggles in between, with the degree of waggle becoming progressively
smaller:

var values = [0.0]
let directions = sequence(first:1) {$0 * -1}
let bases = stride(from: 20, to: 60, by: 5)
for (base, dir) in zip(bases, directions) {
 values.append(Double(dir) * .pi / Double(base))
}
values.append(0.0)
let anim = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))
anim.values = values
anim.isAdditive = true
anim.valueFunction = CAValueFunction(name: .rotateZ)
arrow.add(anim, forKey:nil)

Here are some CAKeyframeAnimation properties:

values

The array of values that the animation is to adopt, including the starting and
ending value.

timingFunctions

An array of timing functions, one for each stage of the animation (this array will
be one element shorter than the values array).

keyTimes

An array of times to accompany the array of values, defining when each value
should be reached. The times start at 0 and are expressed as increasing fractions
of 1, ending at 1.

200 | Chapter 4: Animation

calculationMode

Describes how the values are treated to create all the values through which the
animation must pass (CAAnimationCalculationMode):

.linear

The default. A simple straight-line interpolation from value to value.

.cubic

Constructs a single smooth curve passing through all the values (and addi‐
tional advanced properties, tensionValues, continuityValues, and bias-
Values, allow you to refine the curve).

.paced, .cubicPaced
The timing functions and key times are ignored, and the velocity is made
constant through the whole animation.

.discrete

No interpolation: we jump directly to each value at the corresponding key
time.

path

When you’re animating a property whose values are pairs of floats (CGPoints),
this is an alternative way of describing the values; instead of a values array,
which must be interpolated to arrive at the intermediate values along the way,
you supply the entire interpolation as a single CGPath. The points used to define
the path are the keyframe values, so you can still apply timing functions and key
times. If you’re animating a position, the rotationMode property lets you ask the
animated object to rotate so as to remain perpendicular to the path.

In this example, the values array is a sequence of five images (self.images) to be
presented successively and repeatedly in a layer’s contents, like the frames in a
movie; the effect is similar to image animation, discussed earlier in this chapter:

let anim = CAKeyframeAnimation(keyPath:#keyPath(CALayer.contents))
anim.values = self.images.map {$0.cgImage!}
anim.keyTimes = [0.0, 0.25, 0.5, 0.75, 1.0]
anim.calculationMode = .discrete
anim.duration = 1.5
anim.repeatCount = .greatestFiniteMagnitude
self.sprite.add(anim, forKey:nil) // sprite is a CALayer

Making a Property Animatable
So far, we’ve been animating built-in animatable properties. If you define your own
property on a CALayer subclass, you can easily make that property animatable
through a CAPropertyAnimation. Here we animate the increase or decrease in a

Core Animation | 201

CALayer subclass property called thickness, using essentially the pattern for explicit
animation that we’ve already developed:

let lay = self.v.layer as! MyLayer
let cur = lay.thickness
let val : CGFloat = cur == 10 ? 0 : 10
lay.thickness = val
let ba = CABasicAnimation(keyPath:#keyPath(MyLayer.thickness))
ba.fromValue = cur
lay.add(ba, forKey:nil)

To make our layer responsive to such a command, it needs a thickness property
(obviously), and it must return true from the class method needsDisplay(forKey:)
for this property:

class MyLayer : CALayer {
 @objc var thickness : CGFloat = 0
 override class func needsDisplay(forKey key: String) -> Bool {
 if key == #keyPath(thickness) {
 return true
 }
 return super.needsDisplay(forKey:key)
 }
}

Returning true from needsDisplay(forKey:) causes this layer to be redisplayed
repeatedly as the thickness property changes. So if we want to see the animation,
this layer also needs to draw itself in some way that depends on the thickness prop‐
erty. Here, I’ll implement the layer’s draw(in:) to make thickness the thickness of
the black border around a red rectangle:

override func draw(in con: CGContext) {
 let r = self.bounds.insetBy(dx:20, dy:20)
 con.setFillColor(UIColor.red.cgColor)
 con.fill(r)
 con.setLineWidth(self.thickness)
 con.stroke(r)
}

At every frame of the animation, draw(in:) is called, and because the thickness
value differs at each step, the rectangle’s border appears animated.

We have made MyLayer’s thickness property animatable when using explicit layer
animation, but it would be even cooler to make it animatable when using implicit
layer animation (that is, when setting lay.thickness directly). Later in this chapter,
I’ll show how to do that.

202 | Chapter 4: Animation

No law says that we have to draw. Consider layer animation more abstractly as a
way of getting the runtime to calculate and send us a series of timed interpolated
values. Those values arrive through the runtime repeatedly calling our
draw(in:), but we are free to use them however we like.

Grouped Animations
A grouped animation (CAAnimationGroup) combines multiple animations — its
animations, an array of animations — into a single animation. By delaying and tim‐
ing the various component animations, complex effects can be achieved.

A CAAnimationGroup is a CAAnimation subclass, so it has a duration and other
animation features. Think of the CAAnimationGroup as the parent, and its
animations as its children. The children inherit default property values from their
parent. If you don’t set a child’s duration explicitly, for instance, it will inherit the
parent’s duration.

Let’s use a grouped animation to construct a sequence where the compass arrow
rotates and then waggles. This requires very little modification of code we’ve already
written. We express the first animation in its full form, with explicit fromValue and
toValue. We postpone the second animation using its beginTime property; notice
that we express this in relative terms, as a number of seconds into the parent’s
duration, not with respect to CACurrentMediaTime. Finally, we set the overall parent
duration to the sum of the child durations, so that it can embrace both of them (fail‐
ing to do this, and then wondering why some child animations never occur, is a com‐
mon beginner error):

// capture current value, set final value
let rot = .pi/4.0
CATransaction.setDisableActions(true)
let current = arrow.value(forKeyPath:"transform.rotation.z") as! Double
arrow.setValue(current + rot, forKeyPath:"transform.rotation.z")
// first animation (rotate and clunk)
let anim1 = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim1.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim1.timingFunction = clunk
anim1.fromValue = current
anim1.toValue = current + rot
anim1.valueFunction = CAValueFunction(name:.rotateZ)
// second animation (waggle)
var values = [0.0]
let directions = sequence(first:1) {$0 * -1}
let bases = stride(from: 20, to: 60, by: 5)
for (base, dir) in zip(bases, directions) {
 values.append(Double(dir) * .pi / Double(base))
}
values.append(0.0)

Core Animation | 203

Figure 4-3. A boat and the course she’ll sail

let anim2 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))
anim2.values = values
anim2.duration = 0.25
anim2.isAdditive = true
anim2.beginTime = anim1.duration - 0.1
anim2.valueFunction = CAValueFunction(name: .rotateZ)
// group
let group = CAAnimationGroup()
group.animations = [anim1, anim2]
group.duration = anim1.duration + anim2.duration
arrow.add(group, forKey:nil)

In that example, I grouped two animations that animated the same property sequen‐
tially. Now let’s do the opposite: we’ll group some animations that animate different
properties simultaneously.

I have a small view (self.v), located near the top-right corner of the screen, whose
layer contents are a picture of a sailboat facing to the left. I’ll “sail” the boat in a curv‐
ing path, both down the screen and left and right across the screen, like an extended
letter “S” (Figure 4-3). Each time the boat comes to a vertex of the curve, changing
direction across the screen, I’ll flip the boat so that it faces the way it’s about to move.
At the same time, I’ll constantly rock the boat, so that it always appears to be pitching
a little on the waves.

Here’s the first animation, the movement of the boat (its position) along its curving
path. It illustrates the use of a CAKeyframeAnimation with a CGPath; once we’ve cal‐
culated the path, we know the final position of the boat, and we set it so the boat
won’t jump back to the start afterward. The calculationMode of .paced ensures an

204 | Chapter 4: Animation

even speed over the whole path. We don’t set an explicit duration because we want to
adopt the duration of the group:

let h : CGFloat = 200
let v : CGFloat = 75
let path = CGMutablePath()
var leftright : CGFloat = 1
var next : CGPoint = self.v.layer.position
var pos : CGPoint
path.move(to:CGPoint(next.x, next.y))
for _ in 0 ..< 4 {
 pos = next
 leftright *= -1
 next = CGPoint(pos.x+h*leftright, pos.y+v)
 path.addCurve(to:CGPoint(next.x, next.y),
 control1: CGPoint(pos.x, pos.y+30),
 control2: CGPoint(next.x, next.y-30))
}
CATransaction.setDisableActions(true)
self.v.layer.position = next
let anim1 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.position))
anim1.path = path
anim1.calculationMode = .paced

Here’s the second animation, the reversal of the direction the boat is facing. This is
simply a rotation around the y-axis. It’s another CAKeyframeAnimation, but we
make no attempt at visually animating this reversal: the calculationMode

is .discrete, so that the boat image reversal is a sudden change, as in our earlier
“sprite” example. There is one less value than the number of points in our first ani‐
mation’s path, and the first animation has an even speed, so the reversals take place at
each curve apex with no further effort on our part. (If the pacing were more compli‐
cated, we could give both the first and the second animation identical keyTimes
arrays, to coordinate them.) Once again, we don’t set an explicit duration:

let revs = [0.0, .pi, 0.0, .pi]
let anim2 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))
anim2.values = revs
anim2.valueFunction = CAValueFunction(name:.rotateY)
anim2.calculationMode = .discrete

Here’s the third animation, the rocking of the boat. It has a short duration, and
repeats indefinitely:

let pitches = [0.0, .pi/60.0, 0.0, -.pi/60.0, 0.0]
let anim3 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))
anim3.values = pitches
anim3.repeatCount = .greatestFiniteMagnitude
anim3.duration = 0.5
anim3.isAdditive = true
anim3.valueFunction = CAValueFunction(name:.rotateZ)

Core Animation | 205

Finally, we combine the three animations, assigning the group an explicit duration
that will be adopted by the first two animations:

let group = CAAnimationGroup()
group.animations = [anim1, anim2, anim3]
group.duration = 8
self.v.layer.add(group, forKey:nil)

Here are some further CAAnimation properties (from the CAMediaTiming proto‐
col) that come into play especially when animations are grouped:

speed

The ratio between a child’s timescale and the parent’s timescale. If a parent and
child have the same duration, but the child’s speed is 1.5, the child’s animation
runs one-and-a-half times as fast as the parent.

fillMode

Suppose the child animation begins after the parent animation, or ends before
the parent animation, or both. What should happen to the appearance of the
property being animated, outside the child animation’s boundaries? The answer
depends on the child’s fillMode (CAMediaTimingFillMode):

.removed

The child animation is removed, revealing the layer property at its actual
current value whenever the child is not running.

.forwards

The final presentation layer value of the child animation remains afterward.

.backwards

The initial presentation layer value of the child animation appears right from
the start.

.both

Combines the previous two.

Freezing an Animation
An animation can be frozen using Core Animation at the level of the animation or of
the layer, with an effect similar to what we did with a property animator earlier.

This feature depends upon the fact that the CAMediaTiming protocol is adopted by
CALayer. CAMediaTiming properties of a layer affect the behavior of any animation
attached to that layer. The speed property effectively changes the animation’s dura‐
tion: a speed of 2 means that a 10-second animation plays in 5 seconds, and a speed
of 0 means the animation is frozen. When the animation is frozen, the timeOffset
property dictates what frame of the animation is displayed.

206 | Chapter 4: Animation

To illustrate, let’s explore the animatable path property of a CAShapeLayer. Consider
a layer that can display a rectangle or an ellipse or any of the intermediate shapes
between them. I can’t imagine what the notion of an intermediate shape between a
rectangle or an ellipse may mean, let alone how to draw such an intermediate shape;
but thanks to frozen animations, I don’t have to. Here, I’ll construct the CAShape‐
Layer, add it to the interface, give it an animation from a rectangle to an ellipse, and
keep a reference to it as a property:

let shape = CAShapeLayer()
shape.frame = v.bounds
v.layer.addSublayer(shape)
shape.fillColor = UIColor.clear.cgColor
shape.strokeColor = UIColor.red.cgColor
let path = CGPath(rect:shape.bounds, transform:nil)
shape.path = path
let path2 = CGPath(ellipseIn:shape.bounds, transform:nil)
let ba = CABasicAnimation(keyPath:#keyPath(CAShapeLayer.path))
ba.duration = 1
ba.fromValue = path
ba.toValue = path2
shape.speed = 0
shape.timeOffset = 0
shape.add(ba, forKey: nil)
self.shape = shape

I’ve added the animation to the layer, but I’ve also set the layer’s speed to 0, so no
animation takes place; the rectangle is displayed and that’s all. As in my earlier exam‐
ple, there’s a UISlider in the interface. I’ll respond to the user changing the value of
the slider by setting the frame of the animation:

self.shape.timeOffset = Double(slider.value)

Transitions
A layer transition is an animation involving two “copies” of a single layer, in which
the second “copy” appears to replace the first. It is described by an instance of
CATransition (a CAAnimation subclass), which has these chief properties specifying
the animation:

type

Your choices are (CATransitionType):

• .fade

• .moveIn

• .push

• .reveal

Core Animation | 207

Figure 4-4. A push transition

subtype

If the type is not .fade, your choices are (CATransitionSubtype):

• .fromRight

• .fromLeft

• .fromTop

• .fromBottom

For historical reasons, the terms bottom and top in the names of the subtype
settings have the opposite of their expected meanings. Reverse them in your
mind: when you mean the top, say .fromBottom.

Consider first what happens when we perform a layer transition without changing
anything else about the layer:

let t = CATransition()
t.type = .push
t.subtype = .fromBottom
t.duration = 2
lay.add(t, forKey: nil)

The entire layer exits moving down from its original place while fading away, and
another copy of the very same layer enters moving down from above while fading in.
If, at the same time, we change something about the layer’s contents, then the old
contents will appear to exit downward while the new contents appear to enter from
above:

// ... configure the transition as before ...
CATransaction.setDisableActions(true)
lay.contents = UIImage(named: "Smiley")!.cgImage
lay.add(t, forKey: nil)

Typically, the layer that is to be transitioned will be inside a superlayer that has the
same size and whose masksToBounds is true. This confines the visible transition to
the bounds of the layer itself. (Otherwise, the entering and exiting versions of the
layer are visible outside the layer.) In Figure 4-4, which shows a smiley face pushing
an image of Mars out of the layer, I’ve emphasized this arrangement by giving the
superlayer a border as well.

208 | Chapter 4: Animation

A transition on a superlayer can happen simultaneously with animation of a sublayer.
The animation will be seen to occur on the second “copy” of the layer as it moves into
position. This is analogous to the .allowAnimatedContent option for a view
animation.

Animations List
To understand how CALayer’s add(_:forKey:) actually works (and what the “key”
is), you need to know about a layer’s animations list.

An animation is an object (a CAAnimation) that modifies how a layer is drawn. It
does this merely by being attached to the layer; the layer’s drawing mechanism does
the rest. A layer maintains a list of animations that are currently in force. To add an
animation to this list, you call add(_:forKey:). When the time comes to draw itself,
the layer looks through its animations list and draws itself in accordance with what‐
ever animations it finds there. (The list of things the layer must do in order to draw
itself is sometimes referred to by the documentation as the render tree.) The order in
which animations were added to the list is the order in which they are applied.

The animations list behaves somewhat like a dictionary. An animation has a key —
the forKey: parameter in add(_:forKey:). If an animation with a certain key is
added to the list when an animation with that key is already in the list, the one that is
already in the list is removed. So only one animation with a given key can be in the list
at a time; I call this the exclusivity rule.

The exclusivity rule explains why ordering an animation can sometimes cancel an
animation already ordered or in-flight: the two animations had the same key, so the
first one was removed. (Additive view animations affecting the same property work
around this limitation by giving the additional animations a different key name — for
example, "position" and "position-2".)

Unlike a dictionary, the animations list will also accept an animation with no key —
the key is nil. Animations with a nil key are not subject to the exclusivity rule; there
can be more than one animation in the list with no key.

The forKey: parameter in add(_:forKey:) is not a property name. It could be a
property name, but it can be any arbitrary value. Its purpose is to enforce the exclu‐
sivity rule. It does not have any meaning with regard to what property a CAProperty‐
Animation animates; that is the job of the animation’s keyPath. (Apple’s use of the
term “key” in add(_:forKey:) is misleading; I wish they had named this method
something like add(_:identifier:).)

Nevertheless, a relationship between the “key” in add(_:forKey:) and the keyPath of
a CAPropertyAnimation does exist: if a CAPropertyAnimation’s keyPath is nil at
the time that it is added to a layer with add(_:forKey:), that keyPath is set to the

Core Animation | 209

value of the forKey: parameter! Therefore you can misuse the forKey: parameter in
add(_:forKey:) as a way of specifying what keyPath an animation animates — and
implicit layer animation crucially depends on this fact.

Many Core Animation examples do misuse forKey: in just that way, supplying
nil as the animation’s keyPath and specifying the property to be animated as the
“key” in add(_:forKey:). This is wrong! Set the animation’s keyPath explicitly.

You can use the exclusivity rule to your own advantage, to keep your code from step‐
ping on its own feet. Some code of yours might add an animation to the list using a
certain key; then later, some other code might come along and correct this, removing
that animation and replacing it with another. By using the same key, the second code
is easily able to override the first: “You may have been given some other animation
with this key, but throw it away; play this one instead.”

In some cases, the key you supply is ignored and a different key is substituted. In par‐
ticular, the key with which a CATransition is added to the list is always "transition"
— and so there can be only one transition animation in the list.

You can think of an animation in a layer’s animations list as being the “animation
movie” I spoke of at the start of this chapter. As long as an animation is in the list, the
movie is present, either waiting to be played or actually playing. An animation that
has finished playing is, in general, pointless; the animation should now be removed
from the list, as its presence serves no purpose and it imposes an extra burden on the
render tree. Therefore, an animation has an isRemovedOnCompletion property, which
defaults to true: when the “movie” is over, the animation removes itself from the list.

Many Core Animation examples set isRemovedOnCompletion to false and set
the animation’s fillMode to .forwards or .both as a lazy way of preventing a
property from jumping back to its initial value when the animation ends. This is
wrong! An animation needs to be removed when it is completed; the fillMode is
intended for use with a child animation within a grouped animation. To prevent
jumping at the end of the animation, set the animated property value to match
the final frame of the animation.

You can’t access the entire animations list directly. You can access the key names of
the animations in the list, with animationKeys; and you can obtain or remove an ani‐
mation with a certain key, with animation(forKey:) and removeAnimation(for-
Key:); but animations with a nil key are inaccessible. You can remove all
animations, including animations with a nil key, using removeAllAnimations.
When your app is suspended, removeAllAnimations is called on all layers for you;
that is why it is possible to suspend an app coherently in the middle of an animation.

If an animation is in-flight when you remove it from the animations list, it will stop;
but that doesn’t happen until the next redraw moment. If you need an animation to

210 | Chapter 4: Animation

be removed immediately, you might be able to make that happen by wrapping the
remove call in an explicit transaction block.

Actions
For the sake of completeness, I will explain how implicit animation really works —
that is, how implicit animation is turned into explicit animation behind the scenes.
The basis of implicit animation is the action mechanism. Your code can hook into the
action mechanism to change the behavior of implicit animation in interesting ways.
Feel free to skip this section if you don’t want to get into the under-the-hood nitty-
gritty of implicit animation.

What an Action Is
An action is an object that adopts the CAAction protocol. This means simply that it
implements run(forKey:object:arguments:). The action object could do anything
in response to this message. The notion of an action is completely general. The only
built-in class that adopts the CAAction protocol happens to be CAAnimation, but in
fact the action object doesn’t have to be an animation — it doesn’t even have to per‐
form an animation.

You would never send run(forKey:object:arguments:) to an object directly.
Rather, this message is sent to an action object for you, as the basis of implicit anima‐
tion. The key is the property that was set, and the object is the layer whose property
was set.

What an animation does when it receives run(forKey:object:arguments:) is to
assume that the object: is a layer, and to add itself to that layer’s animations list. For
an animation, receiving the run(forKey:object:arguments:) message is like being
told: “Play yourself!”

Recall that if an animation’s keyPath is nil, the key by which the animation is
assigned to a layer’s animations list is used as the keyPath. When an animation is
sent run(forKey:object:arguments:), it calls add(_:forKey:) to add itself to the
layer’s animation’s list, using the name of the property as the key. The animation’s key-
Path for an implicit layer animation is usually nil, so the animation’s keyPath winds
up being set to the same key! That is how the property that you set ends up being the
property that is animated.

Action Search
Now we know what a CAAction is. But what’s the connection between a CALayer
and a CAAction? It all starts with the CALayer instance method action(forKey:).
The following events cause a layer’s action(forKey:) method to be called:

Actions | 211

• A CALayer property is set, directly or using setValue(_:forKey:). For most
built-in properties, the layer’s response is to call action(forKey:), passing along
the name of the property as the key. Certain properties get special treatment:
▪ Setting a layer’s frame property sets its position and bounds and calls
action(forKey:) for the "position" and "bounds" keys.

▪ Calling a layer’s setAffineTransform(_:) method sets its transform and
calls action(forKey:) for the "transform" key.

▪ You can configure a custom property to call action(forKey:) by designating
it as @NSManaged, as I’ll demonstrate later in this chapter.

• The layer is sent setValue(_:forKey:) with a key that is not a property, because
CALayer’s setValue(_:forUndefinedKey:), by default, calls action(forKey:).

• Various other miscellaneous types of event take place, such as the layer being
added to the interface. I’ll give some examples later.

All of that presupposes that CATransaction.disableActions() is false. If
CATransaction.setDisableActions(true) has been called, it prevents the
action(forKey:) message from being sent, and that’s the end of the story: there can
be no implicit animation in this transaction.

Very well, but let’s say that a layer’s action(forKey:) is called. The layer now
embarks upon an elaborate search for an action object (a CAAction) to which it can
send the run(forKey:object:arguments:) message. This is the action search.

At each stage of the action search, the following rules are obeyed regarding what is
returned from that stage of the search:

An action object
If an action object is produced, that is the end of the search. The action mecha‐
nism sends that action object the run(forKey:object:arguments:) message; if
this an animation, the animation responds by adding itself to the layer’s anima‐
tions list.

NSNull()

If NSNull() is produced, that is the end of the search. There will be no implicit
animation; NSNull() means, “Do nothing and stop searching.”

nil

If nil is produced, the search continues to the next stage.

The action search proceeds by stages:

1. The layer’s action(forKey:) might terminate the search before it even starts.
The layer will do this if it is the underlying layer of a view, or if the layer is not
part of a window’s layer hierarchy; there should be no implicit animation, so the

212 | Chapter 4: Animation

whole mechanism is nipped in the bud. (This stage is special in that a returned
value of nil ends the search and no animation takes place.)

2. If the layer has a delegate that implements action(for:forKey:), that message is
sent to the delegate, with this layer as the first parameter and the property name
as the key. If an action object or NSNull() is returned, the search ends.

3. The layer has a property called actions, which is a dictionary. If there is an entry
in this dictionary with the given key, that value is used, and the search ends.

4. The layer has a property called style, which is a dictionary. If there is an entry in
this dictionary with the key actions, it is assumed to be a dictionary; if this
actions dictionary has an entry with the given key, that value is used, and the
search ends. Otherwise, if there is an entry in the style dictionary called style,
the same search is performed within it, and so on recursively until either an
actions entry with the given key is found (the search ends) or there are no more
style entries (the search continues).
(If the style dictionary sounds profoundly weird, that’s because it is profoundly
weird. It is actually a special case of a larger, separate mechanism, which is also
profoundly weird, having to do not with actions, but with a CALayer’s imple‐
mentation of KVC. When you call value(forKey:) on a layer, if the key is
undefined by the layer itself, the style dictionary is consulted. I have never writ‐
ten or seen code that uses this mechanism for anything.)

5. The layer’s class is sent defaultAction(forKey:), with the property name as the
key. If an action object or NSNull() is returned, the search ends.

6. If the search reaches this last stage, a default animation is supplied, as appropri‐
ate. For a property animation, this is a plain vanilla CABasicAnimation.

Hooking Into the Action Search
You can affect the action search at any of its various stages to modify what happens
when the search is triggered. This is where the fun begins!

You can turn off implicit animation just for a particular property. One way would be
to return nil from action(forKey:) itself, in a CALayer subclass. Here’s the code for
a CALayer subclass that doesn’t have implicit animation for its position property:

override func action(forKey key: String) -> CAAction? {
 if key == #keyPath(position) {
 return nil
 }
 return super.action(forKey:key)
}

Actions | 213

For more precise control, we can take advantage of the fact that a CALayer acts like a
dictionary, allowing us to set an arbitrary key’s value. We’ll embed a switch in our
CALayer subclass that we can use to turn implicit position animation on and off:

override func action(forKey key: String) -> CAAction? {
 if key == #keyPath(position) {
 if self.value(forKey:"suppressPositionAnimation") != nil {
 return nil
 }
 }
 return super.action(forKey:key)
}

To turn off implicit position animation for an instance of this layer, we set its
"suppressPositionAnimation" key to a non-nil value:

layer.setValue(true, forKey:"suppressPositionAnimation")

Another possibility is to intervene at some stage of the search to produce an action
object of your own. You would then be affecting how implicit animation behaves.
Let’s say we want a certain layer’s duration for an implicit position animation to be
5 seconds. We can achieve this with a minimally configured animation, like this:

let ba = CABasicAnimation()
ba.duration = 5

The idea now is to situate this animation where it will be produced by the action
search for the "position" key. We could, for instance, put it into the layer’s actions
dictionary:

layer.actions = ["position": ba]

The only property of this animation that we have set is its duration; that setting, how‐
ever, is final. Although animation properties that you don’t set can be set through
CATransaction, in the usual manner for implicit property animation, animation
properties that you do set can’t be overridden through CATransaction. When we set
this layer’s position, if an implicit animation results, its duration is 5 seconds, even if
we try to change it through CATransaction:

CATransaction.setAnimationDuration(1.5) // won't work
layer.position = CGPoint(100,100) // animated, takes 5 seconds

Storing an animation in the actions dictionary is a somewhat inflexible way to hook
into the action search. If we have to write our animation beforehand, we know noth‐
ing about the layer’s starting and ending values for the changed property. A much
more powerful approach is to make our action object a custom CAAction object —
because in that case, it will be sent run(forKey:...), and we can construct and run
an animation now, when we are in direct contact with the layer to be animated.
Here’s a barebones version of such an object:

214 | Chapter 4: Animation

class MyAction : NSObject, CAAction {
 func run(forKey event: String, object anObject: Any,
 arguments dict: [AnyHashable : Any]?) {
 let anim = CABasicAnimation(keyPath: event)
 anim.duration = 5
 let lay = anObject as! CALayer
 let newP = lay.value(forKey:event)
 let oldP = lay.presentation()!.value(forKey:event)
 lay.add(anim, forKey:nil)
 }
}

A MyAction instance might then be the action object that we store in the actions
dictionary:

layer.actions = ["position": MyAction()]

Our custom CAAction object, MyAction, doesn’t do anything very interesting — but
it could. That’s the point. As the code demonstrates, we have access to the name of
the animated property (event), the old value of that property (from the layer’s pre‐
sentation layer), and the new value of that property (from the layer itself). That’s
enough information to build a complete animation from the ground up and add it to
the layer.

Here’s a modification of our MyAction object that creates and runs a keyframe ani‐
mation that “waggles” as it goes from the start value to the end value:

class MyWagglePositionAction : NSObject, CAAction {
 func run(forKey event: String, object anObject: Any,
 arguments dict: [AnyHashable : Any]?) {
 let lay = anObject as! CALayer
 let newP = lay.value(forKey:event) as! CGPoint
 let oldP = lay.presentation()!.value(forKey:event) as! CGPoint
 let d = sqrt(pow(oldP.x - newP.x, 2) + pow(oldP.y - newP.y, 2))
 let r = Double(d/3.0)
 let theta = Double(atan2(newP.y - oldP.y, newP.x - oldP.x))
 let wag = 10 * .pi/180.0
 let p1 = CGPoint(
 oldP.x + CGFloat(r*cos(theta+wag)),
 oldP.y + CGFloat(r*sin(theta+wag)))
 let p2 = CGPoint(
 oldP.x + CGFloat(r*2*cos(theta-wag)),
 oldP.y + CGFloat(r*2*sin(theta-wag)))
 let anim = CAKeyframeAnimation(keyPath: event)
 anim.values = [oldP,p1,p2,newP]
 anim.calculationMode = .cubic
 lay.add(anim, forKey:nil)
 }
}

By adding this CAAction object to a layer’s actions dictionary under the "position"
key, we have created a CALayer that waggles when its position property is set. Our

Actions | 215

CAAction doesn’t set the animation’s duration, so our own call to CATransaction’s
setAnimationDuration(_:) works. The power of this mechanism is simply stagger‐
ing. We can modify any layer in this way — even one that doesn’t belong to us. (And
we don’t actually have to add an animation to the layer; we are free to interpret the
setting of this property however we like!)

Instead of modifying a layer’s actions dictionary, we could hook into the action
search by setting the layer’s delegate to an instance that responds to action(for:for-
Key:). The delegate can behave differently depending on what key this is (and even
what layer this is). Here’s an implementation that does exactly what the actions dic‐
tionary did — it returns an instance of our custom CAAction object, so that setting
the layer’s position waggles it into place:

func action(for layer: CALayer, forKey key: String) -> CAAction? {
 if key == #keyPath(CALayer.position) {
 return MyWagglePositionAction()
 }
}

Finally, I’ll demonstrate overriding defaultAction(forKey:). This code would go
into a CALayer subclass; setting this layer’s contents will automatically trigger a
push transition from the left:

override class func defaultAction(forKey key: String) -> CAAction? {
 if key == #keyPath(contents) {
 let tr = CATransition()
 tr.type = .push
 tr.subtype = .fromLeft
 return tr
 }
 return super.defaultAction(forKey:key)
}

Both the delegate’s action(for:forKey:) and the subclass’s defaultAction(for-
Key:) are declared as returning a CAAction. Therefore, to return NSNull() from
your implementation of one of these methods, you’ll need to cast it to CAAction
to quiet the compiler; you’re lying (NSNull does not adopt CAAction), but it
doesn’t matter.

Making a Custom Property Implicitly Animatable
Earlier in this chapter, we made a custom layer’s thickness property animatable
through explicit layer animation. Now that we know how implicit layer animation
works, we can make our layer’s thickness property animatable through implicit ani‐
mation as well. We will then be able to animate our layer’s thickness with code like
this:

216 | Chapter 4: Animation

let lay = self.v.layer as! MyLayer
let cur = lay.thickness
let val : CGFloat = cur == 10 ? 0 : 10
lay.thickness = val // implicit animation

We have already implemented needsDisplay(forKey:) to return true for the
"thickness" key, and we have provided an appropriate draw(in:) implementation.
Now we’ll add two further pieces of the puzzle. As we now know, to make our
MyLayer class respond to direct setting of a property, we need to hook into the action
search and return a CAAction. The obvious place to do this is in the layer itself, at the
very start of the action search, in an action(forKey:) implementation:

override func action(forKey key: String) -> CAAction? {
 if key == #keyPath(thickness) {
 let ba = CABasicAnimation(keyPath: key)
 ba.fromValue = self.presentation()!.value(forKey:key)
 return ba
 }
 return super.action(forKey:key)
}

Finally, we must declare MyLayer’s thickness property @NSManaged. Otherwise,
action(forKey:) won’t be called in the first place and the action search will never
happen:

class MyLayer : CALayer {
 @NSManaged var thickness : CGFloat
 // ...
}

The @NSManaged declaration invites Cocoa to generate and dynamically inject
getter and setter accessors into our layer class; it is the equivalent of Objective-
C’s @dynamic (and is completely different from Swift’s dynamic).

Nonproperty Actions
An action search is triggered when a layer is added to a superlayer (key "onOrderIn")
and when a layer’s sublayers are changed by adding or removing a sublayer (key
"sublayers").

In this example, we use our layer’s delegate so that when our layer is added to a
superlayer, it will “pop” into view:

let layer = CALayer()
// ... configure layer here ...
layer.delegate = self
self.view.layer.addSublayer(layer)

Actions | 217

In the layer’s delegate (self), we implement the actual animation as a group anima‐
tion, fading the layer quickly in from an opacity of 0 and at the same time scaling its
transform to make it momentarily appear a little larger:

func action(for layer: CALayer, forKey key: String) -> CAAction? {
 if key == "onOrderIn" {
 let anim1 = CABasicAnimation(keyPath:#keyPath(CALayer.opacity))
 anim1.fromValue = 0.0
 anim1.toValue = layer.opacity
 let anim2 = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
 anim2.toValue = CATransform3DScale(layer.transform, 1.2, 1.2, 1.0)
 anim2.autoreverses = true
 anim2.duration = 0.1
 let group = CAAnimationGroup()
 group.animations = [anim1, anim2]
 group.duration = 0.2
 return group
 }
}

The documentation says that when a layer is removed from a superlayer, an action is
sought under the key "onOrderOut". This is true but useless, because by the time the
action is sought, the layer has already been removed from the superlayer, so return‐
ing an animation has no visible effect. A possible workaround is to trigger the anima‐
tion in some other way (and remove the layer afterward, if desired). To illustrate, let’s
implement an arbitrary key "farewell" so that it shrinks and fades the layer and
then removes it from its superlayer:

layer.delegate = self
layer.setValue("", forKey:"farewell")

The supplier of the action object — in this case, the layer’s delegate — returns the
shrink-and-fade animation; it also sets itself as that animation’s delegate, and
removes the layer when the animation ends:

func action(for layer: CALayer, forKey key: String) -> CAAction? {
 if key == "farewell" {
 let anim1 = CABasicAnimation(keyPath:#keyPath(CALayer.opacity))
 anim1.fromValue = layer.opacity
 anim1.toValue = 0.0
 let anim2 = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
 anim2.toValue = CATransform3DScale(layer.transform, 0.1, 0.1, 1.0)
 let group = CAAnimationGroup()
 group.animations = [anim1, anim2]
 group.duration = 0.2
 group.delegate = self
 group.setValue(layer, forKey:"remove")
 layer.opacity = 0
 return group
 }
}

218 | Chapter 4: Animation

func animationDidStop(_ anim: CAAnimation, finished flag: Bool) {
 if let layer = anim.value(forKey:"remove") as? CALayer {
 layer.removeFromSuperlayer()
 }
}

Emitter Layers
Emitter layers (CAEmitterLayer) are, to some extent, on a par with animated images:
once you’ve set up an emitter layer, it just sits there animating all by itself. The nature
of this animation is rather narrow: an emitter layer emits particles, which are
CAEmitterCell instances. But by clever setting of the properties of an emitter layer
and its emitter cells, you can achieve some astonishing effects. Moreover, the anima‐
tion is itself animatable using Core Animation.

Here are some basic properties of a CAEmitterCell:

contents, contentsRect
These are modeled after the eponymous CALayer properties, although
CAEmitterCell is not a CALayer subclass; so, respectively, an image (a CGImage)
and a CGRect specifying a region of that image. They define the image that a cell
will portray.

birthrate, lifetime
How many cells per second should be emitted, and how many seconds each cell
should live before vanishing, respectively.

velocity

The speed at which a cell moves. The unit of measurement is not documented;
perhaps it’s points per second.

emissionLatitude, emissionLongitude
The angle at which the cell is emitted from the emitter, as a variation from the
perpendicular. Longitude is an angle within the plane; latitude is an angle out of
the plane.

Here’s some code to create a very elementary emitter cell:

// make a gray circle image
let r = UIGraphicsImageRenderer(size:CGSize(10,10))
let im = r.image {
 ctx in let con = ctx.cgContext
 con.addEllipse(in:CGRect(0,0,10,10))
 con.setFillColor(UIColor.gray.cgColor)
 con.fillPath()
}
// make a cell with that image
let cell = CAEmitterCell()
cell.contentsScale = UIScreen.main.scale

Emitter Layers | 219

cell.birthRate = 5
cell.lifetime = 1
cell.velocity = 100
cell.contents = im.cgImage

The result is that little gray circles should be emitted slowly and steadily, five per sec‐
ond, each one vanishing in one second. Now we need an emitter layer from which
these circles are to be emitted. Here are some basic CAEmitterLayer properties
(beyond those it inherits from CALayer); these define an imaginary object, an emit‐
ter, that will be producing the emitter cells:

emitterPosition

The point at which the emitter should be located, in superlayer coordinates. You
can optionally add a third dimension to this point, emitterZPosition.

emitterSize

The size of the emitter.

emitterShape

The shape of the emitter. The dimensions of the shape depend on the emitter’s
size; the cuboid shape depends also on a third size dimension, emitterDepth.
Your choices are (CAEmitterLayerEmitterShape):

• .point

• .line

• .rectangle

• .cuboid

• .circle

• .sphere

emitterMode

The region of the shape from which cells should be emitted. Your choices are
(CAEmitterLayerEmitterMode):

• .points

• .outline

• .surface

• .volume

Let’s start with the simplest possible case, a single point emitter:

let emit = CAEmitterLayer()
emit.emitterPosition = CGPoint(30,100)
emit.emitterShape = .point
emit.emitterMode = .points

220 | Chapter 4: Animation

Figure 4-5. A really boring emitter layer

We tell the emitter what types of cell to emit by assigning those cells to its emitter-
Cells property (an array of CAEmitterCell). We then add the emitter to our inter‐
face, and presto, it starts emitting:

emit.emitterCells = [cell]
self.view.layer.addSublayer(emit)

The result is a constant stream of gray circles emitted from the point (30.0,100.0),
each circle marching steadily to the right and vanishing after one second (Figure 4-5).

Now that we’ve succeeded in creating a boring emitter layer, we can start to vary
some parameters. The emissionRange defines a cone in which cells will be emitted; if
we increase the birthRate and widen the emissionRange, we get something that
looks like a stream shooting from a water hose:

cell.birthRate = 100
cell.lifetime = 1.5
cell.velocity = 100
cell.emissionRange = .pi/5.0

In addition, as the cell moves, it can be made to accelerate (or decelerate) in each
dimension, using its xAcceleration, yAcceleration, and zAcceleration properties.
Here, we turn the stream into a falling cascade, like a waterfall coming from the left:

cell.xAcceleration = -40
cell.yAcceleration = 200

All aspects of cell behavior can be made to vary randomly, using the following
CAEmitterCell properties:

lifetimeRange, velocityRange
How much the lifetime and velocity values are allowed to vary randomly for dif‐
ferent cells.

scale

scaleRange, scaleSpeed
The scale alters the size of the cell; the range and speed determine how far and
how rapidly this size alteration is allowed to change over the lifetime of each cell.

spin

spinRange

The spin is a rotational speed (in radians per second); its range determines how
far this speed is allowed to change over the lifetime of each cell.

Emitter Layers | 221

Figure 4-6. An emitter layer that makes a sort of waterfall

color

redRange, greenRange, blueRange, alphaRange
redSpeed, greenSpeed, blueSpeed, alphaSpeed

The color is painted in accordance with the opacity of the cell’s contents image; it
combines with the image’s color, so if we want the color stated here to appear in
full purity, our contents image should use only white. The range and speed deter‐
mine how far and how rapidly each color component is to change.

Here we add some variation so that the circles behave a little more independently of
one another. Some live longer than others, some come out of the emitter faster than
others. And they all start out a shade of blue, but change to a shade of green about
halfway through the stream (Figure 4-6):

cell.lifetimeRange = 0.4
cell.velocityRange = 20
cell.scaleRange = 0.2
cell.scaleSpeed = 0.2
cell.color = UIColor.blue.cgColor
cell.greenRange = 0.5
cell.greenSpeed = 0.75

Once the emitter layer is in place and animating, you can change its parameters and
the parameters of its emitter cells through key–value coding on the emitter layer. You
can access the emitter cells through the emitter layer’s "emitterCells" key path; to
specify a cell type, use its name property (which you’ll have to have assigned earlier) as
the next piece of the key path. Suppose we’ve set cell.name to "circle"; now we’ll

222 | Chapter 4: Animation

change the cell’s greenSpeed so that each cell changes from blue to green much
earlier in its lifetime:

emit.setValue(3.0, forKeyPath:"emitterCells.circle.greenSpeed")

The significance of this is that such changes can themselves be animated! Here, we’ll
attach to the emitter layer a repeating animation that causes our cell’s greenSpeed to
move slowly back and forth between two values. The result is that the stream varies,
over time, between being mostly blue and mostly green:

let key = "emitterCells.circle.greenSpeed"
let ba = CABasicAnimation(keyPath:key)
ba.fromValue = -1.0
ba.toValue = 3.0
ba.duration = 4
ba.autoreverses = true
ba.repeatCount = .greatestFiniteMagnitude
emit.add(ba, forKey:nil)

A CAEmitterCell can itself function as an emitter — that is, it can have cells of its
own. Both CAEmitterLayer and CAEmitterCell conform to the CAMediaTiming
protocol, and their beginTime and duration properties can be used to govern their
times of operation, much as in a grouped animation. This code causes our existing
waterfall to spray tiny droplets in the region of the “nozzle” (the emitter):

let cell2 = CAEmitterCell()
cell.emitterCells = [cell2]
cell2.contents = im.cgImage
cell2.emissionRange = .pi
cell2.birthRate = 200
cell2.lifetime = 0.4
cell2.velocity = 200
cell2.scale = 0.2
cell2.beginTime = 0.04
cell2.duration = 0.2

But if we change the beginTime to be larger (hence later), the tiny droplets happen
near the bottom of the cascade. We must also increase the duration, or stop setting it
altogether, since if the duration is less than the beginTime, no emission takes place at
all (Figure 4-7):

cell2.beginTime = 1.4
cell2.duration = 0.4

We can also alter the picture by changing the behavior of the emitter itself. This
change turns the emitter into a line, so that our cascade becomes broader (more like
Niagara Falls):

Emitter Layers | 223

Figure 4-7. The waterfall makes a kind of splash

emit.emitterPosition = CGPoint(100,25)
emit.emitterSize = CGSize(100,100)
emit.emitterShape = .line
emit.emitterMode = .outline
cell.emissionLongitude = 3 * .pi/4

There’s more to know about emitter layers and emitter cells, but at this point you
know enough to understand Apple’s sample code simulating such things as fire and
smoke and pyrotechnics, and you can explore further on your own.

CIFilter Transitions
Core Image filters (Chapter 2) include transitions. You supply two images and a
frame time between 0 and 1; the filter supplies the corresponding frame of a one-
second animation transitioning from the first image to the second. Figure 4-8 shows
the frame at frame time 0.75 for a starburst transition from a solid red image to a
photo of me. (You don’t see the photo of me, because this transition, by default,
“explodes” the first image to white first, and then quickly fades to the second image.)

Animating a Core Image transition filter is up to us. We need a way of rapidly calling
the same method repeatedly; in that method, we’ll request and draw each frame of
the transition. This could be a job for a Timer, but a better way is to use a display link
(CADisplayLink), a form of timer that’s linked directly to the refreshing of the dis‐
play (hence the name). The display refresh rate is hardware-dependent, but is typi‐
cally every sixtieth of a second or faster; UIScreen.maximumFramesPerSecond will tell
you the nominal value, and the nominal time between refreshes is the display link’s
duration.

224 | Chapter 4: Animation

Figure 4-8. Midway through a starburst transition

For the smoothest display of a Core Image transition filter animation with the
least strain on the device’s CPU, you would use Metal. But that’s outside the
scope of this book.

Like a timer, the display link calls a designated method of ours every time it fires. We
can slow the rate of calls by setting the display link’s preferredFramesPerSecond. We
can learn the exact time when the display link last fired by querying its timestamp,
and that’s the best way to decide what frame needs displaying now.

In this example, I’ll display the animation in a view’s layer. We initialize ahead of
time, in properties, everything we’ll need later to obtain an output image for a given
frame of the transition — the CIFilter, the image’s extent, and the CIContext. We
also have a timestamp property, which we initialize as well:

let moi = CIImage(image:UIImage(named:"moi")!)!
self.moiextent = moi.extent
let tran = CIFilter.flashTransition()
tran.inputImage = CIImage(color: CIColor(color:.red))
tran.targetImage = moi
tran.center = self.moiextent.center
self.tran = tran
self.timestamp = 0.0 // signal that we are starting
self.context = CIContext()

We create the display link, setting it to call into our nextFrame method, and start it
going by adding it to the main run loop, which retains it:

let link = CADisplayLink(target:self, selector:#selector(self.nextFrame))
link.add(to:.main, forMode:.default)

Our nextFrame(_:) method is called with the display link as parameter (sender). We
store the initial timestamp in our property, and use the difference between that and
each successive timestamp value to calculate our desired frame. We ask the filter for
the corresponding image and display it. When the frame value exceeds 1, the

CIFilter Transitions | 225

animation is over and we invalidate the display link (just like a repeating timer),
which releases it from the run loop:

let scale = 1.0
@objc func nextFrame(_ sender:CADisplayLink) {
 if self.timestamp < 0.01 { // pick up and store first timestamp
 self.timestamp = sender.timestamp
 self.frame = 0.0
 } else { // calculate frame
 self.frame = (sender.timestamp - self.timestamp) * scale
 }
 sender.isPaused = true // defend against frame loss
 self.tran.setValue(self.frame, forKey:"inputTime")
 let moi = self.context.createCGImage(
 tran.outputImage!, from:self.moiextent)
 CATransaction.setDisableActions(true)
 self.v.layer.contents = moi
 if self.frame > 1.0 {
 sender.invalidate()
 }
 sender.isPaused = false
}

I have surrounded the time-consuming calculation and drawing of the image with
calls to the display link’s isPaused property, in case the calculation time exceeds the
time between screen refreshes; perhaps this isn’t necessary, but it can’t hurt. Our ani‐
mation occupies one second; changing that value is merely a matter of multiplying by
a different scale value when we set our frame property.

UIKit Dynamics
UIKit dynamics comprises a suite of classes supplying a convenient API for animat‐
ing views in a manner reminiscent of real-world physical behavior. Views can be sub‐
jected to gravity, collisions, bouncing, and transient forces, with effects that would
otherwise be difficult to achieve.

UIKit dynamics should not be treated as a game engine. It is deliberately quite
cartoony and simple, animating only the position (center) and rotation transform of
views within a flat two-dimensional space. UIKit dynamics relies on CADisplayLink,
and the calculation of each frame takes place on the main thread (not on the anima‐
tion server’s background thread). There’s no “animation movie” and no distinct pre‐
sentation layer; the views really are being repositioned in real time. UIKit Dynamics
is not intended for extended use; it is a way of momentarily emphasizing or clarifying
functional transformations of your interface.

The Dynamics Stack
Implementing UIKit dynamics involves configuring a “stack” of three things:

226 | Chapter 4: Animation

A dynamic animator
A dynamic animator, a UIDynamicAnimator instance, is the ruler of the physics
world you are creating. It has a reference view, whose bounds define the coordi‐
nate system of the animator’s world. A view to be animated must be a subview of
the reference view (though it does not have to be within the reference view’s
bounds). Retaining the animator is up to you, typically with an instance property.
It’s fine for an animator to sit empty until you need it; an animator whose world
is empty (or at rest) is not running, and occupies no processor time.

A behavior
A UIDynamicBehavior is a rule describing how a view should behave. You’ll typ‐
ically use a built-in subclass, such as UIGravityBehavior or UICollisionBehavior.
You configure the behavior and add it to the animator; an animator has methods
and properties for managing its behaviors, such as addBehavior(_:), behaviors,
removeBehavior(_:), and removeAllBehaviors. Even if an animation is already
in progress, a behavior’s configuration can be changed and behaviors can be
added to and removed from the animator.

An item
An item is any object that implements the UIDynamicItem protocol. A UIView
is such an object! You add a UIView (one that’s a subview of your animator’s ref‐
erence view) to a behavior (one that belongs to that animator) — and at that
moment, the view comes under the influence of that behavior. If this behavior is
one that causes motion, and if no other behaviors prevent, the view will now
move (the animator is running).

Some behaviors can accept multiple items, and have methods and properties
such as addItem(_:), items, and removeItem(_:). Others can have just one or
two items and must be initialized with these from the outset.

A UIDynamicItemGroup is a way of combining multiple items to form a single
item. Its only property is its items. You apply behaviors to the resulting grouped
item, not to the subitems that it comprises. Those subitems maintain their physi‐
cal relationship to one another. For purposes of collisions, the boundaries of the
individual subitems are respected.

That’s sufficient to get started, so let’s try it! First I’ll create my animator and store it
in a property:

self.anim = UIDynamicAnimator(referenceView: self.view)

Now I’ll cause an existing subview of self.view (a UIImageView, self.iv, display‐
ing the planet Mars) to drop off the screen, under the influence of gravity. I create a
UIGravityBehavior, add it to the animator, and add self.iv to it:

UIKit Dynamics | 227

let grav = UIGravityBehavior()
self.anim.addBehavior(grav)
grav.addItem(self.iv)

As a result, self.iv comes under the influence of gravity and is now animated down‐
ward off the screen. (A UIGravityBehavior object has properties configuring the
strength and direction of gravity, but I’ve left them here at their defaults.)

An immediate concern is that our view falls forever. This is a serious waste of mem‐
ory and processing power. If we no longer need the view after it has left the screen,
we should take it out of the influence of UIKit dynamics by removing it from any
behaviors to which it belongs (and we can also remove it from its superview). One
way to do this is by removing from the animator any behaviors that are no longer
needed. In our simple example, where the animator’s entire world contains just this
one item, it will be sufficient to call removeAllBehaviors.

But how will we know when the view is off the screen? A UIDynamicBehavior can be
assigned an action function, which is called repeatedly as the animator drives the
animation. I’ll configure our gravity behavior’s action function to check whether
self.iv is still within the bounds of the reference view, by calling the animator’s
items(in:) method. Actually, items(in:) returns an array of UIDynamicItem, but I
want an array of UIView, so I have a UIDynamicAnimator extension that will cast
down safely:

extension UIDynamicAnimator {
 func views(in rect: CGRect) -> [UIView] {
 let nsitems = self.items(in: rect) as NSArray
 return nsitems.compactMap {$0 as? UIView}
 }
}

Here’s my first attempt:

grav.action = {
 let items = self.anim.views(in:self.view.bounds)
 let ix = items.firstIndex(of:self.iv)
 if ix == nil {
 self.anim.removeAllBehaviors()
 self.iv.removeFromSuperview()
 }
}

This works in the sense that, after the image view leaves the screen, the image view is
removed from the window and the animation stops. Unfortunately, there is also a
memory leak: neither the image view nor the gravity behavior has been released. One
solution is, in grav.action, to set self.anim (the animator property) to nil, break‐
ing the retain cycle. This is a perfectly appropriate solution if, as here, we no longer
need the animator for anything; a UIDynamicAnimator is a lightweight object and
can very reasonably come into existence only for as long as we need to run an

228 | Chapter 4: Animation

animation. Another possibility is to use delayed performance; even a delay of 0 solves
the problem, presumably because the behavior’s action function is no longer run‐
ning at the time we remove the behavior:

grav.action = {
 let items = self.anim.views(in:self.view.bounds)
 let ix = items.firstIndex(of:self.iv)
 if ix == nil {
 delay(0) {
 self.anim.removeAllBehaviors()
 self.iv.removeFromSuperview()
 }
 }
}

Now let’s add some further behaviors. If falling straight down is too boring, we can
add a UIPushBehavior to apply a slight rightward impulse to the view as it begins to
fall:

let push = UIPushBehavior(items:[self.iv], mode:.instantaneous)
push.pushDirection = CGVector(1,0)
self.anim.addBehavior(push)

The view now falls in a parabola to the right. Next, let’s add a UICollisionBehavior to
make our view strike the “floor” of the screen:

let coll = UICollisionBehavior()
coll.collisionMode = .boundaries
coll.collisionDelegate = self
let b = self.view.bounds
coll.addBoundary(withIdentifier:"floor" as NSString,
 from:CGPoint(b.minX, b.maxY), to:CGPoint(b.maxX, b.maxY))
self.anim.addBehavior(coll)
coll.addItem(self.iv)

The view now falls in a parabola onto the floor of the screen, bounces a tiny bit, and
comes to rest. It would be nice if the view bounced a bit more. Characteristics inter‐
nal to a dynamic item’s physics, such as bounciness (elasticity), are configured by
assigning it to a UIDynamicItemBehavior:

let bounce = UIDynamicItemBehavior()
bounce.elasticity = 0.8
self.anim.addBehavior(bounce)
bounce.addItem(self.iv)

Our view now bounces higher; nevertheless, when it hits the floor, it stops moving to
the right, so it just bounces repeatedly, less and less, and ends up at rest on the floor.
I’d prefer that, after it bounces, it should roll to the right, so that it eventually leaves
the screen. Part of the problem here is that, in the mind of the physics engine, our
view, even though it displays a round image, is itself not round. We can change that.

UIKit Dynamics | 229

We’ll have to subclass our view class (UIImageView) and make sure our view is an
instance of this subclass:

class MyImageView : UIImageView {
 override var collisionBoundsType: UIDynamicItemCollisionBoundsType {
 return .ellipse
 }
}

Our image view now has the ability to roll. The effect is quite realistic: the image itself
appears to roll to the right after it bounces. But it isn’t rolling very fast (because we
didn’t initially push it very hard). To remedy that, I’ll add some rotational velocity as
part of the first bounce. A UICollisionBehavior has a delegate to which it sends mes‐
sages when a collision occurs. I’ll make self the collision behavior’s delegate, and
when the delegate message arrives, I’ll add rotational velocity to the existing dynamic
item bounce behavior, so that our view starts spinning clockwise:

func collisionBehavior(_ behavior: UICollisionBehavior,
 beganContactFor item: UIDynamicItem,
 withBoundaryIdentifier identifier: NSCopying?,
 at p: CGPoint) {
 // look for the dynamic item behavior
 let b = self.anim.behaviors
 if let bounce = (b.compactMap {$0 as? UIDynamicItemBehavior}).first {
 let v = bounce.angularVelocity(for:item)
 if v <= 6 {
 bounce.addAngularVelocity(6, for:item)
 }
 }
}

The view now falls in a parabola to the right, strikes the floor, spins clockwise, and
bounces off the floor and continues bouncing its way off the right side of the screen.

Custom Behaviors
You will commonly find yourself composing a complex behavior out of a combina‐
tion of several built-in UIDynamicBehavior subclass instances. It might make sense
to express that combination as a single custom UIDynamicBehavior subclass.

To illustrate, I’ll turn the behavior from the previous section into a custom subclass
of UIDynamicBehavior. Let’s call it MyDropBounceAndRollBehavior. Now we can
apply this behavior to our view, self.iv, very simply:

self.anim.addBehavior(MyDropBounceAndRollBehavior(view:self.iv))

All the work is now done by the MyDropBounceAndRollBehavior instance. I’ve
designed it to affect just one view, so its initializer looks like this:

230 | Chapter 4: Animation

let v : UIView
init(view v:UIView) {
 self.v = v
 super.init()
}

A UIDynamicBehavior can receive a reference to its dynamic animator just before
being added to it, by implementing willMove(to:), and can refer to it subsequently
as self.dynamicAnimator. To incorporate actual behaviors into itself, our custom
UIDynamicBehavior subclass creates and configures each behavior and calls add-
ChildBehavior(_:); it can refer to the array of its child behaviors as self.child-
Behaviors. When our custom behavior is added to or removed from the dynamic
animator, the effect is the same as if its child behaviors themselves were added or
removed.

Here is the rest of MyDropBounceAndRollBehavior. Our precautions in the gravity
behavior’s action function so as not to cause a retain cycle are simpler than before; it
suffices to designate self as an unowned reference and remove self from the anima‐
tor explicitly:

override func willMove(to anim: UIDynamicAnimator?) {
 guard let anim = anim else { return }
 let sup = self.v.superview!
 let b = sup.bounds
 let grav = UIGravityBehavior()
 grav.action = { [unowned self] in
 let items = anim.views(in: b)
 if items.firstIndex(of:self.v) == nil {
 anim.removeBehavior(self)
 self.v.removeFromSuperview()
 }
 }
 self.addChildBehavior(grav)
 grav.addItem(self.v)
 let push = UIPushBehavior(items:[self.v], mode:.instantaneous)
 push.pushDirection = CGVector(1,0)
 self.addChildBehavior(push)
 let coll = UICollisionBehavior()
 coll.collisionMode = .boundaries
 coll.collisionDelegate = self
 coll.addBoundary(withIdentifier:"floor" as NSString,
 from: CGPoint(b.minX, b.maxY), to:CGPoint(b.maxX, b.maxY))
 self.addChildBehavior(coll)
 coll.addItem(self.v)
 let bounce = UIDynamicItemBehavior()
 bounce.elasticity = 0.8
 self.addChildBehavior(bounce)
 bounce.addItem(self.v)
}
func collisionBehavior(_ behavior: UICollisionBehavior,

UIKit Dynamics | 231

 beganContactFor item: UIDynamicItem,
 withBoundaryIdentifier identifier: NSCopying?,
 at p: CGPoint) {
 // look for the dynamic item behavior
 let b = self.childBehaviors
 if let bounce = (b.compactMap {$0 as? UIDynamicItemBehavior}).first {
 let v = bounce.angularVelocity(for:item)
 if v <= 6 {
 bounce.addAngularVelocity(6, for:item)
 }
 }
}

Animator and Behaviors
Here are some further UIDynamicAnimator methods and properties:

delegate

The delegate (UIDynamicAnimatorDelegate) is sent messages dynamicAnimator-
DidPause(_:) and dynamicAnimatorWillResume(_:). The animator is paused
when it has nothing to do: it has no dynamic items, or all its dynamic items are at
rest.

isRunning

If true, the animator is not paused; some dynamic item is being animated.

elapsedTime

The total time during which this animator has been running since it first started
running. The elapsedTime does not increase while the animator is paused, nor is
it reset. You might use this in a delegate method or action method to decide that
the animation is over.

updateItem(usingCurrentState:)

Once a dynamic item has come under the influence of the animator, the anima‐
tor is responsible for positioning that dynamic item. If your code manually
changes the dynamic item’s position or other relevant attributes, call this method
so that the animator can take account of those changes.

You can turn on a display that reveals visually what the animator is doing, show‐
ing its attachment lines and so forth; assuming that self.anim refers to the
dynamic animator, you would say:

self.anim.perform(Selector(("setDebugEnabled:")), with:true)

232 | Chapter 4: Animation

UIDynamicItemBehavior
A UIDynamicItemBehavior doesn’t apply any force or velocity; it is a way of endow‐
ing items with internal physical characteristics that will affect how they respond to
other dynamic behaviors. Here are some of them:

density

Changes the impulse-resisting mass in relation to size. When we speak of an
item’s mass, we mean a combination of its size and its density.

elasticity

The item’s tendency to bounce on collision.

friction

The item’s tendency to be slowed by sliding past another item.

isAnchored

An anchored item is not affected by forces that would make an item move; it
remains stationary. This can give you something with friction and elasticity off of
which you can bounce and slide other items.

resistance, angularResistance, allowsRotation
The item’s tendency to come to rest unless forces are actively applied. allows-
Rotation can prevent the item from acquiring any angular velocity at all.

charge

Meaningful only with respect to magnetic and electric fields, which I’ll get to in a
moment.

addLinearVelocity(_:for:), linearVelocity(for:)
addAngularVelocity(_:for:), angularVelocity(for:)

Methods for tweaking linear and angular velocity.

UIGravityBehavior
UIGravityBehavior imposes an acceleration on its dynamic items. By default, this
acceleration is downward with a magnitude of 1 (arbitrarily defined as 1000 points
per second per second). You can customize gravity by changing its gravity-
Direction (a CGVector) or its angle and magnitude.

UIFieldBehavior
UIFieldBehavior is a generalization of UIGravityBehavior. A field affects any of its
items for as long as they are within its area of influence, as described by these
properties:

UIKit Dynamics | 233

position

The center of the field’s effective area of influence, in reference view coordinates.
The default position is CGPoint.zero, the reference view’s top left corner.

region

The shape of the field’s effective area of influence; a UIRegion. The default is that
the region is infinite, but you can limit it to a circle by its radius or to a rectangle
by its size. More complex region shapes can be achieved by taking the union,
intersection, or difference of two regions, or the inverse of a region.

strength

The magnitude of the field. It can be negative to reverse the directionality of the
field’s forces.

falloff

Defines a change in strength proportional to the distance from the center.

minimumRadius

Specifies a central circle within which there is no field effect.

direction, smoothness, animationSpeed
Applicable only to those built-in field types that define them.

The built-in field types are obtained by calling a class factory method:

linearGravityField(direction:)

Like UIGravityBehavior. Accelerates the item in the direction of a vector that you
supply, proportionally to its mass, the length of the vector, and the strength of
the field. The vector is the field’s direction, and can be changed.

velocityField(direction:)

Like UIGravityBehavior, but it doesn’t apply an acceleration (a force) — instead,
it applies a constant velocity.

radialGravityField(position:)

Like a point-oriented version of UIGravityBehavior. Accelerates the item toward,
or pushes it away from, the field’s designated central point (its position).

springField

Behaves as if there were a spring stretching from the item to the center, so that
the item oscillates back and forth across the center until it settles there.

electricField

Behaves like an electric field emanating from the center. The default strength
and falloff are both 1. If you set the falloff to 0, then a negatively charged
item, all other things being equal, will oscillate endlessly across the center.

234 | Chapter 4: Animation

magneticField

Behaves like a magnetic field emanating from the center. A moving charged
item’s path is bent away from the center.

vortexField

Accelerates the item sideways with respect to the center.

dragField

Reduces the item’s speed.

noiseField(smoothness:animationSpeed:)

Adds random disturbance to the position of the item. The smoothness is between
0 (noisy) and 1 (smooth). The animationSpeed is how many times per second
the field should change randomly. Both can be changed in real time.

turbulenceField(smoothness:animationSpeed:)

Like a noise field, but takes the item’s velocity into account.

Think of a field as an infinite grid of CGVectors, with the potential to affect the speed
and direction (that is, the velocity) of an item within its borders; at every instant of
time the vector applicable to a particular item can be recalculated. You can write a
custom field by calling the UIFieldBehavior class method field(evaluationBlock:)
with a function that takes the item’s position, velocity, mass, and charge, along with
the animator’s elapsed time, and returns a CGVector.

In this (silly) example, we create a delayed drag field: for the first quarter second it
does nothing, but then it suddenly switches on and applies the brakes to its items,
bringing them to a standstill if they don’t already have enough velocity to escape the
region’s boundaries:

let b = UIFieldBehavior.field {
 (beh, pt, v, m, c, t) -> CGVector in
 if t > 0.25 {
 return CGVector(-v.dx, -v.dy)
 }
 return CGVector(0,0)
}

The evaluation function receives the behavior itself as a parameter, so it can consult
the behavior’s properties in real time. You can define your own properties by sub‐
classing UIFieldBehavior. If you’re going to do that, you might as well also define
your own class factory method to configure and return the custom field. To illustrate,
I’ll turn the hard-coded 0.25 delay from the previous example into an instance
property:

UIKit Dynamics | 235

class MyDelayedFieldBehavior : UIFieldBehavior {
 var delay = 0.0
 class func dragField(delay del:Double) -> Self {
 let f = self.field {
 (beh, pt, v, m, c, t) -> CGVector in
 if t > (beh as! MyDelayedFieldBehavior).delay {
 return CGVector(-v.dx, -v.dy)
 }
 return CGVector(0,0)
 }
 f.delay = del
 return f
 }
}

Here’s an example of creating and configuring our delayed drag field:

let b = MyDelayedFieldBehavior.dragField(delay:0.95)
b.region = UIRegion(size: self.view.bounds.size)
b.position = self.view.bounds.center
b.addItem(v)
self.anim.addBehavior(b)

UIPushBehavior

UIPushBehavior applies a force either instantaneously or continuously (mode), the
latter constituting an acceleration. How this force affects an object depends in part
upon the object’s mass. The effect of a push behavior can be toggled with the active
property; an instantaneous push is repeated each time the active property is set to
true.

To configure a push behavior, set its pushDirection or its angle and magnitude. In
addition, a push may be applied at an offset from the center of an item. This will
apply an additional angular acceleration. In my earlier example, I could have started
the view spinning clockwise by means of its initial push, like this:

push.setTargetOffsetFromCenter(
 UIOffset(horizontal:0, vertical:-200), for: self.iv)

UICollisionBehavior
UICollisionBehavior watches for collisions either between items belonging to this
same behavior or between an item and a boundary (mode). One collision behavior can
have multiple items and multiple boundaries. A boundary may be described as a line
between two points or as a UIBezierPath, or you can turn the reference view’s bounds
into boundaries (setTranslatesReferenceBoundsIntoBoundary(with:)). Bound‐
aries that you create can have an identifier. The collisionDelegate (UICollision‐
BehaviorDelegate) is called when a collision begins and again when it ends.

236 | Chapter 4: Animation

How a given collision affects the item(s) involved depends on the physical character‐
istics of the item(s), which may be configured through a UIDynamicItemBehavior.

A dynamic item, such as a UIView, can have a customized collision boundary, rather
than its collision boundary being merely the edges of its frame. You can have a rec‐
tangle dictated by the frame, an ellipse dictated by the frame, or a custom shape — a
convex counterclockwise simple closed UIBezierPath. The relevant properties,
collisionBoundsType and (for a custom shape) collisionBoundingPath, are read-
only, so you will have to subclass, as I did in my earlier example.

UISnapBehavior
UISnapBehavior causes one item to snap to one point as if pulled by a spring. Its
damping describes how much the item should oscillate as its settles into that point.
This is a very simple behavior: the snap occurs immediately when the behavior is
added to the animator, and there’s no notification when it’s over.

The snap behavior’s snapPoint is a settable property. Having performed a snap, you
can subsequently change the snapPoint and cause another snap to take place.

UIAttachmentBehavior
UIAttachmentBehavior attaches an item to another item or to a point in the refer‐
ence view, depending on how you initialize it:

• init(item:attachedTo:)

• init(item:attachedToAnchor:)

The attachment point is, by default, the item’s center; to change that, there’s a differ‐
ent pair of initializers:

• init(item:offsetFromCenter:attachedTo:offsetFromCenter:)

• init(item:offsetFromCenter:attachedToAnchor:)

The attaching medium’s physics are governed by the behavior’s length, frequency,
and damping. If the frequency is 0 (the default), the attachment is like a bar; other‐
wise, and especially if the damping is very small, it is like a spring.

If the attachment is to another item, that item might move. If the attachment is to an
anchor, you can move the anchorPoint. When that happens, this item moves too, in
accordance with the physics of the attaching medium. An anchorPoint is particularly
useful for implementing a draggable view within an animator world, as I’ll demon‐
strate in the next chapter.

There are several more varieties of attachment:

UIKit Dynamics | 237

Limit attachment
A limit attachment is created with this class method:

• limitAttachment(with:offsetFromCenter:attachedTo:offsetFrom-

Center:)

It’s like a rope running between two items. Each item can move freely and inde‐
pendently until the length is reached, at which point the moving item drags the
other item along.

Fixed attachment
A fixed attachment is created with this class method:

• fixedAttachment(with:attachedTo:attachmentAnchor:)

It’s as if there are two rods; each rod has an item at one end, with the other ends
of the rods being welded together at the anchor point. If one item moves, it must
remain at a fixed distance from the anchor, and will tend to rotate around it
while pulling it along, at the same time making the other item rotate around the
anchor.

Pin attachment
A pin attachment is created with this class method:

• pinAttachment(with:attachedTo:attachmentAnchor:)

A pin attachment is like a fixed attachment, but instead of the rods being welded
together, they are hinged together. Each item is free to rotate around the anchor
point, at a fixed distance from it, independently, subject to the pin attachment’s
frictionTorque which injects resistance into the hinge.

Sliding attachment
A sliding attachment can involve one or two items, and is created with one of
these class methods:

• slidingAttachment(with:attachmentAnchor:axisOfTranslation:)

• slidingAttachment(with:attachedTo:attachmentAnchor:axisOf-

Translation:)

Imagine a channel running through the anchor point, its direction defined by the
axis of translation (a CGVector). Then an item is attached to a rod whose other
end slots into that channel and is free to slide up and down it, but whose angle
relative to the channel is fixed by its initial definition (given the item’s position,
the anchor’s position, and the channel axis) and cannot change.

The channel is infinite by default, but you can add end caps that define the limits
of sliding. To do so, you specify the attachment’s attachmentRange; this is a

238 | Chapter 4: Animation

UIFloatRange, which has a minimum and a maximum. The anchor point is 0, and
you are defining the minimum and maximum with respect to that; a float range
(-100.0,100.0) provides freedom of movement up to 100 points away from the
initial anchor point. It may take some experimentation to discover whether the
end cap along a given direction of the channel is the minimum or the maximum.

If there is one item, the anchor is fixed. If there are two items, they can slide
independently, and the anchor is free to follow along if one of the items pulls it.

Here’s an example of a sliding attachment. We start with a black square and a red
square, sitting on the same horizontal, and attached to an anchor midway between
them:

// first view
let v = UIView(frame:CGRect(0,0,50,50))
v.backgroundColor = .black
self.view.addSubview(v)
// second view
let v2 = UIView(frame:CGRect(200,0,50,50))
v2.backgroundColor = .red
self.view.addSubview(v2)
// sliding attachment
let a = UIAttachmentBehavior.slidingAttachment(with:v,
 attachedTo: v2, attachmentAnchor: CGPoint(125,25),
 axisOfTranslation: CGVector(0,1))
a.attachmentRange = UIFloatRange(minimum: -200, maximum: 200)
self.anim.addBehavior(a)

The axis through the anchor point is vertical, and we have permitted a maximum of
200. We now apply a slight vertical downward push to the black square:

let p = UIPushBehavior(items: [v], mode: .continuous)
p.pushDirection = CGVector(0,0.05)
self.anim.addBehavior(p)

The black square moves slowly vertically downward, with its rod sliding down the
channel, until its rod hits the maximum end cap at 200. At that point, the anchor
breaks free and begins to move, dragging the red square with it, the two of them con‐
tinuing downward and slowly rotating round their connection of two rods and the
channel.

Motion Effects
A view can respond in real time to the way the user tilts the device. Typically, the
view’s response will be to shift its position slightly. This is used in various parts of the
interface, to give a sense of the interface’s being layered (parallax). When an alert is
present, if the user tilts the device, the alert shifts its position; the effect is a subtle
suggestion that the alert is floating slightly in front of everything else on the screen.

Motion Effects | 239

Your own views can behave in the same way. A view will respond to shifts in the
position of the device if it has one or more motion effects (UIMotionEffect), provided
the user has not turned off motion effects in the device’s Accessibility settings. A
view’s motion effects are managed with methods addMotionEffect(_:) and remove-
MotionEffect(_:), and the motionEffects property.

The UIMotionEffect class is abstract. The chief subclass provided is UIInterpolating‐
MotionEffect. Every UIInterpolatingMotionEffect has a single key path, which uses
key–value coding to specify the property of its view that it affects. It also has a type,
specifying which axis of the device’s tilting (horizontal tilt or vertical tilt) is to affect
this property. Finally, it has a maximum and minimum relative value, the furthest
distance that the affected property of the view is to be permitted to wander from its
actual value as the user tilts the device.

Related motion effects should be combined into a UIMotionEffectGroup (a
UIMotionEffect subclass), and the group added to the view:

let m1 = UIInterpolatingMotionEffect(
 keyPath:"center.x", type:.tiltAlongHorizontalAxis)
m1.maximumRelativeValue = 10.0
m1.minimumRelativeValue = -10.0
let m2 = UIInterpolatingMotionEffect(
 keyPath:"center.y", type:.tiltAlongVerticalAxis)
m2.maximumRelativeValue = 10.0
m2.minimumRelativeValue = -10.0
let g = UIMotionEffectGroup()
g.motionEffects = [m1,m2]
v.addMotionEffect(g)

You can write your own UIMotionEffect subclass by implementing a single method,
keyPathsAndRelativeValues(forViewerOffset:), but this will rarely be necessary.

Animation and Layout
As I’ve already explained, layout ultimately takes place at the end of a CATransac‐
tion, when layoutSubviews is sent down the view hierarchy and autolayout con‐
straints are obeyed. It turns out that the layout performed at this moment can be
animated! To make that happen, order an animation of layoutIfNeeded:

UIView.animate(withDuration: 0.5) {
 self.layoutIfNeeded()
}

That code means: when layout takes place at the end of this transaction, all changes
in the size or position of views should be performed, not instantly, but over a period
of half a second.

240 | Chapter 4: Animation

Animating layout can be useful when you’re trying to mediate between animation
and autolayout. You may not have thought of these two things as needing mediation,
but they do: they are, in fact, diametrically opposed to one another. As part of an ani‐
mation, you may be changing a view’s frame (or bounds, or center). You’re really not
supposed to do that when you’re using autolayout. If you do, an animation may not
work correctly — or it may appear to work at first, before any layout has happened,
but then there can be undesirable side effects when layout does happen.

The reason, as I explained in Chapter 1, is that when layout takes place under auto‐
layout, what matters are a view’s constraints. If the constraints affecting a view don’t
resolve to the size and position that the view has at the moment of layout, the view
will jump as the constraints are obeyed. That is almost certainly not what you want.

To persuade yourself that this can be a problem, just animate a view’s position and
then ask for immediate layout, like this:

UIView.animateWithDuration(1, animations:{
 self.v.center.x += 100
}, completion: { _ in
 self.v.superview!.setNeedsLayout()
 self.v.superview!.layoutIfNeeded()
})

If we’re using autolayout, the view slides to the right and then jumps back to the left.
This is bad. It’s up to us to keep the constraints synchronized with the reality, so that
when layout comes along in the natural course of things, our views don’t jump into
undesirable states.

One option is to revise the violated constraints to match the new reality. If we’ve
planned far ahead, we may have armed ourselves in advance with a reference to those
constraints; in that case, our code can now remove and replace them — or, if the only
thing that needs changing is the constant value of a constraint, we can change that
value in place. Otherwise, discovering what constraints are now violated, and getting
a reference to them, is not at all easy.

But there’s a better way. Instead of performing the animation first and then revising
the constraints, we can change the constraints first and then animate layout. (Again,
this assumes that we have a reference to the constraints in question.) If we are ani‐
mating a view (self.v) 100 points rightward, and if we have a reference (con) to the
constraint whose constant positions that view horizontally, we would say:

con.constant += 100
UIView.animate(withDuration:1) {
 self.v.superview!.layoutIfNeeded()
}

This technique is not limited to a simple change of constant. You can overhaul the
constraints quite dramatically and still animate the resulting change of layout. In this

Animation and Layout | 241

example, I animate a view (self.v) from one side of its superview (self.view) to the
other by removing its leading constraint and replacing it with a trailing constraint:

let c = self.oldConstraint.constant
NSLayoutConstraint.deactivate([self.oldConstraint])
let newConstraint = v.trailingAnchor.constraint(
 equalTo:self.view.layoutMarginsGuide.trailingAnchor, constant:-c)
NSLayoutConstraint.activate([newConstraint])
UIView.animate(withDuration:0.4) {
 self.v.superview!.layoutIfNeeded()
}

Another possibility is to use a snapshot of the original view (Chapter 1). Add the
snapshot temporarily to the interface — without using autolayout, and perhaps hid‐
ing the original view — and animate the snapshot:

let snap = self.v.snapshotView(afterScreenUpdates:false)!
snap.frame = self.v.frame
self.v.superview!.addSubview(snap)
self.v.isHidden = true
UIView.animate(withDuration:1) {
 snap.center.x += 100
}

That works because the snapshot view is not under the influence of autolayout, so it
stays where we put it even if layout takes place. But if we need to remove the snapshot
view and reveal the real view, then the real view’s constraints will probably still have
to be revised.

Yet another approach is to animate the view’s transform instead of the view itself:

UIView.animate(withDuration:1) {
 self.v.transform = CGAffineTransform(translationX: 100, y: 0)
}

That’s extremely robust, but of course it works only if the animation can be expressed
as a transform, and it leaves open the question of how long we want a transformed
view to remain lying around in our interface.

242 | Chapter 4: Animation

CHAPTER 5

Touches

[Winifred the Woebegone illustrates hit-testing:] Hey nonny nonny, is it you? — Hey nonny
nonny nonny no! — Hey nonny nonny, is it you? — Hey nonny nonny nonny no!

—Marshall Barer,
Once Upon a Mattress

A touch is an instance of the user putting a finger on the screen. The system and the
hardware, working together, know when a finger contacts the screen and where it is.
A finger is fat, but its location is cleverly reduced to a single point.

A UIResponder is a potential recipient of touches. A UIView is a UIResponder and is
the visible recipient of touches. There are other UIResponder subclasses, but none of
them is visible on the screen. The user sees a view by virtue of its underlying layer; the
user touches a view by virtue of the fact that it is a UIResponder.

A touch is represented as an object (a UITouch instance) that is bundled up in an
envelope (a UIEvent) that the system delivers to your app. It is then up to your app to
deliver the envelope to the appropriate UIView. In the vast majority of cases, this will
happen automatically the way you expect, and you will respond to a touch by way of
the view in which the touch occurred.

Most built-in interface views deal with these low-level UITouch deliveries for you.
They analyze and reduce the touches, and then notify your code at a higher level —
you hear about functionality and intention rather than raw touches:

• A UIButton reports that it was tapped.
• A UITextField reports that its text changed.
• A UITableView reports that the user selected a cell.
• A UIScrollView, when dragged, reports that it scrolled; when pinched outward, it

reports that it zoomed.

243

Nevertheless, it is useful to know how to respond to touches yourself, so that you can
implement your own touchable views, and so that you understand what Cocoa’s
built-in views are actually doing.

In this chapter, I’ll start by discussing touch detection and response by views (and
other UIResponders) at their lowest level. Then I’ll proceed to describe the higher-
level, more practical mechanism that you’ll use most of the time — gesture recogniz‐
ers, which categorize touches into gesture types for you. Finally, I’ll deconstruct the
touch-delivery architecture whereby touches are reported to your views in the first
place.

Touch Events and Views
Imagine a screen that the user is not touching at all: the screen is “finger-free.” Now
the user touches the screen with one or more fingers. From that moment until the
time the screen is once again finger-free, all touches and finger movements together
constitute what Apple calls a single multitouch sequence.

The system reports to your app, during a given multitouch sequence, every change in
finger configuration, so that your app can figure out what the user is doing. Every
such report is a UIEvent. In fact, every report having to do with the same multitouch
sequence is the same UIEvent instance, arriving repeatedly, each time there’s a change
in finger configuration.

Every UIEvent reporting a change in the user’s finger configuration contains one or
more UITouch objects. Each UITouch object corresponds to a single finger; con‐
versely, every finger touching the screen is represented in the UIEvent by a UITouch
object. Once a UITouch instance has been created to represent a finger that has
touched the screen, the same UITouch instance is used to represent that finger
throughout this multitouch sequence until the finger leaves the screen.

Now, it might sound as if the system, during a multitouch sequence, constantly has to
bombard the app with huge numbers of reports. But that’s not really true. The system
needs to report only changes in the finger configuration. For a given UITouch object
(representing, remember, a specific finger), only four things can happen. These are
called touch phases, and are described by a UITouch instance’s phase property
(UITouch.Phase):

.began

The finger touched the screen for the first time; this UITouch instance has just
been created. This is always the first phase, and arrives only once.

.moved

The finger moved upon the screen.

244 | Chapter 5: Touches

.stationary

The finger remained on the screen without moving. Why is it necessary to report
this? Well, remember, once a UITouch instance has been created, it must be
present every time the UIEvent for this multitouch sequence arrives. So if the
UIEvent arrives because something else happened (e.g., a new finger touched the
screen), the UIEvent must report what this finger has been doing, even if it has
been doing nothing.

.ended

The finger left the screen. Like .began, this phase arrives only once. The
UITouch instance will now be destroyed and will no longer appear in UIEvents
for this multitouch sequence.

Those four phases are sufficient to describe everything that a finger can do. Actually,
there is one more possible phase:

.cancelled

The system has aborted this multitouch sequence because something interrupted
it. What might interrupt a multitouch sequence? There are many possibilities.
Perhaps the user clicked the Home button or the screen lock button in the mid‐
dle of the sequence. A local notification alert may have appeared (Chapter 13);
on an iPhone, a call may have come in. And as we shall see, a gesture recognizer
recognizing its gesture may also trigger touch cancellation. If you’re dealing with
touches yourself, you cannot afford to ignore touch cancellations; they are your
opportunity to get things into a coherent state when the sequence is interrupted.

When a UITouch first appears (.began), your app works out which UIView it is asso‐
ciated with. (I’ll give full details, later in this chapter, as to how it does that.) This
view is then set as the touch’s view property, and remains so; from then on, this
UITouch is always associated with this view (until that finger leaves the screen).

The UITouches that constitute a UIEvent might be associated with different views.
Accordingly, one and the same UIEvent is distributed to all the views of all the
UITouches it contains. Conversely, if a view is sent a UIEvent, it’s because that
UIEvent contains at least one UITouch whose view is this view.

If every UITouch in a UIEvent associated with a certain UIView has the
phase .stationary, that UIEvent is not sent to that UIView. There’s no point,
because as far as that view is concerned, nothing happened.

Do not retain a reference to a UITouch or UIEvent object over time; it is mutable
and doesn’t belong to you. If you want to save touch information, extract and
save the information, not the touch itself.

Touch Events and Views | 245

Receiving Touches
A UIResponder, and therefore a UIView, has four touch methods corresponding to
the four UITouch phases that require UIEvent delivery. A UIEvent is delivered to a
view by calling one of these methods:

touchesBegan(_:with:)

A finger touched the screen, creating a UITouch.

touchesMoved(_:with:)

A finger previously reported to this view with touchesBegan(_:with:) has
moved. (On a device with 3D touch, “moved” might mean a change of pressure
rather than location.)

touchesEnded(_:with:)

A finger previously reported to this view with touchesBegan(_:with:) has left
the screen.

touchesCancelled(_:with:)

We are bailing out on a finger previously reported to this view with touches-
Began(_:with:).

The parameters of the touch methods are:

The relevant touches
These are the event’s touches whose phase corresponds to the name of the
method and (normally) whose view is this view. They arrive as a Set. If there is
only one touch in the set, or if any touch in the set will do, you can retrieve it
with first (a set is unordered, so which element is first is arbitrary).

The event
This is the UIEvent instance. It contains its touches as a Set, which you can
retrieve with the allTouches message. This means all the event’s touches, includ‐
ing but not necessarily limited to those in the first parameter; there might be
touches in a different phase or intended for some other view. You can call
touches(for:) to ask for the set of touches associated with a particular view or
window.

When we say that a certain view is receiving a touch, that is a shorthand expression
meaning that it is being sent a UIEvent containing this UITouch, over and over, by
calling one of its touch methods, corresponding to the phase this touch is in, from the
time the touch is created until the time it is destroyed.

A UITouch has some useful methods and properties:

246 | Chapter 5: Touches

location(in:), previousLocation(in:)
The current and previous location of this touch with respect to the coordinate
system of a given view. The view you’ll be interested in will often be self or
self.superview; supply nil to get the location with respect to the window. The
previous location will be of interest only if the phase is .moved.

timestamp

When the touch last changed. A touch is timestamped when it is created
(.began) and each time it moves (.moved). There can be a delay between the
occurrence of a physical touch and the delivery of the corresponding UITouch;
to learn about the timing of touches, consult the timestamp, not the clock.

tapCount

If two touches are in roughly the same place in quick succession, and the first one
is brief, the second one may be characterized as a repeat of the first. They are dif‐
ferent touch objects, but the second will be assigned a tapCount one larger than
the previous one. The default is 1, so if a touch’s tapCount is 3, then this is the
third tap in quick succession in roughly the same spot.

view

The view with which this touch is associated.

majorRadius, majorRadiusTolerance
Respectively, the radius of the touch (approximately half its size) and the uncer‐
tainty of that measurement, in points.

A UITouch carries some additional information that may be useful if the touch
arrived through an Apple Pencil rather than a finger, such as how the pencil is ori‐
ented.

Here are some additional UIEvent properties:

type

This will be UIEvent.EventType.touches. There are other event types, but
you’re not going to receive any of them this way.

timestamp

When the event occurred.

You can reduce the latency between the user’s touches and your app’s rendering to
the screen. On certain devices, the touch detection rate is doubled or even quadru‐
pled, and you can ask for the extra touches. On all devices, a few future touches may
be predicted, and you can ask for these. Such features would be useful particularly in
a drawing app.

Receiving Touches | 247

Restricting Touches
A number of UIView properties restrict the delivery of touches to particular views:

isUserInteractionEnabled

If set to false, this view (along with its subviews) is excluded from receiving
touches. Touches on this view or one of its subviews fall through to a view
behind it.

alpha

If set to 0.0 (or extremely close to it), this view (along with its subviews) is exclu‐
ded from receiving touches. Touches on this view or one of its subviews fall
through to a view behind it.

isHidden

If set to true, this view (along with its subviews) is excluded from receiving
touches. This makes sense, since from the user’s standpoint, the view and its sub‐
views are not even present.

isMultipleTouchEnabled

If set to false, this view never receives more than one touch simultaneously;
once it receives a touch, it doesn’t receive any other touches until the first touch
has ended.

isExclusiveTouch

A view whose isExclusiveTouch is true receives a touch only if no other views
in the same window have touches associated with them; conversely, once a view
whose isExclusiveTouch is true has received a touch, then while that touch
exists, no other view in the same window receives any touches. (This is the only
one of these properties that can’t be set in the nib editor.)

A view can receive touches and yet be completely invisible because its background
color is .clear. So this is an invisible touchable view. You can configure an invisible
touchable view so that touches on this view do not fall through to the views behind it;
that can be a useful trick. Later I’ll give an example of an invisible touchable view that
lets some touches fall through but not others.

If a superview’s clipsToBounds is false, then a subview that is outside the bounds of
the superview is visible. But any part of a subview that is outside the bounds of its
superview cannot be touched. So you can end up unintentionally with a view that is
visible but partially or totally untouchable. That’s very confusing to your users, and
might be confusing to you! Getting yourself into this situation, and then wondering
why your view isn’t responding normally to touches, is a common beginner mistake.
This behavior has to do with how hit-testing works; later in this chapter, I’ll explain
that, along with a way of changing it.

248 | Chapter 5: Touches

Interpreting Touches
Once you receive calls in your touch methods, what do those touches mean? Some‐
times they don’t mean anything special; the raw touches are all you need. In a draw‐
ing program, you might want to know quite literally what the user’s finger is doing
and no more, and the touch methods will tell you. Most of the time, however, the
user’s touches do have meaning, and you will want to interpret those touches. What is
the user doing? What are the user’s intentions?

Thanks to gesture recognizers (discussed later in this chapter), in most cases you
won’t have to interpret touches at all; you’ll let a gesture recognizer do most of that
work. Even so, it is beneficial to be conversant with the nature of touch interpreta‐
tion; this will help you use, subclass, and create gesture recognizers. Furthermore, not
every touch sequence can be codified through a gesture recognizer; sometimes,
directly interpreting touches is the best approach.

To figure out what’s going on as touches are received by a view, your code must
essentially function as a kind of state machine. You’ll receive various touch method
calls, and your response will depend in part upon what happened previously, so you’ll
have to record somehow, probably in instance properties, whatever information
you’ll need subsequently in order to decide what to do when the next touch method is
called. Such an architecture can make writing and maintaining touch-analysis code
quite tricky.

To illustrate the business of interpreting touches, we’ll start with a view that can be
dragged with the user’s finger. For simplicity, I’ll assume that this view receives only a
single touch at a time. (This assumption is easy to enforce by setting the view’s
isMultipleTouchEnabled to false, which is the default.)

The trick to making a view follow the user’s finger is to realize that a view is posi‐
tioned by its center, which is in superview coordinates, but the user’s finger might
not be at the center of the view. So at every stage of the drag we must change the
view’s center by the change in the user’s finger position in superview coordinates:

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {
 let t = touches.first!
 let loc = t.location(in:self.superview)
 let oldP = t.previousLocation(in:self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 c.x += deltaX
 c.y += deltaY
 self.center = c
}

Interpreting Touches | 249

Next, let’s add a restriction that the view can be dragged only vertically or horizon‐
tally. All we have to do is hold one coordinate steady; but which coordinate? Every‐
thing seems to depend on what the user does initially. So we’ll do a one-time test the
first time we receive touchesMoved(_:with:). Now we’re maintaining two Bool state
properties, self.decided and self.horiz:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 self.decided = false
}
override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {
 let t = touches.first!
 if !self.decided {
 self.decided = true
 let then = t.previousLocation(in:self)
 let now = t.location(in:self)
 let deltaX = abs(then.x - now.x)
 let deltaY = abs(then.y - now.y)
 self.horiz = deltaX >= deltaY
 }
 let loc = t.location(in:self.superview)
 let oldP = t.previousLocation(in:self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 if self.horiz {
 c.x += deltaX
 } else {
 c.y += deltaY
 }
 self.center = c
}

Look at how things are trending. We are maintaining multiple state properties, which
we are managing across multiple methods, and our touch method implementation is
divided into branches that depend on the state of our state machine. Our state
machine is very simple, but already our code is becoming difficult to read and to
maintain — and things will only become more messy as we try to make our view’s
behavior more sophisticated.

Another area in which manual touch handling can rapidly prove overwhelming is
when it comes to distinguishing between different gestures that the user might per‐
form on a view. Imagine a view that distinguishes between a finger tapping briefly
and a finger remaining down for a longer time. We can’t know how long a tap is until
it’s over, so we must wait until then before deciding; once again, this requires main‐
taining state in a property (self.time):

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 self.time = touches.first!.timestamp
}
override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {

250 | Chapter 5: Touches

 let diff = e!.timestamp - self.time
 if (diff < 0.4) {
 print("short")
 } else {
 print("long")
 }
}

A similar challenge is distinguishing between a single tap and a double tap. The
UITouch tapCount property already makes this distinction, but that, by itself, is not
enough to help us react differently to the two. Having received a tap whose tapCount
is 1, we must wait long enough (using delayed performance) to give a second tap a
chance to arrive. This is unfortunate, because it means that if the user intends a single
tap, some time will elapse before anything happens in response to it. But there’s noth‐
ing we can readily do about that.

Distributing our various tasks correctly is tricky. We know when we have a double
tap as early as touchesBegan(_:with:), but we respond to the double tap in touches-
Ended(_:with:). Therefore, we use a property (self.single) to communicate
between the two. We don’t start our delayed response to a single tap until touches-
Ended(_:with:), because what matters is the time between the taps as a whole, not
between the starts of the taps:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 let ct = touches.first!.tapCount
 switch ct {
 case 2:
 self.single = false
 default: break
 }
}
override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {
 let ct = touches.first!.tapCount
 switch ct {
 case 1:
 self.single = true
 delay(0.3) {
 if self.single { // no second tap intervened
 print("single tap")
 }
 }
 case 2:
 print("double tap")
 default: break
 }
}

As if that code weren’t confusing enough, let’s now consider combining our detection
for a single or double tap with our earlier code for dragging a view horizontally or
vertically. This is to be a view that can detect four kinds of gesture: a single tap,

Interpreting Touches | 251

a double tap, a horizontal drag, and a vertical drag. We must include the code for all
possibilities and make sure they don’t interfere with each other. The result is horrify‐
ing — a forced join between two already complicated sets of code, along with an
additional pair of state properties (self.drag, self.decidedTapOrDrag) to track the
decision between the tap gestures on the one hand and the drag gestures on the other:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 // be undecided
 self.decidedTapOrDrag = false
 // prepare for a tap
 let ct = touches.first!.tapCount
 switch ct {
 case 2:
 self.single = false
 self.decidedTapOrDrag = true
 self.drag = false
 return
 default: break
 }
 // prepare for a drag
 self.decidedDirection = false
}
override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {
 if self.decidedTapOrDrag && !self.drag {return}
 self.superview!.bringSubviewToFront(self)
 let t = touches.first!
 self.decidedTapOrDrag = true
 self.drag = true
 if !self.decidedDirection {
 self.decidedDirection = true
 let then = t.previousLocation(in:self)
 let now = t.location(in:self)
 let deltaX = abs(then.x - now.x)
 let deltaY = abs(then.y - now.y)
 self.horiz = deltaX >= deltaY
 }
 let loc = t.location(in:self.superview)
 let oldP = t.previousLocation(in:self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 if self.horiz {
 c.x += deltaX
 } else {
 c.y += deltaY
 }
 self.center = c
}
override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {
 if !self.decidedTapOrDrag || !self.drag {
 // end for a tap
 let ct = touches.first!.tapCount

252 | Chapter 5: Touches

 switch ct {
 case 1:
 self.single = true
 delay(0.3) {
 if self.single {
 print("single tap")
 }
 }
 case 2:
 print("double tap")
 default: break
 }
 }
}

That code seems to work, but it’s hard to say whether it covers all possibilities coher‐
ently; it’s barely legible and the logic borders on the mysterious. This is the kind of
situation for which gesture recognizers were devised.

Gesture Recognizers
Writing and maintaining a state machine that interprets touches across a combina‐
tion of three or four touch methods is hard enough when a view confines itself to
expecting only one kind of gesture, such as dragging. It becomes even more involved
when a view wants to accept and respond differently to different kinds of gesture.
Furthermore, many types of gesture are conventional and standard; it seems insane
to require every developer, independently, to devise a way of responding to what is,
in effect, a universal vocabulary.

The solution is gesture recognizers, which standardize common gestures and allow
the code for different gestures to be separated and encapsulated into different objects.
And thanks to gesture recognizers, it is unnecessary to subclass UIView merely in
order to implement touch interpretation.

Gesture Recognizer Classes
A gesture recognizer (a subclass of UIGestureRecognizer) is an object whose job is to
detect that a multitouch sequence equates to one particular type of gesture. It is
attached to a UIView. The gesture recognizers attached to a view are its gesture-
Recognizers; this property is settable (and might be nil). You can also manage ges‐
ture recognizers individually with these methods:

• addGestureRecognizer(_:)

• removeGestureRecognizer(_:)

A UIGestureRecognizer implements the four touch methods, but it is not a responder
(a UIResponder), so it does not participate in the responder chain. If, however, a new

Gesture Recognizers | 253

touch is going to be delivered to a view, it is also associated with and delivered to that
view’s gesture recognizers if it has any, and to that view’s superview’s gesture recog‐
nizers if it has any, and so on up the view hierarchy. So the place of a gesture recog‐
nizer in the view hierarchy matters, even though it isn’t part of the responder chain.

UITouch and UIEvent provide complementary ways of learning how touches and
gesture recognizers are associated:

• UITouch’s gestureRecognizers lists the gesture recognizers that are currently
handling this touch.

• UIEvent’s touches(for:) can take a gesture recognizer parameter; it then lists
the touches that are currently being handled by that gesture recognizer.

Each gesture recognizer maintains its own state as touch events arrive, building up
evidence as to what kind of gesture this is. When one of them decides that it has rec‐
ognized its own particular type of gesture, it emits either a single message (a finger
has tapped) or a series of messages (a finger is moving); the distinction here is
between a discrete and a continuous gesture.

What message a gesture recognizer emits, and what object it sends that message to, is
configured through a target–action dispatch table attached to the gesture recognizer.
A gesture recognizer is rather like a UIControl in this regard; indeed, one might say
that a gesture recognizer simplifies the touch handling of any view to be like that of a
control. The difference is that one control may report several different control events,
whereas each gesture recognizer reports only one gesture type, with different gestures
being reported by different gesture recognizers.

UIGestureRecognizer itself is abstract, providing methods and properties to its sub‐
classes. Among these are:

init(target:action:)

The designated initializer. The gesture recognizer will signal that something has
happened by sending the action message to the target. Further target–action
pairs may be added with addTarget(_:action:) and removed with remove-
Target(_:action:).

Two forms of action: selector are possible: either there is no parameter, or there
is a single parameter which will be the gesture recognizer. Most commonly, you’ll
use the second form, so that the target can identify, query, and communicate
with the gesture recognizer.

numberOfTouches

How many touches the gesture recognizer is tracking. In general, this is the num‐
ber of fingers the user must employ to make the gesture that this gesture recog‐
nizer is interested in. The touches themselves are inaccessible by way of the
gesture recognizer.

254 | Chapter 5: Touches

location(ofTouch:in:)

The first parameter is an index number (smaller than numberOfTouches) identi‐
fying the touch. The second parameter is the view whose coordinate system you
want to use.

isEnabled

A convenient way to turn a gesture recognizer off without having to remove it
from its view.

state, view
I’ll discuss state later on. The view is the view to which this gesture recognizer is
attached; it is an Optional.

Built-in UIGestureRecognizer subclasses are provided for six common gesture types:
tap, pinch (inward or outward), pan (drag), swipe, rotate, and long press. Each
embodies properties and methods likely to be needed for each type of gesture, either
in order to configure the gesture recognizer beforehand or in order to query it as to
the status of an ongoing gesture:

UITapGestureRecognizer (discrete)
Configuration: numberOfTapsRequired, numberOfTouchesRequired (“touches”
means simultaneous fingers).

UIPinchGestureRecognizer (continuous)
Two fingers moving toward or away from each other. Status: scale, velocity.

UIRotationGestureRecognizer (continuous)
Two fingers moving round a common center. Status: rotation, velocity.

UISwipeGestureRecognizer (discrete)
A straight-line movement in one of the four cardinal directions. Configuration:
direction (meaning permitted directions, a bitmask), numberOfTouches-

Required.

UIPanGestureRecognizer (continuous)
Dragging. Configuration: minimumNumberOfTouches, maximumNumberOfTouches.
Status: translation(in:), setTranslation(_:in:), velocity(in:); the coordi‐
nate system of the specified view is used.

UIScreenEdgePanGestureRecognizer
A UIPanGestureRecognizer subclass. It recognizes a pan gesture that starts at an
edge of the screen. It adds a configuration property, edges, a UIRectEdge; despite
the name (and the documentation), this must be set to a single edge.

Gesture Recognizers | 255

UILongPressGestureRecognizer (continuous)
Configuration: numberOfTapsRequired, numberOfTouchesRequired, minimum-
PressDuration, allowableMovement. The numberOfTapsRequired is the count of
taps before the tap that stays down, so it can be 0 (the default). The allowable-
Movement setting lets you compensate for the fact that the user’s finger is unlikely
to remain steady during an extended press: we need to provide some limit before
deciding that this gesture is, say, a drag, and not a long press after all. On the
other hand, once the long press is recognized, the finger is permitted to drag as
part of the long press gesture.

UIGestureRecognizer also provides a location(in:) method. This is a single point,
even if there are multiple touches. The subclasses implement this variously. Typically,
the location is where the touch is if there’s a single touch, but it’s a sort of midpoint
(“centroid”) if there are multiple touches.

We already know enough to implement, using a gesture recognizer, a view that
responds to a single tap, or a view that responds to a double tap. Here’s code (proba‐
bly from our view controller’s viewDidLoad) that implements a view (self.v) that
responds to a single tap by calling our singleTap method:

let t = UITapGestureRecognizer(target:self, action:#selector(singleTap))
self.v.addGestureRecognizer(t)

And here’s code that implements a view (self.v2) that responds to a double tap by
calling our doubleTap method:

let t = UITapGestureRecognizer(target:self, action:#selector(doubleTap))
t.numberOfTapsRequired = 2
self.v2.addGestureRecognizer(t)

For a continuous gesture like dragging, we need to know both when the gesture is in
progress and when the gesture ends. This brings us to the subject of a gesture recog‐
nizer’s state.

A gesture recognizer implements a notion of states (the state property, UIGesture‐
Recognizer.State); it passes through these states in a definite progression. The gesture
recognizer remains in the .possible state until it can make a decision one way or the
other as to whether this is in fact the correct gesture. The documentation neatly lays
out the possible progressions:

Wrong gesture
.possible → .failed. No action message is sent.

Discrete gesture (like a tap), recognized
.possible → .ended. One action message is sent, when the state changes
to .ended.

256 | Chapter 5: Touches

Continuous gesture (like a drag), recognized
.possible → .began → .changed (repeatedly) → .ended. Action messages are
sent once for .began, as many times as necessary for .changed, and once
for .ended.

Continuous gesture, recognized but later cancelled
.possible → .began → .changed (repeatedly) → .cancelled. Action messages
are sent once for .began, as many times as necessary for .changed, and once
for .cancelled.

The same action message arrives at the same target every time, so the action method
must differentiate by asking about the gesture recognizer’s state. The usual imple‐
mentation involves a switch statement.

To illustrate, we will implement, using a gesture recognizer, a view that lets itself be
dragged around in any direction by a single finger. Our maintenance of state is
greatly simplified, because a UIPanGestureRecognizer maintains a delta (translation)
for us. This delta, available using translation(in:), is reckoned from the touch’s
initial position. We don’t even need to record the view’s original center, because we
can call setTranslation(_:in:) to reset the UIPanGestureRecognizer’s delta every
time:

func viewDidLoad {
 super.viewDidLoad()
 let p = UIPanGestureRecognizer(target:self, action:#selector(dragging))
 self.v.addGestureRecognizer(p)
}
@objc func dragging(_ p : UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .began, .changed:
 let delta = p.translation(in:v.superview)
 var c = v.center
 c.x += delta.x; c.y += delta.y
 v.center = c
 p.setTranslation(.zero, in: v.superview)
 default: break
 }
}

To illustrate the use of a UIPanGestureRecognizer’s velocity(in:), let’s imagine a
view that the user can drag, but which then springs back to where it was. We can
express “springs back” with a spring animation (Chapter 4). We’ll just add an .ended
case to our dragging(_:) method (dest is the original center of our view v):

case .ended, .cancelled:
 let anim = UIViewPropertyAnimator(
 duration: 0.4,
 timingParameters: UISpringTimingParameters(

Gesture Recognizers | 257

 dampingRatio: 0.6,
 initialVelocity: .zero))
 anim.addAnimations {
 v.center = dest
 }
 anim.startAnimation()

That’s good, but it would be more realistic if the view had some momentum at the
moment the user lets go of it. If the user drags the view quickly away from its home
and releases it, the view should keep moving a little in the same direction before
springing back into place. That’s what the spring animation’s initialVelocity:
parameter is for! We can easily find out what the view’s velocity is, at the moment the
user releases it, by asking the gesture recognizer:

let vel = p.velocity(in: v.superview!)

Unfortunately, we cannot use this value directly as the spring animation’s initial-
Velocity; there’s a type impedance mismatch. The view’s velocity is expressed as a
CGPoint measured in points per second; but the spring’s initialVelocity is
expressed as a CGVector measured as a proportion of the distance to be traveled over
the course of the animation. Fortunately, the conversion is easy:

case .ended, .cancelled:
 let vel = p.velocity(in: v.superview!)
 let c = v.center
 let distx = abs(c.x - dest.x)
 let disty = abs(c.y - dest.y)
 let anim = UIViewPropertyAnimator(
 duration: 0.4,
 timingParameters: UISpringTimingParameters(
 dampingRatio: 0.6,
 initialVelocity: CGVector(vel.x/distx, vel.y/disty)))
 anim.addAnimations {
 v.center = dest
 }
 anim.startAnimation()

A pan gesture recognizer can be used also to make a view draggable under the influ‐
ence of a UIDynamicAnimator (Chapter 4). The strategy here is that the view is
attached to one or more anchor points through a UIAttachmentBehavior; as the user
drags, we move the anchor point(s), and the view follows. In this example, I set up
the whole UIKit dynamics “stack” of objects as the gesture begins, anchoring the view
at the point where the touch is; then I move the anchor point to stay with the touch.
Instance properties self.anim and self.att store the UIDynamicAnimator and the
UIAttachmentBehavior, respectively; self.view is our view’s superview, and is the
animator’s reference view:

258 | Chapter 5: Touches

@objc func dragging(_ p: UIPanGestureRecognizer) {
 switch p.state {
 case .began:
 self.anim = UIDynamicAnimator(referenceView:self.view)
 let loc = p.location(ofTouch:0, in:p.view)
 let cen = p.view!.bounds.center
 let off = UIOffset(horizontal: loc.x-cen.x, vertical: loc.y-cen.y)
 let anchor = p.location(ofTouch:0, in:self.view)
 let att = UIAttachmentBehavior(item:p.view!,
 offsetFromCenter:off, attachedToAnchor:anchor)
 self.anim.addBehavior(att)
 self.att = att
 case .changed:
 self.att.anchorPoint = p.location(ofTouch:0, in: self.view)
 default:
 self.anim = nil
 }
}

The outcome is that the view both moves and rotates in response to dragging, like a
plate being pulled about on a table by a single finger.

By adding behaviors to the dynamic animator, we can limit further what the view is
permitted to do as it is being dragged by its anchor. Imagine a view that can be lifted
vertically and dropped, but cannot be moved horizontally. As I demonstrated earlier,
you can prevent horizontal dragging through the implementation of your response to
touch events (and later in this chapter, I’ll show how to do this by subclassing UIPan‐
GestureRecognizer). But the same sort of limitation can be imposed by way of the
underlying physics of the world in which the view exists, perhaps with a sliding
attachment.

Gesture Recognizer Conflicts
A view can have more than one gesture recognizer associated with it. This isn’t a mat‐
ter merely of multiple recognizers attached to a single view; as I have said, if a view is
touched, not only its own gesture recognizers but also any gesture recognizers
attached to views further up the view hierarchy are in play simultaneously. I like to
think of a view as surrounded by a swarm of gesture recognizers — its own, and those
of its superview, and so on. (In reality, it is a touch that has a swarm of gesture recog‐
nizers; that’s why a UITouch has a gestureRecognizers property, in the plural.)

The superview gesture recognizer swarm comes as a surprise to beginners, but it
makes sense, because without it, certain gestures would be impossible. Imagine a pair
of views, each of which the user can tap individually, but which the user can also
touch simultaneously (one finger on each view) to rotate them together around their
mutual centroid. Neither view can detect the rotation qua rotation, because neither
view receives both touches; only the superview can detect it, so the fact that the views

Gesture Recognizers | 259

themselves respond to touches must not prevent the superview’s gesture recognizer
from operating.

The question naturally arises, then, of what happens when multiple gesture recogniz‐
ers are in play. There is a conflict between these gesture recognizers, each trying to
recognize the current multitouch sequence as its own appropriate gesture. How will it
be resolved?

The rule is simple. In general, by default, once a gesture recognizer succeeds in recog‐
nizing its gesture, any other gesture recognizers associated with its touches are forced
into the .failed state, and whatever touches were associated with those gesture rec‐
ognizers are no longer sent to them; in effect, the first gesture recognizer in a swarm
that recognizes its gesture owns the gesture (and its touches) from then on.

In many cases, this “first past the post” behavior, on its own, will yield exactly the
desired behavior. We can add both our single tap UITapGestureRecognizer and our
UIPanGestureRecognizer to a view and everything will just work; dragging works,
and single tap works:

let t = UITapGestureRecognizer(target:self, action:#selector(singleTap))
self.v.addGestureRecognizer(t)
let p = UIPanGestureRecognizer(target: self, action: #selector(dragging))
self.v.addGestureRecognizer(p)

You can take a hand in how conflicts are resolved, and sometimes you will need to do
so. What happens if we add a double tap gesture recognizer and a single tap gesture
recognizer to the same view? Double tap works, but without preventing the single tap
from working: on a double tap, both the single tap action method and the double tap
action method are called.

If that isn’t what we want, we don’t have to use delayed performance, as we did ear‐
lier. Instead, we can create a dependency between one gesture recognizer and another.
One way to do that is with the UIGestureRecognizer require(toFail:) method.
This method is rather badly named; it doesn’t mean “force this other recognizer to
fail,” but rather, “you can’t succeed unless this other recognizer has failed.” It tells its
recipient to suspend judgment about whether this is its gesture until some other ges‐
ture recognizer (the parameter) has had a chance to decide whether this is its gesture.
In the case of the single tap gesture recognizer and the double tap gesture recognizer,
we want the single tap gesture to suspend judgment until the double tap gesture rec‐
ognizer can decide whether this is a double tap:

let t2 = UITapGestureRecognizer(target:self, action:#selector(doubleTap))
t2.numberOfTapsRequired = 2
self.v.addGestureRecognizer(t2)
let t1 = UITapGestureRecognizer(target:self, action:#selector(singleTap))
t1.require(toFail:t2) // *
self.v.addGestureRecognizer(t1)

260 | Chapter 5: Touches

Another conflict that can arise is between a gesture recognizer and a view that already
knows how to respond to the same gesture, such as a UIControl. This problem pops
up particularly when the gesture recognizer belongs to the UIControl’s superview.
The UIControl’s mere presence does not “block” the superview’s gesture recognizer
from recognizing a gesture on the UIControl, even if it is a UIControl that responds
autonomously to touches. Your window’s root view might have a UITapGesture‐
Recognizer attached to it (perhaps because you want to be able to recognize taps on
the background); if there is also a UIButton within that view, how is the tap gesture
recognizer to ignore a tap on the button?

The UIView instance method gestureRecognizerShouldBegin(_:) solves the prob‐
lem. It is called automatically; to modify its behavior, use a custom UIView subclass
and override it. Its parameter is a gesture recognizer belonging to this view or to a
view further up the view hierarchy. That gesture recognizer has recognized its gesture
as taking place in this view; but by returning false, the view can tell the gesture rec‐
ognizer to bow out and do nothing, not sending any action messages, and permitting
this view to respond to the touch as if the gesture recognizer weren’t there.

For example, a UIButton could return false for a single tap UITapGesture‐
Recognizer; a single tap on the button would then trigger the button’s action message
and not the gesture recognizer’s action message. And in fact a UIButton, by default,
does return false for a single tap UITapGestureRecognizer whose view is not the
UIButton itself.

Other built-in controls may also implement gestureRecognizerShouldBegin(_:) in
such a way as to prevent accidental interaction with a gesture recognizer; the docu‐
mentation says that a UISlider implements it in such a way that a UISwipeGesture‐
Recognizer won’t prevent the user from sliding the “thumb,” and there may be other
cases that aren’t documented explicitly. Naturally, you can take advantage of this fea‐
ture in your own UIView subclasses as well.

There are additional ways of resolving possible gesture recognizer conflicts through a
gesture recognizer’s delegate or with a gesture recognizer subclass.

Gesture Recognizer Delegate
A gesture recognizer can have a delegate (UIGestureRecognizerDelegate), which can
perform two types of task: blocking operation and mediating conflict.

These delegate methods can block a gesture recognizer’s operation:

gestureRecognizerShouldBegin(_:)

Sent to the delegate before the gesture recognizer passes out of the .possible
state; return false to force the gesture recognizer to proceed to the .failed
state. This happens after gestureRecognizerShouldBegin(_:) has been sent to

Gesture Recognizers | 261

the view in which the touch took place; that view must not have returned false,
or we wouldn’t have reached this stage.

gestureRecognizer(_:shouldReceive:)

Sent to the delegate before a touch is sent to the gesture recognizer’s touches-
Began(_:with:) method; return false to prevent that touch from ever being
sent to the gesture recognizer.

These delegate methods can mediate gesture recognition conflict:

gestureRecognizer(_:shouldRecognizeSimultaneouslyWith:)

Sent when a gesture recognizer, having recognized its gesture, is about to force
another gesture recognizer to fail, to the delegates of both gesture recognizers.
Return true to prevent that failure, allowing both gesture recognizers to operate
simultaneously.

gestureRecognizer(_:shouldRequireFailureOf:)

gestureRecognizer(_:shouldBeRequiredToFailBy:)

Sent very early in the life of a gesture, when all gesture recognizers in a view’s
swarm are still in the .possible state, to the delegates of all of them, pairing the
gesture recognizer whose delegate this is with each of the other gesture recogniz‐
ers in the swarm. Return true to prioritize between this pair of gesture recogniz‐
ers, saying that one cannot succeed until the other has first failed. In essence,
these delegate methods turn the decision made once and permanently in
require(toFail:) into a live decision that can be made freshly every time a ges‐
ture occurs.

As an example, we will use delegate messages to combine a UILongPressGesture‐
Recognizer and a UIPanGestureRecognizer. The user must perform a tap-and-a-half
(tap, then tap and hold) to “get the view’s attention,” which we will indicate by a puls‐
ing animation on the view; then and only then, the user can drag the view.

The UIPanGestureRecognizer’s action method will take care of the drag, using the
code shown earlier in this chapter. The UILongPressGestureRecognizer’s action
method will take care of starting and stopping the animation:

@objc func longPress(_ lp:UILongPressGestureRecognizer) {
 switch lp.state {
 case .began:
 let anim = CABasicAnimation(keyPath: #keyPath(CALayer.transform))
 anim.toValue = CATransform3DMakeScale(1.1, 1.1, 1)
 anim.fromValue = CATransform3DIdentity
 anim.repeatCount = .greatestFiniteMagnitude
 anim.autoreverses = true
 lp.view!.layer.add(anim, forKey:nil)
 case .ended, .cancelled:

262 | Chapter 5: Touches

 lp.view!.layer.removeAllAnimations()
 default: break
 }
}

As we created our gesture recognizers, we kept a reference to the UILongPress‐
GestureRecognizer (self.longPresser). We also made ourself the UIPanGesture‐
Recognizer’s delegate, so we will receive delegate messages. If the
UIPanGestureRecognizer tries to declare success while the UILongPressGesture‐
Recognizer’s state is .failed or still at .possible, we prevent it. If the UILongPress‐
GestureRecognizer succeeds, we permit the UIPanGestureRecognizer to operate as
well:

func gestureRecognizerShouldBegin(_ g: UIGestureRecognizer) -> Bool {
 switch self.longPresser.state {
 case .possible, .failed:
 return false
 default:
 return true
 }
}
func gestureRecognizer(_ g: UIGestureRecognizer,
 shouldRecognizeSimultaneouslyWith g2: UIGestureRecognizer) -> Bool {
 return true
}

The result is that the view can be dragged only while it is pulsing; in effect, what
we’ve done is to compensate, using delegate methods, for the fact that UIGesture‐
Recognizer has no require(toSucceed:) method.

Subclassing Gesture Recognizers
To subclass UIGestureRecognizer or a built-in gesture recognizer subclass:

• You’ll need to import UIKit.UIGestureRecognizerSubclass. This allows you to
set a gesture recognizer’s state property (which is otherwise read-only), and
exposes declarations for the methods you may need to override.

• Override any relevant touch methods (as if the gesture recognizer were a UIRes‐
ponder); if you’re subclassing a built-in gesture recognizer subclass, you will
almost certainly call super so as to take advantage of the built-in behavior. In
overriding touch methods, try to think like a gesture recognizer: as these meth‐
ods are called, the gesture recognizer is setting its state, and you must participate
coherently in that process.

To illustrate, we will subclass UIPanGestureRecognizer so as to implement a view
that can be moved only horizontally or vertically. Our strategy will be to make two
UIPanGestureRecognizer subclasses — one that allows only horizontal movement,
and another that allows only vertical movement. They will make their recognition

Gesture Recognizers | 263

decisions in a mutually exclusive manner, so we can attach an instance of each to the
same view. This encapsulates the decision-making logic in a gorgeously object-
oriented way — a far cry from the spaghetti code we wrote earlier to do this same
task.

I will show only the code for the horizontal drag gesture recognizer, because the ver‐
tical recognizer is symmetrically identical. We maintain just one property, self.orig-
Loc, which we will use once to determine whether the user’s initial movement is
horizontal. We override touchesBegan(_:with:) to set our property with the first
touch’s location:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent) {
 self.origLoc = touches.first!.location(in:self.view!.superview)
 super.touchesBegan(touches, with:e)
}

We then override touchesMoved(_:with:); all the recognition logic is here. This
method will be called for the first time with the state still at .possible. At that
moment, we look to see if the user’s movement is more horizontal than vertical. If it
isn’t, we set the state to .failed. But if it is, we just step back and let the superclass do
its thing:

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent) {
 if self.state == .possible {
 let loc = touches.first!.location(in:self.view!.superview)
 let deltaX = abs(loc.x - self.origLoc.x)
 let deltaY = abs(loc.y - self.origLoc.y)
 if deltaY >= deltaX {
 self.state = .failed
 }
 }
 super.touchesMoved(touches, with:e)
}

If this gesture recognizer is attached to a view, we now have a view that moves only if
the user’s initial gesture is horizontal. But that isn’t the entirety of what we want; we
want a view that moves only horizontally. To implement that, we’ll override
translation(in:) so that our gesture recognizer lies to its client about where the
user’s finger is:

override func translation(in view: UIView?) -> CGPoint {
 var proposedTranslation = super.translation(in:view)
 proposedTranslation.y = 0
 return proposedTranslation
}

That example was simple, because we subclassed a fully functional built-in
UIGestureRecognizer subclass. If you were to write your own UIGestureRecognizer
subclass entirely from scratch, there would be more work to do:

264 | Chapter 5: Touches

Touch methods
You should definitely implement all four touch methods. Their job, at a mini‐
mum, is to advance the gesture recognizer through the canonical progression of
its states. When the first touch arrives at a gesture recognizer, its state will
be .possible; you never explicitly set the recognizer’s state to .possible your‐
self. As soon as you know this can’t be our gesture, you set the state to .failed.
(Apple says that a gesture recognizer should “fail early, fail often.”) If the gesture
gets past all the failure tests, you set the state instead either to .ended (for a dis‐
crete gesture) or to .began (for a continuous gesture); if .began, then you might
set it to .changed, and ultimately you must set it to .ended. Don’t concern your‐
self with the sending of action messages; they will be sent automatically at the
appropriate moments.

reset method
You should also probably implement reset. This is called after you reach the end
of the progression of states to notify you that the gesture recognizer’s state is
about to be set back to .possible; it is your chance to return your state machine
to its starting configuration. This is important because your gesture recognizer
might stop receiving touches without notice. Just because it gets a touches-
Began(_:with:) call for a particular touch doesn’t mean it will ever get touches-
Ended(_:with:) for that touch. If your gesture recognizer fails to recognize its
gesture, either because it declares failure or because it is still in the .possible
state when another gesture recognizer recognizes, it won’t get any more touch
method calls for any of the touches that were being sent to it. reset is the one
reliable signal that it’s time to clean up and get ready to receive the beginning of
another possible gesture.

You can incorporate delegate-like behavior into a gesture recognizer subclass, by
overriding the following methods:

• canPrevent(_:)

• canBePrevented(by:)

• shouldRequireFailure(of:)

• shouldBeRequiredToFail(by:)

The prevent methods are similar to the delegate shouldBegin method, and the fail
methods are similar to the delegate fail methods. By implementing them, you can
mediate gesture recognizer conflict at the class level. The built-in gesture recognizer
subclasses already do this; that is why a single tap UITapGestureRecognizer does not,
by recognizing its gesture, cause the failure of a double tap UITapGestureRecognizer.

You can also, in a gesture recognizer subclass, send ignore(_:for:) directly to a ges‐
ture recognizer (typically to self) to ignore a specific touch of a specific event. This

Gesture Recognizers | 265

has the same effect as the delegate method gestureRecognizer(_:shouldReceive:)
returning false, blocking all future delivery of that touch to the gesture recognizer.
You might use this to ignore a new touch that arrives when you’re in the middle of an
already recognized gesture.

Gesture Recognizers in the Nib
Instead of instantiating a gesture recognizer in code, you can create and configure it
in a .xib or .storyboard file. In the nib editor, drag a gesture recognizer from the
Library onto a view; the gesture recognizer becomes a top-level nib object, and the
view’s gestureRecognizers outlet is connected to the gesture recognizer. (You can
add more than one gesture recognizer to a view in the nib: the view’s gesture-
Recognizers property is an array, and its gestureRecognizers outlet is an outlet col‐
lection.) The gesture recognizer is a full-fledged nib object, so you can make an outlet
to it. A view retains its gesture recognizers, so there will usually be no need for addi‐
tional memory management on a gesture recognizer instantiated from a nib.

The gesture recognizer’s properties are configurable in the Attributes inspector, and
the gesture recognizer has a delegate outlet. To configure a gesture recognizer’s tar‐
get–action pair in the nib editor, treat it like a UIControl’s control event. The action
method’s signature should be marked @IBAction, and it should take a single parame‐
ter, which will be a reference to the gesture recognizer. You can form the action in
any of the same ways as for a control action. A gesture recognizer can have multiple
target–action pairs, but only one target–action pair can be configured for a gesture
recognizer using the nib editor.

3D Touch Press Gesture
On a device with 3D touch, you can treat pressing as a kind of gesture. It isn’t for‐
mally a gesture; there is, unfortunately, no 3D touch press gesture recognizer. Never‐
theless, your code can detect a 3D touch press, responding dynamically to the degree
of force being applied.

The simplest approach is to use the UIPreviewInteraction class. You initialize a
UIPreviewInteraction object with the view in which pressing is to be detected, retain
the UIPreviewInteraction object, and assign it a delegate (adopting the UIPreview‐
InteractionDelegate protocol). The delegate is sent these messages, starting when the
user begins to apply force within the view:

previewInteractionShouldBegin(_:)

Optional. Return false to ignore this press gesture. Among other things, this
method might query the UIPreviewInteraction’s view and location(in:) to
decide how to proceed.

266 | Chapter 5: Touches

previewInteraction(_:didUpdatePreviewTransition:ended:)

The amount of applied force has changed. The amount of force is reported (in
the second parameter) as a value between 0 and 1. When 1 is reached, ended: is
also true, and the device vibrates.

previewInteraction(_:didUpdateCommitTransition:ended:)

Optional. Behaves exactly like the previous method. If implemented, the gesture
has two stages, increasing from 0 to 1 and reported by the previous delegate
method, and then increasing again from 0 to 1 and reported by this method.

previewInteractionDidCancel(_:)

The user has backed off the gesture completely before reaching a full press (or
the touch was cancelled for some other reason).

To illustrate, imagine a sort of Whack-a-Mole game where the user is to remove
views by 3D pressing each one. (In real life, there would also need to be a way to play
the game on a device that lacks 3D touch.) As the user presses, we’ll apply a scale
transform to the view, increasing its apparent size in proportion to the amount of
force, while at the same time fading the view away by decreasing its opacity; if the
user reaches a full press, we’ll remove the view completely.

We’ll implement this in the simplest possible way. The code will all go into the
pressable view itself. When the view is added to its superview, it creates and config‐
ures the UIPreviewInteraction object, storing it in an instance property (self.prev):

override func didMoveToSuperview() {
 self.prev = UIPreviewInteraction(view: self)
 self.prev.delegate = self
}

As force reports arrive, we’ll increase the view’s scale transform and decrease its
opacity accordingly:

func previewInteraction(_ : UIPreviewInteraction,
 didUpdatePreviewTransition prog: CGFloat,
 ended: Bool) {
 let scale = prog + 1
 self.transform = CGAffineTransform(scaleX: scale, y: scale)
 let alph = ((1-prog)*0.6) + 0.3
 self.alpha = alph
 if ended { // device vibrates
 self.removeFromSuperview()
 }
}

The view now expands and explodes off the screen with a satisfying pop (“haptic
feedback”) as the user presses on it. If the user backs off the gesture completely, we’ll
remove the transform and restore our opacity:

3D Touch Press Gesture | 267

func previewInteractionDidCancel(_ : UIPreviewInteraction) {
 self.transform = .identity
 self.alpha = 1
}

Alternatively, we might use a property animator, taking advantage of its ability to
manage a “frozen” animation (“Frozen View Animation” on page 183). Here’s a
rewrite in which a property animator is used (held in an instance property,
self.anim):

func makeAnimator() {
 self.anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 [unowned self] in
 self.alpha = 0.3
 self.transform = CGAffineTransform(scaleX: 2, y: 2)
 }
}
override func didMoveToSuperview() {
 self.prev = UIPreviewInteraction(view: self)
 self.prev.delegate = self
 self.makeAnimator()
}
func previewInteractionDidCancel(_ : UIPreviewInteraction) {
 self.anim.pauseAnimation()
 self.anim.isReversed = true
 self.anim.addCompletion { _ in self.makeAnimator() }
 self.anim.continueAnimation(
 withTimingParameters: nil, durationFactor: 0.01)
}
func previewInteraction(_ : UIPreviewInteraction,
 didUpdatePreviewTransition prog: CGFloat,
 ended: Bool) {
 self.anim.fractionComplete = min(max(prog, 0.05), 0.95)
 if ended {
 self.anim.stopAnimation(false)
 self.anim.finishAnimation(at: .end)
 self.removeFromSuperview()
 }
}

Touch Delivery
Here’s the full standard procedure by which a touch is delivered to views and gesture
recognizers:

• When a new touch appears, the application performs hit-testing to determine the
view that was touched. This view will be permanently associated with this touch,
and is called, appropriately, the hit-test view. The logic of ignoring a view in
response to its isUserInteractionEnabled, isHidden, and alpha properties is
implemented by denying this view the ability to become the hit-test view.

268 | Chapter 5: Touches

• When the touch situation changes, the application calls its own sendEvent(_:),
which in turn calls the window’s sendEvent(_:). The window delivers each of an
event’s touches by calling the appropriate touch method(s):
▪ As a touch first appears, the logic of obedience to isMultipleTouchEnabled

and isExclusiveTouch is considered. If permitted by that logic:
⚬ The touch is delivered to the hit-test view’s swarm of gesture recognizers.
⚬ The touch is delivered to the hit-test view itself.

▪ If a gesture is recognized by a gesture recognizer, then for any touch associ‐
ated with this gesture recognizer:
⚬ touchesCancelled(_:for:) is sent to the touch’s view, and the touch is

no longer delivered to its view.
⚬ If the touch was associated with any other gesture recognizer, that gesture

recognizer is forced to fail.
▪ If a gesture recognizer fails, either because it declares failure or because it is

forced to fail, its touches are no longer delivered to it, but (except as already
specified) they continue to be delivered to their view.

The rest of this chapter discusses the details of touch delivery. As you’ll see, nearly
every bit of the standard procedure can be customized to some extent.

Hit-Testing
Hit-testing is the determination of what view the user touched. View hit-testing uses
the UIView instance method hitTest(_:with:), whose first parameter is the
CGPoint of interest. It returns either a view (the hit-test view) or nil. The idea is to
find the frontmost view containing the touch point.

The first thing a view’s hitTest(_:with:) does is to implement the logic of touch
restrictions exclusive to a view. If the view’s isUserInteractionEnabled is false, or
its isHidden is true, or its alpha is close to 0.0, it immediately returns nil, meaning
that neither it nor any of its subviews can be the hit-test view. Observe that these
restrictions do not, of themselves, exclude a view from being hit-tested; on the con‐
trary, they operate precisely by affecting a view’s hit-test result.

(Hit-testing knows nothing about isMultipleTouchEnabled, which involves multiple
touches, or isExclusiveTouch, which involves multiple views. The logic of obedience
to these properties is implemented at a later stage of the story.)

If the view has not returned nil for any of those reasons, the hitTest(_:with:)
method proceeds by an elegant recursive algorithm:

Hit-Testing | 269

1. A view’s hitTest(_:with:) first calls the same method on its own subviews, if it
has any, because a subview is considered to be in front of its superview. The sub‐
views are queried in front-to-back order (Chapter 1), so if two sibling views over‐
lap, the one in front reports the hit first.

2. If, as a view hit-tests its subviews, any of those subviews responds by returning a
view, it stops querying its subviews and immediately returns the view that was
returned to it. In this way, the very first view to declare itself the hit-test view
percolates all the way to the top of the call chain and is the hit-test view.

3. If, on the other hand, a view has no subviews, or if all of its subviews return nil
(indicating that neither they nor their subviews was hit), then the view calls
point(inside:with:) on itself:

• If this call reveals that the touch was inside this view, the view returns itself,
and so this view is the hit-test view, as I just explained.

• Otherwise this view returns nil and the search continues.

No problem arises if a view being hit-tested has a transform, because
point(inside:with:) takes the transform into account. That’s why a rotated button
continues to work correctly.

Performing Hit-Testing
You can perform hit-testing yourself at any moment where it might prove useful. In
calling hitTest(_:with:), supply a point in the coordinates of the view to which the
message is sent. The second parameter is supposed to be a UIEvent, but it can be nil
if you have no event.

Suppose we have a superview with two UIImageView subviews. We want to detect a
tap in either UIImageView, but we want to handle this at the level of the superview.
We can attach a UITapGestureRecognizer to the superview, but then the gesture rec‐
ognizer’s view is the superview, so how will we know which subview, if any, the tap
was in?

First, ensure that isUserInteractionEnabled is true for both UIImageViews.
UIImageView is one of the few built-in view classes where this property is false by
default, and a view whose isUserInteractionEnabled is false won’t normally be
the result of a call to hitTest(_:with:). Then, when our gesture recognizer’s action
method is called, we can perform hit-testing to determine where the tap was:

// g is the gesture recognizer
let p = g.location(ofTouch:0, in: g.view)
let v = g.view?.hitTest(p, with: nil)
if let v = v as? UIImageView { // ...

270 | Chapter 5: Touches

Hit-Test Munging
You can override hitTest(_:with:) in a UIView subclass, to alter its results during
touch delivery, customizing the touch delivery mechanism. I call this hit-test mung‐
ing. Hit-test munging can be used selectively as a way of turning user interaction on
or off in an area of the interface. In this way, some unusual effects can be achieved.
I’ll give a couple of examples and leave the other possibilities to your imagination.

Suppose we want to permit the touching of subviews outside the bounds of their
superview. As I mentioned earlier, if a view’s clipsToBounds is false, a paradox ari‐
ses: the user can see the regions of its subviews that are outside its bounds, but can’t
touch them. This behavior can be changed by a view that overrides hit-

Test(_:with:):

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 if let result = super.hitTest(point, with:e) {
 return result
 }
 for sub in self.subviews.reversed() {
 let pt = self.convert(point, to:sub)
 if let result = sub.hitTest(pt, with:e) {
 return result
 }
 }
 return nil
}

In this next example, we implement a pass-through view. The idea is that only one
object in our interface should be touchable; everything else should behave as if
isUserInteractionEnabled were false. In a complex interface, actually cycling
through all our subviews and toggling isUserInteractionEnabled might be too
much trouble. As a shortcut, we place an invisible view in front of the entire interface
and use hit-test munging so that only one view behind it (self.passthruView) is
touchable. In effect, this is a view that is (selectively) touchable even though the user
can’t see it:

class MyView: UIView {
 weak var passthruView : UIView?
 override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 if let pv = self.passthruView {
 let pt = pv.convert(point, from: self)
 if pv.point(inside: pt, with: e) {
 return nil
 }
 }
 return super.hitTest(point, with: e)
 }
}

Hit-Testing | 271

Hit-Testing for Layers
Layers do not receive touches. A touch is reported to a view, not a layer. A layer,
except insofar as it is a view’s underlying layer and gets touch reporting because of its
view, is completely untouchable; from the point of view of touches and touch report‐
ing, it’s as if the layer weren’t on the screen at all. No matter where a layer may
appear to be, a touch falls through the layer to whatever view is behind it.

In the case of a layer that is a view’s underlying layer, you don’t need layer hit-testing,
because you’ve got view hit-testing. The layer is the view’s drawing; where it appears
is where the view is. So a touch in that layer is equivalent to a touch in its view.
Indeed, one might say (and it is often said) that this is what views are actually for: to
provide layers with touchability.

Nevertheless, hit-testing for layers is possible. It doesn’t happen automatically, as part
of sendEvent(_:) or anything else; it’s up to you. It’s just a convenient way of finding
out which layer would receive a touch at a point, if layers did receive touches. To hit-
test layers, call hitTest(_:) on a layer, with a point in superlayer coordinates. Layer
hit-testing knows nothing of the restrictions on touch delivery; it just reports on
every sublayer, even one whose view has isUserInteractionEnabled set to false.

The only layers on which you’d need special hit-testing would presumably be layers
that are not themselves any view’s underlying layer. Still, all layers are part of the
layer hierarchy and can participate in layer hit-testing. So the most comprehensive
way to hit-test layers is to start with the topmost layer, the window’s layer. In this
example, we subclass UIWindow and override its hitTest(_:with:) so as to get
layer hit-testing every time there is view hit-testing:

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 let lay = self.layer.hitTest(point)
 // ... possibly do something with that information
 return super.hitTest(point, with:e)
}

In that code, self is the window, which is a special case. In general, you’ll have to
convert to superlayer coordinates. I’ll demonstrate in the next example.

Let’s return to the CompassView developed in Chapter 3, in which all the parts of the
compass are layers; we want to know whether the user tapped on the arrow layer, and
if so, we’ll rotate the arrow. For simplicity, we’ve given the CompassView a UITap‐
GestureRecognizer, and this is its action method, in the CompassView itself. We
convert to our superview’s coordinates, because these are also our layer’s superlayer
coordinates:

@objc func tapped(_ t:UITapGestureRecognizer) {
 let p = t.location(ofTouch:0, in: self.superview)
 let hitLayer = self.layer.hitTest(p)
 if let arrow = (self.layer as? CompassLayer)?.arrow {

272 | Chapter 5: Touches

 if hitLayer == arrow { // respond to touch
 arrow.transform = CATransform3DRotate(
 arrow.transform, .pi/4.0, 0, 0, 1)
 }
 }
}

Hit-Testing for Drawings
The preceding example (letting the user tap on the compass arrow) does work, but
we might complain that it is reporting a hit on the arrow layer even if the hit misses
the drawing of the arrow. That’s true for view hit-testing as well. A hit is reported if
we are within the view or layer as a whole; hit-testing knows nothing of drawing,
transparent areas, and so forth.

If you know how the region is drawn and can reproduce the edge of that drawing as a
CGPath, you can call contains(_:using:transform:) to test whether a point is
inside it. So, in our compass layer, we could override hitTest(_:) along these lines:

override func hitTest(_ p: CGPoint) -> CALayer? {
 var lay = super.hitTest(p)
 if lay == self.arrow {
 let pt = self.arrow.convert(p, from:self.superlayer)
 let path = CGMutablePath()
 path.addRect(CGRect(10,20,20,80))
 path.move(to:CGPoint(0, 25))
 path.addLine(to:CGPoint(20, 0))
 path.addLine(to:CGPoint(40, 25))
 path.closeSubpath()
 if !path.contains(pt, using: .winding) {
 lay = nil
 }
 }
 return lay
}

Alternatively, it might be the case that if a pixel of the drawing is transparent, it’s out‐
side the drawn region, so that it suffices to detect whether the tapped pixel is trans‐
parent. Unfortunately, there’s no built-in way to ask a drawing (or a view, or a layer)
for the color of a pixel. Instead, you have to make a bitmap graphics context and copy
the drawing into it, and then ask the bitmap for the color of a pixel. If you can repro‐
duce the content as an image, and all you care about is transparency, you can make a
one-pixel alpha-only bitmap, draw the image in such a way that the pixel you want to
test is the pixel drawn into the bitmap, and examine the transparency of the resulting
pixel. In this example, im is our UIImage and point is the coordinates of the pixel we
want to test:

Hit-Testing | 273

let info = CGImageAlphaInfo.alphaOnly.rawValue
let pixel = UnsafeMutablePointer<UInt8>.allocate(capacity:1)
defer {
 pixel.deinitialize(count: 1)
 pixel.deallocate()
}
pixel[0] = 0
let sp = CGColorSpaceCreateDeviceGray()
let context = CGContext(data: pixel,
 width: 1, height: 1, bitsPerComponent: 8, bytesPerRow: 1,
 space: sp, bitmapInfo: info)!
UIGraphicsPushContext(context)
im.draw(at:CGPoint(-point.x, -point.y))
UIGraphicsPopContext()
let p = pixel[0]
let alpha = Double(p)/255.0
let transparent = alpha < 0.01

There may not be a one-to-one relationship between the pixels of the underlying
drawing and the points of the drawing as portrayed on the screen. (Perhaps the draw‐
ing is stretched.) In many cases, the CALayer method render(in:) can be helpful
here. This method allows you to copy a layer’s actual drawing into a graphics context
of your choice. If that context is an image context (Chapter 2), you can use the result‐
ing image as im in the preceding code.

Hit-Testing During Animation
Making a view touchable by the user while it is being animated is a tricky business,
because the view may not be located where the user sees it. Recall (from Chapter 4)
that the animation is just an “animation movie” — what the user sees is the presenta‐
tion layer. The view itself, which the user is trying to touch, is at the location of the
model layer. If user interaction is allowed during an animation that moves a view
from one place to another, and if the user taps where the animated view appears to
be, the tap might mysteriously fail because the actual view is elsewhere; conversely,
the user might accidentally tap where the view actually is, and the tap will hit the ani‐
mated view even though it appears to be elsewhere.

For this reason, view animation ordered through a UIView class method, by default,
turns off touchability of a view while it is being animated — though you can override
that with .allowUserInteraction in the options: argument.

If you’re not using a property animator, you can make an animated view touchable if
you really want to, but it takes some work: you have to hit-test the presentation layer.
In this simple example, we implement hit-test munging in the view being animated:

274 | Chapter 5: Touches

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 let pres = self.layer.presentation()!
 let suppt = self.convert(point, to: self.superview!)
 let prespt = self.superview!.layer.convert(suppt, to: pres)
 return super.hitTest(prespt, with: e)
}

That works, but the animated view, as Apple puts it in the WWDC 2011 videos,
“swallows the touch.” Suppose the view in motion is a button. Although our hit-test
munging makes it possible for the user to tap the button as it is being animated, and
although the user sees the button highlight in response, the button’s action message is
not sent in response to this highlighting if the animation is in-flight when the tap
takes place. This behavior seems unfortunate, though it’s generally possible to work
around it (perhaps with a gesture recognizer).

A property animator makes things far simpler. By default, a property animator’s
isUserInteractionEnabled is true. That means the animated view is touchable. As
long as you don’t also set the property animator’s isManualHitTestingEnabled to
true, the property animator will hit-test the animated view’s presentation layer for
you. (If you do set isManualHitTestingEnabled to true, the job of hit-testing is
turned back over to you; you might want to do this in complicated situations where
the property animator’s hit-test munging isn’t sufficient.) Moreover, the animated
view doesn’t “swallow the touch.”

So, to animate a button that remains tappable while the animation is in-flight, just
animate the button:

let goal : CGPoint = // whatever
let anim = UIViewPropertyAnimator(duration: 10, curve: .linear) {
 self.button.center = goal // button can be tapped while moving
}
anim.startAnimation()

By combining the power of a property animator to make its animated view touchable
with its power to make its animation interruptible, we can make a view alternate
between being animated and being manipulated by the user. To illustrate, I’ll extend
the preceding example. The view is slowly animating its way toward the goal posi‐
tion. But at any time, the user can grab it and drag it around, during which time the
animation is interrupted. As soon as the user releases the view, the animation
resumes: the view continues on its way toward the goal position.

In order to be draggable, the view has a UIPanGestureRecognizer. The property ani‐
mator is now retained in an instance property (self.anim) so that the gesture recog‐
nizer’s action method can access it; we have a method that creates the property
animator (you’ll see in a moment what the factor: parameter is for):

Hit-Testing | 275

func configAnimator(factor:Double = 1) {
 self.anim = UIViewPropertyAnimator(
 duration: 10 * factor, curve: .linear) {
 self.button.center = self.goal
 }
}

All the work takes place in the gesture recognizer’s action method; as usual, we have a
switch statement that tests the gesture recognizer’s state. In the .began case, we
interrupt the animation so that dragging can happen:

case .began:
 if self.anim.state == .active {
 self.anim.stopAnimation(true)
 }
 fallthrough

The .changed case is our usual code for making a view draggable:

case .changed:
 let delta = p.translation(in:v.superview)
 var c = v.center
 c.x += delta.x; c.y += delta.y
 v.center = c
 p.setTranslation(.zero, in: v.superview)

The .ended case is the really interesting part. Our aim is to resume animating the
view from wherever it is now toward the goal. In my opinion, this feels most natural
if the speed at which the view moves remains the same. The ratio between durations
is the ratio between the distance of the view’s original position from the goal and its
current distance from the goal:

case .ended:
 // how far are we from the goal relative to original distance?
 func pyth(_ pt1:CGPoint, _ pt2:CGPoint) -> CGFloat {
 return hypot(pt1.x - pt2.x, pt1.y - pt2.y)
 }
 let origd = pyth(self.oldButtonCenter, self.goal)
 let curd = pyth(v.center, self.goal)
 let factor = curd/origd
 self.configAnimator(factor:Double(factor))
 self.anim.startAnimation()

Initial Touch Event Delivery
Whenever the multitouch situation changes, an event containing all touches is
handed to the UIApplication instance by calling its sendEvent(_:), and the UIAppli‐
cation in turn hands it to the UIWindow by calling its sendEvent(_:). The
UIWindow then performs the complicated logic of examining, for every touch, the

276 | Chapter 5: Touches

hit-test view and its superviews and their gesture recognizers, and deciding which of
them should be sent a touch method call.

You can override sendEvent(_:) in a subclass of UIWindow or UIApplication.
These are delicate and crucial maneuvers, however, and you wouldn’t want to lame
your application by interfering with them. Moreover, it is unlikely, nowadays, that
you would need to resort to such measures. A typical use case before the advent of
gesture recognizers was that you needed to detect touches directed to an object of
some built-in interface class that you couldn’t subclass; but gesture recognizers exist
now, and solve the problem nicely.

Gesture Recognizer and View
When a touch first appears and is delivered to a gesture recognizer, it is also delivered
to its hit-test view, the same touch method being called on both.

This is the most reasonable approach, as it means that touch interpretation by a view
isn’t jettisoned just because gesture recognizers are in the picture. Later on in the
multitouch sequence, if all the gesture recognizers in a view’s swarm declare failure to
recognize their gesture, that view’s internal touch interpretation continues as if ges‐
ture recognizers had never been invented. Moreover, touches and gestures are two
different things; sometimes you want to respond to both. In one of my apps, where
the user can tap cards, each card has a single tap gesture recognizer and a double tap
gesture recognizer, but it also responds directly to touchesBegan(_:with:) by
reducing its own opacity, and to touchesEnded(_:with:) and touches-

Cancelled(_:with:) by restoring its opacity. The result is that the user always sees
some feedback when touching a card, instantly, regardless of what the gesture turns
out to be.

Later, if a gesture recognizer in a view’s swarm recognizes its gesture, that view is sent
touchesCancelled(_:with:) for any touches that went to that gesture recognizer
and were hit-tested to that view, and subsequently the view no longer receives those
touches. This behavior can be changed by setting a gesture recognizer’s cancels-
TouchesInView property to false; if you were to do that for every gesture recognizer
in a view’s swarm, the view would receive touch events more or less as if no gesture
recognizers were in the picture.

If a gesture recognizer happens to be ignoring a touch — perhaps it was told to do so
with ignore(_:for:) — then touchesCancelled(_:with:) won’t be sent to the view
for that touch when that gesture recognizer recognizes its gesture. A touch ignored by
a gesture recognizer effectively falls through to the view, as if the gesture recognizer
didn’t exist.

Gesture recognizers can also delay the delivery of some touch methods to a view, by
means of these properties:

Gesture Recognizer and View | 277

delaysTouchesEnded

If true (the default), then when a touch reaches .ended and the gesture recog‐
nizer’s touchesEnded(_:with:) is called, if the gesture recognizer is still allowing
touches to be delivered to the view because its state is still .possible, it doesn’t
deliver this touch until it has resolved the gesture. When it does, either it will rec‐
ognize the gesture, in which case the view will have touchesCancelled(_:with:)
called instead (as already explained), or it will declare failure and now the view
will have touchesEnded(_:with:) called.

The reason for this behavior is most obvious with a gesture where multiple taps
are required. Consider a double tap gesture recognizer. The first tap ends, but
this is insufficient for the gesture recognizer to declare success or failure, so it
withholds that touchesEnded(_:with:) from the view. If there is a second tap,
the gesture recognizer will succeed and send touchesCancelled(_:with:) to the
view — but it can’t do that if the view has already been sent touches-
Ended(_:with:)! So it was right to withhold touchesEnded(_:with:) in the first
place.

delaysTouchesBegan

If true, we delay the entire suite of touch methods from being called on a view.
Again, this delay would be until the gesture recognizer can resolve the gesture:
either it will recognize it, in which case the view will have touches-

Cancelled(_:with:) called, or it will declare failure, in which case the view will
receive touchesBegan(_:with:) plus any further touch method calls that were
withheld — except that it will receive at most one touchesMoved(_:with:) call,
the last one, because if a lot of these were withheld, to queue them all up and
send them all at once now would be insane.

When touches are delayed and then delivered, what’s delivered is the original touch
with the original event, which still have their original timestamps. Because of the
delay, these timestamps may differ significantly from now. As I’ve already said, analy‐
sis that is concerned with timing of touches should consult the timestamp, not the
clock.

Touch Exclusion Logic
It is up to the UIWindow’s sendEvent(_:) to implement the logic of isMultiple-
TouchEnabled and isExclusiveTouch:

isMultipleTouchEnabled

If a new touch is hit-tested to a view whose isMultipleTouchEnabled is false
and that already has an existing touch hit-tested to it, then sendEvent(_:) never
delivers the new touch to that view. But that touch is delivered to the view’s

278 | Chapter 5: Touches

swarm of gesture recognizers; in other words, gesture recognizers are not affected
by the existence of the isMultipleTouchEnabled property.

isExclusiveTouch

If there’s an isExclusiveTouch view in the window, then sendEvent(_:) must
decide whether a particular touch should be delivered, in accordance with the
meaning of isExclusiveTouch, which I described earlier. If a touch is not deliv‐
ered to a view because of isExclusiveTouch restrictions, it is not delivered to its
swarm of gesture recognizers either; in other words, gesture recognizers are
affected by the existence of the isExclusiveTouch property.

To illustrate, suppose you have two views with touch handling, and their com‐
mon superview has a pinch gesture recognizer. Normally, if you touch both
views simultaneously and pinch, the pinch gesture recognizer recognizes. But if
both views are marked isExclusiveTouch, the pinch gesture recognizer does not
recognize.

Gesture Recognition Logic
When a gesture recognizer recognizes its gesture, everything changes. As we’ve
already seen, the touches for this gesture recognizer are sent to their hit-test views as
a touchesCancelled(_:with:) message, and then no longer arrive at those views
(unless the gesture recognizer’s cancelsTouchesInView is false). Moreover, all other
gesture recognizers pending with regard to these touches are made to fail, and then
are no longer sent the touches they were receiving either.

If the very same event might cause more than one gesture recognizer to recognize,
there’s an algorithm for picking the one that will succeed and make the others fail: a
gesture recognizer lower down the view hierarchy (closer to the hit-test view) prevails
over one higher up the hierarchy, and a gesture recognizer more recently added to its
view prevails over one less recently added.

There are various ways to modify this “first past the post” behavior:

Dependency order
Certain methods institute a dependency order, causing a gesture recognizer to be
put on hold when it tries to transition from the .possible state to the .began
(continuous) or .ended (discrete) state; only if a certain other gesture recognizer
fails is this one permitted to perform that transition:

• require(toFail:)
sent to a gesture recognizer

• shouldRequireFailure(of:)
in a subclass

Gesture Recognition Logic | 279

• shouldBeRequiredToFail(by:)
in a subclass

• gestureRecognizer(_:shouldRequireFailureOf:)
in the delegate

• gestureRecognizer(_:shouldBeRequiredToFailBy:)
in the delegate

The first of those methods sets up a permanent relationship between two gesture
recognizers, and cannot be undone; but the others are sent every time a gesture
starts in a view whose swarm includes both gesture recognizers, and the result is
applied only on this occasion.

The delegate methods work together as follows. For each pair of gesture recog‐
nizers in the hit-test view’s swarm, the members of that pair are arranged in a
fixed order (as I’ve already described). The first of the pair is sent shouldRequire
and then shouldBeRequired, and then the second of the pair is sent should-
Require and then shouldBeRequired. But if any of those four methods returns
true, the relationship between that pair is settled and we proceed immediately to
the next pair.

(Apple says that in a dependency like this, the gesture recognizer that fails first is
not sent reset, and won’t receive any touches, until the second finishes its state
sequence and is sent reset, so that they resume recognizing together.)

Success into failure
Certain methods, by returning false, turn success into failure; at the moment
when a gesture recognizer is about to declare that it recognizes its gesture, transi‐
tioning from the .possible state to the .began (continuous) or .ended (discrete)
state, it is forced to fail instead:

• gestureRecognizerShouldBegin(_:)
in a view

• gestureRecognizerShouldBegin(_:)
in the delegate

Simultaneous recognition
Certain methods ensure that when a gesture recognizer succeeds, some other
gesture recognizer is not forced to fail:

• gestureRecognizer(_:shouldRecognizeSimultaneouslyWith:)
in the delegate

• canPrevent(_:)
in a subclass

280 | Chapter 5: Touches

• canBePrevented(by:)
in a subclass

In the subclass methods, prevent means “by succeeding, you force failure upon
this other,” and bePrevented means “by succeeding, this other forces failure on
you.” They work together as follows. canPrevent is called first; if it returns
false, that’s the end of the story for that gesture recognizer, and canPrevent is
called on the other gesture recognizer. But if canPrevent returns true when it is
first called, the other gesture recognizer is sent canBePrevented. If it returns
true, that’s the end of the story; if it returns false, the process starts over the
other way round, sending canPrevent to the second gesture recognizer, and so
forth. In this way, conflicting answers are resolved without the device exploding:
prevention is regarded as exceptional (even though it is in fact the norm) and will
happen only if it is acquiesced to by everyone involved.

Gesture Recognition Logic | 281

PART II

Interface

This part of the book describes view controllers, the major building blocks of an app’s
interface and functionality, along with the views provided by the UIKit framework:

• Chapter 6 is about view controllers, the basis of an iOS app’s architecture. View
controllers manage interface and respond to user actions. Most of your app’s
code will be in a view controller.

• Chapter 7 is about scroll views, which let the user slide and zoom the interface.
• Chapter 8 explains table views and collection views, which are scroll views for

navigating through data.
• Chapter 9 is about popovers, split views, iPad multitasking, drag and drop, and

multiple windows on iPad.
• Chapter 10 describes how text is presented in an iOS app’s interface.
• Chapter 11 explains how to put a web browser inside your app.
• Chapter 12 describes all the remaining built-in UIKit interface objects.
• Chapter 13 is about various forms of modal dialog that can appear in front of an

app’s interface.

CHAPTER 6

View Controllers

An iOS app’s interface is dynamic, and with good reason. The entire interface has to
fit into a single display consisting of a single window, which in the case of the iPhone
can be forbiddingly tiny. The solution is to change the interface. In response to some
event — typically a user action — a new view, possibly with an elaborate hierarchy of
subviews, replaces or covers the previous interface.

For this to work, regions of interface material — often the entire contents of the
screen — must come and go in an agile fashion that is understandable to the user.
There will typically be a logical, structural, and functional relationship between the
view that was showing and the view that replaces or covers it. This relationship will
need to be maintained behind the scenes, in your code.

The relationship between views also needs to be indicated to the user. Multiple views
may be pure alternatives or siblings of one another, or one view may be a temporary
replacement for another, or views may be like successive pages of a book. Animation
is often used to emphasize and clarify these relationships as one view is superseded by
another. Navigational interface and a vivid, suggestive gestural vocabulary give the
user an ability to control what’s seen and an understanding of the possible options: a
tab bar whose buttons summon alternate views, a back button or a swipe gesture for
returning to a previously visited view, a tap on an interface element to dive deeper
into a conceptual world, a Done or Cancel button to escape from a settings screen,
and so forth.

In Cocoa apps, the management of this dynamic interface is performed through view
controllers. A view controller is an instance of UIViewController. Actually, it will be
an instance of a UIViewController subclass; UIViewController is designed to be sub‐
classed. You might write your own UIViewController subclass; you might use a built-
in subclass such as UINavigationController or UITabBarController; or you might
subclass a built-in subclass such as UITableViewController (Chapter 8).

285

A view controller manages a view together with that view’s subviews, their subviews,
and so on. The single superview at the top of that hierarchy is the view controller’s
main view, or simply its view; the view controller’s view property points to it. A view
controller’s main view has no explicit pointer to the view controller that manages it,
but a view controller is a UIResponder and is in the responder chain just above its
view, so it is its view’s next responder.

View Controller Responsibilities
For a view controller to be useful, its view must somehow get into the visible interface;
a view controller is usually responsible for that, but typically not the view controller
whose view this is — rather, this will be some view controller whose view is already in
the interface. In many cases, that will happen automatically (I’ll talk more about that
in the next section), but you can participate in the process, and for some view con‐
trollers you may have to do the work yourself. A view that comes may also eventually
go, and the view controller responsible for putting a view into the interface will usu‐
ally be responsible also for removing it.

A view controller will typically provide animation of the interface as a view comes or
goes. Built-in view controller subclasses, and built-in ways of summoning or remov‐
ing a view controller and its view, come with built-in animations. We are all familiar
with tapping something to make new interface slide in from the side of the screen,
and then later tapping a back button to make that interface slide back out again.
Whoever is responsible for getting a view controller’s view into the interface is also
responsible for providing the animation.

The most powerful view controller is the top-level view controller. This might be a
fullscreen presented view controller, as I’ll explain later in this chapter; but most of
the time it will be your app’s root view controller. This is the view controller manag‐
ing the root view, the view that sits at the top of the entire view hierarchy, as the one
and only direct subview of the window, acting as the superview for the rest of the
app’s interface (Chapter 1). The root view controller attains this lofty position
because UIApplicationMain, or your code, puts it there, instantiating it and assigning
it to the window’s rootViewController property. The window responds by taking
the view controller’s main view, giving it the correct frame (resizing it if necessary),
and making it its own subview (“How an App Launches” on page 4).

The top-level view controller bears ultimate responsibility for some important deci‐
sions about the behavior of your app:

Manipulation of the status bar
The status bar is actually a secondary window belonging to the runtime. The
runtime consults the top-level view controller as to whether the status bar should
be present and, if so, whether its text should be light or dark.

286 | Chapter 6: View Controllers

Rotation of the interface
The user can rotate the device, and you might like the interface to rotate in
response, to compensate. The runtime consults the top-level view controller
about whether to permit such rotation.

Above and beyond all this, view controllers are typically the heart of any app, by vir‐
tue of their role in the app’s overall architecture. Views give the user something to
tap, and they display data for the user to see; the logic of determining, at any given
moment, what views are shown, what data those views display, and what the
response to the user’s gestures should be, is usually vested in a view controller.

View Controller Hierarchy
There is always one root view controller, along with its view, the root view. There
may also be other view controllers, each of which has its own main view. Those other
view controllers are subordinate to the root view controller. There are two subordina‐
tion relationships between view controllers:

Parentage (containment)
A view controller can contain another view controller. The containing view con‐
troller is the parent of the contained view controller; the contained view control‐
ler is a child of the containing view controller. A containment relationship
between two view controllers is reflected in their views: the child view control‐
ler’s view, if it is in the interface at all, is a subview (at some depth) of the parent
view controller’s view.

The parent view controller is responsible for getting a child view controller’s view
into the interface, by making it a subview of its own view, and (if necessary) for
removing it later. Introduction of a view, removal of a view, and replacement of
one view with another often involve a parent view controller managing its chil‐
dren and their views.

Presentation (modal)
A view controller can present another view controller. The first view controller is
the presenting view controller of the second; the second view controller is the
presented view controller of the first. The second view controller’s view replaces
or covers, completely or partially, the first view controller’s view.

The name of this mechanism, and of the relationship between the view control‐
lers, has evolved over time. In iOS 4 and before, the presented view controller
was called a modal view controller, and its view was a modal view; there is an
analogy here to the desktop, where a window is modal if it sits in front of, and
denies the user access to, the rest of the interface until it is explicitly dismissed.
The terms presented view controller and presented view are more recent and more

View Controller Hierarchy | 287

Figure 6-1. The TidBITS News app

general, but the historical term “modal” still appears in the documentation and
in the API.

Here’s an example of a parent view controller and a child view controller — the
familiar navigation interface, where the user taps something and new interface slides
in from the side, replacing the current interface. Figure 6-1 shows the TidBITS News
app displaying a list of story headlines and summaries (on the left). The user taps an
entry in the list, and the whole list slides away to one side, and the text of that story
slides in from the other side (on the right).

The list and the story are both child view controllers. The parent view controller is a
UINavigationController, which manipulates the views of its children to bring about
this animated change of the interface. The parent view controller (the navigation
controller) stays put, and so does its own view, which functions as a fixed superview
within which all this view-swapping takes place.

Here’s an example of a presenting view controller and a presented view controller.
Figure 6-2 shows the Zotz! app’s settings screen (on the left). The user can edit a

288 | Chapter 6: View Controllers

Figure 6-2. The Zotz! app

color by tapping a color swatch; a new screen then slides up from the bottom, offer‐
ing three color sliders (on the right). The color editing interface is modal; it is being
presented from the settings screen. The color editing interface has a Cancel button
and a Done button, clearly implying that this is a place where the user must make a
decision and can do nothing else until the decision is made. (But as I’ll explain later,
that isn’t the only use of a presented view controller.)

There is a hierarchy of view controllers. It starts with the root view controller, which is
the only nonsubordinate view controller. Every other view controller, if its view is to
appear in the interface, must be a subordinate view controller. It can be a child view
controller of some parent view controller; or it can be a presented view controller of
some presenting view controller. And those are the only possibilities!

There is also a hierarchy of views. And there is a well-defined relationship between
the view controller hierarchy and the view hierarchy:

• For a parent view controller and child view controller, the child’s view, if present
in the interface, must be a subview of the parent’s view.

View Controller Hierarchy | 289

• For a presenting view controller and presented view controller, the presented
view controller’s view either replaces or covers (partially or completely) the pre‐
senting view controller’s view.

In this way, the actual views of the interface form a hierarchy dictated by and parallel
to some portion of the view controller hierarchy: every view visible in the interface
owes its presence to a view controller’s view, either because it is a view controller’s
view, or because it’s a subview of a view controller’s view.

It is crucial that your app’s view controller hierarchy and view hierarchy be struc‐
tured coherently, in the way I have just described, at every moment of your app’s life‐
time. If your app behaves as a good Cocoa citizen, they will be — as I will now
illustrate.

Automatic Child View Placement
The placement of a view controller’s view into the view hierarchy will often be per‐
formed automatically. You might never need to put a UIViewController’s view into
the view hierarchy yourself. You’ll manipulate view controllers; their hierarchy and
their built-in functionality will construct and manage the view hierarchy for you.

In Figure 6-1, on the left, we see two interface elements:

• The navigation bar, containing the TidBITS logo.
• The list of stories, which is actually a UITableView.

I will describe how all of this comes to appear on the screen through the view con‐
troller hierarchy and the view hierarchy. The relationship between view controllers
and views is diagrammed in Figure 6-3. In the diagram, notice the word “automatic”
in the two large right-pointing arrows associating a view controller with its view; this
tells you how the view controller’s view became part of the view hierarchy:

Root view controller
The window’s root view controller is a UINavigationController:

• The UINavigationController’s view is the window’s sole immediate subview
(the root view). That happened automatically, by virtue of the UINavigation‐
Controller being the window’s rootViewController.

• The navigation bar is a subview of that view.

Child view controller
The UINavigationController has a child UIViewController (a parent–child rela‐
tionship). The child is a custom UIViewController subclass, which I’ve called
MasterViewController:

290 | Chapter 6: View Controllers

Figure 6-3. The TidBITS News app’s initial view controller and view hierarchy

• MasterViewController’s view is the UITableView, and it is another subview
of the UINavigationController’s view. That happened automatically, by vir‐
tue of the MasterViewController being the UINavigationController’s child.

Manual Child View Placement
Sometimes, you’ll write your own parent view controller class. In that case, you will
be doing the kind of work that the UINavigationController was doing in that exam‐
ple, so you will need to put a child view controller’s view into the interface manually,
as a subview (at some depth) of the parent view controller’s view.

I’ll illustrate with another app of mine (Figure 6-4). The interface displays a flashcard
containing information about a Latin word, along with a toolbar (the dark area at the
bottom) where the user can tap an icon to choose additional functionality.

The app actually contains over a thousand of these Latin words, and I want the user
to be able to navigate between flashcards to see the next or previous word; there is an
excellent built-in UIViewController subclass for this purpose, the UIPageView‐
Controller. But the toolbar at the bottom stays put, so the toolbar can’t be inside the
UIPageViewController’s view. How is this going to work?

View Controller Hierarchy | 291

Figure 6-4. A Latin flashcard app

Figure 6-5. The Latin flashcard app’s initial view controller and view hierarchy

Again, I will describe how the interface comes to appear on the screen through the
view controller hierarchy and the view hierarchy. The relationships are diagrammed
in Figure 6-5:

Root view controller
The window’s root view controller is my own UIViewController subclass, called
RootViewController:

292 | Chapter 6: View Controllers

Figure 6-6. The Latin flashcard app, in drill mode

• RootViewController’s view becomes the window’s subview (the root view)
automatically, by virtue of the RootViewController being the window’s root-
ViewController.

• The toolbar is a subview of RootViewController’s view.

Child view controller
In order for the UIPageViewController’s view to appear in the interface, since it
is not the root view controller, it must be some view controller’s child. My Root‐
ViewController is the only possible parent, so it must function as a custom par‐
ent view controller, with the UIPageViewController as its child. So I have made
that happen, and therefore:

• I myself have had to put the UIPageViewController’s view manually as a
subview into my RootViewController’s view.

Child view controller
I hand the UIPageViewController, as its child, an instance of another custom
UIViewController subclass, called CardController (representing a flashcard):

• The UIPageViewController displays the CardController’s view as a subview
of its own view automatically.

Presented View Placement
My Latin flashcard app has a second mode, where the user is drilled on a subset of the
cards in random order; the interface looks very much like the first mode’s interface
(Figure 6-6), but it behaves completely differently.

In reality, this is a presented view controller. The relationship between view control‐
lers and views is diagrammed in Figure 6-7:

View Controller Hierarchy | 293

Figure 6-7. The Latin flashcard app’s drill mode view controller and view hierarchy

Presented view controller
I have a UIViewController subclass called DrillViewController; it is structured
very much like RootViewController. When the user is in drill mode, a DrillView‐
Controller is presented by the RootViewController. This means that the Drill‐
ViewController’s interface takes over the screen automatically:

• The DrillViewController’s view, with its whole subview hierarchy, including
the views of the DrillViewController’s children in the view controller hierar‐
chy, replaces the RootViewController’s view and its whole subview
hierarchy.

294 | Chapter 6: View Controllers

Presenting view controller
The RootViewController is still the window’s rootViewController, and its hier‐
archy of child view controllers remains in place while the DrillViewController is
being presented. But:

• The RootViewController’s view and its subviews are not in the interface.
• They will be returned to the interface automatically when we leave drill

mode (because the presented DrillViewController is dismissed), and the sit‐
uation will look like Figure 6-5 once again.

Ensuring a Coherent Hierarchy
For any app that you write, for every moment in the lifetime of that app, you should
be able to construct a diagram showing the hierarchy of view controllers and charting
how each view controller’s view fits into the view hierarchy. The diagram should be
similar to mine! The view hierarchy should run in neat parallel with the view control‐
ler hierarchy; there should be no crossed wires or orphan views. Every view control‐
ler’s view should be placed automatically into the view hierarchy, except in the
following two situations:

• You have created a custom parent view controller, and this view controller is its
child (“Container View Controllers” on page 375).

• You’re doing a custom transition animation (“Custom Transition” on page 350).
You can see the view controller hierarchy in schematic form by pausing in the debug‐
ger and giving this incantation:

(lldb) e -l objc -O -- [UIViewController _printHierarchy]

If I give that command when my Latin flashcard app is in the state shown in
Figure 6-4, the output looks like this (omitting some of the information):

<JS_Latin_Vocab_iPhone_3.RootViewController ... >
 | <UIPageViewController ... >
 | | <JS_Latin_Vocab_iPhone_3.CardController ... >

The analysis accords with mine: The window’s root view controller is my RootView‐
Controller, which has a child UIPageViewController, which has a child Card‐
Controller.

Another way to inspect the view controller hierarchy is the view debugger
(Figure 6-8). This provides even more information. The view controller hierarchy is
displayed with circular icons; interleaved with those, the corresponding view hierar‐
chy is displayed with square icons.

Together, the view controller hierarchy and the view hierarchy constitute the bulk of
the responder chain. What you’re really doing by following the rules is ensuring a
coherent responder chain.

View Controller Hierarchy | 295

Figure 6-8. The view debugger displays the view controller hierarchy

View Controller Creation
A view controller is an instance like any other, and it is created like any other instance
— by instantiating its class. You might perform this instantiation in code; in that
case, you’ll also initialize and configure the instance as needed. Here’s an example
from one of my own apps:

let llc = LessonListController(terms: self.terms)
let nav = UINavigationController(rootViewController: llc)

In that example:

• LessonListController is my own UIViewController subclass, so I have called its
designated initializer, which I myself have defined.

• UINavigationController is a built-in UIViewController subclass, and I have
called one of its convenience initializers.

Once a view controller comes into existence, it must be retained so that it will persist.
That will happen automatically when the view controller is assigned a place in the
view controller hierarchy:

• A view controller assigned as a window’s rootViewController is retained by the
window.

• A view controller assigned as another view controller’s child is retained by the
parent view controller.

• A presented view controller is retained by the presenting view controller.
The retaining view controller then takes ownership, and will release the other view
controller in good order if and when it is no longer needed.

Here’s an example, from one of my apps, of view controllers being instantiated and
then retained through their insertion into the view controller hierarchy:

let llc = LessonListController(terms: self.terms)
let nav = UINavigationController(rootViewController: llc)
self.present(nav, animated: true)

296 | Chapter 6: View Controllers

That’s the same code I showed a moment ago, extended by one line. It comes from a
view controller class called RootViewController. Here’s how view controller creation
and memory management works in those three lines:

The current view controller, self, is a RootViewController instance. It is already
the window’s rootViewController, and is retained by the window.

I instantiate LessonListController.

I instantiate UINavigationController, and I assign the LessonListController
instance to the UINavigationController instance as its child; the navigation con‐
troller retains the LessonListController instance and takes ownership of it.

I present the UINavigationController instance on self, the RootViewController
instance; the RootViewController instance is the presenting view controller, and
it retains and takes ownership of the UINavigationController instance as its pre‐
sented view controller.

Whenever you instantiate a view controller, you should ask yourself who will be
retaining it. Everything works fine if you do things correctly, but it is possible to do
things incorrectly. If you’re not careful, you might put a view controller’s view into
the interface while permitting the view controller itself to go out of existence. If that
happens, the view will mysteriously fail to perform its intended functionality, because
that functionality is embodied in the view controller, which no longer exists. (Yes,
I’ve made this mistake.)

How a View Controller Obtains Its View
When it first comes into existence, a view controller has no view. A view is a relatively
heavyweight object, involving interface elements that can entail a significant amount
of memory. Therefore, a view controller postpones obtaining its view until it is first
asked for the value of its view property. At that moment, if its view property is nil,
the view controller sets about obtaining its view. (We say that a view controller loads
its view lazily.) Typically, this happens because the time has come to put the view
controller’s view into the interface.

In working with a newly instantiated view controller, be careful not to refer to its
view property if you don’t need to, as that can cause the view controller to obtain its
view prematurely. (As usual, I speak from experience.) To learn whether a view con‐
troller has a view without causing it to load its view, consult its isViewLoaded prop‐
erty. You can also refer to a view controller’s view safely, without loading it, as its
viewIfLoaded (an Optional).

How a View Controller Obtains Its View | 297

As soon as a view controller has its view, its viewDidLoad method is called. If this
view controller is an instance of your own UIViewController subclass, viewDidLoad
is your opportunity to modify the contents of this view — to populate it with sub‐
views, to tweak the subviews it already has, and so forth — as well as to perform other
initializations of the view controller and its properties. viewDidLoad is generally
regarded as a valuable place to put initialization code, because it is one of the earliest
events in the life of the view controller instance, and it is called only once in the
instance’s lifetime.

When viewDidLoad is called, the view controller’s view property is pointing to the
view, so it is safe to refer to self.view. Bear in mind that the view may not yet be
part of the interface! In fact, it almost certainly is not. (To confirm this, check
whether self.view.window is nil.) You cannot necessarily rely on the dimensions of
the view at this point to be the dimensions that the view will assume when it becomes
visible in the interface. Performing dimension-dependent customizations prema‐
turely in viewDidLoad is a common beginner mistake, and I’ll talk about that in detail
later in this chapter.

Before viewDidLoad is called, the view controller must obtain its view. The question
of where and how the view controller will get its view is often crucial. In some cases,
to be sure, you won’t care about this. In particular, when a view controller is an
instance of a built-in UIViewController subclass such as UINavigationController or
UITabBarController, its view is out of your hands; you might never have cause to
refer to this view over the entire course of your app’s lifetime, and you simply trust
that the view controller will generate its view somehow. But when the view controller
is an instance of your own subclass of UIViewController, and when you yourself will
design or modify its view, it becomes essential to understand the process whereby a
view controller gets its view.

This process is not difficult to understand. It is rather elaborate, because there are
multiple possibilities, but it is not magic. Nevertheless it probably causes beginners
more confusion than any other aspect of Cocoa programming. The main alternatives
are:

• The view may be instantiated in the view controller’s own code, manually.
• The view may be created as an empty generic UIView, automatically.
• The view may be loaded from a nib file.

To demonstrate, we’ll need a view controller that we instantiate manually. For the
sake of simplicity, I’ll use the window’s rootViewController.

To follow along hands-on, start with a clean project created from the Single View
App template. The template includes a storyboard and a UIViewController subclass
called ViewController, but we’re going to ignore both of those, behaving as if the
storyboard didn’t exist. Instead, we’ll have a class called RootViewController; in code,

298 | Chapter 6: View Controllers

at launch, we’ll instantiate it and make that instance the window’s root view control‐
ler (see “App Without a Storyboard” on page 6). When you launch the project, you’ll
know that the root view controller has obtained its view, because you’ll see it.

Manual View
To supply a UIViewController’s view manually, in code, override its loadView
method. Your job here is to obtain an instance of UIView (or a subclass of UIView)
— typically by instantiating it directly — and assign it to self.view. You must not
call super (for reasons that I’ll make clear later on).

Let’s try it:

1. We need a UIViewController subclass, so choose File → New → File; specify iOS
→ Source → Cocoa Touch Class. Click Next.

2. Name the class RootViewController, and specify that it is to be a UIView‐
Controller subclass. Uncheck “Also create XIB file” (if it happens to be checked).
Click Next.

3. Confirm that we’re saving into the appropriate folder and group, and that these
files will be part of the app target. Click Create.

We now have a RootViewController class, and we proceed to edit its code. In Root‐
ViewController.swift, we’ll implement loadView. To convince ourselves that the
example is working correctly, we’ll give the view that we create manually an identifia‐
ble color, and we’ll put some interface inside it, namely a “Hello, World” label:

override func loadView() {
 let v = UIView()
 v.backgroundColor = .green
 self.view = v // *
 let label = UILabel()
 v.addSubview(label)
 label.text = "Hello, World!"
 label.autoresizingMask = [
 .flexibleTopMargin,
 .flexibleLeftMargin,
 .flexibleBottomMargin,
 .flexibleRightMargin]
 label.sizeToFit()
 label.center = v.bounds.center
 label.frame = label.frame.integral
}

The starred line is the key: we made a view and we assigned it to self.view. To see
that that code works, we need to instantiate RootViewController and place that
instance into our view controller hierarchy. Edit SceneDelegate.swift to look like this:

How a View Controller Obtains Its View | 299

import UIKit
class SceneDelegate: UIResponder, UIWindowSceneDelegate {
 var window: UIWindow?
 func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 if let windowScene = scene as? UIWindowScene {
 self.window = UIWindow(windowScene: windowScene)
 let rvc = RootViewController() // *
 self.window!.rootViewController = rvc // *
 self.window!.backgroundColor = .white
 self.window!.makeKeyAndVisible()
 }
 }
}

Again, the starred lines are the key: we instantiate RootViewController and make that
instance the window’s root view controller. Build and run the app. Sure enough,
there’s our green background and our “Hello, world” label!

When we created our view controller’s view (self.view), we never gave it a reason‐
able frame. This is because we are relying on someone else to frame the view appro‐
priately. In this case, the “someone else” is the window. When its
rootViewController property is set to a view controller, it responds by giving the
view controller’s view a frame and putting it into the window as a subview, making it
the root view.

In general, it is the responsibility of whoever puts a view controller’s view into the
interface to give the view the correct frame — and this will never be the view control‐
ler itself (although under some circumstances the view controller can express a pref‐
erence in this regard). Indeed, the size of a view controller’s view may be changed as
it is placed into the interface, and you must keep that possibility in mind as you
design your view controller’s view and its subviews. (That’s why, in the preceding
code, I used autoresizing to keep the label centered in the view, no matter how the
view may be resized.)

Generic Automatic View
We should distinguish between creating a view and populating it. The preceding
example fails to draw this distinction. The lines that create our RootViewController’s
view are merely these:

let v = UIView()
self.view = v

Everything else configures and populates the view, turning it green and putting a
label into it. A more appropriate place to populate a view controller’s view is its view-
DidLoad implementation, which, as I’ve already mentioned, is called after the view

300 | Chapter 6: View Controllers

exists and can be referred to as self.view. We could therefore rewrite the preceding
example like this (just for fun, I’ll use autolayout this time):

override func loadView() {
 let v = UIView()
 self.view = v
}
override func viewDidLoad() {
 super.viewDidLoad()
 let v = self.view!
 v.backgroundColor = .green
 let label = UILabel()
 v.addSubview(label)
 label.text = "Hello, World!"
 label.translatesAutoresizingMaskIntoConstraints = false
 NSLayoutConstraint.activate([
 label.centerXAnchor.constraint(equalTo:v.centerXAnchor),
 label.centerYAnchor.constraint(equalTo:v.centerYAnchor)
])
}

But if we’re going to do that, we can go even further and remove our implementation
of loadView entirely! It turns out that if you don’t implement loadView, and if no
view is supplied in any other way, then UIViewController’s default implementation
of loadView will do exactly what we are doing: it creates a generic UIView object and
assigns it to self.view. If we needed our view controller’s view to be a particular
UIView subclass, that wouldn’t be acceptable; but in this case, our view controller’s
view is a generic UIView object, so it is acceptable.

Comment out or delete the entire loadView implementation from the preceding
code, and build and run the app; our example still works!

View in a Separate Nib
In the preceding examples, we supplied and designed our view controller’s view in
code. That works, but of course we’re missing out on the convenience of configuring
and populating the view by designing it graphically in Xcode’s nib editor. So now let’s
see how a view controller can obtain its view, ready-made, from a nib file.

To make this work, the nib file must be properly configured in accordance with the
demands of the nib-loading mechanism. The view controller instance will already
have been created. It will load the nib, setting itself as the nib’s owner. The nib must be
prepared for this situation:

• The owner object must have the same class as the view controller. This will also
cause the owner object to have a view outlet.

• The owner object’s view outlet must point to the view object in the nib.

How a View Controller Obtains Its View | 301

The consequence is that when the view controller loads the nib, the view instantiated
from the nib is assigned to the view controller’s view property automatically.

Let’s try it with a .xib file. In a .xib file, the owner object is the File’s Owner proxy
object. We can use the example we’ve already developed, with our RootView‐
Controller class. Delete the implementation of loadView (if you haven’t already) and
viewDidLoad from RootViewController.swift, because we want the view to come from
a nib and we’re going to populate it in the nib. Then:

1. Choose File → New → File and specify iOS → User Interface → View. This will
be a .xib file containing a UIView object. Click Next.

2. Name the file MyNib (meaning MyNib.xib). Confirm the appropriate folder and
group, and make sure that the file will be part of the app target. Click Create.

3. Edit MyNib.xib. Prepare it in the way I described a moment ago:
a. Select the File’s Owner object; in the Identity inspector, set its class to Root‐

ViewController. As a result, the File’s Owner now has a view outlet.
b. Connect the File’s Owner view outlet to the View object.

4. Design the view. To make it clear that this is not the same view we were creating
previously, perhaps you should give the view a red background color (in the
Attributes inspector). Drag a UILabel into the middle of the view and give it
some text, such as “Hello, World!”

When our RootViewController instance wants its view, we want it to load the MyNib
nib. To make it do that, we must associate this nib with our RootViewController
instance. Recall these two lines in SceneDelegate.swift:

let rvc = RootViewController()
self.window!.rootViewController = rvc

We’re going to change the first of those two lines. A UIViewController has a nibName
property that tells it what nib, if any, it should load to obtain its view. But we are not
allowed to set the nibName property of rvc; it is read-only, meaning that only Root‐
ViewController can set its own nibName. Instead, as we instantiate the view control‐
ler, we use the designated initializer, init(nibName:bundle:), like this:

let rvc = RootViewController(nibName:"MyNib", bundle:nil)
self.window!.rootViewController = rvc

(The nil argument to the bundle: parameter specifies the main bundle, which is
almost always what you want.) The result is that RootViewController does set its own
nibName to "MyNib", and obtains its view by locating that nib file and loading it.

To prove that this works, build and run. The red background appears! Our view con‐
troller’s view is being obtained by loading it from the nib.

302 | Chapter 6: View Controllers

The eponymous nib
Now I’m going to describe a shortcut, based on the name of the nib. It turns out that
if the nib name passed to init(nibName:bundle:) is nil, a nib will be sought auto‐
matically with the same name as the view controller’s class. Moreover, UIView‐
Controller’s init() turns out to be a convenience initializer: it actually calls
init(nibName:bundle:), passing nil for both arguments.

This means that we can return to using init() to initialize the view controller, pro‐
vided that the nib file’s name matches the name of the view controller class. Let’s
try it:

1. Rename MyNib.xib to RootViewController.xib.
2. Change the code that instantiates and initializes our RootViewController back to

what it was before:

let rvc = RootViewController()
self.window!.rootViewController = rvc

Build and run. It works!

There’s an additional aspect to that shortcut. It seems ridiculous that we should end
up with a nib that has “Controller” in its name merely because our view controller, as
is so often the case, has “Controller” in its name. A nib, after all, is not a controller. It
turns out that the runtime, in looking for a view controller’s corresponding nib, will
in fact try stripping “Controller” off the end of the view controller class’s name. We
can name our nib file RootView.xib instead of RootViewController.xib, and it will still
be properly associated with our RootViewController instance.

Automatic XIB file creation
When we created our UIViewController subclass, RootViewController, we saw in the
Xcode dialog a checkbox offering to create an eponymous .xib file at the same time:
“Also create XIB file.” We deliberately unchecked it. We are now in a position to
understand what happens if we check that checkbox:

• Xcode creates RootViewController.swift and RootViewController.xib.
• Xcode configures RootViewController.xib:

▪ The File’s Owner’s class is set to the view controller’s class, RootView‐
Controller.

▪ The File’s Owner’s view outlet is hooked up to the view.
The view controller and .xib file are ready for use together: you instantiate the view
controller with a nil nib name, and it gets its view from the eponymous nib.
(The .xib file created by Xcode in response to checking “Also create XIB file” does not

How a View Controller Obtains Its View | 303

have “Controller” stripped off the end of its name; you can rename it manually later if
the default name bothers you.)

Summary
We can now summarize the sequence whereby a view controller’s view is obtained. It
turns out that the entire process is driven by loadView:

1. When the view controller first decides that it needs its view, loadView is always
called:

• If we override loadView, we supply and set the view in code, and we do not
call super. Therefore, the process of seeking a view comes to an end.

• If we don’t override loadView, UIViewController’s built-in default imple‐
mentation of loadView takes over, and performs the rest of the process.

2. UIViewController’s default implementation of loadView looks for a nib:
• If the view controller’s nibName property is not nil, a nib with that name is

sought, and the process comes to an end.
• If the view controller’s nibName property is nil, then:

1. An eponymous nib is sought. If it is found, it is loaded and the process
comes to an end.

2. If the view controller’s name ends in “Controller,” an eponymous nib
without the “Controller” is sought. If it is found, it is loaded and the
process comes to an end.

3. If we reach this point, UIViewController’s default implementation of loadView
creates a generic UIView.

If things go wrong during that process, at best the wrong view might appear; at worst
the app might crash. Typically a crash happens because the view controller tries to
obtain its view by loading a nib, but it fails, because:

• A nibName is specified but there is no such nib.
• A nib is found but the nib itself is not correctly configured: the file’s owner is not

of the right class, or its view outlet is not set.

How Storyboards Work
Up to this point, in explaining where a view controller comes from and how it gets its
view, I’ve been ignoring the existence of storyboards. That’s not because storyboards
work differently from what I’ve been describing; it’s because storyboards work the
same way as what I’ve been describing.

304 | Chapter 6: View Controllers

First of all, what is a storyboard? It’s actually a collection of nib files, along with some
ancillary information about them (stored in an Info.plist file). And what’s a nib file?
It’s just a set of instructions for creating and configuring instances. When a nib is
loaded during the running of the app, those instructions are obeyed and the instances
are created and configured. The instances in question will mostly be UIView instan‐
ces; the advantage of a nib as a way of making view instances is that you get to design
those views graphically, as in a drawing program, instead of having to describe them
in code. But it is also legal for a nib object to be a view controller. So it is possible to
store the instructions for creating and configuring a view controller in a nib file, and
to obtain the actual view controller instance at runtime by loading the nib.

Storyboards contain scenes. Each scene consists of a view controller. Each view con‐
troller goes into a nib file. When the app runs, if an instance of that view controller is
needed, that nib is loaded — and so that view controller’s class is instantiated and the
instance is configured. That answers the question about where the view controller
comes from.

And how does this view controller get its view? Well, it can get its view in any of the
ways I’ve just finished describing, but usually it will use the third way: it will get its
view from a nib. By default, a storyboard scene contains two things: a view controller
and its main view. The view controller goes into a nib file, and its main view goes into
another nib file. This second nib file configures the view, its subviews, and any other
top-level objects such as gesture recognizers. The view nib has a special name, such as
01J-lp-oVM-view-Ze5-6b-2t3.nib, so that the view controller can find it later. And the
view nib is correctly configured: its File’s Owner class is the view controller’s class,
with its view outlet hooked to the view. When the view controller has been instanti‐
ated and needs its view, it loads the corresponding view nib.

As a result of this architecture, a storyboard has all the memory management advan‐
tages of nib files: none of these nib files are loaded until the instances that they con‐
tain are needed, and they can be loaded multiple times to give additional instances of
the same nib objects. At the same time, you get the convenience of being able,
through the nib editor, to see and edit a lot of your app’s interface simultaneously in
one place.

How a Storyboard View Controller Nib is Loaded
A storyboard is first and foremost a source of view controller instances. In fact, you
can set up your app in such a way that a storyboard is the source of every view con‐
troller that your app will ever instantiate; what’s more, you can usually configure the
storyboard in such a way that every view controller your app will ever need will be
instantiated automatically at exactly the moment it is needed.

How Storyboards Work | 305

To instantiate a view controller from a storyboard, we must load a view controller nib
from that storyboard. The process therefore starts with a reference to the storyboard.
You can get a reference to a storyboard chiefly in one of two ways:

• Through the storyboard’s name, by calling the UIStoryboard initializer
init(name:bundle:).

• Through the storyboard property of a view controller that has already been
instantiated from that storyboard.

When a view controller needs to be instantiated from a storyboard, its nib can be
loaded in one of four main ways:

Initial view controller
One view controller in the storyboard may be designated the storyboard’s initial
view controller (also called its entry point). To instantiate that view controller, call
this UIStoryboard instance method:

• instantiateInitialViewController

The view controller instance is returned, or nil if the storyboard has no initial
view controller.

By identifier
A view controller in a storyboard may be assigned an arbitrary string identifier;
this is its Storyboard ID in the Identity inspector. To instantiate that view con‐
troller, call this UIStoryboard instance method:

• instantiateViewController(withIdentifier:)

The view controller instance is returned, or you’ll crash if the storyboard has no
such view controller.

By relationship
A parent view controller in a storyboard may have immediate children, such as a
UINavigationController and its initial child view controller. The nib editor will
show a relationship connection between them. When the parent is instantiated
(the source of the relationship), the initial children (the destination of the rela‐
tionship) are automatically instantiated at the same time.

By a triggered segue
A view controller in a storyboard may be the source of a segue whose destination
is a child or presented view controller. When the segue is triggered and per‐
formed, it automatically instantiates the destination view controller.

306 | Chapter 6: View Controllers

How a Storyboard View Nib is Loaded
When a view controller is instantiated from its storyboard nib, it has no view,
because (as we know) view controller views are loaded lazily. Sooner or later, the view
controller will probably want its view (typically because it is time to put that view into
the interface). How will it get it?

The view nib, as I already mentioned, has been assigned a special name, such as 01J-
lp-oVM-view-Ze5-6b-2t3.nib. It turns out that the view controller, in its nib, was
handed that same special name: its nibName property was set to the name of the view
nib. So when the view controller wants its view, it loads it in the normal way! Its nib-
Name is not nil, so it looks for a nib by that name — and finds it. The nib is loaded
and the view becomes the view controller’s view.

Alternatively, it is possible (though not common), in the nib editor, to select the view
inside a view controller in a storyboard and delete it. That view controller then will
not have a corresponding view nib in the storyboard, and will have to obtain its view
in some other way:

• Through an implementation of loadView in the corresponding class’s code.
• By loading an eponymous nib that you supply as a .xib file.
• As a generic UIView created automatically.

View Resizing
It’s important to be prepared for the possibility that your view controller’s main view
will be resized. This might happen because:

• The view is put into the interface.
• The app rotates.
• The surrounding interface changes; for example, a navigation bar gets taller or

shorter, appears or disappears.
• The window itself is resized in the iPad multitasking interface.

You’ll want to use layout to help your app cope with all this resizing. Autolayout is
likely to be your most important ally (Chapter 1). If your code also needs to take a
hand in responding to a change in the view controller’s view size, that code will prob‐
ably go into the view controller itself. A view controller has properties and receives
events connected to the resizing of its view, so it can respond when resizing takes
place, and can even help dictate the arrangement of the interface if needed.

View Resizing | 307

View Size in the Nib Editor
When you design your interface in the nib editor, there are various settings for speci‐
fying the size of a view controller’s main view:

The View As button at the lower left of the canvas
You can specify that you want all view controller main views displayed at the size
of a particular device, along with an orientation.

The Simulated Metrics pop-up menus in the Attributes inspector
You can adjust for the presence or absence of interface elements that can affect
layout (status bar, top bar, bottom bar).

The Simulated Size pop-up menu in the Size inspector
By choosing Freeform, you can display a view controller’s view at any size.

But that’s just a way of displaying the view. It tells you nothing about the size that the
view will be when the app runs. There’s a wide range of possible sizes that the view
may assume when the app runs on different devices, in different orientations, and
with different surroundings. No single device size, orientation, or metrics can reflect
all of these.

If you design the interface only for the size you see in the nib editor, you can get a
rude surprise when you actually run the app and the view appears at some other size!
Failing to take account of this possibility is a common beginner mistake. Be sure to
design your app’s interface to be coherent at any size it may actually assume. Use
every tool at your disposal, including building and running on every simulator, to
ensure this.

Bars and Underlapping
A view controller’s view will often have to adapt to the presence of bars at the top and
bottom of the screen:

The status bar
The status bar is transparent, so that the region of a view behind it is visible
through it. The root view, and any other fullscreen view, must occupy the entire
window, including the status bar area. The top of the view will be behind the sta‐
tus bar, underlapping it and visible through it; a view behind the status bar can’t
be touched. You’ll want to design your view so that interface objects that the user
needs to see or touch are not covered by the status bar.

Top and bottom bars
Top and bottom bars may be displayed by a navigation controller (navigation
bar, toolbar) or tab bar controller (tab bar). Your view controller’s view may

308 | Chapter 6: View Controllers

extend behind a bar, underlapping it. You’ll want to design your view so that top
and bottom bars don’t conceal any of your view’s important interface.

Safe area
The status bar may be present or absent. Top and bottom bars may be present or
absent, and, if present, their height can change. How will your interface cope with
such changes? The primary coping mechanism is the view controller’s safe area (see
“Safe area” on page 48). The top and bottom of the safe area move automatically at
runtime to reflect the view’s environment.

Here’s how the safe area top is determined:

• If there is a status bar and no top bar, the safe area top is at the bottom of the
status bar.

• If there is a top bar, the safe area top is at the bottom of the top bar.
• If there is no top bar and no status bar, the safe area top is at the top of the view.

Here’s how the safe area bottom is determined:

• If there is a bottom bar, the safe area bottom is at the top of the bottom bar.
• If there is no bottom bar, the safe area bottom is at the bottom of the view.

(On a device without a bezel, the safe area top and bottom will take account of the
“notch” and home indicator, so they might not be at the top and bottom of the view.)

The easiest way to involve the safe area in your view layout is through autolayout and
constraints. A view vends the safe area as its safeAreaLayoutGuide. Typically, the
view whose safeAreaLayoutGuide you’ll be interested in is the view controller’s main
view. By constraining a subview to the topAnchor or bottomAnchor of the safeArea-
LayoutGuide, you guarantee that the subview will move when the top or bottom of
the safe area changes. Such constraints are easy to form in the nib editor — they are
the default when you form a constraint from a subview to the main view.

Status bar
The status bar can be present or absent. The default behavior is that it is present,
except in landscape orientation on an iPhone, where it is absent. If the status bar is
present, its background is transparent and it contains text; that text can be light or
dark, so as to show up against whatever is behind the status bar. The default behavior
(new in iOS 13) is that the text color responds so as to contrast with the user interface
style (light mode or dark mode).

The top-level view controller — which is usually the root view controller — gets a say
in this behavior. Your UIViewController subclass, if an instance of it is the top-level
view controller, can exercise this power by overriding these properties:

View Resizing | 309

preferredStatusBarStyle

Your choices (UIStatusBarStyle) are:

.default

New in iOS 13, this means automatic in response to the user interface style.
If the interface is in dark mode, the text will be light; if the interface is in
light mode, the text will be dark.

.lightContent

The text will be light.

.darkContent

The text will be dark. New in iOS 13; previously, the .default setting gave
this effect.

prefersStatusBarHidden

A value of true makes the status bar invisible; a value of false makes the status
bar visible, even in landscape orientation on an iPhone.

Your override will be a computed variable with a getter function; your getter can
return the result of a call to super to get the default behavior.

Even if your view controller is not the top-level view controller, those properties
might still be consulted and obeyed, because your view controller might be the child
of a parent that is the top-level view controller but delegates the decision-making
power to one of its children, through an override of these properties:

childForStatusBarStyle

childForStatusBarHidden

Used to delegate the decision on the status bar style or visibility to a child view
controller’s preferredStatusBarStyle or prefersStatusBarHidden.

A tab bar controller is a case in point. It implements those properties to allow its
selected child (the child view controller whose view is currently being displayed) to
decide the status bar style and visibility.

You are not in charge of when status bar–related properties are consulted, but you
can provide a nudge: if the situation has changed and one of those properties would
now give a different answer, call setNeedsStatusBarAppearanceUpdate on your view
controller.

If you call setNeedsStatusBarAppearanceUpdate and the status bar style or visibility
changes, the change will be sudden. If you prefer to animate the change over time,
call setNeedsStatusBarAppearanceUpdate inside an animations function. If the visi‐
bility changes, the nature of the animation is set by your view controller’s override of

310 | Chapter 6: View Controllers

preferredStatusBarUpdateAnimation; the value you return (UIStatusBar‐
Animation) can be .fade, .slide, or .none.

When you change the visibility of the status bar, the top of the safe area may move up
or down. If your main view has subviews with constraints to the safe area’s top
anchor, those subviews will move. By default, the user will see this movement as a
jump. If you prefer that the movement of the subviews should be animated, animate
the change in layout by calling layoutIfNeeded on your view (“Animation and Lay‐
out” on page 240). If you are also animating the change in the status bar’s visibility,
you’ll do that in the same animations function in which you call setNeedsStatusBar-
AppearanceUpdate. In this example, a button’s action method toggles the visibility of
the status bar with smooth animation:

var hide = false
override var prefersStatusBarHidden : Bool {
 return self.hide
}
@IBAction func doButton(_ sender: Any) {
 self.hide.toggle()
 UIView.animate(withDuration:0.4) {
 self.setNeedsStatusBarAppearanceUpdate()
 self.view.layoutIfNeeded()
 }
}

New in iOS 13, if you want to know the current state of the status bar, you should ask
the window scene’s status bar manager (UIStatusBarManager). It has properties
statusBarFrame, isStatusBarHidden, and statusBarStyle (always reported
as .darkContent or .lightContent). This works even if your app doesn’t explicitly
support window scenes, because there is always an implicit window scene:

if let sbman = self.view.window?.windowScene?.statusBarManager {
 let isHidden = sbman.isStatusBarHidden
 // ...
}

Extended layout
If a view controller is the child of a navigation controller or tab bar controller, you
can govern whether its view underlaps a top bar (navigation bar) or bottom bar (tool‐
bar, tab bar) with these UIViewController properties:

edgesForExtendedLayout

A UIRectEdge governing what bars this view controller’s view is permitted to
underlap:

.all

A top bar or a bottom bar. The default.

View Resizing | 311

.top

Top bars only.

.bottom

Bottom bars only.

.none

This view controller’s view won’t underlap top and bottom bars.

extendedLayoutIncludesOpaqueBars

Top and bottom bars can be translucent or not, according to the value of their
isTranslucent property. If a view controller’s extendedLayoutIncludesOpaque-
Bars property is true, then if its edgesForExtendedLayout permits underlapping
of bars, those bars will be underlapped even if their isTranslucent is false. The
default is false, meaning that only translucent bars are underlapped.

Resizing and Layout Events
A view controller receives resizing events that notify it of changes related to the main
view being resized:

willTransition(to:with:) (UIContentContainer protocol)
Sent when the view controller’s trait collection is about to change. This can hap‐
pen for many reasons, but one possibility is a size change that causes the size
classes to change, such as the app rotating 90 degrees on an iPhone. The first
parameter is the new trait collection (a UITraitCollection). The old trait collec‐
tion is still available as self.traitCollection. If you override this method, call
super.

viewWillTransition(to:with:) (UIContentContainer protocol)
Sent when the main view’s size is about to change. The app might be about to
undergo rotation, or the user might be widening or narrowing the window under
iPad multitasking (see Chapter 9). The first parameter is the new size (a CGSize).
The old size is still available as self.view.bounds.size. If you override this
method, call super.

traitCollectionDidChange(_:) (UITraitEnvironment protocol)
Sent after the trait collection changes. The parameter is the old trait collection;
the new trait collection is available as self.traitCollection. If you override
this method, call super first before doing anything else. (New in iOS 13, trait-
CollectionDidChange(_:) is not sent when your app launches or when a view
controller’s view is first added to the interface.)

312 | Chapter 6: View Controllers

Do not do anything time-consuming or irrelevant in the resizing events! These
events can arrive multiple times in quick succession when the app (or scene)
goes into the background, so that the runtime can obtain screenshots in both ori‐
entations and in both user interface styles (light and dark mode).

The with: parameter in the first two methods is a transition coordinator (UIView‐
ControllerTransitionCoordinator). If we’re getting these events because rotation is
about to take place, we can hook into the rotation animation by calling this method
of the coordinator:

animate(alongsideTransition:completion:)

The first parameter is an animations function; animations we supply here will be
performed in coordination with the rotation animation. The second parameter is
an optional completion function to be executed when the rotation animation is
over.

If you need to know what the rotation is, as a CGAffineTransform, that is the coordi‐
nator’s targetTransform. Here’s a useful trick in case you need to keep a view
(self.v) oriented the same way with respect to the device regardless of how the inter‐
face rotates:

self.v.transform =
 coordinator.targetTransform.inverted().concatenating(self.v.transform)

In addition, a UIViewController receives layout events related to the layout of its view
(and compare “Layout Events” on page 78 for the corresponding UIView events):

updateViewConstraints

The view is about to be told to update its constraints (updateConstraints),
including at application launch. If you override this method, call super.

viewWillLayoutSubviews

viewDidLayoutSubviews

These events surround the moment when the view is sent layoutSubviews,
including at application launch. They are important and useful events, but they
can arrive more often than you might expect, so don’t do any work that you
don’t have to.

Layout events can be a more reliable way to detect a size change than the resizing
events. There are many circumstances, such as the showing and hiding of a naviga‐
tion bar that isn’t underlapped, under which your view can be resized without a size
change being reported; and you don’t necessarily get any resizing event when your
view is added to the interface, or at launch, even though it probably is resized at that
moment. (I regard this as a flaw in the view controller event architecture.) But under
those same circumstances you’ll always get layout events.

View Resizing | 313

Rotation
Your app can rotate, moving its top to correspond to a different edge of the device’s
screen. Your view controller will be intimately concerned with rotation of the app.

A Simulator window can automatically rotate if the orientation of the app
changes. Choose Hardware → Rotate Device Automatically to toggle this setting.
Your choice applies to all Simulator windows.

Uses of Rotation
There are two complementary uses of rotation:

Compensatory rotation
The app rotates to compensate for the orientation of the device, so that the inter‐
face appears right way up with respect to how the user is holding the device.

Forced rotation
The app rotates when a particular view appears in the interface, or when the app
launches, to indicate that the user needs to reorient the device in order to view
the interface the right way up. This is typically because the interface has been
specifically designed, in view of the fact that the screen is not square, to appear in
just one orientation (portrait or landscape).

In the case of the iPhone, no law says that your app has to perform compensatory
rotation. Most of my iPhone apps do not do so. My view controller views often look
best in just one orientation (either just portrait or just landscape), and they stub‐
bornly stay there regardless of how the user holds the device.

Some of those same apps may have some view controller views that look best in por‐
trait and others that look best in landscape. In that case, I have no compunction
about forcing the user to rotate the device differently depending on what view is
being displayed. This is reasonable, because the iPhone has a natural right way up,
and because it is small and easily reoriented 90 degrees with a twist of the user’s wrist.

On the other hand, Apple thinks of an iPad as having no natural top, and would pre‐
fer iPad apps to rotate to at least two opposed orientations (such as both landscape
orientations), and preferably to all four possible orientations, so that the user isn’t
restricted as to how the device is held.

Allowing a single interface to rotate between two orientations that are 90 degrees
apart is tricky, because its dimensions must change — roughly speaking, its height
and width are transposed — and this may require a change of layout, perhaps with
quite substantial alterations, such as removal or addition of part of the interface. A
good example is the behavior of Apple’s Mail app on the iPad: in landscape, the mas‐
ter pane and the detail pane appear side by side, but in portrait, the master pane is

314 | Chapter 6: View Controllers

removed and must be summoned as a temporary overlay on top of the detail pane
(explained in Chapter 9).

Permitting Compensatory Rotation
By default, when you create an Xcode project, the app will perform compensatory
rotation in response to the user’s rotation of the device. For an iPhone app, this
means that the app can appear with its top at the top or either side of the device. For
an iPad app, it means that the app can assume any of the four orientations.

If the default behavior isn’t what you want, it is up to you to change it. There are
three levels at which you can make changes:

The app’s Info.plist
The app itself, in its Info.plist, declares once and for all every orientation the
interface will ever be permitted to assume. It does this under the “Supported
interface orientations” key, UISupportedInterfaceOrientations. For a univer‐
sal app, this is supplemented by “Supported interface orientations (iPad),”
UISupportedInterfaceOrientations~ipad. These keys can be set through
checkboxes when you edit the app target, in the General tab.

The app delegate’s application(_:supportedInterfaceOrientationsFor:)
This method, if implemented, returns a bitmask listing every orientation the
interface is permitted to assume at that moment. This list overrides the Info.plist
settings. In this way, the app delegate can do dynamically what the Info.plist can
do only statically. This method is called at least once every time the device
rotates.

The top-level view controller’s supportedInterfaceOrientations
The top-level view controller — that is, the root view controller, or a view con‐
troller presented fullscreen — may override the supportedInterface-

Orientations property, returning a bitmask listing every orientation that the
interface is permitted to assume at that moment. New in iOS 13, if both the app
delegate and the view controller participate in this decision, the view controller
wins outright. (In iOS 12 and before, their contributions must intersect or the
app will crash.)

The top-level view controller can also override shouldAutorotate. This is a Bool,
and the default is true. It is consulted at least once every time the device rotates;
if it returns false, that’s the end of the matter — supportedInterface-
Orientations is not consulted and the interface does not perform compensatory
rotation.

Built-in parent view controllers, when they are the top-level view controller, do not
automatically consult their children about rotation. If your view controller is a child

Rotation | 315

view controller of a UITabBarController or a UINavigationController, it has no
direct say in how the app rotates. Those parent view controllers, however, do consult
their delegates about rotation, as I’ll explain later.

You can call the UIViewController class method attemptRotationToDevice-

Orientation to prompt the runtime to do immediately what it would do if the user
were to rotate the device, namely to walk the three levels I’ve just described and, if the
results permit rotation of the interface to match the current device orientation, to
rotate the interface at that moment. This would be useful if, say, your view controller
had previously returned false from shouldAutorotate, but is now for some reason
prepared to return true and wants to be asked again, immediately.

The bitmask you return from application(_:supportedInterfaceOrientations-
For:) or supportedInterfaceOrientations is a UIInterfaceOrientationMask. It
may be one of these values, or multiple values combined:

• .portrait

• .landscapeLeft

• .landscapeRight

• .portraitUpsideDown

• .landscape (a combination of .left and .right)
• .all (a combination of .portrait, .upsideDown, .left, and .right)
• .allButUpsideDown (a combination of .portrait, .left, and .right)

For example:

override var supportedInterfaceOrientations : UIInterfaceOrientationMask {
 return .portrait
}

If your code needs to know the current physical orientation of the device (as opposed
to the current orientation of the interface), it is UIDevice.current.orientation.
Possible values (UIDeviceOrientation) are .unknown, .portrait, and so on. The
orientation also has two convenient properties, isPortrait and isLandscape, that
return a Bool.

On iPad, if your app permits all four orientations, and if it doesn’t opt out of
iPad multitasking, then supportedInterfaceOrientations and should-

Autorotate are never consulted, because the answer is known in advance: com‐
pensatory rotation is always performed.

316 | Chapter 6: View Controllers

Initial Orientation
I’ve talked about how to determine what orientations your app can support in the
course of its lifetime; but what about its initial orientation, the very first orientation
your app will assume when it launches? In general, an app will launch directly into
whatever permitted orientation is closest to the device’s current orientation at launch
time; this makes sense and is generally what you expect.

There can be a complication when the orientation in which the device is held would
have been legal, but the initial root view controller rules it out. Suppose the device is
held in portrait, and the Info.plist permits all orientations, but the root view control‐
ler’s supportedInterfaceOrientations is set to return .landscape. Then the app
starts to launch into portrait, realizes its mistake, and finishes launching in landscape.
On the iPhone, this entails a kind of semirotation: willTransition(to:with:) is
sent to report a trait collection change, but oddly there is no size change.

To work around that problem, here’s a trick that I use. Let’s say that my app needs
eventually to be able to rotate to portrait, so I need to permit all orientations, but its
initial root view controller must appear only in landscape. In my Info.plist, I permit
only landscape; that way, my app launches directly into landscape, no matter how the
device is oriented. But in my app delegate’s application(_:supportedInterface-
OrientationsFor:), I return .all; that way, my app can rotate subsequently to por‐
trait if it needs to.

Detecting Rotation
On the whole, you are unlikely to want to detect rotation per se. You are more likely
to want to respond to a change of size classes, or a change of layout; you’ll use a trait
collection event or a layout event. If you really do need to detect that rotation is tak‐
ing place, even on an iPad, the best way is through the size change event will-
Transition(to:with:). Size changes can happen for other reasons, so to determine
that this really was a rotation, compare the orientation of the interface before and
after the transition; new in iOS 13, you can find out the interface orientation by ask‐
ing the window scene:

override func viewWillTransition(to size: CGSize,
 with coordinator: UIViewControllerTransitionCoordinator) {
 super.viewWillTransition(to:size, with: coordinator)
 let before = self.view.window?.windowScene?.interfaceOrientation
 coordinator.animate(alongsideTransition: nil) { _ in
 let after = self.view.window?.windowScene?.interfaceOrientation
 if before != after {
 // we rotated
 }
 }
}

Rotation | 317

The interfaceOrientation is a UIInterfaceOrientation; possible values
are .portrait and so on. Two convenient interfaceOrientation properties,
isLandscape and isPortrait, return a Bool.

View Controller Manual Layout
What if a view controller wants to participate directly, in code, in the layout of its
main view’s subviews? A view controller’s view can be resized, both as the view is first
put into the interface and later as the app runs and is rotated. Where should your
view controller’s layout code be placed in order to behave coherently in the face of
these potential size changes?

Initial Manual Layout
There is a natural temptation to perform initial layout-related tasks in viewDidLoad.
This method is extraordinarily convenient. It is guaranteed to be called exactly once
very early in the life of the view controller; the view controller has its view, and if it
got that view from a nib, properties connected to outlets from that nib have been set.
This seems like the perfect place for initializations. But initialization and layout are
not the same thing.

At the time viewDidLoad is called, the view controller’s view has been loaded, but it
has not yet been inserted into the interface, the view has not been fully resized for the
first time, and initial layout has not yet taken place. You cannot do anything here that
depends upon knowing the dimensions of the view controller’s view or any other
nib-loaded view — for the simple reason that you do not know them. Performing
layout-related tasks in viewDidLoad and then wondering why things are sized or
positioned incorrectly is a common beginner mistake.

Imagine that our view controller is the child of a navigation controller, and that our
view controller does not underlap top and bottom bars. And suppose we wish, in
code, before our view controller’s view appears, to create a label and place it in the
lower left corner of our main view. This code looks as if it should do that:

override func viewDidLoad() {
 super.viewDidLoad()
 let lab = UILabel()
 lab.text = "Hello"
 lab.sizeToFit()
 lab.frame.origin.y = self.view.bounds.height - lab.frame.height // *
 self.view.addSubview(lab)
}

The app launches, our main view appears — and there’s no label. Where did it go?
The view debugger reveals the answer: it’s below the bottom of the screen. viewDid-
Load runs before the main view is resized. The starred line calculates the label’s

318 | Chapter 6: View Controllers

frame.origin.y based on our main view’s bounds.height, and then the main view’s
bounds.height changes, so the calculation is wrong. viewDidLoad is too soon.

The natural place to put that sort of code is an event related to resizing and layout of
the main view — such as viewWillLayoutSubviews. But we need to be careful,
because viewWillLayoutSubviews may be called many times over the life of our view
controller. We can position our label in viewWillLayoutSubviews each time it is
called, and indeed that’s probably a good thing to do, because it takes care of reposi‐
tioning the label when the main view’s size changes on rotation; but we don’t want to
create our label more than once. A neat solution is to create the view (once) in view-
DidLoad and position it (whenever layout is needed) in viewWillLayoutSubviews:

var lab : UILabel!
override func viewDidLoad() {
 super.viewDidLoad()
 self.lab = UILabel()
 self.lab.text = "Hello"
 self.lab.sizeToFit()
 self.view.addSubview(lab)
}
override func viewWillLayoutSubviews() {
 self.lab.frame.origin.y = self.view.bounds.height - self.lab.frame.height
}

If possible, you shouldn’t do manual layout in the first place. You can create and
insert this label in viewDidLoad and configure it for future layout by giving it autolay‐
out constraints:

override func viewDidLoad() {
 let lab = UILabel()
 lab.text = "Hello"
 self.view.addSubview(lab)
 lab.translatesAutoresizingMaskIntoConstraints = false
 NSLayoutConstraint.activate([
 lab.leadingAnchor.constraint(equalTo: self.view.leadingAnchor),
 lab.bottomAnchor.constraint(equalTo: self.view.bottomAnchor)
])
}

That is not a case of doing manual layout in viewDidLoad. The constraints are not
layout; they are instructions as to how this view should be sized and positioned by the
runtime when layout does happen. (Autoresizing would work fine here too.)

Manual Layout During Rotation
The same principles apply to manual layout later in the life of the app. Let’s say that
rotation is taking place, and we want to respond by changing the layout in some way.
Again, viewWillLayoutSubviews is an excellent place to do that:

View Controller Manual Layout | 319

Order of events
By the time layout occurs, all the other initial conditions are already in place. If
the trait collection needed to change, it has changed. If our main view needed to
be resized, it has been resized.

Animation
Rotation of the interface is animated. If the layout is changing in response to
rotation, we want the change to be animated in coordination with the rotation
animation. If we perform our changes in a layoutSubviews event, it will be ani‐
mated during rotation! This, in effect, is because the runtime has animated
a call to layoutIfNeeded before the rotation starts (“Animation and Layout” on
page 240).

Let’s say I have a large green rectangle that should occupy the left one-third of the
interface, but only when we are in landscape orientation (the main view’s width is
larger than its height) and only when we are in a .regular horizontal size class. This
rectangle should come and go in a smooth animated fashion; let’s decide to have it
appear from, or vanish off to, the left of the interface.

I can manage all of that entirely by means of manual layout. As in the previous exam‐
ple, I’ll distribute responsibilities between viewDidLoad (creating the view) and view-
WillLayoutSubviews (positioning the view):

var greenView : UIView!
override func viewDidLoad() {
 super.viewDidLoad()
 self.greenView = UIView()
 self.greenView.backgroundColor = .green
 self.view.addSubview(self.greenView)
}
override func viewWillLayoutSubviews() {
 func greenViewShouldAppear() -> Bool {
 let tc = self.traitCollection
 let sz = self.view.bounds.size
 if tc.horizontalSizeClass == .regular {
 if sz.width > sz.height {
 return true
 }
 }
 return false
 }
 if greenViewShouldAppear() {
 self.greenView.frame = CGRect(0, 0,
 self.view.bounds.width/3.0, self.view.bounds.height
)
 } else {
 self.greenView.frame = CGRect(
 -self.view.bounds.width/3.0, 0,

320 | Chapter 6: View Controllers

 self.view.bounds.width/3.0, self.view.bounds.height
)
 }
}

This is a very handy technique. If a view is under the influence of autolayout and we
change its constraints instead of its frame in viewWillLayoutSubviews, the change in
layout is still animated in coordination with a rotation animation!

Presented View Controller
Back when the only iOS device was an iPhone, a presented view controller was called
a modal view controller. Under that original architecture, when a view controller is
presented, the root view controller remains in place, but the root view controller’s
view is taken out of the interface and the modal view controller’s view is used instead
(Figure 6-7). There is usually a general sense that this replacement is temporary;
eventually, the presented view controller will be dismissed. The presented interface
will then be removed and the original interface will be restored.

Presented view controllers have evolved since the early days, particularly with regard
to how their views relate to the existing interface. Instead of replacing the entire
interface, a presented view controller’s view can:

• Replace a subview within the existing interface.
• Cover the existing interface completely or partially, without removing any exist‐

ing interface.
For the most part, the “modal” characterization still applies. A presented view con‐
troller’s view generally blocks access to the “real” view, and the user must work there
until it is removed and the “real” view is visible again.

The color picker view in my Zotz! app (Figure 6-2) is modal in that sense. It is an
interface that says, “You are now configuring a color, and that’s all you can do;
change the color or cancel, or you’ll be stuck here forever.” The user can’t get out of
this view without tapping Cancel or Done, and the view that the user was previously
using is visible as a blur behind this view, waiting for the user to return to it.

Presentation and Dismissal
The key methods for presenting and dismissing a view controller are:

present(_:animated:completion:)

To make a view controller present another view controller, you send the first
view controller this message, handing it the second view controller, which you
will probably instantiate for this purpose. The first view controller will typically
be self.

Presented View Controller | 321

We now have two view controllers that stand in the relationship of being one
another’s presentingViewController and presentedViewController respec‐
tively. The presented view controller is retained, and its view replaces or covers
the presenting view controller’s view in the interface.

dismiss(animated:completion:)

The “presented” state of affairs persists until the presenting view controller is
sent this message. The presented view controller’s view is then removed from the
interface, the original interface is restored, and the presented view controller is
released; it will thereupon typically go out of existence.

As the view of the presented view controller appears, and again when it is dismissed,
there’s an option for animation to be performed as the transition takes place (the
animated: argument, a Bool). The completion: parameter, which can be nil, lets
you supply a function to be run after the transition (including the animation) has
finished.

View controller relationships during presentation

The presenting view controller (the presented view controller’s presentingView-
Controller) is not necessarily the same view controller to which you sent
present(_:animated:completion:). It will help if we distinguish three roles that
view controllers can play in presenting a view controller:

Presented view controller
The first argument to present(_:animated:completion:).

Original presenter
The view controller to which present(_:animated:completion:) was sent.
Apple sometimes refers to this view controller as the source; “original presenter”
is my own term.

The presented view controller is set as the original presenter’s presentedView-
Controller.

Presenting view controller
The view controller whose view is replaced or covered by the presented view
controller’s view. By default, it is the view controller that was the top-level view
controller prior to the presentation. It might not be the same as the original
presenter.

This view controller is set as the presented view controller’s presentingView-
Controller. The presented view controller is set as the presenting view control‐
ler’s presentedViewController. (This means that the presented view controller
might be the presentedViewController of two different view controllers.)

322 | Chapter 6: View Controllers

When you want to dismiss a presented view controller, you can send
dismiss(animated:completion:) to any of those three objects; the runtime will use
the linkages between them to transmit the necessary messages up the chain on your
behalf to the presentingViewController.

You can test whether a view controller’s presentedViewController or presenting-
ViewController is nil to learn whether presentation is occurring. A view controller
whose presentingViewController is nil is not a presented view controller at this
moment.

A view controller can present only one view controller at a time. If you send
present(_:animated:completion:) to a view controller whose presentedView-
Controller isn’t nil, nothing will happen and the completion function is not called
(and you’ll get a warning from the runtime). A presented view controller can itself
present a view controller, though, so there can be a chain of presented view
controllers.

If you send dismiss(animated:completion:) to a view controller in the middle of a
presentation chain — a view controller that has both a presentingViewController
and a presentedViewController — then its presentedViewController is dismissed.

If you send dismiss(animated:completion:) to a view controller whose presented-
ViewController is nil and that has no presentingViewController, nothing will
happen (not even a warning in the console), and the completion function is not
called.

Manual view controller presentation
To illustrate, let’s make one view controller present another, by calling
present(_:animated:completion:). (I’ll talk later about how to arrange things in a
storyboard with a modal segue so that present(_:animated:completion:) is called
for you.)

Start with an iPhone project made from the Single View App template. It contains
one view controller class, called ViewController. We’ll need a second view controller
class:

1. Choose File → New → File and specify iOS → Source → Cocoa Touch Class.
Click Next.

2. Name the class SecondViewController, make it a subclass of UIViewController,
and check the XIB checkbox so that we can design this view controller’s view in
the nib editor. Click Next.

3. Confirm the folder, group, and app target membership, and click Create.

Presented View Controller | 323

4. Edit SecondViewController.xib, and do something there to make the view distinc‐
tive, so that you’ll recognize it when it appears; you might give it a red back‐
ground color.

5. In ViewController.swift, give ViewController an action method that instantiates
SecondViewController and presents it:

@IBAction func doPresent(_ sender: Any) {
 let svc = SecondViewController()
 svc.modalPresentationStyle = .fullScreen
 self.present(svc, animated:true)
}

6. Edit Main.storyboard and add a button to the ViewController’s main view. Make
an action connecting that button’s Touch Up Inside control event to View‐
Controller’s doPresent.

Run the project. In ViewController’s view, tap the button. SecondViewController’s
view slides into place over ViewController’s view. We’ve presented a view controller!

In our lust for instant gratification, we have neglected to provide a way to dismiss the
presented view controller. If you’d like to do that:

1. In SecondViewController.swift, give SecondViewController an action method
that dismisses SecondViewController:

@IBAction func doDismiss(_ sender: Any) {
 self.presentingViewController?.dismiss(animated:true)
}

2. Edit SecondViewController.xib and add a button to SecondViewController’s
view. Connect that button to SecondViewController’s doDismiss.

Run the project. You can now alternate between ViewController’s view and Second‐
ViewController’s view, presenting and dismissing in turn. Go ahead and play for a
while with your exciting new app; I’ll wait.

Configuring a Presentation
This section describes some configurable aspects of how a view controller’s view
behaves as the view controller is presented.

Transition style
When a view controller is presented and later when it is dismissed, a simple anima‐
tion of its view can be performed, according to whether the animated: parameter of
the corresponding method is true. The animation type is the presented view control‐
ler’s modal transition style. To choose an animation type, set the presented view

324 | Chapter 6: View Controllers

controller’s modalTransitionStyle property prior to the presentation. This value can
be set in code or in the nib editor. Your choices (UIModalTransitionStyle) are:

.coverVertical (the default)
The view slides up from the bottom on presentation and down on dismissal. The
definition of “bottom” depends on the orientation of the device and the orienta‐
tions the view controllers support.

.flipHorizontal

The view flips on the vertical axis. If this is a .fullScreen or .currentContext
presentation (as I’ll describe in the next section), the presenting and presented
views behave like the front and back of a piece of paper. The “vertical axis” is the
device’s long axis, regardless of the app’s orientation.

.crossDissolve

The views effectively remain stationary, and one fades into the other.

A fourth option, .partialCurl, is completely unusable in iOS 13 and should be
avoided.

Alternatively, instead of a built-in modal transition style, you can substitute your own
custom transition animation, as I’ll explain later in this chapter.

Presentation style
When a view controller is presented, its view appears. Where that view is placed is
determined by the presented view controller’s modal presentation style. To choose a
presentation style, set the presented view controller’s modalPresentationStyle
property prior to the presentation. This value can be set in code or in the nib editor.
Your choices (UIModalPresentationStyle) are:

.fullScreen

The presented view controller covers the entire screen. The presenting view con‐
troller is the top-level view controller, and its view — meaning the entire inter‐
face — is replaced. This was the default before iOS 13.

.overFullScreen

Similar to .fullScreen, but the presenting view controller’s view is not replaced;
instead, it stays where it is, possibly being visible during the transition, and
remaining visible behind the presented view controller’s view if the latter has
some transparency.

.pageSheet

New in iOS 13, this is the default and its appearance is different from earlier sys‐
tems. On the iPad it is smaller than the screen. On the iPhone in portrait

Presented View Controller | 325

(.compact horizontal size class), it covers the screen but leaves a gap at the top,
while the existing interface shrinks a little behind it. (It can look like that on the
iPad too if the dynamic text size is very large.) On the iPhone in landscape
(.compact vertical size class), indistinguishable from .overFullScreen.

.formSheet

On the iPad, similar to .pageSheet but smaller (and it has a .compact horizontal
size class). As the name implies, this is intended to allow the user to fill out a
form (Apple describes this as “gathering structured information from the user”).
On the iPhone, indistinguishable from .pageSheet.

.currentContext

The presenting view controller can be any view controller, such as a child view
controller. The presented view controller’s view replaces the presenting view
controller’s view, which may have been occupying only a portion of the screen.
I’ll explain later how to specify the presenting view controller.

.overCurrentContext

Like .currentContext, but the presented view controller’s view covers the pre‐
senting view controller’s view rather than replacing it. This will often be a better
choice than .currentContext, because some subviews don’t behave well when
automatically removed from their superview and restored later.

.automatic

New in iOS 13. Okay, I lied when I said that .pageSheet is the default in iOS 13.
This is the default! You’ll rarely need to set it explicitly. In general it resolves
to .pageSheet, but it also allows certain built-in view controllers to choose their
own presentation style. In the storyboard, the Automatic presentation style is
backward-compatible, resolving to .fullScreen on iOS 12 and before.

Alternatively, instead of a built-in modal presentation style, you can create your own
custom transition that places the presented view controller’s view anywhere you like,
as I’ll explain later in this chapter.

User dismissal of a sheet
New in iOS 13, by default, a sheet (page sheet or form sheet) can be dismissed by
dragging down (except on an iPhone in landscape where it is treated as if it
were .fullScreen).

To prevent this, set the presented view controller’s isModalInPresentation to true;
the user will still be able to drag the sheet down, but it will snap back into place
instead of being dismissed. To detect this gesture, use the presentation controller dele‐
gate. (I’ll talk later about what the presentation controller is.) Set the presented view

326 | Chapter 6: View Controllers

controller’s presentationController?.delegate to an object adopting the UIAdap‐
tivePresentationControllerDelegate protocol and implement this delegate method:

presentationControllerDidAttemptToDismiss(_:)

Called when the user attempts to drag a page sheet down but is prevented from
doing so. The idea is that you might put up some interface explaining why the
user can’t dismiss the sheet this way.

Instead of setting isModalInPresentation permanently, you can make the same
decision in real time in a different presentation controller delegate method:

presentationControllerShouldDismiss(_:)

If you return false, it is as if you had momentarily set isModalInPresentation
to true: the user is attempting to drag down and failing to dismiss, so
presentationControllerDidAttemptToDismiss(_:) is called immediately.

If isModalInPresentation is not true and presentationControllerShould-

Dismiss(_:) does not return false, the user’s drag can succeed in dismissing the
presented view controller. To let you detect what’s happening, there are two more
presentation controller delegate methods:

presentationControllerWillDismiss(_:)

The user is starting to drag down. This does not necessarily mean that the user
will complete the drag gesture; the user might release the sheet, in which case it
will pop back into place and won’t be dismissed. The idea is that you might want
to coordinate some change of interface with the dismissal gesture (by means of
the presented view controller’s transitionCoordinator, as I’ll explain later).

presentationControllerDidDismiss(_:)

The user has completed the drag gesture and the sheet has been dismissed.

You don’t get any delegate event when you dismiss the sheet in code with
dismiss(animated:completion:), because you already know that the sheet is being
dismissed.

The drag gesture is implemented by a UIPanGestureRecognizer further up the
view hierarchy. If you need to immobilize the presented view so that it doesn’t
move in response to the user’s gesture, implement gestureRecognizerShould-
Begin (in a view subclass or a gesture recognizer delegate) to return false.

Current context presentation

When the presented view controller’s modalPresentationStyle is .currentContext
or .overCurrentContext, a decision has to be made by the runtime as to what view
controller should be the presenting view controller. This will determine what view
will be replaced or covered by the presented view controller’s view. The decision

Presented View Controller | 327

involves another UIViewController property, definesPresentationContext (a
Bool), and possibly still another UIViewController property, providesPresentation-
ContextTransitionStyle:

1. Starting with the original presenter — that is, the view controller to which
present(_:animated:completion:) was sent — we (the runtime) walk up the
chain of parent view controllers, looking for one whose definesPresentation-
Context property is true.

• If we don’t find one, the search has failed. Things work as if the presented
view controller’s modalPresentationStyle were .automatic, and we don’t
proceed to the next step.

• If we do find one, that’s the one — it will be the presentingView-
Controller, and its view will be replaced or covered by the presented view
controller’s view — and we do proceed to the next step.

2. If we get here, we have found a presentingViewController whose defines-
PresentationContext property is true. We now look to see if its provides-
PresentationContextTransitionStyle property is also true. If so, that view
controller’s modalTransitionStyle is used for this transition animation, rather
than the presented view controller’s modalTransitionStyle.

To illustrate, I need a parent–child view controller arrangement to work with. This
chapter hasn’t yet discussed any parent view controllers in detail, but the simplest is
UITabBarController, which I discuss in the next section, and it’s easy to create a
working app with a UITabBarController-based interface, so that’s the example I’ll
use:

1. Start with the Tabbed App template. It provides three view controllers — the
UITabBarController and two children, FirstViewController and SecondView‐
Controller.

2. As in the previous example, I want us to create and present the presented view
controller manually, rather than letting the storyboard do it automatically; so
make a new view controller class with an accompanying .xib file, to use as a pre‐
sented view controller — call it ExtraViewController.

3. In ExtraViewController.xib, give the view a distinctive background color, so
you’ll recognize it when it appears.

4. In the storyboard, put a button in the First View Controller view (First Scene),
and connect it to an action method in FirstViewController.swift that summons
the new view controller as a presented view controller:

@IBAction func doPresent(_ sender: Any) {
 let vc = ExtraViewController()
 self.present(vc, animated: true)
}

328 | Chapter 6: View Controllers

Run the project and tap the button. In iOS 13, we get the default .pageSheet presen‐
tation style. The presenting view controller is the root view controller, which is the
UITabBarController. The entire interface, including the tab bar, is covered by the
presented view controller’s view.

Now change the code to look like this:

@IBAction func doPresent(_ sender: Any) {
 let vc = ExtraViewController()
 self.definesPresentationContext = true // *
 vc.modalPresentationStyle = .currentContext // *
 self.present(vc, animated: true)
}

Run the project and tap the button. The presented view controller’s view replaces the
first view controller’s view, while the tab bar remains visible. That’s because the pre‐
sented view controller’s modalPresentationStyle is .currentContext, and defines-
PresentationContext is true in FirstViewController. The search for a context stops
in FirstViewController, which becomes the presenting view controller — meaning
that the presented view replaces FirstViewController’s view instead of the root view.

We can also override the presented view controller’s transition animation through
the modalTransitionStyle property of the presenting view controller:

@IBAction func doPresent(_ sender: Any) {
 let vc = ExtraViewController()
 self.definesPresentationContext = true
 self.providesPresentationContextTransitionStyle = true // *
 self.modalTransitionStyle = .flipHorizontal // *
 vc.modalPresentationStyle = .currentContext
 self.present(vc, animated: true)
}

Because the presenting view controller’s providesPresentationContextTransition-
Style is true, the transition uses the .flipHorizontal animation belonging to the
presenting view controller, rather than the default .coverVertical animation of the
presented view controller.

Configuration in the nib editor
Most of what I’ve described so far can be configured in a .storyboard or .xib file. A
view controller’s Attributes inspector lets you set its transition style and presentation
style, as well as definesPresentationContext and providesPresentationContext-
TransitionStyle.

If you’re using a storyboard, you can configure one view controller to present another
view controller by connecting them with a Present Modally segue; to do the presenta‐
tion, you trigger the segue (or give the user a way to trigger it) instead of calling
present(_:animated:completion:). The segue’s Attributes inspector lets you set the

Presented View Controller | 329

presentation style and transition style (and whether there is to be animation). Dis‐
missal is a little more involved; either you must dismiss the presented view controller
in code, by calling dismiss(animated:completion:), or you must use an unwind
segue. I’ll discuss triggered segues and unwind segues in detail later in this chapter.

Communication with a Presented View Controller
In real life, the original presenter will probably have information to impart to the pre‐
sented view controller as the latter is created and presented, and the presented view
controller will probably want to pass information back to the original presenter as it
is dismissed. Knowing how to arrange this exchange of information can be very
important.

Passing information from the original presenter to the presented view controller is
usually easy, because the original presenter typically has a reference to the presented
view controller before the latter’s view appears in the interface. Suppose the presen‐
ted view controller has a public data property. Then the original presenter can easily
set this property as it instantiates the presented view controller:

@IBAction func doPresent(_ sender: Any) {
 let svc = SecondViewController()
 svc.data = "This is very important data!" // *
 self.present(svc, animated:true)
}

You might even give the presented view controller a designated initializer that
accepts — and requires — the data that it needs to do its job, so that whoever creates
it must pass it that data.

If you’re using a storyboard and a Present Modally segue, things are a bit different. In
the original presenter, you typically implement prepare(for:sender:) as a moment
when the original presenter and the presented view controller will meet, and the for‐
mer can hand across any needed data. New in iOS 13, you can have the segue call an
@IBSegueAction method in the original presenter, to accomplish the same thing a bit
more cleanly. I’ll give more details later in this chapter.

Passing information back from the presented view controller to the original presenter
is a more interesting problem. The presented view controller will need to know who
the original presenter is, but it doesn’t automatically have a reference to it (the origi‐
nal presenter, remember, is not necessarily the same as the presentingView-
Controller). Moreover, the presented view controller will need to know the
signature of some method, implemented by the original presenter, that it can call in
order to hand over the information — and this needs to work regardless of the origi‐
nal presenter’s class.

The standard solution is to use delegation:

330 | Chapter 6: View Controllers

1. The presented view controller defines a protocol declaring a method that it wants
to call before it is dismissed.

2. The presented view controller provides a means whereby it can be handed a ref‐
erence to an object conforming to this protocol. Think of that reference as the
presented view controller’s delegate. Very often, this will be a property — per‐
haps called delegate — typed as the protocol. Such a property should probably
be weak, since an object usually has no business retaining its delegate.

3. The original presenter conforms to this protocol: it declares adoption of the pro‐
tocol, and it implements the required method.

4. As the original presenter creates and configures the presented view controller, it
hands the presented view controller a reference to itself, in its role as adopter of
the protocol, by assigning itself as the delegate of the presented view controller.

5. As the presented view controller is dismissed, it looks to see if it has a delegate. If
so, it calls the required method on that delegate, passing it the associated
information.

This sounds elaborate, but with practice you’ll find yourself able to implement it very
quickly. To illustrate, suppose that (as in our earlier example) the root view control‐
ler, ViewController, presents SecondViewController. Then our code in SecondView‐
Controller.swift would look like this:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any)
}
class SecondViewController : UIViewController {
 var data : Any?
 weak var delegate : SecondViewControllerDelegate?
 @IBAction func doDismiss(_ sender: Any) {
 self.delegate?.accept(data:"Even more important data!")
 self.presentingViewController?.dismiss(animated:true)
 }
}

It is now ViewController’s job to adopt the SecondViewControllerDelegate protocol,
and to set itself as the SecondViewController’s delegate. If it does so, then when the
delegate method is called, ViewController will be handed the data:

class ViewController : UIViewController, SecondViewControllerDelegate {
 @IBAction func doPresent(_ sender: Any) {
 let svc = SecondViewController()
 svc.data = "This is very important data!"
 svc.delegate = self // *
 self.present(svc, animated:true)
 }

Presented View Controller | 331

 func accept(data:Any) {
 // do something with data here
 }
}

New in iOS 13, there’s a problem: the presented view controller can be dismissed by
the user dragging down the view. That won’t cause doDismiss to be called, and
SecondViewController won’t call the delegate method. We need a way for the presen‐
ted view controller to hear about its own dismissal no matter how that dismissal is
triggered.

A good solution is to override the UIViewController method viewWillDisappear
(discussed later in this chapter). There is more than one reason why viewWill-
Disappear might be called; we can ensure that this really is the moment of our own
dismissal by consulting isBeingDismissed. Here’s how SecondViewController
would look now:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any)
}
class SecondViewController : UIViewController {
 var data : Any?
 weak var delegate : SecondViewControllerDelegate?
 @IBAction func doDismiss(_ sender: Any) {
 self.presentingViewController?.dismiss(animated:true)
 }
 override func viewDidDisappear(_ animated: Bool) {
 super.viewDidDisappear(animated)
 if self.isBeingDismissed {
 self.delegate?.accept(data:"Even more important data!")
 }
 }
}

Adaptive Presentation
When a view controller is about to appear with a modalPresentationStyle of .page-
Sheet or .formSheet, you get a second opportunity to change its effective modal-
PresentationStyle, and even to substitute a different view controller, based on the
current trait collection environment. This is called adaptive presentation. The idea is
that your presented view controller might appear one way for certain trait collections
and another way for others — on an iPad as opposed to an iPhone, for instance.

The adaptations you can perform in iOS 13 are:

• You can adapt .pageSheet or .formSheet to .fullScreen or .overFullScreen.
• You can adapt .pageSheet to .formSheet; this will make a visible difference only

on an iPad.

332 | Chapter 6: View Controllers

(It isn’t illegal to try to perform another adaptation, but it isn’t going to work either.)

To implement adaptive presentation, use the presentation controller delegate: set the
presented view controller’s presentationController?.delegate to an object adopt‐
ing the UIAdaptivePresentationControllerDelegate protocol, before presenting the
view controller. When you do present the view controller, but before its view actually
appears, the delegate is sent these messages:

adaptivePresentationStyle(for:traitCollection:)

The first parameter is the presentation controller, and its presentationStyle is
the modalPresentationStyle it proposes to use. Return a different modal pre‐
sentation style to use instead (or .none if you don’t want to change the presenta‐
tion style).

presentationController(_:willPresentWithAdaptiveStyle:transition-

Coordinator:)

Called just before the presentation takes place. If the adaptiveStyle: is .none,
adaptive presentation is not going to take place.

presentationController(_:viewControllerForAdaptivePresentationStyle:)

Called only if adaptive presentation is going to take place. The first parameter is
the presentation controller, and its presentedViewController is the view con‐
troller it proposes to present. Return a different view controller to present instead
(or nil to keep the current presented view controller).

Here’s how to present a view controller as a .pageSheet on iPad but as .overFull-
Screen on iPhone:

extension ViewController : UIAdaptivePresentationControllerDelegate {
 @IBAction func doPresent(_ sender: Any) {
 let svc = SecondViewController()
 svc.modalPresentationStyle = .pageSheet
 svc.presentationController!.delegate = self // *
 self.present(svc, animated:true)
 }
 func adaptivePresentationStyle(for controller: UIPresentationController,
 traitCollection: UITraitCollection) -> UIModalPresentationStyle {
 if traitCollection.horizontalSizeClass == .compact ||
 traitCollection.verticalSizeClass == .compact {
 return .overFullScreen
 }
 return .none // don't adapt
 }
}

Now let’s extend that example by presenting one view controller on iPad but a differ‐
ent view controller on iPhone; this method won’t be called when adaptive-
PresentationStyle returns .none, so it affects iPhone only:

Presented View Controller | 333

extension ViewController : UIAdaptivePresentationControllerDelegate {
 func presentationController(_ controller: UIPresentationController,
 viewControllerForAdaptivePresentationStyle: UIModalPresentationStyle)
 -> UIViewController? {
 let newvc = ThirdViewController()
 return newvc
 }
}

In real life, of course, when substituting a different view controller, you might need to
configure it before returning it, doing things like giving it data or setting its delegate.
A common scenario is to return the same view controller wrapped in a navigation
controller; I’ll illustrate in Chapter 9.

Presentation, Rotation, and the Status Bar
A .fullScreen presented view controller, even though it is not the root view control‐
ler, is the top-level view controller, and acquires some of the same mighty powers as if
it were the root view controller:

• Its supportedInterfaceOrientations and shouldAutorotate are honored; this
view controller gets to limit your app’s legal orientations.

• Its prefersStatusBarHidden and preferredStatusBarStyle are honored; this
view controller gets to dictate the appearance of the status bar.

When you present a view controller whose modalPresentationStyle is .full-
Screen, if its supportedInterfaceOrientations do not include the app’s current
orientation, the app’s orientation will rotate, as the presented view appears, to an ori‐
entation that the presented view controller supports — and the same thing will be
true in reverse when the presented view controller is dismissed. This is the only offi‐
cially sanctioned way to perform forced rotation (as I called it earlier in this chapter).

On an iPad, if your app permits all four orientations and does not opt out of iPad
multitasking, its view controllers’ supportedInterfaceOrientations are not
even consulted, so forced rotation doesn’t work.

The presented view controller’s supportedInterfaceOrientations bitmask might
permit multiple possible orientations. The view controller may then also wish to
specify which of those multiple orientations it should have initially when it is presen‐
ted. To do so, override preferredInterfaceOrientationForPresentation; this
property is consulted before supportedInterfaceOrientations, and its value is a
single UIInterfaceOrientation (not a bitmask).

When a view controller is presented, if its presentation style is not .fullScreen, a
question arises of whether its status bar properties (prefersStatusBarHidden and
preferredStatusBarStyle) should be consulted. By default, the answer is no,
because this view controller is not the top-level view controller. To make the answer

334 | Chapter 6: View Controllers

be yes, set this view controller’s modalPresentationCapturesStatusBarAppearance
to true.

Tab Bar Controller
A tab bar (UITabBar, see also Chapter 12) is a horizontal bar containing tab bar
items. A tab bar item (UITabBarItem) displays, by default, an image and a title. The
title usually appears beside the image; on an iPhone in portrait orientation, the title
appears below the image. At all times, exactly one of a tab bar’s items is selected
(highlighted); when the user taps an item, it becomes the selected item.

If there are too many items to fit on a tab bar, the excess items are subsumed into a
final More item. When the user taps the More item, a list of the excess items appears,
and the user can select one; the user can also be permitted to edit the tab bar, deter‐
mining which items appear in the tab bar itself and which ones spill over into the
More list.

A tab bar is an independent interface object, but it is nearly always used in conjunc‐
tion with a tab bar controller (UITabBarController, a subclass of UIViewController)
to form a tab bar interface. The tab bar controller displays the tab bar at the bottom
of its own view. From the user’s standpoint, the tab bar items correspond to views;
when the user selects a tab bar item, the corresponding view appears, filling the
remainder of the space. The user is employing the tab bar to choose an entire area of
your app’s functionality.

In reality, the UITabBarController is a parent view controller; you give it child view
controllers, which the tab bar controller then contains. Tapping a tab bar item
changes which child view controller is currently selected, and the view that appears is
that child view controller’s view.

Familiar examples of a tab bar interface on the iPhone are Apple’s Clock app and
Music app.

You can get a reference to the tab bar controller’s tab bar through its tabBar prop‐
erty. In general, you won’t need this. When using a UITabBarController, you do not
interact (as a programmer) with the tab bar itself; you don’t create it or set its items.
You provide the UITabBarController with children, and it does the rest; when the
UITabBarController’s view is displayed, there’s the tab bar along with the view of the
selected item. You can, however, customize the look of the tab bar (see Chapter 12 for
details).

Tab Bar Items
For each view controller you assign as a tab bar controller’s child, you’ll need to cre‐
ate and configure the tab bar item that will appear as its representative in the tab bar.

Tab Bar Controller | 335

This tab bar item will be your child view controller’s tabBarItem, a UITabBarItem;
this is a subclass of UIBarItem, an abstract class that provides some of its most
important properties, such as title, image, and isEnabled.

There are two ways to make a tab bar item:

By borrowing it from the system
Instantiate UITabBarItem using init(tabBarSystemItem:tag:), and assign the
instance to your child view controller’s tabBarItem. Consult the documentation
for the list of available system items. You can’t customize a system tab bar item’s
title; you must accept the title the system hands you.

By making your own
Instantiate UITabBarItem using init(title:image:tag:) and assign the
instance to your child view controller’s tabBarItem. Alternatively, use the view
controller’s existing tabBarItem and set its image and title. Instead of setting
the title of the tabBarItem, you can set the title property of the view control‐
ler itself; doing this automatically sets the title of its current tabBarItem (unless
the tab bar item is a system tab bar item), though the converse is not true.

You can also add a separate selectedImage later, or by initializing with
init(title:image:selectedImage:). The selectedImage will be displayed in
place of the normal image when this tab bar item is selected in the tab bar.

The image (and selectedImage) for a tab bar item should be a 30×30 PNG, or a vec‐
tor image (see Chapter 2). Apple prefers you to use a vector image, and new in iOS 13
the vast repertoire of standard symbol images is available. By default, the image will
be treated as a transparency mask (a template). You can instead display the image as
is, and not as a transparency mask, by deriving an image whose rendering mode
is .alwaysOriginal.

A tab bar controller automatically reduces the height of its tab bar when the vertical
size class is .compact (an iPhone in landscape orientation, except for a big iPhone). If
the image is not a vector image, you will have to cope with the possibility that the tab
bar item will be displayed at reduced size when the tab bar’s height is reduced. The
solution is to set the tab bar item’s landscapeImagePhone to a 20×20 PNG; it will be
used when the vertical size class is .compact.

A tab bar item’s selectedImage is not used in a .compact vertical size class envi‐
ronment if it also has a separate landscapeImagePhone. I regard this as a bug.

Other ways in which you can customize the look of a tab bar item are discussed in
Chapter 12.

336 | Chapter 6: View Controllers

Configuring a Tab Bar Controller
Basic configuration of a tab bar controller is simple: just hand it the view controllers
that will be its children. To do so, collect those view controllers into an array and set
the UITabBarController’s viewControllers property to that array. The view control‐
lers in the array are now the tab bar controller’s child view controllers; the tab bar
controller is the parent of the view controllers in the array. The tab bar controller is
also the tabBarController of the view controllers in the array and of all their chil‐
dren; a child view controller at any depth can learn that it is contained by a tab bar
controller and can get a reference to that tab bar controller. The tab bar controller
retains the array, and the array retains the child view controllers.

Here’s a simple example from one of my apps, in which I construct a tab bar interface
in code; the tab bar controller later becomes the window’s root view controller:

let vc1 = GameBoardController()
let sc = SettingsController()
let vc2 = UINavigationController(rootViewController:sc)
let tabBarController = UITabBarController()
tabBarController.viewControllers = [vc1, vc2]
tabBarController.selectedIndex = 0
tabBarController.delegate = self

A tab bar controller’s tab bar displays the tabBarItem of each child view controller.
The order of the tab bar items is the order of the view controllers in the tab bar con‐
troller’s viewControllers array. A child view controller will probably want to config‐
ure its tabBarItem property early in its lifetime, so that the tabBarItem is ready by
the time the view controller is handed as a child to the tab bar controller. viewDid-
Load is not early enough! That’s because the view controllers (other than the initially
selected view controller) have no view when the tab bar controller initially appears. It
is common to implement an initializer for this purpose.

Here’s an example from the same app as the previous code (in the GameBoardCon‐
troller class):

init() {
 super.init(nibName:nil, bundle:nil)
 // tab bar configuration
 self.tabBarItem.image = UIImage(named: "game")
 self.title = "Game"
}

If you change the tab bar controller’s view controllers array later in its lifetime and
you want the corresponding change in the tab bar’s display of its items to be anima‐
ted, call setViewControllers(_:animated:).

To ask the tab bar controller which tab bar item the user has selected, you can couch
your query in terms of the child view controller (selectedViewController) or by

Tab Bar Controller | 337

index number in the array (selectedIndex). You can also set those properties to
switch between displayed child view controllers programmatically. If you don’t do
that before the tab bar controller appears, then initially the first tab bar item will be
selected by default.

You can supply a view animation when a tab bar controller’s selected tab item
changes and one child view controller’s view is replaced by another, as I’ll
explain later in this chapter.

You can also set the UITabBarController’s delegate (adopting UITabBarController‐
Delegate). The delegate gets messages allowing it to prevent a given tab bar item from
being selected, and notifying it when a tab bar item is selected and when the user is
customizing the tab bar from the More item.

If a tab bar controller is the top-level view controller, it determines your app’s com‐
pensatory rotation behavior. To take a hand in that determination without having to
subclass UITabBarController, make one of your objects the tab bar controller’s dele‐
gate and implement these methods, as needed:

• tabBarControllerSupportedInterfaceOrientations(_:)

• tabBarControllerPreferredInterfaceOrientationForPresentation(_:)

A top-level tab bar controller also determines your app’s status bar appearance. How‐
ever, a tab bar controller implements childForStatusBarStyle and childForStatus-
BarHidden so that the actual decision is relegated to the child view controller whose
view is currently being displayed: the child’s preferredStatusBarStyle and prefers-
StatusBarHidden are consulted and obeyed.

If the tab bar contains few enough items that it doesn’t need a More item, there won’t
be one, and the tab bar won’t be user-customizable. If there is a More item, you can
exclude some tab bar items from being customizable by setting the customizable-
ViewControllers property to an array that lacks them; setting this property to nil
means that the user can see the More list but can’t rearrange the items. Setting the
viewControllers property sets the customizableViewControllers property to the
same value, so if you’re going to set the customizableViewControllers property, do
it after setting the viewControllers property. The moreNavigationController prop‐
erty can be compared with the selectedViewController property to learn whether
the user is currently viewing the More list.

You can configure a UITabBarController in a storyboard. The UITabBarController’s
contained view controllers can be set directly — there will be a “view controllers”
relationship between the tab bar controller and each of its children — and the con‐
tained view controllers will be instantiated together with the tab bar controller. More‐
over, each contained view controller has a Tab Bar Item; you can select this and set
many aspects of the tabBarItem, such as its system item or its title, image, selected

338 | Chapter 6: View Controllers

image, and tag, directly in the nib editor. (If a view controller in a nib doesn’t have a
Tab Bar Item and you want to configure this view controller for use in a tab bar inter‐
face, drag a Tab Bar Item from the Library onto the view controller.) To start a
project with a main storyboard that has a UITabBarController as its initial view con‐
troller, begin with the Tabbed App template.

You will rarely if ever have a need to subclass UITabBar. If you do, and if you
want to use an instance of your subclass as a tab bar controller’s tab bar, you’ll
have to create the tab bar controller in a storyboard. A tab bar controller config‐
ured in a storyboard can have a custom tab bar subclass, but a tab bar controller
created in code, as far as I can tell, cannot.

Navigation Controller
A navigation bar (UINavigationBar, see also Chapter 12) is a horizontal bar display‐
ing, in its simplest form, a center title and a right button. When the user taps the right
button, the navigation bar animates, sliding its interface out to the left and replacing
it with a new interface that enters from the right. The new interface displays a back
button at the left side, and a new center title — and possibly a new right button. The
user can tap the back button to go back to the first interface, which slides in from the
left; or, if there’s a right button in the second interface, the user can tap it to go fur‐
ther forward to a third interface, which slides in from the right.

The successive interfaces of a navigation bar behave like a stack. In fact, a navigation
bar does represent an actual stack — an internal stack of navigation items
(UINavigationItem). It starts out with one navigation item: the root item or bottom
item of the stack. Since there is initially just one navigation item, it is also initially the
top item of the stack (the navigation bar’s topItem). The navigation bar’s interface is
always representing whatever its top item is at that moment. When the user taps a
right button, a new navigation item is pushed onto the stack; it becomes the top item,
and its interface is seen. When the user taps a back button, the top item is popped off
the stack, and the navigation item that was previously beneath it in the stack — the
back item (the navigation bar’s backItem) — becomes the top item, and its interface
is seen.

A navigation bar is an independent interface object, but it is most commonly used in
conjunction with a navigation controller (UINavigationController, a subclass of
UIViewController) to form a navigation interface. Just as there is a stack of naviga‐
tion items in the navigation bar, there is a stack of view controllers in the navigation
controller. These view controllers are the navigation controller’s children, and each
navigation item belongs to a view controller — it is a view controller’s navigation-
Item.

Navigation Controller | 339

The navigation controller performs automatic coordination of the navigation bar and
the overall interface. Whenever a view controller comes to the top of the navigation
controller’s stack, its view is displayed in the interface; at the same time, its
navigationItem is pushed onto the top of the navigation bar’s stack, and is displayed
in the navigation bar as its top item. Moreover, the animation in the navigation bar is
reinforced by animation of the interface as a whole: by default, a view controller’s
view slides into the main interface from the side just as its navigation item slides into
the navigation bar from the same side.

You can substitute a different view animation when a view controller is pushed
onto or popped off a navigation controller’s stack, as I’ll explain later in this
chapter.

With a navigation controller, your code can control the overall navigation. So you
can let the user navigate in any way that suits the interface. There is only one back
item, and the back button in the navigation bar is a standard convention telling the
user what it is and providing a way to navigate to it by tapping, so you’ll usually dis‐
play the back button. But for letting the user push a new view controller, instead of a
right button in the navigation bar, there might be something the user taps inside the
main interface, such as a listing in a table view. (Figure 6-1 is a navigation interface
that works this way.) Your app can decide in real time, in response to the user’s tap,
what the next view controller should be; typically, you won’t even create the next
view controller until the user asks to navigate to it. The navigation interface becomes
a master–detail interface.

You can get a reference to the navigation controller’s navigation bar through its
navigationBar property. In general, you won’t need this. When using a
UINavigationController, you do not interact (as a programmer) with the navigation
bar itself; you don’t create it or manipulate its navigation items. You provide the
UINavigationController with children, and it does the rest, handing each child view
controller’s navigationItem to the navigation bar for display and showing the child
view controller’s view each time navigation occurs. You can, however, customize the
look of the navigation bar (see Chapter 12 for details).

A navigation interface may optionally display a toolbar at the bottom. A toolbar
(UIToolbar) is a horizontal view displaying a row of toolbar items. A toolbar item
may provide information, or it may be something the user can tap. A tapped item is
not selected, as in a tab bar; rather, it represents the initiation of an action, like a but‐
ton. You can get a reference to a UINavigationController’s toolbar through its
toolbar property. The look of the toolbar can be customized (Chapter 12). In a navi‐
gation interface, the contents of the toolbar are determined automatically by the view
controller that is currently the top item in the stack: they are its toolbarItems.

A familiar example of a navigation interface is Apple’s Settings app on the iPhone.
The Mail app on the iPhone is a navigation interface that includes a toolbar.

340 | Chapter 6: View Controllers

A toolbar can be used independently, and often is. An independent toolbar, not in a
navigation interface, may appear at the top on an iPad, where it plays something of
the role that the menu bar plays on the desktop; but it typically appears at the bottom
on an iPhone (Figure 6-4 has a toolbar at the bottom). If you need a top bar on the
iPhone, you might put a view controller inside a navigation controller even if no
actual navigation is going to take place, just for the convenience of the navigation bar
with its title and buttons at the top of the screen.

Bar Button Items
The items in a UIToolbar or a UINavigationBar are bar button items — UIBar‐
ButtonItem, a subclass of UIBarItem. A bar button item comes in one of two broadly
different flavors:

Basic bar button item
The bar button item behaves like a simple button.

Custom view
The bar button item has no inherent behavior, but has (and displays) a custom-
View.

UIBarItem is not a UIView subclass. A basic bar button item is button-like, but it has
no frame, no UIView touch handling, and so forth. But a UIBarButtonItem’s custom-
View, if it has one, is a UIView, so you can display any sort of view in a toolbar or
navigation bar, and that view can have subviews, touch handling, and so on.

Let’s start with the basic bar button item (no custom view). A bar button item, like a
tab bar item, inherits from UIBarItem the title, image, and isEnabled properties.
The title text color, by default, comes from the bar button item’s tintColor, which
may be inherited from the bar itself or from higher up the view hierarchy. Assigning
an image removes the title. The image should usually be quite small; Apple recom‐
mends 22×22. By default, it will be treated as a transparency mask (a template): the
hue of its pixels will be ignored, and the transparency of its pixels will be combined
with the bar button item’s tint color. You can instead display an image as is, and not
as a transparency mask, by deriving an image whose rendering mode is .always-
Original (see Chapter 2).

A basic bar button item has a style property (UIBarButtonItem.Style); this will usu‐
ally be .plain. The alternative, .done, causes the title to be bold. You can further
refine the title font and style. In addition, a bar button item can have a background
image; this will typically be a small resizable image, and can be used to provide a bor‐
der. Full details appear in Chapter 12.

A bar button item also has target and action properties. These facilitate its button-
like behavior: tapping a bar button item calls the action method on the target, so you

Navigation Controller | 341

can handle the tap in some object that makes sense for your architecture, such as the
view controller.

There are three ways to make a bar button item:

By borrowing it from the system
Make a UIBarButtonItem with init(barButtonSystemItem:target: action:).
Consult the documentation for the list of available system items; they are not the
same as for a tab bar item. You can’t assign a title or change the image. (But you
can change the tint color or assign a background image.)

By making your own basic bar button item
Make a UIBarButtonItem with init(title:style:target:action:) or with
init(image:style:target:action:). New in iOS 13, the repertoire of standard
symbol images is available.

Also, init(image:landscapeImagePhone:style:target: action:) lets you
specify a second image for use when the vertical size class is .compact, because
the bar’s height might be smaller in this situation.

By making a custom view bar button item
Make a UIBarButtonItem with init(customView:), supplying a UIView that the
bar button item is to display. The bar button item has no action and target; the
UIView itself must somehow implement button behavior if that’s what you want.
For instance, the customView might be a UISegmentedControl, but then it is the
UISegmentedControl’s target and action that give it button behavior.

Your custom view can and should use autolayout internally. Provide sufficient
constraints to size the view from the inside out; otherwise, it may have no size
(and might be invisible).

Bar button items in a toolbar are horizontally positioned automatically by the system.
You can’t control their position precisely, but you can provide hints. You can give a
bar button item an absolute width, and you can incorporate spacers into the toolbar;
these are created with init(barButtonSystemItem:target:action:), but they have
no visible appearance, and cannot be tapped. Place .flexibleSpace system items
between the visible items to distribute the visible items equally across the width of the
toolbar. There is also a .fixedSpace system item whose width lets you insert a space
of defined size.

Navigation Items and Toolbar Items
What appears in a navigation bar (UINavigationBar) depends upon the navigation
items (UINavigationItem) in its stack. In a navigation interface, the navigation con‐
troller will manage the navigation bar’s stack for you; your job is to configure the

342 | Chapter 6: View Controllers

navigationItem of each child view controller. The UINavigationItem properties are
(see also Chapter 12):

title

titleView

The title is a string. Setting a view controller’s title property sets the title of
its navigationItem automatically, and is usually the best approach. The title-
View can be any kind of UIView, and can implement further UIView functional‐
ity such as touchability.

In iOS 10 and before, the title and the titleView are displayed in the same
spot — the center of the navigation bar. So there can be only one: if there is a
titleView, it is shown instead of the title. Starting in iOS 11, the title may be
shown at the bottom of the navigation bar, in which case both the title and the
titleView can appear; I’ll explain more about that in a moment.

As with a custom view, the titleView should use autolayout internally, with suf‐
ficient constraints to size the view from the inside out.

prompt

An optional string to appear centered above everything else in the navigation
bar. The navigation bar’s height will be increased to accommodate it.

rightBarButtonItem or rightBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the
right side of the navigation bar; the first item in the array will be rightmost.

backBarButtonItem

When a view controller is pushed on top of this view controller, the navigation
bar will display at its left a button pointing to the left, whose title is this view con‐
troller’s title. That button is this view controller’s navigation item’s backBar-
ButtonItem. In other words, the back button displayed in the navigation bar
belongs, not to the top item (the navigationItem of the current view controller),
but to the back item (the navigationItem of the view controller that is one level
down in the stack).

Most of the time, the default behavior is the behavior you’ll want, and you’ll leave
the back button alone. If you wish, though, you can customize the back button by
setting a view controller’s navigationItem.backBarButtonItem so that it con‐
tains an image, or a title differing from the view controller’s title. The best tech‐
nique is to provide a new UIBarButtonItem whose target and action are nil; the
runtime will add a correct target and action, so as to create a working back but‐
ton. Here’s how to create a back button with a custom image instead of a title:

Navigation Controller | 343

let b = UIBarButtonItem(
 image:UIImage(named:"files"), style:.plain, target:nil, action:nil)
self.navigationItem.backBarButtonItem = b

A Bool property, hidesBackButton, allows the top navigation item to suppress
display of the back button. If you set this to true, you’ll probably want to provide
some other means of letting the user navigate back.

The visible indication that the back button is a back button is a chevron (the back
indicator) that’s separate from the button itself. This chevron can also be custom‐
ized, but it’s a feature of the navigation bar, not the bar button item. (I’ll give an
example in Chapter 12.)

leftBarButtonItem or leftBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the
left side of the navigation bar; the first item in the array will be leftmost. The
leftItemsSupplementBackButton property, if set to true, allows both the back
button and one or more left bar button items to appear.

Starting in iOS 11, a navigation bar can adopt an increased height in order to display
the top item’s title in a large font below the bar button items. This is a navigation
bar feature, its prefersLargeTitles property. In order to accommodate the possibil‐
ity that different view controllers will have different preferences in this regard, a navi‐
gation item has a largeTitleDisplayMode, which may be one of the following:

.always

The navigation item’s title is displayed large if the navigation bar’s prefers-
LargeTitles is true.

.never

The navigation item’s title is not displayed large.

.automatic

The navigation item’s title display is the same as the title display of the back
item — that is, of the navigation item preceding this one in the navigation bar’s
stack. This is the default. The idea is that all navigation items pushed onto a navi‐
gation bar will display their titles in the same way, until a pushed navigation item
declares .always or .never.

The navigation controller may grow or shrink its navigation bar to display or hide the
large title as the contents of its view are scrolled — yet another reason why a nimble
interface based on autolayout and the safe area is crucial.

New in iOS 13, a navigation bar with a large title is transparent by default. I’ll
talk in Chapter 12 about how to change that.

344 | Chapter 6: View Controllers

A view controller’s navigationItem is not just something to be prepared before that
view controller is pushed onto a navigation controller’s stack; it is live. You can
change its properties while its interface is being displayed in the navigation bar. In
one of my apps, we play music from the user’s library using interface in the naviga‐
tion bar. The titleView is a progress view (UIProgressView, Chapter 12) that needs
updating every second to reflect the playback position in the current song, and the
right bar button should be either the system Play button or the system Pause button,
depending on whether we are paused or playing. So I have a timer that periodically
checks the state of the music player (self.mp); we access the progress view and the
right bar button by way of self.navigationItem:

// change the progress view
let prog = self.navigationItem.titleView!.subviews[0] as! UIProgressView
if let item = self.nowPlayingItem {
 let current = self.mp.currentPlaybackTime
 let total = item.playbackDuration
 prog.progress = Float(current / total)
} else {
 prog.progress = 0
}
// change the bar button
let whichButton : UIBarButtonItem.SystemItem? = {
 switch self.mp.currentPlaybackRate {
 case 0..<0.1:
 return .play
 case 0.1...1.0:
 return .pause
 default:
 return nil
 }
}()
if let which = whichButton {
 let bb = UIBarButtonItem(barButtonSystemItem: which,
 target: self, action: #selector(doPlayPause))
 self.navigationItem.rightBarButtonItem = bb
}

Each view controller to be pushed onto the navigation controller’s stack is responsi‐
ble also for supplying the items to appear in the navigation interface’s toolbar, if there
is one: set the view controller’s toolbarItems property to an array of UIBarButton‐
Item instances. You can change the toolbar items even while the view controller’s
view and current toolbarItems are showing, optionally with animation, by sending
setToolbarItems(_:animated:) to the view controller.

Navigation Controller | 345

Configuring a Navigation Controller
You configure a navigation controller by manipulating its stack of view controllers.
This stack is the navigation controller’s viewControllers array property, though you
will rarely need to manipulate that property directly.

The view controllers in a navigation controller’s viewControllers array are the navi‐
gation controller’s child view controllers; the navigation controller is the parent of
the view controllers in the array. The navigation controller is also the navigation-
Controller of the view controllers in the array and of all their children; a child view
controller at any depth can learn that it is contained by a navigation controller and
can get a reference to that navigation controller. The navigation controller retains the
array, and the array retains the child view controllers.

The normal way to manipulate a navigation controller’s stack is by pushing or pop‐
ping one view controller at a time. When the navigation controller is instantiated, it is
usually initialized with init(rootViewController:); this is a convenience method
that assigns the navigation controller a single initial child view controller, the root
view controller that goes at the bottom of the stack:

let fvc = FirstViewController()
let nav = UINavigationController(rootViewController:fvc)

Instead of init(rootViewController:), you might choose to create the navigation
controller with init(navigationBarClass:toolbarClass:) in order to set a custom
subclass of UINavigationBar or UIToolbar. If you do that, you’ll have to set the navi‐
gation controller’s root view controller separately.

You can also set the UINavigationController’s delegate (adopting UINavigation‐
ControllerDelegate). The delegate receives messages before and after a child view
controller’s view is shown.

If a navigation controller is the top-level view controller, it determines your app’s
compensatory rotation behavior. To take a hand in that determination without hav‐
ing to subclass UINavigationController, make one of your objects the navigation
controller’s delegate and implement these methods, as needed:

• navigationControllerSupportedInterfaceOrientations(_:)

• navigationControllerPreferredInterfaceOrientationForPresentation(_:)

But don’t try to use those methods to implement forced rotation between one view
controller and the next as it is pushed onto the stack. That isn’t going to work. The
way to implement forced rotation is to use a fullscreen presented view controller, as I
explained earlier.

A top-level navigation controller also determines your app’s status bar visibility.
However, a navigation controller implements childForStatusBarHidden so that the

346 | Chapter 6: View Controllers

actual decision is relegated to the child view controller whose view is currently being
displayed: the child’s prefersStatusBarHidden is consulted and obeyed. On a device
without a bezel, such as the iPhone X, the status bar cannot be hidden if the naviga‐
tion bar is present.

Determining the status bar style (light or dark content) is more complicated:

The navigation bar is hidden
If the navigation bar is hidden but the status bar is showing, then your view con‐
troller’s preferredStatusBarStyle override gets to determine the status bar
style. That’s because the navigation controller’s childForStatusBarStyle points
to the child view controller whose view is currently being displayed.

The navigation bar is showing
If the navigation bar is showing, the navigation controller does not relegate the
decision to its child view controller. Instead, the status bar content color depends
on the navigation bar’s barStyle — the status bar content is dark if the naviga‐
tion bar style is .default, and light if the navigation bar style is .black.

New in iOS 13, that works only if the navigation bar doesn’t display a large title,
and only if you don’t use the new UIBarAppearance properties (Chapter 12);
Apple probably expects you to leave the status bar style alone and let it respond
automatically to the user interface style (light or dark mode). Just don’t make
your navigation bar so dark in light mode that dark status bar content isn’t legi‐
ble in front of it.

A navigation controller will typically appear on the screen initially containing just its
root view controller and displaying its root view controller’s view, with no back but‐
ton (because there is nowhere to go back to). Subsequently, when the user asks to
navigate to a new view, you create the next view controller and push it onto the stack
by calling pushViewController(_:animated:) on the navigation controller. The
navigation controller performs the animation, and displays the new view controller’s
view:

let svc = SecondViewController()
self.navigationController!.pushViewController(svc, animated: true)

The command for going back is popViewController(animated:), but you might
never need to call it yourself, as the runtime will call it for you when the user taps the
back button. When a view controller is popped from the stack, the viewControllers
array removes and releases the view controller, which is usually permitted to go out
of existence at that point.

(There’s a second way to push a view controller onto the navigation controller’s
stack, without referring to the navigation controller: show(_:sender:). This method

Navigation Controller | 347

pushes the view controller if we are in a navigation interface, but otherwise presents it
as a presented view controller. I’ll talk more about that in Chapter 9.)

Instead of tapping the back button, the user can go back by dragging a pushed view
controller’s view from the left edge of the screen. This is actually a way of calling pop-
ViewController(animated:), with the difference that the animation is interactive.
The UINavigationController uses a UIScreenEdgePanGestureRecognizer to detect
and track the user’s gesture. You can obtain a reference to this gesture recognizer as
the navigation controller’s interactivePopGestureRecognizer; you can disable the
gesture recognizer to prevent this way of going back, or you can mediate between
your own gesture recognizers and this one (see Chapter 5).

You can manipulate the stack more directly if you wish. You can call popView-
Controller(animated:) explicitly; to pop multiple items so as to leave a particular
view controller at the top of the stack, call popToViewController(_:animated:), or
to pop all the items down to the root view controller, call popToRootView-
Controller(animated:). All of these methods return the popped view controller (or
view controllers, as an array) in case you want to do something with them. To set the
entire stack at once, call setViewControllers(_:animated:). You can access the
stack through the viewControllers property. Manipulating the stack directly is the
only way, for instance, to remove or insert a view controller in the middle of the
stack.

If a view controller needs a signal that it is being popped, override viewWill-
Disappear and see if self.isMovingFromParent is true.

The view controller at the top of the stack is the topViewController; the view con‐
troller whose view is displayed is the visibleViewController. Those will normally
be the same, but they needn’t be, as the topViewController might present a view
controller, in which case the presented view controller will be the visibleView-
Controller. Other view controllers can be accessed through the viewControllers
array by index number. The root view controller is at index 0; if the array’s count is c,
the back view controller (the one whose navigationItem.backBarButtonItem is cur‐
rently displayed in the navigation bar) is at index c-2.

The topViewController may need to communicate with the next view controller as
the latter is pushed onto the stack, or with the back view controller as it itself is pop‐
ped off the stack. The problem is parallel to that of communication between an origi‐
nal presenter and a presented view controller, which I discussed earlier in this
chapter (“Communication with a Presented View Controller” on page 330), so I
won’t say more about it here.

348 | Chapter 6: View Controllers

A child view controller will probably want to configure its navigationItem early in
its lifetime, so as to be ready for display in the navigation bar by the time the view
controller is handed as a child to the navigation controller. Apple warns (in the
UIViewController class reference, under navigationItem) that loadView and view-
DidLoad are not appropriate places to do this, because the circumstances under which
the view is needed are not related to the circumstances under which the navigation
item is needed. Apple’s own code examples routinely violate this warning, but it is
probably best to override a view controller initializer for this purpose.

A navigation controller’s navigation bar is accessible as its navigationBar, and can
be hidden and shown with setNavigationBarHidden(_:animated:). (It is possible,
though not common, to maintain and manipulate a navigation stack through a navi‐
gation controller whose navigation bar never appears.) Its toolbar is accessible as its
toolbar, and can be hidden and shown with setToolbarHidden(_:animated:).

A view controller also has the power to specify that its ancestor’s bottom bar (a navi‐
gation controller’s toolbar, or a tab bar controller’s tab bar) should be hidden as this
view controller is pushed onto a navigation controller’s stack. To do so, set the view
controller’s hidesBottomBarWhenPushed property to true. The trick is that you must
do this very early, before the view loads; the view controller’s initializer is a good
place. The bottom bar remains hidden from the time this view controller is pushed to
the time it is popped, even if other view controllers are pushed and popped on top of
it in the meantime.

A navigation controller can perform automatic hiding and showing of its navigation
bar (and, if normally shown, its toolbar) in response to various situations, as config‐
ured by properties:

When tapped
If the navigation controller’s hidesBarsOnTap is true, a tap that falls through the
top view controller’s view is taken as a signal to toggle bar visibility. The relevant
gesture recognizer is the navigation controller’s barHideOnTapGesture-

Recognizer.

When swiped
If the navigation controller’s hidesBarsOnSwipe is true, an upward or down‐
ward swipe respectively hides or shows the bars. The relevant gesture recognizer
is the navigation controller’s barHideOnSwipeGestureRecognizer.

In landscape
If the navigation controller’s hidesBarsWhenVerticallyCompact is true, bars are
automatically hidden when the app rotates to landscape on the iPhone (and
hidesBarsOnTap is treated as true, so the bars can be shown again by tapping).

Navigation Controller | 349

When the user is typing
If the navigation controller’s hidesBarsWhenKeyboardAppears is true, bars are
automatically hidden when the virtual keyboard appears (see Chapter 10).

In the nib editor, you can configure a UINavigationController and any view control‐
ler that is to serve in a navigation interface. In the Attributes inspector, use a naviga‐
tion controller’s Bar Visibility and Hide Bars checkboxes to determine the presence
of the navigation bar and toolbar. The navigation bar and toolbar are themselves sub‐
views of the navigation controller, and you can configure them with the Attributes
inspector as well. A navigation bar has a Prefers Large Titles checkbox. A navigation
controller’s root view controller can be specified; in a storyboard, there will be a “root
view controller” relationship between the navigation controller and its root view con‐
troller. The root view controller is automatically instantiated together with the navi‐
gation controller.

A view controller in the nib editor has a Navigation Item where you can specify its
title, its prompt, and the text of its back button. A navigation item has a Large Title
pop-up menu, where you can set its largeTitleDisplayMode. You can drag Bar But‐
ton Items into a view controller’s navigation bar in the canvas to set the left buttons
and right buttons of its navigationItem. Moreover, the Navigation Item has outlets,
one of which permits you to set its titleView. Similarly, you can give a view control‐
ler Bar Button Items that will appear in the toolbar. (If a view controller in a nib
doesn’t have a Navigation Item and you want to configure this view controller for use
in a navigation interface, drag a Navigation Item from the Library onto the view
controller.)

To start an iPhone project with a main storyboard that has a UINavigationController
as its initial view controller, begin with the Master–Detail App template. Alterna‐
tively, start with the Single View App template, select the existing view controller,
and choose Editor → Embed In → Navigation Controller (or choose Navigation Con‐
troller from the Embed button at the lower right of the canvas). A view controller to
be subsequently pushed onto the navigation stack can be configured in the story‐
board as the destination of a push segue; I’ll talk more about that later in this chapter.

Custom Transition
You can customize the transitions when these built-in view controllers change views:

Tab bar controller
When a tab bar controller changes which of its child view controllers is selected,
by default there is no view animation; you can add a custom animation.

350 | Chapter 6: View Controllers

Navigation controller
When a navigation controller pushes or pops a child view controller, by default
there is a sideways sliding view animation; you can replace this with a custom
animation.

Presented view controller
When a view controller is presented or dismissed, there is a limited set of built-in
view animations (modalTransitionStyle); you can substitute a custom anima‐
tion. Moreover, you can customize the ultimate size and position of the presen‐
ted view, and how the presenting view is seen behind it; you can also provide
ancillary views that remain during the presentation.

Given the extensive animation resources of iOS (see Chapter 4), this is an excellent
chance for you to provide your app with variety, distinction, and clarity. The view of
a child view controller pushed onto a navigation controller’s stack needn’t arrive slid‐
ing from the side; it can expand by zooming from the middle of the screen, drop from
above and fall into place with a bounce, snap into place like a spring, or whatever else
you can dream up. A familiar example is Apple’s Calendar app, which transitions
from a year to a month, in a navigation controller, by zooming in.

A custom transition animation can optionally be interactive: instead of tapping and
causing an animation to take place, the user performs an extended gesture and gradu‐
ally summons the new view to supersede the old one. A familiar example is the Pho‐
tos app, which lets the user pinch a photo, in a navigation controller, to pop to the
album containing it.

A custom transition animation can optionally be interruptible. You can provide a way
for the user to pause the animation, possibly interact with the animated view by
means of a gesture, and then resume (or cancel) the animation.

Noninteractive Custom Transition Animation
In the base case, you provide a custom animation that is not interactive. Configuring
your custom animation requires three steps:

1. Before the transition begins, you give the view controller in charge of the transi‐
tion a delegate.

2. As the transition begins, the delegate will be asked for an animation controller.
You will return a reference to some object adopting the UIViewController‐
AnimatedTransitioning protocol (or nil to specify that the default animation, if
any, should be used).
The delegate (configured in step 1) and the animation controller (returned in
step 2) are often the same object, and in my examples they will be; but they don’t
have to be. The animation controller can be any object, possibly a dedicated

Custom Transition | 351

lightweight object instantiated just to govern this transition. The animation con‐
troller needn’t even be the same object every time step 2 happens; we could read‐
ily return a different animation controller, depending on the circumstances, or
nil to specify the default transition.

3. The animation controller will be sent these messages:

transitionDuration(using:)

The animation controller must return the duration of the custom animation.

animateTransition(using:)

The animation controller should perform the animation.

interruptibleAnimator(using:)

Optional; if implemented, the animation controller should return an object
adopting the UIViewImplicitlyAnimating protocol, which may be a property
animator.

animationEnded(_:)

Optional; if implemented, the animation controller may perform cleanup
following the animation.

I like to use a property animator to govern the animation; it will need to be accessible
from multiple methods, so it must live in an instance property. I like to type this
instance property as UIViewImplicitlyAnimating?; that way, I can use nil to indi‐
cate that the property animator doesn’t exist. Here’s what the four animation control‐
ler methods will need to do:

transitionDuration(using:)

We’ll return the property animator’s animation duration.

animateTransition(using:)

We’ll call interruptibleAnimator(using:) to obtain the property animator,
and we’ll tell the property animator to start animating.

interruptibleAnimator(using:)

This is where all the real work happens. We’re being asked for the property ani‐
mator. There is a danger that we will be called multiple times during the anima‐
tion, so if the property animator already exists in our instance property, we
simply return it; if it doesn’t exist, we create and configure it and assign it to our
instance property, and then return it.

animationEnded(_:)

We’ll clean up any instance properties; at a minimum, we’ll set our property ani‐
mator instance property to nil.

352 | Chapter 6: View Controllers

The heart of the matter is what interruptibleAnimator(using:) does to configure
the property animator and its animation. In general, a custom transition animation
works like this:

1. The using: parameter is the transition context (adopting the UIViewController‐
ContextTransitioning protocol). By querying the transition context, you can
obtain:

• The container view, an already existing view within which all the action is to
take place.

• The outgoing and incoming view controllers.
• The outgoing and incoming views. These are probably the main views of the

outgoing and incoming view controllers, but you should obtain the views
directly from the transition context, just in case they aren’t. The outgoing
view is already inside the container view.

• The initial frame of the outgoing view, and the ultimate frame where the
incoming view must end up.

2. Having gathered this information, your mission is:
a. Put the incoming view into the container view.
b. Animate that view so as to end up at its correct ultimate frame. (You may

also animate the outgoing view if you wish.)
3. When the animation ends, your completion function must call the transition

context’s completeTransition to tell it that the animation is over. In response,
the outgoing view is removed automatically, and the animation comes to an end
(and our animationEnded will be called).

I’ll illustrate with the transition between two child view controllers of a tab bar con‐
troller, when the user taps a different tab bar item. By default, this transition isn’t ani‐
mated; one view just replaces the other. A possible custom animation is that the new
view controller’s view should slide in from one side while the old view controller’s
view should slide out the other side. The direction of the slide should depend on
whether the index of the new view controller is greater or less than that of the old
view controller. Let’s implement that.

For simplicity, I’ll do all the work in a single custom class called Animator:

class Animator : NSObject {
 var anim : UIViewImplicitlyAnimating?
 unowned var tbc : UITabBarController
 init(tabBarController tbc: UITabBarController) {
 self.tbc = tbc
 }
}

Custom Transition | 353

I’ll keep an Animator instance as a property of some stable object, such as the app
delegate or scene delegate. The tab bar controller is in charge of the transition, so the
first step is to make the Animator its delegate:

if let tbc = self.window?.rootViewController as? UITabBarController {
 self.animator = Animator(tabBarController: tbc)
 tbc.delegate = self.animator
}

As the UITabBarControllerDelegate, the Animator will be sent a message whenever
the tab bar controller is about to change view controllers. That message is:

• tabBarController(_:animationControllerForTransitionFrom:to:)

The second step is to implement that method. We must return an animation control‐
ler, namely, some object implementing UIViewControllerAnimatedTransitioning. I’ll
return self:

extension Animator : UITabBarControllerDelegate {
 func tabBarController(_ tabBarController: UITabBarController,
 animationControllerForTransitionFrom fromVC: UIViewController,
 to toVC: UIViewController) -> UIViewControllerAnimatedTransitioning? {
 return self
 }
}

The third step is to implement the animation controller (UIViewControllerAnimated‐
Transitioning). I’ll start with stubs for the four methods we’re going to write:

extension Animator : UIViewControllerAnimatedTransitioning {
 func transitionDuration(using ctx: UIViewControllerContextTransitioning?)
 -> TimeInterval {
 // ...
 }
 func animateTransition(using ctx: UIViewControllerContextTransitioning) {
 // ...
 }
 func interruptibleAnimator(using ctx: UIViewControllerContextTransitioning)
 -> UIViewImplicitlyAnimating {
 // ...
 }
 func animationEnded(_ transitionCompleted: Bool) {
 // ...
 }
}

Our transitionDuration must reveal in advance the duration of our animation:

func transitionDuration(using ctx: UIViewControllerContextTransitioning?)
 -> TimeInterval {
 return 0.4
}

354 | Chapter 6: View Controllers

Our animateTransition simply calls interruptibleAnimator to obtain the property
animator, and tells it to animate:

func animateTransition(using ctx: UIViewControllerContextTransitioning) {
 let anim = self.interruptibleAnimator(using: ctx)
 anim.startAnimation()
}

The workhorse is interruptibleAnimator. If the property animator already exists,
we unwrap it and return it, and that’s all:

func interruptibleAnimator(using ctx: UIViewControllerContextTransitioning)
 -> UIViewImplicitlyAnimating {
 if self.anim != nil {
 return self.anim!
 }
 // ...
}

If we haven’t returned, we need to construct the property animator. First, we thor‐
oughly query the transition context ctx about the parameters of this animation:

let vc1 = ctx.viewController(forKey:.from)!
let vc2 = ctx.viewController(forKey:.to)!
let con = ctx.containerView
let r1start = ctx.initialFrame(for:vc1)
let r2end = ctx.finalFrame(for:vc2)
let v1 = ctx.view(forKey:.from)!
let v2 = ctx.view(forKey:.to)!

Now we can prepare for our intended animation. In this case, we are sliding the
views, so we need to decide the final frame of the outgoing view and the initial frame
of the incoming view. We are sliding the views sideways, so those frames should be
positioned sideways from the initial frame of the outgoing view and the final frame of
the incoming view, which the transition context has just given us. Which side they go
on depends upon the relative place of these view controllers among the children of
the tab bar controller:

let ix1 = self.tbc.viewControllers!.firstIndex(of:vc1)!
let ix2 = self.tbc.viewControllers!.firstIndex(of:vc2)!
let dir : CGFloat = ix1 < ix2 ? 1 : -1
var r1end = r1start
r1end.origin.x -= r1end.size.width * dir
var r2start = r2end
r2start.origin.x += r2start.size.width * dir

Now we’re ready for the animations function. We put the second view controller’s
view into the container view at its initial frame, and animate our views:

Custom Transition | 355

v2.frame = r2start
con.addSubview(v2)
let anim = UIViewPropertyAnimator(duration: 0.4, curve: .linear) {
 v1.frame = r1end
 v2.frame = r2end
}

We must not neglect to supply the completion function that calls complete-
Transition:

anim.addCompletion { _ in
 ctx.completeTransition(true)
}

Our property animator is ready! We retain it in our self.anim property, and we also
return it:

self.anim = anim
return anim

That completes interruptibleAnimator. Finally, our animationEnded cleans up by
destroying the property animator:

func animationEnded(_ transitionCompleted: Bool) {
 self.anim = nil
}

That’s all there is to it. Our example animation wasn’t very complex, but an anima‐
tion needn’t be complex to be interesting, significant, and helpful to the user; I use
this animation in my own apps, and I think it enlivens and clarifies the transition.

One possibility that I didn’t illustrate in my example is that you are free to introduce
additional views temporarily into the container view during the course of the anima‐
tion; you’ll probably want to remove them in the completion function. You might use
this to make some interface object appear to migrate from one view controller’s view
into the other (in reality you’d probably use a snapshot view; see Chapter 1).

Interactive Custom Transition Animation
With an interactive custom transition animation, the idea is that we track something
the user is doing, typically by means of a gesture recognizer (see Chapter 5), and per‐
form the “frames” of the transition in response.

To make a custom transition animation interactive, you supply, in addition to the
animation controller, an interaction controller. This is an object adopting the
UIViewControllerInteractiveTransitioning protocol. Again, this object needn’t be the
same as the animation controller, but it often is, and in my examples it will be. The
runtime calls the interaction controller’s startInteractiveTransition(_:) instead
of the animation controller’s animateTransition(using:).

356 | Chapter 6: View Controllers

Configuring your custom animation requires the following steps:

1. Before the transition begins, you give the view controller in charge of the transi‐
tion a delegate.

2. You’ll need a gesture recognizer that tracks the interactive gesture. When the
gesture recognizer recognizes, make it trigger the transition to the new view
controller.

3. As the transition begins, the delegate will be asked for an animation controller.
You will return a UIViewControllerAnimatedTransitioning object.

4. The delegate will also be asked for an interaction controller. You will return a
UIViewControllerInteractiveTransitioning object (or nil to prevent the transi‐
tion from being interactive). This object implements startInteractive-

Transition(_:).
5. The gesture recognizer continues by repeatedly calling updateInteractive-

Transition(_:) on the transition context, as well as managing the frames of the
animation.

6. Sooner or later the gesture will end. At this point, decide whether to declare the
transition completed or cancelled, and finish the animation accordingly. A typi‐
cal approach is to say that if the user performed more than half the full gesture,
that constitutes completion; otherwise, it constitutes cancellation.

7. The animation is now completed, and its completion function is called. You must
call the transition context’s finishInteractiveTransition or cancel-

InteractiveTransition, and then call its completeTransition(_:) with an
argument stating whether the transition was finished or cancelled.

8. Finally, animationEnded is called, and you can clean up.
(You may be asking: why is it necessary to keep talking to the transition context
throughout the process? The reason is that the animation might have a component
separate from what you’re doing, such as the change in the appearance of the naviga‐
tion bar during a navigation controller push or pop transition. The transition con‐
text, in order to coordinate that animation with the interactive gesture and with your
animation, needs to be kept abreast of where things are throughout the course of the
interaction.)

I’ll describe how to make an interactive version of the tab bar controller transition
animation that we developed in the previous section. The user will be able to drag
from the edge of the screen to bring the tab bar controller’s adjacent view controller
in from the right or from the left.

In the previous section, I cleverly planned ahead for this section. Almost all the code
from the previous section can be left as is! I’ll build on that code, in such a way that

Custom Transition | 357

the same custom transition animation can be either noninteractive (the user taps a
tab bar item) or interactive (the user drags from one edge).

In my Animator object, I’m going to need two more instance properties, in addition
to anim and tvc:

var anim : UIViewImplicitlyAnimating?
unowned var tbc : UITabBarController
weak var context : UIViewControllerContextTransitioning?
var interacting = false

The interacting property will be used as a signal that our transition is to be interac‐
tive. The context property is needed because the gesture recognizer’s action method
is going to need access to the transition context. (Sharing the transition context
through a property may seem ugly, but the elegant alternatives would make the
example more complicated, so we’ll just do it this way.)

To track the user’s gesture, I’ll put a pair of UIScreenEdgePanGestureRecognizers
into the interface. The gesture recognizers are attached to the tab bar controller’s
view (tbc.view), as this will remain constant while the views of its view controllers
are sliding across the screen. In the Animator’s initializer, I create the gesture recog‐
nizers and make the Animator their delegate, so I can dictate which of them is appli‐
cable to the current situation:

init(tabBarController tbc: UITabBarController) {
 self.tbc = tbc
 super.init()
 let sep = UIScreenEdgePanGestureRecognizer(
 target:self, action:#selector(pan))
 sep.edges = UIRectEdge.right
 tbc.view.addGestureRecognizer(sep)
 sep.delegate = self
 let sep2 = UIScreenEdgePanGestureRecognizer(
 target:self, action:#selector(pan))
 sep2.edges = UIRectEdge.left
 tbc.view.addGestureRecognizer(sep2)
 sep2.delegate = self
}

Acting as the delegate of the two gesture recognizers, we prevent either pan gesture
recognizer from operating unless there is another child of the tab bar controller avail‐
able on that side of the current child:

extension Animator : UIGestureRecognizerDelegate {
 func gestureRecognizerShouldBegin(_ g: UIGestureRecognizer) -> Bool {
 let ix = self.tbc.selectedIndex
 return
 (g as! UIScreenEdgePanGestureRecognizer).edges == .right ?
 ix < self.tbc.viewControllers!.count - 1 : ix > 0
 }
}

358 | Chapter 6: View Controllers

If the gesture recognizer action method pan is called, our interactive transition ani‐
mation is to take place. I’ll break down the discussion according to the gesture recog‐
nizer’s states. In .began, I raise the self.interacting flag and trigger the transition
by setting the tab bar controller’s selectedIndex:

@objc func pan(_ g:UIScreenEdgePanGestureRecognizer) {
 switch g.state {
 case .began:
 self.interacting = true
 if g.edges == .right {
 self.tbc.selectedIndex = self.tbc.selectedIndex + 1
 } else {
 self.tbc.selectedIndex = self.tbc.selectedIndex - 1
 }
 // ...
 }
}

The transition begins. We are asked for our animation controller and our transition
controller. We will supply a transition controller only if the self.interacting flag
was raised; if the self.interacting flag is not raised, the user tapped a tab bar item
and we are back in the preceding example:

extension AppDelegate: UITabBarControllerDelegate {
 func tabBarController(_ tabBarController: UITabBarController,
 animationControllerForTransitionFrom fromVC: UIViewController,
 to toVC: UIViewController) -> UIViewControllerAnimatedTransitioning? {
 return self
 }
 func tabBarController(_ tabBarController: UITabBarController,
 interactionControllerFor ac: UIViewControllerAnimatedTransitioning)
 -> UIViewControllerInteractiveTransitioning? {
 return self.interacting ? self : nil
 }
}

As a UIViewControllerInteractiveTransitioning adopter, our startInteractive-
Transition(_:) is called instead of animateTransition(using:). Our animate-
Transition(using:) is still in place, and still does the same job it did in the previous
section. So we call it to obtain the property animator, and set the property animator
instance property. But we do not tell the property animator to animate! We are inter‐
active; we intend to manage the “frames” of the animation ourselves (see “Frozen
View Animation” on page 183). We also set the UIViewControllerContextTransi‐
tioning property, so that the gesture recognizer’s action method can access it:

Custom Transition | 359

extension AppDelegate : UIViewControllerInteractiveTransitioning {
 func startInteractiveTransition(_ ctx:UIViewControllerContextTransitioning){
 self.anim = self.interruptibleAnimator(using: ctx)
 self.context = ctx
 }
}

The user’s gesture proceeds, and we are now back in the gesture recognizer’s action
method, in the .changed state. We calculate the completed percentage of the gesture,
and update both the property animator’s “frame” and the transition context:

case .changed:
 let v = g.view!
 let delta = g.translation(in:v)
 let percent = abs(delta.x/v.bounds.size.width)
 self.anim?.fractionComplete = percent
 self.context?.updateInteractiveTransition(percent)

Ultimately, the user’s gesture ends. Our goal now is to “hurry” to the start of the ani‐
mation or the end of the animation, depending on how far the user got through the
gesture. With a property animator, that’s really easy (see “Canceling a View Anima‐
tion” on page 179):

case .ended:
 let anim = self.anim as! UIViewPropertyAnimator
 anim.pauseAnimation()
 if anim.fractionComplete < 0.5 {
 anim.isReversed = true
 }
 anim.continueAnimation(
 withTimingParameters:
 UICubicTimingParameters(animationCurve:.linear),
 durationFactor: 0.2)

The animation comes to an end, and the completion function that we gave our prop‐
erty animator in interruptibleAnimator is called. This is the one place in our
interruptibleAnimator that needs to be a little different from the preceding exam‐
ple; we must send different messages to the transition context, depending on whether
we finished at the end or reversed to the start:

anim.addCompletion { finish in
 if finish == .end {
 ctx.finishInteractiveTransition()
 ctx.completeTransition(true)
 } else {
 ctx.cancelInteractiveTransition()
 ctx.completeTransition(false)
 }
}

Finally, our animationEnded is called, and we clean up our instance properties:

360 | Chapter 6: View Controllers

func animationEnded(_ transitionCompleted: Bool) {
 self.interacting = false
 self.anim = nil
}

Another variation would be to make the custom transition animation interruptible.
Again, this is straightforward thanks to the existence of property animators. While a
view is in the middle of being animated, the property animator implements
touchability of the animated view, and allows you to pause the animation. The user
can be permitted to do such things as grab the animated view in the middle of the
animation and move it around with the animation paused, and the animation can
then resume when the user lets go of the view (as I demonstrated in “Hit-Testing
During Animation” on page 274). You could equally incorporate these features into a
custom transition animation.

You can also use a UIPreviewInteraction (“3D Touch Press Gesture” on page 266) to
drive a view controller custom transition animation through 3D touch. In that case,
the user’s press is the gesture, and what advances the interactive custom transition
animation is the UIPreviewInteraction and its delegate methods, rather than a ges‐
ture recognizer and its action method.

Custom Presented View Controller Transition
With a presented view controller transition, you can customize not only the anima‐
tion but also the final position of the presented view. Moreover, you can introduce
ancillary views which remain in the scene while the presented view is presented, and
are not removed until after dismissal is complete; for instance, if the presented view is
smaller than the presenting view and covers it only partially, you might add a dim‐
ming view between them, to darken the presenting view (just as a .formSheet
presentation does).

There is no existing view to serve as the container view; therefore, when the presenta‐
tion starts, the runtime constructs the container view and inserts it into the interface,
leaving it there while the view remains presented. In the case of a .fullScreen pre‐
sentation, the runtime also rips the presenting view out of the interface and inserts it
into the container view, in case you want to animate it as well. For other styles of pre‐
sentation, the container view is in front of the presenting view.

The work of customizing a presentation is distributed between two objects:

The animation controller
The animation controller should be responsible for only the animation, the
movement of the presented view into its final position.

Custom Transition | 361

The custom presentation controller
The determination of the presented view’s final position is the job of the presen‐
tation controller. The presentation controller is also responsible for inserting any
extra views, such as a dimming view, into the container view; Apple says that the
animation controller animates the content, while the presentation controller
animates the “chrome.”

This distribution of responsibilities may sound rather elaborate, but in fact the oppo‐
site is true: it greatly simplifies things, because if you don’t need one kind of
customization you can omit it:

• If you supply an animation controller and no custom presentation controller,
you dictate the animation, but the presented view will end up wherever the
modal presentation style puts it.

• If you supply a custom presentation controller and no animation controller, a
default modal transition style animation will be performed, but the presented
view will end up at the position your custom presentation controller dictates.

Customizing the animation
I’ll start with a situation where we don’t use the presentation controller: all we want
to do is customize the animation part of a built-in presentation style. The steps are
almost completely parallel to how we customized a tab bar controller animation:

1. Give the presented view controller a delegate. This means that you set the pre‐
sented view controller’s transitioningDelegate property to an object adopting
the UIViewControllerTransitioningDelegate protocol.

2. The delegate will be asked for an animation controller, and will return an object
adopting the UIViewControllerAnimatedTransitioning protocol. Unlike a tab
bar controller or navigation controller, a presented view controller’s view under‐
goes two animations — the presentation and the dismissal — and therefore the
delegate is asked separately for controllers:

• animationController(forPresented:presenting:source:)

• interactionControllerForPresentation(using:)

• animationController(forDismissed:)

• interactionControllerForDismissal(using:)

You are free to customize just one animation, leaving the other at the default by
not providing a controller for it.

3. The animation controller will implement its four methods as usual —
transitionDuration, animateTransition, interruptibleAnimator, and
animationEnded.

362 | Chapter 6: View Controllers

To illustrate, let’s say we’re running on an iPad, and we want to present a view using
the .formSheet presentation style. But instead of using any of the built-in animation
types (transition styles), we’ll have the presented view appear to grow from the mid‐
dle of the screen.

The only mildly tricky step is the first one. The transitioningDelegate must be set
very early in the presented view controller’s life — before the presentation begins. But
the presented view controller doesn’t exist before the presentation begins. The most
reliable solution is for the presented view controller to assign its own delegate in its
own initializer:

required init?(coder: NSCoder) {
 super.init(coder:coder)
 self.transitioningDelegate = self
}

The presentation begins, and we’re on to the second step. The transitioning delegate
(UIViewControllerTransitioningDelegate) is asked for an animation controller; here,
I’ll have it supply self once again, and I’ll do this only for the presentation, leaving
the dismissal to use the default animation (and I’m not making this example interac‐
tive, so I don’t implement the interactionController methods):

func animationController(forPresented presented: UIViewController,
 presenting: UIViewController, source: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {
 return self
}

The third step is that the animation controller (UIViewControllerAnimatedTransi‐
tioning) is called upon to implement the animation. Our implementations of
transitionDuration, animateTransition, and animationEnded are the usual boiler‐
plate, so I’ll show only interruptibleAnimator, which configures the property ani‐
mator; observe that we don’t care about the .from view controller (its view isn’t even
in the container view):

func interruptibleAnimator(using ctx: UIViewControllerContextTransitioning)
 -> UIViewImplicitlyAnimating {
 if self.anim != nil {
 return self.anim!
 }
 let vc2 = ctx.viewController(forKey:.to)
 let con = ctx.containerView
 let r2end = ctx.finalFrame(for:vc2!)
 let v2 = ctx.view(forKey:.to)!
 v2.frame = r2end
 v2.transform = CGAffineTransform(scaleX: 0.1, y: 0.1)
 v2.alpha = 0
 con.addSubview(v2)
 let anim = UIViewPropertyAnimator(duration: 0.4, curve: .linear) {
 v2.alpha = 1

Custom Transition | 363

 v2.transform = .identity
 }
 anim.addCompletion { _ in
 ctx.completeTransition(true)
 }
 self.anim = anim
 return anim
}

If we wish to customize both animation and dismissal using the same animation con‐
troller, there is a complication: the roles of the view controllers are reversed in the
mind of the transition context. On presentation, the presented view controller is
the .to view controller, but on dismissal, it is the .from view controller. For a presen‐
tation that isn’t .fullScreen, the unused view is nil, so you can distinguish the cases
by structuring your code like this:

let v1 = ctx.view(forKey:.from)
let v2 = ctx.view(forKey:.to)
if let v2 = v2 { // presenting
 // ...
} else if let v1 = v1 { // dismissing
 // ...
}

Customizing the presentation
Now let’s involve the presentation controller: we will customize the final frame of the
presented view controller’s view, and we’ll even add some “chrome” to the presenta‐
tion. This will require some additional steps:

1. In addition to setting the presented view controller’s transitioningDelegate,
you set its modalPresentationStyle to .custom.

2. The result of the preceding step is that the delegate (the adopter of UIViewCon‐
trollerTransitioningDelegate) is sent an additional message:

• presentationController(forPresented:presenting:source:)

Your mission is to return an instance of a custom UIPresentationController sub‐
class. This will then be the presented view controller’s presentation controller
from the time presentation begins to the time dismissal ends. You create this
instance by calling (directly or indirectly) the designated initializer:

• init(presentedViewController:presenting:)

3. By means of appropriate overrides in the UIPresentationController subclass, you
participate in the presentation, dictating the presented view’s final position
(frameOfPresentedViewInContainerView) and adding “chrome” to the presen‐
tation as desired.

364 | Chapter 6: View Controllers

The UIPresentationController has properties pointing to the presentingView-
Controller as well the presentedViewController and the presentedView, plus the
presentationStyle set by the presented view controller. It also obtains the
containerView, which it subsequently communicates to the animation controller’s
transition context. It has some methods and properties that can be overridden in the
subclass; you only need to override the ones that require customization for your
particular implementation:

frameOfPresentedViewInContainerView

The final position of the presented view. The animation controller, if there is one,
will receive this from the transition context’s finalFrame(for:) method.

presentationTransitionWillBegin

presentationTransitionDidEnd

dismissalTransitionWillBegin

dismissalTransitionDidEnd

Use these events as signals to add or remove “chrome” (extra views) to the
container view.

containerViewWillLayoutSubviews

containerViewDidLayoutSubviews

Use these layout events as signals to update the “chrome” views if needed.

A presentation controller is not a view controller, but UIPresentationController
adopts some protocols that UIViewController adopts, and gets the same resizing-
related messages that a UIViewController gets, as I described earlier in this chapter. It
adopts UITraitEnvironment, meaning that it has a traitCollection and participates
in the trait collection inheritance hierarchy, and receives the traitCollectionDid-
Change(_:) message. It also adopts UIContentContainer, meaning that it receives
willTransition(to:with:) and viewWillTransition(to:with:).

I’ll expand the preceding example to implement a custom presentation style that
looks like a .formSheet even on an iPhone. The first step is to set the presentation
style to .custom when we set the transitioning delegate:

required init?(coder: NSCoder) {
 super.init(coder:coder)
 self.transitioningDelegate = self
 self.modalPresentationStyle = .custom // *
}

The result (step two) is that this extra UIViewControllerTransitioningDelegate
method is called so that we can provide a custom presentation controller:

Custom Transition | 365

func presentationController(forPresented presented: UIViewController,
 presenting: UIViewController?, source: UIViewController)
 -> UIPresentationController? {
 let pc = MyPresentationController(
 presentedViewController: presented, presenting: presenting)
 return pc
}

Everything else happens in the implementation of our UIPresentationController sub‐
class (named MyPresentationController). To make the presentation look like an
iPad .formSheet, we inset the presented view’s frame:

override var frameOfPresentedViewInContainerView : CGRect {
 return super.frameOfPresentedViewInContainerView.insetBy(dx:40, dy:40)
}

We could actually stop at this point! The presented view now appears in the correct
position. Unfortunately, the presenting view is appearing undimmed behind it. Let’s
add dimming, by inserting a translucent dimming view into the container view, being
careful to deal with the possibility of subsequent rotation:

override func presentationTransitionWillBegin() {
 let con = self.containerView!
 let shadow = UIView(frame:con.bounds)
 shadow.backgroundColor = UIColor(white:0, alpha:0.4)
 con.insertSubview(shadow, at: 0)
 shadow.autoresizingMask = [.flexibleWidth, .flexibleHeight]
}

Again, this works perfectly, but now I don’t like what happens when the presented
view is dismissed: the dimming view vanishes suddenly at the end of the dismissal. I’d
rather have the dimming view fade out, and I’d like it to fade out in coordination with
the dismissal animation. The way to arrange that is through the object vended by the
presented view controller’s transitionCoordinator property (a UIViewController‐
TransitionCoordinator); in particular, we can call its animate(alongside-

Transition:completion:) method to add our own animation:

override func dismissalTransitionWillBegin() {
 let con = self.containerView!
 let shadow = con.subviews[0]
 if let tc = self.presentedViewController.transitionCoordinator {
 tc.animate(alongsideTransition: { _ in
 shadow.alpha = 0
 })
 }
}

Once again, we could stop at this point. But I’d like to add a further refinement.
A .formSheet view has rounded corners. I’d like to make our presented view look the
same way:

366 | Chapter 6: View Controllers

override var presentedView : UIView? {
 let v = super.presentedView!
 v.layer.cornerRadius = 6
 v.layer.masksToBounds = true
 return v
}

Finally, for completeness, it would be nice, during presentation, to dim the appear‐
ance of any button titles and other tinted interface elements visible through the dim‐
ming view, to emphasize that they are disabled:

override func presentationTransitionDidEnd(_ completed: Bool) {
 let vc = self.presentingViewController
 let v = vc.view
 v?.tintAdjustmentMode = .dimmed
}
override func dismissalTransitionDidEnd(_ completed: Bool) {
 let vc = self.presentingViewController
 let v = vc.view
 v?.tintAdjustmentMode = .automatic
}

Transition Coordinator
In the previous section, I mentioned that a view controller has a transition-
Coordinator, which is typed as a UIViewControllerTransitionCoordinator. A view
controller’s transitionCoordinator exists only during a transition between view
controllers, such as presentation or pushing. Its actual class is of no importance;
UIViewControllerTransitionCoordinator is a protocol. This protocol, in turn, con‐
forms to the UIViewControllerTransitionCoordinatorContext protocol, just like a
transition context; indeed, it is a kind of wrapper around the transition context.

A view controller can use its transitionCoordinator to find out about the transition
it is currently involved in. Moreover, as I’ve already said, it can take advantage of
animate(alongsideTransition:completion:) to add animation of its view’s inter‐
nal interface as part of a transition animation. This works equally for a custom ani‐
mation or a built-in animation; in fact, the point is that the view controller can
behave agnostically with regard to how its own view is being animated.

In this example, a presented view controller animates part of its interface into place as
the animation proceeds (whatever that animation may be):

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 if let tc = self.transitionCoordinator {
 tc.animate(alongsideTransition:{ _ in
 self.buttonTopConstraint.constant += 200

Custom Transition | 367

 self.view.layoutIfNeeded()
 })
 }
}

Here, a .pageSheet presented view controller fades out its subviews as the user drags
down the view to dismiss it:

func presentationControllerWillDismiss(_ pc: UIPresentationController) {
 if let tc = pc.presentedViewController.transitionCoordinator {
 tc.animate(alongsideTransition: {_ in
 for v in pc.presentedViewController.view.subviews {
 v.alpha = 0
 }
 })
 }
}

The transition coordinator implements an additional method that might be of occa‐
sional interest:

notifyWhenInteractionChanges(_:)

The argument you pass is a function to be called; the transition context is the
function’s parameter. Your function is called whenever the transition changes
between being interactive and being noninteractive; this might be because the
interactive transition was cancelled.

In this example, a navigation controller has pushed a view controller, and now the
user is popping it interactively (using the default drag-from-the-left-edge gesture). If
the user cancels, the back view controller can hear about it, like this:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 let tc = self.transitionCoordinator
 tc?.notifyWhenInteractionChanges { ctx in
 if ctx.isCancelled {
 // ...
 }
 }
}

I have not found any occasion when the child of a tab bar controller has a non-
nil transition coordinator — even though you may have given the tab bar
controller’s transition a custom animation. I regard this as a bug.

Page View Controller
A page view controller (UIPageViewController) is like a book that can be viewed one
page at a time. The user, by a gesture, can navigate in one direction or the other to see
the next or the previous page, successively — like turning the pages of a book.

368 | Chapter 6: View Controllers

A page view controller only seems to have multiple pages. In reality, it has only the
one page that the user is looking at. That page is the view of its one child view con‐
troller. The page view controller navigates to another page by releasing its existing
child view controller and replacing it with another. This is a very efficient architec‐
ture: it makes no difference whether the page view controller lets the user page
through three pages or ten thousand pages, because each page is created in real time,
on demand, and exists only as long as the user is looking at it.

The page view controller’s children are its viewControllers. In general, there will be
at most one of them (though there is a rarely used configuration in which a page view
controller can have two pages at a time, as I’ll explain in a moment). The page view
controller is its current child’s parent.

Preparing a Page View Controller
To create a UIPageViewController in code, use its designated initializer:

• init(transitionStyle:navigationOrientation:options:)

Here’s what the parameters mean:

transitionStyle:

The animation type during navigation (UIPageViewController.TransitionStyle).
Your choices are:

• .pageCurl

• .scroll (sliding)

navigationOrientation:

The direction of navigation (UIPageViewController.NavigationOrientation).
Your choices are:

• .horizontal

• .vertical

options:

A dictionary. Possible keys are (UIPageViewController.OptionsKey):

.spineLocation

If you’re using the .pageCurl transition style, this is the position of the pivot
line around which those page curl transitions rotate. The value (UIPageView‐
Controller.SpineLocation) is one of the following:

• .min (left or top)
• .mid (middle; in this configuration there are two children, and two pages

are shown at once)

Page View Controller | 369

• .max (right or bottom)

.interPageSpacing

If you’re using the .scroll transition style, this is the spacing between suc‐
cessive pages, visible as a gap during the transition (the default is 0).

You configure the page view controller’s initial content by handing it its initial child
view controller(s). You do that by calling this method:

• setViewControllers(_:direction:animated:completion:)

Here’s what the parameters mean:

viewControllers:

An array of one view controller — unless you’re using the .pageCurl transition
style and the .mid spine location, in which case it’s an array of two view
controllers.

direction:

The animation direction (UIPageViewController.NavigationDirection). This
probably won’t matter when you’re assigning the page view controller its initial
content, as you are not likely to want any animation. Possible values are:

• .forward

• .backward

animated:, completion:
A Bool and a completion function.

To allow the user to page through the page view controller, you assign the page view
controller a dataSource, which should conform to the UIPageViewControllerData‐
Source protocol. The dataSource is told whenever the user starts to change pages,
and should respond by immediately providing another view controller whose view
will constitute the new page. Typically, the data source will create this view controller
on the spot.

Here’s a minimal example. Each page in the page view controller is to portray an
image of a named Pep Boy. The first question is where the pages will come from. My
data model consists of an array (self.pep) of the string names of the three Pep Boys:

let pep : [String] = ["Manny", "Moe", "Jack"]

To match these, I have three eponymous image files (manny, moe, and jack), portray‐
ing each Pep Boy. I’ve also got a UIViewController subclass called Pep, capable of
displaying a Pep Boy’s image in an image view. I initialize a Pep object with its desig‐
nated initializer init(pepBoy:), supplying the name of a Pep Boy from the array; the
Pep object sets its own boy property:

370 | Chapter 6: View Controllers

init(pepBoy boy:String) {
 self.boy = boy
 super.init(nibName: nil, bundle: nil)
}

Pep’s viewDidLoad fetches the corresponding image and assigns it as the image of a
UIImageView within its own view:

override func viewDidLoad() {
 super.viewDidLoad()
 self.pic.image = UIImage(named:self.boy.lowercased())
}

At any given moment, our page view controller is to have one Pep instance as its
child; its current page will portray a Pep Boy. Here’s how I create the page view con‐
troller itself (in my app delegate or scene delegate):

// make a page view controller
let pvc = UIPageViewController(
 transitionStyle: .scroll, navigationOrientation: .horizontal)
// give it an initial page
let page = Pep(pepBoy: self.pep[0])
pvc.setViewControllers([page], direction: .forward, animated: false)
// give it a data source
pvc.dataSource = self
// put its view into the interface
self.window!.rootViewController = pvc

That’s sufficient to show the first page, but I haven’t yet explained how to allow the
user to navigate to a new page! That’s the job of the data source, as I’ll describe in the
next section.

The page view controller is a UIViewController, and its view must get into the inter‐
face by standard means. You can make the page view controller the window’s root-
ViewController, as I do here; you can make it a presented view controller; you can
make it a child view controller of a tab bar controller or a navigation controller. If
you want the page view controller’s view to be a subview of a custom view controller’s
view, the custom view controller must be configured as a container view controller,
as I’ll describe later in this chapter.

Page View Controller Navigation
We now have a page view controller’s view in our interface, itself containing and dis‐
playing the view of the one Pep view controller that is its child. In theory, we have
three pages, because we have three Pep Boys and their images — but the page view
controller knows about only one of them.

You don’t supply (or even create) another page until the page view controller asks for
it by calling one of these data source methods:

Page View Controller | 371

• pageViewController(_:viewControllerAfter:)

• pageViewController(_:viewControllerBefore:)

The job of those methods is to return the requested successive view controller — or
nil, to signify that there is no further page in this direction. Your strategy for doing
that will depend on how your model maintains the data. My data, as you’ll recall, is
an array of unique strings:

let pep : [String] = ["Manny", "Moe", "Jack"]

And a Pep view controller has one of those strings as its boy property. So all I have to
do is start with the current Pep view controller’s boy and find the previous name or
the next name in the array:

func pageViewController(_ pvc: UIPageViewController,
 viewControllerAfter vc: UIViewController) -> UIViewController? {
 let boy = (vc as! Pep).boy
 let ix = self.pep.firstIndex(of:boy)! + 1
 if ix >= self.pep.count {
 return nil
 }
 return Pep(pepBoy: self.pep[ix])
}
func pageViewController(_ pvc: UIPageViewController,
 viewControllerBefore vc: UIViewController) -> UIViewController? {
 let boy = (vc as! Pep).boy
 let ix = self.pep.firstIndex(of:boy)! - 1
 if ix < 0 {
 return nil
 }
 return Pep(pepBoy: self.pep[ix])
}

We now have a working page view controller! The user, with a sliding gesture, can
page through it, one page at a time. When the user reaches the first page or the last
page, it is impossible to go further in that direction.

A .scroll style page view controller may cache some of its view controllers in
advance. Therefore you should make no assumptions about when these data
source methods will be called. If you need to be notified when the user is actually
turning the page, use the delegate (which I’ll describe later), not the data source.

You can also, at any time, call setViewControllers to change programmatically
what page is being displayed, possibly with animation. In this way, you can “jump” to
a page other than a successive page (something that the user cannot do with a ges‐
ture).

372 | Chapter 6: View Controllers

Page indicator

If you’re using the .scroll transition style, the page view controller can optionally
display a page indicator (a UIPageControl, see Chapter 12). The user can look at this
to get a sense of what page we’re on, and can tap to the left or right of it to navigate.
To get the page indicator, you must implement two more data source methods; they
are consulted in response to setViewControllers. We called that method initially to
configure the page view controller; if we never call it again (because the user simply
keeps navigating to the next or previous page), these data source methods won’t be
called again either, because they don’t need to be: the page view controller will keep
track of the current index on its own:

func presentationCount(for pvc: UIPageViewController) -> Int {
 return self.pep.count
}
func presentationIndex(for pvc: UIPageViewController) -> Int {
 let page = pvc.viewControllers![0] as! Pep
 let boy = page.boy
 return self.pep.firstIndex(of:boy)!
}

Unfortunately, the page view controller’s page indicator by default has white dots and
a clear background, so it is invisible in front of a white background. You’ll want to
customize it to change that. There is no direct access to it, so it’s simplest to use the
appearance proxy (Chapter 12):

let proxy = UIPageControl.appearance()
proxy.pageIndicatorTintColor = UIColor.red.withAlphaComponent(0.6)
proxy.currentPageIndicatorTintColor = .red
proxy.backgroundColor = .yellow

Navigation gestures

If you’ve assigned the page view controller the .pageCurl transition style, the user
can navigate by tapping at either edge of the view or by dragging across the view.
These gestures are detected through two gesture recognizers, which you can access
through the page view controller’s gestureRecognizers property. The documenta‐
tion suggests that you might change where the user can tap or drag, by attaching
those gesture recognizers to a different view, and other customizations are possible as
well. In this code, I change the behavior of a .pageCurl page view controller (pvc) so
that the user must double tap to request navigation:

for g in pvc.gestureRecognizers {
 if let g = g as? UITapGestureRecognizer {
 g.numberOfTapsRequired = 2
 }
}

Page View Controller | 373

Of course you are also free to add to the user’s stock of gestures for requesting navi‐
gation. You can supply any controls or gesture recognizers that make sense for your
app, and respond by calling setViewControllers. Suppose you’re using the .scroll
transition style; by default, there’s no tap gesture recognizer, so the user can’t tap to
request navigation (unless there’s also a page control). Let’s change that. I’ve added
invisible views at either edge of my Pep view controller’s view, with tap gesture recog‐
nizers attached. When the user taps, the tap gesture recognizer fires, and the action
method posts a notification whose object is the tap gesture recognizer:

@IBAction func tap (_ sender: UIGestureRecognizer?) {
 NotificationCenter.default.post(name:Pep.tap, object: sender)
}

In the app delegate, I have registered to receive this notification. When it arrives, I
use the tap gesture recognizer’s view’s tag to learn which view was tapped; I then
navigate accordingly (pvc is the page view controller):

NotificationCenter.default.addObserver(
 forName:Pep.tap, object: nil, queue: .main) { n in
 let g = n.object as! UIGestureRecognizer
 let which = g.view!.tag
 let vc0 = pvc.viewControllers![0]
 guard let vc = (which == 0 ?
 self.pageViewController(pvc, viewControllerBefore: vc0) :
 self.pageViewController(pvc, viewControllerAfter: vc0))
 else {return}
 let dir : UIPageViewController.NavigationDirection =
 which == 0 ? .reverse : .forward
 pvc.view.isUserInteractionEnabled = false
 pvc.setViewControllers([vc], direction: dir, animated: true) { _ in
 pvc.view.isUserInteractionEnabled = true
 }
 }
}

In that code, I turn off user interaction when the page animation starts and turn it
back on when the animation ends. Otherwise we can crash (or get into an incoherent
state) if the user taps during the animation.

Other Page View Controller Configurations
It is possible to assign a page view controller a delegate (UIPageViewController‐
Delegate), which gets an event when the user starts turning the page and when the
user finishes turning the page, and can change the spine location dynamically in
response to a change in device orientation. As with a tab bar controller’s delegate or a
navigation controller’s delegate, a page view controller’s delegate also gets messages
allowing it to specify the page view controller’s app rotation policy, so there’s no need
to subclass UIPageViewController solely for that purpose.

374 | Chapter 6: View Controllers

One further bit of configuration applicable to a .pageCurl page view controller is the
isDoubleSided property. If it is true, the next page occupies the back of the previous
page. The default is false, unless the spine is in the middle, in which case it’s true
and can’t be changed. Your only option here, therefore, is to set it to true when the
spine isn’t in the middle, and in that case the back of each page would be a sort of
throwaway page, glimpsed by the user during the page curl animation.

A page view controller in a storyboard lets you configure its transition style, naviga‐
tion orientation, page spacing, spine location, and isDoubleSided property. (It also
has delegate and data source outlets, but you’re not allowed to connect them to other
view controllers, because you can’t draw an outlet from one scene to another in a
storyboard.) It has no child view controller relationship, so you can’t set the page
view controller’s initial child view controller in the storyboard; you’ll have to com‐
plete the page view controller’s initial configuration in code.

Container View Controllers
UITabBarController, UINavigationController, and UIPageViewController are all
built-in parent view controllers: you hand them a child view controller and they do all
the work, retaining that child view controller and putting its view into the interface
inside their own view. What if you wanted your own view controller to do the same
sort of thing?

Your UIViewController subclass can act as a custom parent view controller, manag‐
ing child view controllers and putting their views into the interface. Your view con‐
troller becomes a container view controller. It does what the built-in parent view
controllers do, except that you get to specify the details — what it means for a view
controller to be a child of this kind of parent view controller, how many children it
has, which of its children’s views appear in the interface and where they appear, and
so on. A container view controller can also participate actively in the business of trait
collection inheritance and view resizing.

An example appears in Figure 6-4 — and the construction of that interface is charted
in Figure 6-5. We have a page view controller, but it is not the root view controller,
and its view does not occupy the entire interface. How is that achieved? It is not
achieved by simply grabbing the page view controller’s view and plopping it into the
interface. You must never do that.

To put a view controller’s view into the interface manually, you must have a con‐
tainer view controller, and it must follow certain rules. The container view controller
must act as a well-behaved parent view controller. If another view controller is for‐
mally made its child, then the parent is permitted — as long it follows the rules — to
put that child view controller’s view into the interface as a subview of its own view.

Container View Controllers | 375

Adding and Removing Children
A view controller has a children array; that’s what gives it the power to be a parent.
But you must not directly manipulate this array. A child view controller needs to
receive certain definite events at particular moments:

• As it becomes a child view controller
• As its view is added to and removed from the interface
• As it ceases to be a child view controller

Therefore, to act as a parent view controller, your UIViewController subclass must
fulfill certain responsibilities:

Adding a child
When a view controller is to become your view controller’s child, your view con‐
troller must do these things, in this order:

1. Send addChild(_:) to itself, with the child as argument. The child is auto‐
matically added to your children array and is retained.

2. Get the child view controller’s view into the interface (as a subview of your
view controller’s view), if that’s what adding a child view controller means.

3. Send didMove(toParent:) to the child view controller, with your view con‐
troller as argument.

Removing a child
When a view controller is to cease being your view controller’s child, your view
controller must do these things, in this order:

1. Send willMove(toParent:) to the child, with a nil argument.
2. Remove the child view controller’s view from the interface.
3. Send removeFromParent to the child. The child is automatically removed

from your children array and is released.

That little dance ensures that a child view controller will always receive willMove(to-
Parent:) followed by didMove(toParent:). But you don’t actually send both those
messages explicitly:

• addChild(_:) sends willMove(toParent:) for you automatically.
• removeFromParent sends didMove(toParent:) for you automatically.

In each case, therefore, you do send explicitly the other message, the one that adding
or removing a child view controller doesn’t send for you — and of course you must
send it so that everything happens in the correct order.

376 | Chapter 6: View Controllers

When you do this dance correctly, the proper parent–child relationship results: the
container view controller can refer to its children as its children, and any child has a
reference to the parent as its parent. If you don’t do it correctly, all sorts of bad
things can happen; in a worst-case scenario, the child view controller won’t even sur‐
vive, and its view won’t work correctly, because the view controller was never prop‐
erly retained as part of the view controller hierarchy (see “View Controller
Hierarchy” on page 287). So do the dance correctly!

The initial child view controller
Example 6-1 provides a schematic approach for how to obtain an initial child view
controller and put its view into the interface. (Alternatively, a storyboard can do this
work for you, with no code, as I’ll explain later in this chapter.)

Example 6-1. Adding an initial child view controller

let vc = // whatever; this is the initial child view controller
self.addChild(vc) // "will" called for us
// insert view into interface between "will" and "did"
self.view.addSubview(vc.view)
vc.view.frame = // whatever, or use constraints
// when we call add, we must call "did" afterward
vc.didMove(toParent: self)

In many cases, that’s all you’ll need. You have a parent view controller and a child
view controller, and they are paired permanently, for the lifetime of the parent. That’s
how Figure 6-4 behaves: RootViewController has the UIPageViewController as its
child, and the page view controller’s view as its own view’s subview, for the entire
lifetime of the app.

To illustrate, I’ll use the same page view controller that I used in my earlier examples,
the one that displays Pep Boys; but this time, its view won’t occupy the entire inter‐
face. My window’s root view controller, in its viewDidLoad, will create and configure
the page view controller as its child. Note how I perform the dance:

let pep : [String] = ["Manny", "Moe", "Jack"]
override func viewDidLoad() {
 super.viewDidLoad()
 let pvc = UIPageViewController(
 transitionStyle: .scroll, navigationOrientation: .horizontal)
 pvc.dataSource = self
 self.addChild(pvc) // dance, step 1
 self.view.addSubview(pvc.view) // dance, step 2
 // ... configure frame or constraints here ...
 pvc.didMove(toParent: self) // dance, step 3
 let page = Pep(pepBoy: self.pep[0])
 pvc.setViewControllers([page], direction: .forward, animated: false)
}

Container View Controllers | 377

Replacing a child view controller
It is also possible to replace one child view controller’s view in the interface with
another (comparable to how UITabBarController behaves when a different tab bar
item is selected). The simplest way is with this parent view controller instance
method:

• transition(from:to:duration:options:animations:completion:)

That method manages the stages in good order, adding the view of one child view
controller (to:) to the interface before the transition and removing the view of the
other child view controller (from:) from the interface after the transition, and seeing
to it that the child view controllers receive lifetime events (such as viewWill-
Appear(_:)) at the right moment. Here’s what the last three arguments are for:

options:

A bitmask (UIView.AnimationOptions) comprising the same possible options
that apply to any view transition (see “Transitions” on page 188).

animations:

An animations function. This may be used for animating views other than the
two views being managed by the transition animation specified in the options:
argument; alternatively, if none of the built-in transition animations is suitable,
you can animate the transitioning views yourself here (they are both in the inter‐
face when the animations function is called).

completion:

A completion function. This will be important if the transition involves the
removal or addition of a child view controller. At the time when you call
transition, both view controllers must be children of the parent view controller;
so if you’re going to remove one of the view controllers as a child, you’ll do it in
the completion function. Similarly, if you owe a new child view controller a did-
Move(toParent:) call, you’ll use the completion function to fulfill that debt.

Here’s an example. To keep things simple, suppose that our view controller has just
one child view controller at a time, and displays the view of that child view controller
within its own view. So let’s say that when our view controller is handed a new child
view controller, it substitutes that new child view controller for the old child view
controller, and replaces the old child view controller’s view with the new child view
controller’s view in the interface. Here’s code that does that correctly; the view con‐
trollers are fromvc and tovc:

// we have already been handed the new view controller
// set up the new view controller's view's frame
tovc.view.frame = // ... whatever
// must have both as children before we can transition between them
self.addChild(tovc) // "will" called for us

378 | Chapter 6: View Controllers

// when we call remove, we must call "will" (with nil) beforehand
fromvc.willMove(toParent: nil)
// then perform the transition
self.transition(
 from:fromvc, to:tovc,
 duration:0.4, options:.transitionFlipFromLeft,
 animations:nil) { _ in
 // when we call add, we must call "did" afterward
 tovc.didMove(toParent: self)
 fromvc.removeFromParent() // "did" called for us
}

If we’re using constraints to position the new child view controller’s view, where will
we set up those constraints? Before you call transition... is too soon, as the new
child view controller’s view is not yet in the interface. The completion function is too
late: if the view is added with no constraints, it will have no initial size or position, so
the animation will be performed and then the view will suddenly seem to pop into
existence as we provide its constraints. The animations function turns out to be a
very good place:

// must have both as children before we can transition between them
self.addChild(tovc) // "will" called for us
// when we call remove, we must call "will" (with nil) beforehand
fromvc.willMove(toParent: nil)
// then perform the transition
self.transition(
 from:fromvc, to:tovc,
 duration:0.4, options:.transitionFlipFromLeft,
 animations: {
 tovc.view.translatesAutoresizingMaskIntoConstraints = false
 // ... configure tovc.view constraints here ...
 }) { _ in
 // when we call add, we must call "did" afterward
 tovc.didMove(toParent: self)
 fromvc.removeFromParent() // "did" called for us
}

If the built-in transition animations are unsuitable, you can omit the options: argu‐
ment and provide your own animation in the animations function, at which time
both views are in the interface. In this example, I animate a substitute view (an image
view showing a snapshot of tovc.view) to grow from the top left corner; then I con‐
figure the real view’s constraints and remove the substitute:

// tovc.view.frame is already set
let r = UIGraphicsImageRenderer(size:tovc.view.bounds.size)
let im = r.image { ctx in
 tovc.view.layer.render(in:ctx.cgContext)
}
let iv = UIImageView(image:im)
iv.frame = .zero
self.view.addSubview(iv)

Container View Controllers | 379

tovc.view.alpha = 0 // hide the real view
// must have both as children before we can transition between them
self.addChild(tovc) // "will" called for us
// when we call remove, we must call "will" (with nil) beforehand
fromvc.willMove(toParent: nil)
// then perform the transition
self.transition(
 from:fromvc, to:tovc,
 duration:0.4, // no options:
 animations: {
 iv.frame = tovc.view.frame // animate bounds change
 // ... configure tovc.view constraints here ...
 }) { _ in
 tovc.view.alpha = 1
 iv.removeFromSuperview()
 // when we call add, we must call "did" afterward
 tovc.didMove(toParent: self)
 fromvc.removeFromParent() // "did" called for us
}

Status Bar, Traits, and Resizing
A parent view controller, instead of dictating the status bar appearance through its
own implementation of preferredStatusBarStyle or prefersStatusBarHidden, can
defer the responsibility to one of its children, by overriding these properties:

• childForStatusBarStyle

• childForStatusBarHidden

That’s what a UITabBarController does (as I’ve already mentioned). Your custom
parent view controller can do the same thing.

A container view controller also participates in trait collection inheritance. In fact,
you might insert a container view controller into your view controller hierarchy just
to take advantage of this feature. A parent view controller has the amazing ability to
lie to a child view controller about the environment, thanks to this method:

• setOverrideTraitCollection(_:forChild:)

The first parameter is a UITraitCollection that will be combined with the inherited
trait collection and communicated to the specified child.

Why would you want to lie to a child view controller about its environment? Well,
imagine that we’re writing an iPad app, and we have a view controller whose view can
appear either fullscreen or as a small subview of a parent view controller’s main view.
The view’s interface might need to be different when it appears in the smaller size.
You could configure that difference using size classes (conditional constraints) in the
nib editor, with one interface for a .regular horizontal size class (iPad) and another
interface for a .compact horizontal size class (iPhone). Then, when the view is to

380 | Chapter 6: View Controllers

appear in its smaller size, we lie to its view controller and tell it that the horizontal
size class is .compact:

let vc = // the view controller we're going to use as a child
self.addChild(vc) // "will" called for us
let tc = UITraitCollection(horizontalSizeClass: .compact)
self.setOverrideTraitCollection(tc, forChild: vc) // heh heh
vc.view.frame = // whatever
self.view.addSubview(vc.view)
vc.didMove(toParent: self)

UIPresentationController has a similar power, through its overrideTrait-

Collection property, allowing it to lie to its presented view controller about the
inherited trait collection. That is how a .formSheet presented view controller comes
to have a .compact horizontal size class even on an iPad.

New in iOS 13, if your only reason for overriding the trait collection is to affect
the user interface style (light or dark), you can set the .overrideUserInterface-
Style of a view controller or view instead.

A parent view controller sets the size of a child view controller’s view. A child view
controller, however, can express a preference as to what size it would like its view to
be, by setting its own preferredContentSize property. The chief purpose of this
property is to be consulted by a parent view controller when this view controller is its
child. It is a preference and no more; no law says that the parent must consult the
child, or that the parent must obey the child’s preference.

If a view controller’s preferredContentSize is set while it is already a child view
controller, the runtime automatically communicates this fact to the parent view con‐
troller by calling this UIContentContainer method:

• preferredContentSizeDidChange(forChildContentContainer:)

The parent view controller may implement this method to consult the child’s
preferredContentSize, and may change the child’s view’s size in response if it so
chooses.

A parent view controller, as an adopter of the UIContentContainer protocol, is also
responsible for communicating to its children that their sizes are changing and what
their new sizes will be. It is the parent view controller’s duty to implement this
method:

size(forChildContentContainer:withParentContainerSize:)

Should be implemented to return each child view controller’s correct size at any
moment.

Container View Controllers | 381

Failure to implement this method will cause the child view controller to be
handed the wrong size in its viewWillTransition(to:with:) — it will be given
the parent’s new size rather than its own new size!

If your parent view controller implements viewWillTransition(to:with:), it
should call super so that viewWillTransition(to:with:) will be passed down to its
children. This works even if your implementation is explicitly changing the size of a
child view controller, provided you have implemented size(forChildContent-
Container:withParentContainerSize:) to return the new size.

Previews and Context Menus
New in iOS 13, you can permit the user to summon a preview along with a menu by
long pressing on a view. The preview can be a view controller’s view, and a possible
response when the user taps the preview is to transition to that view controller. So the
user can preview the new view controller without actually transitioning to it, and then
optionally can perform the transition.

(That’s the sequence of actions known in iOS 12 and before as peek and pop. But peek
and pop was available only on devices with 3D touch, whereas this new iOS 13 mech‐
anism is available on any device.)

Everything starts with a UIContextMenuInteraction and its delegate (UIContext‐
MenuInteractionDelegate). You add the interaction to a view, and a special long
press gesture recognizer is installed for you. When the user long presses the view, this
delegate method is called:

• contextMenuInteraction(_:configurationForMenuAtLocation:)

Your job is to create a UIContextMenuConfiguration, configure it, and return it.
Both the preview and the menu are optional:

• If you supply a menu but no preview, the view that the user long presses is used
as a preview.

• If you supply a preview but no menu, just the preview is displayed.
• If you return nil, nothing happens.

To demonstrate, imagine that I have a root view controller whose view contains three
buttons titled Manny, Moe, and Jack. I also have a Pep view controller whose initial‐
izer takes the name of a Pep Boy, and whose view displays an image of that Pep Boy.
Let’s permit the user to long press one of the buttons to summon the corresponding
Pep view controller as a preview.

In the root view controller’s viewDidLoad, I’ll install the long press gesture recognizer
on the superview of the three buttons:

self.buttonSuperview.addInteraction(UIContextMenuInteraction(delegate:self))

382 | Chapter 6: View Controllers

When the user long presses a button, I’m asked for a UIContextMenuConfiguration.
I start by looking to see which button the user is long pressing; if none, I return nil
and nothing further happens. If we get past that point, the user has long pressed one
of the buttons; I’ll use the button’s title to initialize a Pep view controller and present
it as a preview:

func contextMenuInteraction(_ inter: UIContextMenuInteraction,
 configurationForMenuAtLocation loc: CGPoint)
 -> UIContextMenuConfiguration? {
 guard let button = inter.view?.hitTest(loc, with:nil) as? UIButton
 else {return nil}
 let boy = button.currentTitle!
 let config = UIContextMenuConfiguration(
 identifier: button.tag as NSNumber, previewProvider: {
 let pep = Pep(pepBoy: boy)
 pep.preferredContentSize = CGSize(width: 240, height: 300)
 return pep
 }
)
 return config
}

That’s all there is to it! We don’t have to supply a preferredContentSize for the view
controller, but the preview may be too large otherwise. We also don’t have to supply
an identifier: for the menu configuration; I’ll explain now why I did that.

Currently, when the user long presses a button, all three buttons and their superview
pop out of the background before the preview is shown — because their superview is
the view that I attached the UIContextMenuInteraction to. That isn’t quite the effect
I want: I want just the button the user is pressing to pop out. To specify what view
should pop out, we implement another delegate method:

• contextMenuInteraction(_:previewForHighlightingMenuWith-

Configuration:)

Our job is to return a UITargetedPreview, which is basically a snapshot of a view
along with a location where it should appear. This can be a view already in the inter‐
face, in which case the location is already known. I’ve marked the three buttons with
tag values so that I can identify a button; I know the tag of the button that the user is
pressing, because I cleverly set it as the UIContextMenuConfiguration’s identifier:

func contextMenuInteraction(_ inter: UIContextMenuInteraction,
 previewForHighlightingMenuWithConfiguration
 config: UIContextMenuConfiguration) -> UITargetedPreview? {
 if let tag = config.identifier as? Int {
 if let button = self.buttonSuperview.viewWithTag(tag) {
 return UITargetedPreview(view: button)

Previews and Context Menus | 383

 }
 }
 return nil
}

If the context menu configuration has a menu but no preview view controller, then
the targeted preview also becomes the preview that is displayed along with the menu.
But our context menu configuration does have a preview view controller. So the but‐
ton pops out of the background as the user presses it, and then fades away as the Pep
view controller’s view is displayed.

Finally, to make it possible for the user to tap the preview to dismiss it, we implement
this delegate method:

• contextMenuInteraction(_:willPerformPreviewActionForMenu-

With:animator:)

The object that arrives as the animator: parameter accepts an animation function
and a completion function, and hands us the preview’s view controller if there is one.
I’ll perform the full transition to that view controller in the completion function:

func contextMenuInteraction(_ inter: UIContextMenuInteraction,
 willPerformPreviewActionForMenuWith config: UIContextMenuConfiguration,
 animator: UIContextMenuInteractionCommitAnimating) {
 if let vc = animator.previewViewController as? Pep {
 animator.preferredCommitStyle = .pop
 animator.addCompletion {
 self.present(vc, animated: true) // or whatever
 }
 }
}

If we want to display a menu, we supply a function as the third parameter to the
UIContextMenuConfiguration initializer. Its job is to return a UIMenu. This will be
the main UIMenu, which typically will have no title and will itself act as a wrapper for
its menu elements. Menu elements are effectively menu items; they are visible and
tappable, and can have a title and an image. They are of two types:

UIAction
A UIAction has a handler: function. When the user taps it, the entire menu
interface (including the preview) is dismissed and the handler: function runs.

UIMenu
A UIMenu (other than the main menu) looks like a UIAction, but it also has
menu elements of its own, which the user does not see at first. When the user
taps the UIMenu, the entire menu vanishes and is replaced by the elements of
this UIMenu. In this way, you can create a menu with hierarchical levels.

384 | Chapter 6: View Controllers

Figure 6-9. A context menu and preview

As an example of a simple UIAction, I’ll create a Favorites menu item. The user can
tap this to make the currently previewed Pep Boy the favorite. The user’s current
favorite is stored in the user defaults. If this Pep Boy is already the user’s favorite, the
menu item has a filled star; otherwise it has an empty star:

let favKey = "favoritePepBoy"
let fav = UserDefaults.standard.string(forKey:favKey)
let star = boy == fav ? "star.fill" : "star"
let im = UIImage(systemName: star)
let favorite = UIAction(title: "Favorite", image: im) { _ in
 UserDefaults.standard.set(boy, forKey:favKey)
}

Here’s a hierarchical UIMenu. I’ll pretend that the user can colorize the current Pep
Boy in a choice of red, green, or blue; I have no actual colorization functionality, so
I’ll just print to the console for purposes of the example:

let red = UIAction(title: "Red") {action in
 print ("coloring", boy, action.title.lowercased())
}
let green = UIAction(title: "Green") {action in
 print ("coloring", boy, action.title.lowercased())
}
let blue = UIAction(title: "Blue") {action in
 print ("coloring", boy, action.title.lowercased())
}
let color = UIMenu(title: "Colorize", children: [red,green,blue])

I’ll rewrite our UIContextMenuConfiguration so that a menu will be displayed along
with the preview image (Figure 6-9). I’ll mark where the UIAction and UIMenu are
created, but I’ve already shown you that code so I’ll omit it here:

Previews and Context Menus | 385

func contextMenuInteraction(_ inter: UIContextMenuInteraction,
 configurationForMenuAtLocation loc: CGPoint)
 -> UIContextMenuConfiguration? {
 guard let button = inter.view?.hitTest(loc, with: nil) as? UIButton
 else {return nil}
 let boy = button.currentTitle!
 // ... create the UIAction ...
 let favorite = // ...
 }
 // ... create the UIMenu ...
 let color = // ...
 let config = UIContextMenuConfiguration(
 identifier: button.tag as NSNumber,
 previewProvider: {
 let pep = Pep(pepBoy: boy)
 pep.preferredContentSize = CGSize(width: 240, height: 300)
 return pep
 }
) { _ in
 return UIMenu(title: "", children: [favorite, color])
 }
 return config
}

Storyboards
A storyboard is a way of automatically creating view controllers and performing the
kind of coherent view controller management and transitions that I’ve described
throughout this chapter. A storyboard doesn’t necessarily reduce the amount of code
you’ll have to write, but it does clarify the relationships between your view controllers
over the course of your app’s lifetime. Instead of having to hunt around in your code
to see which class creates which view controller and when, you can view and manage
the chain of view controller creation graphically in the nib editor.

A storyboard is a collection of view controller nibs, which are displayed as its scenes.
Each view controller is instantiated from its own nib, as needed, and will then obtain
its view, as needed — typically from a view nib that you’ve configured in the same
scene by editing the view controller’s view. I described this in “How Storyboards
Work” on page 304. As I explained there, a view controller may be instantiated from
a storyboard automatically in various ways:

Initial view controller
If your app (or window scene) has a main storyboard, as specified in the
Info.plist, that storyboard’s initial view controller will be instantiated and
assigned as the window’s rootViewController automatically as the app
launches. To specify that a view controller is a storyboard’s initial view control‐
ler, check the “Is Initial View Controller” checkbox in its Attributes inspector.
This will cause any existing initial view controller to lose its initial view controller

386 | Chapter 6: View Controllers

status. The initial view controller is distinguished graphically in the canvas by an
arrow pointing to it from the left, and in the document outline by the presence of
the Storyboard Entry Point.

Relationship
Two built-in parent view controllers can specify their children directly in the
storyboard, setting their viewControllers array:

• UITabBarController can specify multiple children (its “view controllers”).
• UINavigationController can specify its single initial child (its “root view

controller”).

To add a view controller as a child to one of those parent view controller types,
Control-drag from the parent view controller to the child view controller; in the
little HUD that appears, choose the appropriate listing under Relationship Segue.
The result is a relationship whose source is the parent and whose destination is
the child. The destination view controller will be instantiated automatically when
the source view controller is instantiated, and will be assigned into its view-
Controllers array, making it a child and retaining it.

Triggered segue
A triggered segue configures a future situation, when, while the app is running,
the segue will somehow be triggered. At that time, one view controller that
already exists (the source) will cause the instantiation of another view controller
(the destination), bringing the latter into existence automatically. Two types of
triggered segue are particularly common (their names in the nib editor depend
on whether the “Use Trait Variations” checkbox is checked in the File inspector):

Show (formerly Push)
The future view controller will be pushed onto the stack of the navigation
controller of which the existing view controller is already a child.

The name Show comes from the show(_:sender:) method, which pushes a
view controller onto the parent navigation controller if there is one, but
behaves adaptively if there is not (I’ll talk more about that in Chapter 9). A
Show segue from a view controller that is not a navigation controller’s child
will present the future view controller rather than pushing it, as there is no
navigation stack to push onto. Setting up a Show segue without a navigation
controller and then wondering why there is no push is a common beginner
mistake.

Present Modally (formerly Modal)
The future view controller will be a presented view controller (and the exist‐
ing view controller will be its original presenter).

Storyboards | 387

Figure 6-10. The storyboard of an app

A triggered segue may emanate from the source view controller itself, and is then
a manual segue; it must be triggered in code, using the segue’s identifier. Alterna‐
tively, it can emanate from something in the source view controller’s view that
the user can interact with — a gesture recognizer, or a tappable view such as a
button or a table view cell — and is then an action segue, meaning that the segue
will be triggered automatically, bringing the destination view controller into exis‐
tence, when a tap or other gesture occurs.

To create a triggered segue, Control-drag from the tappable object in the first
view controller, or from the first view controller itself, to the second view con‐
troller. In the little HUD that appears, choose the type of segue you want. If you
dragged from the view controller, this will be a manual segue; if you dragged
from a tappable object, it will be an action segue.

Figure 6-10 shows the storyboard of a small test app. The initial view controller (at
the left) is a tab bar controller. It will be instantiated automatically when the app
launches. Through two “view controllers” relationships, it has two children, which
will both be instantiated automatically together with the tab bar controller:

• The tab bar controller’s first child (upper row) is a navigation controller, which
itself, through a “root view controller” relationship, has one child, which will also
be instantiated automatically and will be placed at the bottom of the navigation
controller’s stack when the navigation controller is instantiated.

388 | Chapter 6: View Controllers

▪ That child has a triggered Show segue to another view controller, giving it the
ability in the future to create that view controller and push it onto the naviga‐
tion controller’s stack.

• The tab bar controller’s second child (lower row) has a triggered Present Modally
segue to another view controller, giving it the ability in the future to create that
view controller and present it.

It is also possible to instantiate a view controller from a storyboard manually, in code.
That way, you are still creating the view controller instance on demand, but you also
get the convenience of designing its view in the nib editor, and the instance comes
with the segues that emanate from it in the storyboard.

Your code can instantiate a view controller manually from a storyboard by calling
one of these methods:

• instantiateInitialViewController

• instantiateViewController(withIdentifier:)

The identifier: in the second method is a string that must match the Storyboard
ID in the Identity inspector of some view controller in the storyboard (or you’ll
crash).

New in iOS 13, each of those methods has a variant that takes a function whose
parameter is an NSCoder and that returns a view controller. Your function must call
init(coder:), using that same NSCoder as the argument. You might prefer these
variants, for two reasons:

• Your function can call a custom initializer that does other things besides calling
init(coder:), and it can perform additional configurations on the view control‐
ler that’s being instantiated.

• These methods are generics, so the return type is your view controller’s type,
rather than a plain UIViewController that you then have to cast down.

To illustrate, here’s a rewrite of an earlier example (“App Without a Storyboard” on
page 6) where we used a condition in our scene(_:willConnectTo:options:)
implementation in order to decide at launch time what the window’s root view con‐
troller should be. In the case where the user has not yet logged in, when we call
instantiateViewController(identifier:), we’ll take advantage of the new iOS 13
variant that takes a function:

self.window = UIWindow(windowScene: windowScene)
let userHasLoggedIn : Bool = // ...
let sb = UIStoryboard(name: "Main", bundle: nil)
if userHasLoggedIn {
 let vc = sb.instantiateViewController(identifier: "UserHasLoggedIn")
 self.window!.rootViewController = vc
} else {

Storyboards | 389

 let lvc = sb.instantiateViewController(identifier: "LoginScreen") { // *
 LoginViewController(coder:$0, message:"You need to log in first.")
 }
 // could perform further initializations here
 self.window!.rootViewController = lvc
}
self.window!.makeKeyAndVisible()

The idea here is that LoginViewController has an initializer init(coder:message:),
and we are able to call that initializer while loading this view controller from the
storyboard. Moreover, we can perform further configuration of the view controller
without casting it down; lvc is already typed, not as a vanilla UIViewController, but
as LoginViewController. None of that was possible before iOS 13.

Triggered Segues
A triggered segue is a true segue (as opposed to a relationship, which isn’t). The most
common types are Show (Push) and Present Modally (Modal). A segue is a full-
fledged object, an instance of UIStoryboardSegue, and it can be configured in the nib
editor through its Attributes inspector. However, it is not instantiated by the loading
of a nib, and it cannot be pointed to by an outlet. Rather, it will be instantiated when
the segue is triggered, at which time its designated initializer will be called, namely
init(identifier:source:destination:).

A segue’s source and destination are the two view controllers between which it
runs. The segue is directional, so the source and destination are clearly distinguished.
The source view controller is the one that will exist already, before the segue is trig‐
gered; the destination view controller will be instantiated when the segue is triggered,
along with the segue itself.

A segue’s identifier is a string. You can set this string for a segue in a storyboard in
the Attributes inspector; that’s useful when you want to trigger the segue manually in
code (you’ll specify it by means of its identifier), or when you have code that can
receive a segue as parameter and you need to distinguish which segue this is.

Triggered segue behavior
The default behavior of a segue when it is triggered is exactly the behavior of the cor‐
responding manual transition described earlier in this chapter:

Show (Push)
The segue is going to call pushViewController(_:animated:) (if we are in a
navigation interface). To set animated: to false, uncheck the Animates check‐
box in the Attributes inspector.

390 | Chapter 6: View Controllers

Present Modally (Modal)
The segue is going to call present(_:animated:completion:). To set animated:
to false, uncheck the Animates checkbox in the Attributes inspector. Other pre‐
sentation options, such as the modal presentation style and the modal transition
style, can be set in Attributes inspector either for the destination view controller
or for the segue; the segue settings take precedence.

You can further customize a triggered segue’s behavior by providing your own
UIStoryboardSegue subclass. The key thing is that you must implement your custom
segue’s perform method, which will be called after the segue is triggered and instanti‐
ated, to do the actual transition from one view controller to another.

If this is a push segue or a modal segue, it already knows how to do the transition;
therefore, in the Attributes inspector for the segue, you specify your UIStoryboard‐
Segue subclass, and in that subclass, you call super in your perform implementation.

Let’s say that you want to add a custom transition animation to a modal segue. You
can do this by writing a segue class that makes itself the destination view controller’s
transitioning delegate in its perform implementation before calling super:

class MyCoolSegue: UIStoryboardSegue {
 override func perform() {
 let dest = self.destination
 dest.modalPresentationStyle = .custom
 dest.transitioningDelegate = self
 super.perform()
 }
}
extension MyCoolSegue: UIViewControllerTransitioningDelegate {
 func animationController(forPresented presented: UIViewController,
 presenting: UIViewController,
 source: UIViewController) -> UIViewControllerAnimatedTransitioning? {
 return self
 }
 // ...
}
extension MyCoolSegue: UIViewControllerAnimatedTransitioning {
 func transitionDuration(using ctx: UIViewControllerContextTransitioning?)
 -> TimeInterval {
 return 0.8
 }
 // ...
}

The rest is then exactly as in “Custom Presented View Controller Transition” on page
361. MyCoolSegue is the UIViewControllerTransitioningDelegate, so its animation-
Controller(forPresented:...) will be called. MyCoolSegue is also the UIView‐
ControllerAnimatedTransitioning object, so its transitionDuration and so forth
will be called. In short, we are now off to the races with a custom presented view

Storyboards | 391

controller transition, with all the code living inside MyCoolSegue — a pleasant
encapsulation of functionality.

You can also create a completely custom segue. To do so, in the HUD when you
Control-drag to create the segue, ask for a Custom segue, and then, in the Attributes
inspector, specify your UIStoryboardSegue subclass. Again, you must override
perform, but now you don’t call super — the whole transition is up to you! Your
perform implementation can access the segue’s identifier, source, and
destination properties. The destination view controller has already been instanti‐
ated, but that’s all; it is entirely up to your code to make this view controller either a
child view controller or a presented view controller, and to cause its view to appear in
the interface.

How a segue is triggered
A triggered segue will be triggered in one of two ways:

Through a user gesture
If a segue emanates from a gesture recognizer or from a tappable view, it is an
action segue, meaning that it will be triggered automatically when the tap or
other gesture occurs.

Your source view controller class can prevent an action segue from being trig‐
gered. To do so, override this method:

shouldPerformSegue(withIdentifier:sender:)

Sent when an action segue is about to be triggered. Returns a Bool (and the
default is true), so if you don’t want this segue triggered on this occasion,
return false.

In code
If a segue emanates from a view controller as a whole, it is a manual segue, and
triggering it is up to your code. Send this message to the source view controller:

performSegue(withIdentifier:sender:)

Triggers a segue whose source is this view controller. The segue will need an
identifier in the storyboard so that you can specify it here! shouldPerform-
Segue(withIdentifier:sender:) will not be called, because if you didn’t
want the segue triggered, you wouldn’t have called performSegue in the first
place.

An action segue with an identifier can be treated as a manual segue: that is, you can
trigger it by calling performSegue, doing in code what the user could have done by
tapping.

392 | Chapter 6: View Controllers

View controller communication
When a segue is triggered, the destination view controller is instantiated automati‐
cally; your code does not instantiate it. This raises a crucial question: how are you
going to communicate between the source view controller and the destination view
controller? This, you’ll remember, was the subject of an earlier section of this chapter
(“Communication with a Presented View Controller” on page 330), where I used this
code as an example:

let svc = SecondViewController()
svc.data = "This is very important data!"
svc.delegate = self
self.present(svc, animated:true)

In that code, the first view controller creates the second view controller, and therefore
has a reference to it at that moment — so it has an opportunity to communicate with
it, passing along some data to it, and setting itself as its delegate, before presenting it.
With a modal segue, however, the second view controller is instantiated for you, and
the segue itself is going to call present(_:animated:completion:). So when and
how will the first view controller be able to set svc.data and set itself as svc’s
delegate?

Prior to iOS 13, the solution is for the source view controller to override
prepare(for:sender:). After a segue has instantiated the destination view controller
but before the segue is actually performed, the source view controller’s
prepare(for:sender:) is called. The first parameter is the segue, and the segue has a
reference to the destination view controller — so this is the moment when the source
view controller and the destination view controller meet! The source view controller
can now perform configurations on the destination view controller, hand it data, and
so forth. The source view controller can work out which segue is being triggered by
examining the segue’s identifier and destination properties, and the sender is the
interface object that was tapped to trigger the segue (or, if performSegue(with-
Identifier:sender:) was called in code, whatever object was supplied as the
sender: argument):

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "second" {
 let svc = segue.destination as! SecondViewController
 svc.data = "This is very important data!"
 svc.delegate = self
 }
}

That solves the communication problem, but in a clumsy way. The fact is that
prepare(for:sender:) is a blunt instrument:

• The destination arrives typed as a plain UIViewController, and it is up to your
code to know its actual type and cast it down before configuring it.

Storyboards | 393

• The destination view controller is instantiated for you, by calling init(coder:).
That means you can’t call a custom initializer; in prepare(for:sender:), you
can only set properties after initialization is over.

• If more than one segue emanates from a view controller, they are all bottlenecked
through the same prepare(for:sender:) implementation, which devolves into
an ugly series of conditions to distinguish them.

New in iOS 13, there’s an elegant alternative architecture. In the source view control‐
ler, you implement a method marked @IBSegueAction, with this signature:

@IBSegueAction
func f(coder:NSCoder, sender:Any?, ident:String?) -> UIViewController? {

The method name is up to you; so are the external parameter names. The third
parameter, or the second and third parameters, may be omitted. The second parame‐
ter is just like the sender: in prepare(for:sender:). The third parameter is the
segue’s identifier. The result type can be a specific UIViewController subclass. It
doesn’t have to be an Optional; if it is, and if you return nil, everything proceeds as if
this IBSegueAction method didn’t exist.

To arrange for an IBSegueAction method to be called, you create an action connec‐
tion in the storyboard from the segue to this method. (Technically, this is an instantia‐
tion action.) When the IBSegueAction method is called, the segue has been triggered.
You must now instantiate the correct class of view controller by directly or indirectly
calling init(coder:) with the coder that was passed to you, and return that view
controller instance (or nil if the return type is an Optional).

To illustrate, I’ll rewrite the preceding code. Let’s give SecondViewController an ini‐
tializer that accepts the data it needs to do its work:

init(coder:NSCoder, data:Any) {
 self.data = data
 super.init(coder:coder)!
}

Here’s an IBSegueAction method that calls that initializer:

@IBSegueAction func config(coder:NSCoder) -> SecondViewController {
 let svc = SecondViewController(
 coder:coder, data:"This is very important data!") {
 svc.delegate = self
 return svc
}

We can give our IBSegueAction method any name we like. We can give the
parameters any external names we like. We can omit the second and third
parameters. We can specify a particular view controller class as the return type,
and it doesn’t have to be an Optional.

394 | Chapter 6: View Controllers

We have to know the class of the segue’s destination view controller, so that we
can instantiate it. If we instantiate a view controller that is not of the right class,
we’ll crash at runtime. But we can configure the storyboard so that only one
segue ever calls this IBSegueAction method, and so we can be confident about its
destination without checking its identifier.

We are able to call a custom initializer, something that a segue on its own could
not have done. Our custom initializer must call init(coder:) with the same
coder we received as our first parameter; otherwise, we’ll crash at runtime.

We are able to perform additional customizations, just as we would have done in
prepare(for:sender:). But there is no need to cast down first!

Even if you use the IBSegueAction mechanism, prepare(for:sender:) will still be
called afterward if you’ve implemented it. Nevertheless, you might end up never
implementing prepare(for:sender:) at all! Instead, you might rely entirely on the
IBSegueAction mechanism.

Container Views and Embed Segues
The only parent view controllers for which you can create relationship segues speci‐
fying their children in a storyboard are the built-in UITabBarController and
UINavigationController. That’s because the nib editor understands how they work. If
you write your own custom container view controller (“Container View Controllers”
on page 375), the nib editor doesn’t even know that your view controller is a con‐
tainer view controller, so it can’t be the source of a relationship segue.

Nevertheless, you can perform some initial parent–child configuration of your cus‐
tom container view controller in a storyboard, if your situation conforms to these
assumptions:

• Your parent view controller will have one initial child view controller.
• You want the child view controller’s view placed somewhere in the parent view

controller’s view.
To configure your parent view controller in a storyboard, drag a Container View
object from the Library into the parent view controller’s view in the canvas. The
result is a view, together with an embed segue leading from it to an additional child
view controller. You can then specify the child view controller’s correct class in its
Identity inspector. Alternatively, delete the child view controller, Control-drag from
the container view to some other view controller, and specify an Embed segue in
the HUD.

The container view is not only a way of generating the embed segue, but also a way of
specifying where you want the child view controller’s view to go. When an embed

Storyboards | 395

segue is triggered, the destination view controller is instantiated and made the source
view controller’s child, and its view becomes the container view’s subview, with its
frame matching the container view’s bounds. The entire child-addition dance is per‐
formed correctly and automatically for you: addChild(_:) is called, the child’s view
is put into the interface, and didMove(toParent:) is called.

If the frame of the container view is going to change during the lifetime of the app,
you’re probably going to want the frame of the embedded child view controller’s view
to change with it. In the child view controller scene, use its view’s Size inspector to set
the Layout pop-up menu to Translates Mask Into Constraints, and give the view
autoresizing struts externally on all four sides. (This may have been done for you by
default when you created the container view.)

An embed segue is a triggered segue. It can have an identifier, and the standard mes‐
sages are sent to the source view controller when the segue is triggered. At the same
time, it has this similarity to a relationship: when the source (parent) view controller
is instantiated, the runtime wants to trigger the segue automatically, instantiating the
child view controller and embedding its view in the container view now. If that isn’t
what you want, override shouldPerformSegue(withIdentifier:sender:) in the
parent view controller to return false for this segue, and call performSegue(with-
Identifier:sender:) later when you do want the child view controller instantiated.

The parent view controller is sent prepare(for:sender:) before the child’s view
loads. At this time, the child has not yet been added to the parent’s children array. If
you allow the segue to be triggered when the parent view controller is instantiated,
then by the time the parent’s viewDidLoad is called, the child’s viewDidLoad has
already been called, the child has already been added to the parent’s children, and
the child’s view is already inside the parent’s view.

If, as the app runs, you subsequently want to replace the child view controller’s view
with another child view controller’s view in the interface, you can call
transition(from:to:duration:options:animations:completion:) as I described
earlier in this chapter; sizing the new view and configuring it so that it is pinned to
the container view will be up to you. (If you really want to, you can arrange this in the
storyboard by means of a custom segue.)

Storyboard References
A storyboard reference is a placeholder for a specific view controller. Instead of a
large and complicated network of segues running all over your storyboard, possibly
crisscrossing in confusing ways, you can effectively jump through the storyboard ref‐
erence to the actual destination view controller. Add a storyboard reference to the
canvas of the storyboard. When you create a segue, you can Control-drag to the
storyboard reference.

396 | Chapter 6: View Controllers

To specify what view controller a storyboard reference stands for, you need to per‐
form two steps:

1. Select the view controller and, in the Identity inspector, give it a Storyboard ID.
2. Select the storyboard reference and, in the Attributes inspector, enter that same

Storyboard ID as its Referenced ID.
But wait — there’s more! The referenced view controller doesn’t even have to be in
the same storyboard as the storyboard reference. You can use a storyboard reference
to jump to a view controller in a different storyboard. This allows you to organize
your app’s interface into multiple storyboards.

To configure a storyboard reference to refer to a view controller in a different story‐
board, use the Storyboard pop-up menu in its Attributes inspector. The rule is that if
you specify the Storyboard but not the Referenced ID, the storyboard reference
stands for the target storyboard’s initial view controller. But it is better to specify both
the Storyboard and the Referenced ID.

Unwind Segues
Here’s an interesting puzzle: Storyboards and segues would appear to be useful only
half the time, because segues are asymmetrical. There is a push segue but no pop
segue. There is a present modally segue but no dismiss segue.

The reason, in a nutshell, is that a triggered segue cannot “go back.” A triggered segue
instantiates the destination view controller; it creates a new view controller instance.
But when dismissing a presented view controller or popping a pushed view control‐
ler, we don’t need any new view controller instances. We want to return, somehow, to
an existing instance of a view controller.

Beginners sometimes make a triggered segue from view controller A to view control‐
ler B, and then try to express the notion “go back” by making another triggered segue
from view controller B to view controller A. The result is a vicious cycle of segues,
with presentation piled on presentation, or push piled on push, one view controller
instantiated on top of another on top of another. Don’t do that. (Unfortunately, the
nib editor doesn’t alert you to this mistake.)

The solution is an unwind segue. An unwind segue does let you express the notion
“go back” in a storyboard. Basically, it lets you jump to any view controller that is
already instantiated further up your view controller hierarchy, destroying the source
view controller and any intervening view controllers in good order.

Creating an unwind segue
Before you can create an unwind segue, you must implement an unwind method in
the class of some view controller represented in the storyboard. This should be a

Storyboards | 397

Figure 6-11. Creating an unwind segue

method marked @IBAction as a hint to the storyboard editor, and taking a single
parameter, a UIStoryboardSegue. You can name it unwind if you like, but the name
doesn’t really matter:

@IBAction func unwind(_ seg: UIStoryboardSegue) {
 // ...
}

Think of this method as a marker, specifying that the view controller in which it
appears can be the destination for an unwind segue. It is, in fact, a little more than a
marker: it will also be called when the segue is triggered. But its marker functionality
is much more important — so much so that, in many cases, you won’t give this
method any code at all. Its presence is what matters.

Now you can create an unwind segue. Doing so involves the use of the Exit proxy
object that appears in every scene of a storyboard. This is what the Exit proxy is for!
Control-drag from the view controller you want to go back from (for a manual
segue), or from something like a button in that view controller’s view (for an action
segue), connecting it to the Exit proxy object in the same scene (Figure 6-11). A little
HUD appears, listing all the known unwind methods (similar to how action methods
are listed in the HUD when you connect a button to its target). Click the name of the
unwind method you want. You have now made an unwind segue, bound to that
unwind method.

How an unwind segue works
When an unwind segue is triggered:

1. If this is an action segue, the source view controller’s shouldPerformSegue(with-
Identifier:sender:) is called — just as for a normal segue. This is your chance
to forestall the whole process by returning false.

2. The name of the unwind method to which the unwind segue is bound is only a
name. The unwind segue’s actual destination view controller is unknown! There‐
fore, the runtime now starts walking up the view controller hierarchy looking for
a destination view controller. The first view controller it finds that implements
the unwind method will, by default, be the destination view controller.

398 | Chapter 6: View Controllers

Assume now that the destination view controller has been found. Then the runtime
proceeds to perform the segue:

1. The source view controller’s prepare(for:sender:) is called with the segue as
the first parameter — just as for a normal segue. The two view controllers are
now in contact (because the other view controller is the segue’s destination).
This is an opportunity for the source view controller to hand information to the
destination view controller before being destroyed! An unwind segue is an alter‐
native to delegation in this regard.

2. The destination view controller’s unwind method is called. Its parameter is the
segue. The two view controllers are now in contact again (because the other view
controller is the segue’s source). It is perfectly reasonable for the unwind method
body to be empty; its real purpose is to mark this view controller as the destina‐
tion view controller.

3. The source view controller is destroyed along with any intervening view control‐
lers up to (but not including) the destination view controller, in good order. We
have “gone back” to the destination view controller.

In general, that’s all you need to know about unwind segues.

Now I’ll go back and explain in detail how the destination view controller is found,
and how the segue is actually performed. This is partly out of sheer interest — they
are both devilishly clever — and partly in case you need to customize the process.
You can skip the discussion if the technical details aren’t of interest.

How the destination view controller is found
The process of locating the destination view controller starts by walking up the view
controller hierarchy. Every view controller has either a parent or a presentingView-
Controller, so the next view controller up the hierarchy is that view controller —
though it might also be necessary to walk back down the hierarchy, to a child (at
some depth) of one of the parents we encounter:

1. At each step up the view controller hierarchy, the runtime sends this view con‐
troller the following event:

• allowedChildrenForUnwinding(from:)

This view controller’s job is to supply an array of its own direct children. The
array can be empty, but it must be an array. To help form this array, the view
controller calls this method:

• childContaining(_:)

This tells the view controller which of its own children is, or is the ultimate par‐
ent of, the source view controller. We don’t want to go down that branch of the

Storyboards | 399

view hierarchy; that’s the branch we just came up. So this view controller sub‐
tracts that view controller from the array of its own child view controllers, and
returns the resulting array.

2. There are two possible kinds of result from the previous step (the value returned
from allowedChildren...):

There are children
If the previous step yielded an array with one or more child view controllers
in it, the runtime performs step 1 on all of them (stopping if it finds the des‐
tination), going down the view hierarchy.

There are no children
If, on the other hand, the previous step yielded an empty array, the runtime
asks this same view controller the following question:

• canPerformUnwindSegueAction(_:from:sender:)

The default implementation of this method is simply to call responds(to:)
on self, asking whether this view controller contains an implementation of
the unwind method we’re looking for. The result is a Bool. If it is true, we
stop. This is the destination view controller. If it is false, we continue with
the search up the view controller hierarchy, finding the next view controller
and performing step 1 again.

The recursive application of this algorithm will eventually arrive at an existing view
controller instance with an implementation of the unwind method if there is one.

How an unwind segue is performed
The way an unwind segue is performed is just as ingenious as how the destination is
found. During the walk in search of the destination view controller, the runtime
remembers the walk. There’s a path of view controllers between the source and the
destination, and the runtime walks that path:

• If it encounters a presented view controller on the path, the runtime calls
dismiss(animated:completion:) on the presenting view controller.

• If it encounters a parent view controller on the path, the runtime tells it to
unwind(for:towards:).
The second parameter of unwind(for:towards:) is the direct child of this parent
view controller leading down the branch where the destination lives. This child
might or might not be the destination, but that’s no concern of this parent view
controller. Its job is merely to get us onto that branch, whatever that may mean
for this kind of parent view controller.

400 | Chapter 6: View Controllers

If this procedure (called incremental unwind) is followed correctly, we will in fact end
up at the destination, releasing in good order all intervening view controllers that
need to be released.

Unwind segue customization
Knowing how an unwind segue works, you can see how to intervene in and custom‐
ize the process:

• In a custom view controller that contains an implementation of the unwind
method, you might implement canPerformUnwindSegueAction(_:from:with-
Sender:) to return false instead of true so that it doesn’t become the destina‐
tion on this occasion.

• In a custom parent view controller, you might implement allowedChildrenFor-
Unwinding(from:). In all probability, your implementation will consist simply of
listing your children, calling childContaining(_:) to find out which of your
children is or contains the source, subtracting that child from the array, and
returning the array — just as the built-in parent view controllers do.

• In a custom container view controller, you might implement
unwind(for:towards:). The second parameter is one of your current children;
you will do whatever it means for this parent view controller to make this the
currently displayed child.

In allowedChildrenForUnwinding(from:) and childContaining(_:), the parame‐
ter is not a UIStoryboardSegue. It’s an instance of a special value class called
UIStoryboardUnwindSegueSource, which has no other job than to communicate, in
these two methods, the essential information about the unwind segue needed to
make a decision. It has a source, a sender, and an unwindAction (the Selector speci‐
fied when forming the unwind segue).

Do not override childContaining(_:). It knows more than you do; you
wouldn’t want to interfere with its operation.

View Controller Lifetime Events
As views come and go, driven by view controllers and the actions of the user, events
arrive that give your view controller the opportunity to respond to the various stages
of its own existence and the management of its view. By overriding these methods,
your UIViewController subclass can perform appropriate tasks at appropriate
moments:

View Controller Lifetime Events | 401

viewDidLoad

The view controller has obtained its view (as explained earlier in this chapter);
self.view exists, and if obtaining the view involved loading a nib, outlets have
been hooked up. This does not mean that the view is in the interface or that it has
been given its correct size. You should call super in your implementation, just in
case a superclass has work to do in its implementation.

willTransition(to:with:)

viewWillTransition(to:with:)

traitCollectionDidChange(_:)

The view controller’s view is being resized or the trait environment is changing,
or both (as explained earlier in this chapter). Your implementation of these
methods should call super.

updateViewConstraints

viewWillLayoutSubviews

viewDidLayoutSubviews

The view is receiving updateConstraints and layoutSubviews events (as
explained earlier in this chapter). Your implementation of updateView-

Constraints should call super.

willMove(toParent:)

didMove(toParent:)

The view controller is being added or removed as a child of another view con‐
troller (as explained earlier in this chapter). Your implementation of these meth‐
ods should call super.

viewWillAppear(_:)

viewDidAppear(_:)

viewWillDisappear(_:)

viewDidDisappear(_:)

The view is being added to or removed from the interface. This includes being
supplanted by another view controller’s view or being restored through the
removal of another view controller’s view. A view that has appeared is in the win‐
dow; it is part of your app’s active view hierarchy. A view that has disappeared is
not in the window; its window is nil. Your implementation of these methods
should call super.

To distinguish more precisely why your view is appearing or disappearing, con‐
sult any of these properties of the view controller:

• isBeingPresented

• isBeingDismissed

402 | Chapter 6: View Controllers

• isMovingtoParent

• isMovingFromParent

Order of Events
To get a sense for when view controller lifetime events arrive, it helps to examine
some specific scenarios in which they normally occur. Consider a UIViewController
being pushed onto the stack of a navigation controller. It receives, in this order, the
following messages:

1. willMove(toParent:)

2. viewWillAppear(_:)

3. viewWillLayoutSubviews

4. viewDidLayoutSubviews

5. viewDidAppear(_:)

6. didMove(toParent:)

When this same UIViewController is popped off the stack of the navigation control‐
ler, it receives, in this order, the following messages:

1. willMove(toParent:) (with parameter nil)
2. viewWillDisappear(_:)

3. viewDidDisappear(_:)

4. didMove(toParent:) (with parameter nil)
Disappearance, as I mentioned a moment ago, can happen because another view con‐
troller’s view supplants this view controller’s view. Consider a UIViewController
functioning as the top (and visible) view controller of a navigation controller. When
another view controller is pushed on top of it, the first view controller gets these
messages:

1. viewWillDisappear(_:)

2. viewDidDisappear(_:)

The converse is also true. When a view controller is popped from a navigation con‐
troller, the view controller that was below it in the stack (the back view controller)
receives these messages:

1. viewWillAppear(_:)

2. viewDidAppear(_:)

View Controller Lifetime Events | 403

Appear and Disappear Events
The appear and disappear events are particularly appropriate for making sure that a
view controller’s view reflects your app’s underlying data each time it appears. These
methods are useful also when something must be true exactly so long as a view is in
the interface. A repeating Timer that must be running while a view is present might
be started in the view controller’s viewDidAppear(_:) and stopped in its viewWill-
Disappear(_:). (This architecture also allows you to avoid the retain cycle that could
result if you waited to invalidate the timer in a deinit that might otherwise never
arrive.)

Changes to the interface performed in viewDidAppear(_:) or viewWill-

Disappear(_:) may be visible to the user as they occur. If that’s not what you want,
use the other member of the pair. In a certain view containing a long scrollable text, I
want the scroll position to be the same when the user returns to this view as it was
when the user left it, so I save the scroll position in viewWillDisappear(_:) and
restore it in viewWillAppear(_:) — not viewDidAppear(_:), where the user might
see the scroll position jump.

The appear events are not layout events. Don’t make any assumptions about whether
your views have achieved their correct size just because the view is appearing — even
if those assumptions seem to be correct. To respond when layout is taking place,
implement layout events.

A view does not disappear if a presented view controller’s view merely covers it rather
than supplanting it. A view controller that presents another view controller as a sheet
(.pageSheet or .formSheet) gets no lifetime events during presentation and dis‐
missal. Sheet presentation is the default in iOS 13, so your older code may need to be
revised.

A view does not disappear merely because the app is backgrounded and suspended.
That fact sometimes surprises beginners, and has important implications for how you
save data in case the app is terminated in the background. You cannot rely solely on a
disappear event for saving data that the app will need the next time it launches; if
you are to cover every case, you may need to ensure that your data-saving code also
runs in response to a lifetime event sent to your app delegate or scene delegate (see
Appendix A).

Sometimes a will event arrives without the corresponding did event. A case in
point is when an interactive transition animation begins and is cancelled. I
regard this as a bug.

404 | Chapter 6: View Controllers

Event Forwarding to a Child View Controller
A custom container view controller must effectively send willMove(toParent:) and
didMove(toParent:) to its children manually, and it will do so if you perform the
dance correctly when your view controller acquires or loses a child view controller
(see “Container View Controllers” on page 375).

A custom container view controller must forward resizing events to its children. This
will happen automatically if you call super in your implementation of the will-
Transition methods.

The appear and disappear events are normally passed along automatically. How‐
ever, you can take charge by overriding this property:

shouldAutomaticallyForwardAppearanceMethods

If you override this property to return false, you are responsible for seeing that
the four appear and disappear methods are called on your view controller’s chil‐
dren. You do not do this by calling these methods directly. The reason is that you
have no access to the correct moment for sending them. Instead, you call these
two methods on your child view controller:

beginAppearanceTransition(_:animated:)

endAppearanceTransition

The first parameter of the first method is a Bool saying whether this view
controller’s view is about to appear (true) or disappear (false).

Here’s an example of the kind of thing you’ll have to do in the appear methods if
your shouldAutomaticallyForwardAppearanceMethods is false:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 let child = // whatever
 if child.isViewLoaded && child.view.superview != nil {
 child.beginAppearanceTransition(true, animated: true)
 }
}
override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 let child = // whatever
 if child.isViewLoaded && child.view.superview != nil {
 child.endAppearanceTransition()
 }
}

The disappear methods will be similar, except that the first argument for begin-
AppearanceTransition is false.

When your custom container view controller swaps one child for another in the
interface, you should not call the UIViewController transition... method if your

View Controller Lifetime Events | 405

shouldAutomaticallyForwardAppearanceMethods is false. Instead, you perform the
transition animation directly, calling beginAppearanceTransition(_:animated:)
and endAppearanceTransition yourself. A minimal correct implementation might
involve a UIView transition... animation class method (“Transitions” on page
188). Here’s an example; I’ve put asterisks to call attention to the additional method
calls that forward the appear and disappear events to the children (fromvc and
tovc):

self.addChild(tovc) // "will" called for us
fromvc.willMove(toParent: nil)
fromvc.beginAppearanceTransition(false, animated:true) // *
tovc.beginAppearanceTransition(true, animated:true) // *
UIView.transition(
 from:fromvc.view, to:tovc.view,
 duration:0.4, options:.transitionFlipFromLeft) {_ in
 tovc.endAppearanceTransition() // *
 fromvc.endAppearanceTransition() // *
 tovc.didMove(toParent: self)
 fromvc.removeFromParent()
}

View Controller Memory Management
Memory is at a premium on a mobile device, so you want to minimize your app’s use
of memory. Your motivations are partly altruistic and partly selfish. While your app
is running, other apps are suspended in the background; you want to keep your
memory usage as low as possible so that those other apps have room to remain sus‐
pended and the user can readily switch to them from your app. You also want to pre‐
vent your own app from being terminated! If your app is backgrounded and
suspended while using a lot of memory, it may be terminated in the background
when memory runs short. If your app uses an inordinate amount of memory while in
the foreground, it may be summarily killed before the user’s very eyes.

One strategy for avoiding using too much memory is to release any memory-hogging
objects you’re retaining if they are not needed at this moment. Because a view con‐
troller is the basis of so much of your application’s architecture, it is likely to be a
place where you’ll concern yourself with releasing unneeded memory.

One of your view controller’s most memory-intensive objects is its view. Fortunately,
the iOS runtime manages a view controller’s view’s memory for you. If a view con‐
troller’s view is not in the interface, it can be temporarily dispensed with. In such a
situation, if memory is getting tight, then even though the view controller itself per‐
sists, and even though it retains its actual view, the runtime may release the view’s
backing store (the cached bitmap representing the view’s drawn contents). The view
will then be redrawn when and if it is to be shown again later.

406 | Chapter 6: View Controllers

Your view controller should override this method so that it can receive an event
when memory runs low:

didReceiveMemoryWarning

Sent to a view controller to advise it of a low-memory situation. It is preceded by
a call to the app delegate’s applicationDidReceiveMemoryWarning, together with
a UIApplication.didReceiveMemoryWarningNotification posted to any regis‐
tered objects. You are invited to respond by releasing any data that you can do
without. Do not release data that you can’t readily and quickly recreate! The doc‐
umentation advises that you should call super.

To test the behavior of your app under low-memory circumstances, run your app in
the Simulator and choose Hardware → Simulate Memory Warning. I don’t believe
this has any actual effect on memory, but a memory warning of sufficient severity is
sent to your app, so you can see the results of triggering your low-memory response
code.

Another approach, which works also on a device, is to call an undocumented
method. First, define a dummy protocol to make the selector legal:

@objc protocol Dummy {
 func _performMemoryWarning()
}

Now you can send that selector to the shared application:

UIApplication.shared.perform(#selector(Dummy._performMemoryWarning))

(Be sure to remove that code when it is no longer needed for testing, as the App Store
won’t accept it.)

There are no hard and fast rules about what might be occupying your app’s memory
unnecessarily. Use the Allocations template in Instruments to find out! When multi‐
ple view controllers exist simultaneously, interface objects and data in a view control‐
ler whose view is not currently visible are obvious candidates for purging when
memory is tight. You might also discover that you are retaining large objects that you
don’t really need. It will come as no surprise that the most common source of acci‐
dental memory bloat is images; a retained array of images, or an image that is much
larger than the size at which it needs to be displayed in the interface, can waste a lot
of memory and should always be avoided.

Lazy Loading
If you’re going to release data in didReceiveMemoryWarning, you must concern your‐
self with how you’re going to get it back. A simple and reliable mechanism is lazy
loading — a getter that reconstructs or fetches the data if it is nil.

View Controller Memory Management | 407

Suppose we have a property myBigData which might be a big piece of data. We make
this a computed property, storing the real data in a private property (I’ll call it _myBig-
Data). Our computed property’s setter simply writes through to the private property.
In didReceiveMemoryWarning, we write myBigData out as a file (Chapter 22) and set
myBigData to nil, which sets _myBigData to nil as well, releasing the big data from
memory. The getter for myBigData implements lazy loading: if we try to get myBig-
Data when _myBigData is nil, we attempt to fetch the data from the file — and if we
succeed, we delete the file (to prevent stale data):

private let fnam = "myBigData"
private var _myBigData : Data! = nil
var myBigData : Data! {
 set (newdata) { self._myBigData = newdata }
 get {
 if _myBigData == nil {
 let fm = FileManager.default
 let f = fm.temporaryDirectory.appendingPathComponent(self.fnam)
 if let d = try? Data(contentsOf:f) {
 self._myBigData = d
 do {
 try fm.removeItem(at:f)
 } catch {
 print("Couldn't remove temp file")
 }
 }
 }
 return self._myBigData
 }
}
func saveAndReleaseMyBigData() {
 if let myBigData = self.myBigData {
 let fm = FileManager.default
 let f = fm.temporaryDirectory.appendingPathComponent(self.fnam)
 if let _ = try? myBigData.write(to:f) {
 self.myBigData = nil
 }
 }
}
override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 self.saveAndReleaseMyBigData()
}

NSCache, NSPurgeableData, and Memory-Mapping
When your big data can be reconstructed from scratch on demand, you can take
advantage of the built-in NSCache class, which is like a dictionary with the ability to
clear out its own entries automatically under memory pressure. As in the previous
example, a computed property can be used as a façade:

408 | Chapter 6: View Controllers

private let _cache = NSCache<NSString, NSData>()
var cachedData : Data {
 let key = "somekey" as NSString
 if let olddata = self._cache.object(forKey:key) {
 return olddata as Data
 }
 let newdata = // ... recreate data ...
 self._cache.setObject(newdata as NSData, forKey: key)
 return newdata
}

Another built-in class that knows how to clear itself out is NSPurgeableData. It is a
subclass of NSMutableData. To signal that the data should be discarded, send your
object discardContentIfPossible. Wrap any access to data in calls to beginContent-
Access and endContentAccess; the former returns a Bool to indicate whether the
data was accessible. The tricky part is getting those access calls right; when you create
an NSPurgeableData, you must send it an unbalanced endContentAccess to make its
content discardable:

private var _purgeable = NSPurgeableData()
var purgeabledata : Data {
 if self._purgeable.beginContentAccess() && self._purgeable.length > 0 {
 let result = self._purgeable.copy() as! Data
 self._purgeable.endContentAccess()
 return result
 } else {
 let data = // ... recreate data ...
 self._purgeable = NSPurgeableData(data:data)
 self._purgeable.endContentAccess()
 return data
 }
}

(For more about NSCache and NSPurgeableData, see the “Caching and Purgeable
Memory” chapter of Apple’s Memory Usage Performance Guidelines in the documen‐
tation archive.)

At an even lower level, you can store your data as a file (in some reasonable location
such the Caches directory) and read it using the Data initializer init(contentsOf-
URL:options:) with an options: argument .alwaysMapped. This creates a memory-
mapped data object, which has the remarkable feature that it isn’t considered to
belong to your memory at all; the system has no hesitation in clearing it from RAM,
because it is backed through the virtual memory system by the file, and will be read
back into memory automatically when you next access it. This is suitable only for
large immutable data, because small data might fragment a virtual memory page.

View Controller Memory Management | 409

Background Memory Usage
You will also wish to concern yourself with releasing memory when your app is about
to be suspended. If your app has been backgrounded and suspended and the system
later discovers it is running short of memory, it will go hunting through the sus‐
pended apps, looking for memory hogs that it can kill in order to free up that mem‐
ory. If the system decides that your suspended app is a memory hog, it isn’t politely
going to wake your app and send it a memory warning; it’s just going to terminate
your app in its sleep. The time to be concerned about releasing memory, therefore, is
before the app is suspended. You’ll probably want your view controller to be regis‐
tered to receive a notification from the application or scene that we are about to go
into the background. The arrival of this notification is an opportunity to release any
easily restored memory-hogging objects, such as myBigData in the previous example:

var didAppearInitially = false
override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 if !didAppearInitially {
 didAppearInitially = true
 NotificationCenter.default.addObserver(self,
 selector: #selector(backgrounding),
 name: UIScene.didEnterBackgroundNotification,
 object: self.view.window?.windowScene)
 }
}
@objc func backgrounding(_ n:Notification) {
 self.saveAndReleaseMyBigData()
}

In real life, we should be returning from our backgrounding method as quickly as
possible; the way to do that is to get onto a background thread and call begin-
BackgroundTask (see Chapter 24).

A nice feature of NSCache is that it evicts its objects automatically when your
app goes into the background.

410 | Chapter 6: View Controllers

CHAPTER 7

Scroll Views

A scroll view (UIScrollView) is a view whose content is larger than its bounds. To
reveal a desired area, the user can scroll the content by dragging, or you can reposi‐
tion the content in code. The scroll view functions as a limited window on a larger
world of content.

A scroll view isn’t magic; it takes advantage of ordinary UIView features (Chapter 1).
The content is simply the scroll view’s subviews. When the scroll view scrolls, what’s
really changing is the scroll view’s own bounds origin; the subviews are positioned
with respect to the bounds origin, so they move with it. The scroll view’s clipsTo-
Bounds is true, so any content positioned within the scroll view is visible and any
content positioned outside it is not.

A scroll view has the following specialized abilities:

• It knows how to shift its bounds origin in response to the user’s gestures.
• It provides scroll indicators whose size and position give the user a clue as to the

content’s size and position.
• It can enforce paging, whereby the user can scroll only by a fixed amount.
• It supports zooming, so that the user can resize the content with a pinch gesture.
• It provides delegate methods so that your code knows how the user is scrolling

and zooming.

Content Size
How far should a scroll view scroll? Clearly, that depends on how much content it
has. The scroll view already knows how far it should be allowed to slide its subviews
downward and rightward: the limit is reached when the scroll view’s bounds origin is

411

CGPoint.zero. What the scroll view needs to know is how far it should be allowed to
slide its subviews upward and leftward. That is the scroll view’s content size — its
contentSize property.

The scroll view uses its contentSize, in combination with its own bounds size, to set
the limits on how large its bounds origin can become. It may be helpful to think of
the scroll view’s scrollable content as the rectangle defined by CGRect(origin:.zero,
size:contentSize); this is the rectangle that the user can inspect by scrolling. If a
dimension of the contentSize isn’t larger than the same dimension of the scroll
view’s own bounds, the content won’t be scrollable in that dimension: there is noth‐
ing to scroll, as the entire scrollable content is already showing.

The default is that the contentSize is .zero — meaning that the scroll view isn’t
scrollable. To get a working scroll view, therefore, it will be crucial to set its content-
Size correctly. You can do this directly, in code; or, if you’re using autolayout, the
contentSize can be calculated for you based on the autolayout constraints of the
scroll view’s subviews (as I’ll demonstrate in a moment).

How big should a scroll view’s content size be? Clearly that depends on the size of its
subviews. Typically, you’ll want the content size to be just large enough to embrace
all the subviews: they, after all, are the content the user needs to be able to see. You’ll
likely want to set the content size correctly at the outset. You can subsequently alter a
scroll view’s content (subviews) or contentSize, or both, dynamically as the app
runs; in and of themselves, they are independent.

A contentSize that has been set manually, in code, does not change just because the
scroll view’s bounds change; you might not want the contentSize to change in
response to rotation, but if you do, you will need to change it manually, in code,
again. On the other hand, if a scroll view’s content size is set automatically using
autolayout based on the scroll view’s subviews, then if the content size embraces
those subviews it will continue to do so when the app orientation changes.

Creating a Scroll View in Code
Let’s start by creating a scroll view, providing it with subviews, and making those
subviews viewable by scrolling, entirely in code. There are two ways to set the
contentSize, so I’ll demonstrate each of them in turn.

Manual Content Size
In the first instance, let’s not use autolayout at all. Our project is based on the Single
View App template, with a single view controller class, ViewController. In View‐
Controller’s viewDidLoad, I’ll create the scroll view to fill the main view, and populate

412 | Chapter 7: Scroll Views

it with a vertical column of 30 UILabels whose text contains a sequential number so
that we can see where we are when we scroll:

let sv = UIScrollView(frame: self.view.bounds)
sv.autoresizingMask = [.flexibleWidth, .flexibleHeight]
self.view.addSubview(sv)
sv.backgroundColor = .white
var y : CGFloat = 10
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPoint(10,y)
 sv.addSubview(lab)
 y += lab.bounds.size.height + 10
}
var sz = sv.bounds.size
sz.height = y
sv.contentSize = sz // *

The crucial move is the last line, where we tell the scroll view how large its content-
Size is to be. Our sz.height accommodates all the labels, but sz.width matches the
scroll view’s width; the scroll view will be scrollable vertically but not horizontally (a
common scenario).

There is no rule about the order in which you perform the two operations of setting
the contentSize and populating the scroll view with subviews. In that example, we
set the contentSize afterward because it is more convenient to track the heights of
the subviews as we add them than to calculate their total height in advance.

Automatic Content Size with Autolayout
With autolayout, things are different. Under autolayout, a scroll view interprets the
constraints of its immediate subviews in a special way. Constraints between a scroll
view and its direct subviews are not a way of positioning the subviews relative to the
scroll view (as they would be if the superview were an ordinary UIView). Rather, they
are a way of describing the scroll view’s contentSize from the inside out.

To see this, let’s rewrite the preceding example to use autolayout. The scroll view and
its subviews have their translatesAutoresizingMaskIntoConstraints set to false,
and we’re giving them explicit constraints:

let sv = UIScrollView()
sv.backgroundColor = .white
sv.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(sv)
NSLayoutConstraint.activate([
 sv.topAnchor.constraint(equalTo:self.view.topAnchor),
 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),
 sv.leadingAnchor.constraint(equalTo:self.view.leadingAnchor),

Creating a Scroll View in Code | 413

 sv.trailingAnchor.constraint(equalTo:self.view.trailingAnchor),
])
var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 // lab.backgroundColor = .red
 lab.translatesAutoresizingMaskIntoConstraints = false
 lab.text = "This is label \(i+1)"
 sv.addSubview(lab)
 lab.leadingAnchor.constraint(
 equalTo: sv.leadingAnchor, constant: 10).isActive = true
 lab.topAnchor.constraint(
 // first one, pin to top; all others, pin to previous
 equalTo: previousLab?.bottomAnchor ?? sv.topAnchor,
 constant: 10).isActive = true
 previousLab = lab
}

The labels are correctly positioned relative to one another, but the scroll view isn’t
scrollable. Moreover, setting the contentSize manually doesn’t help; it has no effect!

Why is that? It’s because we’re using autolayout, so we must generate the content-
Size by means of constraints between the scroll view and its immediate subviews.
We’ve almost done that, but not quite. We are missing a constraint. We have to add
one more constraint, showing the scroll view what the height of its contentSize
should be:

sv.bottomAnchor.constraint(
 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true

The constraints of the scroll view’s subviews now describe the contentSize height:
the top label is pinned to the top of the scroll view, the next one is pinned to the one
above it, and so on — and the bottom one is pinned to the bottom of the scroll view.
Consequently, the runtime calculates the contentSize height from the inside out as
the sum of all the vertical constraints (including the intrinsic heights of the labels),
and the scroll view is vertically scrollable to show all the labels.

We should also provide a contentSize width; here, I’ll add a trailing constraint from
the bottom label, which will be narrower than the scroll view, so we won’t actually
scroll horizontally:

previousLab!.trailingAnchor.constraint(
 equalTo:sv.trailingAnchor).isActive = true

Scroll View Layout Guides
Starting in iOS 11, there’s another way to determine a scroll view’s content size. A
UIScrollView has a contentLayoutGuide. If we give the content layout guide a width
constraint or a height constraint, we determine the contentSize directly. If we pin

414 | Chapter 7: Scroll Views

the scroll view’s subviews to the content layout guide, we determine the contentSize
from the inside out; this is clearer than pinning the subviews to the scroll view itself.
I’ll rewrite the preceding example to use the contentLayoutGuide:

let sv = UIScrollView()
sv.backgroundColor = .white
sv.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(sv)
NSLayoutConstraint.activate([
 sv.topAnchor.constraint(equalTo:self.view.topAnchor),
 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),
 sv.leadingAnchor.constraint(equalTo:self.view.leadingAnchor),
 sv.trailingAnchor.constraint(equalTo:self.view.trailingAnchor),
])
let svclg = sv.contentLayoutGuide // *
var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 // lab.backgroundColor = .red
 lab.translatesAutoresizingMaskIntoConstraints = false
 lab.text = "This is label \(i+1)"
 sv.addSubview(lab)
 lab.leadingAnchor.constraint(
 equalTo: svclg.leadingAnchor,
 constant: 10).isActive = true
 lab.topAnchor.constraint(
 // first one, pin to top; all others, pin to previous
 equalTo: previousLab?.bottomAnchor ?? svclg.topAnchor,
 constant: 10).isActive = true
 previousLab = lab
}
svclg.bottomAnchor.constraint(
 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true
svclg.widthAnchor.constraint(equalToConstant:0).isActive = true // *

The last line demonstrates that we can set the content layout guide’s height or width
constraint directly to determine that dimension of the content size. Thanks to the
content layout guide, I’m able to set the content size width directly to zero, which
states precisely what I mean: don’t scroll horizontally.

Also starting in iOS 11, there’s a second UIScrollView property, its frameLayout-
Guide, which is pinned to the scroll view’s frame. This gives us an even better way to
state that the scroll view should not scroll horizontally, by making the content layout
guide width the same as the frame layout guide width:

let svflg = sv.frameLayoutGuide
svclg.widthAnchor.constraint(equalTo:svflg.widthAnchor).isActive = true

Scroll View Layout Guides | 415

Using a Content View
A commonly used arrangement is to give a scroll view just one immediate subview;
all other views inside the scroll view are subviews of this single immediate subview of
the scroll view, which is often called the content view. The content view is usually a
generic UIView; the user won’t even know it’s there. It has no purpose other than to
contain the other subviews — and to help determine the scroll view’s content size.
The idea is that the scroll view’s contentSize should exactly match the dimensions of
the content view. There are two ways to achieve that, depending on whether we want
to set the content size manually or using autolayout:

• Set the content view’s translatesAutoresizingMaskIntoConstraints to true,
and set the scroll view’s contentSize manually to the size of the content view.

• Set the content view’s translatesAutoresizingMaskIntoConstraints to false,
set its size with constraints, and pin its edges with constraints to the scroll view’s
content layout guide. If all four of those edge constraints have a constant of 0,
the scroll view’s contentSize will be the same as the size of the content view.

This arrangement works independently of whether the content view’s own subviews
are positioned explicitly by their frames or using constraints, so there are four possi‐
ble combinations:

No constraints
The content view is sized by its frame, its contents are positioned by their frames,
and the scroll view’s contentSize is set explicitly.

Content view constraints
The content view is sized by its own height and width constraints, and its edges
are pinned to the content layout guide to set the scroll view’s content size.

Content view and content constraints
The content view is sized from the inside out by the constraints of its subviews,
and its edges are pinned to the content layout guide to set the scroll view’s con‐
tent size.

Content constraints only
The content view is sized by its frame, and the scroll view’s contentSize is set
explicitly; but the content view’s subviews are positioned using constraints. (This
option is rather far-fetched, but I list it for the sake of completeness.)

I’ll illustrate by rewriting the previous example to use a content view (v) in each of
those ways. All four possible combinations start the same way:

416 | Chapter 7: Scroll Views

let sv = UIScrollView()
sv.backgroundColor = .white
sv.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(sv)
NSLayoutConstraint.activate([
 sv.topAnchor.constraint(equalTo:self.view.topAnchor),
 sv.bottomAnchor.constraint(equalTo:self.view.bottomAnchor),
 sv.leadingAnchor.constraint(equalTo:self.view.leadingAnchor),
 sv.trailingAnchor.constraint(equalTo:self.view.trailingAnchor),
])
let v = UIView() // content view!
sv.addSubview(v)

The differences lie in what happens next. The first combination is that no constraints
are used, and the scroll view’s content size is set explicitly. It’s very like the first
example in this chapter, except that the labels are added to the content view, not to
the scroll view. The content view’s height is a little taller than the bottom of the low‐
est label, and its width is a little wider than the widest label, so it neatly contains all
the labels:

var y : CGFloat = 10
var maxw : CGFloat = 0
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPoint(10,y)
 v.addSubview(lab)
 y += lab.bounds.size.height + 10
 maxw = max(maxw, lab.frame.maxX + 10)
}
// set content view frame and content size explicitly
v.frame = CGRect(0,0,maxw,y)
sv.contentSize = v.frame.size

The second combination is that the content view is sized by explicit width and height
constraints, and its edges are pinned by constraints to the scroll view’s content layout
guide to give the scroll view a content size:

var y : CGFloat = 10
var maxw : CGFloat = 0
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPoint(10,y)
 v.addSubview(lab)
 y += lab.bounds.size.height + 10
 maxw = max(maxw, lab.frame.maxX + 10)
}
// set content view width, height, and edge constraints
// content size is calculated for us

Using a Content View | 417

v.translatesAutoresizingMaskIntoConstraints = false
let svclg = sv.contentLayoutGuide
NSLayoutConstraint.activate([
 v.widthAnchor.constraint(equalToConstant:maxw),
 v.heightAnchor.constraint(equalToConstant:y),
 svclg.topAnchor.constraint(equalTo:v.topAnchor),
 svclg.bottomAnchor.constraint(equalTo:v.bottomAnchor),
 svclg.leadingAnchor.constraint(equalTo:v.leadingAnchor),
 svclg.trailingAnchor.constraint(equalTo:v.trailingAnchor),
])

The third combination is that the content view is self-sizing based on constraints
from its subviews (“Self-Sizing Views” on page 55), and the content view’s edges are
pinned by constraints to the scroll view’s content layout guide. In a very real sense,
the scroll view gets its content size from the labels. This is similar to the second exam‐
ple in this chapter, except that the labels are added to the content view:

var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 // lab.backgroundColor = .red
 lab.translatesAutoresizingMaskIntoConstraints = false
 lab.text = "This is label \(i+1)"
 v.addSubview(lab)
 lab.leadingAnchor.constraint(
 equalTo: v.leadingAnchor,
 constant: 10).isActive = true
 lab.topAnchor.constraint(
 // first one, pin to top; all others, pin to previous
 equalTo: previousLab?.bottomAnchor ?? v.topAnchor,
 constant: 10).isActive = true
 previousLab = lab
}
// last one, pin to bottom, this dictates content size height
v.bottomAnchor.constraint(
 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true
// need to do something about width
v.trailingAnchor.constraint(
 equalTo: previousLab!.trailingAnchor, constant: 10).isActive = true
// pin content view to scroll view, sized by its subview constraints
// content size is calculated for us
v.translatesAutoresizingMaskIntoConstraints = false
let svclg = sv.contentLayoutGuide
NSLayoutConstraint.activate([
 svclg.topAnchor.constraint(equalTo:v.topAnchor),
 svclg.bottomAnchor.constraint(equalTo:v.bottomAnchor),
 svclg.leadingAnchor.constraint(equalTo:v.leadingAnchor),
 svclg.trailingAnchor.constraint(equalTo:v.trailingAnchor),
])

The fourth (and somewhat improbable) combination is that the content view’s sub‐
views are positioned using constraints, but we set the content view’s frame and the

418 | Chapter 7: Scroll Views

scroll view’s content size explicitly. How can we derive the content view size from the
constraints of its subviews? By calling systemLayoutSizeFitting(_:) to perform
layout for us:

var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 // lab.backgroundColor = .red
 lab.translatesAutoresizingMaskIntoConstraints = false
 lab.text = "This is label \(i+1)"
 v.addSubview(lab)
 lab.leadingAnchor.constraint(
 equalTo: v.leadingAnchor,
 constant: 10).isActive = true
 lab.topAnchor.constraint(
 // first one, pin to top; all others, pin to previous
 equalTo: previousLab?.bottomAnchor ?? v.topAnchor,
 constant: 10).isActive = true
 previousLab = lab
}
// last one, pin to bottom, this dictates content size height!
v.bottomAnchor.constraint(
 equalTo: previousLab!.bottomAnchor, constant: 10).isActive = true
// need to do something about width
v.trailingAnchor.constraint(
 equalTo: previousLab!.trailingAnchor, constant: 10).isActive = true
// autolayout helps us learn the consequences of those constraints
let minsz = v.systemLayoutSizeFitting(UIView.layoutFittingCompressedSize)
// set content view frame and content size explicitly
v.frame = CGRect(origin:.zero, size:minsz)
sv.contentSize = minsz

Scroll View in a Nib
A UIScrollView object is available in the nib editor’s Library, so you can drag it into a
view in the canvas and give it subviews. Alternatively, you can wrap existing views in
the canvas in a UIScrollView as an afterthought: to do so, select the views and choose
Editor → Embed In → Scroll View (or choose Scroll View from the Embed button at
the lower right of the canvas).

New in Xcode 11, a scroll view’s content layout guide and frame layout guide are
present in the nib editor (if you don’t see them, check Content Layout Guides in the
Size inspector); using a content view, you can configure a scroll view in the nib editor
much as you’d configure it in code.

While designing the scroll view’s subviews initially, you might need to make the view
controller’s main view large enough to accommodate them. To do so, set the view
controller’s Simulated Size pop-up menu in its Size inspector to Freeform; now you
can change the main view’s size. But that might not be necessary, because once you’ve

Scroll View in a Nib | 419

Figure 7-1. A scroll view in the nib editor

provided sufficient constraint information, the scroll view is scrollable directly in the
nib editor (new in Xcode 11).

The nib editor understands how scroll view configuration works, and will alert you
with a warning (about the “scrollable content size”) until you’ve provided enough
constraints to determine unambiguously the scroll view’s contentSize.

Figure 7-1 shows a scroll view whose content size is configured manually in the nib
editor. There is no way to enter content size information for a scroll view in the
Attributes or Size inspector; the scroll view has a content layout guide, but you can’t
apply width and height constraints to it directly. (I regard that as a bug.) So I’ve used
a content view as an intermediary. The content view is the scroll view’s subview; it
has explicit width and height constraints and is pinned with zero-constant con‐
straints to the scroll view’s content layout guide. The width and height constraint
constants of the content view are 320 and 772 respectively, so this is saying that the
scroll view’s contentSize should be (320,772).

420 | Chapter 7: Scroll Views

Figure 7-2. Designing a scroll view’s contents

We can now proceed to populate the content view with subviews. Purely for demon‐
stration purposes, I’ll use four plain vanilla UIViews, and I won’t use autolayout. I
can design the first three views directly, because they fit within the main view
(Figure 7-2, left). But what about the last view? The scroll view’s content size is deter‐
mined, so I can scroll the scroll view directly in the nib editor; once the bottom of the
content view is within the main view, I can add the fourth view (Figure 7-2, right).

Instead of dictating the scroll view’s content size numerically with explicit width and
height constraints on the content view, you can apply constraints to the content view
from its subviews and let those subviews size the content view from the inside out,
setting the scroll view’s contentSize as a result. In Figure 7-3, the subviews have
explicit height and width constraints and are pinned to one another and to the top
and bottom of the content view, and the content view is pinned to the scroll view’s
content layout guide, so the scroll view is scrollable to view all of the subviews. More‐
over, I’ve given the subviews zero-constant leading and trailing constraints to the
content view, and I’ve centered the content view horizontally within the scroll view’s
frame layout guide; the result is that the subviews are centered horizontally on any
screen size.

Scroll View in a Nib | 421

Figure 7-3. A scroll view whose content is sized by its subviews

(Strictly speaking, I suppose the content view in that example is unnecessary; we
could pin the scroll view’s subviews directly to its content layout guide.)

Content Inset
The content inset of a scroll view is a margin space around its content. In effect, it
changes where the content stops when the scroll view is scrolled all the way to its
extreme limit.

The main reason why this is important is that a scroll view will typically underlap
other interface. In the app with 30 labels that we created at the start of this chapter,
the scroll view occupies the entirety of the view controller’s main view — and the
view controller’s main view underlaps the status bar. That means that the top of the
scroll view underlaps the status bar. And that means that at launch time, and when‐
ever the scroll view’s content is scrolled all the way down, the first label, which is now
as far down as it can go, is partly hidden by the text of the status bar.

You might say: Well, don’t do that! Don’t let the scroll view underlap the status bar in
the first place; pin the top of the scroll view to the bottom of the status bar. But that

422 | Chapter 7: Scroll Views

isn’t necessarily what we want; and in any case, the problem is not where the top of
the scroll view is, but where the top of its content is considered to be. When the con‐
tent is being scrolled upward, it’s fine for that content to pass behind the status bar!
The problem is what happens when the content is moved downward as far as it can
go. Its content top shouldn’t stop at the top of the scroll view; the stopping point
should be further down, at the bottom of the status bar. The scroll view’s content
inset solves the problem, positioning the top of the scroll view’s content lower than
the top of the scroll view, by the amount that the scroll view underlaps the status bar.

But it’s more complicated than that. The content inset needs to be live. After all, the
status bar can come and go. The top of the scroll view’s content should be further
down than the top of the scroll view itself when the iPhone is in portrait orientation
and the status bar is present; but when the iPhone is in landscape orientation and the
status bar vanishes, the content inset needs to be adjusted so that the top of the con‐
tent will be identical to the top of the scroll view.

And of course the status bar isn’t the only kind of top bar; there’s also the navigation
bar, which can come and go as well, and can change its height. Plus there are bottom
bars, which can also come and go, and can change their heights. The runtime would
like your view to underlap those bars. With a scroll view, this looks cool, because the
scroll view’s contents are visible in a blurry way through the translucent bar; but
clearly the top and bottom values of the scroll view’s content inset need to be adjusted
so that the scrolling limits stay between the top bar and the bottom bar, even as these
bars can come and go and change their heights.

The boundaries I’m describing here, as has no doubt already occurred to you, are the
boundaries of the safe area (“Safe area” on page 48). If a scroll view would simply
adjust its content inset automatically to correspond to the safe area, its content would
scroll in exactly the right way so as to be visible regardless of how any bars are under‐
lapped. And that in fact is exactly what does happen by default.

A scroll view knows where the top and bottom bars are because the safe area is
propagated down the view hierarchy, and it knows how to adjust its content inset to
correspond to the safe area. It will do that in accordance with its contentInset-
AdjustmentBehavior property (UIScrollView.ContentInsetAdjustmentBehavior):

.always

The content is inset to match the safe area.

.never

The content is not inset to match the safe area.

.scrollableAxes

The content is inset to match the safe area only for a dimension in which the
scroll view is scrollable.

Content Inset | 423

.automatic

Similar to scrollableAxes, but is also backward compatible. In iOS 10 and
before, a view controller had an automaticallyAdjustsScrollViewInsets prop‐
erty (now deprecated); .automatic means that the scroll view can respond to
that as well.

The default contentInsetAdjustmentBehavior is .automatic — which means that
your scroll view will probably adjust its content inset appropriately with no work on
your part!

To find out numerically how the scroll view has set its content inset, consult its
adjustedContentInset property. Suppose we’re in a navigation interface, where the
scroll view coincides with the view controller’s main view and underlaps the top bars.
Suppose further that the navigation bar doesn’t have a large title. Then in portrait ori‐
entation on an iPhone, the status bar and the navigation bar together add 64 points of
height to the top of the safe area. So if the scroll view’s content inset adjustment
behavior isn’t .never, its adjustedContentInset is (64.0,0.0,0.0,0.0).

A scroll view also has a contentInset property, which will usually be .zero. If you
set it to some other value, that value is applied additively to increase the adjusted-
ContentInset. In the navigation interface scenario from the preceding paragraph, if
we also set the scroll view’s contentInset to a UIEdgeInsets whose top: is 30, then
the adjustedContentInset will have a top value of 94, and there will be an additional
30-point gap between the top of the content and the bottom of the navigation bar
when the content is scrolled all the way down.

New in iOS 13, if a navigation bar has a large title, then as the scroll view’s con‐
tent is scrolled downward and the large title appears, the navigation bar becomes
transparent by default, revealing the scroll view behind it. This shouldn’t make
any appreciable difference, because ex hypothesi the entire content of the scroll
view is already scrolled down past the bottom of the navigation bar, so the navi‐
gation bar won’t overlap that content.

Scrolling
For the most part, the purpose of a scroll view will be to let the user scroll. Here are
some scroll view properties that affect the user experience with regard to scrolling:

isScrollEnabled

If false, the user can’t scroll, but you can still scroll in code (as explained later in
this section). You could put a UIScrollView to various creative purposes other
than letting the user scroll; scrolling in code to a different region of the content
might be a way of replacing one piece of interface by another, possibly with
animation.

424 | Chapter 7: Scroll Views

scrollsToTop

If true (the default), and assuming scrolling is enabled, the user can tap on the
status bar as a way of making the scroll view scroll its content to the top (that is,
the content moves all the way down). You can override this setting dynamically
through the scroll view’s delegate, discussed later in this chapter.

bounces

If true (the default), then when the user scrolls to a limit of the content, it is pos‐
sible to scroll somewhat further (possibly revealing the scroll view’s background-
Color behind the content, if a subview was covering it); the content then snaps
back into place when the user releases it. Otherwise, the user experiences the
limit as a sudden inability to scroll further in that direction.

alwaysBounceVertical

alwaysBounceHorizontal

If true, and assuming that bounces is true, then even if the contentSize in the
given dimension isn’t larger than the scroll view (so that no scrolling is actually
possible in that dimension), the user can scroll somewhat and the content then
snaps back into place when the user releases it. Otherwise, the user experiences a
simple inability to scroll in this dimension.

isDirectionalLockEnabled

If true, and if scrolling is possible in both dimensions (even if only because
alwaysBounce is true), then the user, having begun to scroll in one dimension,
can’t scroll in the other dimension without ending the gesture and starting over.
In other words, the user is constrained to scroll vertically or horizontally but not
both at once.

decelerationRate

The rate at which scrolling is damped out, and the content comes to a stop, after
the user’s gesture ends. As convenient examples, standard constants are provided
(UIScrollView.DecelerationRate):

• .normal (0.998)
• .fast (0.99)

Lower values mean faster damping; experimentation suggests that values lower
than 0.5 are viable but barely distinguishable from one another. You can effec‐
tively override this value dynamically through the scroll view’s delegate, dis‐
cussed later in this chapter.

Scrolling | 425

showsHorizontalScrollIndicator

showsVerticalScrollIndicator

The scroll indicators are bars that appear only while the user is scrolling in a
scrollable dimension (where the content is larger than the scroll view); they indi‐
cate both the size of the content in that dimension and the user’s position within
it. The default is true for both.

Because the user cannot see the scroll indicators except when actively scrolling,
there is normally no indication that the view is scrollable. I regard this as some‐
what unfortunate, because it makes the possibility of scrolling less discoverable;
I’d prefer an option to make the scroll indicators constantly visible. Apple sug‐
gests that you call flashScrollIndicators when the scroll view appears, to
make the scroll indicators visible momentarily.

indicatorStyle

The way the scroll indicators are drawn. Your choices (UIScrollView.Indicator‐
Style) are .black, .white, and .default; new in iOS 13, .default responds to
the user interface style (light or dark mode), contrasting with a system back‐
ground color.

The scroll indicators are subviews of the scroll view (they are actually UIImage‐
Views). Do not assume that the subviews you add to a UIScrollView are its only
subviews!

Scrolling in Code
You can scroll in code, and you can do so even if the user can’t scroll. The content
moves to the position you specify, with no bouncing and no exposure of the scroll
indicators. You can specify the new position in two ways:

scrollRectToVisible(_:animated:)

Adjusts the content so that the specified CGRect of the content is within the
scroll view’s bounds. This is imprecise, because you’re not saying exactly what
the resulting scroll position will be, but sometimes guaranteeing the visibility of a
certain portion of the content is exactly what you’re after.

contentOffset

A property signifying the point (CGPoint) of the content that is located at the
scroll view’s top left (effectively the same thing as the scroll view’s bounds ori‐
gin). Setting it changes the current scroll position, or call setContent-

Offset(_:animated:) to set the contentOffset with animation. The values
normally go up from (0.0,0.0) until the limit dictated by the contentSize and
the scroll view’s own bounds size is reached.

426 | Chapter 7: Scroll Views

The adjustedContentInset (discussed in the previous section) can affect the mean‐
ing of the contentOffset. Recall the scenario where the scroll view underlaps the sta‐
tus bar and a navigation bar and acquires an adjustedContentInset with a top of 64.
Then when the scroll view’s content is scrolled all the way down, the contentOffset
is not (0.0,0.0) but (0.0,-64.0). The (0.0,0.0) point is the top of the content
rect, which is located at the bottom of the navigation bar; the point at the top left of
the scroll view itself is 64 points above that.

That fact manifests itself particularly when you want to scroll, in code. If you scroll by
setting the contentOffset, you need to subtract the corresponding adjustedContent-
Inset value. Staying with our scroll view that underlaps a navigation bar, if your goal
is to scroll the scroll view so that the top of its content is visible, you do not say this
(the scroll view is self.sv):

self.sv.contentOffset.y = 0

Instead, you say this:

self.sv.contentOffset.y = -self.sv.adjustedContentInset.top

Paging
If its isPagingEnabled property is true, the scroll view doesn’t let the user scroll
freely; instead, the content is considered to consist of equal-sized sections. The user
can scroll only in such a way as to move to a different section. The size of a section is
set automatically to the size of the scroll view’s bounds. The sections are the scroll
view’s pages. This is a paging scroll view.

When the user stops dragging, a paging scroll view gently snaps automatically to the
nearest whole page. Let’s say that a paging scroll view scrolls only horizontally, and
that its subviews are image views showing photos, sized to match the scroll view’s
bounds:

• If the user drags horizontally to the left to a point where less than half of the next
photo to the right is visible, and raises the dragging finger, the paging scroll view
snaps its content back to the right until the entire first photo is visible again.

• If the user drags horizontally to the left to a point where more than half of the
next photo to the right is visible, and raises the dragging finger, the paging scroll
view snaps its content further to the left until the entire second photo is visible.

The usual arrangement is that a paging scroll view is as large, or nearly as large, in its
scrollable dimension, as the window. Under this arrangement, it is impossible for the
user to move the content more than a single page in any direction with a single ges‐
ture; the size of the page is the size of the scroll view’s bounds, so the user will run out
of surface area to drag on before being able to move the content the distance of a page
and a half, which is what would be needed to make the scroll view skip a page.

Scrolling | 427

Another possibility is for the paging scroll view to be slightly larger than the window
in its scrollable dimension. This allows each page’s content to fill the scroll view while
also providing gaps between the pages, visible when the user starts to scroll. The user
is still able to move from page to page, because it is still possible to drag more than
half a new page into view.

When the user raises the dragging finger, the scroll view’s action in adjusting its con‐
tent is considered to be decelerating, and the scroll view’s delegate (discussed in more
detail later in this chapter) will receive scrollViewWillBeginDecelerating(_:), fol‐
lowed by scrollViewDidEndDecelerating(_:) when the scroll view’s content has
stopped moving and a full page is showing. These messages can be used to detect effi‐
ciently that the page may have changed.

Using the delegate methods, a paging scroll view can be coordinated with a UIPage‐
Control (Chapter 12). In this example, a page control (self.pager) is updated when‐
ever the user causes a horizontally scrollable scroll view (self.sv) to display a
different page:

func scrollViewDidEndDecelerating(_ scrollView: UIScrollView) {
 let x = self.sv.contentOffset.x
 let w = self.sv.bounds.size.width
 self.pager.currentPage = Int(x/w)
}

Conversely, we can scroll the scroll view to a new page manually when the user taps
the page control:

@IBAction func userDidPage(_ sender: Any) {
 let p = self.pager.currentPage
 let w = self.sv.bounds.size.width
 self.sv.setContentOffset(CGPoint(CGFloat(p)*w,0), animated:true)
}

A useful interface is a paging scroll view where you supply pages dynamically as the
user scrolls. In this way, you can display a huge number of pages without having to
put them all into the scroll view at once. In fact, a scrolling UIPageViewController
(Chapter 6) implements exactly that interface! Its .interPageSpacing options key
even provides the gap between pages that I mentioned earlier.

A compromise between a UIPageViewController and a completely preconfigured
paging scroll view is a scroll view whose contentSize can accommodate all pages,
but whose actual page content is supplied lazily. The only pages that have to be
present at all times are the page visible to the user and the two pages adjacent to it on
either side, so that there is no delay in displaying a new page’s content when the user
starts to scroll. (This approach is exemplified by Apple’s PageControl sample code.)

428 | Chapter 7: Scroll Views

Tiling
Suppose we have some finite but really big content that we want to display in a scroll
view, such as a very large image that the user can inspect piecemeal by scrolling. To
hold the entire image in memory may be onerous or impossible. One solution to this
kind of problem is tiling.

The idea behind tiling is that there’s no need to hold the entire image in memory; all
we need at any given moment is the part of the image visible to the user right now.
Mentally, divide the content rectangle into a matrix of rectangles; these rectangles are
the tiles. In reality, divide the huge image into corresponding rectangles. Then when‐
ever the user scrolls, we look to see whether part of any empty tile has become visible,
and if so, we supply its content. At the same time, we can release the content of all
tiles that are completely offscreen. At any given moment, only the tiles that are show‐
ing have content. There is some latency associated with this approach (the user
scrolls, then any newly visible empty tiles are filled in), but we will have to live
with that.

There is actually a built-in CALayer subclass for helping us implement tiling —
CATiledLayer. Its tileSize property sets the dimensions of a tile. The usual
approach to using CATiledLayer is to implement draw(_:) in a UIView whose
underlying layer is the CATiledLayer; under that arrangement, the host view’s
draw(_:) is called every time a new tile is needed, and its parameter is the rect of the
tile we are to draw.

The tileSize may need to be adjusted for the screen resolution. On a double-
resolution device, the CATiledLayer’s contentsScale will be doubled, and the tiles
will be half the size that we ask for. If that isn’t acceptable, we can double the tile-
Size dimensions.

To illustrate, I’ll use as my tiles a few of the “CuriousFrog” images already created for
us as part of Apple’s own PhotoScroller sample code. The images have names of the
form CuriousFrog_500_x_y.png, where x and y are integers corresponding to the pic‐
ture’s position within the matrix. The images are 256×256 pixels; for this example,
I’ve selected a 3×3 matrix of images.

We will give our scroll view (self.sv) one subview, a UIView subclass (called Tiled‐
View) that exists purely to give our CATiledLayer a place to live. TILESIZE is defined
as 256, to match the image dimensions:

override func viewDidLoad() {
 let f = CGRect(0,0,3*TILESIZE,3*TILESIZE)
 let content = TiledView(frame:f)
 let tsz = TILESIZE * content.layer.contentsScale
 (content.layer as! CATiledLayer).tileSize = CGSize(tsz, tsz)

Scrolling | 429

 self.sv.addSubview(content)
 self.sv.contentSize = f.size
 self.content = content
}

Here’s the code for TiledView. As Apple’s sample code points out, we must fetch
images with init(contentsOfFile:) in order to avoid the automatic caching behav‐
ior of init(named:) — after all, we’re going to all this trouble exactly to avoid using
more memory than we have to:

override class var layerClass : AnyClass {
 return CATiledLayer.self
}
override func draw(_ r: CGRect) {
 let tile = r
 let x = Int(tile.origin.x/TILESIZE)
 let y = Int(tile.origin.y/TILESIZE)
 let tileName = String(format:"CuriousFrog_500_\(x+3)_\(y)")
 let path = Bundle.main.path(forResource: tileName, ofType:"png")!
 let image = UIImage(contentsOfFile:path)!
 image.draw(at:CGPoint(CGFloat(x)*TILESIZE,CGFloat(y)*TILESIZE))
}

In this configuration, our TiledView’s drawRect is called on a background thread.
This is unusual, but it shouldn’t cause any trouble as long as you confine yourself to
standard thread-safe activities. Fortunately, fetching the tile image and drawing it are
thread-safe.

There is no special call for invalidating an offscreen tile. You’re just supposed to trust
that the CATiledLayer will eventually clear offscreen tiles if needed in order to con‐
serve memory.

CATiledLayer has a class method fadeDuration that dictates the duration of the ani‐
mation that fades a new tile into view. You can create a CATiledLayer subclass and
override this method to return a value different from the default (0.25), but this is
probably not worth doing, as the default value is a good one. Returning a smaller
value won’t make tiles appear faster; it just replaces the nice fade-in with an annoying
flash.

Zooming
To implement zooming of a scroll view’s content, you set the scroll view’s minimum-
ZoomScale and maximumZoomScale so that at least one of them isn’t 1 (the default).
You also implement viewForZooming(in:) in the scroll view’s delegate to tell the
scroll view which of its subviews is to be the scalable view. The scroll view then
zooms by applying a scale transform to this subview. The amount of that transform is
the scroll view’s zoomScale property.

430 | Chapter 7: Scroll Views

Typically, you’ll want the scroll view’s entire content to be scalable, so you’ll have one
direct subview of the scroll view that acts as the scalable view, and anything else
inside the scroll view will be a subview of the scalable view, so as to be scaled together
with it. This is another reason for arranging your scroll view’s subviews inside a sin‐
gle content view, as I suggested earlier.

To illustrate, we can start with any of the four content view–based versions of our
scroll view containing 30 labels from earlier in this chapter (“Using a Content View”
on page 416). I called the content view v. Now we add these lines:

v.tag = 999
sv.minimumZoomScale = 1.0
sv.maximumZoomScale = 2.0
sv.delegate = self

We have assigned a tag to the view that is to be scaled, so that we can refer to it later.
We have set the scale limits for the scroll view. And we have made ourselves the scroll
view’s delegate. Now all we have to do is implement viewForZooming(in:) to return
the scalable view:

func viewForZooming(in scrollView: UIScrollView) -> UIView? {
 return scrollView.viewWithTag(999)
}

This works: the scroll view now responds to pinch gestures by scaling! Recall that in
our 30 labels example, the scroll view is not scrollable horizontally. Nevertheless, in
this scenario, the width of the content view matters, because when it is scaled up,
including during the act of zooming, the user will be able to scroll to see any part of
it. So a good policy would be for the content view to embrace its content quite tightly.

The user can actually scale considerably beyond the limits we set in both directions;
in that case, when the gesture ends, the scale snaps back to the limit value. If we wish
to confine scaling strictly to our defined limits, we can set the scroll view’s bounces-
Zoom to false; when the user reaches a limit, scaling will simply stop.

If the minimumZoomScale is less than 1, then when the scalable view becomes smaller
than the scroll view, it is pinned to the scroll view’s top left. If you don’t like this, you
can change it by subclassing UIScrollView and overriding layoutSubviews, or by
implementing the scroll view delegate method scrollViewDidZoom(_:). Here’s a
simple example (drawn from a WWDC 2010 video) demonstrating an override of
layoutSubviews that keeps the scalable view centered in either dimension whenever
it is smaller than the scroll view in that dimension:

override func layoutSubviews() {
 super.layoutSubviews()
 if let v = self.delegate?.viewForZooming?(in:self) {
 let svw = self.bounds.width
 let svh = self.bounds.height
 let vw = v.frame.width

Zooming | 431

 let vh = v.frame.height
 var f = v.frame
 if vw < svw {
 f.origin.x = (svw - vw) / 2.0
 } else {
 f.origin.x = 0
 }
 if vh < svh {
 f.origin.y = (svh - vh) / 2.0
 } else {
 f.origin.y = 0
 }
 v.frame = f
 }
}

Zooming is, in reality, the application of a scale transform to the scalable view. This
has two important consequences that can surprise you if you’re unprepared:

The frame of the scalable view
The frame of the scalable view is scaled to match the current zoomScale. This fol‐
lows as a natural consequence of applying a scale transform to the scalable view.

The contentSize of the scroll view
The scroll view is concerned to make scrolling continue to work correctly: the
limits as the user scrolls should continue to match the limits of the content, and
commands like scrollRectToVisible(_:animated:) should continue to work
the same way for the same values. Therefore, the scroll view automatically scales
its own contentSize to match the current zoomScale.

Zooming Programmatically
To zoom programmatically, you have two choices:

zoomTo(_:animated:)

Zooms so that the given rectangle of the content occupies as much as possible of
the scroll view’s bounds. The contentOffset is automatically adjusted to keep
the content occupying the entire scroll view.

setZoomScale(_:animated:)

Zooms in terms of scale value. The contentOffset is automatically adjusted to
keep the current center centered, with the content occupying the entire scroll
view.

In this example, I implement double tapping as a zoom gesture. In my action method
for the double tap UITapGestureRecognizer attached to the scalable view, a double
tap means to zoom to maximum scale, minimum scale, or actual size, depending on
the current scale value:

432 | Chapter 7: Scroll Views

@IBAction func tapped(_ tap : UIGestureRecognizer) {
 let v = tap.view!
 let sv = v.superview as! UIScrollView
 if sv.zoomScale < 1 {
 sv.setZoomScale(1, animated:true)
 let pt = CGPoint((v.bounds.width - sv.bounds.width)/2.0,0)
 sv.setContentOffset(pt, animated:false)
 }
 else if sv.zoomScale < sv.maximumZoomScale {
 sv.setZoomScale(sv.maximumZoomScale, animated:true)
 }
 else {
 sv.setZoomScale(sv.minimumZoomScale, animated:true)
 }
}

Zooming with Detail
Sometimes, you may want more from zooming than the mere application of a scale
transform to the scaled view. The scaled view’s drawing is cached beforehand into its
layer, so when we zoom in, the bits of the resulting bitmap are drawn larger. This
means that a zoomed-in scroll view’s content may be fuzzy (pixellated). You might
prefer the content to be redrawn more sharply at its new size.

(On a high-resolution device, this might not be an issue. If the user is allowed to
zoom only up to double scale, you can draw at double scale right from the start; the
results will look good at single scale, because the screen has high resolution, as well as
at double scale, because that’s the scale you drew at.)

One solution is to take advantage of a CATiledLayer feature that I didn’t mention
earlier. It turns out that CATiledLayer is aware not only of scrolling but also of scal‐
ing: you can configure it to ask for tiles to be drawn when the layer is scaled to a new
order of magnitude. When your drawing routine is called, the graphics context itself
has already been scaled by a transform.

In the case of an image into which the user is to be permitted to zoom deeply, you
might be forearmed with multiple tile sets constituting the image, each set having
double the tile size of the previous set (as in Apple’s PhotoScroller example). In other
cases, you may not need tiles at all; you’ll just draw again, at the new resolution.

Besides its tileSize, you’ll need to set two additional CATiledLayer properties:

levelsOfDetail

The number of different resolutions at which you want to redraw, where each
level has twice the resolution of the previous level.

levelsOfDetailBias

The number of levels of detail that are larger than single size (1x).

Zooming | 433

Those two properties work together. To illustrate, suppose we specify two levels of
detail. Then we can ask to redraw when zooming to double size (2x) and when zoom‐
ing back to single size (1x). But that isn’t the only thing two levels of detail might
mean; to complete the meaning, we need to set the levelsOfDetailBias. If levelsOf-
Detail is 2, then if we want to redraw when zooming to 2x and when zooming back
to 1x, the levelsOfDetailBias needs to be 1, because one of those levels is larger
than 1x. If we were to leave levelsOfDetailBias at 0, the default, we would be saying
we want to redraw when zooming to 0.5x and back to 1x — we have two levels of
detail but neither is larger than 1x, so one must be smaller than 1x.

The CATiledLayer will ask for a redraw at a higher resolution as soon as the view’s
size becomes larger than the previous resolution. In other words, if there are two lev‐
els of detail with a bias of 1, the layer will be redrawn at 2x as soon as it is zoomed
even a little bit larger than 1x. This is an excellent approach, because although a level
of detail would look blurry if scaled up, it looks pretty good scaled down.

Let’s say I have a TiledView that hosts a CATiledLayer, in which I intend to draw an
image. I haven’t broken the image into tiles, because the maximum size at which the
user can view it isn’t prohibitively large; the original image happens to be 838×958,
and can be held in memory easily. Rather, I’m using a CATiledLayer in order to take
advantage of its ability to change resolutions automatically. The image will be drawn
initially at less than quarter-size (namely 208×238), and we will permit the user to
zoom in to the full size of the image. If the user never zooms in to view the image
larger than the initial display, we will be saving a considerable amount of memory; if
the user does zoom in, that will cost us more memory, but we have determined that
this won’t be prohibitive.

The CATiledLayer is configured like this:

let scale = lay.contentsScale
lay.tileSize = CGSize(208*scale,238*scale)
lay.levelsOfDetail = 3
lay.levelsOfDetailBias = 2

The tileSize has been adjusted for screen resolution, so the result is:

• As originally displayed at 208×238, there is one tile and we can draw our image
at quarter size.

• If the user zooms in, to show the image larger than its originally displayed size,
there will be 4 tiles and we can draw our image at half size.

• If the user zooms in still further, to show the image larger than double its origi‐
nally displayed size (416×476), there will be 16 tiles and we can draw our image
at full size, which will continue to look good as the user zooms all the way in to
the full size of the original image.

434 | Chapter 7: Scroll Views

We don’t need to draw each tile individually. Each time we’re called upon to draw a
tile, we’ll draw the entire image into the TiledView’s bounds; whatever falls outside
the requested tile will be clipped out and won’t be drawn.

Here’s my TiledView’s draw(_:) implementation. I have an Optional UIImage prop‐
erty currentImage, initialized to nil, and a CGSize property currentSize initialized
to .zero. Each time draw(_:) is called, I compare the tile size (the incoming rect
parameter’s size) to currentSize. If it’s different, I know that we’ve changed by one
level of detail and we need a new version of currentImage, so I create the new version
of currentImage at a scale appropriate to this level of detail. Finally, I draw current-
Image into the TiledView’s bounds:

override func drawRect(rect: CGRect) {
 let (lay, bounds) = DispatchQueue.main.sync {
 return (self.layer as! CATiledLayer, self.bounds)
 }
 let oldSize = self.currentSize
 if !oldSize.equalTo(rect.size) {
 // make a new size
 self.currentSize = rect.size
 // make a new image
 let tr = UIGraphicsGetCurrentContext()!.ctm
 let sc = tr.a/lay.contentsScale
 let scale = sc/4.0
 let path = Bundle.main.path(
 forResource: "earthFromSaturn", ofType:"png")!
 let im = UIImage(contentsOfFile:path)!
 let sz = CGSize(im.size.width * scale, im.size.height * scale)
 let f = UIGraphicsImageRendererFormat.default()
 f.opaque = true; f.scale = 1 // *
 let r = UIGraphicsImageRenderer(size: sz, format: f)
 self.currentImage = r.image { _ in
 im.draw(in:CGRect(origin:.zero, size:sz))
 }
 }
 self.currentImage?.draw(in:bounds)
}

(The DispatchQueue.main.sync call at the start initializes my local variables lay and
bounds on the main thread, even though drawRect is called on a background thread;
see Chapter 24.)

An alternative approach (from a WWDC 2011 video) is to make yourself the scroll
view’s delegate so that you get an event when the zoom ends, and then change the
scalable view’s contentScaleFactor to match the current zoom scale, compensating
for the high-resolution screen at the same time:

Zooming | 435

func scrollViewDidEndZooming(_ scrollView: UIScrollView,
 with view: UIView?, atScale scale: CGFloat) {
 if let view = view {
 scrollView.bounces = self.oldBounces
 view.contentScaleFactor = scale * UIScreen.main.scale // *
 }
}

In response, the scalable view’s draw(_:) will be called, and its rect parameter will be
the CGRect to draw into. The view may appear fuzzy for a while as the user zooms in,
but when the user stops zooming, the view is redrawn sharply. That approach comes
with a caveat: you mustn’t overdo it. If the zoom scale, screen resolution, and scalable
view size are high, you will be asking for a very large graphics context, which could
cause your app to use too much memory.

For more about displaying a large image in a zoomable scroll view, see Apple’s Large
Image Downsizing example.

Scroll View Delegate
The scroll view’s delegate (adopting the UIScrollViewDelegate protocol) receives
messages that let you track in great detail what the scroll view is up to:

scrollViewDidScroll(_:)

If you scroll in code without animation, you will receive this message once after‐
ward. If the user scrolls, either by dragging or with the scroll-to-top feature, or if
you scroll in code with animation, you will receive this message repeatedly
throughout the scroll, including during the time the scroll view is decelerating
after the user’s finger has lifted; there are other delegate messages that tell you, in
those cases, when the scroll has finally ended.

scrollViewDidEndScrollingAnimation(_:)

If you scroll in code with animation, you will receive this message afterward,
when the animation ends.

scrollViewWillBeginDragging(_:)

scrollViewWillEndDragging(_:withVelocity:targetContentOffset:)

scrollViewDidEndDragging(_:willDecelerate:)

If the user scrolls by dragging, you will receive these messages at the start and
end of the user’s finger movement. If the user brings the scroll view to a stop
before lifting the finger, willDecelerate is false and the scroll is over. If the
user lets go of the scroll view while the finger is moving, or when paging is
turned on, willDecelerate is true and we proceed to the delegate messages
reporting deceleration.

436 | Chapter 7: Scroll Views

The purpose of scrollViewWillEndDragging is to let you customize the outcome
of the content’s deceleration. The third argument is a pointer to a CGPoint; you
can use it to set a different CGPoint, specifying the contentOffset value the
scroll view should have when the deceleration is over. By taking the velocity:
into account, you can allow the user to “fling” the scroll view with momentum
before it comes to a halt.

scrollViewWillBeginDecelerating(_:)

scrollViewDidEndDecelerating(_:)

Sent once each after scrollViewDidEndDragging(_:willDecelerate:) arrives
with a value of true. When scrollViewDidEndDecelerating(_:) arrives, the
scroll is over.

scrollViewShouldScrollToTop(_:)

scrollViewDidScrollToTop(_:)

These have to do with the feature where the user can tap the status bar to scroll
the scroll view’s content to its top. You won’t get either of them if scrollsToTop
is false, because the scroll-to-top feature is turned off. The first lets you prevent
the user from scrolling to the top on this occasion even if scrollsToTop is true.
The second tells you that the user has employed this feature and the scroll is over.

If you wanted to do something after a scroll ends completely regardless of how the
scroll was performed, you’d need to implement multiple delegate methods:

• scrollViewDidEndDragging(_:willDecelerate:) in case the user drags and
stops (willDecelerate is false).

• scrollViewDidEndDecelerating(_:) in case the user drags and the scroll con‐
tinues afterward.

• scrollViewDidScrollToTop(_:) in case the user uses the scroll-to-top feature.
• scrollViewDidEndScrollingAnimation(_:) in case you scroll with animation.

In addition, the scroll view has read-only properties reporting its state:

isTracking

The user has touched the scroll view, but the scroll view hasn’t decided whether
this is a scroll or some kind of tap.

isDragging

The user is dragging to scroll.

isDecelerating

The user has scrolled and has lifted the finger, and the scroll is continuing.

There are also three delegate messages that report zooming:

Scroll View Delegate | 437

scrollViewWillBeginZooming(_:with:)

If the user zooms or you zoom in code, you will receive this message as the zoom
begins.

scrollViewDidZoom(_:)

If you zoom in code, even with animation, you will receive this message once. If
the user zooms, you will receive this message repeatedly as the zoom proceeds.
(You will probably also receive scrollViewDidScroll(_:), possibly many times,
as the zoom proceeds.)

scrollViewDidEndZooming(_:with:atScale:)

If the user zooms or you zoom in code, you will receive this message after the last
scrollViewDidZoom(_:).

In addition, the scroll view has read-only properties reporting its state during a zoom:

isZooming

The scroll view is zooming. It is possible for isDragging to be true at the same
time.

isZoomBouncing

The scroll view’s bouncesZoom is true, and now it is bouncing: it was zoomed
beyond its minimum or maximum limit, and now it is returning automatically to
that limit. As far as I can tell, you’ll get only one scrollViewDidZoom(_:) while
the scroll view is in this state.

The delegate also receives scrollViewDidChangeAdjustedContentInset(_:) when
the adjusted content inset changes. This is matched by a method adjustedContent-
InsetDidChange that can be overridden in a UIScrollView subclass.

Scroll View Touches
Since the early days of iOS, improvements in UIScrollView’s internal implementation
have eliminated most of the worry once associated with touches inside a scroll view.
A scroll view will interpret a drag or a pinch as a command to scroll or zoom, and
any other gesture will fall through to the subviews; buttons and similar interface
objects inside a scroll view work just fine.

You can even put a scroll view inside a scroll view, and this can be a useful thing to
do, in contexts where you might not think of it at first. Apple’s PhotoScroller exam‐
ple, based on principles discussed in a delightful WWDC 2010 video, is an app where
a single photo fills the screen: you can page-scroll from one photo to the next, and
you can zoom into the current photo with a pinch gesture. This is implemented as a
scroll view inside a scroll view: the outer scroll view is for paging between images,
and the inner scroll view contains the current image and is for zooming (and for

438 | Chapter 7: Scroll Views

scrolling to different parts of the zoomed-in image). Similarly, a WWDC 2013 video
deconstructs the iOS 7 lock screen in terms of scroll views embedded in scroll views.

Gesture recognizers (Chapter 5) have also greatly simplified the task of adding cus‐
tom gestures to a scroll view. For instance, some older code in Apple’s documenta‐
tion, showing how to implement a double tap to zoom in and a two-finger tap to
zoom out, used old-fashioned touch handling; but this is no longer necessary. Simply
attach to your scroll view’s scalable subview any gesture recognizers for these sorts of
gesture, and they will mediate automatically among the possibilities.

In the past, making something inside a scroll view draggable required setting the
scroll view’s canCancelContentTouches property to false. (The reason for the name
is that the scroll view, when it realizes that a gesture is a drag or pinch gesture, nor‐
mally sends touchesCancelled(_:with:) to a subview tracking touches, so that the
scroll view and not the subview will be affected.) But unless you’re implementing old-
fashioned direct touch handling, you probably won’t have to concern yourself with
this. Regardless of how canCancelContentTouches is set, a draggable control, such as
a UISlider, remains draggable inside a scroll view.

Here’s an example of a draggable object inside a scroll view implemented through a
gesture recognizer. Suppose we have an image of a map, larger than the screen, and
we want the user to be able to scroll it in the normal way to see any part of the map,
but we also want the user to be able to drag a flag into a new location on the map.
We’ll put the map image in an image view and wrap the image view in a scroll view,
with the scroll view’s contentSize the same as the map image view’s size. The flag is
a small image view; it’s another subview of the scroll view, and it has a UIPan‐
GestureRecognizer. The pan gesture recognizer’s action method allows the flag to be
dragged, exactly as described in Chapter 5:

@IBAction func dragging (_ p: UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .began, .changed:
 let delta = p.translation(in:v.superview!)
 v.center.x += delta.x
 v.center.y += delta.y
 p.setTranslation(.zero, in: v.superview)
 default: break
 }
}

The user can now drag the map or the flag (Figure 7-4). Dragging the map brings the
flag along with it, but dragging the flag doesn’t move the map.

An interesting addition to that example would be to implement autoscrolling, mean‐
ing that the scroll view scrolls itself when the user drags the flag close to its edge.

Scroll View Touches | 439

Figure 7-4. A scrollable map with a draggable flag

This, too, is greatly simplified by gesture recognizers; in fact, we can add autoscroll‐
ing code directly to the dragging(_:) action method:

@IBAction func dragging (_ p: UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .began, .changed:
 let delta = p.translation(in:v.superview!)
 v.center.x += delta.x
 v.center.y += delta.y
 p.setTranslation(.zero, in: v.superview)
 // autoscroll
 let sv = self.sv!
 let loc = p.location(in:sv)
 let f = sv.bounds
 var off = sv.contentOffset
 let sz = sv.contentSize
 var c = v.center
 // to the right
 if loc.x > f.maxX - 30 {
 let margin = sz.width - sv.bounds.maxX
 if margin > 6 {
 off.x += 5
 sv.contentOffset = off
 c.x += 5
 v.center = c
 self.keepDragging(p)

440 | Chapter 7: Scroll Views

 }
 }
 // to the left
 if loc.x < f.origin.x + 30 {
 let margin = off.x
 if margin > 6 {
 // ...
 }
 }
 // to the bottom
 if loc.y > f.maxY - 30 {
 let margin = sz.height - sv.bounds.maxY
 if margin > 6 {
 // ...
 }
 }
 // to the top
 if loc.y < f.origin.y + 30 {
 let margin = off.y
 if margin > 6 {
 // ...
 }
 }
 default: break
 }
}
func keepDragging (_ p: UIPanGestureRecognizer) {
 let del = 0.1
 delay(del) {
 self.dragging(p)
 }
}

The delay in keepDragging (see Appendix B), combined with the change in offset,
determines the speed of autoscrolling. The material omitted in the second, third, and
fourth cases is obviously parallel to the first case, and is left as an exercise for the
reader.

A scroll view’s touch handling is itself based on gesture recognizers attached to the
scroll view, and these are available to your code through the scroll view’s panGesture-
Recognizer and pinchGestureRecognizer properties. This means that if you want to
customize a scroll view’s touch handling, it’s easy to add more gesture recognizers
and mediate between them and the gesture recognizers already attached to the
scroll view.

To illustrate, I’ll build on the previous example. Suppose we want the flag to start out
offscreen, and we’d like the user to be able to summon it with a rightward swipe. We
can attach a UISwipeGestureRecognizer to our scroll view, but it will never recognize
its gesture because the scroll view’s own pan gesture recognizer will recognize first.

Scroll View Touches | 441

But we have access to the scroll view’s pan gesture recognizer, so we can compel it to
yield to our swipe gesture recognizer by sending it require(toFail:):

self.sv.panGestureRecognizer.require(toFail:self.swipe)

The UISwipeGestureRecognizer can now recognize a rightward swipe. The flag has
been waiting invisibly offscreen; in the gesture recognizer’s action method, we posi‐
tion the flag just off to the top left of the scroll view’s visible content and animate it
onto the screen. We then disable the swipe gesture recognizer; its work is done:

@IBAction func swiped (_ g: UISwipeGestureRecognizer) {
 let sv = self.sv!
 let p = sv.contentOffset
 self.flag.frame.origin = p
 self.flag.frame.origin.x -= self.flag.bounds.width
 self.flag.isHidden = false
 UIView.animate(withDuration:0.25) {
 self.flag.frame.origin.x = p.x
 // thanks for the flag, now stop operating altogether
 g.isEnabled = false
 }
}

Floating Scroll View Subviews
A scroll view’s subview will appear to “float” over the scroll view if it remains station‐
ary while the rest of the scroll view’s content is being scrolled.

Before autolayout, this sort of thing was rather tricky to arrange; you had to use a
delegate event to respond to every change in the scroll view’s bounds origin by shift‐
ing the “floating” view’s position to compensate, so as to appear to remain fixed.
With autolayout, an easy solution is to set up constraints pinning the subview to
something outside the scroll view. Even better, the scroll view itself provides a frame-
LayoutGuide; pin a subview to that, to make the subview stand still while the scroll
view scrolls.

In this example, the image view is a subview of the scroll view that doesn’t move dur‐
ing scrolling:

let iv = UIImageView(image:UIImage(named:"smiley"))
iv.translatesAutoresizingMaskIntoConstraints = false
self.sv.addSubview(iv)
let svflg = self.sv.frameLayoutGuide
NSLayoutConstraint.activate([
 iv.rightAnchor.constraint(equalTo:svflg.rightAnchor, constant: -5),
 iv.topAnchor.constraint(equalTo:svflg.topAnchor, constant: 25)
])

442 | Chapter 7: Scroll Views

Scroll View Performance
Several times in earlier chapters I’ve mentioned performance problems and ways to
increase drawing efficiency. The likeliest place to encounter such issues is in connec‐
tion with a scroll view. As a scroll view scrolls, views must be drawn very rapidly as
they appear on the screen. If the drawing system can’t keep up with the speed of the
scroll, the scrolling will visibly stutter.

Performance testing and optimization is a big subject, so I can’t tell you exactly what
to do if you encounter stuttering while scrolling. But certain general suggestions,
mostly extracted from a really great WWDC 2010 video, should come in handy (and
see also “Layer Efficiency” on page 156, some of which I’m repeating here):

• Everything that can be opaque should be opaque: don’t force the drawing system
to composite transparency, and remember to tell it that an opaque view or layer
is opaque by setting its isOpaque property to true. If you really must composite
transparency, keep the size of the nonopaque regions to a minimum.

• If you’re drawing shadows, don’t make the drawing system calculate the shadow
shape for a layer: supply a shadowPath, or use Core Graphics to create the
shadow with a drawing. Similarly, avoid making the drawing system composite
the shadow as a transparency against another layer; if the background layer is
white, your opaque drawing can itself include a shadow already drawn on a white
background.

• Don’t make the drawing system scale images for you; supply the images at the
target size for the correct resolution.

• Coalesce layers (including views). The fewer layers constitute the render tree, the
less work the drawing system has to do in order to render them.

• In a pinch, you can just eliminate massive swatches of the rendering operation by
setting a layer’s shouldRasterize to true. You could do this when scrolling
starts and then set it back to false when scrolling ends.

Apple’s documentation also says that setting a view’s clearsContextBeforeDrawing
to false may make a difference. I can’t confirm or deny this; it may be true, but I
haven’t encountered a case that positively proves it.

Xcode provides tools that will help you detect inefficiencies in the drawing system. In
the Simulator, the Debug menu shows you blended layers (where transparency is
being composited) and images that are being copied, misaligned, or rendered off‐
screen, and the Xcode Debug → View Debugging → Rendering hierarchical menu
provides even more options. On a device, the Core Animation template of Instru‐
ments tracks the frame rate for you, allowing you to measure performance objectively
while scrolling.

Scroll View Performance | 443

CHAPTER 8

Table Views and Collection Views

I’m gonna ask you the three big questions. — Go ahead. — Who made you? — You did. —
Who owns the biggest piece of you? — You do. — What would happen if I dropped you? —

I’d go right down the drain.
—Dialogue by Garson Kanin

and Ruth Gordon,
Pat and Mike

A table view (UITableView) is a vertically scrolling UIScrollView (Chapter 7) con‐
taining a single column of rectangular cells. Each cell is a UITableViewCell, a UIView
subclass. A table view has three main purposes:

Information
The cells constitute a list, which will often be text. The cells are usually quite
small, in order to maximize the quantity appearing on the screen at once, so the
information may be condensed, truncated, or summarized.

Choice
The cells may represent choices. The user chooses by tapping a cell, which selects
the cell; the app responds appropriately to that choice.

Navigation
The response to the user’s choosing a cell might be navigation to another
interface.

An extremely common configuration is a master–detail interface, a navigation inter‐
face where the master view is a table view (Chapter 6): the user taps a table view cell
to navigate to the details about that cell. This is one reason why the information in a
table view cell can be a summary: to see the full information, the user can ask for the
detail view. Figure 6-1 is an example.

In addition to its column of cells, a table view can have a number of other features:

445

• A table can include a header view at the top and a footer view at the bottom.
• The cells can be clumped into sections. Each section can have a header and a

footer, which may explain the section and tell the user where we are within the
table.

• If the table has sections, a section index can be provided as an overlay column of
abbreviated section titles, which the user can tap or drag to jump to the start of a
section; this makes a long table tractable.

• Tables can be editable: the user can be permitted to insert, delete, and reorder
cells, and to edit information within a cell.

• Cells can have actions: the user can swipe a cell sideways to reveal buttons that
act in relation to that cell.

• Cells can have menus: the user can long press a cell to pop up a menu with tappa‐
ble menu items.

• A table can have a grouped format, where the cells are embedded into a common
background that includes the section header and footer information. This format
is often used for clumping small numbers of related cells, with explanations pro‐
vided by the headers and footers.

Table view cells themselves can be extremely flexible. Some basic cell formats are pro‐
vided, such as a text label along with a small image view, but you are free to design
your own cell as you would any other view. There are also some standard interface
items that are commonly used in a cell, such as a checkmark to indicate selection, or a
right-pointing chevron to indicate that tapping the cell navigates to a detail view.

Figure 8-1 shows a familiar table view: Apple’s Music app. Each table cell displays a
song’s name and artist, in truncated form; the user can tap to play the song. The table
is divided into sections; as the user scrolls, the current section header stays pinned to
the top of the table view.

Figure 8-2 shows a familiar grouped table: Apple’s Settings app. It’s a master–detail
interface. The master view has sections, but they aren’t labeled with headers: they
merely clump related topics. The detail view sometimes has just a single cell per sec‐
tion, using section headers and footers to explain what that cell does.

It would be difficult to overstate the importance of table views. An iOS app without a
table view somewhere in its interface would be a rare thing, especially on the small
iPhone screen. Indeed, table views are key to the small screen’s viability. I’ve written
apps consisting entirely of table views.

It is not uncommon to use a table view even in situations that have nothing particu‐
larly table-like about them, simply because it is so convenient. In one of my apps I
want the user to be able to choose between three levels of difficulty and two sets of
images. In a desktop application I’d probably use radio buttons; but there are no

446 | Chapter 8: Table Views and Collection Views

Figure 8-1. A familiar table view

Figure 8-2. A familiar grouped table

Table Views and Collection Views | 447

Figure 8-3. A table view as an interface for choosing options

radio buttons among the standard iOS interface objects. Instead, I use a grouped
table view so small that it doesn’t even scroll. This gives me section headers, tappable
cells, and a checkmark indicating the current choice (Figure 8-3).

Table View Controller
In the examples throughout this chapter, I’ll use a table view controller in conjunc‐
tion with a table view. This is a built-in view controller subclass, UITableView‐
Controller, whose main view is a table view. You’re not obliged to use a
UITableViewController with every table view — it doesn’t do anything that you
couldn’t do yourself by other means — but it is certainly convenient. Here are some
features of a table view controller:

• UITableViewController’s init(style:) initializer creates the table view with a
plain or grouped format.

• Every table view needs a data source and a delegate (as I’ll explain later); a table
view controller is its table view’s data source and delegate by default.

• The table view is the table view controller’s tableView. It is also the table view
controller’s view, but the tableView property is typed as a UITableView, so you
can send table view messages to it without casting down.

• A table view controller lets you configure the layout and content of an entire
table in a storyboard (a static table).

• A table view controller provides interface for automatic toggling of its table
view’s edit mode.

A table view controller is so convenient, in fact, that it might make sense to use one
with every table view. Suppose a table view is to be a subview of some view

448 | Chapter 8: Table Views and Collection Views

controller’s main view. That could be a “loose” table view. But it might be better to
make the view controller a custom container view controller with a table view con‐
troller as its child (“Container View Controllers” on page 375).

Table View Cells
A table view’s structure and contents are generally not configured in advance. Rather,
you supply the table view with a data source and a delegate (which will often be the
same object), and the table view turns to these in real time, as the app runs, whenever
it needs a piece of information about its own structure and contents.

This architecture (which might surprise beginners) is part of a brilliant strategy to
conserve resources. Imagine a long table consisting of thousands of rows. It must
appear to consist of thousands of cells as the user scrolls. But a cell is a UIView; to
maintain thousands of cells internally would put a terrible strain on memory. There‐
fore, the table typically maintains only as many cells as are showing simultaneously at
any one moment. As the user scrolls to reveal new cells, those cells are created on the
spot; meanwhile, the cells that have been scrolled out of view are permitted to die.

That’s ingenious, but wouldn’t it be even cleverer if, instead of letting a cell die as it
scrolls out of view, we whisked it around to the other end and reused it as one of the
cells being scrolled into view? Yes, and in fact that’s exactly what you’re supposed to
do. You do it by assigning each cell a reuse identifier.

As cells with a given reuse identifier are scrolled out of view, the table view maintains
a bunch of them in a pile. As a cell is about to be scrolled into view, you ask the table
view for a cell from that pile, specifying the pile by means of the reuse identifier. The
table view hands an old used cell back to you, and now you can configure it as the cell
that is about to be scrolled into view. Cells are reused to minimize not only the num‐
ber of actual cells in existence at any one moment but the number of actual cells ever
created. A table of 1000 rows might very well never need to create more than about a
dozen cells over the entire lifetime of the app!

To facilitate this architecture, your code must be prepared, on demand, to supply the
table with pieces of requested data. Of these, the most important is the cell to be slot‐
ted into a given position. A position in the table is specified by means of an index
path (IndexPath), used here to combine a section number with a row number; it is
often referred to as a row of the table. Your data source object may at any moment be
sent the message tableView(_:cellForRowAt:), and you must respond by returning
the UITableViewCell to be displayed at that row of the table. And you must return it
fast: the user is scrolling now, so the table needs that cell now.

Table View Cells | 449

Built-In Cell Styles
A simple way to obtain a table view cell is to start with one of the four built-in table
view cell styles. A cell using a built-in style is created by calling init(style:reuse-
Identifier:). The reuseIdentifier: is what allows cells previously assigned to
rows that are no longer showing to be reused for cells that are; it will usually be the
same for all cells in a table. Your choices of cell style (UITableViewCell.CellStyle) are:

.default

The cell has a UILabel (its textLabel), with an optional UIImageView (its image-
View) at the left. If there is no image, the label occupies the width of the cell.

.value1

The cell has two UILabels (its textLabel and its detailTextLabel) side by side,
with an optional UIImageView (its imageView) at the left. The first label is left-
aligned; the second label is right-aligned. If the first label’s text is too long, the
second label won’t appear.

.value2

The cell has two UILabels (its textLabel and its detailTextLabel) side by side.
No UIImageView will appear. The first label is right-aligned; the second label is
left-aligned. The label sizes are fixed, and the text of either will be truncated if it’s
too long.

.subtitle

The cell has two UILabels (its textLabel and its detailTextLabel), one above
the other, with an optional UIImageView (its imageView) at the left.

To experiment with the built-in cell styles, do this:

1. Start with the Single View App template.
2. We’re going to ignore the storyboard (“App Without a Storyboard” on page 6).

So we need a class to serve as our root view controller. Choose File → New → File
and specify iOS → Source → Cocoa Touch Class. Click Next.

3. Make this class a UITableViewController subclass called RootViewController.
The XIB checkbox should be checked; Xcode will create an eponymous .xib file
containing a table view, correctly configured with its File’s Owner as our Root‐
ViewController class. Click Next.

4. Make sure you’re saving into the correct folder and group, and that the app tar‐
get is checked. Click Create.

5. Rewrite SceneDelegate’s scene(_:willConnectTo:options:) to make our Root‐
ViewController the window’s rootViewController:

450 | Chapter 8: Table Views and Collection Views

if let windowScene = scene as? UIWindowScene {
 self.window = UIWindow(windowScene: windowScene)
 self.window!.rootViewController = RootViewController()
 self.window!.backgroundColor = .white
 self.window!.makeKeyAndVisible()
}

6. Now modify the RootViewController class (which comes with a lot of templated
code), as in Example 8-1.

Example 8-1. Basic table data source schema

let cellID = "Cell"
override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 20
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 var cell : UITableViewCell! = tableView.dequeueReusableCell(
 withIdentifier: self.cellID)
 if cell == nil {
 cell = UITableViewCell(style:.default,
 reuseIdentifier: self.cellID)
 cell.textLabel!.textColor = .red
 }
 cell.textLabel!.text = "Hello there! \(indexPath.row)"
 return cell
}

The key parts of the code are:

Our table will have one section.

Our table will consist of 20 rows. Having multiple rows will give us a sense of
how our cell looks when placed among other cells.

In tableView(_:cellForRowAt:), you should always start by asking the table
view for a reusable cell. Here, we will receive either an already existing reused cell
or nil.

If we received nil, we create the cell from scratch, ourselves. This is where you
specify the built-in table view cell style you want to experiment with.

Table View Cells | 451

Figure 8-4. The world’s simplest table

At this point in the code you can modify characteristics of the cell (cell) that are
to be the same for every cell of the table. For the moment, I’ve symbolized this by
assuming that every cell’s text is to be the same color.

We now have the cell to be used for this row of the table, so at this point in the
code you can modify features of the cell (cell) that are unique to this row. I’ve
symbolized this by appending the row number to the text of each row.

Run the app to see the world’s simplest table (Figure 8-4).

Now you can experiment with your cell’s appearance by tweaking the code and run‐
ning the app. Feel free to try different built-in cell styles in the place where we are
now specifying .default.

Label features

Our built-in cell style’s textLabel is a UILabel, so further flexibility within each
built-in style comes from the flexibility of a label. Not everything can be customized,
because after you return the cell some further configuration takes place, which may
override your settings; for instance, the size and position of the cell’s subviews are not
up to you. (I’ll explain, a little later, how to get around that.) But you get a remarkable
degree of freedom. Here are a few basic UILabel properties for you to play with now,
and I’ll talk much more about UILabels in Chapter 10:

text

The string shown in the label.

textColor, highlightedTextColor
The color of the text. The highlightedTextColor applies when the cell is high‐
lighted or selected (tap on a cell to select it).

textAlignment

How the text is aligned; some possible choices (NSTextAlignment)
are .left, .center, and .right.

452 | Chapter 8: Table Views and Collection Views

numberOfLines

The maximum number of lines of text to appear in the label. Text that is long but
permitted to wrap, or that contains explicit linefeed characters, can appear com‐
pletely in the label if the label is tall enough and the number of permitted lines is
sufficient. 0 means there’s no maximum; the default is 1.

font

The label’s font. You could reduce the font size as a way of fitting more text into
the label. A font name includes its style:

cell.textLabel!.font = UIFont(name:"Helvetica-Bold", size:12.0)

shadowColor, shadowOffset
The text shadow. Adding a little shadow can increase clarity and emphasis for
large text.

Image view features

You can also assign the image view (cell.imageView) an image. The frame of the
image view can’t be changed, but you can inset its apparent size by supplying a
smaller image and setting the image view’s contentMode to .center. It’s a good idea
in any case, for performance reasons, to supply images at their drawn size and resolu‐
tion rather than making image views scale them down for you (see “UIImage Draw‐
ing” on page 100).

Cell features
The cell itself also has some properties you can play with:

accessoryType

A built-in type (UITableViewCell.AccessoryType) of accessory view, which
appears at the cell’s right end:

cell.accessoryType = .disclosureIndicator

accessoryView

Your own UIView, which appears at the cell’s right end (overriding the
accessoryType):

let b = UIButton(type:.system)
b.setTitle("Tap Me", for:.normal)
b.sizeToFit()
// ... add action and target here ...
cell.accessoryView = b

indentationLevel, indentationWidth
These properties give the cell a left margin, useful for suggesting a hierarchy
among cells. You can also set a cell’s indentation level in real time, with respect

Table View Cells | 453

to the table row into which it is slotted, by implementing the delegate’s table-
View(_:indentationLevelForRowAt:) method.

separatorInset

This property affects both the drawing of the separator between cells and the
indentation of content of the built-in cell styles. A UIEdgeInsets; only the left and
right insets matter. The default is a left inset of 15, but the built-in table view cell
styles may shift it to match the left layout margin of the root view (16 or 20).

selectionStyle

How the background looks when the cell is selected (UITableViewCell.Selection‐
Style). The default is solid gray (.default), or you can choose .none. Solid colors
of cell subviews can obscure the default gray.

backgroundColor

backgroundView

selectedBackgroundView

What’s behind everything else drawn in the cell. Solid colors of cell subviews can
obscure any of these. The selectedBackgroundView is drawn in front of the
backgroundView (if any) when the cell is selected, and will appear instead of
whatever the selectionStyle dictates. The backgroundColor is behind the
backgroundView. There is no need to set the frame of the backgroundView and
selectedBackgroundView; they will be resized automatically to fit the cell.

multipleSelectionBackgroundView

If the table’s allowsMultipleSelection or allowsMultipleSelectionDuring-
Editing is true, used instead of the selectedBackgroundView when the cell is
selected.

In this example, we set the cell’s backgroundView to display an image with some
transparency at the outside edges, so that the backgroundColor shows behind it, and
we set the selectedBackgroundView to an almost transparent blue rectangle, to
darken that image when the cell is selected (Figure 8-5):

cell.textLabel!.textColor = .white
let v = UIImageView() // no need to set frame
v.contentMode = .scaleToFill
v.image = UIImage(named:"linen")
cell.backgroundView = v
let v2 = UIView() // no need to set frame
v2.backgroundColor = UIColor.blue.withAlphaComponent(0.2)
cell.selectedBackgroundView = v2
cell.backgroundColor = .red

454 | Chapter 8: Table Views and Collection Views

Figure 8-5. A cell with an image background

If those features are to be true of every cell ever displayed in the table, then that code
should go in the spot numbered 5 in Example 8-1; it would be wasteful to do the
same thing all over again when an existing cell is reused.

Table view features
Finally, here are a few properties of the table view itself worth playing with:

rowHeight

The height of every cell. Taller cells may accommodate more information. You
can also change this value in the nib editor; the table view’s row height appears in
the Size inspector. With a built-in cell style, the cell’s subviews have their autore‐
sizing set so as to compensate correctly. You can also set a cell’s height in real
time by implementing the delegate’s tableView(_:heightForRowAt:) method,
so that a table’s cells may differ from one another in height (more about that later
in this chapter).

separatorStyle, separatorColor
These can also be set in the nib. Separator styles (UITableViewCell.Separator‐
Style) are .none and .singleLine.

separatorInset, separatorInsetReference
These can also be set in the nib. The table view’s separatorInset is adopted by
individual cells that don’t have their own explicit separatorInset; to put it
another way, the table view’s separatorInset is the default, but a cell can over‐
ride it.

The separatorInsetReference (introduced in iOS 11) determines how the sepa‐
rator inset is understood, either .fromCellEdges or .fromAutomaticReference
(meaning from the margins). The default is .fromCellEdges.

backgroundColor, backgroundView
What’s behind all the cells of the table; this may be seen if the cells have transpar‐
ency, or if the user scrolls the cells beyond their limit. The backgroundView is
drawn on top of the backgroundColor.

Table View Cells | 455

tableHeaderView, tableFooterView
Views to be shown before the first row and after the last row, respectively, as part
of the table’s scrolling content. You must dictate their heights explicitly, by set‐
ting their frame or bounds height; their widths will be dynamically resized to fit
the table. You can allow the user to interact with these views (and their sub‐
views); for example, a view can be (or can contain) a UIButton.

You can alter a table header or footer view dynamically during the lifetime of the
app; if you change its height, you must set the corresponding table view property
afresh to notify the table view of what has happened.

insetsContentViewsToSafeArea

The cell’s contents, such as its textLabel, are inside an unseen view called the
contentView; those contents are positioned with respect to the content view’s
bounds. If this property is true (the default), the safe area insets will inset the
frame of the content view; that’s significant in landscape on an iPhone without a
bezel, such as the iPhone X. (The backgroundColor and backgroundView are not
inset by the safe area insets.)

cellLayoutMarginsFollowReadableWidth

If this property is true, the content view margins will be inset on a wide screen
(such as an iPad in landscape) to prevent text content from becoming overly
wide. Starting in iOS 12, the default is false.

Registering a Cell Class
In Example 8-1, I used this method to obtain the reusable cell:

• dequeueReusableCell(withIdentifier:)

But there’s a better way:

• dequeueReusableCell(withIdentifier:for:)

The outward difference is that the second method has a second parameter — an
IndexPath. But that’s mere boilerplate; you received an index path as the last parame‐
ter of tableView(_:cellForRowAt:), and you’ll just pass it along as the second
parameter here. The functional difference is very dramatic:

The result is never nil
Unlike dequeueReusableCell(withIdentifier:), the value returned by
dequeueReusableCell(withIdentifier:for:) is never nil (in Swift, it isn’t an
Optional). If there is a free reusable cell with the given identifier, it is returned. If
there isn’t, a new one is created for you, automatically. Step 4 of Example 8-1 can
be eliminated!

456 | Chapter 8: Table Views and Collection Views

The cell size is known earlier
Unlike dequeueReusableCell(withIdentifier:), the cell returned by dequeue-
ReusableCell(withIdentifier:for:) has its final bounds. That’s possible
because you’ve passed the index path as an argument, so the runtime knows this
cell’s ultimate destination within the table, and has already consulted the table’s
rowHeight or the delegate’s tableView(_:heightForRowAt:). This can make lay‐
ing out the cell’s contents much easier.

The identifier is consistent
A danger with dequeueReusableCell(withIdentifier:) is that you may acci‐
dentally pass an incorrect reuse identifier and end up not reusing cells. With
dequeueReusableCell(withIdentifier:for:), that can’t happen (for reasons
that I will now explain).

Those are powerful advantages, and for that reason I suggest always using dequeue-
ReusableCell(withIdentifier:for:). This will mean that Example 8-1 is wrong
and will have to be modified; in a moment, that’s just what I’ll do. But first we need to
talk about some more implications of using dequeueReusableCell(with-

Identifier:for:).

Let’s go back to the first advantage of dequeueReusableCell(withIdentifier:for:)
— if there isn’t a reusable cell with the given identifier, the table view will create the
cell; you never instantiate the cell yourself. But how does the table view know how to
do that? You have to tell it in advance, associating the reuse identifier with the correct
means of instantiation. There are three possibilities:

Provide a class
You register a class with the table view, associating that class with the reuse iden‐
tifier. The table view will instantiate that class.

Provide a nib
You register a .xib file with the table view, associating that nib with the reuse
identifier. The table view will load the nib to instantiate the cell.

Provide a storyboard
If you’re getting the cell from a storyboard, you don’t register anything with the
table view; instead, you associate the cell in the storyboard with the reuse identi‐
fier by entering that reuse identifier in the Identifier field of the cell’s Attributes
inspector. The table view will instantiate the cell from the storyboard.

In my examples so far, we’re not using a storyboard (I’ll discuss that approach later).
So let’s use the first approach: we’ll register a class with the table view. To do so,
before we call dequeueReusableCell(withIdentifier:for:) for the first time, we
call register(_:forCellReuseIdentifier:), where the first parameter is the
UITableViewCell class or a subclass thereof. That will associate this class with our

Table View Cells | 457

reuse identifier. It will also add a measure of safety, because henceforth if we pass a
bad identifier into dequeueReusableCell(withIdentifier:for:), the app will crash
(with a helpful log message); we are forcing ourselves to reuse cells properly.

This is a very elegant mechanism. It also raises some new questions:

When should I register with the table view?
Do it early, before the table view starts generating cells; viewDidLoad is a good
place:

let cellID = "Cell"
override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.register(
 UITableViewCell.self, forCellReuseIdentifier: self.cellID)
}

How do I specify a built-in table view cell style?
We are no longer calling init(style:reuseIdentifier:), so where do we make
our choice of built-in cell style? The default cell style is .default, so if that’s what
you wanted, the problem is solved. Otherwise, subclass UITableViewCell and
register the subclass; in the subclass, override init(style:reuseIdentifier:)
to substitute the cell style you’re after (passing along the reuse identifier you were
handed).

Suppose we want the .subtitle style. Let’s call our UITableViewCell subclass
MyCell. So we now specify MyCell.self in our call to register(_:forCell-
ReuseIdentifier:). MyCell’s initializer looks like this:

override init(style: UITableViewCell.CellStyle,
 reuseIdentifier: String?) {
 super.init(style:.subtitle, reuseIdentifier: reuseIdentifier)
}

How do I know whether the returned cell is new or reused?
Good question! dequeueReusableCell(withIdentifier:for:) never returns
nil, so we need some other way to distinguish between configurations that are to
apply once and for all to a new cell (step 5 of Example 8-1) and configurations
that differ for each row (step 6). It’s up to you, when performing one-time con‐
figuration on a cell, to give that cell some distinguishing mark that you can look
for later to determine whether a cell requires one-time configuration.

Suppose every cell is to have a two-line text label. Then there is no point config‐
uring the text label of every cell returned by dequeueReusableCell(with-
Identifier:for:) to have two lines; the reused cells have already been
configured. But how will we know which cells need their text label to be config‐
ured? It’s easy: they are the ones whose text label hasn’t been configured:

458 | Chapter 8: Table Views and Collection Views

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath) as! MyCell
 if cell.textLabel!.numberOfLines != 2 { // not configured!
 cell.textLabel!.numberOfLines = 2
 // other one-time configurations here ...
 }
 cell.textLabel!.text = // ...
 // other individual configurations here ...
 return cell
}

We are now ready to rewrite Example 8-1 to use dequeueReusableCell(with-
Identifier:for:). The result is Example 8-2.

Example 8-2. Basic table data source schema, revised

let cellID = "Cell"
override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.register(
 UITableViewCell.self, forCellReuseIdentifier: self.cellID)
}
override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 20
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath)
 if cell.textLabel!.numberOfLines != 2 {
 cell.textLabel!.numberOfLines = 2
 // ... other universal configurations here ...
 }
 cell.textLabel!.text = "Hello there! \(indexPath.row)"
 // ... other individual configurations here ...
 return cell
}

Register the cell identifier with the table view. No law requires that this be done
in viewDidLoad, but it’s a good place because it’s called once, early. (This step
must be omitted if the cell is to come from a storyboard, as I’ll explain later.)

Give the number of sections our table is to have.

Table View Cells | 459

Give the number of rows each section is to have.

Call dequeueReusableCell(withIdentifier:for:) to obtain a cell for this reuse
identifier, passing along the incoming index path. If the registered cell class is a
UITableViewCell subclass, you’ll probably need to cast down here; this is a situa‐
tion where a forced downcast is justified, because if the cast fails something is
very wrong and we can’t proceed.

If there are configurations to be performed that are the same for every cell, look
to see whether this cell has already been configured. If not, configure it.

Modify features of the cell that are unique to this row, and return the cell.

Custom Cells
In real life it is unusual to rest content with the built-in cell styles. They give the
beginner a leg up in getting started with table views, but there is nothing sacred about
them, and soon you’ll surely want to transcend them, putting yourself in charge of
how a table’s cells look and what subviews they contain. You want a custom cell.

Keep in mind, as you design your custom cell, that the cell has a contentView prop‐
erty, which is one of its subviews; things like the accessoryView are outside the
contentView, but all your custom subviews must be subviews of the contentView.
This allows the cell to continue working correctly.

As long as you never speak of the cell’s textLabel, detailTextLabel, or image-
View, they are never created or inserted into the cell. You don’t need to remove
them if you don’t want to use them.

I’ll illustrate four possible approaches to customizing the contents of a cell:

• Start with a built-in cell style, but supply a UITableViewCell subclass and over‐
ride layoutSubviews to alter the frames of the built-in subviews.

• In tableView(_:cellForRowAt:), add subviews to each cell’s contentView as the
cell is created.

• Design the cell in a nib, and load that nib in tableView(_:cellForRowAt:) each
time a cell needs to be created.

• Design the cell in a storyboard.

Overriding a cell’s subview layout

You can’t directly change the frame of a built-in cell style subview in table-
View(_:cellForRowAt:), because the cell’s layoutSubviews comes along later and
overrides your changes. The workaround is to override the cell’s layoutSubviews!

460 | Chapter 8: Table Views and Collection Views

Figure 8-6. A cell with its label and image view swapped

This is a straightforward solution if your main objection to a built-in style is the
frame of an existing subview.

To illustrate, let’s modify a .default cell so that the image is at the right end instead
of the left end (Figure 8-6). We’ll make a UITableViewCell subclass called MyCell;
here is MyCell’s layoutSubviews:

override func layoutSubviews() {
 super.layoutSubviews()
 let cvb = self.contentView.bounds
 let imf = self.imageView!.frame
 self.imageView!.frame.origin.x = cvb.size.width - imf.size.width - 15
 self.textLabel!.frame.origin.x = 15
}

We must also make sure to use MyCell as our cell type:

self.tableView.register(MyCell.self, forCellReuseIdentifier: self.cellID)

Adding subviews in code
Instead of modifying the existing default subviews, you can add completely new
views to each UITableViewCell’s content view. The best place to do this in code is
tableView(_:cellForRowAt:). Here are some things to keep in mind:

• The new views must be added when we configure a brand new cell — but not
when we reuse a cell, because a reused cell already has them. (Adding multiple
copies of the same subview repeatedly, as the cell is reused, is a common begin‐
ner mistake.)

• We must never send addSubview(_:) to the cell itself — only to its contentView
(or some subview thereof).

• We should assign the new views an appropriate autoresizingMask or con‐
straints, because the cell’s content view might be resized.

• Each new view needs a way to be identified and referred to elsewhere. A tag is a
simple solution.

I’ll rewrite the previous example to use this technique. We don’t need a UITable‐
ViewCell subclass; the registered cell class can be UITableViewCell itself. If this is a
new cell, we add the subviews, position them, and assign them tags. If this is a reused
cell, we don’t add the subviews — the cell already has them! Either way, we then use
the tags to refer to the subviews:

Table View Cells | 461

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath)
 if cell.viewWithTag(1) == nil { // no subviews! add them
 let iv = UIImageView(); iv.tag = 1
 cell.contentView.addSubview(iv)
 let lab = UILabel(); lab.tag = 2
 cell.contentView.addSubview(lab)
 // ... position the subviews ...
 }
 // can refer to subviews by their tags
 let lab = cell.viewWithTag(2) as! UILabel
 let iv = cell.viewWithTag(1) as! UIImageView
 // ...
 return cell
}

Designing a cell in a nib
We can avoid the verbosity of the previous code by designing the cell in a nib. We
start by creating a .xib file that will consist, in effect, solely of this one cell; then we
design the cell:

1. In Xcode, create the .xib file by specifying iOS → User Interface → View. Let’s
call it MyCell.xib.

2. Edit MyCell.xib. In the nib editor, delete the existing View and replace it with a
Table View Cell from the Library.
The cell’s design window shows a standard-sized cell; you can resize it as desired,
but the actual size of the cell in the interface will be dictated by the table view’s
width and its rowHeight (or the delegate’s response to tableView(_:heightFor-
RowAt:)). The cell already has a contentView, and any subviews you add will be
inside that; do not subvert that arrangement.

3. You can choose a built-in table view cell style in the Style pop-up menu of the
Attributes inspector, which gives you the default subviews, locked in their stan‐
dard positions. But if you set the Style pop-up menu to Custom, you start with a
blank slate; let’s do that.

4. Design the cell! Let’s implement, from scratch, the same subviews we’ve already
implemented in the preceding two examples: a UILabel on the left side of the cell,
and a UIImageView on the right side. Just as when adding subviews in code, we
should set each subview’s autoresizing behavior or constraints, and give each sub‐
view a tag, so that later, in tableView(_:cellForRowAt:), we’ll be able to refer to
the label and the image view using viewWithTag(_:), exactly as in the previous
example.

462 | Chapter 8: Table Views and Collection Views

The only remaining question is how to load the cell from the nib. It’s simple! When
we register with the table view, which we’re currently doing in viewDidLoad, when we
call register(_:forCellReuseIdentifier:), we supply a nib instead of a class. To
specify the nib, call UINib’s initializer init(nibName:bundle:), like this:

self.tableView.register(
 UINib(nibName:"MyCell", bundle:nil), forCellReuseIdentifier:self.cellID)

That’s all there is to it. In tableView(_:cellForRowAt:), when we call dequeue-
ReusableCell(withIdentifier:for:), if the table has no free reusable cell already in
existence, the nib will automatically be loaded and the cell will be instantiated from it
and returned to us.

You may wonder how that’s possible, when we haven’t specified a File’s Owner class
or added an outlet from the File’s Owner to the cell in the nib. The answer is that the
nib conforms to a specific format. The UINib instance method instantiate(with-
Owner:options:) can load a nib with a nil owner, and it returns an array of the nib’s
instantiated top-level objects. A nib registered with the table view is expected to have
exactly one top-level object, and that top-level object is expected to be a UITable‐
ViewCell; the cell can easily be extracted from the resulting array, as it is the array’s
only element. Our nib meets those expectations!

The nib must conform to this format: it must have exactly one top-level object, a
UITableViewCell. Unfortunately, this means that some configurations are diffi‐
cult or impossible in the nib. A cell’s backgroundView cannot be configured in
the nib, because this would require the presence of a second top-level nib object.
The simplest workaround is to add the backgroundView in code.

The advantages of this approach should be immediately obvious. The subviews can
now be designed in the nib editor, and code that was creating and configuring each
subview can be deleted. All code that sizes and positions our subviews can be
removed; we can specify the constraints in the nib editor. If we were configuring the
label — assigning it a font, a line break mode, a numberOfLines — all of that code can
be removed; we can specify those things in the nib editor.

But we can go further. In tableView(_:cellForRowAt:), we are still referring to the
cell’s subviews by way of viewWithTag(_:). There’s nothing wrong with that, but
perhaps you’d prefer to use names. Now that we’re designing the cell in a nib, that’s
easy. Provide a UITableViewCell subclass with outlet properties, and configure the
nib file accordingly:

1. Create a UITableViewCell subclass — let’s call it MyCell — and declare two out‐
let properties:

Table View Cells | 463

class MyCell : UITableViewCell {
 @IBOutlet var theLabel : UILabel!
 @IBOutlet var theImageView : UIImageView!
}

That is the entirety of MyCell’s code; it exists solely so that we can create these
outlets.

2. Edit the table view cell nib MyCell.xib. Change the class of the cell (in the Identity
inspector) to MyCell, and connect the outlets from the cell to the respective
subviews.

The result is that in our implementation of tableView(_:cellForRowAt:), once
we’ve typed the cell as a MyCell, the compiler will let us use the property names to
access the subviews:

let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath) as! MyCell // *
let lab = cell.theLabel // *
let iv = cell.theImageView // *
// ... configure lab and iv ...

Designing a cell in a storyboard
If your table view is instantiated from a storyboard, then along with all the ways of
obtaining and designing its cells that I’ve already described, there is an additional
option. You can have the table view obtain its cells from the storyboard itself. This
means you can also design the cell in the storyboard.

Let’s experiment with this way of obtaining and designing a cell:

1. Start with a project based on the Single View App template.
2. In the project, create a file for a UITableViewController subclass called Root‐

ViewController, without a corresponding .xib file.
3. In the storyboard, delete the View Controller scene. Drag a Table View Control‐

ler into the empty canvas, and set its class to RootViewController. Make sure it’s
the initial view controller.

4. The table view controller in the storyboard comes with a table view. In the story‐
board, select that table view, and, in the Attributes inspector, set the Content
pop-up menu to Dynamic Prototypes, and set the number of Prototype Cells to 1
(those are the defaults).

The table view in the storyboard now contains a single table view cell with a content
view. You can do in this cell exactly what we were doing before when designing a
table view cell in a .xib file! I like being able to refer to my custom cell subviews with
property names, so we’ll use a table view cell subclass with outlets. Our procedure is
just like what we did in the previous example:

464 | Chapter 8: Table Views and Collection Views

1. In code, declare a UITableViewCell subclass — let’s call it MyCell — with two
outlet properties:

class MyCell : UITableViewCell {
 @IBOutlet var theLabel : UILabel!
 @IBOutlet var theImageView : UIImageView!
}

2. In the storyboard, select the table view’s prototype cell and change its class in the
Identity inspector to MyCell.

3. Drag a label and an image view into the prototype cell, position and configure
them as desired, and connect the outlets from the cell to the respective subviews.

So far, so good; but there is one crucial question I have not yet answered: how will
you tell the table view to get its cells from the storyboard? The answer is: by not call‐
ing register(_:forCellReuseIdentifier:)! Instead, when you call dequeue-

ReusableCell(withIdentifier:for:), you supply an identifier that matches the
prototype cell’s identifier in the storyboard:

1. If you are calling register(_:forCellReuseIdentifier:) in RootView‐
Controller’s code, delete that line.

2. In the storyboard, select the prototype cell. In the Attributes inspector, enter
Cell (or whatever the string value of self.cellID is) in the Identifier field.

Now RootViewController’s tableView(_:cellForRowAt:) works exactly as it did in
the previous example:

let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath) as! MyCell
let lab = cell.theLabel
let iv = cell.theImageView

When your UITableViewController is to get its cells from the UITableView‐
Controller scene in the storyboard, there are several ways to go wrong. These are all
common beginner mistakes:

Wrong view controller class
In the storyboard, make sure that your UITableViewController’s class, in the
Identity inspector, matches the class of your UITableViewController subclass in
code. If you get this wrong, none of your table view controller code will run.

Wrong cell identifier
In the storyboard, make sure that the prototype cell identifier matches the reuse
identifier in your code’s dequeueReusableCell(withIdentifier:for:) call. If
you get this wrong, your app will crash (with a helpful message in the console).

Table View Cells | 465

Wrong cell class
In the storyboard, make sure that your prototype cell’s class, in the Identity
inspector, is the class you expect to receive from dequeueReusableCell(with-
Identifier:for:). If you get this wrong, your app will crash when the cell can’t
be cast down.

Wrong registration
In your table view controller code, make sure you do not call register(_:for-
CellReuseIdentifier:). If you do call it, you will be telling the runtime not to
get the cell from the storyboard. If you get this wrong by registering a nib, then
(if you’re lucky) your app will crash (with a helpful message in the console). If
you get it wrong by registering a class, your cells might be mysteriously empty
and your app might even crash when you access outlets that have never been
connected.

Table View Data
The structure and content of the actual data portrayed in a table view comes from the
data source, an object pointed to by the table view’s dataSource property and adopt‐
ing the UITableViewDataSource protocol. The data source is the heart and soul of
the table. What surprises beginners is that the data source operates not by setting the
table view’s structure and content, but by responding on demand. The data source,
qua data source, consists of a set of methods that the table view will call whenever it
needs information; in effect, the table view will ask your data source some questions.
This architecture has important consequences for how you write your code, which
can be summarized by these simple guidelines:

Be ready
Your data source cannot know when or how often any of these methods will be
called, so it must be prepared to answer any question at any time.

Be fast
The table view is asking for data in real time; the user is probably scrolling
through the table right now. So you mustn’t gum up the works; you must be
ready to supply responses as fast as possible.

Be consistent
There are multiple data source methods, and you cannot know which one will be
called at a given moment. So you must make sure your responses are mutually
consistent at any moment. A common beginner error is forgetting to take into
account, in your data source methods, the possibility that the data might not yet
be ready.

466 | Chapter 8: Table Views and Collection Views

Another source of confusion for beginners is that methods are rather oddly dis‐
tributed between the data source and the delegate, an object pointed to by the table
view’s delegate property and adopting the UITableViewDelegate protocol; in some
cases, one may seem to be doing the job of the other. This is not usually a cause of
any real difficulty, because the object serving as data source might also be the object
serving as delegate. Nevertheless, it is rather inconvenient when you’re consulting the
documentation; you’ll probably want to keep the data source and delegate documen‐
tation pages open simultaneously as you work.

When you’re using a table view controller with a corresponding table view in the
storyboard (or in a .xib file created at the same time), the table view controller
comes to you already configured as both the table view’s data source and the
table view’s delegate. Creating a table view in some other way, and then forget‐
ting to set its dataSource and delegate, is a common beginner mistake.

The Three Big Questions
Pretend now that you are the data source. Like Katherine Hepburn in Pat and Mike,
the basis of your success is your ability, at any time, to answer the Three Big Ques‐
tions; you must know the answers and be able to recite them at any moment:

How many sections does this table have?
The table will call numberOfSections(in:); respond with an integer. In theory
you can sometimes omit this method, as the default response is 1, which is often
correct. However, I never omit it; for one thing, returning 0 is a good way to say
that you’ve no data yet, and will prevent the table view from asking any other
questions.

How many rows does this section have?
The table will call tableView(_:numberOfRowsInSection:). The table supplies a
section number — the first section is numbered 0 — and you respond with an
integer. In a table with only one section there is probably no need to examine the
incoming section number.

What cell goes in this row of this section?
The table will call tableView(_:cellForRowAt:). The index path is expressed as
an IndexPath; UITableView extends IndexPath to add two read-only properties
— section and row. Using these, you extract the requested section number and
row number, and return a fully configured UITableViewCell, ready for display in
the table view. The first row of a section is numbered 0. I have already explained
how to obtain the cell in the first place, by calling dequeueReusableCell(with-
Identifier:for:) (see Example 8-2).

Table View Data | 467

How you’re going to fulfill these obligations depends on your data model and what
your table is trying to portray. You can acquire and store and arrange your data
whenever and however you like. The important thing is that you’re going to be
receiving an IndexPath specifying a section and a row, and you need to be able to lay
your hands on the data corresponding to that slot now and configure the cell now. So
construct your model, and your algorithm for consulting it in the Three Big Ques‐
tions, in such a way that the data source can access any requested piece of data
instantly.

Suppose our table is to list the names of the Pep Boys. Our table has only one section,
so our data model can be very simple — an array of string names (self.pep). We’re
using a UITableViewController, and it is the table view’s data source. So our code
might look like this:

let pep = ["Manny", "Moe", "Jack"]
override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.pep.count
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath)
 cell.textLabel!.text = pep[indexPath.row]
 return cell
}

At this point you may be feeling some exasperation. You want to object: “But that’s
trivial!” Exactly so! Your access to the data model should be trivial. That’s the sign of
a data model that’s well designed for access by your table view’s data source. Your
implementation of tableView(_:cellForRowAt:) might have some interesting work
to do in order to configure the form of the cell, but accessing the actual data should
be simple and boring.

Above all, your data source methods must be fast. In particular, when table-
View(_:cellForRowAt:) is called, the user is probably scrolling; you have only a few
milliseconds to supply a cell, or else that scrolling will stutter. And the runtime itself
is competing with you for those milliseconds, because even after you provide the cell,
the runtime must perform layout and drawing on it, which are relatively expensive
operations. You may be able to speed up layout and drawing by paying attention to
the suggestions in the last section of Chapter 7. You may be able to obtain the data in
advance of tableView(_:cellForRowAt:) by implementing prefetching in your data
source. If that’s not sufficient, you may have to skip portraying this data in the table,

468 | Chapter 8: Table Views and Collection Views

supply a placeholder, and insert the data into the table later. I’ll give an example in
Chapter 23.

There are two other ways to supply a table view with data; I’ll discuss them later in
this chapter:

• If the table view’s entire structure and contents are known beforehand and won’t
change, you can design it in a storyboard as a static table and omit the Three Big
Questions. See “Cell Choice and Static Tables” on page 491.

• New in iOS 13, you can use a diffable data source to hold the data and answer the
Three Big Questions for you. This is useful especially when the table view’s struc‐
ture and contents can change before the user’s eyes. See “Table View Diffable
Data Source” on page 502.

Reusing Cells
An important goal of tableView(_:cellForRowAt:) is to conserve resources by reus‐
ing cells. As I’ve already explained, once a cell’s row is no longer visible on the screen,
that cell can be slotted into a row that is visible — with its portrayed data appropri‐
ately modified, of course! — so that only a few more than the number of simultane‐
ously visible cells will ever need to be instantiated.

A table view is ready to implement this strategy for you; all you have to do is call
dequeueReusableCell(withIdentifier:for:). For any given identifier, you’ll be
handed either a newly minted cell or a reused cell that previously appeared in the
table view but is now no longer needed because it has scrolled out of view.

To prove to yourself the efficiency of the cell-caching architecture, do something to
differentiate newly instantiated cells from reused cells, and keep track of the newly
instantiated cells, like this:

override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 1000 // make a lot of rows this time!
}
var cells = 0
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath) as! MyCell
 let lab = cell.theLabel!
 lab.text = "Row \(indexPath.row) of section \(indexPath.section)"
 if lab.tag != 999 {
 lab.tag = 999

Table View Data | 469

 self.cells += 1; print("New cell \(self.cells)")
 }
 return cell
}

When we run this code and scroll through the table, every cell is numbered correctly,
so there appear to be 1000 cells. But the console messages show that only about a
dozen distinct cells are ever actually created.

Be certain that your table view code passes that test, and that you are truly reusing
cells! Fortunately, one of the benefits of calling dequeueReusableCell(with-

Identifier:for:) is that it forces you to supply a valid reuse identifier. But it is still
possible to subvert the architecture of cell reuse.

(For instance, you might obtain a cell in some improper way, such as instantiating it
directly every time tableView(_:cellForRowAt:) is called; I have even seen begin‐
ners call dequeueReusableCell(withIdentifier:for:), only to throw away that cell
and instantiate a fresh cell manually in the next line. Don’t do that!)

Forgetting that cells are reused is the single most common beginner mistake associated
with table views. Typically, everything in the table may look fine at first, but then
when the table view is scrolled, incorrect values or incorrect interface will appear in
some of the cells. The reason is that the cell you are configuring for a particular row
in tableView(_:cellForRowAt:) (step 6 in Example 8-2) may already have been
configured for some other row. Therefore you must configure everything about the
cell that might need configuring, with your logic covering every possible case, making
no assumptions about the prior state of the cell. Otherwise, the cell may retain
unwanted state from its previous use in a different row.

As usual, I learned that lesson the hard way. (I was a beginner once!) In the TidBITS
News app, there was a little loudspeaker icon that should appear in a given cell in the
master view’s table view only if a recording was associated with this article. So I ini‐
tially wrote this code:

if item.enclosures != nil && item.enclosures.count > 0 {
 cell.speaker.isHidden = false
}

At first, everything seemed to be fine; but after scrolling the table view up and down a
few times, I ended up with a loudspeaker icon in just about every cell! Do you see
why? Once you start scrolling, your cells are likely to be reused. Based on my code, a
reused cell will always have a visible loudspeaker icon if, in a previous usage, that cell
has ever had a visible loudspeaker icon!

The solution was to rewrite the logic to cover all possibilities completely, like this:

cell.speaker.isHidden =
 !(item.enclosures != nil && item.enclosures.count > 0)

470 | Chapter 8: Table Views and Collection Views

You do get a sort of second bite of the cherry: there’s a delegate method, table-
View(_:willDisplay:forRowAt:), that is called for every cell just before it appears in
the table. This is absolutely the last minute to configure a cell. But don’t misuse this
method. You’re functioning as the delegate here, not the data source; you may set the
final details of the cell’s appearance, but you shouldn’t be consulting the data model
at this point. It is of great importance that you not do anything even slightly time-
consuming in tableView(_:willDisplay:forRowAt:); the cell is literally just milli‐
seconds away from appearing in the interface.

An additional delegate method is tableView(_:didEndDisplaying:forRowAt:). This
tells you that the cell no longer appears in the interface and has become free for reuse.
You could take advantage of this to tear down any resource-heavy customization of
the cell or simply to prepare it somehow for subsequent future reuse.

The table view can maintain more than one cache of reusable cells; this could be use‐
ful if your table view contains more than one type of cell (where the meaning of “type
of cell” is pretty much up to you). This is why you must name each cache by attaching
a reuse identifier string to each cell. All the examples in this chapter (and in this
book, and in fact in every UITableView I’ve ever created) use just one cache and just
one identifier, but there can be more than one. If you’re using a storyboard as a
source of cells, there would then need to be more than one prototype cell.

Table View Sections
Your table data may be grouped into multiple sections. Here are some reasons why
you might do that:

• You want to clump the table cells into groups in the table view.
• You want to display section headers (or footers, or both) in the table view.
• You want to make navigation of the table view easier through an index.
• You want to facilitate rearranging entire portions of the table view contents.

A table that is to have sections may require some planning in the construction and
architecture of its data model. In order to answer the Three Big Questions, you need
to know immediately how many sections your data has and how many rows a given
section has; then, given a section number and a row number, you need to be able to
fetch the data for that row. Clearly a simple array of individual row data, like the
array of strings listing the names of the Pep Boys in our earlier example, is not going
to be sufficient.

A section-based data structure typically needs two levels. A standard minimal
approach is an array of sections, each section containing an array of row data, as
shown in Example 8-3.

Table View Sections | 471

Example 8-3. Section-based data

struct Row {
 // properties pertaining to each row
}
struct Section {
 // properties pertaining to each section
 var rowData : [Row]
}
var sections = [Section]() // data model

Now the Three Big Questions are easy to answer. The number of sections is
self.sections.count. The number of rows in the section numbered section is
self.sections[section].rowData.count. And your implementation of table-
View(_:cellForRowAt:) can index into the section with indexPath.section, and
from there into the row data with indexPath.row:

let data = self.sections[indexPath.section].rowData[indexPath.row]

The details will depend on the exact nature of your data and what you want to por‐
tray in your table. You will very likely want a section-based table view to have section
headers, so I’ll talk about that before giving an example.

Section Headers and Footers
A section header or footer appears between the cells, before the first row of a section
or after the last row of a section, respectively. In a nongrouped table, a section header
or footer detaches itself while the user scrolls the table, pinning itself to the top or
bottom of the table view and floating over the scrolled rows, giving the user a clue, at
every moment, as to where we are within the table. Also, a section header or footer
can contain custom views, so it’s a place where you might put additional information,
or even functional interface, such as a button the user can tap.

Don’t confuse the section headers and footers with the header and footer of the
table as a whole. The latter are properties of the table view itself, its tableHeader-
View and tableFooterView, discussed earlier in this chapter. The table header
view appears only when the table is scrolled all the way down; the table footer
view appears only when the table is scrolled all the way up.

The number of sections is determined by your reply to the first Big Question, number-
OfSections(in:). For each section, the table view will consult your data source and
delegate to learn whether this section has a header or a footer, or both, or neither (the
default).

A section header or footer in the table view will usually be a UITableViewHeader‐
FooterView. This is a UIView subclass intended specifically for this purpose; much
like a table view cell, it is reusable. It has the following properties:

472 | Chapter 8: Table Views and Collection Views

textLabel

A label (UILabel) for displaying the text of the header or footer.

detailTextLabel

This label, if you set its text, appears only in a grouped style table.

contentView

A subview of the header or footer, to which you can add custom subviews.

backgroundView

Any view you want to assign. The contentView is in front of the background-
View. The contentView has a clear background by default, so the background-
View shows through.

If the backgroundView is nil (the default), the header or footer view will supply
its own background view whose backgroundColor is derived (in some unspeci‐
fied way) from the table’s backgroundColor.

Don’t set a UITableViewHeaderFooterView’s backgroundColor; instead, give it a
backgroundView and set that view’s backgroundColor.

There are two ways in which you can supply a header or footer. You can use both, but
it will be less confusing if you pick just one:

Header or footer title string
You implement one or both of these data source methods:

• tableView(_:titleForHeaderInSection:)

• tableView(_:titleForFooterInSection:)

Return nil to indicate that the given section has no header (or footer). The
header or footer view itself is a UITableViewHeaderFooterView, and is reused
automatically. The string you supply becomes the view’s textLabel.text.

(In a grouped style table, the string’s capitalization may be changed. To avoid
that, use the second way of supplying the header or footer.)

Header or footer view
You implement one or both of these delegate methods:

• tableView(_:viewForHeaderInSection:)

• tableView(_:viewForFooterInSection:)

The view you supply is used as the entire header or footer and is automatically
resized to the table’s width and the section header or footer height. (I’ll discuss in
a moment how the height is determined.)

Table View Sections | 473

Designing a Section Header View in the Nib Editor
It would be great to be able to design a table view section header (or footer) view in
the nib editor — but you can’t. That’s because of a massive shortcoming in Xcode:
The nib editor’s Library doesn’t include a UITableViewHeaderFooterView!

The irony is that there’s a UITableView method that would allow you to do this if the
Library included a UITableViewHeaderFooterView. In theory, you can call
register(_:forHeaderFooterViewReuseIdentifier:) to register a nib instead of a
class, just as with a UITableViewCell. But without a UITableViewHeaderFooterView
in the nib, you can never call that method; it is useless.

Some popular “solutions” attempt to circumvent this shortcoming by misusing a
UITableViewCell prototype as a header, or by putting a UIView in a nib and setting
its class in the Identity inspector to be UITableViewHeaderFooterView. Those don’t
work; don’t try them. Until Apple fixes this bug, you can’t design a header or footer
view in a nib and that’s that. A viable workaround is: Design an ordinary UIView in a
nib. Implement the viewFor delegate method to load that nib, obtain the view, and
insert it inside a UITableViewHeaderFooterView’s contentView.

When you implement viewFor..., you are not required to return a UITableView‐
HeaderFooterView, but you should do so. The procedure is much like making a cell
reusable:

1. You register beforehand with the table view by calling register(_:forHeader-
FooterViewReuseIdentifier:) with the UITableViewHeaderFooterView class
or a subclass.

2. To obtain the reusable view, call dequeueReusableHeaderFooterView(with-
Identifier:) on the table view; the result will be either a newly instantiated
view or a reused view.

3. You can then configure this view as desired. You can set its textLabel.text; you
can give its contentView custom subviews. In the latter case, use autoresizing or
constraints to ensure that the subviews will be positioned and sized appropriately
when the view itself is resized.

In addition, these delegate methods permit you to perform final configurations on
your header or footer views:

tableView(_:willDisplayHeaderView:forSection:)

tableView(_:willDisplayFooterView:forSection:)

You can perform further configurations here, if desired. If you generated the
default UITableViewHeaderFooterView by implementing titleFor..., you can

474 | Chapter 8: Table Views and Collection Views

tweak it here. These delegate methods are matched by didEndDisplaying
methods.

The runtime resizes your header or footer before displaying it. Its width will be the
table view’s width; its height will be the table view’s sectionHeaderHeight or
sectionFooterHeight unless you implement one of these delegate methods to say
otherwise:

tableView(_:heightForHeaderInSection:)

tableView(_:heightForFooterInSection:)

Returning 0 (or failing to dictate the height at all) hides the header or footer.

Returning UITableView.automaticDimension means 0 if titleFor... returns
nil or the empty string (or isn’t implemented); otherwise, it means the table
view’s sectionHeaderHeight or sectionFooterHeight.

Starting in iOS 11, you can size a section header or footer from the inside out,
using autolayout constraints. I’ll talk about that later in this chapter.

A header or footer view in a nongrouped table is in front of the table’s cells. More‐
over, when a header or footer view is not pinned to the top or bottom of the table
view, there is a transparent gap behind it. You’ll want to take that into account when
designing your header or footer view.

Table View Section Example
Here’s a simple example to illustrate a table view with sections. Suppose we intend to
display the names of all 50 U.S. states in alphabetical order as the rows of a table view,
and that we wish to divide the table into sections according to the first letter of each
state’s name. We’ll have section headers, each consisting of a single letter of the
alphabet; the cells of each section will list the names of the states that start with that
letter.

Let’s adapt the sectioned data scheme from Example 8-3 to our use case. The only
section-related property we need is the name of the section; the only thing we intend
to display in our table view cells is the name of the state, so the row data for each cell
can be a String:

struct Section {
 var sectionName : String
 var rowData : [String]
}
var sections : [Section]() // data model

Let’s say I have the alphabetized list of state names as a text file, which starts like this:

Table View Sections | 475

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
...

I’ll prepare the data model by loading the text file and parsing it into a Section array:

override func viewDidLoad() {
 super.viewDidLoad()
 let s = try! String(
 contentsOfFile: Bundle.main.path(
 forResource: "states", ofType: "txt")!)
 let states = s.components(separatedBy:"\n")
 let d = Dictionary(grouping: states) {String($0.prefix(1))}
 self.sections = Array(d).sorted{$0.key < $1.key}.map {
 Section(sectionName: $0.key, rowData: $0.value)
 }
 // ...
}

The value of this preparatory dance is evident when we are bombarded with ques‐
tions from the table view about cells and headers; supplying the answers is trivial, just
as it should be:

override func numberOfSections(in tableView: UITableView) -> Int {
 return self.sections.count
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.sections[section].rowData.count
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath)
 let s = self.sections[indexPath.section].rowData[indexPath.row]
 cell.textLabel!.text = s
 return cell
}
override func tableView(_ tableView: UITableView,
 titleForHeaderInSection section: Int) -> String? {
 return self.sections[section].sectionName
}

Let’s modify that example to illustrate creation of a custom header view with table-
View(_:viewForHeaderInSection:). I register my header identifier in viewDidLoad:

476 | Chapter 8: Table Views and Collection Views

let headerID = "Header"
override func viewDidLoad() {
 super.viewDidLoad()
 // ...
 self.tableView.register(UITableViewHeaderFooterView.self,
 forHeaderFooterViewReuseIdentifier: self.headerID)
}

We delete tableView(_:titleForHeaderInSection:) and implement table-

View(_:viewForHeaderInSection:). For completely new views, I’ll place my own
label inside the contentView and give it some basic configuration; then I’ll perform
individual configuration on all views, new or reused:

override func tableView(_ tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView? {
 let h = tableView.dequeueReusableHeaderFooterView(
 withIdentifier: self.headerID)!
 if h.viewWithTag(1) == nil {
 h.backgroundView = UIView()
 h.backgroundView?.backgroundColor = .black
 let lab = UILabel()
 lab.tag = 1
 lab.font = UIFont(name:"Georgia-Bold", size:22)
 lab.textColor = .green
 lab.backgroundColor = .clear
 h.contentView.addSubview(lab)
 // ... add constraints ...
 }
 let lab = h.contentView.viewWithTag(1) as! UILabel
 lab.text = self.sections[section].sectionName
 return h
}

Section Index
If your table view has the plain style, you can add an index down the side of the table,
where the user can tap or drag to jump to the start of a section — helpful for navigat‐
ing long tables. To generate the index, implement the data source method section-
IndexTitles(for:), returning an array of string titles to appear as entries in the
index.

For our list of state names, that’s trivial, just as it should be:

override func sectionIndexTitles(for tv: UITableView) -> [String]? {
 return self.sections.map{$0.sectionName}
}

The index can appear even if there are no section headers. It will appear only if the
number of rows exceeds the table view’s sectionIndexMinimumDisplayRowCount
property value; the default is 0, so the index is always displayed by default. You will

Table View Sections | 477

want the index entries to be short — preferably just one character — because each
cell’s content view will shrink to compensate, so you’re sacrificing some cell real
estate.

You can modify three table view properties that affect the index’s appearance:

sectionIndexColor

The index text color.

sectionIndexBackgroundColor

The index background color. I advise giving the index some background color,
because otherwise the index distorts the colors of what’s behind it in a distracting
way.

sectionIndexTrackingBackgroundColor

The index background color while the user’s finger is sliding over it. By default,
it’s the same as the sectionIndexBackgroundColor.

Normally, there will be a one-to-one correspondence between the index entries and
the sections; when the user taps an index entry, the table jumps to the start of the
corresponding section. But under certain circumstances you may want to customize
this correspondence. Suppose there are 100 sections, but there isn’t room to display
100 index entries comfortably on the iPhone. The index will automatically curtail
itself, omitting some index entries and inserting bullets to suggest the omission, but
you might prefer to take charge of the situation.

To do so, supply a shorter index, and implement the data source method table-
View(_:sectionForSectionIndexTitle:at:), returning the number of the section
to jump to. You are told both the title and the index number of the section index list‐
ing that the user chose, so you can use whichever is convenient.

If the table view has a section index, its scroll indicators will never appear.

Variable Row Heights
Most tables have rows that are all the same height, as set by the table view’s row-
Height. It is possible, though, for different rows to have different heights. You can see
an example in the TidBITS News app (Figure 6-1).

Back when I first wrote my TidBITS News and Albumen apps for iOS 4, variable row
heights were possible but virtually unheard-of; I knew of no other app that was using
them, and Apple provided no guidance, so I had to invent my own technique by trial
and error. There were three main challenges:

478 | Chapter 8: Table Views and Collection Views

Measurement
What should the height of a given row be?

Timing
When should the determination of each row’s height be made?

Layout
How should the subviews of each cell be configured for its individual height?

Over the years since then, implementing variable row heights has become considera‐
bly easier. In iOS 6, with the advent of autolayout, both measurement and layout
became much simpler. In iOS 7, new table view properties made it possible to
improve the timing. Then iOS 8 permitted variable row heights to be implemented
automatically, without your having to worry about any of these problems. Starting in
iOS 11, section header and footer heights can be implemented automatically as well.

I will briefly describe, in historical order, four different techniques that I have used
over the years in my own apps. Perhaps you won’t use any of the first three, because
the automatic row heights feature makes them unnecessary; nevertheless, a basic
understanding of them will give you an appreciation of what the fourth approach is
doing for you. Besides, in my experience, the automatic row heights feature can be
slow; for efficiency and speed, you might want to revert to one of the earlier
techniques.

Manual Row Height Measurement
In its earliest incarnation, my variable row heights technique depends on the dele‐
gate’s tableView(_:heightForRowAt:). Whatever height I return for a given row,
that’s the height that the cell at that row will be given.

The timing is interesting. Before our tableView(_:cellForRowAt:) is called for even
one row, we are sent tableView(_:heightForRowAt:) for every row. In preparation
for this situation, I start with an array of Optional CGFloats stored in a property,
self.rowHeights. (Assume, for simplicity, that the table has just one section, so that
the row number can serve directly as an index into the array.) Initially, all the values
in the array are nil. Once the real values have been filled in, the array can be used to
supply a requested height instantly.

To calculate the cell heights, I have a utility method, setUpCell(_:for:). It takes a
cell and an index path, lays out the cell using the actual data for that row, and returns
(as a CGFloat) the height required for the cell to accommodate that layout.

(Before the days of autolayout, doing the actual work of measurement in setUp-
Cell(_:for:) was laborious; I had to lay out the cell manually, assigning a frame to
each subview, one by one. The main challenge was dealing with labels whose text, and
therefore height, could vary from row to row. I’ll spare you the gory details!)

Variable Row Heights | 479

When the delegate’s tableView(_:heightForRowAt:) is called, either this is the very
first time it has been called or it isn’t. So either we’ve already constructed self.row-
Heights or we haven’t. If we haven’t, we construct it now, by immediately calling the
setUpCell(_:for:) utility method for every row and storing each resulting height in
self.rowHeights. The cell that I’m passing to setUpCell(_:for:) isn’t going into
the table; it’s just a dummy copy of the cell, to give me something to configure and
work out the resulting cell height. From now on, I’m ready to answer table-
View(_:heightForRowAt:) for any row, immediately — all I have to do is return the
appropriate value from the self.rowHeights array:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 let ix = indexPath.row
 if self.rowHeights[ix] == nil {
 let objects = UINib(nibName: "MyCell", bundle: nil)
 .instantiate(withOwner: nil)
 let cell = objects.first as! UITableViewCell
 for ix in 0..<self.rowHeights.count {
 let indexPath = IndexPath(row: ix, section: 0)
 let h = self.setUpCell(cell, for: indexPath)
 self.rowHeights[ix] = h
 }
 }
 return self.rowHeights[ix]!
}

My setUpCell(_:for:) utility is also called by tableView(_:cellForRowAt:), but
now I’m laying out the real cell — and ignoring the returned height value:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath)
 self.setUpCell(cell, for:indexPath)
 return cell
}

Measurement and Layout with Constraints
With autolayout in the picture, constraints are of great assistance. They obviously
perform layout of each cell for us, because that’s what constraints do. But they can
also perform measurement of the height of each cell. If constraints ultimately pin
every subview to the contentView in such a way as to size the contentView height
unambiguously from the inside out, then we simply call systemLayoutSize-

Fitting(_:) on the contentView to learn the resulting height of the cell.

My setUpCell(_:for:) no longer needs to perform any layout, calculate any heights,
or return a value; I hand it a reference to a cell, it puts the data into the cell, and now I

480 | Chapter 8: Table Views and Collection Views

can do whatever I like with that cell. If this is the model cell being used for measure‐
ment in tableView(_:heightForRowAt:), I call systemLayoutSizeFitting(_:) to
get the height:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 let ix = indexPath.row
 if self.rowHeights[ix] == nil {
 let objects = UINib(nibName: "MyCell", bundle: nil)
 .instantiate(withOwner: nil)
 let cell = objects.first as! UITableViewCell
 for ix in 0..<self.rowHeights.count {
 let indexPath = IndexPath(row: ix, section: 0)
 self.setUpCell(cell, for: indexPath)
 let v = cell.contentView // *
 let sz = v.systemLayoutSizeFitting(
 UIView.layoutFittingCompressedSize) // *
 self.rowHeights[ix] = sz.height
 }
 }
 return self.rowHeights[ix]!
}

If this is the real cell generated by dequeuing in tableView(_:cellForRowAt:), I sim‐
ply set up the cell and return it, as before.

Estimated Height
In iOS 7, three new table view properties were introduced:

• estimatedRowHeight

• estimatedSectionHeaderHeight

• estimatedSectionFooterHeight

To accompany those, there are also three table view delegate methods:

• tableView(_:estimatedHeightForRowAt:)

• tableView(_:estimatedHeightForHeaderInSection:)

• tableView(_:estimatedHeightForFooterInSection:)

The idea here is to reduce the amount of time spent calculating row heights at the
outset. If you supply an estimated row height, then when tableView(_:heightFor-
RowAt:) is called repeatedly before the table is displayed, it is called only for the visible
cells of the table; for the remaining cells, the estimated height is used. The runtime
obtains enough information to lay out the entire table very quickly: the only real
heights you have to provide up front are those of the initially visible rows. The down‐
side is that this layout is only an approximation, and will have to be corrected later: as

Variable Row Heights | 481

new rows are scrolled into view, tableView(_:heightForRowAt:) will be called for
those new rows, and the layout of the whole table will be revised accordingly.

In my implementation, the estimated height is set in viewDidLoad (it can alterna‐
tively be set in the nib editor):

self.tableView.estimatedRowHeight = 75

Now in my tableView(_:heightForRowAt:) implementation, when I find that a
requested height value in self.rowHeights is nil, I don’t fill in all the values of
self.rowHeights — I fill in just that one height. It’s simply a matter of removing the
for loop:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 let ix = indexPath.row
 if self.rowHeights[ix] == nil {
 let objects = UINib(nibName: "MyCell", bundle: nil)
 .instantiate(withOwner: nil)
 let cell = objects.first as! UITableViewCell
 let indexPath = IndexPath(row: ix, section: 0)
 self.setUpCell(cell, for: indexPath)
 let v = cell.contentView
 let sz = v.systemLayoutSizeFitting(
 UIView.layoutFittingCompressedSize)
 self.rowHeights[ix] = sz.height
 }
 return self.rowHeights[ix]!
}

Automatic Row Height
Starting in iOS 8, a completely automatic calculation of variable row heights was
introduced. This, in effect, does behind the scenes what I’m doing in table-
View(_:heightForRowAt:) in the preceding code: it relies upon autolayout to calcu‐
late a cell’s height from the inside out based on the constraints of its subviews, and it
performs that calculation and caches a row’s height the first time it is needed, before
it appears on the screen.

To use the automatic row height mechanism, all you have to do is to set the table
view’s estimatedRowHeight — and don’t implement tableView(_:heightForRow-
At:). In some cases, it may be necessary to set the table view’s row height to UITable-
View.automaticDimension as well (again, this can be configured in the nib editor
instead):

self.tableView.rowHeight = UITableView.automaticDimension
self.tableView.estimatedRowHeight = 75

482 | Chapter 8: Table Views and Collection Views

Once I’ve done that, I can adopt this approach in my app just by deleting my table-
View(_:heightForRowAt:) implementation entirely!

Starting in iOS 11, you don’t even have to supply an estimatedRowHeight; it can be
UITableView.automaticDimension as well. Basically, the rule is that if the rowHeight
is UITableView.automaticDimension, then as long as the estimatedRowHeight isn’t
0, you’ll get automatic row heights:

self.tableView.rowHeight = UITableView.automaticDimension
self.tableView.estimatedRowHeight = UITableView.automaticDimension

Also starting in iOS 11, section headers and footers participate in the same variable
height mechanism. If the table view’s sectionHeaderHeight and estimatedSection-
HeaderHeight are both UITableView.automaticDimension, the headers will have
their heights determined by autolayout from the inside out.

New in Xcode 11, if you design a cell or header (or footer) prototype in the nib editor
using autolayout, then once there are sufficient internal constraints to dictate the
height, the prototype in the nib editor will be sized to that height. It’s only a simula‐
tion — the real row height will be calculated at runtime — but it’s better than in
Xcode 10 and before, where the size of the prototype cell in the nib editor was com‐
pletely meaningless.

I have said that adopting automatic row heights allows you to delete your implemen‐
tation of the height delegate method, such as tableView(_:heightForRowAt:). But
you don’t have to delete it, and you don’t have to adopt automatic height calculation
for every row. Whatever your table view’s height settings may be, you can still over‐
ride them for individual rows, headers, or footers with a height delegate method, so
long as the estimatedRowHeight isn’t 0:

• If tableView(_:heightForRowAt:) returns UITableView.automaticDimension,
you’ll get automatic determination of this row’s height, even if the table view’s
rowHeight is absolute.

• If tableView(_:heightForRowAt:) returns an absolute height, that height will be
used for this row, even if the table view’s rowHeight is UITableView.automatic-
Dimension.

You still have to provide an absolute height for the table view’s tableHeaderView and
tableFooterView, by setting its bounds or frame height; its height is not determined
for you by means of internal constraints. (I regard this as a bug.)

The automatic row height mechanism is particularly well suited to cells containing
UILabels whose height will depend upon their text contents, because the label pro‐
vides that height in its intrinsicContentSize. If you want to use the automatic row
height mechanism in conjunction with a custom UIView subclass whose height can
vary, you should make your view behave like a label! Don’t set your view’s height

Variable Row Heights | 483

constraint directly; instead, have your UIView subclass override intrinsicContent-
Size, and set some property on which that override depends:

class MyView : UIView {
 var internalHeight : CGFloat = 200 {
 didSet {
 self.invalidateIntrinsicContentSize()
 }
 }
 override var intrinsicContentSize: CGSize {
 return CGSize(width:300, height:self.internalHeight)
 }
}

Obviously, taking advantage of the automatic row height mechanism is very easy: but
easy does not necessarily mean best. There is also a question of performance. The
four techniques I’ve outlined here run not only from oldest to newest but also from
fastest to slowest. Manual layout is faster than calling systemLayoutSize-

Fitting(_:), and calculating the heights of all rows up front, though it may cause a
longer pause initially, makes scrolling faster for the user because no row heights have
to be calculated while scrolling. You will have to measure and decide which approach
is most suitable.

Also, I said earlier that the cell returned to you from dequeueReusableCell(with-
Identifier:for:) in your implementation of tableView(_:cellForRowAt:) already
has its final size. But if you use automatic row heights, that’s not true, because auto‐
matic calculation of a cell’s height can’t take place until after the cell exists! Any code
that relies on the cell having its final size in tableView(_:cellForRowAt:) will break
when you switch to automatic row heights. You can probably work around this by
moving that code to tableView(_:willDisplay:forRowAt:), where the final cell size
has definitely been achieved.

If you implement tableView(_:heightForRowAt:), don’t make any assumptions
about how many times or how often it will be called. It can be called multiple
times in succession for the same row. Your implementation needs to be as fast
and efficient as possible; if it involves work, cache the results so as not to waste
time doing the same work twice.

Table View Selection
One of the chief purposes of your table view is likely to be to let the user select a cell
by tapping it. Selection of a cell involves a change of state. A table view cell has a nor‐
mal state, a highlighted state (according to its isHighlighted property), and a
selected state (according to its isSelected property). You can change these states
directly, optionally with animation, by calling setHighlighted(_:animated:) or set-
Selected(_:animated:) on the cell; but you don’t want to act behind the table’s

484 | Chapter 8: Table Views and Collection Views

back, so you are more likely to manage selection through the table view, letting the
table view manage and track the state of its cells.

Although selection and highlighting are different states, selection implies highlight‐
ing. When a cell is selected, it propagates the highlighted state down through its sub‐
views by setting each subview’s isHighlighted property if it has one. That is why a
UILabel’s highlightedTextColor applies when the cell is selected. Similarly, a
UIImageView (such as the cell’s imageView) can have a highlightedImage that is
shown when the cell is selected.

By default, being selected will mean that the cell is redrawn with a gray background
view, but you can change this at the individual cell level, as I’ve already explained:
you can change the cell’s selectionStyle or, for full customization, set its selected-
BackgroundView (or multipleSelectionBackgroundView).

In iOS 12 and earlier, a selected cell changes the background color of the content
view and all its subviews to .clear, exposing the selectedBackgroundView or
the default gray. In iOS 13, that no longer happens; a cell with an opaque
contentView background color might give the user no indication that it is
selected.

The user can tap a cell to select it if you have not set the table view’s allows-
Selection property to false. You can also permit the user to select multiple cells; to
do so, set the table view’s allowsMultipleSelection property to true. If the user
taps an already selected cell, by default it stays selected if the table doesn’t allow mul‐
tiple selection, but it is deselected if the table does allow multiple selection.

Managing Cell Selection
Your code can learn and manage the selection through these UITableView properties
and instance methods:

indexPathForSelectedRow

indexPathsForSelectedRows

These read-only properties report the currently selected row(s), or nil if there is
no selection.

Don’t accidentally examine the wrong property! Asking for indexPathFor-
SelectedRow when the table view allows multiple selection gives a result that will
have you scratching your head in confusion. (As usual, I speak from experience.)

selectRow(at:animated:scrollPosition:)

The animation involves fading in the selection, but the user may not see this
unless the selected row is already visible.

Table View Selection | 485

The last parameter dictates whether and how the table view should scroll to
reveal the newly selected row; your choices (UITableView.ScrollPosition)
are .top, .middle, .bottom, and .none. For the first three options, the table view
scrolls (with animation, if the second parameter is true) so that the selected row
is at the specified position among the visible cells. For .none, the table view does
not scroll; if the selected row is not already visible, it does not become visible.

deselectRow(at:animated:)

Deselects the given row (if it is selected); the optional animation involves fading
out the selection. No automatic scrolling takes place.

To deselect all currently selected rows, call selectRow(at:...) with a nil index
path.

Selection is preserved when a selected cell is scrolled off the screen; the row is still
reported as selected, and the cell will still appear selected when it is scrolled back on
screen.

Responding to Cell Selection
Response to user selection is through these table view delegate methods:

• tableView(_:shouldHighlightRowAt:)

• tableView(_:didHighlightRowAt:)

• tableView(_:didUnhighlightRowAt:)

• tableView(_:willSelectRowAt:)

• tableView(_:didSelectRowAt:)

• tableView(_:willDeselectRowAt:)

• tableView(_:didDeselectRowAt:)

The delegate method you’ll be most interested in with regard to selection is table-
View(_:didSelectRowAt:). This is your signal that the user has selected a cell! Your
response will depend upon the purpose of this table view and what selection is sup‐
posed to mean.

Despite their names, the two will methods are actually should methods and expect a
return value:

• Return nil to prevent the selection (or deselection) from taking place.
• Return the same index path to permit the selection (or deselection), or a different

index path to cause a different cell to be selected (or deselected).
The highlight methods arrive first, so you can return false from table-

View(_:shouldHighlightRowAt:) to prevent a cell from being selected. When the

486 | Chapter 8: Table Views and Collection Views

user taps a cell and willSelect is called, then if this table view permits only single
cell selection, willDeselect will be called subsequently for any previously selected
cells.

Here’s an example of implementing tableView(_:willSelectRowAt:). When
allowsSelection is true and allowsMultipleSelection is not, the default behavior
is that if the user taps an already selected row, the selection does not change. We can
alter this so that tapping a selected row deselects it:

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 if tableView.indexPathForSelectedRow == indexPath {
 tableView.deselectRow(at:indexPath, animated:false)
 return nil
 }
 return indexPath
}

A cell’s highlighted state and its selected state are, in fact, two different states, even
though the user doesn’t know the difference between them: whether the cell is high‐
lighted or selected, the cell’s subviews are highlighted and the selectedBackground-
View appears. There are two different states because the user might touch a cell in two
different ways:

The user touches and scrolls
The cell is highlighted, then unhighlighted; the user sees the flash of the selected-
BackgroundView and the highlighted subviews, until the table begins to scroll and
the cell returns to normal.

The user touches and lifts the finger
The cell is highlighted, then selected; the user sees the selectedBackgroundView
and highlighted subviews appear and remain. There is actually a moment in the
sequence where the cell has been highlighted and then unhighlighted and not yet
selected, but the user doesn’t see any momentary unhighlighting of the cell,
because no redraw moment occurs (see Chapter 4).

Navigation from a Table View
A common response to user selection is navigation. A master–detail architecture is
typical: the table view lists things the user can see in more detail, and a tap displays
the detailed view of the tapped thing. On the iPhone, very often the table view will be
in a navigation interface, and you will respond to user selection by creating the detail
view and pushing it onto the navigation controller’s stack.

Here’s the code from my Albumen app that navigates from the list of albums to the
list of songs in the album that the user has tapped:

Table View Selection | 487

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController!.pushViewController(t, animated: true)
}

In a storyboard, when you draw a segue from a UITableViewCell, you are given a
choice of two segue triggers: Selection Segue and Accessory Action. If you create a
selection segue, the segue will be triggered automatically when the user selects a cell;
in this way, you can arrange to push or present another view controller in response to
cell selection without code.

Do not create a selection segue and also implement tableView(_:didSelectRow-
At:) so as to perform a transition (such as calling performSegue). This is a com‐
mon beginner mistake, and can have confusing consequences because you’re
trying to perform two transitions simultaneously when the user taps a cell.

If you’re using a UITableViewController, then by default, whenever the table view
appears, the selection is cleared automatically in viewWillAppear(_:), and the scroll
indicators are flashed in viewDidAppear(_:). You can prevent the automatic clearing
of the selection by setting the table view controller’s clearsSelectionOnViewWill-
Appear to false. You can get a nice effect by implementing deselection in viewDid-
Appear(_:) instead: when the user returns to the table, the row remains momentarily
selected before it deselects itself.

By convention, if selecting a table view cell causes navigation, the cell should be given
an accessoryType (UITableViewCell.AccessoryType) of .disclosureIndicator.
This is a plain gray right-pointing chevron at the right end of the cell. The chevron
itself doesn’t respond to user interaction; it is not a button, but rather a visual cue
that the user can tap the cell to learn more.

Two additional accessoryType settings are buttons:

.detailButton

Drawn as a letter “i” in a circle.

.detailDisclosureButton

Drawn like .detailButton, along with a disclosure indicator chevron to its right.

To respond to the tapping of a detail button, implement the table view delegate’s
tableView(_:accessoryButtonTappedForRowWith:). Alternatively, in a storyboard,
you can Control-drag a connection from a cell and choose an Accessory Action
segue. A common convention is that selecting the cell as a whole does one thing and
tapping the detail button does something else. In Apple’s Phone app, tapping a con‐
tact’s listing in the Recents table places a call to that contact, but tapping the detail
button navigates to that contact’s detail view.

488 | Chapter 8: Table Views and Collection Views

Table View Scrolling and Layout
A UITableView is a UIScrollView, so everything you already know about scroll views
is applicable (Chapter 7). In addition, a table view supplies two convenience methods
for scrolling in code:

• scrollToRow(at:at:animated:)

• scrollToNearestSelectedRow(at:animated:)

One of the parameters is a scroll position, like the scrollPosition parameter for
selectRow, discussed earlier in this chapter.

The following UITableView methods mediate between the table’s bounds coordi‐
nates on the one hand and table structure on the other:

• indexPathForRow(at:)

• indexPathsForRows(in:)

• rect(forSection:)

• rectForRow(at:)

• rectForFooter(inSection:)

• rectForHeader(inSection:)

The table view’s own table header view and table footer view are its direct subviews,
so their positions within the table’s bounds are given by their frames.

If you want to receive UIScrollView delegate messages from the table view, imple‐
ment them in the table view’s delegate. The table view’s delegate is its scroll view dele‐
gate; there is no need to set a scroll view delegate explicitly or adopt
UIScrollViewDelegate formally, because UITableViewDelegate conforms to UIScroll‐
ViewDelegate.

Refreshing a Table View
If you want a table view’s contents to change, you first change the underlying data
and then inform the table view that the data have changed. This causes the table view
to refresh itself; basically, you’re requesting that the Three Big Questions be asked all
over again. At first blush, this seems inefficient; but it isn’t. Remember, in a table that
caches reusable cells, there are no cells of interest other than those actually showing
in the table at this moment. Having worked out the layout of the table through the
section header and footer heights and row heights, the table has to regenerate only
those cells that are actually visible.

You can cause the table data to be refreshed using any of several methods:

Table View Scrolling and Layout | 489

reloadData

The table view will ask the Three Big Questions all over again, including heights
of rows and section headers and footers, and the index, much as when the table
view first appears.

reloadRows(at:with:)

The first parameter is an array of index paths. The table view will ask the Three
Big Questions all over again, including heights, but not index entries. Cells are
requested only for visible cells among those you specify.

reloadSections(_:with:)

The first parameter is an IndexSet. The table view will ask the Three Big Ques‐
tions all over again, including heights of rows and section headers and footers,
and the index. Cells, headers, and footers are requested only for visible elements
of the sections you specify.

The latter two methods can perform animations that cue the user as to what’s chang‐
ing. For the with: argument, you’ll specify what animation you want by passing one
of the following (UITableView.RowAnimation):

.fade

The old fades into the new.

.right, .left, .top, .bottom
The old slides out in the stated direction, and is replaced from the opposite
direction.

.middle

Hard to describe; it’s a sort of venetian blind effect on each cell individually.

.automatic

The table view just “does the right thing.” This is especially useful for grouped
style tables, because if you pick the wrong animation, the display can look very
funny as it proceeds.

.none

No animation.

If all you need is to refresh the index, call reloadSectionIndexTitles; this calls the
data source’s sectionIndexTitles(for:).

Calling a reload method deselects any affected cells; calling reloadData dese‐
lects all selected cells. Calling reloadData, and then calling indexPathFor-
SelectedRow and wondering what happened to the selection, is a common
beginner mistake.

490 | Chapter 8: Table Views and Collection Views

Call reloadData whenever the model data has changed and you want to alert the
table view to that fact. The usual scenario in my own apps is that the data may take
time to assemble or prepare.

My Albumen app consists of a table view controller whose table view lists the albums
in the user’s music library. Gathering that data takes time. Therefore I must instanti‐
ate the table view controller first and gather the data later, because if we pause to
gather the data before instantiating the table view controller, the app will take too
long to launch — the delay will be perceptible, and we might even crash (because iOS
forbids long launch times). Therefore the data properties that will be used to populate
the table view are all Optionals; they are set to nil until the data are gathered, at
which time they are assigned their “real” values:

class RootViewController : UITableViewController {
 var albums : [MPMediaItemCollection]?
 override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.albums?.count ?? 0
 }
 // ...
}

When the app launches and the table view appears, the table view turns to the table
view controller and asks the Three Big Questions. My implementation of table-
View(_:numberOfRowsInSection:) sees that albums is nil and returns 0 — and so
the table is initially empty. Meanwhile, the data are being gathered. After gathering
the data, I call reloadData tell my table view to ask the Three Big Questions again.
This time, albums is not nil, but rather consists of actual data — and this time, table-
View(_:numberOfRowsInSection:) returns the count of the albums array, and table-
View(_:cellForRowAt:) is called to populate the table.

Cell Choice and Static Tables
As a further example of using reloadData, I’ll implement the interface shown in
Figure 8-3. The idea here is to give the user a choice among cells, where a section of a
table effectively functions as an iOS equivalent of macOS radio buttons, with an
accessoryType of .checkmark to indicate the current choice. My table view has a
grouped style (it looks particularly nice with the .insetGrouped style, new in iOS 13),
and consists of two sections. The first section, with a “Size” header, has three mutu‐
ally exclusive choices: “Easy,” “Normal,” or “Hard.” The second section, with a
“Style” header, has two choices: “Animals” or “Snacks.”

This table’s entire contents, except for the checkmark, are known beforehand and
won’t change. It is, in effect, a static table. If we’re using a UITableViewController
subclass instantiated from a storyboard, the nib editor lets us design a static table,
including the headers and the cells and their content, directly in the storyboard. Select

Refreshing a Table View | 491

Figure 8-7. Designing a static table in the storyboard editor

the table and set its Content pop-up menu in the Attributes inspector to Static Cells
to make the table editable in this way (Figure 8-7).

When you’re using a static table, you are still free to implement table view data
source and delegate methods, provided you cooperate with what the static table is
already doing for you. This is useful when you’ll have relevant information at run‐
time that you don’t have while designing the storyboard. You can implement table-
View(_:cellForRowAt:), but your implementation must not dequeue a cell
explicitly; instead, obtain the cell by calling super. Now you can add runtime modifi‐
cations to the cell.

I’ll add the checkmarks to our static table by implementing tableView(_:cellForRow-
At:) to set the cell’s accessoryType. Note the call to super, as well as the call to
tableView(_:titleForHeaderInSection:) to learn the title of the current section.
The user defaults will store the current choice in each of the two categories; in both
cases, the key is the section title and the value is the label text of the chosen cell:

override func tableView(_ tv: UITableView,
 cellForRowAt ix: IndexPath) -> UITableViewCell {
 let cell = super.tableView(tv, cellForRowAt:ix)
 let ud = UserDefaults.standard
 cell.accessoryType = .none
 if let title = self.tableView(
 tv, titleForHeaderInSection:ix.section) {
 if let label = ud.object(forKey:title) as? String {
 if label == cell.textLabel!.text {
 cell.accessoryType = .checkmark
 }
 }
 }
 return cell
}

492 | Chapter 8: Table Views and Collection Views

The position of the checkmark needs to change in response to the user tapping a cell.
When the user taps a cell, the cell is selected. I want the user to see that selection
momentarily, as feedback, but then I want to deselect, adjusting the checkmarks so
that that cell is the only one checked in its section. In tableView(_:didSelectRow-
At:), I set the user defaults, and then I reload the table view’s data. This removes the
selection and causes tableView(_:cellForRowAt:) to be called to adjust the
checkmarks:

override func tableView(_ tv: UITableView, didSelectRowAt ix: IndexPath) {
 let ud = UserDefaults.standard
 let setting = tv.cellForRow(at:ix)!.textLabel!.text
 let header = self.tableView(tv, titleForHeaderInSection:ix.section)!
 ud.setValue(setting, forKey:header)
 tv.reloadData()
}

Direct Access to Cells
It is also possible to access and alter a table’s individual cells directly. This can be a
lightweight approach to refreshing the table, plus you can supply your own anima‐
tion within the cell as it alters its appearance. But don’t forget that the cells are not
the data! If you change the content of a cell manually, make sure that you have also
changed the model corresponding to it, so that the row will appear correctly if its data
is reloaded later. Do not change the display of a table cell directly without also chang‐
ing the underlying data! The “source of truth” for a table view is the data, not the
transient appearance of the cells. Be sure to design your data model and your imple‐
mentation of tableView(_:cellForRowAt:) to accommodate any real-time changes
you’ll need to make.

When accessing a cell directly, you’ll probably want to check first that the cell is visi‐
ble within the table view’s bounds; nonvisible cells don’t really exist (except as poten‐
tial cells waiting in the reuse cache), and there’s no point changing them manually, as
they’ll be configured in accordance with the data model when they are scrolled into
view, through the usual call to tableView(_:cellForRowAt:).

Here are some UITableView properties and methods that mediate between cells,
rows, and visibility:

visibleCells

An array of the cells actually showing within the table’s bounds.

indexPathsForVisibleRows

An array of the rows actually showing within the table’s bounds.

Refreshing a Table View | 493

cellForRow(at:)

Returns a UITableViewCell if the table is maintaining a cell for the given row
(typically because this is a visible row); otherwise, returns nil.

indexPath(for:)

Given a cell obtained from the table view, returns the row into which it is slotted.

By the same token, you can get access to the views constituting headers and footers,
by calling headerView(forSection:) or footerView(forSection:). You should
assume that if a section is returned by indexPathsForVisibleRows, its header or
footer might be visible.

Refresh Control
If you want to grant the user some interface for requesting that a table view be
refreshed, you might like to use a UIRefreshControl. You aren’t required to use this;
it’s just Apple’s attempt to provide a standard interface.

To give a table view a refresh control, assign a UIRefreshControl to the table view’s
refreshControl property; this property is actually inherited from UIScrollView. You
can also configure this in the nib editor through a table view controller’s Refreshing
pop-up menu in the Attributes inspector.

To request a refresh, the user scrolls the table view downward to display the refresh
control and holds long enough to indicate that this scrolling is deliberate. The refresh
control then acknowledges visually that it is refreshing, and remains visible until
refreshing is complete.

The refresh control is normally displayed at the top of the scrolling part of the table
view. Starting in iOS 11, if we’re in a navigation interface (UINavigationController)
with a navigation bar that displays large titles, the refresh control appears in the navi‐
gation bar, which stretches to accommodate it when visible; for this to work properly,
it is crucial that the table view should underlap the navigation bar.

A refresh control is a control (UIControl, Chapter 12), and you will want to hook its
Value Changed event to an action method; you can do that in the nib editor by mak‐
ing an action connection, or you can do it in code:

self.tableView.refreshControl = UIRefreshControl()
self.tableView.refreshControl!.addTarget(
 self, action: #selector(doRefresh), for: .valueChanged)

Once a refresh control’s action message has fired, the control remains visible and
indicates by animation (similar to an activity indicator) that it is refreshing, until you
send it the endRefreshing message:

494 | Chapter 8: Table Views and Collection Views

@IBAction func doRefresh(_ sender: Any) {
 // ...
 (sender as! UIRefreshControl).endRefreshing()
}

You can initiate a refresh animation in code with beginRefreshing, but this does not
fire the action message. It also doesn’t display the refresh control; to display it, scroll
the table view:

self.refreshControl!.sizeToFit()
let top = self.tableView.adjustedContentInset.top
let y = self.refreshControl!.frame.maxY + top
self.tableView.setContentOffset(CGPoint(0, -y), animated:true)
self.refreshControl!.beginRefreshing()
self.doRefresh(self.refreshControl!)

(The sizeToFit call works around a bug where the refresh control may otherwise
report its own frame height as less than 1 point.)

A refresh control also has these properties:

isRefreshing (read-only)
Whether the refresh control is refreshing.

tintColor

The refresh control’s color. It is not inherited from the view hierarchy (I regard
this as a bug).

attributedTitle

Styled text displayed below the refresh control’s activity indicator. On attributed
strings, see Chapter 10.

backgroundColor (inherited from UIView)
If you give a table view controller’s refreshControl a background color, that
color completely covers the table view’s own background when the refresh con‐
trol is revealed.

The attributedTitle sometimes fails to appear unless the refresh control has a
background color (I regard this as a bug); on the other hand, a refresh control back‐
ground color that’s different from the table view’s own background can ruin the
entire look of the refresh control. A good compromise is to give the table view and
the refresh control the same background color.

Editing a Table View
A table view cell has a normal state and an editing state, according to its isEditing
property. The editing state (or edit mode) is typically indicated visually by one or
more of the following:

Editing a Table View | 495

Editing controls
At least one editing control will usually appear, such as a Minus button (for dele‐
tion) at the left side.

Shrinkage
The content of the cell will usually shrink to allow room for an editing control. If
there is no editing control, you can prevent a cell shifting its left end rightward in
edit mode with the delegate’s tableView(_:shouldIndentWhileEditingRowAt:).

Changing accessory view
The cell’s accessory view will change automatically in accordance with its
editingAccessoryType or editingAccessoryView. If you assign neither, so that
they are nil, the cell’s existing accessory view will vanish when in edit mode.

You could set a cell’s isEditing property directly, but you don’t want to act behind
the table’s back, so you are more likely to let the table view manage editability. Table
view editability is controlled through the table view’s isEditing property, usually by
sending the table the setEditing(_:animated:) message. The table responds by
changing the edit mode of its cells.

Toggling a Table View’s Edit Mode
Putting the table into edit mode is usually left up to the user. A typical interface
would be an Edit button that the user can tap. In a navigation interface, we might
have our view controller supply the button as a bar button item in the navigation bar:

let b = UIBarButtonItem(barButtonSystemItem: .edit,
 target: self, action: #selector(doEdit))
self.navigationItem.rightBarButtonItem = b

Our action method will be responsible for putting the table into edit mode, so in its
simplest form it might look like this:

@objc func doEdit(_ sender: Any) {
 self.tableView.setEditing(true, animated:true)
}

But now we face the problem of getting out of edit mode. The standard interface is
that the Edit button replaces itself with a Done button; the same button, either Edit or
Done, now switches the table view into or out of edit mode:

@objc func doEdit(_ sender: Any) {
 var which : UIBarButtonItem.SystemItem
 if !self.tableView.isEditing {
 self.tableView.setEditing(true, animated:true)
 which = .done
 } else {
 self.tableView.setEditing(false, animated:true)
 which = .edit

496 | Chapter 8: Table Views and Collection Views

 }
 let b = UIBarButtonItem(barButtonSystemItem: which,
 target: self, action: #selector(doEdit))
 self.navigationItem.rightBarButtonItem = b
}

But it turns out that all of that is completely unnecessary; if we want standard behav‐
ior, it’s already implemented for us! A UIViewController has an editButtonItem
property, which vends a bar button item that does precisely what we need:

• It calls the UIViewController’s setEditing(_:animated:) when tapped.
• It tracks the UIViewController’s isEditing property, and changes its own title

accordingly (Edit or Done).
Moreover, UITableViewController’s implementation of setEditing(_:animated:)
is to call setEditing(_:animated:) on its table view. So if we’re using a UITable‐
ViewController, we get all of the desired behavior for free, just by retrieving the edit-
ButtonItem and inserting the resulting button into our interface:

self.navigationItem.rightBarButtonItem = self.editButtonItem

When the table view enters edit mode, it consults its data source and delegate about
the editability of individual rows:

tableView(_:canEditRowAt:) to the data source
The default is true. The data source can return false to prevent the given row
from entering edit mode.

tableView(_:editingStyleForRowAt:) to the delegate
Each standard editing style corresponds to a control that will appear in the cell.
The choices (UITableViewCell.EditingStyle) are:

.delete

The cell shows a Minus button at its left end. The user can tap this to sum‐
mon a Delete button, which the user can then tap to confirm the deletion.
This is the default.

.insert

The cell shows a Plus button at its left end; this is usually taken to be an
insert button.

.none

No editing control appears.

If the user taps an insert button (the Plus button) or a delete button (the Delete but‐
ton that appears after the user taps the Minus button), the data source is sent the
tableView(_:commit:forRowAt:) message. That’s where the actual insertion or dele‐
tion needs to happen. I’ll talk more about that in a moment.

Editing a Table View | 497

Edit Mode and Selection
When a table view is in edit mode, a cell can be selected by the user if the table view’s
allowsSelectionDuringEditing is true. (The default is false.)

If both allowsSelectionDuringEditing and allowsMultipleSelectionDuring-

Editing are true, the user can select multiple cells when the table view is in edit
mode. In that case, tableView(_:editingStyleForRowAt:) is ignored; neither a
Minus button nor a Plus button will appear at the left end of any cell. Instead, a cell
shows an empty circle at its left end, which will be filled with a checkmark if the cell is
selected.

The empty circle and checkmark can be suppressed for an individual cell if table-
View(_:canEditRowAt:) for that cell returns false. The user can still select a cell for
which the empty circle is suppressed, unless selection for that cell is also suppressed
by tableView(_:willSelectRowAt:).

New in iOS 13, if multiple selection during editing is enabled, the user can select mul‐
tiple cells with a gesture, panning across cells with two fingers, when the table view is
in edit mode. Moreover, a delegate method lets the user perform multiple selection
with this panning gesture even if the table view is not in edit mode:

tableView(_:shouldBeginMultipleSelectionInteractionAt:)

Consulted only if both allowsSelectionDuringEditing and allowsMultiple-
SelectionDuringEditing are true, and when the table view is not in edit mode.
Return true to permit multiple selection with the panning gesture. The default is
false. If true, then as the gesture begins, the table enters edit mode and the cir‐
cles appear.

(If the table view controller’s editButtonItem is displayed, it does not change
modes automatically at that moment; I regard that as a bug. You can work
around it by calling self.setEditing(true, animated: true) before returning
true.)

Two more delegate methods, also new in iOS 13, report that the user is changing a
multiple selection:

tableView(_:didBeginMultipleSelectionInteractionAt:)

tableViewDidEndMultipleSelectionInteraction(_:)

Sent at the beginning and end, respectively, of a change in a multiple selection.
This might be due to a multiple selection gesture or to tapping rows individually.

Changing a Table View’s Structure
When you want to alter the structure of the table before the user’s eyes, you can call
one or more of the following UITableView methods:

498 | Chapter 8: Table Views and Collection Views

• insertRows(at:with:)

• deleteRows(at:with:)

• insertSections(_:with:)

• deleteSections(_:with:)

• moveSection(_:toSection:)

• moveRow(at:to:)

The with: parameters are row animations that are effectively the same ones dis‐
cussed earlier in connection with refreshing table data. For an insertion, .left means
to slide in from the left, and for a deletion it means to slide out to the left. The two
move methods provide animation with no provision for customizing it.

Before you change the table with these commands, you must first change the data
model, so that when the changes are over, the table view can coherently refresh itself.
Before you delete a row, you must first remove from the model the datum that it rep‐
resents — and so on, for any structural change. Coordinating between the state of the
data model and the state of the table view can be tricky. The runtime will alert you
with error messages if you do it incorrectly.

A further difficulty arises when multiple changes are to be made in a single move. If
you were to delete row 1 of a certain section and then row 2 of the same section, you
might reasonably worry that the notion “row 2” would have changed its meaning
after row 1 is removed, so that you might need to delete row 1 twice, or change the
order of your deletions.

To help with this problem, there’s a UITableView instance method, performBatch-
Updates(_:completion:). When you issue any commands that alter a table view’s
structure, you should do so inside a call to that method! It takes two functions, simi‐
lar to an animation: the first function contains the commands and their animations,
and the second function is a completion function that will be called after the anima‐
tions have finished.

Combining multiple commands into a single batch update ensures that those com‐
mands are coherent. When there are multiple commands, the batch reorders them
for you and interprets them correctly:

• If you perform insertions and deletions, the deletions are performed first.
• If you perform multiple deletions, they are performed in reverse index order, and

the indexes refer to the state of the table before the deletions.
• If you perform insertions, they are performed in ascending index order, and the

indexes refer to the state of the table after the deletions.

Editing a Table View | 499

• If you perform moves, they are decomposed into deletions and insertions; the
source index refers to the state of the table before the deletions, while the destina‐
tion index refers to the state of the table after the deletions.

(A batch update can also include reloadRows and reloadSections commands — but
not reloadData.)

But the help that performBatchUpdates gives you does not apply to the commands
with which you alter your data model. When you alter the data model, you need to
behave like the batch update engine! Otherwise you can crash, or wind up with your
data model in an incoherent state.

Deleting a Cell
The simplest case of editing a table view’s structure is deletion of a single cell. In
effect, deletion of cells is the default, because:

• If you don’t implement tableView(_:canEditRowAt:), the default for all rows is
that they are editable.

• If you don’t implement tableView(_:editingStyleForRowAt:), the default edit‐
ing style for all rows is .delete.

What you do need to implement is tableView(_:commit:forRowAt:). You then get
two features automatically:

Minus button and Delete button
If the table view is in edit mode, all editable cells get a Minus button at the left
end, and if the user taps it, the cell displays a Delete button at the right end. If the
user taps the Delete button, tableView(_:commit:forRowAt:) is called with
the .delete action.

Swipe-to-delete
All editable cells permit swipe-to-delete when the table view is not in edit mode.
The user can swipe left on a cell and the Delete button appears; if the user taps
the Delete button, or if the user keeps swiping left, tableView(_:commit:forRow-
At:) is called with the .delete action.

You can customize the Delete button’s title with the table view delegate method
tableView(_:titleForDeleteConfirmationButtonForRowAt:).

Let’s modify our table of state names so that the user can delete any cell. All we have
to do is implement tableView(_:commit:forRowAt:) to get swipe-to-delete. In that
implementation, we proceed in two stages. First, we remove the deleted row — from
the data and then from the table. Second, if the deletion of that row emptied a sec‐
tion, we remove the deleted section — from the data and then from the table:

500 | Chapter 8: Table Views and Collection Views

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCell.EditingStyle,
 forRowAt ip: IndexPath) {
 switch editingStyle {
 case .delete:
 tableView.performBatchUpdates({
 self.sections[ip.section].rowData.remove(at:ip.row)
 tableView.deleteRows(at:[ip], with: .automatic)
 if self.sections[ip.section].rowData.count == 0 {
 self.sections.remove(at:ip.section)
 tableView.deleteSections(
 IndexSet(integer: ip.section), with:.fade)
 }
 })
 default: break
 }
}

We can also allow the user to delete a row when the table view is in edit mode. All we
have to do is provide the user with a way to get the table view into edit mode! If the
table view is managed by a table view controller in a navigation interface, we can
simply supply the built-in Edit button:

self.navigationItem.rightBarButtonItem = self.editButtonItem

The user can now tap the Edit button to put the table view into edit mode, tap a row’s
Minus button to reveal the Delete button, and tap the Delete button to delete the row.

An interesting question is how to turn swipe-to-delete off while still allowing the user
to delete rows when the table view is in edit mode. We get swipe-to-delete “for free”
by virtue of our having supplied an implementation of tableView(_:commit:forRow-
At:), and we cannot remove that implementation — we need it so that when the user
taps the Minus button and the Delete button in edit mode, deletion actually occurs.
One solution is to make all rows noneditable unless the table view is already in edit
mode:

override func tableView(_ tableView: UITableView,
 editingStyleForRowAt indexPath: IndexPath)
 -> UITableViewCell.EditingStyle {
 return tableView.isEditing ? .delete : .none
}

Deleting Multiple Cells
Now let’s talk about deletion of multiple cells. A reasonable interface would be to
allow the user to perform multiple selection and then delete the selected cells. If we
allow multiple selection in edit mode, or if we permit two-finger panning to perform
multiple selection, we get the circles that are filled with checkmarks as the user selects
cells — but we don’t get any Minus editing controls, so there will have to be a Delete
button elsewhere to act upon the current selection.

Editing a Table View | 501

What should that button do? We can easily learn the index paths of the selected rows.
Using those index paths, we’ll delete the corresponding rows — from the data and
then from the table. Now we’ll look to see if any sections in the data model are empty.
If they are, we’ll delete those sections — from the data and then from the table.

If we do all that in a performBatchUpdates call, we don’t have to worry about the
order in which we delete rows and sections from the table view. But we do have to
worry about the order in which we delete items from our data model!

Suppose a section’s rowData has four elements and the selected rows include that sec‐
tion’s row 0 and row 3. If we delete element 0 and then element 3, we’ll crash —
because after deleting element 0, there is no longer an element 3. Similarly, if we want
to delete sections 1 and 2, and we start by deleting self.sections[1], the section we
were calling 2 has become the new self.sections[1]; if we delete
self.sections[2], either we’ll crash (if there aren’t enough sections) or we’ll delete
the wrong section. The solution is to ensure that all deletions are performed in
reverse index order, higher elements first:

guard let sel = self.tableView.indexPathsForSelectedRows else {return}
self.tableView.performBatchUpdates({
 for ip in sel.sorted().reversed() { // *
 self.sections[ip.section].rowData.remove(at:ip.row)
 }
 self.tableView.deleteRows(at:sel, with: .automatic)
 let secs = self.sections.indices.filter {
 self.sections[$0].rowData.count == 0
 }
 for sec in secs.reversed() { // *
 self.sections.remove(at:sec)
 }
 self.tableView.deleteSections(IndexSet(secs), with: .fade)
})

Table View Diffable Data Source
Even a fairly simple structural rearrangement of a table view, such as deleting multi‐
ple rows, is beset with pitfalls, as the preceding example demonstrates. We have to
call performBatchUpdates; we have to delete from the data model before deleting
physical rows or sections from the table view; and we have to be careful about the
order of operations when changing the data model. If the desired rearrangement is
more elaborate, involving both deletions and insertions or moving rows from place to
place, the complexity increases. The procedures are delicate and tedious; the code is
difficult to write and difficult to read.

That’s the motivation behind an alternative data source architecture, new in iOS 13
— the diffable data source.

502 | Chapter 8: Table Views and Collection Views

In this architecture, the data source is a special class of object that maintains a special
relationship with the table view. You don’t have to answer the Three Big Questions;
you don’t have to query your data. Instead, you supply the data, and the data source
automatically feeds it to the table view for you. And when you change the data in
your data source, the data source knows the difference between the new data and the
old data — hence the term diffable — and automatically performs the corresponding
changes in the table view, with appropriate animations!

For this to work, the data — both section data and row data — must be Hashable.
This allows the data to be queried efficiently. And that means that each piece of sec‐
tion data and each piece of row data must be unique. Hashable implies Equatable;
two pieces of data that are equal to one another will be seen as the same piece of data,
and cannot go into two different rows or two different sections.

(For this reason, the diffable data source is considered to contain, not actual data, but
identifiers, called the section identifiers and the item identifiers. Both a table view and
a collection view can have a diffable data source; so a diffable data source uses the
term item rather than row, because that’s the term a collection view uses.)

In practice, this will not prove to be much of a restriction. Making your section data
and row data types Hashable will probably be easy. If your data type is a struct, most
likely either it is Hashable already or you can make it Hashable just by declaring con‐
formance to Hashable.

The only difficulty arises if there is a danger of duplication. Suppose your row data is
just a name, which is a String. And suppose the strings for two different rows might
be the same. Then a mere String cannot be your row data type, because values for
different rows need to be unique. Instead, turn your data into a struct that associates
the string with a unique identifier, and base your conformance to Equatable and
Hashable on that identifier:

struct RowData : Hashable {
 let name : String
 let uid = UUID()
 static func ==(lhs:RowData, rhs:RowData) -> Bool {
 return lhs.uid == rhs.uid
 }
 func hash(into hasher: inout Hasher) {
 hasher.combine(uid)
 }
}

The diffable data source architecture revolves around two objects: a data source (a
UITableViewDiffableDataSource) and a snapshot (an NSDiffableDataSourceSnap‐
shot). These are generic types, parameterized on the section identifier type and the
item identifier type. The data source has a reference to the table view, and it keeps the
table view updated with its data. But its data is immutable; you cannot directly set it

Table View Diffable Data Source | 503

or change it. Instead, when you want to alter the data source’s data, either to populate
it initially or to change it, you create a snapshot and apply the snapshot to the data
source (and you then let the snapshot go out of existence). The data source can calcu‐
late the difference between its existing data and the snapshot’s data, and can make the
table view animate that change.

A question that arises when you use a diffable data source is where the “real” data will
live:

Separately
You maintain the data separately (probably in an instance property). You struc‐
ture the data in any way that’s convenient and appropriate. Each time you want
to change what the table view displays, you construct a snapshot based on the
data and apply it to the data source.

In the data source itself
There is no data instance property other than the data source itself. To change
the table’s data, you obtain a snapshot from the data source, change it, and apply
it to the data source.

I prefer the second approach wherever possible; after all, the data source is going to
store internally whatever data we hand it, so why bother storing another version of
the same data elsewhere? Nevertheless, sometimes the first approach will be better —
as when the data might at any time be updated automatically through some inde‐
pendent or asynchronous mechanism.

Populating a Diffable Data Source
To populate a table view with a diffable data source requires two steps:

1. Initialize a UITableViewDiffableDataSource instance with your table view; in
response, the table view’s dataSource is set automatically to this instance. Retain
the instance, typically as an instance property.

2. Create an NSDiffableDataSourceSnapshot and feed it your section and row data
(the section identifiers and item identifiers). Apply the snapshot to the data
source. You can now release the snapshot; it has done its work.

Let’s rewrite our table of state names to use a diffable data source. Keep in mind that
there are no longer any Three Big Questions! We may have a UITableView‐
Controller, but it is not the table view’s data source and it does not implement any
data source methods. The diffable data source is going to be the table view’s data
source.

We have, as you remember, an alphabetized list of state names as a text file. Previ‐
ously, we prepared the data model in viewDidLoad by parsing that text file into an
instance property called self.sections, which is an array of Section structs. Now we

504 | Chapter 8: Table Views and Collection Views

don’t need self.sections, and we don’t need any Section struct! Instead, we have an
instance property I’ll call self.datasource, which is a UITableViewDiffableData‐
Source.

I’m going to describe the two steps in reverse order. So pretend for now that
self.datasource has already been declared and initialized; I’ll return to that in a
moment.

Our section data is a letter of the alphabet, and our row data consists of just the name
of a state. Both the letters and the state names are unique, and they are Strings, a
Hashable type. So the data source’s parameterized types can be simply <String,
String>.

Here’s how we previously parsed the text file into an array of Section objects:

let s = try! String(
 contentsOfFile: Bundle.main.path(
 forResource: "states", ofType: "txt")!)
let states = s.components(separatedBy:"\n")
let d = Dictionary(grouping: states) {String($0.prefix(1))}
self.sections = Array(d).sorted{$0.key < $1.key}.map { // *
 Section(sectionName: $0.key, rowData: $0.value)
}

We now remove the last statement, where we assign into self.sections. Instead, we
create an NSDiffableDataSourceSnapshot and parse the text file into that. We then
apply the snapshot to self.datasource:

let sections = Array(d).sorted{$0.key < $1.key} // *
var snap = NSDiffableDataSourceSnapshot<String,String>()
for section in sections {
 snap.appendSections([section.0])
 snap.appendItems(section.1)
}
self.datasource.apply(snap, animatingDifferences: false)

The structure of that code is typical. We are giving the data source its initial data, so
we start with an empty snapshot. We then append a section and its items, then
another section and its items, and so on. There is a method appendItems(_:to-
Section:), but we don’t have to use it here, because there’s a convenient shortcut:
when we call appendItems, those items are appended to the most recently appended
section.

Finally, we apply the snapshot to the data source. The apply method takes three
parameters, two of which can be omitted:

• apply(_:animatingDifferences:completion:)

Table View Diffable Data Source | 505

If we don’t set animatingDifferences: to false, we’ll get animation. But we don’t
want any animation here, as the table view is about to appear for the first time and we
want it simply to appear populated.

Now I’ll go back and write the declaration for self.datasource. The initializer for
UITableViewDiffableDataSource takes two parameters: the table view, and a func‐
tion. I’ll start by writing the declaration without the function body. I’ll make
datasource a lazy instance property so that its initializer can legally refer to the table
view, which is also an instance property:

lazy var datasource =
 UITableViewDiffableDataSource(tableView:self.tableView) {
 // ...
}

What goes into the anonymous function body? Basically, the function must do what
tableView(_:cellForRowAt:) would do: it must dequeue, populate, and return a
cell. The function receives the same two parameters as tableView(_:cellForRowAt:)
— the table view and an index path. But it also receives a third parameter — the data
for this row! There is no need to use the index path to look up the cell data in an
array; the index path is needed only to dequeue the cell:

lazy var datasource =
 UITableViewDiffableDataSource(tableView:self.tableView) { tv, ip, s in
 let cell =
 tv.dequeueReusableCell(withIdentifier: self.cellID, for: ip)
 cell.textLabel!.text = s
 return cell
}

That is sufficient to make our table view display a list of state names! But the list is
not visibly divided into sections; it has no section headers. How we generate section
headers depends on whether we want to call tableView(_:titleForHeaderIn-
Section:) or tableView(_:viewForHeaderInSection:).

Previously, we were using tableView(_:viewForHeaderInSection:); let’s go on
using it. It’s a delegate method. Our table view’s data source has changed, but its dele‐
gate has not. If the UITableViewController was the table view’s delegate, it can still be
the table view’s delegate. And the code remains almost exactly the same as before.
Here’s how it looked previously:

override func tableView(_ tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView? {
 let h = tableView.dequeueReusableHeaderFooterView(
 withIdentifier: self.headerID)!
 // ...

506 | Chapter 8: Table Views and Collection Views

 let lab = h.contentView.viewWithTag(1) as! UILabel
 lab.text = self.sections[section].sectionName // *
 return h
}

Only the starred line needs to change. It refers to self.sections, the Section array.
There is no longer any self.sections! The data lives inside self.datasource. To
access it, we ask self.datasource for a snapshot; now we can interrogate the data:

lab.text = self.datasource.snapshot().sectionIdentifiers[section]

In that line, we’re working around an impedance mismatch. The diffable data source
and the snapshot can access identifiers in terms of the identifier itself — that’s why
identifiers are unique and Hashable. But tableView(_:viewForHeaderInSection:)
knows nothing of that; it provides a section number. So we end up indexing into the
section identifier array, much as we would have done before diffable data sources
existed.

Subclassing a Diffable Data Source
When you’re using a diffable data source, the table view’s dataSource is now a
UITableViewDiffableDataSource. This means that any UITableViewDataSource
functionality not implemented automatically by the UITableViewDiffableDataSource
must be implemented explicitly by subclassing. Our self.datasource instance prop‐
erty must now be an instance of the subclass, which I’ll call MyDataSource.

If we want a section index down the side of our table view, we need to override the
relevant data source methods in a subclass:

class MyDataSource : UITableViewDiffableDataSource<String,String> {
 override func sectionIndexTitles(for tv: UITableView) -> [String]? {
 let snap = self.snapshot()
 return snap.sectionIdentifiers
 }
 override func tableView(_ tableView: UITableView,
 sectionForSectionIndexTitle title: String, at index: Int) -> Int {
 let snap = self.snapshot()
 return snap.indexOfSection(title) ?? 0
 }
}

Similarly, if we want the table cells to be editable when the table view enters edit
mode, we must explicitly enable editability in our subclass:

override func tableView(_ tableView: UITableView,
 canEditRowAt indexPath: IndexPath) -> Bool {
 return true
}

Table View Diffable Data Source | 507

And if we wanted to supply header titles rather than header views, table-
View(_:titleForHeaderInSection:) is a data source method, not a delegate
method, and we’d need to implement it in the subclass.

Changing a Diffable Data Source
The real power of diffable data sources emerges when we alter the data source and the
corresponding changes in the table view are performed and animated for us. To illus‐
trate, let’s implement deletion of multiple rows of the table view. We do not call
performBatchUpdates! We do not call deleteRows(at:with:) or delete-

Sections(_:with:)! We just change the snapshot and apply it, and both the data and
the table view are updated for us — with animation of the table view changes.

The magic ability of the diffable data source to deduce how a new shapshot dif‐
fers from the old one and to express that through animated changes in the table
view comes from the CollectionDifference struct and the difference(from:)
and applying Array instance methods, which are new in iOS 13. In all probabil‐
ity you won’t use these explicitly in your own code.

To illustrate, let’s say we have permitted the user to select multiple rows while the
table view is in edit mode, and we have supplied a Delete button that the user can tap
to delete the selected rows. Now we are going to implement the Delete button’s
action method.

If the user deletes all the rows of a section, we also want to delete that section. All the
work takes place in the snapshot, so it will be useful to extend NSDiffableDataSource‐
Snapshot to enforce that rule:

extension NSDiffableDataSourceSnapshot {
 mutating func deleteWithSections(_ items : [ItemIdentifierType]) {
 self.deleteItems(items)
 let empties = self.sectionIdentifiers.filter {
 self.numberOfItems(inSection: $0) == 0
 }
 self.deleteSections(empties)
 }
}

Our Delete button obtains a snapshot from the data source, gathers the item identifi‐
ers for the selected rows, calls that method, and applies the snapshot:

guard let sel = self.tableView.indexPathsForSelectedRows else {return}
let rowids = sel.map {
 self.datasource.itemIdentifier(for: $0)
}.compactMap {$0}
var snap = self.datasource.snapshot()
snap.deleteWithSections(rowids)
self.datasource.apply(snap)

508 | Chapter 8: Table Views and Collection Views

That’s all there is to it! Once again, we’re working around an impedance mismatch:
the table view describes the selected rows in terms of their index paths, but the snap‐
shot wants lists of item identifiers and section identifiers. Luckily, the data source
provides methods such as itemIdentifier(for:) to convert between index paths
and identifiers. And the resulting code is far simpler and more robust than what we
were previously doing in performBatchUpdates. We just change the data and the
table view changes to match, automatically, with animation. The animation looks
particularly nice, I think, if we set the data source’s default animation beforehand:

self.datasource.defaultRowAnimation = .left

Pros and Cons of the Diffable Data Source
Should you adopt a diffable data source for your table view? Or should you stick with
the old-style Three Big Questions data source? Here are some arguments in favor of
the diffable data source:

Less code
The Three Big Questions are eliminated. You still have to write code equivalent
to the third Big Question, but it is nicely encapsulated in the function you supply
to the data source initializer, and the actual data for each row arrives directly into
the function as a parameter.

No custom data model storage
There may be no need to devise a structure for your data model and store it in an
instance property, because the diffable data source stores the data for you.

Easy data modification
It’s easy to insert, delete, or move data items or sections directly in a snapshot
and keep those changes synchronized with the table view by applying the snap‐
shot to the data source.

In other respects, a diffable data source may feel like a step backward:

Separation of data source from delegate
You might have to subclass UITableViewDiffableDataSource and override data
source methods there, rather than implementing those methods in the same class
as the delegate. This separation of the data source from the delegate is somewhat
unfortunate, and you might have to implement more data source methods than
you would with a Three Big Questions data source.

Impedance mismatch
The table view thinks in terms of cells and index paths, and the UITableView‐
DataSource and UITableViewDelegate methods are couched in those terms. But
the diffable data source thinks in terms of unique identifiers, so you may end up
converting back and forth. Conversion isn’t difficult, but it can feel inelegant.

Table View Diffable Data Source | 509

No performBatchUpdates
With a diffable data source, calling performBatchUpdates is illegal. But certain
techniques involving animated layout (described later in this chapter) depend
upon calling performBatchUpdates.

More Table View Editing
This section describes some further types of change you can permit the user to per‐
form in a table view.

Rearranging Cells
When a table view is in edit mode, it can display a reordering control at the right end
of each cell. The user can drag this to rearrange the cells:

• To make the reordering control appear, the data source must implement table-
View(_:moveRowAt:to:). That method will be called when the user does rear‐
range cells, and you should respond by rearranging the data model to match.

• To suppress the reordering control for an individual row, implement the data
source method tableView(_:canMoveRowAt:).

• To limit where a particular row can be moved to, implement the delegate method
tableView(_:targetIndexPathForMoveFromRowAt:toProposedIndexPath:).

To illustrate, let’s permit the user to rearrange cells within the table of U.S. states.
Let’s decide that rows can be rearranged only within their section; the user can
reverse the order of Kansas and Kentucky, but can’t drag either Kansas or Kentucky
outside of the K section. Since a one-row section can’t be rearranged, we’ll suppress
the reordering control when a cell is the only one in its section.

For simplicity, I’ll assume the data model is our old-fashioned self.sections
instance property, an array of Section where each Section has a rowData property
that’s an array of state names. To make the reordering controls spring to life when
the table view is in edit mode, we have to implement tableView(_:moveRowAt:to:).
We’re going to guarantee that a row can’t move out of its section, so all we have to do
is rearrange the rowData within the section to match what the user did:

override func tableView(_ tableView: UITableView,
 moveRowAt srcip: IndexPath, to destip: IndexPath) {
 let sec = srcip.section
 let srcrow = srcip.row
 let destrow = destip.row
 self.sections[sec].rowData.swapAt(srcrow, destrow)
}

We prevent the reordering control from appearing if the section has only one row:

510 | Chapter 8: Table Views and Collection Views

Figure 8-8. A simple phone directory app

override func tableView(_ tableView: UITableView,
 canMoveRowAt ip: IndexPath) -> Bool {
 return self.sections[ip.section].rowData.count > 1
}

We prevent the user from dragging a row out of its section, by substituting the source
index path for the destination index path unless they are in the same section; if the
user drops the cell in a different section, it snaps back into its original place:

override func tableView(_ tableView: UITableView,
 targetIndexPathForMoveFromRowAt srcip: IndexPath,
 toProposedIndexPath destip: IndexPath) -> IndexPath {
 if destip.section != srcip.section {
 return srcip
 }
 return destip
}

Editable Content in Cells
A cell might have content that the user can edit directly, such as a UISwitch that the
user can switch on or off (Chapter 12), or a UITextField where the user can change
the text (Chapter 10). As in the previous example, the user changes the view, and you
must update the model accordingly. But now there’s no magic data source method to
tell us what’s happening. You need to arrange to hear that the user has made a change
in a row of the table view, and you need to know which row the user changed so that
you can reflect that change back into the data model.

To illustrate, imagine an app that maintains a list of names and phone numbers. The
data are displayed as a grouped style table, and they become editable when the user
taps the Edit button (Figure 8-8).

The table displays just one name but can display multiple phone numbers, so my data
model looks like this:

More Table View Editing | 511

var name = ""
var numbers = [String]()

We don’t need an editing control at the left end of a cell when it’s being edited:

override func tableView(_ tableView: UITableView,
 editingStyleForRowAt indexPath: IndexPath)
 -> UITableViewCell.EditingStyle {
 return .none
}

A UITextField is editable if its isEnabled is true. To tie this to the cell’s isEditing
state, I’ll use a custom UITableViewCell class called MyCell with a single UITextField
connected to an outlet property called textField:

class MyCell : UITableViewCell {
 @IBOutlet weak var textField : UITextField!
 override func didTransition(to state: UITableViewCell.StateMask) {
 self.textField.isEnabled = state.contains(.showingEditControl)
 super.didTransition(to:state)
 }
}

How will we hear that the user is editing a text field? One obvious way is to be the
text field’s delegate (adopting the UITextFieldDelegate protocol; I’ll talk more about
that in Chapter 10). We can conveniently set that up when we configure the cell:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath) as! MyCell
 switch indexPath.section {
 case 0:
 cell.textField.text = self.name
 case 1:
 cell.textField.text = self.numbers[indexPath.row]
 cell.textField.keyboardType = .numbersAndPunctuation
 default: break
 }
 cell.textField.delegate = self // *
 return cell
}

Acting as the text field’s delegate, we are responsible for implementing the Return
button in the keyboard to dismiss the keyboard; we can do so by implementing text-
FieldShouldReturn(_:):

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 textField.endEditing(true)
 return false
}

512 | Chapter 8: Table Views and Collection Views

Still acting as the text field’s delegate, we can hear that the user has changed the text
field’s text, by implementing textFieldDidEndEditing(_:):

func textFieldDidEndEditing(_ textField: UITextField) {
 // ???
}

Now we face a fundamental challenge. We know which text field this is, because it
arrives as the parameter to the delegate method. But we don’t know the index path of
the cell containing this text field! And we need to know that in order to update the
data model correctly.

There are various solutions to this problem, usually involving the text field’s tag or
some custom property. But the approach I favor is this: The table view knows what
index path corresponds to this cell, and the cell is a superview of the text field, so I
just walk up the view hierarchy from the text field to the cell. It is then trivial to
update the model:

func textFieldDidEndEditing(_ textField: UITextField) {
 var v : UIView? = textField
 repeat { v = v?.superview } while !(v is UITableViewCell)
 if let cell = v as? MyCell {
 if let ip = self.tableView.indexPath(for:cell) {
 let s = cell.textField.text ?? ""
 switch ip.section {
 case 0: self.name = s
 case 1: self.numbers[ip.row] = s
 default: break
 }
 }
 }
}

Expandable Cell
A useful trick is to animate a change in the height of one or more cells by performing
an empty batch operation:

self.tableView.performBatchUpdates(nil)

This causes the section and row structure of the table to be asked for, along with cal‐
culation of all heights, but no views are requested; the table view is laid out freshly
without reloading any cells. But if any heights have changed since the last time the
table view was laid out, the change in height is animated!

Apple’s Calendar app is an example. When you’re editing an event and you tap on
the Starts or Ends date, a space opens up just below that row of the table, revealing a
date picker. In reality, the date picker is in its own table view cell. It was there all
along, but you couldn’t see it because the cell had zero height and its clipsToBounds
is true. When you tap on the Starts or Ends date, performBatchUpdates is called.

More Table View Editing | 513

This causes tableView(_:heightForRowAt:) to be called, and a different answer is
given for the height of this cell. The cell expands to reveal the date picker. (A cell that
behaves this way is sometimes called an accordion cell.)

We can get the same effect using code along these lines:

var showDatePicker = false
func toggleDatePickerCell() {
 self.showDatePicker.toggle()
 self.tableView.performBatchUpdates(nil)
}
func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 if indexPath == datePickerPath {
 return self.showDatePicker ? 200 : 0
 }
 return tableView.rowHeight
}

Table View Swipe Action Buttons
We’ve already seen that you can swipe a cell sideways to reveal a Delete button. You
can customize that interface, introducing additional buttons that the user can reveal
by swiping a cell sideways. That’s how Apple’s Mail app works: the user can swipe a
message listing left to reveal three buttons, or swipe right to reveal one button, and
can tap a button to perform an action on that message.

Starting in iOS 11, Apple provides an API that allows your app to have the same kind
of interface as the Mail app. For each row of the table view, you specify swipe actions;
these are buttons that can appear at the right or left (leading or trailing) end of the
cell when the user swipes sideways. There are two delegate methods that you can
implement:

• tableView(_:leadingSwipeActionsConfigurationForRowAt:)

• tableView(_:trailingSwipeActionsConfigurationForRowAt:)

Your job here is to return a UISwipeActionsConfiguration object (or nil), which
wraps an array of UIContextualAction objects; a UIContextualAction is a button, ini‐
tialized with a style (.normal or .destructive), a title, and an action function that
will be called when the action is to be executed. The title can be nil, because you
might set the UIContextualAction’s image instead. Here’s a simple example, where
we implement a Delete button with a trash-can icon, along with a blue Mark button;
the user can swipe left to see them:

override func tableView(_ tableView: UITableView,
 trailingSwipeActionsConfigurationForRowAt ip: IndexPath)
 -> UISwipeActionsConfiguration? {
 let d = UIContextualAction(style: .destructive, title: nil) {

514 | Chapter 8: Table Views and Collection Views

 action, view, completion in
 tableView.performBatchUpdates({
 self.sections[ip.section].rowData.remove(at:ip.row)
 tableView.deleteRows(at:[ip], with: .automatic)
 if self.sections[ip.section].rowData.count == 0 {
 self.sections.remove(at:ip.section)
 tableView.deleteSections(
 IndexSet(integer: ip.section), with:.fade)
 }
 })
 completion(true)
 }
 d.image = UIGraphicsImageRenderer(size:CGSize(30,30)).image { _ in
 UIImage(named:"trash")?.draw(in: CGRect(0,0,30,30))
 }
 let m = UIContextualAction(style: .normal, title: "Mark") {
 action, view, completion in
 print("Mark") // in real life, do something here
 completion(true)
 }
 m.backgroundColor = .blue
 let config = UISwipeActionsConfiguration(actions: [d,m])
 return config
}

The code for the first button (d) comes directly from the .delete case of the table-
View(_:commit:forRowAt:) implementation we developed earlier. In fact, if the table
view is in edit mode with a Minus button and the user taps the Minus button, the
custom contextual actions are revealed; they have replaced the default Delete button!
So if you use a trailing swipe action, you probably won’t need to implement table-
View(_:commit:forRowAt:) at all.

The action function receives as its parameters the UIContextualAction itself, the view
(which you probably won’t need), and a completion function. You must call this
completion function, with a Bool argument, to signal that the action is over and the
swiped cell should slide back into place.

The actions for the UISwipeActionsConfiguration object are supplied in order,
starting at the far end of the cell. A UISwipeActionsConfiguration object has one
additional property, a Bool called performsFirstActionWithFullSwipe. If this is
true, the user can keep swiping to perform the first action; if false, the user must
swipe to reveal the button and then tap the button. The default is true for trailing
actions, false for leading actions.

Table View Menus
You can permit the user to summon a menu by long pressing on a table view cell. In
iOS 12 and before, this menu was managed through the UIMenuController class, and

Table View Menus | 515

the menu was similar to what appears above a text field when you double tap or long
press within the text (saying Copy, Paste, Select, and so forth). New in iOS 13, it’s the
same UIContextMenuConfiguration architecture that I discussed earlier (“Previews
and Context Menus” on page 382). With a table view, you don’t need to add a
UIContextMenuInteraction or declare a delegate; instead, the table view is ready for
the user to long press on a cell, and the delegate is the table view’s delegate. The key
method is:

• tableView(_:contextMenuConfigurationForRowAt:point:)

You return a UIContextMenuConfiguration instance (or nil to opt out on this occa‐
sion). The second parameter is the index path for the cell the user is pressing.

Here’s a minimal example where we allow the user to summon a Copy context menu
item by long pressing a cell. Presume this is our table view listing U.S. states, and we
want the user to be able to copy the name of a state:

override func tableView(_ tableView: UITableView,
 contextMenuConfigurationForRowAt ip: IndexPath, point: CGPoint)
 -> UIContextMenuConfiguration? {
 let config = UIContextMenuConfiguration(
 identifier:nil, previewProvider: nil) { _ in
 let action = UIAction(title: "Copy") { _ in
 let state = self.sections[ip.section].rowData[ip.row]
 UIPasteboard.general.string = state
 }
 let menu = UIMenu(title: "", children: [action])
 return menu
 }
 return config
}

The user can now long press a cell to summon a menu consisting of single menu item
labeled “Copy.” If the user taps that item, the name of the corresponding state is
copied onto the pasteboard.

There are three additional delegate methods, similar to the UIContextMenuInterac‐
tionDelegate methods I discussed earlier:

• tableView(_:previewForHighlightingContextMenuWithConfiguration:)

• tableView(_:previewForDismissingContextMenuWithConfiguration:)

• tableView(_:willPerformPreviewActionForMenuWith:)

If you don’t supply a preview, the entire cell is used as a preview. If you return a sub‐
view of the cell as the UITargetedPreview in previewForHighlighting, it looks best if
you return the same subview in previewForDismissing.

For all three of these delegate methods, you’ll likely want to know what cell the user is
pressing. But no incoming parameter tells you that; all you get is the UIContextMenu‐

516 | Chapter 8: Table Views and Collection Views

Configuration. One solution is to use the index path (or, if you’re using a diffable
data source, a unique item identifier) as the identifier: when you initialize the con‐
figuration; then, in these delegate methods, you can ask the configuration for its
identifier. Another possibility might be to subclass UIContextMenuConfiguration
and give the subclass properties that carry any needed data into the delegate methods.

Table View Searching
A common need is to make a table view searchable, typically through a search field (a
UISearchBar; see Chapter 12). A standard interface for listing the results of such a
search is itself a table view. The interface should respond to what the user types in the
search field by changing what appears in the list of results. To help you, there’s a
UIViewController subclass, UISearchController.

UISearchController has nothing to do, per se, with table views! It’s completely agnos‐
tic about what is being searched and about the form in which the results are presen‐
ted. Still, using a table view to present the results of searching a table view is a
common interface, so this is a good place to introduce UISearchController.

Configuring a Search Controller
A UISearchController is a view controller; it provides an interface containing a
search bar and the results of the search. The search controller vends its search bar,
and you’ll put that search bar into your initial interface. When the user taps in the
search bar to begin searching, the search controller will take over the screen. And
that’s basically all the search controller does. It knows nothing about doing any actual
searching or about showing the user the results of the search. All of that is up to you.
You provide two things:

Search results controller
The search results controller is your view controller that shows the user the
results of the search. The UISearchController will display the search results con‐
troller’s view, but what happens in that view is up to you.

Search results updater
The search results updater is the search controller’s conduit to you; basically, it’s
a kind of delegate. The search results controller will be repeatedly informing you
that the user has edited the text in the search field; in response, you’ll perform the
actual search and update the results.

Here’s what’s going to happen:

• When the time comes to display search results (because the user has tapped
inside the search bar in your initial interface), the search controller will present

Table View Searching | 517

itself as a presented view controller, displaying the same search bar, with the
search results controller’s view embedded inside its own view.

• When the user edits in the search bar, the search controller will notify the search
results updater.

• When the user taps the search bar’s Cancel button, the search controller will dis‐
miss itself.

The minimalistic nature of the search controller’s behavior is exactly the source of its
power and flexibility, because it leaves you free to manage the details of what search‐
ing means and what displaying search results means.

Here are the general steps for configuring a UISearchController (and I’ll talk about
exceptions in subsequent sections):

1. Instantiate a view controller whose job will be to display the results of the search.
This is the search results controller. (In this discussion, the search results con‐
troller will be a UITableViewController, but no law requires this.)

2. Instantiate UISearchController, calling the designated initializer, init(search-
ResultsController:), with the search results controller as argument. Retain the
search controller. The search controller will retain the search results controller as
a child view controller.

3. Assign to the search controller’s searchResultsUpdater an object to be notified
when the search results change. This is the search results updater. It must adopt
the UISearchResultsUpdating protocol, which means that it implements one
method: updateSearchResults(for:). Often, the search results updater will be
the search results controller, but no law requires this.

4. Acquire the search controller’s searchBar and put it into the interface.
A UISearchController has just a few other properties you might want to configure:

obscuresBackgroundDuringPresentation

Whether a “dimming view” should appear behind the search controller’s own
view. Defaults to true, but there are situations where it needs to be set to false
(as I’ll demonstrate later).

hidesNavigationBarDuringPresentation

Whether a navigation bar, if present, should be hidden. Defaults to true, but
there are situations where it needs to be set to false (as I’ll demonstrate later).

A UISearchController has its own ideas about when it wants to show the search bar’s
scope bar if it has one, the search bar’s Cancel button, and the search results control‐
ler’s view. New in iOS 13, that automatic behavior is governed by three properties:

518 | Chapter 8: Table Views and Collection Views

• automaticallyShowsCancelButton

• automaticallyShowsScopeBar

• automaticallyShowsSearchResultsController

If you set any of the corresponding properties — the search bar’s showsCancel-
Button, the search bar’s showsScopeBar, or the search controller’s showsSearch-
ResultsController — that automaticallyShows property is set to false and control
of that property is turned over to you.

A UISearchController can also be assigned a real delegate (UISearchController‐
Delegate), which is notified before and after presentation and dismissal. The delegate
works in one of two ways:

presentSearchController(_:)

If you implement this method, then you are expected to present the search con‐
troller yourself, by calling present(_:animated:completion:). In that case, the
other delegate methods are not called.

willPresentSearchController(_:)

didPresentSearchController(_:)

willDismissSearchController(_:)

didDismissSearchController(_:)

Called only if you didn’t implement presentSearchController(_:).

Using a Search Controller
I’ll demonstrate several variations on the theme of using a search controller to make a
table view searchable. In these examples, the searchable table view will be (you
guessed it) the list of U.S. states, with sections and an index, developed earlier in this
chapter. Searching will mean finding the search text within the text displayed in the
single label in each of the table view’s cells — that is, we will search the state names.

Minimal search results table
Let’s start with the simplest possible case. We will have two table view controllers —
one managing the original table view, the other managing the search results table
view. I propose to make the search results table view as minimal as possible, a rock-
bottom table view with .default style cells, where each search result will be the text
of a cell’s textLabel (Figure 8-9).

In the original table’s UITableViewController, I configure the UISearchController, in
accordance with the steps that I described earlier. I have a property, self.searcher,
waiting to retain the search controller. I also have a second UITableViewController
subclass, boringly named SearchResultsController, whose job will be to obtain and

Table View Searching | 519

Figure 8-9. Searching a table

present the search results. In viewDidLoad, I instantiate SearchResultsController, cre‐
ate and configure the UISearchController, and put the search controller’s search bar
into the interface as the table view’s header view (and scroll to hide that search bar
initially, a common convention):

let src = SearchResultsController(data: self.sections)
let searcher = UISearchController(searchResultsController: src)
self.searcher = searcher
searcher.searchResultsUpdater = src
let b = searcher.searchBar
b.autocapitalizationType = .none
self.tableView.tableHeaderView = b
self.tableView.reloadData()
self.tableView.scrollToRow(
 at:IndexPath(row: 0, section: 0), at:.top, animated:false)

Adding the search bar as the table view’s header view has an odd side effect: it
causes the table view’s background color to be covered by an ugly gray color,
visible above the search bar when the user scrolls down. The official workaround
is to assign the table view a backgroundView with the desired color.

Now we turn to SearchResultsController. It’s a table view controller. I’m not using
sections in the SearchResultsController’s table, so as I receive the searchable data, I
flatten it to a simple array:

var originalData : [String]
var filteredData = [String]()
init(data:[RootViewController.Section]) {
 self.originalData = data.map{$0.rowData}.flatMap{$0}
 super.init(nibName: nil, bundle: nil)
}

What I display in the table view is not self.originalData but a different array,
self.filteredData. This is initially empty, because there are no search results until
the user starts typing in the search field. So how does our search results table go from
being empty to displaying any search results? SearchResultsController is also the
searchResultsUpdater of our UISearchController. It adopts the UISearchResults‐
Updating protocol, so it implements updateSearchResults(for:), which will be

520 | Chapter 8: Table Views and Collection Views

called each time the user changes the text of the search bar. This method simply uses
the current text of the search controller’s searchBar to filter self.originalData into
self.filteredData, and reloads the table view:

func updateSearchResults(for searchController: UISearchController) {
 let sb = searchController.searchBar
 let target = sb.text!
 self.filteredData = self.originalData.filter { s in
 let found = s.range(of:target, options: .caseInsensitive)
 return (found != nil)
 }
 self.tableView.reloadData()
}

That’s all! Of course, it’s an artificially simple example; in real life you would presum‐
ably want to allow the user to do something with the search results, perhaps by tap‐
ping on a cell in the search results table.

Using a diffable data source instead of a Three Big Questions data source is a nice
way to animate the results table as the user types in the search bar. Now there’s no
need for a filteredData instance property; we simply filter the original data into a
snapshot and apply it:

func updateSearchResults(for searchController: UISearchController) {
 let sb = searchController.searchBar
 let target = sb.text!
 var snap = NSDiffableDataSourceSnapshot<Int,String>()
 snap.appendSections([0])
 snap.appendItems(self.originalData.filter { s in
 let found = s.range(of:target, options: .caseInsensitive)
 return (found != nil)
 })
 self.datasource.apply(snap)
}

Search bar in navigation bar
In a navigation interface, you can put the UISearchController’s search bar into the
navigation bar. Starting in iOS 11, Apple seems to prefer that interface over putting it
into the table view’s header view, and facilitates it through a UINavigationItem prop‐
erty: instead of finding a place for the search bar in the navigation bar yourself — as
its titleView, for instance — you set the searchController of your view controller’s
navigationItem directly to your UISearchController instance. When you do that,
you don’t need to retain the search controller; the navigation item will retain it for
you:

let src = SearchResultsController(data: self.sections)
let searcher = UISearchController(searchResultsController: src)
searcher.searchResultsUpdater = src
self.navigationItem.searchController = searcher // *

Table View Searching | 521

Nothing else needs to change; our search results controller just keeps right on
working.

The consequences of this arrangement are:

• The navigation bar stretches to accommodate the search bar, which appears
below everything else in the navigation bar; the search bar makes no inroads on
the space used by the title and the bar button items.

• If the navigation bar’s prefersLargeTitles is true, the interface still works just
fine, with the search bar displayed below the large title if there is one.

• If the navigation item’s hidesSearchBarWhenScrolling property is true, the
navigation bar expands and contracts to reveal or hide the search bar as the user
scrolls.

• You can decide whether the overall navigation bar should remain present when
the search controller’s view is being presented, by setting the search controller’s
hidesNavigationBarDuringPresentation. The default is true, which means
that the navigation bar shrinks to show just the search bar at the top during the
search.

• The search bar can have scope buttons! Set the search bar’s scopeButtonTitles
as desired. By default, the scope buttons will appear when the search controller
presents its view.

I’ll demonstrate the use of scope buttons. Let’s say we’ve configured this search bar
with two scope buttons:

let b = searcher.searchBar
b.scopeButtonTitles = ["Contains", "Starts With"]

We must take account of the currently selected scope button whenever we set
self.filteredData. New in iOS 13, updateSearchResults is called when the user
changes the selected scope button, so its implementation is simple:

func updateSearchResults(for sc: UISearchController) {
 if let target = sc.searchBar.text {
 let selectedIndex = sc.searchBar.selectedScopeButtonIndex
 self.filteredData = self.originalData.filter { s in
 var options = String.CompareOptions.caseInsensitive
 if selectedIndex == 1 { // 1 means "starts with"
 options.insert(.anchored)
 }
 let found = s.range(of:target, options: options)
 return (found != nil)
 }
 self.tableView.reloadData()
 }
}

522 | Chapter 8: Table Views and Collection Views

No search results controller
You can also use a search controller without a search results controller. Instead, you
can present the search results in the original table view.

To configure our search controller, we pass nil as its searchResultsController and
set the original table view controller as the searchResultsUpdater. We must also set
the search controller’s obscuresBackgroundDuringPresentation to false; this
allows the original table view to remain visible and touchable behind the search
controller’s view:

let searcher = UISearchController(searchResultsController:nil) // *
self.searcher = searcher
searcher.obscuresBackgroundDuringPresentation = false // *
searcher.searchResultsUpdater = self
searcher.delegate = self

We have also made ourselves the search controller’s delegate, because we might need
to distinguish whether we’re in the middle of a search or not. We have a Bool prop‐
erty, self.searching, that acts as a flag; we raise and lower the flag when searching
begins and ends. We also create a copy of our data model whenever we’re about to
start searching; the reason for that will be clear in a moment:

func willPresentSearchController(_ searchController: UISearchController) {
 self.originalSections = self.sections // keep copy of original data
 self.searching = true
}
func willDismissSearchController(_ searchController: UISearchController) {
 self.searching = false
}

Our table view data source and delegate methods don’t need to change unless there’s
a difference in the interface depending on whether or not we’re searching. Let’s say
we want to remove the index while searching is in progress:

override func sectionIndexTitlesForTableView(tableView: UITableView)
 -> [String]? {
 return self.searching ? nil : self.sections.map{$0.sectionName}
}

All that remains is to implement updateSearchResults(for:). Similar to our search
results controller, whenever we’re doing a search we’re going to filter self.original-
Sections into self.sections based on the search bar text:

func updateSearchResults(for searchController: UISearchController) {
 let sb = searchController.searchBar
 let target = sb.text!
 if target == "" {
 self.sections = self.originalSections
 } else {
 self.sections = self.originalSections.reduce(into:[Section]()) {

Table View Searching | 523

 acc, sec in
 let rowData = sec.rowData.filter {
 $0.range(of:target, options: .caseInsensitive) != nil
 }
 if rowData.count > 0 {
 acc.append(Section(
 sectionName: sec.sectionName, rowData: rowData))
 }
 }
 }
 self.tableView.reloadData()
}

Collection Views
A collection view (UICollectionView) is a UIScrollView that generalizes the notion of
a table view. Where a table view has rows, a collection view has items. (UICollection‐
View extends IndexPath so that you can refer to its item property instead of its row
property, though in fact they are interchangeable.) If you mentally substitute for
items for rows, you’ll find that, knowing about table views, you know a great deal
about collection views already:

• The items are portrayed by reusable cells. These are UICollectionViewCell
instances. If the collection view is instantiated from a storyboard, you can get
reusable cells from the storyboard; otherwise, you’ll register a class or nib with
the collection view.

• A collection view can clump its items into sections.
• A collection view has a data source (UICollectionViewDataSource) and a dele‐

gate (UICollectionViewDelegate), and it’s going to ask the data source Three Big
Questions:
▪ numberOfSections(in:)

▪ collectionView(_:numberOfItemsInSection:)

▪ collectionView(_:cellForItemAt:)

Alternatively, new in iOS 13, you can use a UICollectionViewDiffableData‐
Source.

• To answer the third Big Question, your data source will obtain a reusable cell by
dequeuing it from the collection view:
▪ dequeueReusableCell(withReuseIdentifier:for:)

• A collection view allows the user to select a cell, or multiple cells. The delegate is
notified of highlighting and selection.

524 | Chapter 8: Table Views and Collection Views

• Your code can rearrange the cells, inserting, moving, and deleting cells or entire
sections, with animation.

• If the delegate permits, the user can long press a cell to produce a menu, or to
rearrange the cells by dragging.

• You can scroll your collection view in code by calling scrollTo-

Item(at:at:animated:). The collection view’s delegate is its scroll view delegate
(and UICollectionViewDelegate conforms to UIScrollViewDelegate).

• A collection view can have a refresh control.
• You can manage your UICollectionView through a UICollectionViewController.

A collection view section can have a header and footer, but the collection view itself
does not call them that; instead, it generalizes its subview types into cells, on the one
hand, and supplementary views, on the other. A supplementary view is just a UICol‐
lectionReusableView, which is UICollectionViewCell’s superclass. A supplementary
view is associated with a kind, an arbitrary string that categorizes it however you like;
you can have a header as one kind, a footer as another kind, and anything else you
can imagine. Having made that mental substitution, you can see that supplementary
views behave quite similarly to section header or footer views in a table view:

• Supplementary views are reusable.
• You are asked for a supplementary view in a data source method (not a delegate

method):
▪ collectionView(_:viewForSupplementaryElementOfKind:at:)

• In that method, your data source will obtain a reusable supplementary view by
dequeuing it from the collection view:
▪ dequeueReusableSupplementaryView(ofKind:withReuseIdentifier:for:)

Here are some small differences between a table view and a collection view:

• A collection view has no edit mode (nor has a collection view cell).
• A collection view has no section index.

The big difference between a table view and a collection view is how the collection
view lays out its elements (cells and supplementary views). A table view lays out its
cells in just one way: a vertically scrolling column, where the cell widths are the width
of the table view, their heights are dictated by the table view or the delegate, and the
cells are touching one another. A collection view has no such rules. In fact, a collec‐
tion view doesn’t lay out its elements at all! That job is left to another object — a
collection view layout.

A collection view layout is an instance of a UICollectionViewLayout subclass. It is
responsible for the overall layout of the collection view that owns it. It does this by

Collection Views | 525

answering some Big Questions of its own, posed by the collection view; the most
important are these:

collectionViewContentSize

How big is the entire content? The collection view needs to know this, because it
is a scroll view (Chapter 7), and this will be the content size of the scrollable
material that it will display.

layoutAttributesForElements(in:)

Where are the elements to be positioned within the content rectangle? The layout
attributes, as I’ll explain in more detail in a moment, are bundles of positional
information.

To answer these questions, the collection view layout needs to ask the collection view
some questions as well. It will want to know the collection view’s bounds; also, it will
probably call such methods as numberOfSections and numberOfItems(inSection:),
and the collection view, in turn, will get the answers to those questions from its data
source.

The collection view layout can assign the elements any positions it likes, and the col‐
lection view will faithfully draw them in those positions within its content rectangle.
That seems very open-ended, and indeed it is. To get you started, there are two built-
in UICollectionViewLayout subclasses:

• UICollectionViewFlowLayout
• UICollectionViewCompositionalLayout (new in iOS 13)

UICollectionViewFlowLayout arranges its cells in something like a grid. The grid can
be scrolled either horizontally or vertically, but not both, so it’s a series of rows or
columns. Through properties and a delegate protocol of its own (UICollectionView‐
DelegateFlowLayout), the UICollectionViewFlowLayout instance lets you provide
instructions about how big the cells are and how they should be spaced. It defines two
supplementary view kinds to let you give each section a header and a footer.

Figure 8-10 shows a collection view, laid out with a flow layout, from my Latin flash‐
card app. This interface lists the chapters and lessons into which the flashcards are
divided, and allows the user to jump to a desired lesson by tapping it. Previously, I
was using a table view to present this list; when collection views were introduced (in
iOS 6), I adopted one for this interface, and you can see why. Instead of a lesson item
like “1a” occupying an entire row that stretches the whole width of a table, it’s just a
little rectangle; in landscape orientation, the flow layout fits about half a dozen of
these rectangles into a line for me. So a collection view is a much more compact and
appropriate way to present this interface than a table view.

If UICollectionViewFlowLayout doesn’t quite meet your needs, you can subclass it.
Alternatively, you can subclass UICollectionViewLayout itself to create a layout from

526 | Chapter 8: Table Views and Collection Views

Figure 8-10. A collection view in my Latin flashcard app

scratch. New in iOS 13, there’s a third possibility: you can use a UICollectionView‐
CompositionalLayout. This is a powerful and flexible layout that does all the heavy
lifting for you; it can do everything a flow layout can do, and much more.

Collection View Classes
Here’s a conceptual overview of the main classes associated with UICollectionView; I
don’t recite all the properties and methods of each class, because you can gather them
from the documentation:

UICollectionViewController
A UIViewController subclass. Like a table view controller, UICollectionView‐
Controller is convenient if a UICollectionView is to be a view controller’s view,
but using it is not required. It is the delegate and data source of its collection-
View by default. The designated initializer requires you to supply a collection
view layout instance, which will be assigned to the collection view as its layout. In
the nib editor, there is a Collection View Controller nib object, which comes with
a collection view.

UICollectionView
A UIScrollView subclass. Its capabilities are parallel to those of a UITableView,
as I outlined in the preceding section. It has a backgroundColor (because it’s a
view) and optionally a backgroundView in front of that. Its designated initializer
requires you to supply a collection view layout instance, which will be its
collectionViewLayout. In the nib editor, there is a Collection View nib object,
which comes with a Collection View Flow Layout by default; you can change the
collection view layout class with the Layout pop-up menu in the Attributes
inspector.

Collection View Classes | 527

UICollectionViewLayoutAttributes
A value class (a bunch of properties) tying together an element’s indexPath with
the specifications for how and where it should be drawn. These specifications are
reminiscent of view or layer properties, with names like frame, center, size,
transform, and so forth. Layout attributes objects function as the mediators
between the collection view layout and the collection view; they are what the col‐
lection view layout passes to the collection view to tell it where all the elements of
the view should go.

UICollectionViewCell
An extremely minimal view class. It has an isHighlighted property and an
isSelected property. It has a contentView, a selectedBackgroundView, a
backgroundView, and of course (since it’s a view) a backgroundColor, layered in
that order, just like a table view cell; everything else is up to you. If you start with
a collection view in a storyboard, you get prototype cells, which you obtain by
dequeuing. Otherwise, you obtain cells through registration and dequeuing.

UICollectionReusableView
The superclass of UICollectionViewCell — so it is even more minimal! This is
the class of supplementary views such as headers and footers. If you’re using a
flow layout in a storyboard, you are given header and footer prototype views,
which you obtain by dequeuing; otherwise, you obtain reusable views through
registration and dequeuing.

UICollectionViewLayout
The layout workhorse class for a collection view. A collection view cannot exist
without a collection view layout instance! As I’ve already said, the collection view
layout knows how much room all the subviews occupy, and supplies the
collectionViewContentSize that sets the contentSize of the collection view,
qua scroll view. In addition, the collection view layout must answer questions
from the collection view, by supplying a UICollectionViewLayoutAttributes
object, or an array of such objects, saying where and how elements should be
drawn. These questions come in two categories:

Static attributes
The collection view wants to know the layout attributes of an element (an
item or supplementary view), specified by the element’s index path, or of all
elements within a given rect.

Dynamic attributes
The collection view is inserting or removing elements. It asks for the layout
attributes that an element, specified by index path, should have as insertion
begins or removal ends. The collection view can animate between the ele‐
ment’s static attributes and these dynamic attributes. If an element’s

528 | Chapter 8: Table Views and Collection Views

dynamic layout attributes alpha is 0 as removal ends, the element will appear
to fade away as it is removed.

The collection view also notifies the collection view layout of pending changes
through some methods whose names start with prepare and finalize. This is
another way for the collection view layout to participate in animations, or to per‐
form other kinds of preparation and cleanup.

UICollectionViewLayout is an abstract class; to use it, you must subclass it, or
start with a built-in subclass, either UICollectionViewFlowLayout or (new in
iOS 13) UICollectionViewCompositionalLayout.

Flow Layout
UICollectionViewFlowLayout is a concrete subclass of UICollectionViewLayout. It
lays out items in a grid that can be scrolled either horizontally or vertically, and it
defines two supplementary element types to serve as the header and footer of a sec‐
tion. A collection view in the nib editor has a Layout pop-up menu that lets you
choose a Flow layout, and you can configure the flow layout in the Size inspector; in a
storyboard, you can even add and design a header and a footer.

A flow layout has the following configurable properties:

• scrollDirection, either .vertical or .horizontal
• sectionInset (the margins for a section); starting in iOS 11, the sectionInset-
Reference property lets you specify where the inset is measured from (.from-
ContentInset, .fromLayoutMargins, or .fromSafeArea)

• itemSize, along with minimumLineSpacing (spacing in the scroll direction) and
minimumInteritemSpacing (spacing in the other direction)

• headerReferenceSize, footerReferenceSize
• sectionHeadersPinToVisibleBounds, sectionFootersPinToVisibleBounds; if
true, they cause the headers and footers to behave like table view section headers
and footers when the user scrolls

At a minimum, if you want to see any section headers, you must assign the flow lay‐
out a headerReferenceSize, because the default is .zero. Otherwise, you get initial
defaults that will at least allow you to see something immediately, such as an item-
Size of (50.0,50.0) along with reasonable default spacing between items and rows
(or columns).

UICollectionViewFlowLayout also defines a delegate protocol of its own,
UICollectionViewDelegateFlowLayout. The flow layout automatically treats the col‐
lection view’s delegate as its own delegate. The section margins, item size, item

Flow Layout | 529

spacing, line spacing, and header and footer size can be set for individual sections,
cells, and supplementary views through this delegate.

You must explicitly declare that the collection view’s delegate adopts the UICol‐
lectionViewDelegateFlowLayout protocol. Otherwise, your flow layout delegate
methods won’t be called.

To illustrate, here’s how the view shown in Figure 8-10 is created. I have a UICollec‐
tionViewController subclass, LessonListController. Every collection view must have a
collection view layout, so LessonListController’s designated initializer initializes itself
with a UICollectionViewFlowLayout:

init(terms data:[Term]) {
 // ... other self-initializations here ...
 let layout = UICollectionViewFlowLayout()
 super.init(collectionViewLayout:layout)
}

In viewDidLoad, we give the flow layout its hints about the sizes of the margins, cells,
and headers, as well as registering for cell and header reusability:

let headerID = "LessonHeader"
let cellID = "LessonCell"
override func viewDidLoad() {
 super.viewDidLoad()
 let layout = self.collectionView.collectionViewLayout
 as! UICollectionViewFlowLayout
 layout.sectionInset = UIEdgeInsets(top:10, left:20, bottom:10, right:20)
 layout.headerReferenceSize = CGSize(0,40)
 layout.itemSize = CGSize(70,45)
 self.collectionView.register(
 UINib(nibName: self.cellID, bundle: nil),
 forCellWithReuseIdentifier: self.cellID)
 self.collectionView.register(
 UICollectionReusableView.self,
 forSupplementaryViewOfKind: UICollectionView.elementKindSectionHeader,
 withReuseIdentifier: self.headerID)
 self.collectionView.backgroundColor = .myGolden
 self.collectionView.contentInsetAdjustmentBehavior = .always
}

My data model is just like the model for the table of U.S. states I’ve been using
throughout this chapter. (What are the chances of that?) The difference is that my
rowData, instead of being an array of Strings, is an array of Terms. (Term is basically
a custom value class.) The first two of the Three Big Questions are extremely familiar:

override func numberOfSections(
 in collectionView: UICollectionView) -> Int {
 return self.sections.count
}

530 | Chapter 8: Table Views and Collection Views

override func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return self.sections[section].rowData.count
}

The third of the Three Big Questions creates and configures the cells. In a .xib file,
I’ve designed the cell with a single subview, a UILabel with tag 1; if the text of that
label is still "Label", the cell has come freshly minted from the nib and needs further
initial configuration. Among other things, I assign each new cell a selected-
BackgroundView and give the label a highlightedTextColor, to get an automatic
indication of selection:

override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: self.cellID, for: indexPath)
 let lab = cell.viewWithTag(1) as! UILabel
 if lab.text == "Label" {
 lab.highlightedTextColor = .white
 cell.backgroundColor = .myPaler
 cell.layer.borderColor = UIColor.brown.cgColor
 cell.layer.borderWidth = 5
 cell.layer.cornerRadius = 5
 let v = UIView()
 v.backgroundColor = UIColor.blue.withAlphaComponent(0.8)
 cell.selectedBackgroundView = v
 }
 let term = self.sections[indexPath.section].rowData[indexPath.item]
 lab.text = term.lesson + term.sectionFirstWord
 return cell
}

The data source is also asked for the supplementary element views; in my case, these
are the section headers. I configure the header entirely in code. Again I distinguish
between newly minted views and reused views; the latter will already have a single
subview, a UILabel:

override func collectionView(_ collectionView: UICollectionView,
 viewForSupplementaryElementOfKind kind: String,
 at indexPath: IndexPath) -> UICollectionReusableView {
 let v = collectionView.dequeueReusableSupplementaryView(
 ofKind: kind,
 withReuseIdentifier: self.headerID, for: indexPath)
 if v.subviews.count == 0 {
 let lab = UILabel(frame:CGRect(10,0,100,40))
 lab.font = UIFont(name:"GillSans-Bold", size:20)
 lab.backgroundColor = .clear
 v.addSubview(lab)
 v.backgroundColor = .black
 lab.textColor = .myPaler
 }

Flow Layout | 531

 let lab = v.subviews[0] as! UILabel
 lab.text = self.sections[indexPath.section].sectionName
 return v
}

As you can see from Figure 8-10, the first section is treated specially — it has no
header, and its cell is wider. I take care of that with two UICollectionViewDelegate‐
FlowLayout methods:

func collectionView(_ collectionView: UICollectionView,
 layout lay: UICollectionViewLayout,
 sizeForItemAt indexPath: IndexPath) -> CGSize {
 var sz = (lay as! UICollectionViewFlowLayout).itemSize
 if indexPath.section == 0 {
 sz.width = 150
 }
 return sz
}
func collectionView(_ collectionView: UICollectionView,
 layout lay: UICollectionViewLayout,
 referenceSizeForHeaderInSection section: Int) -> CGSize {
 var sz = (lay as! UICollectionViewFlowLayout).headerReferenceSize
 if section == 0 {
 sz.height = 0
 }
 return sz
}

When the user taps a cell, I hear about it through the delegate method collection-
View(_:didSelectItemAt:) and respond accordingly. And that’s the entire code for
managing this collection view!

Compositional Layout
New in iOS 13, there’s another concrete UICollectionViewLayout subclass, UICollec‐
tionViewCompositionalLayout. It can do everything UICollectionViewFlowLayout
can do; even more important, it can achieve layouts that previously required you to
write a custom UICollectionViewLayout subclass from scratch.

You construct a compositional layout by building up a description from the smallest
element to the largest (hence the term compositional). The elements are:

item (NSCollectionLayoutItem)
In effect, a cell.

group (NSCollectionLayoutGroup)
A single unidimensional set of items, either horizontal or vertical. Think of it as a
single row or column. In most layouts, a group will run along the other axis from

532 | Chapter 8: Table Views and Collection Views

the layout’s scrolling direction. If a layout scrolls vertically, a group will typically
be horizontal and will represent one row of cells.

section (NSCollectionLayoutSection)
A section repeats a group. If a group is a row, a section may contain many rows.
Your data may have one or more sections. Sections can be laid out differently
from one another.

layout (UICollectionViewCompositionalLayout)
The object that will actually be handed to the collection view as its layout.

Size, Count, Spacing, and Insets
As you construct a compositional layout, you must specify the size of a section’s
group, the size of an item in the group, and the count of items per group. These are
the most important determinants of how the cells will be laid out in the section; fur‐
ther refinements are provided through various spacing and inset properties.

Size is specified using the NSCollectionLayoutSize initializer init(width-

Dimension:heightDimension:). A dimension is an NSCollectionLayoutDimension,
which has four class methods:

absolute

A definite number of points.

fractionalWidth

fractionalHeight

A proportion, between 0 and 1, of the container. For an item, the container is the
group. For a group, the container is the collection view bounds. These are just
numbers, so it is legal for the heightDimension: to be a fractionalWidth and
vice versa.

estimated

A number of points, but you are inviting the layout engine to measure cells using
internal autolayout constraints to determine the actual value. A common situa‐
tion is that one dimension of a size is fixed while the other is estimated.

A group is instantiated using the horizontal or vertical class method. You supply
parameters in two different ways:

horizontal(layoutSize:subitems:)

vertical(layoutSize:subitems:)

The group repeats one or more item types, as many per group as will fit. Suppose
the subitems: consists of two item types, one wide and one narrow; then the lay‐
out will alternate wide item with narrow item, filling a group before going on to
the next group.

Compositional Layout | 533

horizontal(layoutSize:subitem:count:)

vertical(layoutSize:subitem:count:)

The group repeats a single item type, a fixed number of times per group. The
items will be equally sized, possibly overriding the item’s own size in that dimen‐
sion. For instance, you can specify that there should be exactly three equally sized
items per group.

Apple’s own examples illustrate some basic combinations of item size, group size,
and item count; these are all vertically scrolling collection views, so a group is a row:

• The item has width dimension fractional width 1 and height dimension frac‐
tional height 1. The group has width dimension fractional width 1 and height
dimension absolute 44, and the subitems: initializer is used. So each row is as
wide as the collection view and 44 points tall, with one item per row, filling the
row. It looks like a table view.

• Like the previous layout, but the group’s subitem:count: initializer is used with
a count: of 2. There are exactly two cells per row and they have equal widths; the
item’s layoutSize: width dimension is effectively ignored.

• The item has width dimension fractional width 0.2 and height dimension frac‐
tional height 1. The group has width dimension 1 and height dimension
fractional width 0.2, and the subitems: initializer is used. So an item’s width is
one-fifth the width of the collection view, and a row’s height is that same value —
and an item’s height fills it, resulting in a grid of square cells, five per row.

Further size refinements are applied through spacing and insets properties of the
item, group, and section:

Item edgeSpacing
An NSLayoutEdgeSpacing object with leading:, top:, trailing:, and bottom:
parameters. A parameter is either nil or an NSCollectionLayoutSpacing object,
instantiated through a class function, either flexible or fixed. For instance, in a
vertically scrolling layout whose group uses the subitems: initializer, if there is
room for only one cell per group, then a leading: and trailing: spacing
of .flexible(0) will center the cell horizontally.

Group interItemSpacing
The distance between items within the group. This is also an NSCollection‐
LayoutSpacing, so it can be flexible, causing the items to be spaced out equally
and justified at both extremes.

Section interGroupSpacing
A CGFloat determining absolutely the distance between rows (or columns) in the
section.

534 | Chapter 8: Table Views and Collection Views

Layout interSectionSpacing
A CGFloat. A property, not of the layout itself, but of its configuration, a
UICollectionViewCompositionalLayoutConfiguration (a value class). The con‐
figuration is also how you specify the layout’s scrollDirection; the default
is .vertical, so if that’s what you want, and if you don’t need to set the section
spacing, you might not need a layout configuration.

Item, group, or section contentInsets
An NSDirectionalEdgeInsets (Chapter 1). Content insets are applied after the siz‐
ing and layout have been worked out. In Apple’s example of a grid with 5 square
cells per row, if a positive contentInsets is applied to the item, there are still five
cells per row, each in a square area, but a cell itself is inset within that square
area. (Any contentInsets along an estimated dimension are ignored.)

You now know almost enough to achieve the layout shown in Figure 8-10 as a com‐
positional layout! I haven’t talked yet about section headers, and the first section’s
single item needs to be wider than all other items; but if we concentrate on just the
items of the remaining sections, we can construct the layout like this:

private static func prepareLayout() -> UICollectionViewLayout {
 let itemSize = NSCollectionLayoutSize(
 widthDimension: .absolute(70),
 heightDimension: .fractionalHeight(1))
 let item = NSCollectionLayoutItem(layoutSize: itemSize)
 let groupSize = NSCollectionLayoutSize(
 widthDimension: .fractionalWidth(1),
 heightDimension: .absolute(45))
 let group = NSCollectionLayoutGroup.horizontal(
 layoutSize: groupSize, subitems: [item])
 group.interItemSpacing = .flexible(10)
 group.contentInsets = NSDirectionalEdgeInsets(
 top: 0, leading: 20, bottom: 0, trailing: 20)
 let section = NSCollectionLayoutSection(group: group)
 let vSpace = CGFloat(10)
 section.contentInsets = NSDirectionalEdgeInsets(
 top: vSpace, leading: 0, bottom: vSpace, trailing: 0)
 section.interGroupSpacing = vSpace
 let layout = UICollectionViewCompositionalLayout(section: section)
 return layout
}

Here’s how that compositional layout mimics the flow layout shown in Figure 8-10:

Flow behavior
The compositional layout behaves like a flow layout because the group uses the
subitems: initializer, meaning that a row consists of as many cells as will fit,
along with .flexible spacing to cause the cells to be justified at the leading and
trailing edges with equal spacing between them.

Compositional Layout | 535

Cell size
In the flow layout, we set an itemSize of CGSize(70,45). In the compositional
layout, an item has width dimension absolute 70 and height dimension fractional
height 1, while the group has width dimension fractional width 1 and height
dimension absolute 45.

Margins
The flow layout has a sectionInset with a UIEdgeInsets value
(10.0,20.0,10.0,20.0). In the compositional layout, horizontally, each group
has leading and trailing margins; vertically, each section has top and bottom
margins along with spacing between the rows.

Supplementary Items
In a compositional layout, supplementary items come in two main categories:

NSCollectionLayoutSupplementaryItem
An item or group’s supplementaryItems. An item’s supplementary items must
be declared in the item initializer; a group has a settable supplementaryItems
property.

It is initialized with init(layoutSize:elementKind:containerAnchor:item-
Anchor:). The elementKind: is an arbitrary string. The anchors are NSCollec‐
tionLayoutAnchor objects; the item anchor is optional. An anchor has edges (an
NSDirectionalRectEdge) along with an optional absoluteOffset or fractional-
Offset, which is a CGPoint. An NSDirectionalRectEdge is an option set consist‐
ing of .top, .trailing, .leading, and .bottom. A supplementary item also has a
zIndex for front-to-back layering.

Apple’s example of an item’s supplementary item has edges [.top, .trailing]
and a fractionalOffset of CGPoint(x:0.5,y:-0.5). That’s a badge centered at
the top right corner.

NSCollectionLayoutBoundarySupplementaryItem
(An NSCollectionLayoutSupplementaryItem subclass.) A section or layout’s
boundarySupplementaryItems. A section has a settable boundarySupplementary-
Items property; you supply a layout’s boundary supplementary items as part of
its configuration.

It has an alignment which is an NSRectAlignment, along with a possible
absoluteOffset. The NSRectAlignment is an enum specifying a single edge or
corner: .top, .topLeading, .leading, and so on; a header in a vertically scrolling
layout would be attached to the section’s .top. If the supplementary item’s
extendsBoundary is true (the default), it lies outside what would otherwise be

536 | Chapter 8: Table Views and Collection Views

the layout size of its container. There is also a pinToVisibleBounds property so
that a section header or footer can behave like a table header or footer.

We are now ready to add section headers to the Latin LessonListController example!
As we construct the section, we insert these lines:

let headerSize = NSCollectionLayoutSize(
 widthDimension: .fractionalWidth(1),
 heightDimension: .absolute(40))
let header = NSCollectionLayoutBoundarySupplementaryItem(
 layoutSize: headerSize, elementKind: "header", alignment: .top)
section.boundarySupplementaryItems = [header]

I’ve used an arbitrary elementKind: string "header". Its significance is that I use the
same string to register the reusable view class with the collection view:

self.collectionView!.register(
 UICollectionReusableView.self,
 forSupplementaryViewOfKind: "header",
 withReuseIdentifier:self.headerID)

Our implementation of collectionView(_:viewForSupplementaryElementOf-

Kind:at:) is called, and section headers now appear in the layout! Our composi‐
tional layout now looks almost identical to the original flow layout in Figure 8-10.
Only the first section is wrong; I’ll deal with that now.

Multiple Section Layouts
In the layout shown in Figure 8-10, the first section needs to be special. It should have
no section header, and its single cell needs to be wider than the subsequent cells.
With a flow layout, we took care of these differences with two UICollectionView‐
DelegateFlowLayout methods. With a compositional layout, we handle section differ‐
ences by changing the layout initialization slightly. Currently, we have this:

let itemSize = NSCollectionLayoutSize(// ...
// ...
let section = NSCollectionLayoutSection(group: group)
// ...
let layout = UICollectionViewCompositionalLayout(section: section)
return layout

We change it to this:

let layout = UICollectionViewCompositionalLayout { index, env in
 let itemSize = NSCollectionLayoutSize(// ...
 // ...
 let section = NSCollectionLayoutSection(group: group)
 // ...
 return section
}
return layout

Compositional Layout | 537

That initializer defines a layout along with a section provider function that is fed the
index number of every section and returns a section. So the section we construct can
differ depending on the index number! The starred comments mark the lines where
we behave differently; if this is the first section, an item is 150 points wide instead of
70 points wide, and we don’t attach the header:

let layout = UICollectionViewCompositionalLayout { index, env in
 let itemSize = NSCollectionLayoutSize(
 widthDimension: .absolute(index == 0 ? 150 : 70), // *
 heightDimension: .fractionalHeight(1))
 // ...
 let section = NSCollectionLayoutSection(group: group)
 // ...
 let header = NSCollectionLayoutBoundarySupplementaryItem(
 layoutSize: headerSize, elementKind: "header", alignment: .top)
 if index != 0 { // *
 section.boundarySupplementaryItems = [header]
 }
 return section
}
return layout

The second parameter in the section provider function (env) is an NSCollection‐
LayoutEnvironment object, a value class consisting of two properties:

container

An NSCollectionLayoutContainer telling us the contentSize and content-
Insets of the overall layout.

traitCollection

The current UITraitCollection for this view.

Using this information, you can make your layout differ depending on the size or ori‐
entation of the view. Apple’s example is a grid of cells with five cells per row, unless
the view is wider than a certain amount, in which case it becomes ten cells per row.

Other Compositional Layout Features
This section describes some further compositional layout features.

Manual cell layout
So far, we’ve been sizing our cells (items) by initializing a group with
the .horizontal or .vertical class functions and giving an item a layoutSize. But
there’s another way. You initialize the group with the .custom class function. You
supply an item provider function: it receives an NSCollectionLayoutEnvironment
(whose container reports the content size and content insets of this group), and
returns an array of NSCollectionLayoutGroupCustomItem objects. This is a value

538 | Chapter 8: Table Views and Collection Views

Figure 8-11. Manual cell layout

class consisting of a frame and an optional zIndex. You are now in complete charge
of how many cells this group contains and what their frames should be.

In this example, the height of each cell in the row is a little smaller than that of the
preceding cell; a new row starts when there are too many cells or the cell height
becomes vanishingly small (Figure 8-11):

let group = NSCollectionLayoutGroup.custom(layoutSize: sz) { env in
 var items = [NSCollectionLayoutGroupCustomItem]()
 let w = CGFloat(40)
 var frame = CGRect(0, 0, w, env.container.contentSize.height)
 while true {
 items.append(NSCollectionLayoutGroupCustomItem(frame: frame))
 frame.origin.x += w + 10
 frame.size.height -= 6; frame.origin.y += 3
 if frame.size.height < 20 {
 return items
 }
 if frame.maxX > env.container.contentSize.width {
 return items
 }
 }
}

Nested groups
A group is an item (NSCollectionLayoutGroup is a subclass of NSCollectionLayout‐
Item). This means that a group can contain a group. A nested group can have a dif‐
ferent orientation (horizontal or vertical) from its container group.

In this example, the section’s group is a horizontal group composed of two vertical
groups of two items. The result is that items are clumped into blocks of four, in the
order upper left, lower left, upper right, lower right (Figure 8-12):

let itemSize = NSCollectionLayoutSize(
 widthDimension: .fractionalWidth(1),
 heightDimension: .fractionalHeight(0.5))
let item = NSCollectionLayoutItem(layoutSize: itemSize)
let vgroupSize = NSCollectionLayoutSize(
 widthDimension: .fractionalWidth(0.48),
 heightDimension: .absolute(60))

Compositional Layout | 539

Figure 8-12. Nested groups

let vgroup = NSCollectionLayoutGroup.vertical(
 layoutSize: vgroupSize, subitems: [item])
let hgroupSize = NSCollectionLayoutSize(
 widthDimension: .fractionalWidth(1),
 heightDimension: .absolute(60))
let hgroup = NSCollectionLayoutGroup.horizontal(
 layoutSize: hgroupSize, subitems: [vgroup])
hgroup.interItemSpacing = .flexible(1)
let section = NSCollectionLayoutSection(group: hgroup)

Orthogonal scrolling

A section has an orthogonalScrollingBehavior property, a UICollectionLayout‐
SectionOrthogonalScrollingBehavior enum. By default, this is .none. If you change it
to anything else, the section’s groups are arranged in a single row (or column) along
the other axis from the layout’s scrolling direction, and the section is scrollable so that
the user can view all the items. For instance, if the layout scrolls vertically, a scrolling
section lines up all its groups in a single horizontal row, which scrolls horizontally.
It’s like having a collection view inside a collection view, scrolling at right angles to it.

The scrolling behavior values are:

continuous

Normal unrestricted scrolling.

continuousGroupLeadingBoundary

Normal unrestricted scrolling, but comes to rest with the leading edge of a group
at the leading edge of the collection view.

paging

The user can scroll only one collection view width at a time.

groupPaging

The user can scroll only one group at a time.

540 | Chapter 8: Table Views and Collection Views

groupPagingCentered

The user can scroll only one group at a time, and a group comes to rest centered
in the collection view.

Collection View Diffable Data Source
A collection view’s data source can be a diffable data source (UICollectionViewDiffa‐
bleDataSource). It works similarly to a table view’s diffable data source (“Table View
Diffable Data Source” on page 502), but there are some extra requirements (and fail‐
ure to fulfill them will result in a crash at runtime):

• Any calls to the collection view’s register(_:forCellWithReuseIdentifier:)
or register(_:forSupplementaryViewOfKind:) must take place before an initial
snapshot is applied to the data source.

• If any supplementary views are to be displayed, the diffable data source’s
supplementaryViewProvider property must be set before an initial snapshot of
data is applied to the data source. Basically, this function replaces the data source
method collectionView(_:viewForSupplementaryElementOfKind:at:), and
must do the same work that that method would have done. Its parameters are the
collection view, the supplementary view kind (a string), and the index path, and
it returns a UICollectionReusableView that has been dequeued from the collec‐
tion view.

To illustrate, I’ll create a simple collection view (with a flow layout) based on the
Three Big Questions; then I’ll convert it to use a diffable data source. This will be a
collection view version of the table view displaying the names of the U.S. states in sec‐
tions, and the conversion will be exactly parallel to what I did earlier in “Populating a
Diffable Data Source” on page 504.

First I’ll construct the Three Big Questions version of my collection view. The data
model initially will be our familiar array of Section objects:

struct Section {
 var sectionName : String
 var itemData : [String]
}
var sections : [Section]()

When the view loads (viewDidLoad), we parse the text file of state names into the
self.sections array as usual:

let s = try! String(
 contentsOfFile: Bundle.main.path(
 forResource: "states", ofType: "txt")!)
let states = s.components(separatedBy:"\n")

Collection View Diffable Data Source | 541

let d = Dictionary(grouping: states) {String($0.prefix(1))}
self.sections = Array(d).sorted{$0.key < $1.key}.map {
 Section(sectionName: $0.key, itemData: $0.value)
}

We register our cell and header types; our cell is a UICollectionViewCell subclass
called Cell, designed in a nib called Cell.xib, with a lab outlet to a UILabel:

self.collectionView.register(UINib(nibName:"Cell", bundle:nil),
 forCellWithReuseIdentifier: self.cellID)
self.collectionView.register(UICollectionReusableView.self,
 forSupplementaryViewOfKind:UICollectionView.elementKindSectionHeader,
 withReuseIdentifier: self.headerID)

We also configure the flow layout (I won’t bother showing that code). Now for the
data source methods. Here are the Three Big Questions:

override func numberOfSections(
 in collectionView: UICollectionView) -> Int {
 return self.sections.count
}
override func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return self.sections[section].itemData.count
}
override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: self.cellID, for: indexPath) as! Cell
 // ...
 cell.lab.text =
 self.sections[indexPath.section].itemData[indexPath.row]
 return cell
}

And here’s how we provide the header views:

override func collectionView(_ collectionView: UICollectionView,
 viewForSupplementaryElementOfKind kind: String,
 at indexPath: IndexPath) -> UICollectionReusableView {
 let v = collectionView.dequeueReusableSupplementaryView(
 ofKind: kind, withReuseIdentifier: self.headerID, for: indexPath)
 if v.subviews.count == 0 {
 let lab = UILabel()
 v.addSubview(lab)
 // ...
 }
 let lab = v.subviews[0] as! UILabel
 lab.text = self.sections[indexPath.section].sectionName
 return v
}

That’s a working collection view; now I’ll convert it to use a diffable data source.

542 | Chapter 8: Table Views and Collection Views

We delete the Section struct and the sections instance property. Instead, we have a
diffable data source instance property. I’ll make this an Optional initialized to nil:

var datasource : UICollectionViewDiffableDataSource<String,String>! = nil

In viewDidLoad, we do things in a definite order — registration, instantiation, and
population:

// registration
self.collectionView.register(UINib(nibName:"Cell", bundle:nil),
 forCellWithReuseIdentifier: self.cellID)
self.collectionView.register(UICollectionReusableView.self,
 forSupplementaryViewOfKind:UICollectionView.elementKindSectionHeader,
 withReuseIdentifier: self.headerID)
// instantiation
self.datasource = UICollectionViewDiffableDataSource<String,String>(
 collectionView:self.collectionView) { cv,ip,s in
 return self.makeCell(cv,ip,s) // *
}
self.datasource.supplementaryViewProvider = { cv,kind,ip in
 return self.makeSupplementaryView(cv,kind,ip) // *
}
// population
// ...
self.datasource.apply(snap, animatingDifferences: false)

We register our cell and supplementary view.

We instantiate the diffable data source and configure it with two functions, one
for producing cells, and one for producing supplementary views. I’ve coded spec‐
ulatively, postponing the actual code of those functions by moving them into
instance methods.

We populate the diffable data source with data. This part is identical to how we
populated the table view diffable data source with the same data, so I’ve omitted
it (except for the last line).

Now I’ll write the two functions from step 2, which I called makeCell and make-
SupplementaryView. These are effectively the same as what we were already doing in
our data source methods!

makeCell replaces collectionView(_:cellForItemAt:), and does the same thing,
except that we receive the actual data from the diffable data source:

func makeCell(_ collectionView:UICollectionView,
 _ indexPath:IndexPath, _ s:String) -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: self.cellID, for: indexPath) as! Cell

Collection View Diffable Data Source | 543

 // ...
 cell.lab.text = s // *
 return cell
}

makeSupplementaryView replaces collectionView(_:viewForSupplementary-

ElementOfKind:at:), and does the same thing, except that we look up the data in the
diffable data source:

func makeSupplementaryView(_ collectionView:UICollectionView,
 _ kind:String, _ indexPath:IndexPath) -> UICollectionReusableView {
 let v = collectionView.dequeueReusableSupplementaryView(
 ofKind: kind, withReuseIdentifier: self.headerID, for: indexPath)
 if v.subviews.count == 0 {
 let lab = UILabel()
 v.addSubview(lab)
 // ...
 }
 let lab = v.subviews[0] as! UILabel
 let snap = self.datasource.snapshot() // *
 lab.text = snap.sectionIdentifiers[indexPath.section] // *
 return v
}

Basic Cell Manipulation
This section describes some basic manipulations you can perform on collection view
cells.

Selecting Cells
A collection view has a notion of cell selection, similar to a table view:

• A collection view has allowsSelection and allowsMultipleSelection proper‐
ties; if these are not false, the user can tap a cell to select it.

• A collection view has an indexPathsForSelectedItems property, along with
methods for selecting and deselecting an item.

• A cell has an isSelected property and a selectedBackgroundView property.
• The delegate has a full complement of should and did methods for highlighting

and unhighlighting, selecting and deselecting. When the user taps to select a cell,
the cell highlights, unhighlights, and selects (though the user is unaware of this,
as a highlighted cell and a selected cell look the same).

• New in iOS 13, the delegate also has three multipleSelectionInteraction
methods for when the user pans with two fingers to perform multiple selection;
unlike a table view, a collection view has no notion of edit mode to complicate

544 | Chapter 8: Table Views and Collection Views

matters. You can permit multiple selection by gesture even if the collection
view’s allowsMultipleSelection is false.

As with a table view, you can indicate selection visually with subviews that respond to
highlighting and the selectedBackgroundView property. Earlier in this chapter, I
configured a cell containing a label like this:

lab.highlightedTextColor = .white
cell.backgroundColor = .myPaler
let v = UIView()
v.backgroundColor = UIColor.blue.withAlphaComponent(0.8)
cell.selectedBackgroundView = v

Deleting Cells
Unlike table views, collection views don’t provide any standard interface for allowing
the user to delete cells. You are free to display a UICollectionViewController’s edit-
ButtonItem, and when the user taps it, the collection view controller’s set-
Editing(_:animated:) is called; but the interface does not automatically change in
response, and neither a collection view nor a collection view cell has an isEditing
property. Providing interface that lets the user express a desire to delete a cell is left
completely up to you.

Deleting cells is a lot simpler if you’re using a diffable data source. With a Three Big
Questions data source, you have to alter the data, being careful about the order of
operations, and then call performBatchUpdates to remove items and sections from
the collection view. With a diffable data source, you just manipulate a snapshot and
apply it.

Suppose we have a diffable data source, and the user has selected multiple cells and
has tapped a Delete button; I want to respond by deleting the selected cells, along
with any sections that are now empty. Unsurprisingly, the code for doing that is
almost exactly the same as what we developed earlier for doing this in a table view
(“Changing a Diffable Data Source” on page 508):

guard let sel = self.collectionView.indexPathsForSelectedItems,
 sel.count > 0 else {return}
let rowids = sel.map {
 self.datasource.itemIdentifier(for: $0)
}.compactMap {$0}
var snap = self.datasource.snapshot()
snap.deleteWithSections(rowids) // implemented in an extension
self.datasource.apply(snap)

Menu Handling
Menu handling is completely parallel to a table view. In iOS 13, you’ll probably want
to use the new context menu interface based on UIMenu and UIAction. Here’s some

Basic Cell Manipulation | 545

code that lets the user long press a cell to produce a Copy menu item; as usual, I have
a collection view displaying U.S. state names, and the name of the long pressed cell’s
state is copied to the clipboard if the user taps Copy:

override func collectionView(_ collectionView: UICollectionView,
 contextMenuConfigurationForItemAt indexPath: IndexPath,
 point: CGPoint) -> UIContextMenuConfiguration? {
 let config = UIContextMenuConfiguration(
 identifier:nil, previewProvider: nil) { _ in
 let action = UIAction(title: "Copy") { _ in
 let d = self.datasource
 if let state = d.itemIdentifier(for: indexPath) {
 UIPasteboard.general.string = state
 print("copied", state)
 }
 }
 let menu = UIMenu(title: "", children: [action])
 return menu
 }
 return config
}

Menus don’t play very well with selection, because the long pressed cell visibly
highlights first, after which the long press gesture recognizer recognizes, unhigh‐
lights the cell, and produces the menu.

Rearranging Cells
You can permit the user to rearrange cells by dragging them. If you’re using a collec‐
tion view controller, it supplies a gesture recognizer ready to respond to the user’s
long press gesture followed by a drag. (This is incompatible with a menu, because the
menu long press gesture recognizer recognizes first.)

To permit the drag to proceed, you implement two data source methods:

collectionView(_:canMoveItemAt:)

Return true to allow this item to be moved.

collectionView(_:moveItemAt:to:)

The item has been moved to a new index path. Update the data model, and
reload cells as needed.

You can also limit where the user can drag with this delegate method:

collectionView(_:targetIndexPathForMoveFromItemAt:toProposedIndexPath:)

Return either the proposed index path or some other index path. To prevent the
drag entirely, return the original index path (the second parameter).

546 | Chapter 8: Table Views and Collection Views

If you’re using a diffable data source, you’ll have to subclass UICollectionView‐
DiffableDataSource and implement the data source methods in the subclass.

In this example, we’re using a diffable data source, and we permit the user to rear‐
range items within a section but not to drag an item outside its section. The data
source methods, implemented in a diffable data source subclass, are similar to the
table view example from earlier in this chapter:

override func collectionView(_ collectionView: UICollectionView,
 canMoveItemAt indexPath: IndexPath) -> Bool {
 return true
}
override func collectionView(_ cv: UICollectionView,
 moveItemAt source: IndexPath, to dest: IndexPath) {
 let srcid = self.itemIdentifier(for: source)!
 let destid = self.itemIdentifier(for: dest)!
 var snap = self.snapshot()
 if dest.item > source.item {
 snap.moveItem(srcid, afterItem: destid)
 } else {
 snap.moveItem(srcid, beforeItem: destid)
 }
 self.apply(snap, animatingDifferences:false)
}

The delegate method prevents the move if the drag crosses a section boundary:

override func collectionView(_ collectionView: UICollectionView,
 targetIndexPathForMoveFromItemAt orig: IndexPath,
 toProposedIndexPath prop: IndexPath) -> IndexPath {
 if orig.section != prop.section {
 return orig
 }
 return prop
}

If you prefer to provide your own gesture recognizer, then if you’re using a collection
view controller, set its installsStandardGestureForInteractiveMovement to false.
Your gesture recognizer action method will need to call these collection view meth‐
ods to keep the collection view apprised of what’s happening (and the data source
and delegate methods will then be called appropriately):

• beginInteractiveMovementForItem(at:)

• updateInteractiveMovementTargetPosition(_:)

• endInteractiveMovement

• cancelInteractiveMovement

Basic Cell Manipulation | 547

Figure 8-13. A carousel layout

Custom Collection View Layouts
It is possible that neither a flow layout nor a compositional layout does quite what
you want, and that you’ll want to tweak its behavior or even write your own
UICollectionViewLayout subclass. The topic is a very large one, but getting started is
not difficult; this section explores the basics.

Tweaking a Layout
Both UICollectionViewFlowLayout and UICollectionViewCompositionalLayout
constitute powerful starting points, so it may be that all you need is to tweak what
they already do. To illustrate, I’ll use an example from a WWDC 2012 video.

Suppose we have a horizontally scrolling collection view as wide as the screen and
128 points tall. Centered vertically in this collection view is a horizontal series of sin‐
gle square cells 75 points on a side, spaced fairly well apart. About three cells fit on
the screen; the user can scroll horizontally to see more cells.

Our goal is to modify the behavior of the collection view such that as the user scrolls
horizontally, the currently central cell is emphasized. As a cell approaches the hori‐
zontal center of the screen, it grows, and as it moves away from the horizontal center,
it returns to its normal size. This sort of interface is commonly referred to as a carou‐
sel (Figure 8-13).

Flow layout subclass
We can easily configure our collection view with a flow layout:

lay.itemSize = CGSize(width: 75, height: 75)
lay.minimumLineSpacing = 65

To achieve our “carousel” tweak, we subclass UICollectionViewFlowLayout and set
our collection view’s collectionViewLayout to an instance of the subclass. In the
subclass, we override the method that describes how each cell should be laid out,
namely layoutAttributesForElements(in:).

The parameter of the layoutAttributesForElements(in:) method is a CGRect, and
the method returns an array of UICollectionViewLayoutAttributes objects describing

548 | Chapter 8: Table Views and Collection Views

all the subviews of the collection view within that CGRect. The properties of each
attributes object are the indexPath identifying the view, along with the frame,
center, size, transform, transform3D, and zIndex that it should have. All of these
properties are basically correct already in the default implementation, so we can call
super and make modifications as necessary. All we have to do is to change the
transform3D when this cell is near the center of the screen.

A layout has a collectionView property, which we can use to work out the collection
view’s visible bounds and the horizontal center of those bounds. Having called super,
we have the array of attributes objects that the method would return. We copy the
attribute objects (that’s crucial) and examine the frame and center of each one in
turn. If it isn’t within the visible bounds, or if it isn’t a cell, or if it isn’t sufficiently
close to the horizontal center of the screen, there’s nothing more to do. Otherwise, we
change the transform3D in proportion to the distance of the center from the collec‐
tion view’s horizontal center, and substitute the copy for the original. Finally, we
return the whole array of copies:

override func layoutAttributesForElements(in rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {
 guard let cv = self.collectionView else { return nil }
 let r = CGRect(origin:cv.contentOffset, size:cv.bounds.size)
 let arr = super.layoutAttributesForElements(in: rect)!
 return arr.map { atts in
 let atts = atts.copy() as! UICollectionViewLayoutAttributes
 if atts.representedElementCategory == .cell {
 if atts.frame.intersects(r) {
 let d = abs(r.midX - atts.center.x)
 let act = CGFloat(70)
 let nd = d/act
 if d < act {
 let scale = 1 + 0.5*(1-(abs(nd)))
 let t = CATransform3DMakeScale(scale,scale,1)
 atts.transform3D = t
 }
 }
 }
 return atts
 }
}

We also override another method:

override func shouldInvalidateLayout(
 forBoundsChange newBounds: CGRect) -> Bool {
 return true
}

This override ensures that the collection view will ask for layout repeatedly as the
user scrolls. Our flow layout subclass is complete!

Custom Collection View Layouts | 549

Compositional layout invalidation handler
Exactly the same overrides work if we are using a compositional layout instead of a
flow layout, and we could do the same thing by subclassing UICollectionViewCom‐
positionalLayout. But there’s no need for that! It turns out that a compositional lay‐
out provides a hook method that lets us modify the attributes of visible items directly.

To do so, we set the section’s visibleItemsInvalidationHandler to a function that
takes three parameters:

• An array of NSCollectionLayoutVisibleItems. These are just like UICollection‐
ViewLayoutAttributes objects, except that you can set their properties directly.
Moreover, the array contains only objects representing those collection view sub‐
views that are actually visible at the moment.

• A CGPoint representing the collection view’s current scrolling offset.
• The NSCollectionLayoutEnvironment.

Here’s a compositional layout that looks and behaves like our tweaked flow layout:

let itemSize = NSCollectionLayoutSize(
 widthDimension: .fractionalWidth(1),
 heightDimension: .absolute(75))
let item = NSCollectionLayoutItem(layoutSize: itemSize)
item.edgeSpacing = NSCollectionLayoutEdgeSpacing(
 leading: nil, top: .flexible(0),
 trailing: nil, bottom: .flexible(0))
let groupSize = NSCollectionLayoutSize(
 widthDimension: .absolute(75),
 heightDimension: .fractionalHeight(1))
let group = NSCollectionLayoutGroup.vertical(
 layoutSize: groupSize, subitems: [item])
let section = NSCollectionLayoutSection(group: group)
section.interGroupSpacing = 65
section.contentInsets = NSDirectionalEdgeInsets(
 top: 0, leading: 75, bottom: 0, trailing: 75)
section.visibleItemsInvalidationHandler = { items, offset, env in
 let r = CGRect(origin:offset, size:env.container.contentSize)
 let cells = items.filter {$0.representedElementCategory == .cell}
 for item in cells {
 let d = abs(r.midX - item.center.x)
 let act = CGFloat(70)
 let nd = d/act
 if d < act {
 let scale = 1 + 0.5*(1-(abs(nd)))
 let t = CATransform3DMakeScale(scale,scale,1)
 item.transform3D = t
 }
 }
}

550 | Chapter 8: Table Views and Collection Views

let config = UICollectionViewCompositionalLayoutConfiguration()
config.scrollDirection = .horizontal
let layout = UICollectionViewCompositionalLayout(
 section: section, configuration:config)

Collection View Layout Subclass
For total freedom, you can subclass UICollectionViewLayout itself. The WWDC
2012 videos demonstrate a UICollectionViewLayout subclass that arranges its cells in
a circle; the WWDC 2013 videos demonstrate a UICollectionViewLayout subclass
that piles its cells into a single stack in the center of the collection view, like a deck of
cards seen from above. For my example, I’ll write a simple collection view layout that
ignores sections and presents all cells as a plain grid of squares. This is unnecessary
now that compositional layouts exist, but it demonstrates nicely the basics of writing
a layout from scratch.

In my UICollectionViewLayout subclass, called MyLayout, the big questions I will
need to answer are collectionViewContentSize and layoutAttributesFor-

Elements(in:). To answer them, I’ll calculate the entire layout of my grid before‐
hand. The prepare method is the perfect place to do this; it is called every time
something about the collection view or its data changes. I’ll calculate the grid of cells
and express their positions as an array of UICollectionViewLayoutAttributes objects;
I’ll store that information in a property self.atts, which is a dictionary keyed by
index path so that I can retrieve a given layout attributes object by its index path
quickly. I’ll also store the size of the grid in a property self.sz:

override func prepare() {
 let sections = self.collectionView.numberOfSections
 // work out cell size based on bounds size
 let sz = self.collectionView!.bounds.size
 let width = sz.width
 let shortside = (width/100).rounded(.down)
 let side = width/shortside
 // generate attributes for all cells
 var (x,y) = (0,0)
 var atts = [UICollectionViewLayoutAttributes]()
 for i in 0 ..< sections {
 let jj = self.collectionView!.numberOfItems(inSection:i)
 for j in 0 ..< jj {
 let att = UICollectionViewLayoutAttributes(
 forCellWith: IndexPath(item:j, section:i))
 att.frame = CGRect(CGFloat(x)*side,CGFloat(y)*side,side,side)
 atts += [att]
 x += 1
 if CGFloat(x) >= shortside {
 x = 0; y += 1
 }
 }
 }

Custom Collection View Layouts | 551

 for att in atts {
 self.atts[att.indexPath] = att
 }
 let fluff = (x == 0) ? 0 : 1
 self.sz = CGSize(width, CGFloat(y+fluff) * side)
}

It is now trivial to implement collectionViewContentSize, layoutAttributesFor-
Elements(in:), and layoutAttributesForItem(at:). I’ll just fetch the requested
information from the sz or atts property:

override var collectionViewContentSize : CGSize {
 return self.sz
}
override func layoutAttributesForElements(in rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {
 return Array(self.atts.values)
}
override func layoutAttributesForItem(at indexPath: IndexPath)
 -> UICollectionViewLayoutAttributes? {
 return self.atts[indexPath]
}

Finally, I want to implement shouldInvalidateLayout(forBoundsChange:) to
return true, so that if the interface is rotated, my prepare method will be called again
to recalculate the grid. There’s a potential source of inefficiency here, though: the
user scrolling the collection view counts as a bounds change as well. Therefore, I
return false unless the bounds size has changed:

var oldBoundsSize = CGSize.zero
override func shouldInvalidateLayout(forBoundsChange newBounds: CGRect)
 -> Bool {
 let ok = newBounds.size != self.oldBoundsSize
 if ok {
 self.oldBoundsSize = newBounds.size
 }
 return ok
}

Decoration Views
A decoration view is a third type of collection view subview, on a par with cells and
supplementary views. The difference is that it is implemented entirely by the collec‐
tion view layout. You register a decoration view class (or nib) with the layout — not
with the collection view. A collection view will faithfully draw a decoration view
imposed by the collection view layout, but none of the methods and properties of a
collection view, its data source, or its delegate involve decoration views. There is no
support for letting the user select a decoration view or reposition a decoration view.

552 | Chapter 8: Table Views and Collection Views

There aren’t even any collection view methods for finding out what decoration views
exist or where they are located.

A flow layout comes with no built-in support for adding a decoration view, but a
compositional layout does. It is of class NSCollectionLayoutDecorationItem (an
NSCollectionLayoutItem subclass), and represents just one kind of decoration, a
background behind a section. So there’s a single class function, background, which
takes an elementKind, and you set the section’s decorationItems. There must be a
corresponding UICollectionReusableView (or a nib containing such a view) regis‐
tered with the layout.

As a simple example, I’ll put a pale blue background behind each section of a compo‐
sitional layout. Here’s my view class:

class Deco : UICollectionReusableView {
 override init(frame: CGRect) {
 super.init(frame: frame)
 self.backgroundColor = UIColor.blue.withAlphaComponent(0.1)
 }
 required init?(coder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
}

Here’s how I register that class with the layout when I configure the collection view:

let layout = self.createLayout()
layout.register(Deco.self, forDecorationViewOfKind: "background")
self.collectionView.collectionViewLayout = layout

And here’s how the decoration view is added to the section (in createLayout):

let deco = NSCollectionLayoutDecorationItem.background(
 elementKind: "background")
deco.contentInsets = NSDirectionalEdgeInsets(
 top: 5, leading: 5, bottom: 5, trailing: 5)
section.decorationItems = [deco]

You can also implement a decoration view in a layout subclass that you write, and
you are free to define any desired mechanism for allowing a user of this collection
view layout to customize your decoration views. You implement layoutAttributes-
ForDecorationView(ofKind:at:) to return a UICollectionViewLayoutAttributes
object that positions the UICollectionReusableView. To construct this object, you call
init(forDecorationViewOfKind:with:) and configure its properties. Finally, you
implement layoutAttributesForElements(in:) such that the result of layout-
AttributesForDecorationView(ofKind:at:) is included in the returned array.

Custom Collection View Layouts | 553

Switching Layouts
An astonishing feature of a collection view is that its collection view layout object can
be swapped out on the fly. You can substitute one collection view layout for another,
by calling setCollectionViewLayout(_:animated:completion:). The data hasn’t
changed, and the collection view can identify each element uniquely and persistently,
so it responds by moving every element from its position according to the old layout
to its position according to the new layout — and, if the animated: argument is true,
it does this with animation! The elements are seen to rearrange themselves, as if by
magic.

This animated change of layout can even be driven interactively in response to a user
gesture. You call startInteractiveTransition(to:completion:) on the collection
view, and a special layout object is returned — a UICollectionViewTransitionLayout
instance (or a subclass thereof; to make it a subclass, you need to have implemented
collectionView(_:transitionLayoutForOldLayout:newLayout:) in your collec‐
tion view delegate). This transition layout is temporarily made the collection view’s
layout, and your job is then to keep it apprised of the transition’s progress (through
its transitionProgress property) and ultimately to call finishInteractive-

Transition or cancelInteractiveTransition on the collection view.

Furthermore, when one collection view controller is pushed on top of another in a
navigation interface, the runtime will do exactly the same thing for you, as a custom
view controller transition. To arrange this, the first collection view controller’s use-
LayoutToLayoutNavigationTransitions property must be false and the second
collection view controller’s useLayoutToLayoutNavigationTransitions property
must be true. The result is that when the second collection view controller is pushed
onto the navigation controller, the collection view remains in place, and the collection
view layout specified by the second collection view controller is substituted for the
collection view’s existing collection view layout, with animation of the elements as
they adopt their new positions.

During the transition, as the second collection view controller is pushed onto the
navigation stack, the two collection view controllers share the same collection view,
and the collection view’s data source and delegate remain the first view controller.
After the transition is complete, however, the collection view’s delegate becomes the
second view controller, even though its data source is still the first view controller. I
find this profoundly weird; why does the runtime change who the delegate is, and
why would I want the delegate to be different from the data source? I solve the
problem by resetting the delegate in the second view controller, like this:

554 | Chapter 8: Table Views and Collection Views

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 let oldDelegate = self.collectionView.delegate
 DispatchQueue.main.async {
 self.collectionView.delegate = oldDelegate
 }
}

Collection Views and UIKit Dynamics
The UICollectionViewLayoutAttributes class adopts the UIDynamicItem protocol
(see Chapter 4). This means that collection view elements can be animated under
UIKit dynamics. The world of the animator here is not a superview but the collection
view layout itself:

• Instead of init(referenceView:), you’ll create the UIDynamicAnimator by
calling init(collectionViewLayout:).

• When adding an item to a UIDynamicBehavior, instead of being a UIView, the
item is a UICollectionViewLayoutAttributes object.

But there’s a tricky bit. On every frame of its animation, the UIDynamicAnimator is
going to change the layout attributes of some items — but the collection view knows
nothing of that! It still wants to draw those items in accordance with the collection
view layout’s layoutAttributesForElements(in:). We need to make the collection
view modify its layoutAttributesForElements(in:) so as to obtain those layout
attributes from the UIDynamicAnimator. There are some helpful UIDynamicAnima‐
tor convenience methods:

layoutAttributesForCell(at:)

layoutAttributesForSupplementaryView(ofKind:at:)

The layout attributes for the requested item, in accordance with where the ani‐
mator wants to put them — or nil if the specified item is not being animated.

How will we hook into the layout’s layoutAttributesForElements(in:)? In iOS 12
and before, you’d need a custom subclass of UICollectionViewLayout so that you
could override layoutAttributesForElements(in:). New in iOS 13, if you’re using
a compositional layout, you can use the section’s visibleItemsInvalidation-
Handler.

In this example, I’m using a compositional layout to arrange the collection view’s
cells in a grid. I’ll animate the visible cells to fall off the screen with random rates and
random rotation. As usual, I have an Optional UIDynamicAnimator instance prop‐
erty called self.anim:

Collection Views and UIKit Dynamics | 555

let layout = cv.collectionViewLayout
let anim = UIDynamicAnimator(collectionViewLayout: layout)
var atts = [UICollectionViewLayoutAttributes]()
for ip in cv.indexPathsForVisibleItems {
 if let att = cv.layoutAttributesForItem(at: ip) {
 let beh = UIDynamicItemBehavior(items:[att])
 beh.resistance = CGFloat.random(in: 0.2...6)
 beh.addAngularVelocity(CGFloat.random(in: -2...2), for: att)
 anim.addBehavior(beh)
 atts.append(att)
 }
}
let grav = UIGravityBehavior(items: atts)
grav.action = {
 let items = anim.items(in: self.collectionView.bounds)
 if items.count == 0 {
 anim.removeAllBehaviors()
 self.anim = nil
 }
}
anim.addBehavior(grav)
self.anim = anim

We run that code, and nothing appears to happen. But something is happening: the
animator runs, and it stops as expected when all the cells are off the screen. The trou‐
ble is that the cells drawn by the collection view are not moving! This is where the
visibleItemsInvalidationHandler comes in, when we construct our compositional
layout:

let section = NSCollectionLayoutSection(group: group)
section.visibleItemsInvalidationHandler = { items, offset, env in
 if let anim = self.anim {
 for item in items {
 if let atts = anim.layoutAttributesForCell(at:item.indexPath) {
 item.center = atts.center
 item.transform3D = atts.transform3D
 }
 }
 }
}

While the animator is running, the invalidation handler is called on every frame. We
cycle through the NSCollectionLayoutVisibleItem objects (items), replacing their
center and transform3D values with those provided by the animator. The cells now
visibly fall off the screen when the animator runs.

556 | Chapter 8: Table Views and Collection Views

CHAPTER 9

iPad Interface

This chapter discusses some iOS interface features that differ between the iPad and
the iPhone:

Popovers and split views
Popovers and split views were exclusive to the iPad when they were introduced
in iOS 3.2. Starting in iOS 8, they became available also on the iPhone, where
they typically adapt, appearing in an altered form more appropriate to the
smaller screen.

iPad multitasking
iPad multitasking, introduced in iOS 9, is an interface confined to the iPad,
where two apps can occupy the screen simultaneously.

Drag and drop
Drag and drop was introduced in iOS 11 primarily to allow the user to drag from
one app to another in an iPad multitasking interface. It can also be used within a
single app, even on the iPhone.

Multiple windows
New in iOS 13, an app can display multiple windows on the iPad.

Popovers
A popover is a temporary view layered in front of the main interface. It is usually
associated, through a sort of arrow, with a view in the main interface, such as the but‐
ton that the user tapped to summon the popover. It might be effectively modal, pre‐
venting the user from working in the rest of the interface; alternatively, it might
vanish if the user taps outside it.

557

Figure 9-1. Two popovers

Popovers bring to the larger iPad the smaller, more lightweight flavor of the iPhone.
In my LinkSame app, both the settings view (where the user configures the game)
and the help view (which describes how to play the game) are popovers (Figure 9-1).
On the iPhone, such a view might occupy the entire screen; we’d navigate to it, and
the user would later have to navigate back to the main interface. But with the larger
iPad screen, neither view is large enough, or important enough, to occupy the entire
screen exclusively. A popover is the perfect solution. Our view is small and secon‐
dary; the user summons it temporarily, works with it, and then dismisses it, while the
main interface continues to occupy the rest of the screen.

A popover is actually a form of presented view controller — a presented view con‐
troller with a modalPresentationStyle of .popover (which I didn’t tell you about in
Chapter 6). There’s a guideline that a maximum of one popover at a time should be
shown; a view controller can’t have more than one presented view controller at a
time, so the guideline is enforced automatically.

Like a sheet presented view controller, a popover can adapt, depending on the size
class environment. The default adaptation of a popover on the iPhone depends on
what system we’re running on:

558 | Chapter 9: iPad Interface

iOS 12 and before
The default adaptation on the iPhone is .fullScreen.

iOS 13
New in iOS 13, the default adaptation on the iPhone is .formSheet. This is indis‐
tinguishable from .pageSheet, meaning that it leaves a gap at the top in portrait,
but behaves like .overFullScreen in landscape.

But you don’t have to accept the default; you can customize how the popover adapts.
It can appear on the iPhone as .fullScreen even in portrait; it can even appear as a
popover. I’ll explain later how to make it do that.

A popover presented view controller that appears as a popover has a .compact
horizontal size class, even on an iPad.

To display a popover, you’re going to present a view controller. Before that presenta‐
tion takes place, you’ll turn this into a popover presentation by setting the view con‐
troller’s modalPresentationStyle to .popover:

let vc = MyViewController()
vc.modalPresentationStyle = .popover
self.present(vc, animated: true)

But that code is insufficient. In fact, it will crash at runtime when the popover is pre‐
sented! The reason is that some further configuration of the popover is required
before it appears.

To configure a popover, you’ll talk to its presentation controller. Setting the view con‐
troller’s modalPresentationStyle to .popover, as in the preceding code, causes its
presentationController to become a UIPopoverPresentationController (a
UIPresentationController subclass); that is the object you need to talk to. The pop‐
over view controller’s popoverPresentationController property points to that
UIPopoverPresentationController (or to nil).

In general, it is permissible to perform your configurations just after telling your view
controller to present the popover, because even though you have ordered the presen‐
tation, it hasn’t actually started yet. This is a common pattern:

let vc = MyViewController()
vc.modalPresentationStyle = .popover
self.present(vc, animated: true)
if let pop = vc.popoverPresentationController {
 // ... configure pop here ...
}

Popovers | 559

Arrow Source and Direction
At a minimum, the popover presentation controller needs to know where its arrow
should point. You’ll specify this by setting one of the following:

barButtonItem

A bar button item in the interface, with which the popover should be associated.
The popover’s arrow will point to this bar button item. Typically, this will be the
bar button item that was tapped in order to summon the popover (as in
Figure 9-1).

sourceView, sourceRect
A UIView in the interface, along with a CGRect in that view’s coordinate system,
with which the popover should be associated. The popover’s arrow will point to
this rect. Typically, the sourceView will be the view that was tapped in order to
summon the popover, and the sourceRect will be that view’s bounds.

Here’s a minimal popover presentation that works without crashing; the popover is
summoned by tapping a UIButton in the interface, and this is that button’s action
method:

@IBAction func doButton(_ sender: Any) {
 let vc = MyViewController()
 vc.modalPresentationStyle = .popover
 self.present(vc, animated: true)
 if let pop = vc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 }
}

In addition to the arrow source, you can set the desired arrow direction, as the
popover presentation controller’s permittedArrowDirections. This is a bitmask with
possible values .up, .down, .left, and .right. The default is .any, comprising all
four bitmask values; that will usually be what you want.

Popover Size
You can specify the desired size of the popover view. This information is provided
through the presented view controller’s preferredContentSize. Recall (from Chap‐
ter 6) that a view controller can use its preferredContentSize to communicate to its
container view controller, qua UIContentContainer, the size that it would like to be.
The popover presentation controller is a presentation controller (UIPresentation‐
Controller), which is also a UIContentContainer; it will consult the presented view
controller’s preferredContentSize and will try, within limits, to respect it. The

560 | Chapter 9: iPad Interface

presentation of the popover won’t fail if you don’t supply a size for the popover, but
you probably will want to supply one, as the default is unlikely to be desirable.

Who will set the presented view controller’s preferredContentSize, and when? It’s
up to you. The presented view controller might set its own preferredContentSize;
its viewDidLoad is a reasonable place, or, if the view controller is instantiated from a
nib, the nib editor provides Content Size fields in the Attributes inspector. Alterna‐
tively, you can set the presented view controller’s preferredContentSize when you
configure the popover presentation controller:

if let pop = vc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 vc.preferredContentSize = CGSize(200,500) // *
}

It is possible to change the presented view controller’s preferredContentSize while
the popover is showing. The popover presentation controller will hear about this
(through the preferredContentSizeDidChange mechanism discussed in Chapter 6),
and may respond by changing the popover’s size, with animation.

The popover presentation controller’s canOverlapSourceViewRect can be set to true
to permit the popover to cover the source view if space becomes tight while attempt‐
ing to comply with the preferredContentSize. The default is false.

You can also set the popover presentation controller’s popoverLayoutMargins as a
way of encouraging the popover to maintain some distance from the edges of the pre‐
senting view controller’s view. (This property was broken starting about iOS 8, but
works correctly in iOS 13.)

Popover Appearance
By default, a popover presentation controller bases the arrow color on the color of the
presented view controller’s view. Alternatively, you can set the popover presentation
controller’s backgroundColor; this sets the arrow color as well. But in iOS 13 the pre‐
sented view controller’s own view color will override this, unless it is .clear or nil.

For full control, you can customize the entire outside of the popover — that is, the
“frame” surrounding the content, including the arrow. To do so, you set the
UIPopoverPresentationController’s popoverBackgroundViewClass to your own sub‐
class of UIPopoverBackgroundView (a UIView subclass). You then implement the
UIPopoverBackgroundView’s draw(_:) method to draw the arrow and the frame.
The size of the arrow is dictated by your implementation of the arrowHeight prop‐
erty. The thickness of the frame is dictated by your implementation of the content-
ViewInsets property.

Popovers | 561

Figure 9-2. A very silly popover

A very silly example is shown in Figure 9-2. Here’s how that result was achieved. I
start by implementing five inherited members that we are required to override, along
with our initializer:

class MyPopoverBackgroundView : UIPopoverBackgroundView {
 override class func arrowBase() -> CGFloat { return 20 }
 override class func arrowHeight() -> CGFloat { return 20 }
 override class func contentViewInsets() -> UIEdgeInsets {
 return UIEdgeInsets(top: 20, left: 20, bottom: 20, right: 20)
 }
 // we are required to implement these, even trivially
 var arrOff : CGFloat
 var arrDir : UIPopoverArrowDirection
 override var arrowDirection : UIPopoverArrowDirection {
 get { return self.arrDir }
 set { self.arrDir = newValue }
 }
 override var arrowOffset : CGFloat {
 get { return self.arrOff }
 set { self.arrOff = newValue }
 }
 override init(frame:CGRect) {
 self.arrOff = 0
 self.arrDir = .any
 super.init(frame:frame)
 self.isOpaque = false
 }
 // ...
}

562 | Chapter 9: iPad Interface

Now I’ll implement draw(_:). Its job is to draw the frame and the arrow. This can be
a bit tricky, because we need to draw differently depending on the arrow direction
(which we can learn from the UIPopoverBackgroundView’s arrowDirection prop‐
erty). I’ll simplify by assuming that the arrow direction will always be .up.

I’ll start with the frame. I divide the view’s overall rect into two areas, the arrow area
on top and the frame area on the bottom, and I draw the frame into the bottom area
as a resizable image (Chapter 2):

override func draw(_ rect: CGRect) {
 let linOrig = UIImage(named: "linen.png")!
 let capw = linOrig.size.width / 2.0 - 1
 let caph = linOrig.size.height / 2.0 - 1
 let lin = linOrig.resizableImage(
 withCapInsets:
 UIEdgeInsets(top: caph, left: capw, bottom: caph, right: capw),
 resizingMode:.tile)
 let arrowHeight = Self.arrowHeight()
 let arrowBase = Self.arrowBase()
 // ... draw arrow here ...
 let (_,body) = rect.divided(atDistance: arrowHeight, from: .minYEdge)
 lin.draw(in:body)
}

Our next task is to fill in the blank left by the “draw arrow here” comment in the pre‐
ceding code. We don’t actually have to do that; we could quite legally stop at this
point. Our popover would then have no arrow, but that’s no disaster; many develop‐
ers dislike the arrow and seek a way to remove it, and this constitutes a legal way. But
let’s continue by drawing the arrow.

My arrow will consist simply of a texture-filled isosceles triangle, with an excess base
rectangle joining it to the frame. The runtime has set the arrowOffset property to tell
us where to draw the arrow: this offset measures the positive distance between the
center of the view’s edge and the center of the arrow. However, the runtime will have
no hesitation in setting the arrowOffset all the way at the edge of the view, or even
beyond its bounds (in which case it won’t be drawn); to prevent this, I impose a max‐
imum offset limit:

let con = UIGraphicsGetCurrentContext()!
con.saveGState()
// clamp offset
var propX = self.arrowOffset
let limit : CGFloat = 22.0
let maxX = rect.size.width/2.0 - limit
propX = min(max(propX, limit), maxX)
// draw!
con.translateBy(x: rect.size.width/2.0 + propX - arrowBase/2.0, y: 0)
con.move(to:CGPoint(0, arrowHeight))
con.addLine(to:CGPoint(arrowBase / 2.0, 0))
con.addLine(to:CGPoint(arrowBase, arrowHeight))

Popovers | 563

con.closePath()
con.addRect(CGRect(0,arrowHeight,arrowBase,15))
con.clip()
lin.draw(at:CGPoint(-40,-40))
con.restoreGState()

Passthrough Views
When you’re configuring your popover, you’ll want to plan ahead for how the
popover is to be dismissed. The default behavior is that the user can tap anywhere
outside the popover to dismiss it, but it can be modified through two properties:

UIPopoverPresentationController’s passthroughViews property
An array of views in the interface behind the popover; the user can interact nor‐
mally with these views while the popover is showing, and the popover will not be
dismissed.

UIViewController’s isModalInPresentation property
(New in iOS 13, replacing isModalInPopover, which is deprecated.) If this is
true for the presented view controller (or for its current child view controller, as
in a tab bar interface or navigation interface), then if the user taps outside the
popover, the popover is not dismissed. The default is false. The user can still
interact with any of the passthroughViews, even if isModalInPresentation is
true.

If you’ve set the presented view controller’s isModalInPresentation to true, you’ve
removed the user’s ability to dismiss the popover by tapping outside it. You would
then presumably provide some other way of letting the user dismiss the popover —
typically, a button inside the popover which the user can tap in order to call
dismiss(animated:completion:).

Surprisingly, if a popover is summoned by the user tapping a UIBarButton item in a
toolbar, other UIBarButtonItems in that toolbar are automatically turned into pass‐
through views! This means that, while the popover is showing, the user can tap any
other button in the toolbar. I regard this as a bug; working around it is remarkably
difficult. If you set the popover presentation controller’s passthroughViews too soon,
your setting is overridden by the runtime. The best place is the presentation’s com‐
pletion function:

self.present(vc, animated: true) {
 vc.popoverPresentationController?.passthroughViews = nil
}

564 | Chapter 9: iPad Interface

Popover Presentation, Dismissal, and Delegate
A popover is a form of presented view controller. To show a popover, you’ll call
present(_:animated:completion:). If you want to dismiss a popover in code, you’ll
call dismiss(animated:completion:).

Messages to the popover presentation controller’s delegate (UIPopoverPresentation‐
ControllerDelegate) provide further information and control. Typically, you’ll set the
delegate in the same place you’re performing the other configurations:

if let pop = vc.popoverPresentationController {
 // ... other configurations go here ...
 pop.delegate = self
}

The most commonly used delegate methods are:

prepareForPopoverPresentation(_:)

The popover is being presented. This is another opportunity to perform initial
configurations, such as what interface object the arrow points to. (But this
method is still called too early for you to work around the passthroughViews
issue I discussed a moment ago.)

presentationControllerShouldDismiss(_:)

(New in iOS 13, replacing popoverPresentationControllerShouldDismiss-
Popover(_:), which is deprecated.) The user is dismissing the popover by tap‐
ping outside it. Return false to prevent dismissal. Not called when you dismiss
the popover in code.

presentationControllerWillDismiss(_:)

(New in iOS 13.) The user has dismissed the popover by tapping outside it. The
popover is still on the screen. Not called when you dismiss the popover in code.

presentationControllerDidDismiss(_:)

(New in iOS 13, replacing popoverPresentationControllerDidDismiss-

Popover(_:), which is deprecated.) The user has dismissed the popover by tap‐
ping outside it. The popover is gone from the screen and dismissal is complete,
even though the popover presentation controller still exists. Not called when you
dismiss the popover in code.

popoverPresentationController(_:willRepositionPopoverTo:in:)

The popover’s sourceView is involved in new layout activity. This might be
because the interface is rotating. The to: and in: parameters are mutable point‐
ers to the popover’s sourceRect and sourceView respectively, so you can change
the attachment of the arrow through their pointee properties.

Popovers | 565

The delegate methods provide the popover presentation controller as parameter, and
if necessary you can use it to identify the popover more precisely; the view controller
being presented is the popover presentation controller’s presentedViewController.
The delegate dismiss methods make up for the fact that, when the user dismisses the
popover, you don’t have the sort of direct information and control that you would get
if you had dismissed the popover by calling dismiss(animated:completion:) with a
completion function.

If a popover can be dismissed both by tapping outside the popover and by tapping an
interface item that calls dismiss(animated:completion:), you may have to duplicate
some code in order to cover all cases. Consider the first popover shown in Figure 9-1.
It has a Done button and a Cancel button; the idea here is that the user sets up a
desired game configuration and then, while dismissing the popover, either saves it
(Done) or doesn’t (Cancel). But what if the user taps outside the popover? I interpret
that as cancellation. If the Cancel button’s action function does any work besides dis‐
missing the popover, my presentationControllerDidDismiss(_:) implementation
will have to do the same thing.

Adaptive Popovers
A popover is a presented view controller, so it’s adaptive (see “Adaptive Presenta‐
tion” on page 332). By default, on an iPhone, the .popover modal presentation style
will adapt as .formSheet, which is identical in appearance to .pageSheet, the default
for a presented view controller on an iPhone; and so with no extra code you’ll get
something eminently sensible on both types of device.

But sometimes the default is not quite what you want. A case in point appears in
Figure 9-1. The popover on the right, containing our help info, has no internal but‐
ton for dismissal. It doesn’t need one on the iPad, because the user can dismiss the
popover by tapping outside it. But this is a universal app. On the iPhone, the popover
will adapt to .formSheet. In landscape on the iPhone, a .formSheet presentation
appears as fullscreen — and the user will have no way to dismiss this view controller!
Clearly, we need a Done button that appears inside the presented view controller’s
view — but only on the iPhone.

To achieve this, we can take advantage of UIPresentationController delegate meth‐
ods. The popover presentation controller is a UIPresentationController, and its dele‐
gate (UIPopoverPresentationControllerDelegate) is a UIPresentationController
delegate (UIAdaptivePresentationControllerDelegate). Set the presentation control‐
ler’s delegate before calling present(_:animated:completion:); otherwise, the adap‐
tive presentation delegate methods won’t be called:

566 | Chapter 9: iPad Interface

let vc = MyViewController()
vc.modalPresentationStyle = .popover
if let pop = vc.popoverPresentationController {
 pop.delegate = self // *
}
self.present(vc, animated: true)

We’ll implement the delegate method presentationController(_:viewController-
ForAdaptivePresentationStyle:) to substitute a different view controller. The sub‐
stitute view controller can be the original view controller wrapped in a
UINavigationController! If we also give our original view controller a navigation-
Item with a working Done button, the problem is solved:

func presentationController(_ controller: UIPresentationController,
 viewControllerForAdaptivePresentationStyle
 style: UIModalPresentationStyle) -> UIViewController? {
 let vc = controller.presentedViewController
 let nav = UINavigationController(rootViewController: vc)
 let b = UIBarButtonItem(barButtonSystemItem: .done,
 target: self, action: #selector(dismissHelp))
 vc.navigationItem.rightBarButtonItem = b
 return nav
}
@objc func dismissHelp(_ sender: Any) {
 self.dismiss(animated:true)
}

The outcome is that in a situation where we don’t adapt (such as an iPad) we get an
ordinary popover; otherwise, we get a presented view controller that can be dismissed
with a Done button in a navigation bar.

You can also implement the delegate method adaptivePresentation-

Style(for:traitCollection:). You might use this to return something other than a
sheet in a .compact size class environment. One possibility is to return .none, in
which case the presented view controller will be a popover even on iPhone:

func adaptivePresentationStyle(for controller: UIPresentationController,
 traitCollection: UITraitCollection) -> UIModalPresentationStyle {
 return .none
}

Popover Segues
If you’re using a storyboard (with Use Trait Variations checked), you can configure a
popover presentation with little or no code. Draw (Control-drag) a segue from a but‐
ton or view controller that is to summon the popover to a view controller that is to be
the popover, and specify Present As Popover as the segue type. The result is a popover
segue.

Popovers | 567

The segue, as it is triggered, configures the presentation just as you would configure it
in code. It instantiates and initializes the presented view controller, sets its modal
presentation style to .popover, and presents it. The sourceView, barButtonItem, and
permittedArrowDirections can be set in the segue’s Attributes inspector. You can
also set the passthrough views in the nib editor — but not in such a way as to override
the unwanted bar button item behavior I discussed earlier.

To perform additional configurations in code, implement prepare(for:sender:). At
the time prepare(for:sender:) is called, the popoverPresentationController of
the segue’s destination view controller exists, but the presentation has not yet
begun, so you can successfully set the popover presentation controller’s delegate here
if desired:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "MyPopover" {
 let dest = segue.destination
 if let pop = dest.popoverPresentationController {
 pop.delegate = self
 }
 }
}

The popover version of an unwind segue is dismissal of the popover, and so both pre‐
sentation and dismissal can be managed through the storyboard. A further possibility
is to specify a custom segue class (as I explained in Chapter 6).

Unfortunately, a popover triggered through a popover segue has some major
flaws. It might not point its arrow correctly at its source view; in fact, under some
circumstances it covers the source view. The popover can’t be configured in the
segue’s IBSegueAction, because the popover presentation controller doesn’t yet
exist. Also, it’s hard to avoid the bug where bar button items are passthrough
views by default (because there’s no good moment to set the passthroughViews
to nil). Therefore I recommend avoiding popover segues altogether.

Popover Presenting a View Controller
A popover can present a view controller internally; you’ll specify a modal-

PresentationStyle of .currentContext or .overCurrentContext, because other‐
wise the presented view will appear over the entire screen (see Chapter 6).

What happens when the user taps outside a popover that is currently presenting a
view controller’s view internally? Unfortunately, different systems behave differently.
Here’s a sample:

iOS 7 and before
Nothing happens.

568 | Chapter 9: iPad Interface

iOS 8.1
The entire popover, including the internal presented view controller, is
dismissed.

iOS 8.3
The internal presented view controller is dismissed, while the popover remains.

iOS 9 and later
Like iOS 8.1.

In my opinion, the iOS 7 behavior was correct. Presented view controllers are sup‐
posed to be modal. They don’t spontaneously dismiss themselves because the user
taps elsewhere; there has to be some internal interface, such as a Done button or a
Cancel button, that the user must tap in order to dismiss the view controller and pro‐
ceed. You can restore the iOS 7 behavior by implementing the delegate method
presentationControllerShouldDismiss(_:) to prevent dismissal if the popover is
itself presenting a view controller:

func presentationControllerShouldDismiss(
 _ pc: UIPresentationController) -> Bool {
 return pc.presentedViewController.presentedViewController == nil
}

Split Views
A split view involves two views belonging to two view controllers. The view control‐
lers are the children of a parent view controller, a split view controller (UISplitView‐
Controller). The child view controllers are the split view controller’s
viewControllers. A UIViewController that is a child, at any depth, of a UISplit‐
ViewController has a reference to the UISplitViewController through its splitView-
Controller property.

The chief purpose of a split view controller is to implement a master–detail architec‐
ture. The first view is the master view, and is usually a list, such as a table view. The
user taps an item of that list to specify what should appear in the second view, which
is the detail view. We may speak of the two children of the split view controller as the
master view controller and the detail view controller. Officially, they are the primary
and secondary view controllers.

The split view controller is adaptive, meaning that, by default, the implementation
appears differently depending on whether we’re running on an iPad or an iPhone:

Split view on the iPhone
The master–detail architecture is expressed as a navigation interface. The user
sees one view at a time. The master view occupies the screen; the user taps an
item in the master view; the detail view replaces the master view.

Split Views | 569

Figure 9-3. A familiar split view interface

Split view on the iPad
Both views are displayed simultaneously. Usually, the master view is narrower,
roughly the width of a typical iPhone. The user taps an item in the master view;
the detail view responds by changing its contents.

In landscape orientation on the iPad, the master view and the detail view appear
side by side. In portrait orientation on the iPad, there are two possible
arrangements:

Side by side
The two views appear side by side as in landscape orientation. Apple’s Set‐
tings app is an example.

Overlay
The detail view appears alone, with an option to summon the master view
from the side as an overlay, either by tapping a bar button item or by swiping
from the edge of the screen. Apple’s Mail app is an example (Figure 9-3).

Xcode’s Master–Detail App template will give you an adaptive UISplitView‐
Controller instantiated from the storyboard, with no work on your part. To under‐
stand how that works, let’s start by constructing and configuring a split view
controller entirely in code. We’ll get it working on the iPad before proceeding to the
iPhone version. Then we’ll return to consideration of the storyboard template.

Expanded Split View Controller (iPad)
For reasons that will be clear later, a split view controller on the iPad is called an
expanded split view controller. An expanded split view controller has two child view
controllers simultaneously.

In this example, our master view (owned by MasterViewController) will be a table
view listing the names of the three Pep Boys. Our detail view (owned by DetailView‐
Controller) will contain a single label displaying the name of the Pep Boy selected in
the master view.

570 | Chapter 9: iPad Interface

Our first cut at writing MasterViewController simply displays the table view:

class MasterViewController: UITableViewController {
 let model = ["Manny", "Moe", "Jack"]
 let cellID = "Cell"
 override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.register(UITableViewCell.self,
 forCellReuseIdentifier: self.cellID)
 }
 override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
 }
 override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return model.count
 }
 override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath)
 cell.textLabel!.text = model[indexPath.row]
 return cell
 }
}

DetailViewController, in its viewDidLoad implementation, puts the label (self.lab)
into the interface; it also has a public boy string property whose value appears in the
label. We are deliberately agnostic about the order of events; our interface works cor‐
rectly regardless of whether boy is set before or after viewDidLoad is called:

class DetailViewController: UIViewController {
 var lab : UILabel!
 var boy : String = "" {
 didSet {
 if self.lab != nil {
 self.lab.text = self.boy
 }
 }
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .white
 let lab = UILabel()
 lab.translatesAutoresizingMaskIntoConstraints = false
 self.view.addSubview(lab)
 NSLayoutConstraint.activate([
 lab.topAnchor.constraint(
 equalTo: self.view.safeAreaLayoutGuide.topAnchor,
 constant: 100),
 lab.centerXAnchor.constraint(
 equalTo: self.view.centerXAnchor)

Split Views | 571

])
 self.lab = lab
 self.lab.text = self.boy
 }
}

Our app delegate (or, in iOS 13, our scene delegate) constructs the interface by creat‐
ing a UISplitViewController, giving it its two initial children, and putting its view
into the window:

let svc = UISplitViewController()
svc.viewControllers =
 [MasterViewController(style:.plain), DetailViewController()]
self.window!.rootViewController = svc
self.window!.backgroundColor = .white
self.window!.makeKeyAndVisible()

The result certainly looks like a split view interface. In landscape orientation, the two
views appear side by side; in portrait orientation, the detail view appears alone, but
the master view can be summoned by swiping from the edge of the screen, and it can
be dismissed by tapping outside it.

However, the app doesn’t yet do anything! In particular, when we tap on a Pep Boy’s
name in the master view, the detail view doesn’t change. Let’s add that code (to
MasterViewController):

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let detail = DetailViewController()
 detail.boy = model[indexPath.row]
 self.showDetailViewController(detail, sender: self) // *
}

The starred line is the key to the entire implementation of the master–detail architec‐
ture. Despite being sent to self, the call to showDetailViewController(_:sender:)
actually walks up the view controller hierarchy until it arrives at the split view con‐
troller. (The mechanism of this walk is quite interesting of itself; I’ll discuss it later.)
The split view controller responds by making the detail view controller its second
child, replacing the existing detail view and causing the selected Pep Boy’s name to
appear in the interface.

Things are going very well, but our app still doesn’t look like a standard master–detail
view interface. The usual thing is that both the master view and the detail view should
contain a navigation bar. The detail view in portrait orientation can then display in
its navigation bar a left button that summons the master view, so that the user doesn’t
have to know about the swipe gesture. This button is vended by the UISplitView‐
Controller, through its displayModeButtonItem property. To construct the interface
properly, we need to change our scene delegate code so that the split view controller’s
children are navigation controllers:

572 | Chapter 9: iPad Interface

let svc = UISplitViewController()
let master = MasterViewController(style:.plain)
master.title = "Pep" // *
let nav1 = UINavigationController(rootViewController:master) // *
let detail = DetailViewController()
let nav2 = UINavigationController(rootViewController:detail) // *
svc.viewControllers = [nav1, nav2] // *
self.window!.rootViewController = svc
let b = svc.displayModeButtonItem // *
detail.navigationItem.leftBarButtonItem = b // *
detail.navigationItem.leftItemsSupplementBackButton = true // *

Having made that adjustment, we must also adjust our MasterViewController code.
Consider what will happen when the user taps a Pep Boy name in the master view. At
the moment, we are making a new DetailViewController and making it the split view
controller’s second child. That is now wrong; we must make a new UINavigation‐
Controller instead, with a new DetailViewController as its child. And this new
DetailViewController doesn’t have the displayModeButtonItem as its leftBarButton-
Item, so we have to add it:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let detail = DetailViewController()
 detail.boy = model[indexPath.row]
 let b = self.splitViewController?.displayModeButtonItem
 detail.navigationItem.leftBarButtonItem = b // *
 detail.navigationItem.leftItemsSupplementBackButton = true // *
 let nav = UINavigationController(rootViewController: detail) // *
 self.showDetailViewController(nav, sender: self)
}

When the app is in portrait orientation, showing just the detail view, the display-
ModeButtonItem summons the master view. When the app is in landscape orientation
with the two views displayed side by side, the displayModeButtonItem automatically
hides itself. Our iPad split view implementation is complete!

Collapsed Split View Controller (iPhone)
As I’ve said, a split view controller is adaptive. We can see this if we now launch our
existing app on the iPhone: astoundingly, it works almost perfectly. There’s a naviga‐
tion interface. Tapping a Pep Boy’s name in the master view pushes the new detail
view controller onto the navigation stack, with its view displaying that name. The
detail view’s navigation bar has a back button that pops the detail view controller and
returns us to the master view.

The only thing that isn’t quite right is that the app launches with the detail view
showing, rather than the master view. To fix that, we first add a line to our scene del‐
egate launch code, to assign a delegate (UISplitViewControllerDelegate) to the
UISplitViewController:

Split Views | 573

let svc = UISplitViewController()
svc.delegate = self // *

We then implement one delegate method:

func splitViewController(_ svc: UISplitViewController,
 collapseSecondary vc2: UIViewController,
 onto vc1: UIViewController) -> Bool {
 return true
}

That’s all; on the iPhone, the app now behaves correctly!

To understand what that delegate method does, you need to know more about how
the split view controller works. It adopts one of two states: it is either collapsed or
expanded, in accordance with its isCollapsed property. This distinction corresponds
to whether or not the environment’s trait collection has a .compact horizontal size
class: if so, the split view controller collapses. This means that the split view controller
collapses as it launches on an iPhone.

An expanded split view controller has two child view controllers simultaneously. But
a collapsed split view controller has only one child view controller. So when the app
launches on the iPhone and the split view controller collapses, it must remove one
child view controller. But which one? To find out, the split view controller asks its
delegate how to proceed. In particular, it calls these delegate methods:

primaryViewController(forCollapsing:)

The collapsed split view controller will have only one child view controller. What
view controller should this be? By default, it will be the current first view control‐
ler, but you can implement this method to return a different answer.

splitViewController(_:collapseSecondary:onto:)

The collapsing split view controller is proposing to remove its second view con‐
troller, leaving its first view controller as its only child view controller. Return
true to permit this to happen.

If this method returns false (the default), the split view controller sends
collapseSecondaryViewController(_:for:) to the first view controller. What
happens to the second view controller is now up to the first view controller.

Our first view controller is a UINavigationController, which has a built-in response
to collapseSecondaryViewController(_:for:). By default, it wants to push the
specified secondary view controller onto its own stack. But if we let it do that, we end
up launching with the detail view showing on the iPhone, as we’ve already seen.
Therefore, we implement splitViewController(_:collapseSecondary:onto:) to
return true. That permits the split view controller to remove its second view control‐
ler, and we end up launching with the master view showing on the iPhone.

574 | Chapter 9: iPad Interface

As on the iPad, the call to showDetailViewController(_:sender:), when the user
taps a row of the master table view, is the heart of the interface’s functionality. The
key here is that the interface responds in two different ways, depending on whether
the split view controller is expanded or collapsed:

On the iPad (expanded)
The new view controller becomes the split view controller’s second (detail) view
controller, and the detail view, already visible in the interface, is replaced.

On the iPhone (collapsed)
There is just one child view controller; it is a navigation controller, and the new
view controller is pushed onto its stack.

On an iPhone, we are pushing a UINavigationController onto a UINavigation‐
Controller’s stack. This is an odd thing to do, and is possible only thanks to some
internal voodoo. Don’t do it in any other context!

Expanding Split View Controller (Big iPhone)
A “big” iPhone (currently the iPhone 6/7/8 Plus, iPhone XR, iPhone XS Max, iPhone
11, and iPhone 11 Pro Max) is a hybrid: it’s horizontally compact in portrait orienta‐
tion, but not in landscape orientation. In effect, the split view controller thinks it’s on
an iPhone when the app is in portrait, but it thinks it has been magically moved over
to an iPad when the app rotates to landscape. The split view controller alternates
between isCollapsed being true and false on a single device. In portrait, the split
view displays a single navigation interface, with the master view controller at its root,
like an iPhone. In landscape, the master and detail views are displayed side by side,
like an iPad.

When the app, running on a big iPhone, rotates to portrait, or if it launches into por‐
trait, the split view controller collapses, going through the very same procedure I just
described for an iPhone. When it rotates to landscape, it performs the opposite of
collapsing — namely, expanding.

As the split view controller expands, it has the inverse of the problem it has when it
collapses. A collapsed split view controller has just one child view controller, but an
expanded split view controller has two child view controllers. What view controllers
should they be? To find out, the split view controller asks its delegate how to proceed:

primaryViewController(forExpanding:)

What view controller should be the expanded view controller’s first child view
controller? By default, it will be the current child view controller, but you can
implement this method to return a different answer.

Split Views | 575

splitViewController(_:separateSecondaryFrom:)

What view controller should be the expanded split view controller’s second child
view controller? Implement this method to return that view controller.

If you don’t implement this method, or if you return nil, the split view control‐
ler sends separateSecondaryViewController(for:) to the first view controller.
That method, in turn, returns a view controller, or nil:

• If it returns a view controller, the split view controller makes that view con‐
troller its second view controller.

• If it returns nil, the split view controller uses the view controller that was
previously its second view controller.

The default response of a plain vanilla UIViewController to separateSecondary-
ViewController(for:) is to return nil. But a UINavigationController, if it has
two children (a root view controller and a pushed view controller), pops its top-
ViewController off the navigation stack and returns the popped view controller.

When our app is rotated from portrait to landscape, exactly the right thing now hap‐
pens, with no further coding on our part: if the navigation controller has pushed a
DetailViewController onto its stack, it now pops it and hands it to the split view con‐
troller, which displays its view as the detail view!

On a big iPhone in landscape, the displayModeButtonItem is present (whereas it dis‐
appears automatically on an iPad in landscape). Instead of appearing as a “back”
chevron, it’s an “expand” symbol (two arrows pointing away from each other). When
the user taps it, the master view is hidden and the detail view occupies the entire
screen — and the displayModeButtonItem changes to a chevron. Tapping the chev‐
ron toggles back the other way: the master view is shown again.

So, is our split view interface finished? Not quite! There is one remaining problem.
Suppose we’re in landscape (.regular horizontal size class) and the user is looking at
the detail view controller. Now the user rotates to portrait (.compact horizontal size
class). The split view controller collapses. Without extra precautions, we’ll end up
displaying the master view controller — because we went to the trouble of arranging
that, back when we thought the only way to collapse was to launch into a .compact
horizontal size class:

func splitViewController(_ svc: UISplitViewController,
 collapseSecondary vc2: UIViewController,
 onto vc1: UIViewController) -> Bool {
 return true
}

The result is that the user’s place in the application has been lost. I think we can solve
this satisfactorily simply by having the split view controller’s delegate keep track of

576 | Chapter 9: iPad Interface

whether the user has ever chosen to see a detail view. I’ll use an instance property,
self.detailChosen. When the user taps a row of the master view list to navigate to
the detail view, we emit a notification:

static let detailChosen = Notification.Name("detailChosen")
override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 // ... as before ...
 NotificationCenter.default.post(name:Self.detailChosen, object:self)
}

The split view controller’s delegate has registered to receive that notification, and sets
detailChosen to true in response:

NotificationCenter.default.addObserver(
 forName: MasterViewController.detailChosen,
 object: nil, queue: nil) { _ in
 self.detailChosen = true
}

When the split view controller collapses, the split view controller’s delegate uses that
instance property to decide what to do — that is, whether to display the master view
controller or the detail view controller:

func splitViewController(_ svc: UISplitViewController,
 collapseSecondary vc2: UIViewController,
 onto vc1: UIViewController) -> Bool {
 if let nav = vc2 as? UINavigationController,
 nav.topViewController is DetailViewController,
 self.detailChosen {
 return false
 }
 return true
}

Customizing a Split View Controller
Here are some properties of a UISplitViewController that allow it to be customized:

primaryEdge

Which side the primary view appears on. Your choices (UISplitView‐
Controller.PrimaryEdge) are .leading and .trailing.

presentsWithGesture

A Bool. If false, the screen edge swipe gesture that shows the master view in
portrait orientation on an iPad is disabled. The default is true.

preferredDisplayMode

The display mode describes how an expanded split view controller’s primary
view is displayed. Set this property to change the current display mode of an

Split Views | 577

expanded split view controller programmatically, or set it to .automatic to allow
the display mode to adopt its default value. To learn the actual display mode
being used, ask for the current displayMode.

An expanded split view controller has three possible display modes (UISplitView‐
Controller.DisplayMode):

.allVisible

The two views are shown side by side.

.primaryHidden

The primary view is not present.

.primaryOverlay

The primary view is shown as a temporary overlay in front of the secondary
view.

The default automatic behaviors are:

iPad in landscape
The displayModeButtonItem is hidden, and the display mode is .all-
Visible.

iPad in portrait
The displayModeButtonItem is shown, and the display mode toggles
between .primaryHidden and .primaryOverlay.

Big iPhone in landscape
The displayModeButtonItem is shown, and the display mode toggles
between .primaryHidden and .allVisible.

preferredPrimaryColumnWidthFraction

Sets the master view width in .allVisible and .primaryOverlay display modes,
as a percentage of the whole split view (between 0 and 1). Your setting may have
no effect unless you also constrain the width limits absolutely through the
minimumPrimaryColumnWidth and maximumPrimaryColumnWidth properties. To
specify the default width, use UISplitViewController.automaticDimension. To
learn the actual width being used, ask for the current primaryColumnWidth.

You can also track and govern the display mode with these delegate methods:

splitViewController(_:willChangeTo:)

The displayMode of an expanded split view controller is about to change, mean‐
ing that its first view controller’s view will be shown or hidden. You might want
to alter the interface somehow in response.

578 | Chapter 9: iPad Interface

targetDisplayModeForAction(in:)

Called whenever something happens that might affect the display mode, such as:

• The split view controller is showing for the first time.
• The interface is rotating.
• The user summons or dismisses the primary view.

Return a display mode to specify what the user’s tapping the displayModeButton-
Item should subsequently do (and, by extension, how the button is portrayed),
or .automatic to accept what the split view controller would normally do.

Here’s an example of setting the preferredDisplayMode from one of my own apps.
The master view is a UITableView; when the user selects a row of the table, if we’re
on an iPad with the master view shown as an overlay, then in addition to setting the
detail view controller, I slide the master view out of the way so that the entire detail
view is visible:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 // ...
 if let svc = self.splitViewController {
 if !svc.isCollapsed {
 if svc.displayMode == .primaryOverlay {
 UIView.animate(withDuration: 0.3, animations: {
 svc.preferredDisplayMode = .primaryHidden
 }) { _ in
 svc.preferredDisplayMode = .automatic
 }
 }
 }
 }
}

After collapsing or expanding, a UISplitViewController emits the UIView-

Controller.showDetailTargetDidChangeNotification.

If a split view controller is the top-level view controller, it determines your app’s
compensatory rotation behavior. To take a hand in that determination without hav‐
ing to subclass UISplitViewController, make one of your objects the split view con‐
troller’s delegate and implement these methods, as needed:

• splitViewControllerSupportedInterfaceOrientations(_:)

• splitViewControllerPreferredInterfaceOrientationForPresentation(_:)

A split view controller does not relegate decisions about the status bar appearance to
its children. To hide the status bar when a split view controller is the root view con‐
troller, you might have to subclass UISplitViewController; alternatively, you could

Split Views | 579

wrap the split view controller in a custom container view controller, as I describe
later in this chapter.

Split View Controller in a Storyboard
I’ve shown how to construct a working split view controller interface in code. But
how does a split view controller interface constructed in the storyboard work? In just
the same way! Not only does it have the same structure that we constructed in code; it
uses effectively the same code that we used to make our split view controller interface
behave correctly.

To see this, make a new project from the Master–Detail App template and study the
storyboard that it provides. The storyboard starts with a split view controller, already
configured (Figure 9-4):

• The split view controller has two relationships, “master view controller” and
“detail view controller,” specifying its two children. Those two children are both
navigation controllers.

• The first navigation controller has a “root view controller” relationship to a
MasterViewController, which is a UITableViewController.

• The second navigation controller has a “root view controller” relationship to a
DetailViewController.

• The prototype table view cell in the master table view has an action segue — a
Show Detail segue whose destination is the detail navigation controller. A Show
Detail segue, when triggered, calls showDetailViewController(_:sender:) —
and you already know what that does.

The displayModeButtonItem has to be added; that’s done in code, in the scene dele‐
gate’s implementation of scene(_:willConnectTo:options:). The code obtains a
reference to the split view controller and to the detail view controller, and creates and
configures the displayModeButtonItem:

guard let splitViewController =
 window.rootViewController as? UISplitViewController
 else { return }
guard let navigationController =
 splitViewController.viewControllers.last as? UINavigationController
 else { return }
navigationController.topViewController?.navigationItem.leftBarButtonItem =
 splitViewController.displayModeButtonItem

The displayModeButtonItem must also be managed when the Show Detail segue is
triggered. That’s done in code, in the master view controller:

580 | Chapter 9: iPad Interface

Figure 9-4. How the storyboard configures a split view interface

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "showDetail" {
 if let indexPath = tableView.indexPathForSelectedRow {
 let controller =
 (segue.destination as! UINavigationController)
 .topViewController as! DetailViewController
 controller.navigationItem.leftBarButtonItem =
 splitViewController?.displayModeButtonItem
 controller.navigationItem.leftItemsSupplementBackButton = true
 // ... also pass data to controller ...
 }
 }
}

In addition, the template code sets the scene delegate as the split view controller’s del‐
egate, and implements splitViewController(_:collapseSecondary:onto:).

Split Views | 581

So the Master–Detail App template, apart from instantiating the view controllers
from the storyboard, ends up doing in code almost everything we did when we cre‐
ated the view controllers in code. So what advantage is there in instantiating the split
view controller and its child view controllers from the storyboard? Not much, in my
opinion. In fact, the Master–Detail App template is arguably worse than the code we
wrote earlier; the template code is verbose and opaque, because the architecture has
been constructed automatically, behind the code’s back, and the code must now
scramble to get references to the various view controllers.

Setting the Collapsed State
Suppose you want side-by-side display of the two child view controllers’ views in
landscape even on an iPhone. How would you arrange that? The problem here is that
we need to control the value of the split view controller’s isCollapsed property —
but we can’t just set it directly, because this property is read-only.

The split view controller decides its own expanded or collapsed state depending on
the environment — in particular, on whether the current trait collection’s horizontal
size class is .compact. We need, therefore, to lie to the split view controller about its
trait collection environment, effectively making it believe that it’s on an iPad even
though it’s really on an iPhone.

We can do that by interposing our own custom container view controller above the
split view controller in the view controller hierarchy — typically, as the split view
controller’s direct parent. We can then send this container view controller the set-
OverrideTraitCollection(_:forChild:) message, causing it to pass the trait collec‐
tion of our choosing down the view controller hierarchy to the split view controller.

In this example, our container view controller is the app’s root view controller; its
child is a split view controller. The split view controller’s view completely occupies
the container view controller’s view. The container’s own view is never seen; the con‐
tainer view controller exists solely in order to manage the split view controller. Early
in the life of the app, the container view controller configures the split view controller
and lies to it about the environment:

var didInitialSetup = false
override func viewWillLayoutSubviews() {
 if !self.didInitialSetup {
 self.didInitialSetup = true
 let svc = self.children[0] as! UISplitViewController
 svc.preferredDisplayMode = .allVisible
 svc.preferredPrimaryColumnWidthFraction = 0.5
 svc.maximumPrimaryColumnWidth = 500
 let traits = UITraitCollection(traitsFrom: [
 UITraitCollection(horizontalSizeClass: .regular)
])

582 | Chapter 9: iPad Interface

 self.setOverrideTraitCollection(traits,
 forChild: svc)
 }
}

The result is that the split view controller displays both its children’s views side by
side, both in portrait and landscape, like the Settings app on the iPad, even on the
iPhone.

Another use of this same trick, based on Apple’s AdaptivePhotos sample code, is to
make a small iPhone behave more like a big iPhone, with a .regular horizontal size
class in landscape (the split view controller expands) but a .compact horizontal
size class in portrait (the split view controller collapses):

override func viewWillTransition(to size: CGSize,
 with coordinator: UIViewControllerTransitionCoordinator) {
 let svc = self.children[0] as! UISplitViewController
 if size.width > size.height {
 let traits = UITraitCollection(traitsFrom: [
 UITraitCollection(horizontalSizeClass: .regular)
])
 self.setOverrideTraitCollection(traits,
 forChild: svc)
 } else {
 self.setOverrideTraitCollection(nil,
 forChild: svc)
 }
 super.viewWillTransition(to: size, with: coordinator)
}

View Controller Message Percolation
At the heart of the split view controller master–detail architecture is the showDetail-
ViewController(_:sender:) method. As I mentioned earlier, my code sends this
message to self (the master view controller), but it is actually the split view control‐
ler that responds. How is that possible? The answer is that this message percolates up
the view controller hierarchy to the split view controller.

Only two built-in UIViewController methods are implemented to behave in this way:
show(_:sender:) and showDetailViewController(_:sender:). Underlying this
behavior is a general architecture for percolating a message up the view controller
hierarchy, which I will now describe.

The heart of the message-percolation architecture is the method targetView-
Controller(forAction:sender:), where the action: parameter is the selector for
the method we’re inquiring about. This method, using some deep introspective voo‐
doo, looks to see whether the view controller to which the message was sent overrides
the UIViewController implementation of the method in question. If so, it returns

Split Views | 583

self; if not, it effectively recurses up the view controller hierarchy, returning the
result of calling the same method with the same parameters on its parent view con‐
troller or presenting view controller — or nil if no view controller is ultimately
returned to it. (A view controller subclass that does override the method in question
but does not want to be the target view controller can implement the UIResponder
method canPerformAction(_:withSender:) to return false.)

So show(_:sender:) and showDetailViewController(_:sender:) are implemented
to call targetViewController(forAction:sender:). If this call returns a target, they
send themselves to that target. If it doesn’t return a target, they call
present(_:animated:completion:) as a kind of fallback.

The reason for the percolation architecture is that it allows show(_:sender:) and
showDetailViewController(_:sender:) to work differently depending on how the
view controller to which they are originally sent is situated in the view controller
hierarchy. Two built-in UIViewController subclasses, UINavigationController and
UISplitViewController, override one or both of these methods, and if they are further
up the view controller hierarchy than the view controller on which these methods are
called, they will take charge of what happens:

UINavigationController show(_:sender:)
UINavigationController implements show(_:sender:) to call pushView-

Controller(_:animated:). That explains the dual behavior of show(_:sender:)
— everything depends on whether or not we’re in a navigation interface:

In a navigation interface
If you send show(_:sender:) to a view controller whose parent is a
UINavigationController, it is the navigation controller’s implementation
that will be called, meaning that the parameter view controller is pushed onto
the stack.

Not in a navigation interface
If you send show(_:sender:) to a view controller without a parent that over‐
rides this method, it can’t find a target, so it executes its fallback, meaning
that the parameter view controller is presented.

UISplitViewController showDetailViewController(_:sender:)
UISplitViewController implements showDetailViewController(_:sender:) as
follows. First, it calls the delegate method splitViewController(_:show-

Detail:sender:); if the delegate returns true, UISplitViewController does
nothing (and in that case, you would be responsible for getting the parameter
view controller’s view into the interface). Otherwise:

584 | Chapter 9: iPad Interface

If the split view controller is expanded
The split view controller replaces its second child view controller with the
parameter view controller.

If the split view controller is collapsed
If the split view controller’s first (and only) child view controller is a
UINavigationController, it sends show(_:sender:) to it — and the naviga‐
tion controller responds by pushing the parameter view controller onto its
own stack.

If not, the split view controller calls present(_:animated:completion:).

UISplitViewController show(_:sender:)
UISplitViewController implements show(_:sender:) as follows. First, it calls the
delegate method splitViewController(_:show:sender:); if the delegate
returns true, UISplitViewController does nothing (and that case, you would be
responsible for getting the parameter view controller’s view into the interface).
Otherwise:

If the split view controller is expanded
If the sender: is the split view controller’s first view controller, the split view
controller replaces the first view controller with the parameter view
controller.

If not, it replaces its second view controller with the parameter view
controller.

If the split view controller is collapsed
The split view controller calls present(_:animated:completion:).

Now that you understand the percolation mechanism, perhaps you’d like to know
whether your own custom methods can participate in it. They can! Extend UIView‐
Controller to implement your method such that it calls targetViewController(for-
Action:sender:) on self and sends the action method to the target if there is one:

extension UIViewController {
 @objc func showHide(_ sender: Any) {
 if let target = self.targetViewController(
 forAction:#selector(showHide), sender: sender) {
 target.showHide(self)
 }
 }
}

In that example, I don’t know what any particular UIViewController subclass’s over‐
ride of showHide(_:) may do, and I don’t care! What matters is that if showHide(_:)
is sent to a view controller that doesn’t override it, it will percolate up the view

Split Views | 585

Figure 9-5. Slideover multitasking mode and splitscreen multitasking mode

controller hierarchy until we find a view controller that does override it, and it is that
override that will be called.

iPad Multitasking
Current iPad models can perform a kind of multitasking where the windows of two
different apps can appear simultaneously. There are two multitasking modes
(Figure 9-5):

Slideover
One app appears in a narrow format in front of the other, occupying roughly
one-third of the screen’s width. The rear app continues to occupy the full width
of the screen. On older iPad models, the rear app is deactivated and covered by a
dimming view, and the user cannot interact with it without dismissing the front
app. On all iPad models capable of running iOS 13, the rear app remains active
and the user can interact with either app.

Splitscreen
The two apps appear side by side and are both active simultaneously; the user can
interact with either app. One of the two apps can occupy roughly one-third of the
screen’s width; in landscape orientation, the apps can also divide the screen’s
width equally. Splitscreen multitasking mode is not available on some older iPad
models; it is available on all iPad models capable of running iOS 13.

Your iPad or universal app, by default, will participate in iPad multitasking if your
Info.plist permits all four orientations. If you would like to opt out of participation in
iPad multitasking, set the Info.plist key UIRequiresFullScreen to YES; you can do
that conveniently while editing the app target by checking Requires Full Screen in the
General tab. But Apple warns that this option is slated to be removed; multitasking
will be a requirement.

586 | Chapter 9: iPad Interface

If your app participates in iPad multitasking, its size can change from occupying the
device’s entire screen to a narrower size. This, in turn, may be accompanied by a
change in the trait collection. If your app appears in narrow format (because it is
occupying roughly one-third of the screen, in slideover or splitscreen mode), then
even though it’s on an iPad, it will have a .compact horizontal size class. If your app
occupies half the screen in splitscreen mode, it might have a .compact horizontal size
class, depending on how large this iPad’s screen is and what orientation the iPad is in.
So your app can be toggled between a .compact horizontal size class and a .regular
horizontal size class, and it must be prepared to cope with that change.

When your app changes size because of multitasking, your view controller will
receive events to signal what’s happening (see “Resizing and Layout Events” on page
312); the application or scene (or both) may be inactive at the time these events
arrive:

• Your view controller will receive viewWillTransition(to:with:) to report the
size change.

• If the size change also involves a transition from one horizontal size class to
another, then your view controller will also receive willTransition(to:with:)
and traitCollectionDidChange(_:) to report the trait collection change.

The good news is that, if your app is a universal app, it is probably prepared already
to respond coherently to these events, and might well be able to participate in iPad
multitasking with no significant change. Your code should already be thinking in
terms of size classes, not device type. A view controller on an iPad can have
a .compact horizontal size class quite apart from iPad multitasking (it might be a
popover or form sheet presented view controller), so your code is already prepared
for that possibility. And your view controllers will adapt to a size class change in real
time:

• If a view controller is a presented view controller, then if the size transition
involves a trait collection transition, the view controller will adapt, there and
then. An iPad popover will transform into a sheet before the user’s eyes as the
app transitions from a .regular horizontal size class to .compact (and you can
take a hand in how the presented view controller adapts by functioning as the
presentation controller’s delegate).

• In a split view controller interface, the split view controller will collapse and
expand before the user’s eyes as the app transitions from a .regular horizontal
size class to .compact and back again. This is no different from the ability of a
split view controller to collapse and expand when a big iPhone is rotated, and the
same precautions will take care of it satisfactorily.

Here are some of the likely challenges you’ll face in adapting your app to cope with
iPad multitasking:

iPad Multitasking | 587

Size ratio
The variety of absolute sizes that your app’s interface might assume under iPad
multitasking is unlikely to raise any new concerns. If this is a universal app, then
you are already taking care of a wide range of possible sizes through size classes
and autolayout, and you probably won’t have to do anything new to cover these
new sizes. But there’s a large possible range of ratios between the longer and
shorter dimensions of your window’s size. On a large iPad Pro, the window can
go from a roughly square 1.04 height-to-width ratio all the way up to a very tall
and narrow 3.6 height-to-width ratio. Designing an interface that looks decent
and can be operated correctly under such widely variable size ratios can be tricky.

Window bounds and screen bounds
Under iPad multitasking, you can’t assume that window bounds are screen
bounds (see “Window Coordinates and Screen Coordinates” on page 26). What
actually changes when your app is resized is the size of its window. Under iPad
multitasking, your app’s window bounds can be different from screen bounds.
Moreover, if your app appears on the right, its window origin is shifted to the
right; this changes the relationship between a view’s position in window coordi‐
nates and its position in screen coordinates. You probably weren’t using screen
coordinates for anything anyway, but if you were, your code will need to change.

Resource sharing
An important implication of iPad multitasking is that your app may effectively
be frontmost at the same time as some other app. This means that the other app
can be using both the processor (especially the main thread) and memory at a
time when your app is not suspended. For this to work, all apps participating in
iPad multitasking need to be on good behavior, adhering to best practices with
regard to threading (see Chapter 24) and memory usage (see “View Controller
Memory Management” on page 406).

Drag and Drop
Drag and drop, introduced in iOS 11, allows the user to drag something from one
app into another; it can also be used within a single app. What the user appears to
drag is a view, but what is actually communicated to the target app is data. Drag and
drop is effectively a visual form of copy and paste — with this important difference:

Copy and paste uses a clipboard
Typically, copy and paste starts by copying the actual data to be communicated
onto a clipboard. The data sits in the clipboard, ready to paste anywhere. The
data in the clipboard can be pasted multiple times in multiple places.

588 | Chapter 9: iPad Interface

Drag and drop uses a promise
With drag and drop between apps, no actual data is carried around during the
drag. The data might be large; it might take time to acquire. What’s carried is
effectively a promise to supply a certain type of data on request; that promise
isn’t fulfilled until the drop takes place. Only the drop target can receive the data.

Drag and Drop Architecture
From an app’s point of view, drag and drop operates at the level of individual views.
The user performs a set sequence of actions:

1. The user long presses on a view; if this is a view from which dragging is possible
(a drag source), a visible avatar — a preview — appears under the user’s finger.

2. The user may then start dragging the preview.
3. The user drags the preview over some other view, possibly in a different app; if

this is a view on which dropping is possible (a drop destination), the preview is
badged to indicate this.

4. If the user releases the preview over a drop destination, the preview disappears,
and the actual data is communicated from the source to the destination. (If the
user releases the preview when it is not badged, the drag and drop is cancelled
and no data is communicated.)

To prepare for drag and drop, therefore, your app will need either a drag source view
or a drop destination view (or both):

Configuring a drag source view
To configure a view so that dragging from it is possible, you create a UIDrag‐
Interaction object and attach it to that view. You don’t subclass UIDragInterac‐
tion; rather, you give it a delegate (adopting the UIDragInteractionDelegate
protocol). From your app’s standpoint, it is this delegate that does all the work if
the user actually tries to perform a drag from the source view.

Configuring a drop destination view
To configure a view so that dropping onto it is possible, you create a UIDrop‐
Interaction object and attach it to that view. You don’t subclass UIDropInterac‐
tion; rather, you give it a delegate (adopting the UIDropInteractionDelegate
protocol). From your app’s standpoint, it is this delegate that does all the work if
the user actually tries to drop onto the destination view.

Drag and drop needs to operate between apps and outside of any app; it is a system-
level technology. Between the start of the drag and the ultimate drop, the user, mov‐
ing the preview, is interacting with the runtime — not the source app or the
destination app. The preview being dragged doesn’t belong to either app. In a sense,

Drag and Drop | 589

while dragging, the user isn’t “in” any app at all; by the same token, while dragging,
the user is not prevented from interacting with your app.

The runtime sends messages to the drag interaction delegate or the drop interaction
delegate, as appropriate, at the start and end of the drag and drop. In those messages,
the runtime presents two different faces:

• To the drag interaction delegate, it presents a UIDragSession object (a UIDrag‐
DropSession subclass).

• To the drop interaction delegate, it presents a UIDropSession object (another
UIDragDropSession subclass).

More than one piece of data can be supplied through a single drag and drop session.
The data itself is accessed through a nest of envelopes. Here’s how the session is ini‐
tially configured by the drag interaction delegate:

1. At the heart of each envelope is a single NSItemProvider representing a single
piece of data.

2. Each item provider is wrapped in a UIDragItem.
3. The drag items are attached to the drag session.

At the other end of the process, the drop interaction delegate reverses the procedure:

1. The drop session contains drag items.
2. Each drag item contains a single NSItemProvider.
3. Each item provider is the conduit for fetching the corresponding piece of data.

Basic Drag and Drop
You now know enough for an example! I’ll talk through a basic drag and drop opera‐
tion. In my example, the source view will be a simple color swatch; it vends a color.
The destination view will receive that color as the session’s data. The source view and
the destination view could be in two different apps, but the architecture is completely
general, so they could be in the same app — it makes no difference.

The drag source view

The drag source view (which I’m calling dragView) can be configured like this:

@IBOutlet weak var dragView: UIView!
override func viewDidLoad() {
 super.viewDidLoad()
 let dragger = UIDragInteraction(delegate: self)
 self.dragView.addInteraction(dragger)
}

590 | Chapter 9: iPad Interface

The user long presses on the source view, and the UIDragInteraction detects this. (If
you think this makes a UIDragInteraction rather like a gesture recognizer, you’re
exactly right; in fact, adding a drag interaction to a view installs four gesture recogniz‐
ers on that view.) The drag interaction turns to its delegate (UIDragInteractionDele‐
gate) to find out what to do. A UIDragInteractionDelegate has just one required
method, and this is it:

func dragInteraction(_ interaction: UIDragInteraction,
 itemsForBeginning session: UIDragSession) -> [UIDragItem] {
 let ip = NSItemProvider(object:UIColor.red)
 let di = UIDragItem(itemProvider: ip)
 return [di]
}

The drag delegate’s dragInteraction(_:itemsForBeginning:) must return an array
of drag items. If the array is empty, that’s the end of the story; there will be no drag.
In our case, we want to permit the drag. Our data is very simple, so we just package it
up inside an item provider, pop the item provider into a drag item, and return an
array consisting of that drag item.

The user now sees the preview and can drag it. The source effectively retires from the
story. So much for the source view!

You may be wondering: where did the preview come from? We didn’t supply a cus‐
tom preview, so the system takes a snapshot of the drag source view, enlarges it
slightly, makes it somewhat transparent, and uses that as the draggable preview. For
our color swatch example, that might be perfectly acceptable.

The drop destination view

The drop destination view (which I’m calling dropView) can be configured in a man‐
ner remarkably similar to how we configured the source view:

@IBOutlet weak var dropView: UIView!
override func viewDidLoad() {
 super.viewDidLoad()
 let dropper = UIDropInteraction(delegate: self)
 self.dropView.addInteraction(dropper)
}

A drop interaction delegate has no required methods, but nothing is going to happen
unless we implement this method:

func dropInteraction(_ interaction: UIDropInteraction,
 sessionDidUpdate session: UIDropSession) -> UIDropProposal {
 return UIDropProposal(operation: .copy)
}

In dropInteraction(_:sessionDidUpdate:), our job is to return a UIDropProposal.
This will be initialized with a UIDropOperation that will usually be .cancel

Drag and Drop | 591

or .copy. If it’s .cancel, the user won’t see any feedback while dragging over this
view, and if the user drops onto this view, nothing will happen (the entire operation
will be cancelled). If it’s .copy, the preview is badged with a Plus sign while the user is
dragging over this view, and if the user drops onto this view, we can be notified of
this and can proceed to ask for the data.

In our implementation of dropInteraction(_:sessionDidUpdate:), we have
expressed a willingness to accept a drop regardless of what sort of data is associated
with this session. Let’s refine that. If what we accept is a color, we should base our
response on whether any of the session’s item providers promise us color data. We
can query the item providers individually, or we can ask the session itself:

func dropInteraction(_ interaction: UIDropInteraction,
 sessionDidUpdate session: UIDropSession) -> UIDropProposal {
 let op : UIDropOperation =
 session.canLoadObjects(ofClass: UIColor.self) ? .copy : .cancel
 return UIDropProposal(operation:op)
}

Finally, let’s say the drop actually occurs on the destination view. The drop interac‐
tion delegate’s opportunity to obtain the data is its implementation of drop-
Interaction(_:performDrop:). In this method, there are two ways to ask for the
data. The simple way is to ask the session itself:

func dropInteraction(_ interaction: UIDropInteraction,
 performDrop session: UIDropSession) {
 session.loadObjects(ofClass: UIColor.self) { colors in
 if let color = colors[0] as? UIColor {
 // do something with color here
 }
 }
}

The more elaborate way is to get a reference to an item provider and ask the item
provider to load the data:

func dropInteraction(_ interaction: UIDropInteraction,
 performDrop session: UIDropSession) {
 for item in session.items {
 let ip = item.itemProvider
 ip.loadObject(ofClass: UIColor.self) { (color, error) in
 if let color = color as? UIColor {
 // do something with color here
 }
 }
 }
}

There’s an important difference between those two approaches:

592 | Chapter 9: iPad Interface

loadObjects(ofClass:)

When calling the session’s loadObjects(ofClass:), the completion function is
called on the main thread.

loadObject(ofClass:)

When calling an item provider’s loadObject(ofClass:), the completion func‐
tion is called on a background thread.

If you use the second way and you intend to update or otherwise communicate with
the interface, you’ll need to step out to the main thread (see Chapter 24); I’ll show an
example later in this chapter.

Item Providers
It’s no coincidence that my color swatch example in the preceding section uses a
UIColor as the data passed through the drag and drop session. UIColor implements
two key protocols, NSItemProviderWriting and NSItemProviderReading. That’s why
my code was able to make two important method calls:

The drag source and init(object:)
At the drag source end of things, I was able to construct my item provider by
calling NSItemProvider’s initializer init(object:). That’s because UIColor
adopts the NSItemProviderWriting protocol; the parameter of init(object:)
must be an instance of an NSItemProviderWriting adopter.

The drop destination and loadObject(ofClass:)
At the drop destination end of things, I was able to get the data from my item
provider by calling loadObject(ofClass:). That’s because UIColor adopts the
NSItemProviderReading protocol; the parameter of loadObject(ofClass:)

must be an NSItemProviderReading adopter.

Other common classes that adopt these protocols include NSString, UIImage,
NSURL, MKMapItem, and CNContact. But what if your data’s class isn’t one of
those? Then adopt those protocols in your class!

To illustrate, I’ll create a Person class and then configure it so that Person data can be
passed through drag and drop. Here’s the basic Person class:

final class Person : NSObject, Codable {
 let firstName: String
 let lastName: String
 init(firstName:String, lastName:String) {
 self.firstName = firstName
 self.lastName = lastName
 super.init()
 }
 override var description : String {
 return self.firstName + " " + self.lastName

Drag and Drop | 593

 }
 enum MyError : Error { case oops }
 static let personUTI = "neuburg.matt.person"
}

It turns out that the only kind of data that can actually pass through a drag and drop
session is a Data object. Therefore, I’m going to need a way to serialize a Person as
Data to pass it from the source to the destination. That’s why my Person class adopts
the Codable protocol, which makes serialization trivial (Chapter 22). I also supply a
simple Error type, to use as a signal if things go wrong. Finally, there is no standard
UTI (universal type identifier) for my Person type, so I’ve made one up.

NSItemProviderWriting

Now I’ll make it possible to call NSItemProvider’s init(object:) when the object:
is a Person. To do so, I adopt NSItemProviderWriting, which has two required
members:

extension Person : NSItemProviderWriting {
 static var writableTypeIdentifiersForItemProvider = [personUTI]
 func loadData(withTypeIdentifier typeid: String,
 forItemProviderCompletionHandler
 ch: @escaping (Data?, Error?) -> Void) -> Progress? {
 switch typeid {
 case Self.personUTI:
 do {
 ch(try PropertyListEncoder().encode(self), nil)
 } catch {
 ch(nil, error)
 }
 default: ch(nil, MyError.oops)
 }
 return nil
 }
}

The writableTypeIdentifiersForItemProvider property lists type identifiers
for the various representations in which we are willing to supply our data. At the
moment, I’m willing to supply a Person only as a Person.

loadData(withTypeIdentifier:forItemProviderCompletionHandler:) will be
called when a drop destination asks for our data. The drop has occurred, and our
Person object, originally passed into NSItemProvider’s init(object:), is going
to package itself up as a Data object. That’s easy, because Person is Codable.
There are no existing conventions for the format in which a Person is coded as
Data, so I use a property list. Whatever happens, I make sure to call the comple‐
tion function — either I pass in a Data object as the first parameter, or I pass in
an Error object as the second parameter. That’s crucial!

594 | Chapter 9: iPad Interface

Our data doesn’t take any time to generate, so I’m returning nil from the loadData
method. If our data were time-consuming to supply, we might wish to return a
Progress object with the fetching of our data tied to the updating of that object. I’ll
talk more about the purpose of the Progress object later.

NSItemProviderReading

Next I’ll make it possible to call NSItemProvider’s loadObject(ofClass:) when the
class: is Person.self. To do so, I adopt NSItemProviderReading, which has two
required members:

extension Person : NSItemProviderReading {
 static var readableTypeIdentifiersForItemProvider = [personUTI]
 static func object(withItemProviderData data: Data,
 typeIdentifier typeid: String) throws -> Self {
 switch typeid {
 case personUTI:
 do {
 let p = try PropertyListDecoder().decode(self, from: data)
 return p
 } catch {
 throw error
 }
 default: throw MyError.oops
 }
 }
}

Everything I’m doing to implement NSItemProviderReading complements what I
did to implement NSItemProviderWriting:

The readableTypeIdentifiersForItemProvider property lists type identifiers
for any representations that we know how to transform into a Person. At the
moment, we do this only for an actual Person.

When object(withItemProviderData:typeIdentifier:) is called with the Per‐
son type identifier, this means that a Person object is arriving at the destination,
packaged up as a Data object. Our job is to extract it and return it. Well, we know
how it has been encoded; it’s a property list! So we decode it and return it. If any‐
thing goes wrong, we throw an error instead.

The upshot is that drag and drop of a Person object now works perfectly within our
app, if we drop on a view whose UIDropInteractionDelegate expects a Person object.

Drag and Drop | 595

Vending additional representations
What if we want a Person to be draggable from our app to some other app? It’s
unlikely that another app will know about our Person class. Or what if we want a Per‐
son to be draggable within our app to a view that expects some other kind of data?

So far, our writableTypeIdentifiersForItemProvider property declares just one
UTI, signifying that we dispense a Person object. But we can add other UTIs, signify‐
ing that we provide alternate representations of a Person. Let’s decide to vend a Per‐
son as text:

static var writableTypeIdentifiersForItemProvider =
 [personUTI, kUTTypeUTF8PlainText as String]

(The constant kUTTypeUTF8PlainText, along with other UTI names, can be found in
the Mobile Core Services framework; you’ll need to import MobileCoreServices.)

Now we need to supplement our implementation of loadData(withType-

Identifier:forItemProviderCompletionHandler:) to take account of the possibil‐
ity that we may be called by someone who is expecting a String instead of a Person.
What string shall we provide? How about a string rendering of the Person’s name? It
happens that our description property is ready and willing to provide that. And
there’s a simple standard way to wrap a UTF-8 string as Data: just call
data(using: .utf8). So all we have to do is add this case to our switch statement:

case kUTTypeUTF8PlainText as NSString as String:
 ch(self.description.data(using: .utf8)!, nil)

The result is that if a Person is dragged and dropped onto a view that expects a string
to be dropped on it, the Person’s name is provided as the data. A UITextField is such
a view; if a Person is dragged and dropped onto a text field, the Person’s name is
inserted into the text field!

Receiving additional representations
We can also extend our implementation of the NSItemProviderReading protocol in a
similar way. Here, our app contains a view that expects a Person to be dropped onto
it, and we want it to have the ability to accept data of some other kind. Suppose the
user drags a String and drops it onto our view. A String is not a Person, but perhaps
this String is in fact a person’s name. We could make a Person from that String.

To make that possible, we add a UTI to our readableTypeIdentifiersForItem-
Provider property, signifying that we can derive a Person from text:

static var readableTypeIdentifiersForItemProvider =
 [personUTI, kUTTypeUTF8PlainText as String]

To go with that, we add a case to the switch statement in our object(withItem-
ProviderData:typeIdentifier:) implementation. We pull the String out of the

596 | Chapter 9: iPad Interface

Data object, parse it in a crude way into a first and last name, and create a Person
object:

case kUTTypeUTF8PlainText as NSString as String:
 if let s = String(data: data, encoding: .utf8) {
 let arr = s.split(separator:" ")
 let first = arr.dropLast().joined(separator: " ")
 let last = arr.last ?? ""
 return self.init(firstName: first, lastName: String(last))
 }
 throw MyError.oops

The result is that if the string "Matt Neuburg" is dragged onto a view that expects a
Person object, the drop is accepted, because our Person type has signified that it
knows how to turn a string into a Person, and the result of the drop is a Person with
first name "Matt" and last name "Neuburg".

Slow Data Delivery
Pretend that you are the drop interaction delegate, and you are now asking for the
data in your implementation of dropInteraction(_:performDrop:). Whether you
call the session’s loadObjects(ofClass:) or an item provider’s loadObject(of-
Class:), your completion function is called asynchronously when the data arrives.
This could take some considerable time, depending on the circumstances. (See
Appendix C for more about what “asynchronous” means.)

Therefore, by default, if things take too long, the runtime puts up a dialog tracking
the overall progress of data delivery and allowing the user to cancel it. If you like, you
can replace the runtime’s dialog with your own progress interface. (If you intend to
do that, set the drop session’s progressIndicatorStyle to .none, to suppress the
default dialog — and make sure that your interface gives the user a way to cancel.)

You can stay informed about the supplying of the data through a Progress object
(Chapter 12). A Progress object has fractionCompleted and isFinished properties
that you can track through key–value observing in order to update your interface;
you can also cancel the loading process by telling the Progress object to cancel.
There are two ways to get such an object:

• The session vends an overall Progress object as its progress property.
• An individual item provider’s loadObject method can return a Progress object

tracking the delivery of its own data.
Even if you rely on the runtime’s default progress dialog, there can be a disconcerting
effect of blankness when all the apparent action comes to an end without any data to
display. You can discover this situation by implementing your drop interaction dele‐
gate’s dropInteraction(_:concludeDrop:) method. When that method is called, all
visible activity in the interface has stopped. If you discover here that the drop

Drag and Drop | 597

session’s progress.isFinished is false, then depending on the nature of your inter‐
face, you might need to provide some sort of temporary view, to show the user that
something has happened, until the actual data arrives.

Additional Delegate Methods
Additional UIDragInteractionDelegate and UIDropInteractionDelegate methods
allow the delegate to dress up the drag or drop process in more detail:

Drag interaction delegate
Drag interaction delegate methods let the delegate supply drag items, provide a
preview, restrict the type of drag permitted, animate along with the start of the
drag, and hear about each stage of the entire session.

Drop interaction delegate
Drop interaction delegate methods let the delegate signify willingness to accept
the drop, track the user’s finger dragging over the view, and, when an actual drop
takes place, provide a preview, perform an animation, and request the associated
data.

Here are some examples; for full details, consult the documentation.

Custom drag preview
The drag interaction delegate can supply a preview to replace the snapshot of its view.
Let’s modify our earlier color swatch example to illustrate. Our color swatch is red; it
will create a label containing the word “RED” and provide that as the preview.

The trick is that we have to say where this label should initially appear. To do that, we
create a UIDragPreviewTarget, which specifies a container view in the interface to
which our preview will be added as a subview, along with a center for the preview in
that view’s coordinate system. This view will be removed from the container when
the user either fails to initiate the drag or does in fact start dragging; in the latter case,
it will be replaced by a snapshot. Then we combine our preview with that target as a
UITargetedDragPreview. In this case, we want the center of the label under the user’s
finger; we can find out from the session where the user’s finger is:

func dragInteraction(_ interaction: UIDragInteraction,
 previewForLifting item: UIDragItem, session: UIDragSession)
 -> UITargetedDragPreview? {
 let lab = UILabel()
 lab.text = "RED"
 lab.textAlignment = .center
 lab.textColor = .red
 lab.layer.borderWidth = 1
 lab.layer.cornerRadius = 10
 lab.sizeToFit()
 lab.frame = lab.frame.insetBy(dx: -10, dy: -10)

598 | Chapter 9: iPad Interface

 let v = interaction.view!
 let ptrLoc = session.location(in: v)
 let targ = UIDragPreviewTarget(container: v, center: ptrLoc)
 let params = UIDragPreviewParameters()
 params.backgroundColor = .white
 return UITargetedDragPreview(view: lab,
 parameters: params, target: targ)
}

In addition to a view and a target, a UITargetedDragPreview is initialized with a
UIDragPreviewParameters object. In the preceding code, I used the UIDragPreview‐
Parameters object to make the preview’s background white, just to give it a role in the
example. Another useful possibility is to set the UIDragPreviewParameters visible-
Path property, supplying a clipping path, in case you want the preview to be a snap‐
shot of a certain subregion of the source view.

The drag interaction delegate can also change the preview in the course of the drag.
To do so, it will set the drag item’s previewProvider to a function returning a
UIDragPreview (which has no target, because it has no relationship to the app’s
interface). If the drag interaction delegate does this in, say, drag-

Interaction(_:itemsForBeginning:), the previewProvider function won’t be
called until the drag begins, so the user will see the lifting preview first, and will see
the previewProvider preview after the drag starts. Another strategy is to implement
dragInteraction(_:sessionDidMove:) and set the previewProvider there; the pre‐
view will change at that moment. But dragInteraction(_:sessionDidMove:) is
called repeatedly, so be careful not to set the same drag item’s previewProvider to
the same function over and over.

In addition, the drag interaction delegate can set a cancel preview, with drag-
Interaction(_:previewForCancelling:withDefault:). This is used if the user
begins to drag the preview but then releases it while not over a drop destination. A
nice effect is to keep the existing drag preview (accessible through the third parame‐
ter) but retarget it to say where it should fall to as it vanishes; and in fact UITargeted‐
DragPreview has a retargetedPreview(with:) method for this very purpose.
Furthermore, the UIDragPreviewTarget initializer lets you supply a transform:
parameter that will be applied over the course of the animation as the preview falls.

The drop interaction delegate, too, can provide a preview to replace the dragged pre‐
view when the drop animation occurs; it works just like the cancel preview.

Additional animation
The drag interaction delegate can make the source view perform some sort of anima‐
tion along with the runtime’s initial animated display of the preview. In this example,
I’ll fade the color swatch slightly:

Drag and Drop | 599

func dragInteraction(_ interaction: UIDragInteraction,
 willAnimateLiftWith anim: UIDragAnimating, session: UIDragSession) {
 if let v = interaction.view {
 anim.addAnimations {
 v.alpha = 0.5
 }
 }
}

I could have supplied a completion function by calling addCompletion, but I didn’t,
so the color swatch stays faded throughout the drag. Clearly, I don’t want it to stay
faded forever; when the drag ends, I’ll be called back again, and I’ll restore the
swatch’s alpha then:

func dragInteraction(_ interaction: UIDragInteraction,
 session: UIDragSession, willEndWith operation: UIDropOperation) {
 if let v = interaction.view {
 UIView.animate(withDuration:0.3) {
 v.alpha = 1
 }
 }
}

The animations you pass with addAnimations are applied before the runtime
takes its snapshot to form the default preview. Therefore, the results of those ani‐
mations appear in the default preview. To avoid that, supply your own preview.

The drop interaction delegate gets a corresponding message, drop-

Interaction(_:item:willAnimateDropWith:). By retargeting the drop preview and
performing its own animations alongside the drop, the drop interaction delegate can
create some vivid effects.

Flocking

If a source view’s drag interaction delegate implements dragInteraction(_:items-
ForAddingTo:withTouchAt:), and if that implementation returns a nonempty array
of drag items, then the user can tap on this source view while already dragging a pre‐
view, as a way of adding more drag items to the existing session. Apple refers to this
as flocking.

If you permit flocking, be careful of unintended consequences. If the user can tap a
source view to get flocking once during a drag, the user can tap the same source view
to get flocking again during that drag. This will result in the session effectively carry‐
ing multiple copies of the same data, which is probably not what you want. You can
solve this problem by examining the session’s current drag items to make sure you’re
not adding another drag item whose item provider refers to the same data.

600 | Chapter 9: iPad Interface

Table Views and Collection Views
Table views and collection views get a special implementation of drag and drop,
focusing on their cells. There is no need to supply a UIDragInteraction or UIDrop‐
Interaction; instead, simply give the table view or collection view an appropriate
delegate:

UITableView
The delegate properties are:

• dragDelegate (UITableViewDragDelegate)
• dropDelegate (UITableViewDropDelegate)

UICollectionView
The delegate properties are:

• dragDelegate (UICollectionViewDragDelegate)
• dropDelegate (UICollectionViewDropDelegate)

The methods of these delegates are generally analogous to, but simpler than, those of
UIDragInteractionDelegate and UIDropInteractionDelegate. I’ll discuss some table
view drag and drop delegate methods; collection views work very similarly.

Table view dragging
To illustrate dragging, let’s return to the table of U.S. states developed in Chapter 8,
and make it possible to drag a cell and drop it on a view that expects text. Our text
will be, appropriately enough, the name of the state. The implementation is trivial.
First, in some early event such as viewDidLoad, we give our table view a drag
delegate:

self.tableView.dragDelegate = self

Then, acting as drag delegate, we implement the only required method, table-
View(_:itemsForBeginning:at:). There’s nothing new or surprising about our
implementation:

func tableView(_ tableView: UITableView,
 itemsForBeginning session: UIDragSession,
 at indexPath: IndexPath) -> [UIDragItem] {
 let s = self.sections[indexPath.section].rowData[indexPath.row]
 let ip = NSItemProvider(object:s as NSString)
 let di = UIDragItem(itemProvider: ip)
 return [di]
}

That’s all we have to do! It is now possible to long press on a cell to get a drag preview
snapshotting the cell, and that preview can be dropped on any drop target that
expects text.

Drag and Drop | 601

Table view dropping
Now let’s do the converse: we’ll make it possible to drop on a table. Imagine that I
have a table of person names, whose underlying model is an array containing a single
Section whose rowData is an array of Person. I want the user to be able to drop a Per‐
son onto the table view; in response, I’ll insert that person into the data, and I’ll insert
a cell representing that person into the table. We give our table view a drop delegate:

self.tableView.dropDelegate = self

Acting as the drop delegate, I implement two delegate methods. First, I implement
tableView(_:dropSessionDidUpdate:withDestinationIndexPath:) to determine,
as the user’s finger passes over the table view, whether the drop should be possible.
The destination index path might be nil, indicating that the user’s finger is not over a
row of the table. Also, the dragged data might not be something that can generate a
Person. In either case, I return the .cancel operation. Otherwise, I return the .copy
operation to badge the dragged preview and permit the drop:

func tableView(_ tableView: UITableView,
 dropSessionDidUpdate session: UIDropSession,
 withDestinationIndexPath ip: IndexPath?) -> UITableViewDropProposal {
 if ip == nil {
 return UITableViewDropProposal(operation: .cancel)
 }
 if !session.canLoadObjects(ofClass: Person.self) {
 return UITableViewDropProposal(operation: .cancel)
 }
 return UITableViewDropProposal(operation: .copy,
 intent: .insertAtDestinationIndexPath)
}

In the UITableViewDropProposal initializer, the intent: argument (UITableView‐
DropProposal.Intent) tells the table view how to animate as the user’s finger hovers
over it:

.insertAtDestinationIndexPath

For when the drop would insert rows; the table view opens a gap between rows
under the user’s finger.

.insertIntoDestinationIndexPath

For when the drop would not insert rows; the row under the user’s finger high‐
lights, suggesting that the dropped material will be incorporated into that row in
some way.

.automatic

A combination of the previous two, depending on precisely where the user’s
finger is.

602 | Chapter 9: iPad Interface

.unspecified

The table doesn’t respond while the user’s finger is over it.

Next, I implement the required tableView(_:performDropWith:) method. The drop
is now happening; we need to retrieve the incoming data and update the table. The
second parameter is a UITableViewDropCoordinator; everything we need to know
about what’s happening, such as the index path and the session, is available through
the coordinator:

func tableView(_ tableView: UITableView,
 performDropWith coord: UITableViewDropCoordinator) {
 if let ip = coord.destinationIndexPath {
 coord.session.loadObjects(ofClass: Person.self) { persons in
 for person in (persons as! [Person]).reversed() {
 tableView.performBatchUpdates({
 self.sections[ip.section].rowData.insert(
 person, at: ip.row)
 tableView.insertRows(at: [ip], with: .none)
 })
 }
 }
 }
}

Time-consuming table view drop data delivery
The preceding example works, but we are not updating the table until the data
arrives. We are skirting the issue of what will happen if the data takes time to arrive.
The drop happens, and we should insert a row right now — that is, before asking for
the data. But at that moment, we obviously don’t yet have the data! So either we must
freeze the interface while we wait for the data to arrive, which sounds like very bad
interface, or we must update the table with data that we don’t yet have, which sounds
like a metaphysical impossibility.

The solution is to use a placeholder cell for each new row while we wait for its data.
The technique is best understood through an example. I’ll use the item provider to
fetch the data this time:

func tableView(_ tableView: UITableView,
 performDropWith coord: UITableViewDropCoordinator) {
 guard let ip = coord.destinationIndexPath else {return}
 for item in coord.items {
 let item = item.dragItem
 guard item.itemProvider.canLoadObject(ofClass: Person.self)
 else {continue}
 let ph = UITableViewDropPlaceholder(
 insertionIndexPath: ip,
 reuseIdentifier: self.cellID,
 rowHeight: self.tableView.rowHeight)
 ph.cellUpdateHandler = { cell in

Drag and Drop | 603

 cell.textLabel?.text = ""
 }
 let con = coord.drop(item, to: ph)
 item.itemProvider.loadObject(ofClass: Person.self) { p, e in
 DispatchQueue.main.async {
 guard let p = p as? Person else {
 con.deletePlaceholder(); return
 }
 con.commitInsertion(dataSourceUpdates: {ip in
 tableView.performBatchUpdates({
 self.sections[ip.section].rowData.insert(
 p, at: ip.row)
 })
 })
 }
 }
 }

}

For each drag item capable of providing a Person object, this is what we do:

We make a UITableViewDropPlaceholder, supplying our cell’s reuseIdentifier
so that the table view can dequeue a cell for us to use as a placeholder cell.

We set the placeholder’s cellUpdateHandler to a function that will be called to
configure the placeholder cell. In my simple table, we’re using a basic default cell
with a textLabel that normally displays the full name of a Person; for the place‐
holder cell, the textLabel should be blank.

We call the coordinator’s drop(_:to:) with the placeholder, to perform the drop
animation and create the placeholder cell; a context object (UITableViewDrop‐
PlaceholderContext) is returned. The placeholder cell is now visible in the table.
The important thing is that the table view knows that this is not a real cell! For
purposes of all data source and delegate methods, it will behave as if the cell
didn’t exist. In particular, it won’t call tableView(_:cellForRowAt:) for this cell;
the cell is static and is already completely configured by the cellUpdateHandler
function we supplied earlier.

Now, at long last, we call loadObject(ofClass:) to ask for the actual data!

Eventually, we are called with the data on a background thread. We step out to
the main thread, because we’re about to talk to the interface.

If we didn’t get the expected data, the placeholder cell is no longer needed, and
we remove it by calling the context object’s deletePlaceholder.

604 | Chapter 9: iPad Interface

If we reach this point, we’ve got data! We call the context object’s commit-
Insertion(dataSourceUpdates:) with a function that updates the model only.
As a result, tableView(_:cellForRowAt:) is called to supply the real cell, which
quietly replaces the placeholder cell in good order.

While your table view contains placeholders, the table view’s hasUncommitted-
Updates is true. Use that property as a flag to prevent your other code from calling
reloadData on the table view, which would cause the placeholders to be lost and the
entire table view update process to get out of whack.

Table view drop animations
In step 3 of the preceding example, we gave the UITableViewDropCoordinator a
drop animation command to create the placeholder cell. This command must be
given outside of the loadObject completion function, because the drop is about to
happen now, so the animation must replace the default drop animation now, not at
some asynchronous future time. The drop coordinator obeys four drop animation
commands:

drop(_:to:)

The second parameter is a UITableViewDropPlaceholder.

drop(_:intoRowAt:rect:)

Animates the drop preview into the cell at the specified row, to the frame speci‐
fied in that cell’s bounds coordinates.

drop(_:to:)

Animates the drop preview anywhere. The second parameter is a UIDragPreview‐
Target combining a container and a center in the container’s bounds
coordinates.

drop(_:toRowAt:)

Snapshots the cell at the given row, replaces the drop preview with that snapshot,
and animates the snapshot to fit the cell. This is useful under a very limited set of
circumstances:

• You want to give the impression that the drop replaces the contents of a cell.
• The drag and drop must be local (see later in this chapter), so that the model

can be updated with the new data and the row can be reloaded before the
snapshot is taken.

Spring Loading
Spring loading is an effect similar to what happens on an iOS device’s home screen
when the user goes into “jiggly mode” and then drags an app’s icon over a folder: the

Drag and Drop | 605

folder highlights, then flashes several times, then opens. In this way, the user can
open the folder as part of the drag, and can then continue the drag, dropping the icon
inside the opened folder.

You can use spring loading in an analogous way. Suppose there’s a button in your
interface that the user can tap to transition to a presented view controller. You can
make that button be spring loaded, so that the user, in the middle of a drag, can hover
over that button to make it perform that transition — and can then drop on some‐
thing inside the newly presented view.

To make a button be spring loaded, set its isSpringLoaded property to true, and call
its addInteraction(_:) method with a UISpringLoadedInteraction object. That
object’s initializer takes a function to be performed when the spring loaded interac‐
tion actually fires; the button’s normal control event action function, which fires in
response to the button being tapped, does not fire as a result of spring loading,
though of course you can make the spring loaded interaction function fire it:

self.button.isSpringLoaded = true
self.button.addInteraction(UISpringLoadedInteraction() { int, con in
 let vc = // some view controller
 // ... other preparations ...
 self.present(vc, animated: true)
})

In the spring loaded interaction function, the second parameter (con in the preceding
code) is a UISpringLoadedInteractionContext object providing information about
the interaction. It reports the location of the drag, and it has a state describing how
the view is currently responding. The first parameter (int) is the UISpringLoaded‐
Interaction itself.

A fuller form of initializer lets you give the UISpringLoadedInteraction object two
further properties:

An interaction behavior
A UISpringLoadedInteractionBehavior, to which you can attach two functions —
one to be called when the interaction wants permission to proceed, the other to
be called when the interaction has finished.

An interaction effect
A UISpringLoadedInteractionEffect, to which you can attach a function to be
called every time the interaction’s state changes.

Spring loading is available for buttons and button-like interface objects such as bar
button items and tab bar items, as well as for UIAlertController (Chapter 13), where
the spring loading is applied to the alert’s buttons. It is also supported by table views
and collection views, where it applies to the cells; if turned on, it can be turned off for
individual cells by delegate methods:

606 | Chapter 9: iPad Interface

• tableView(_:shouldSpringLoadRowAt:with:)

• collectionView(_:shouldSpringLoadItemAt:with:)

iPhone and Local Drag and Drop
By default, a UIDragInteraction comes into existence with its isEnabled property set
to false on an iPhone. To bring dragging to life on an iPhone, set that property to
true. Similarly, table views and collection views have a dragInteractionEnabled
property that you’ll need to set explicitly to true on an iPhone if you want dragging
to work.

There’s no iPad multitasking interface on the iPhone, so the only drag and drop your
app will be capable of will be local drag and drop, within the app itself.

On an iPad, local drag and drop is always possible, of course, but you can also restrict
a drag originating in your app to remain local to the app by implementing the drag
interaction delegate method dragInteraction(_:sessionIsRestrictedToDragging-
Application:) to return true. That situation can subsequently be detected by read‐
ing the session’s isRestrictedToDraggingApplication property.

A drag that is dropped within the same app can provide the drop destination with
more information, and more directly, than the same drag can provide to another app.
We no longer have to pipe the data asynchronously through the session by means of
a Data object; instead (or in addition), we can use these properties:

UIDragItem localObject
The drag item can carry actual data with it, or a reference to an object that can
provide the data, in its localObject property, and the drop interaction delegate
can read this value directly, in real time, on the main thread — but only in the
same app. If you try to read the localObject in an app different from the one
where the drag originated, it will be nil.

UIDragSession localContext
The drag session can maintain state, in its localContext property, and the drop
interaction delegate can read this value directly, in real time, on the main thread,
by way of the drop session’s localDragSession — but only in the same app. If
you try to read the localDragSession in an app different from the one where the
drag originated, it will be nil.

Table and collection view sourceIndexPath
If drag and drop takes place within a table view or collection view, the UITable‐
ViewDropItem or UICollectionViewDropItem has a sourceIndexPath revealing
where the drag started. If you try to read the sourceIndexPath in an app differ‐
ent from the one where the drag originated, it will be nil.

Drag and Drop | 607

Multiple Windows
New in iOS 13, your app running on an iPad with iPad multitasking can have more
than one window. The idea is that once there are two windows on a single app, the
user can arrange them with multitasking so as to see two things at once. Apple’s own
apps illustrate this: using multiple windows, you can see simultaneously two contacts
in the Contacts app, two maps in the Maps app, two tabs in Safari, and so on. Some‐
times you can also drag something from one window to another.

There are various ways to make a new window in an app that supports this feature.
The user can long press on an app’s icon, choose Show All Windows (to enter what
Apple calls App Exposé), and tap the Plus button, or drag the app’s icon from the
Dock onto its own window. Some apps also provide an internal means of generating
a new window, such as tapping a button, or dragging something to the side of the
screen. In Apple’s Maps app, a marked location can be dragged to the side of the
screen to become a new window.

Your app might wish to participate in this architecture if the user might benefit from
it. To opt in, in the Application Scene Manifest entry in your Info.plist, switch
“Enable Multiple Windows” to YES.

The Window Architecture
Here are the classes and objects involved in the window architecture:

Scene
The app’s scenes are instances of UIWindowScene, a UIScene subclass. Each
scene can be in the foreground or in the background, activated or deactivated.

Window
Each UIWindowScene owns a window. Actually, a window scene can have multi‐
ple windows (its windows), but only one of these is what you would think of as
your app’s window, holding your view controllers and your app’s interface. The
window is created with a windowScene and maintains a reference to it.

Session
Every scene has associated with it one session. This is a UISceneSession. The
scene and the session have pointers to one another. The reason for this pairing is
that a session can persist even if its scene has been disconnected in the back‐
ground to save memory. The snapshots in the app switcher interface belong to
scene sessions; there may or may not be a connected scene associated with a
snapshot.

608 | Chapter 9: iPad Interface

Delegate
Your live link to a scene is the scene’s delegate, a UIResponder adopting the
UIWindowSceneDelegate protocol. In the app templates, this is an instance of
the SceneDelegate class. It gets events when the scene is connected to or discon‐
nected from its session, and when its activation or foreground state changes. In
the app templates, the scene delegate also has a window property that retains the
window.

You’re going to want to know how to get references to the pieces of that architecture.
Here are some common approaches:

From the scene delegate
All the scene delegate events come with a reference to the scene.

From the application
The shared application has references to all sessions as its openSessions, and to
all scenes that are connected to sessions as its connectedScenes, and to all win‐
dows as its windows, so you can get a needed reference from the top down.

From a view controller
A view controller has no direct reference to any part of the architecture. But it
has a view, which (if it is in the interface) has a window, which has a windowScene,
which has a session, so you can chain together a needed reference from the bot‐
tom up.

Scene Creation
At launch time and whenever a new window is created, the runtime creates these
objects in this order:

1. The scene session
2. The scene configuration
3. The window scene
4. The scene delegate
5. The window

The scene configuration is a value class (UISceneConfiguration) containing instruc‐
tions for instantiating the window scene and the scene delegate. It is the object
described in the Info.plist by the “Scene Configuration” entry in the “Application
Scene Manifest.” This is an array of “Application Session Role” entries, each of which
is a dictionary uniting a “Configuration Name” and a “Delegate Class Name” (the
name of the class that is to be instantiated as the scene delegate), along with an
optional “Storyboard Name.” (You can also include the “Class Name” if you want the
scene’s class to be a custom subclass of UIWindowScene; but this is unlikely.)

Multiple Windows | 609

Early in the window creation process, the runtime may turn to your app delegate and
call application(_:configurationForConnecting:options:) if it exists. This is
your chance to construct or modify the scene configuration in code. Here’s an imple‐
mentation that does the same thing that the default Info.plist “Scene Configuration”
entry does; in fact, if you have this implementation, you can delete the “Scene Config‐
uration” entry from the Info.plist altogether:

func application(_ application: UIApplication,
 configurationForConnecting connectingSceneSession: UISceneSession,
 options: UIScene.ConnectionOptions) -> UISceneConfiguration {
 let config = UISceneConfiguration(
 name: "Default Configuration", sessionRole: .windowApplication)
 config.delegateClass = SceneDelegate.self
 config.storyboard = UIStoryboard(name: "Main", bundle: nil)
 return config
}

It’s perfectly possible that you’ll have just one scene configuration, described in the
Info.plist. So why might you implement application(_:configurationFor-

Connecting:options:) at all? Well, if you have several window types and your
implementation of the SceneDelegate class threatens to become overly complex, you
might use a different scene configuration to specify a different scene delegate class for
a certain window type. To know whether you need to do that on any particular call,
you’d look at the incoming options. It’s a value class that tells you why this window
is being created. I’ll talk more about that later.

When a window closes, its scene session can persist, identified by its persistent-
Identifier, in order to be reused when the window is created again. This persistence
is the basis of scene saving and restoration, which I’ll discuss later; it operates even
between runs of your app. When a window is created with a scene session that has
survived from earlier, you won’t get a call to application(_:configurationFor-
Connecting:options:) — even if the app is launching from scratch — because the
configuration for this scene session is already known.

The next important event your code receives during the window creation process is
the scene delegate’s scene(_:willConnectTo:options:). At this point, if this scene
uses a storyboard, the window has already been created and assigned to the scene del‐
egate’s window property, and it has a rootViewController instantiated from the
storyboard’s initial view controller — and if you do nothing, the window will be
made visible for you. But if the scene doesn’t use a storyboard, or if you want to sub‐
stitute a different window class or a different root view controller, this is your chance
to do so (see “App Without a Storyboard” on page 6).

610 | Chapter 9: iPad Interface

Window Creation and Closing
If the user asks directly within your app to create a new window — by tapping a New
Window button in your interface, for instance — you can call this UIApplication
method to create the window:

• requestSceneSessionActivation(_:userActivity:options:errorHandler:)

If the first parameter (the session) is nil, a new window is created.

The most important parameter is the userActivity. This is an NSUserActivity object
that will arrive into the options parameter of application(_:configurationFor-
Connecting:options:) and scene(_:willConnectTo:options:), in that parameter’s
userActivities property. Your code will examine this to learn what sort of window
this is to be in order to configure things appropriately. So the NSUserActivity object
is a kind of message to yourself. By setting its activityType and its userInfo (a dic‐
tionary), you can encode the needed information into that message.

Suppose my app’s root view controller allows the user to display any of the three Pep
Boys, and has a button the user can tap to open a new window for editing the current
Pep Boy (whatever “editing” may mean for this app). Clearly the NSUserActivity
object needs to say which Pep Boy is current. Let’s say that this information is stored
in an instance property, self.pepName. Here’s a possible implementation:

let opts = UIScene.ActivationRequestOptions()
opts.requestingScene = self.view.window?.windowScene
let act = NSUserActivity(activityType:
 PepEditorViewController.newEditorActivityType)
let key = PepEditorViewController.whichPepBoyWeAreEditing
act.userInfo = [key: self.pepName]
UIApplication.shared.requestSceneSessionActivation(
 nil, userActivity: act, options: opts, errorHandler: nil)

So now there are two reasons why a new window might be created in my app, and my
scene(_:willConnectTo:options:) needs to behave differently depending on why
this window is being created. On the one hand, we might be launching, or the user
may have requested a new window from the App Exposé interface; in that case, I
should just allow my window to be populated with the normal root view controller.
On the other hand, the user may have tapped the button asking to edit the current
Pep Boy; in that case, I should instantiate the editing view controller, populate it with
the information about what Pep Boy to display, and set it as the window’s root view
controller.

And how will I distinguish those two cases? By looking for the NSUserActivity that I
provided in my call to requestSceneSessionActivation:

Multiple Windows | 611

var pepName = ""
let key = PepEditorViewController.whichPepBoyWeAreEditing
let type = PepEditorViewController.newEditorActivityType
if let act = connectionOptions.userActivities.first(where: {
 $0.activityType == type
}) {
 if let pep = act.userInfo?[key] as? String {
 pepName = pep
 }
}
if !pepName.isEmpty {
 let s = scene.session.configuration.storyboard!
 let peped = s.instantiateViewController(identifier: "pepEditor")
 as! PepEditorViewController
 peped.pepName = pepName
 self.window?.rootViewController = peped
}
// ... and otherwise, do nothing ...

Subsequently, PepEditorViewController’s viewDidLoad comes along and configures
the actual interface based on which Pep Boy it finds in its pepName property.

Closing a window is even simpler. You call this UIApplication method:

• requestSceneSessionDestruction(_:options:errorHandler:)

The options should specify the animation as the window vanishes. Your choices are
(UIWindowScene.DismissalAnimation):

• .standard

• .commit (the user was asked whether to save something, and said yes)
• .decline (the user was asked whether to save something, and said no)

Here’s an example of a Close Window button implementation:

guard let session = self.view.window?.windowScene?.session else {return}
let opts = UIWindowSceneDestructionRequestOptions()
opts.windowDismissalAnimation = .standard
UIApplication.shared.requestSceneSessionDestruction(
 session, options: opts, errorHandler: nil)

State Saving and Restoration
While a window session persists, its scene might be disconnected and destroyed in
the background. When the user taps that window session’s snapshot in the app
switcher, a new window will be created, and you’ll need to recreate the entire view
controller hierarchy and state to populate it.

For this purpose, a session maintains a stateRestorationActivity property, which
is an NSUserActivity. You are supposed to use this for state saving and restoration:

612 | Chapter 9: iPad Interface

State saving
When the scene is backgrounded, the scene delegate is asked what the value of
the stateRestorationActivity property should be. Your job is to supply an
NSUserActivity populated with all the information needed later to restore state
for this scene’s window.

State restoration
When the same session recreates its window and your scene delegate’s
scene(_:willConnectTo:options:) is called, the session gives back this NSUser‐
Activity in its stateRestorationActivity property. (This works even if the app
was completely terminated in the background.) Your job is to extract the
NSUserActivity and recreate the window’s contents.

Unfortunately, Apple provides very little guidance on how to perform these tasks. I’ll
describe a strategy that might be useful.

How state is saved
An NSUserActivity works in a special way with a UIResponder. A UIResponder has a
userActivity property. When a UIResponder’s userActivity actually holds an
NSUserActivity, that NSUserActivity is “saved” automatically as needed by the run‐
time, by calling the responder’s implementation of updateUserActivityState(_:),
which can write into the NSUserActivity’s userInfo. If multiple responders share the
same NSUserActivity instance, they all get an opportunity to write into the same
NSUserActivity’s userInfo. The state-saving mechanism takes advantage of this
architecture:

• A UIScene, by virtue of being a UIResponder, has a userActivity property,
which can hold an NSUserActivity and cause it to persist for the lifetime of the
scene.

• From time to time, and especially when the scene goes into the background, the
scene delegate method stateRestorationActivity(for:) is called. It should
simply return the scene’s userActivity.

• When stateRestorationActivity(for:) returns an NSUserActivity, all res‐
ponders that are holding that NSUserActivity in their userActivity property are
automatically sent an updateUserActivityState(_:) event with that NSUser‐
Activity as the parameter, and can contribute to its userInfo.

• The session will then keep that NSUserActivity as its expression of saved state,
and will supply it in its stateRestorationActivity property at restoration time.

An implementation might look like this. The scene delegate either creates the scene’s
userActivity or passes the received restoration activity into it, and returns that as its
own user activity:

Multiple Windows | 613

func scene(_ scene: UIScene, willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 guard let scene = scene as? UIWindowScene else { return }
 scene.userActivity =
 session.stateRestorationActivity ??
 NSUserActivity(activityType: "com.neuburg.mw.restoration")
}
func stateRestorationActivity(for scene: UIScene) -> NSUserActivity? {
 return scene.userActivity
}

Every view controller should use its own viewDidAppear(_:) to share that user activ‐
ity object. That way, its own updateUserActivityState(_:) will be called automati‐
cally when we go into the background, and it has a chance to contribute to the global
pool of the userInfo:

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 self.userActivity = self.view.window?.windowScene?.userActivity
}
// called automatically at saving time
override func updateUserActivityState(_ activity: NSUserActivity) {
 super.updateUserActivityState(activity)
 // gather info into `info`
 activity.addUserInfoEntries(from: info)
}

That’s all! If every view controller does that, then every view controller that is alive at
the time we go into background gets a chance to contribute to the user info of the
shared user activity object, and so every view controller’s state can be saved. Later,
that same user activity object will return if the window needs to be recreated.

How to restore state
Suppose now that the window does later need to be recreated. The scene delegate
observes that an NSUserActivity object is present in the session’s stateRestoration-
Activity. Now what?

I’ve devised a strategy that mimics the state saving mechanism in reverse. The run‐
time gives us no help with this so we have to do everything ourselves:

• The scene delegate should copy the userInfo out of the session’s state-
RestorationActivity immediately. That’s because the userInfo may soon be
deleted through subsequent calls to updateUserActivityState.

• Every view controller should have a property to hold the restoration userInfo
dictionary. Let’s call it restorationInfo, typed as [AnyHashable:Any]?.

• The scene delegate is responsible for assigning the userInfo dictionary into the
root view controller’s restorationInfo property. The root view controller is

614 | Chapter 9: iPad Interface

then responsible for recreating its child view controller if it has one (it will know
whether to do this by looking in the restorationInfo), and for assigning the
same dictionary into its restorationInfo property — and so on, for every view
controller that needs to be restored. Each view controller’s restorationInfo is
set before its own viewDidLoad is called, so it can proceed to configure itself and
then create the next view controller in the chain if there is one.

• In its own viewDidAppear, every view controller should set its own restoration-
Info back to nil, to ensure that it doesn’t attempt to “restore” any subsequent
view controllers that it may create.

Here’s a simple example. Our root view controller can display any of the three Pep
Boys in a child UIPageViewController, and the user can change which Pep Boy is
being displayed. (This is in fact the same app described in “Container View Control‐
lers” on page 375.) Now let’s say we go into the background. We need to record
which Pep Boy is being displayed, so that the same Pep Boy can be displayed if the
window is destroyed and has to be recreated later. As I explained earlier, we can
ensure that by our implementation of updateUserActivityState:

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 self.userActivity = self.view.window?.windowScene?.userActivity
 self.restorationInfo = nil
}
override func updateUserActivityState(_ activity: NSUserActivity) {
 super.updateUserActivityState(activity)
 let boy = // string representing currently showing Pep Boy
 let key = Self.currentPepBoyRestorationKey
 activity.addUserInfoEntries(from: [key:boy])
}

We go into the background, the scene gets disconnected, and later the user asks to see
this scene again. The window is created, and the scene delegate’s scene(_:will-
ConnectTo:options:) is called; it sets the root view controller’s restorationInfo:

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 guard let scene = scene as? UIWindowScene else { return }
 scene.userActivity =
 session.stateRestorationActivity ??
 NSUserActivity(activityType: "com.neuburg.my.restoration")
 if let rvc = window?.rootViewController as? RootViewController {
 rvc.restorationInfo = scene.userActivity?.userInfo // *
 }
}

The root view controller’s viewDidLoad is now called. It sees that it has a
restorationInfo, so it configures itself based on that:

Multiple Windows | 615

override func viewDidLoad() {
 super.viewDidLoad()
 let info = self.restorationInfo
 var page = Pep(pepBoy: self.pep[0]) // default
 let key = Self.currentPepBoyRestorationKey
 if let boy = info?[key] as? String {
 page = Pep(pepBoy:boy)
 }
 // ... display the Pep view controller as a child ...
}

The story becomes longer if there are more view controllers in the hierarchy, but it
doesn’t become more complicated. It’s just a matter of every view controller storing
sufficient information, in the common NSUserActivity object’s userInfo, so that it
can restore itself later if necessary.

Further Multiple Window Considerations
Adopting multiple windows is not simple. Here are some further considerations to be
aware of (and there are many other details you’ll want to look into on your own).

Drag and drop
Drag and drop works just as described earlier in this chapter, except for one thing:
what if you want the user to be able to drag something to the edge of the screen in
order to create a new window? In that case, call registerObject(_:visibility:) on
the UIDragItem’s NSItemProvider, with the first parameter being (you guess it) an
NSUserActivity. This NSUserActivity’s activityType must be listed in your Info.plist
under the NSUserActivityTypes key; that allows the drag to pass out of your app
into the system and back into your app as a call to create a new window. In the call to
your scene delegate’s scene(_:willConnectTo:options:), the same NSUserActivity
will arrive in the userActivities of the options parameter, and you can detect this
and configure the new window, just as I described earlier.

Data sharing
The relationship between your data and your interface becomes more complicated
when there are multiple windows, because more than one window might hold an
instance of the very same view controller. No individual view controller instance can
be used as the “source of truth” for the app’s data. Instead, the data will need to be
stored in some persistent central location. When the user (or some other outside
force) makes a change in the data, you’ll need to send that information up to the per‐
sistent central data model, and the central data model will then need to send that
information back down (probably by means of a notification or a similar publish-
and-subscribe mechanism) to all instances of that view controller, each of which will
update its view’s interface accordingly.

616 | Chapter 9: iPad Interface

The session has a userInfo object of its own. You can use this for any purpose you
like, including storing data to be preserved in case the window is opened later. It can
also be used as a global repository of data among view controllers within this win‐
dow, as an alternative to the app’s user defaults.

If a scene is in the foreground when its interface is updated, the interface will change
before the user’s eyes. If the scene is in the background, the user can’t see it, but you
still might want to change the interface so that the app switcher snapshot is updated.
To do so, call the UIApplication method requestSceneSessionRefresh(_:).

Memory management
When a scene is about to be disconnected from its session, and the window and scene
delegate are about to be released, the scene delegate is sent sceneDidDisconnect(_:).
If there is data to be preserved, this is a key moment to preserve it. If the scene was
maintaining any scratch files or other independently persistent objects, this is a key
moment to delete them.

A scene session has a persistentIdentifier, a unique string that persists for the
lifetime of the session, even if the app is terminated and relaunched, even across
restarts of the device. This can help you associate saved data with the session to which
it belongs.

Multiple Windows | 617

CHAPTER 10

Text

Drawing text into your app’s interface is one of the most complex and powerful
things that iOS does for you. But iOS also shields you from much of that complexity;
all you need is some text to draw, and possibly an interface object to draw it for you.

Text to appear in your app’s interface will be an NSString (bridged from Swift String)
or an NSAttributedString. NSAttributedString adds text styling to an NSString,
including runs of different character styles, along with paragraph-level features such
as alignment, line spacing, and margins.

To make your NSString or NSAttributedString appear in the interface, you can hand
it to an interface object that knows how to draw it, or you can draw it into a graphics
context yourself:

Text-drawing interface objects
Interface objects that know how to draw an NSString or NSAttributedString are:

UILabel
Displays text, possibly consisting of multiple lines; neither scrollable nor
editable.

UITextField
Displays a single line of editable text.

UITextView
Displays multiline text; can be scrollable and editable.

Self-drawing text
Both NSString and NSAttributedString have methods for drawing themselves
into any graphics context.

619

Deep under the hood, all text drawing is performed through a low-level technology
with a C API called Core Text. At a higher level, iOS provides Text Kit, a middle-level
technology lying on top of Core Text. UITextView is largely just a lightweight wrap‐
per around Text Kit, and Text Kit can also draw directly into a graphics context. By
working with Text Kit, you can readily do all sorts of useful text-drawing tricks
without having to sweat your way through Core Text.

(Another way of drawing text is to use a web view, a scrollable view displaying ren‐
dered HTML. A web view can also display various additional document types, such
as PDF, RTF, and .doc. Web views draw their text using a somewhat different tech‐
nology, and are discussed in Chapter 11. For display of PDFs, see also the discussion
of PDF Kit in Chapter 22.)

Fonts and Font Descriptors
There are two ways of specifying a font: as a UIFont suitable for use with strings,
attributed strings, and UIKit interface objects; or as a CTFont suitable for Core Text.
You’re unlikely to use CTFont; I’ll focus exclusively on UIFont.

To describe a UIFont in terms of its features, and to perform transformations
between fonts, you use UIFontDescriptor; you can convert both ways between
UIFont and UIFontDescriptor. The Core Text analog is CTFontDescriptor, which is
toll-free bridged to UIFontDescriptor so that you can cast between them (and this
bridging can be used to convert between UIFont and CTFont).

Fonts
A font (UIFont) is a simple object. You specify a font by its name and size by calling
the UIFont initializer init(name:size:), and you can transform a font to the same
font in a different size by calling the withSize(_:) instance method. UIFont also
provides some properties for learning a font’s various metrics, such as its lineHeight
and capHeight.

To ask for a font by name, you have to know the font’s name. Every font variant
(bold, italic, and so on) counts as a different font, and font variants are clumped into
families. UIFont has class methods that tell you the names of the families and the
names of the fonts within them. To learn, in the console, the name of every built-in
font, you would say:

UIFont.familyNames.forEach {
 UIFont.fontNames(forFamilyName:$0).forEach {print($0)}}

When calling init(name:size:), you can specify a font by its family name or by its
font name (technically, its PostScript name). For example, "Avenir" is a family name;
the plain font within that family is "Avenir-Book". Either of those is legal as the

620 | Chapter 10: Text

name: argument. The initializer is failable, so you’ll know if you’ve specified the font
incorrectly — you’ll get nil.

System font
The system font, used by default for things like UILabel text and UIButton titles, can
be obtained by calling the UIFont class method systemFont(ofSize:weight:). A
UIFont class property such as buttonFontSize will give you the standard size. Possi‐
ble weights, in order from lightest to heaviest, are (UIFont.Weight):

• .ultraLight

• .thin

• .light

• .regular

• .medium

• .semibold

• .bold

• .heavy

• .black

Starting in iOS 9, the system font (which was formerly Helvetica) is San Francisco,
and comes in all of those weights, except at sizes smaller than 20 points, where the
extreme ultralight, thin, and black are missing. A variant of the system font whose
digits are monospaced can be obtained by calling monospacedDigitSystemFont(of-
Size:weight:). I’ll talk later about how to obtain additional variants.

Dynamic type
If you have text for the user to read or edit — in a UILabel, a UITextField, or a
UITextView (all discussed later in this chapter) — you are encouraged to take advan‐
tage of dynamic type. If a font is linked to dynamic type, then:

Text size is up to the user
The user specifies a size preference using a slider in the Settings app. Additional
larger sizes may be enabled under Accessibility. Possible sizes (UIContentSize‐
Category) are:

• .unspecified

• .extraSmall

• .small

• .medium

Fonts and Font Descriptors | 621

• .large

• .extraLarge

• .extraExtraLarge

• .extraExtraExtraLarge

• .accessibilityMedium

• .accessibilityLarge

• .accessibilityExtraLarge

• .accessibilityExtraExtraLarge

• .accessibilityExtraExtraExtraLarge

You specify a role
You specify a dynamic type font in terms of the role it is to play in your layout.
The size and weight are determined for you by the system, based on the user’s
text size preference. Possible roles that you can specify (UIFont.TextStyle) are:

• .largeTitle

• .title1

• .title2

• .title3

• .headline

• .subheadline

• .body

• .callout

• .footnote

• .caption1

• .caption2

You’ll probably want to experiment with specifying various roles for your indi‐
vidual pieces of text, to see which looks appropriate in context. (In Figure 6-1,
the headlines are .subheadline and the blurbs are .caption1.)

When dynamic type was first introduced, in iOS 7, it wasn’t actually dynamic. The
user could change the preferred text size, but responding to that change, by refresh‐
ing the fonts of your interface objects, was left up to you. But starting in iOS 10, you
can set the adjustsFontForContentSizeCategory property of your UILabel, UIText‐
Field, or UITextView to true (in code or in the nib editor); if this interface object

622 | Chapter 10: Text

uses dynamic type, it will then respond automatically if the user changes the text size
preference in the Settings app.

One way to make your text use dynamic type is to specify a dynamic type font sup‐
plied by the system. To do that in the nib editor, summon the font popover and, in
the Font pop-up menu, choose one of the Text Style menu items. To do the same
thing in code, call the UIFont class method preferredFont(forTextStyle:):

self.label.font = UIFont.preferredFont(forTextStyle: .headline)
self.label.adjustsFontForContentSizeCategory = true

The font, in that case, is effectively the system font in another guise. But you might
prefer to use some other font. Starting in iOS 11, there’s an easy way to do that:
instantiate a UIFontMetrics object by calling init(forTextStyle:) (or use the
default class property, which corresponds to the .body text style); then call scaled-
Font(for:) with your base font. To illustrate, I’ll convert an existing label to respond
to the user’s dynamic text size preference, even though its font is not the system font:

let f = self.label2.font
self.label2.font = UIFontMetrics(forTextStyle: .caption1).scaledFont(for: f)
self.label2.adjustsFontForContentSizeCategory = true

Adoption of dynamic type means that your interface must now respond to the possi‐
bility that text will grow and shrink, with interface objects changing size in response.
Obviously, autolayout can be a big help here (Chapter 1). A standard vertical spacing
constraint between labels, from the upper label’s last baseline to the lower label’s first
baseline, will respond to dynamic text size preference changes. You can configure this
in the nib editor, or in code by calling constraint(equalToSystemSpacing-
Below:multiplier:). If the distance you want is not identically the standard system
spacing, set the constraint’s multiplier.

Sometimes, more radical adjustments of the overall layout may be needed, especially
when we get into the five very large .accessibility text sizes. You’ll have to respond
to text size changes in code in order to make those adjustments. To do so, implement
traitCollectionDidChange(_:). The text size preference is reported through the
trait collection’s preferredContentSizeCategory. UIContentSizeCategory overloads
the comparison operators so that you can determine easily whether one size is larger
than another; also, the isAccessibilityCategory property tells you whether this size
is one of the .accessibility text sizes. To help you scale actual numeric values, the
UIFontMetrics instance method scaledValue(for:) adjusts a CGFloat with respect
to the user’s current text size preferences.

To test your app’s response to changes in the user’s dynamic text size preference,
click the Environment Overrides button in the project window’s debug bar to
summon a popover where you can use the Text switch and slider. This feature is
new in Xcode 11 and iOS 13.

Fonts and Font Descriptors | 623

Figure 10-1. A dynamic text label with a symbol image

Symbol Images and Text
The built-in symbol images, new in iOS 13 (Chapter 2), are intended for use in con‐
junction with text. That is why a symbol configuration (UIImage.SymbolConfigura‐
tion) is constructed in terms of text features such as font, weight, and point size. If
you derive the symbol configuration from the characteristics of the text with which it
is to be associated, it will harmonize with that text.

Symbol configurations also work with dynamic text. Set up the symbol configuration
in terms of a dynamic text style, and the symbol image will respond automatically
when the user changes the text size preference in the Settings app, changing its own
size just like text.

A symbol image configuration also has a scale: .default, .small, .medium,
or .large. This is so that the image size can be adjusted relative to any associated text
without breaking the harmonization between them.

A typical arrangement is that the symbol image is in a UIImageView while the text is
in a label. If you have configured them so that their their size and weight harmonize,
they will also align correctly with one another if they are aligned by their vertical cen‐
ters. (If you have a multiline label and you prefer that the image should be aligned
with the first line of the label, align them by their first baselines instead.)

Figure 10-1 demonstrates how an image view and label can resize themselves
together in response to a change in the user’s text size preference. The label’s font is
the .headline text style. The image view displays a symbol image, and its symbol
configuration has the .headline text style with a .large scale for emphasis. The label
and image view are aligned by their horizontal centers. Thanks to autolayout, the
image view changes size in response to the image’s size while the label maintains a
fixed horizontal spacing from it. No code was involved in preparing this example;
everything was configured in the nib editor.

Font Descriptors
A font descriptor (UIFontDescriptor, toll-free bridged to Core Text’s CTFont‐
Descriptor) describes a font in terms of its features. You can then use those features

624 | Chapter 10: Text

Figure 10-2. A dynamic type font with an italic variant

to convert between font descriptors, and ultimately to derive a new font. Given a font
descriptor desc, you can ask for a corresponding italic font descriptor like this:

let desc2 = desc.withSymbolicTraits(.traitItalic)

If desc was originally a descriptor for Avenir-Book 15, desc2 is now a descriptor for
Avenir-BookOblique 15. However, it is not the font Avenir-BookOblique 15; a font
descriptor is not a font. The question is how to get from a font to a corresponding
font descriptor, and vice versa:

To convert from a font to a font descriptor
Ask for the font’s fontDescriptor property. Alternatively, you can obtain a font
descriptor directly just as you would obtain a font, by calling its initializer
init(name:size:) or its class method preferredFontDescriptor(withText-
Style:).

To convert from a font descriptor to a font
Call the UIFont initializer init(descriptor:size:), typically supplying a size of
0 to signify that the size should not change. This can be slow, because the entire
font collection must be searched; so don’t do it in speed-sensitive situations.

This will be a common pattern in your code, as you convert from font to font
descriptor to perform some transformation, and then back to font:

let f = UIFont(name: "Avenir", size: 15)!
let desc = f.fontDescriptor
let desc2 = desc.withSymbolicTraits(.traitItalic)
let f2 = UIFont(descriptor: desc2!, size: 0) // Avenir-BookOblique 15

The same technique is useful for obtaining styled variants of the dynamic type fonts.
Here I prepare to form an NSAttributedString whose font is mostly UIFont.Text-
Style.body, but with one italicized word (Figure 10-2):

let body = UIFontDescriptor.preferredFontDescriptor(withTextStyle:.body)
let emphasis = body.withSymbolicTraits(.traitItalic)!
let fbody = UIFont(descriptor: body, size: 0)
let femphasis = UIFont(descriptor: emphasis, size: 0)

New in iOS 13, using the same technique, you can obtain alternative variants of the
system font. These are referred to as system designs. The designs are (UIFontDescrip‐
tor.SystemDesign):

• .default

• .rounded

Fonts and Font Descriptors | 625

Figure 10-3. A dynamic type font with a serif design

• .serif

• .monospaced

To access a system design font, start with a dynamic type font descriptor and call
withDesign(_:). To illustrate, I’ll modify the previous code; now my fonts have a
serif, because they come from the .serif system design (Figure 10-3):

var body = UIFontDescriptor.preferredFontDescriptor(withTextStyle:.body)
if let desc = body.withDesign(.serif) { // *
 body = desc
}
let emphasis = body.withSymbolicTraits(.traitItalic)!
let fbody = UIFont(descriptor: body, size: 0)
let femphasis = UIFont(descriptor: emphasis, size: 0)

Exploring font features
You can explore a font’s features by way of a UIFontDescriptor. Some features are
available directly as properties, such as postscriptName and symbolicTraits. The
symbolicTraits is expressed as a bitmask:

let f = UIFont(name: "GillSans-BoldItalic", size: 20)!
let d = f.fontDescriptor
let traits = d.symbolicTraits
let isItalic = traits.contains(.traitItalic) // true
let isBold = traits.contains(.traitBold) // true

For other types of information, call object(forKey:) with a UIFont‐
Descriptor.AttributeName as the key:

let f = UIFont(name: "GillSans-BoldItalic", size: 20)!
let d = f.fontDescriptor
let vis = d.object(forKey:.visibleName)!
// Gill Sans Bold Italic

Accessing typographical variants
Another use of font descriptors is to access typographical variants of a font. To do so,
you construct a dictionary whose keys (UIFontDescriptor.FeatureKey) specify two
pieces of information: the feature type (.featureIdentifier) and the feature selector
(.typeIdentifer). I’ll obtain a variant of the Didot font that draws its minuscules as
small caps (Figure 10-4):

626 | Chapter 10: Text

Figure 10-4. A small caps font variant

let desc = UIFontDescriptor(name:"Didot", size:18)
let d = [
 UIFontDescriptor.FeatureKey.featureIdentifier: kLowerCaseType,
 UIFontDescriptor.FeatureKey.typeIdentifier: kLowerCaseSmallCapsSelector
]
let desc2 = desc.addingAttributes([.featureSettings:[d]])
let f = UIFont(descriptor: desc2, size: 0)

(Typographical identifier constants such as kLowerCaseSmallCapsSelector come
from the Core Text header SFNTLayoutTypes.h.)

The system (and dynamic type) font can also portray small caps; in fact, it can do this
in two different ways: in addition to kLowerCaseType and kLowerCaseSmallCaps-
Selector, where lowercase characters are shown as small caps, it implements kUpper-
CaseType and kUpperCaseSmallCapsSelector, where uppercase characters are
shown as small caps.

Another system (and dynamic type) font feature is an alternative set of glyph forms
designed for legibility, with a type of kStylisticAlternativesType. If the selector is
kStylisticAltOneOnSelector, the 6 and 9 glyphs have straight tails. If the selector is
kStylisticAltSixOnSelector, certain letters also have special distinguishing shapes,
such as the lowercase “l” (ell) which has a curved bottom, to distinguish it from capi‐
tal “I” which has a top and bottom bar.

How are you supposed to discover what typographical variants a particular font sup‐
ports? In code, you have to drop down to the level of Core Text:

let desc = UIFontDescriptor(name: "Didot", size: 20) as CTFontDescriptor
let f = CTFontCreateWithFontDescriptor(desc,0,nil)
let arr = CTFontCopyFeatures(f)

The resulting array of dictionaries includes entries [CTFeatureTypeIdentifier:37],
which is kLowerCaseType, and [CTFeatureSelectorIdentifier:1], which is kLower-
CaseSmallCapsSelector.

A more practical (and fun) approach to exploring a font’s typographical variants is to
obtain a copy of the font on the desktop, install it, launch TextEdit, choose Format →
Font → Show Fonts, select the font, and open the Typography panel, exposing the
font’s various features. Now you can experiment on selected text.

Fonts and Font Descriptors | 627

Choosing a Font
New in iOS 13, there’s a standard interface for letting the user pick a font. This is the
UIFontPickerViewController. To use it, create a configuration (UIFontPickerView‐
Controller.Configuration) and set its properties as desired, and initialize the picker
with the configuration. Then assign the picker a delegate and present the picker as a
presented view controller.

Configuration properties are:

displayUsingSystemFont

The default is false, meaning that each font name is shown in that font. If true,
all font names are shown in a system font.

includeFaces

The default is false, meaning that only font families are listed. If true, a listed
font family comprising multiple fonts can reveal the names of those fonts, and
the user can choose a specific font.

filteredTraits

Symbolic traits to which the listed fonts should be limited. This is a bitmask, so
you can combine multiple font family classes and features. Only fonts matching
one or more of those traits will be listed.

filteredLanguagesPredicate

A language predicate formed with the class method filterPredicate(for-
FilteredLanguages:). Only fonts appropriate to that language will be listed.

The delegate (UIFontPickerViewControllerDelegate) can implement two methods:

fontPickerViewControllerDidCancel(_:)

Called when the user cancels using the Cancel button (but not when the user
manually swipes the presented view down to dismiss it).

fontPickerViewControllerDidPickFont(_:)

The user has tapped on a font listing and the picker has been dismissed. You
should ask the picker for its selectedFontDescriptor. This might be the
descriptor for a font family or (if the configuration’s includeFaces is true) for a
font name.

Adding Fonts
You are not limited to the fonts that are built in by default as part of the system.
There are ways to obtain additional fonts.

628 | Chapter 10: Text

Figure 10-5. Embedding a font in an app bundle

Fonts in the app bundle
A font included at the top level of your app bundle will be loaded at launch time and
available to your app if your Info.plist lists it under the “Fonts provided by applica‐
tion” key (UIAppFonts).

Figure 10-5 shows a font included in the app bundle, along with the Info.plist entry
that lists it. Observe that what you’re listing here is the name of the font file.

Downloadable Apple fonts
All macOS fonts are available for download from Apple’s servers; you can obtain and
start using one while your app is running.

To download a font in real time, you’ll have to specify the font as a font descriptor
and drop down to the level of Core Text (import CoreText) to call CTFont-
DescriptorMatchFontDescriptorsWithProgressHandler. It takes a function which
is called repeatedly at every stage of the download process; it will be called on a back‐
ground thread, so if you want to use the downloaded font immediately in the inter‐
face, you must step out to the main thread (see Chapter 24).

I’ll attempt to use Nanum Brush Script as my UILabel’s font; if it isn’t installed, I’ll
attempt to download it and then use it as my UILabel’s font. I’ve inserted a lot of
unnecessary logging to mark the stages of the download process:

let name = "NanumBrush"
let size : CGFloat = 24
let f : UIFont! = UIFont(name:name, size:size)
if f != nil {
 self.lab.font = f
 print("already installed")
 return
}
print("attempting to download font")
let desc = UIFontDescriptor(name:name, size:size)
CTFontDescriptorMatchFontDescriptorsWithProgressHandler(
 [desc] as CFArray, nil, { state, prog in
 switch state {
 case .didBegin:
 NSLog("%@", "matching did begin")

Fonts and Font Descriptors | 629

 case .willBeginDownloading:
 NSLog("%@", "downloading will begin")
 case .downloading:
 let d = prog as NSDictionary
 let key = kCTFontDescriptorMatchingPercentage
 let cur = d[key]
 if let cur = cur as? NSNumber {
 NSLog("progress: %@%%", cur)
 }
 case .didFinishDownloading:
 NSLog("%@", "downloading did finish")
 case .didFailWithError:
 NSLog("%@", "downloading failed")
 case .didFinish:
 NSLog("%@", "matching did finish")
 DispatchQueue.main.async {
 let f : UIFont! = UIFont(name:name, size:size)
 if f != nil {
 NSLog("%@", "got the font!")
 self.lab.font = f
 }
 }
 default:break
 }
 return true
})

Installed fonts
The preceding ways of adding fonts make those fonts available within your app but
nowhere else. New in iOS 13, apps can install fonts to be made available system-wide.
Apple calls an app that does this a font provider app, and it calls fonts provided in this
way installed fonts (as opposed to the built-in fonts that come with the system). A
font provider app can include its fonts at the top level of the app bundle or in the
asset catalog as on-demand resources (see “On-Demand Resources” on page 1081).

To act as a font provider requires a special entitlement; in the Signing & Capabilities
tab of the target editor, choose the Fonts capability and check “Install Fonts.” The
fonts must be approved by Apple during the app review process. The user has the
final say, so an attempt to install a font will cause the system to put up a dialog asking
for the user’s approval, and fonts installed by a font provider app can be deleted in
the Settings app (under General → Fonts); if the user deletes a font provider app, all
the fonts it provides are deleted as well.

Just as installing a font system-wide is a special privilege, so is using a font installed in
this way. An app that wants access to fonts installed by a font provider app requires
the same entitlement as a font provider, except that you check “Use Installed Fonts.”
An app that uses installed fonts needs to be aware that the user can install or remove
fonts at any time; a notification lets you know when the list has changed.

630 | Chapter 10: Text

Installing fonts and using installed fonts in code involves talking to Core Text
(import CoreText) using a C API. As a simple demonstration, I’ll use the app from
the start of this section, where I included the SourceCodePro font in my app bundle.
I’ll act as a font provider and attempt to install that font for use system-wide:

if let url = Bundle.main.url(
 forResource: "SourceCodePro-Regular", withExtension: "ttf") {
 let urls = [url] as CFArray
 CTFontManagerRegisterFontURLs(urls, .persistent, true) { errs, ok in
 // ... user is asked for permission to install ...
 return true
 }
}

To act as a user of that font, I can also use a C API; if I know the descriptor of the
font I want to use, I can call CTFontManagerRequestFonts. Moreover, because my
app has the “Use Installed Fonts” entitlement, UIFontPickerViewController will
include installed fonts in its list, and if the user picks one, that font will be available to
my app immediately without any further action on my part.

For more information, look at the CTFontManager.h header (and Apple has a
WWDC 2019 video on this topic).

Attributed Strings
Styled text, possibly consisting of multiple style runs with different font, size, color,
and other text features in different parts of the text, is expressed as an attributed
string (NSAttributedString and its mutable subclass, NSMutableAttributedString).
An NSAttributedString consists of an NSString (its string) plus the attributes,
applied in ranges. If the string “one red word” is blue except for the word “red” which
is red, and if these are the only changes over the course of the string, then there are
three distinct style runs — everything before the word “red,” the word “red” itself,
and everything after the word “red.” Nevertheless, we can apply the attributes in two
steps, first making the whole string blue, and then making the word “red” red, just as
you would expect.

Attributed String Attributes
The attributes applied to a range of an attributed string are described in dictionaries.
Each possible attribute has a predefined name, used as a key in these dictionaries;
here are some of the most important attributes (NSAttributedString.Key):

.font

A UIFont. The default is Helvetica 12 (not San Francisco, the system font).

Attributed Strings | 631

.foregroundColor

The text color, a UIColor.

.backgroundColor

The color behind the text, a UIColor. You could use this to highlight a word.

.ligature

An NSNumber wrapping 0 or 1, expressing whether or not you want ligatures
used. Some fonts, such as Didot, have ligatures that are on by default.

.kern

An NSNumber wrapping the floating-point amount of kerning. A negative value
brings a glyph closer to the following glyph; a positive value adds space between
them.

.strikethroughStyle

.underlineStyle

An NSNumber wrapping one of these values (NSUnderlineStyle, an option set)
describing the line weight:

• .none

• .single

• .double

• .thick

In addition, you may specify a line pattern; the line pattern settings have names
that start with pattern, such as .patternDot, .patternDash, and so on. Also,
you may specify .byWord; if you do not, then if the underline or strikethrough
range spans multiple words, the whitespace between the words will be under‐
lined or struck through.

.strikethroughColor

.underlineColor

A UIColor. If not defined, the foreground color is used.

.strokeWidth

An NSNumber wrapping a Float. The stroke width is peculiarly coded. If it’s pos‐
itive, then the text glyphs are stroked but not filled, giving an outline effect, and
the foreground color is used unless a separate stroke color is defined. If it’s nega‐
tive, then its absolute value is the width of the stroke, and the glyphs are both
filled (with the foreground color) and stroked (with the stroke color).

.strokeColor

The stroke color, a UIColor.

632 | Chapter 10: Text

.shadow

An NSShadow object. An NSShadow is just a value class, combining a shadow-
Offset, shadowColor, and shadowBlurRadius.

.textEffect

An NSAttributedString.TextEffectStyle. The only text effect style you can specify
is .letterpressStyle.

.attachment

An NSTextAttachment object. A text attachment is basically an inline image. I’ll
discuss text attachments later on.

.link

A URL. This may give the style range a default appearance, such as color and
underlining, but you can override this by adding attributes to the same style
range. In a noneditable, selectable UITextView, the link is tappable to go to the
URL (as I’ll explain later in this chapter).

.baselineOffset

.obliqueness

.expansion

An NSNumber wrapping a Float.

.paragraphStyle

An NSParagraphStyle object. This is basically just a value class, assembling text
features that apply properly to paragraphs as a whole, not merely to characters.
Here are its most important properties:

• alignment (NSTextAlignment)
▪ .left

▪ .center

▪ .right

▪ .justified

▪ .natural (left-aligned or right-aligned depending on the localization; a
right-to-left language will be right-aligned)

• lineBreakMode (NSLineBreakMode)
▪ .byWordWrapping

▪ .byCharWrapping

▪ .byClipping

▪ .byTruncatingHead

Attributed Strings | 633

▪ .byTruncatingTail

▪ .byTruncatingMiddle

• firstLineHeadIndent, headIndent (left margin), tailIndent (right margin)
• lineHeightMultiple, maximumLineHeight, minimumLineHeight
• lineSpacing

• paragraphSpacing, paragraphSpacingBefore
• hyphenationFactor (0 or 1)
• defaultTabInterval, tabStops (the tab stops are an array of NSTextTab

objects; I’ll give an example in a moment)
• allowsDefaultTighteningForTruncation (if true, permits some negative

kerning to be applied automatically to a truncating paragraph if this would
prevent truncation)

To construct an NSAttributedString, you can call init(string:attributes:) if the
entire string has the same attributes; otherwise, you’ll use its mutable subclass
NSMutableAttributedString, which lets you set attributes over a range.

To construct an NSParagraphStyle, you’ll use its mutable subclass NSMutable‐
ParagraphStyle. You should apply a paragraph style to the first character of a para‐
graph; that dictates how the whole paragraph is rendered. (Applying a paragraph
style to a character other than the first character of a paragraph can cause the
paragraph style to be ignored.)

Both NSAttributedString and NSParagraphStyle come with default values for all
attributes, so you only have to set the attributes you care about. However, Apple
says that explicitly supplying a font, foreground color, and paragraph style makes
attributed strings more efficient. Also, new in iOS 13, the default foreground
color, coloring the text black, won’t behave properly in dark mode; the adaptable
text color is .label.

Making an Attributed String
We now know enough for an example! I’ll draw my attributed strings in a disabled
(noninteractive) UITextView; its background is white, but its superview’s back‐
ground is gray, so you can see the text view’s bounds relative to the text. (Ignore the
text’s vertical positioning, which is configured independently as a feature of the text
view itself.)

First, two words of my attributed string are made extra-bold by stroking in a different
color. I start by dictating the entire string and the overall style of the text; then I apply
the special style to the two stroked words (Figure 10-6):

634 | Chapter 10: Text

Figure 10-6. An attributed string

let s1 = """
 The Gettysburg Address, as delivered on a certain occasion \
 (namely Thursday, November 19, 1863) by A. Lincoln
 """
let content = NSMutableAttributedString(string:s1, attributes:[
 .font: UIFont(name:"Arial-BoldMT", size:15)!,
 .foregroundColor: UIColor(red:0.251, green:0.000, blue:0.502, alpha:1)
])
let r = (content.string as NSString).range(of:"Gettysburg Address")
content.addAttributes([
 .strokeColor: UIColor.red,
 .strokeWidth: -2.0
], range: r)
self.tv.attributedText = content

Carrying on from the previous code, I’ll also make the whole paragraph centered and
indented from the edges of the text view. To do so, I create a paragraph style and
apply it to the first character. Note how the margins are dictated: the tailIndent is
negative, to bring the right margin leftward, and the firstLineHeadIndent must be
set separately, as the headIndent does not automatically apply to the first line
(Figure 10-7):

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
para.tailIndent = -10
para.lineBreakMode = .byWordWrapping
para.alignment = .center
para.paragraphSpacing = 15
content.addAttribute(
 .paragraphStyle,
 value:para, range:NSMakeRange(0,1))
self.tv.attributedText = content

Next, I’ll enlarge the first character of a paragraph. I assign the first character a larger
font size, I expand its width slightly, and I reduce its kerning (Figure 10-8):

Attributed Strings | 635

Figure 10-7. An attributed string with a paragraph style

Figure 10-8. An attributed string with an expanded first character

let s2 = """
 Fourscore and seven years ago, our fathers brought forth \
 upon this continent a new nation, conceived in liberty and \
 dedicated to the proposition that all men are created equal.
 """
content2 = NSMutableAttributedString(string:s2, attributes: [
 .font: UIFont(name:"HoeflerText-Black", size:16)!
])
content2.addAttributes([
 .font: UIFont(name:"HoeflerText-Black", size:24)!,
 .expansion: 0.3,
 .kern: -4
], range:NSMakeRange(0,1))
self.tv.attributedText = content2

Carrying on from the previous code, I’ll once again construct a paragraph style and
add it to the first character. My paragraph style illustrates full justification and auto‐
matic hyphenation (Figure 10-9):

content2.addAttribute(.paragraphStyle,
 value:lend { (para:NSMutableParagraphStyle) in
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 para.tailIndent = -10
 para.lineBreakMode = .byWordWrapping
 para.alignment = .justified

636 | Chapter 10: Text

Figure 10-9. An attributed string with justification and autohyphenation

Figure 10-10. A single attributed string comprising differently styled paragraphs

 para.lineHeightMultiple = 1.2
 para.hyphenationFactor = 1.0
 }, range:NSMakeRange(0,1))
self.tv.attributedText = content2

When working temporarily with a value class such as NSMutableParagraphStyle,
it feels clunky to be forced to instantiate the class and configure the instance
before using it for the one and only time. So I’ve written a little Swift generic
function, lend (see Appendix B), that lets me do all that in an anonymous func‐
tion at the point where the value class is actually used.

Now we come to the Really Amazing Part. I can make a single attributed string con‐
sisting of both paragraphs, and a single text view can portray it (Figure 10-10):

let end = content.length
content.replaceCharacters(in:NSMakeRange(end, 0), with:"\n")
content.append(content2)
self.tv.attributedText = content

Tab stops

A tab stop is an NSTextTab, a value class whose initializer lets you set its location
(points from the left edge) and alignment.

Attributed Strings | 637

Figure 10-11. Tab stops in an attributed string

The initializer also lets you include an options: dictionary whose key (NSText‐
Tab.OptionKey) is .columnTerminators, as a way of setting the tab stop’s column
terminator characters. A common use is to create a decimal tab stop, for aligning cur‐
rency values at their decimal point. You can obtain a value appropriate to a given
locale by calling NSTextTab’s class method columnTerminators(for:).

Here’s a demonstration (Figure 10-11); I have deliberately omitted the last digit from
the second currency value, to prove that the tab stop really is aligning the numbers at
their decimal points:

let s = "Onions\t$2.34\nPeppers\t$15.2\n"
let mas = NSMutableAttributedString(string:s, attributes:[
 .font:UIFont(name:"GillSans", size:15)!,
 .paragraphStyle:lend { (p:NSMutableParagraphStyle) in
 let terms = NSTextTab.columnTerminators(for:Locale.current)
 let tab = NSTextTab(textAlignment:.right, location:170,
 options:[.columnTerminators:terms])
 p.tabStops = [tab]
 p.firstLineHeadIndent = 20
 }
])
self.tv.attributedText = mas

The tabStops array can also be modified by calling addTabStop(_:) or removeTab-
Stop(_:) on the paragraph style. Note that a paragraph style comes with some
default tab stops.

Text attachments
A text attachment is basically an inline image. To make one, you need an instance of
NSTextAttachment initialized with image data; the easiest way is to start with a
UIImage and assign it directly to the NSTextAttachment’s image property. You must
also give the NSTextAttachment a nonzero bounds; the image will be scaled to the
size of the bounds you provide, and a .zero origin places the image on the text
baseline.

A text attachment is attached to an NSAttributedString using the .attachment key;
the text attachment itself is the value. The range to which this attribute is applied
must consist of a special nonprinting character whose UTF-16 codepoint is NSText-
Attachment.character (0xFFFC). The simplest way to arrange that is to call the
NSAttributedString initializer init(attachment:); you hand it an attachment, and it

638 | Chapter 10: Text

Figure 10-12. Text attachments in an attributed string

hands you an attributed string consisting of the NSTextAttachment character with
its .attachment attribute set to that text attachment. You can then insert this attrib‐
uted string into your own attributed string at the point where you want the image to
appear.

To illustrate, I’ll add an image of onions and an image of peppers just after the words
“Onions” and “Peppers” in the attributed string (mas) that I created in the previous
example (Figure 10-12):

let onions = // ... get image ...
let peppers = // ... get image ...
let onionatt = NSTextAttachment()
onionatt.image = onions
onionatt.bounds = CGRect(0,-5,onions.size.width,onions.size.height)
let onionattchar = NSAttributedString(attachment:onionatt)
let pepperatt = NSTextAttachment()
pepperatt.image = peppers
pepperatt.bounds = CGRect(0,-1,peppers.size.width,peppers.size.height)
let pepperattchar = NSAttributedString(attachment:pepperatt)
let r = (mas.string as NSString).range(of:"Onions")
mas.insert(onionattchar, at:(r.location + r.length))
let r2 = (mas.string as NSString).range(of:"Peppers")
mas.insert(pepperattchar, at:(r2.location + r2.length))
self.tv.attributedText = mas

New in iOS 13, you might want to use a built-in symbol image as a text attachment.
To do so, do not create the NSTextAttachment object and then assign the symbol to
its image property; instead, use the new initializer init(image:). This causes the
symbol image’s configuration, including its point size and baseline offset, to be set
automatically to harmonize with the surrounding text. If you want the symbol image
to pick up its tint color from the foreground color of the surrounding text, specify
an .alwaysOriginal rendering mode:

let checkim = UIImage(systemName:"checkmark.circle")!
 .withRenderingMode(.alwaysOriginal)
let check = NSTextAttachment(image:checkim) // *
let checkchar = NSAttributedString(attachment:check)
let index = // ...
mas.insert(checkchar, at:index)

Attributed Strings | 639

Other ways to create an attributed string
The nib editor provides an ingenious interface for letting you construct attributed
strings wherever built-in interface objects (such as UILabel or UITextView) accept
them as a property; it’s not perfect, though, and isn’t suitable for lengthy or complex
text.

It is also possible to import an attributed string from text in some other standard for‐
mat, such as HTML or RTF. (There are also corresponding export methods.) To
import, get the target text into a Data object and call init(data:options:document-
Attributes:); alternatively, start with a file and call init(url:options:document-
Attributes:). The options: allow you to specify the source text’s format. Here we
read an RTF file from the app bundle as an attributed string and show it in a text view
(self.tv):

let url = Bundle.main.url(forResource: "test", withExtension: "rtf")!
let opts : [NSAttributedString.DocumentReadingOptionKey : Any] =
 [.documentType : NSAttributedString.DocumentType.rtf]
let s = try! NSAttributedString(
 url: url, options: opts, documentAttributes: nil)
self.tv.attributedText = s

Modifying and Querying an Attributed String
We can coherently modify just the character content of a mutable attributed string by
calling replaceCharacters(in:with:), which takes an NSRange and a substitute
string. This method can do two different kinds of thing, depending whether the range
has zero length:

Replacement
If the range has nonzero length, we’re replacing characters. The replacement
characters all take on the attributes of the first replaced character.

Insertion
If the range has zero length, we’re inserting characters. The inserted characters all
take on the attributes of the character preceding the insertion — except that, if we
insert at the start, there is no preceding character, so the inserted characters take
on the attributes of the character following the insertion.

You can query an attributed string about the attributes applied to a single character,
asking either about all attributes at once with attributes(at:effectiveRange:), or
about a particular attribute by name with attribute(_:at:effectiveRange:). The
effectiveRange: argument is a pointer to an NSRange variable, which will be set by
indirection to the range over which the same attribute value, or set of attribute values,
applies.

In this example, we ask about the last character of our content attributed string:

640 | Chapter 10: Text

var range : NSRange = NSMakeRange(0,0)
let d = content.attributes(at:content.length-1, effectiveRange:&range)

After that, range is {111,175}, and d is:

[__C.NSAttributedStringKey(_rawValue: NSFont):
 <UICTFont: 0x7ff533904ae0>
 font-family: "HoeflerText-Black";
 font-weight: bold;
 font-style: normal;
 font-size: 16.00pt]

So now we know that the last character’s .font attribute is Hoefler Text 16, and that
that attribute is applied over a stretch of 175 characters starting at character 111.

Because style runs are something of an artifice, the effectiveRange might not be
what you would think of as the entire style run. The methods with longestEffective-
Range: parameters work out the entire style run range for you; but this comes at the
cost of some efficiency, and in practice you typically won’t need this information any‐
way, because you’re cycling through ranges — so that speed, even at the cost of more
iterations, matters more than getting the longest effective range on every iteration.

In this example, I start with the content attributed string and change all the size 15
material to Arial Bold 20. I don’t care whether I’m handed longest effective ranges
(and my code explicitly says so); I just want to cycle efficiently:

content.enumerateAttribute(.font,
 in:NSMakeRange(0,content.length),
 options:.longestEffectiveRangeNotRequired) { value, range, stop in
 let font = value as! UIFont
 if font.pointSize == 15 {
 content.addAttribute(.font,
 value:UIFont(name: "Arial-BoldMT", size:20)!,
 range:range)
 }
 }

Custom Attributes
You are permitted to apply your own custom attributes to a stretch of text in an
attributed string. Your attributes won’t directly affect how the string is drawn,
because the text engine doesn’t know what to make of them; but it doesn’t object to
them either. In this way, you can mark a stretch of text invisibly for your own future
use.

In this example, I have a UILabel whose text includes a date. Every so often, I want to
replace the date by the current date. The problem is that when the moment comes to
replace the date, I don’t know where it is: I know neither its length nor the length of

Attributed Strings | 641

the text that precedes it. The solution is to use an attributed string where the date part
is marked with a custom attribute.

My custom attribute is defined by extending NSAttributedString.Key:

extension NSAttributedString.Key {
 static let myDate = NSAttributedString.Key("myDate")
}

I’ve applied this attribute to the date part of my label’s attributed text, with an arbi‐
trary value of 1. Now I can readily find the date again later, because the text engine
will tell me where it is:

let mas = NSMutableAttributedString(
 attributedString: self.lab.attributedText!)
mas.enumerateAttribute(.myDate, in: NSMakeRange(0, mas.length)) {
 value, r, stop in
 if let value = value as? Int, value == 1 {
 mas.replaceCharacters(in: r, with: Date().description)
 stop.pointee = true
 }
}
self.lab.attributedText = mas

Drawing and Measuring an Attributed String
You can draw an attributed string yourself, rather than having a built-in interface
object do it for you; and sometimes this will prove to be the most reliable approach.
An NSString can be drawn into a rect with draw(in:withAttributes:) and related
methods; an NSAttributedString can be drawn with draw(at:), draw(in:), and
draw(with:options:context:).

Here, I draw an attributed string (content) into an image graphics context and
extract the image, which might then be displayed by an image view:

let rect = CGRect(0,0,280,250)
let r = UIGraphicsImageRenderer(size:rect.size)
let im = r.image { ctx in
 UIColor.white.setFill()
 ctx.cgContext.fill(rect)
 content.draw(in:rect)
}

Similarly, you can draw an attributed string directly in a UIView’s draw(_:) override.
Imagine that we have a UIView subclass called StringDrawer that has an attributed-
Text property; the idea is that we just assign an attributed string to that property and
the StringDrawer redraws itself:

self.drawer.attributedText = content

And here’s StringDrawer:

642 | Chapter 10: Text

class StringDrawer : UIView {
 @NSCopying var attributedText : NSAttributedString! {
 didSet {
 self.setNeedsDisplay()
 }
 }
 override func draw(_ rect: CGRect) {
 let r = rect.offsetBy(dx: 0, dy: 2)
 let opts : NSStringDrawingOptions = .usesLineFragmentOrigin
 self.attributedText.draw(with:r, options: opts, context: context)
 }
}

The .usesLineFragmentOrigin option is crucial here. Without it, the string is drawn
with its baseline at the rect origin (so that it appears above that rect), and it doesn’t
wrap. The rule is that .usesLineFragmentOrigin is the implicit default for simple
draw(in:), but for draw(with:options:context:) you must specify it explicitly.

NSAttributedString also provides methods to measure an attributed string, such as
boundingRect(with:options:context:). As before, the .usesLineFragmentOrigin
option is crucial; without it, the measured text doesn’t wrap and the returned height
will be very small. The documentation warns that the returned height can be frac‐
tional and that you should round up to an integer if the height of a view is going to
depend on this result.

The context: parameter of methods such as draw(with:options:context:) lets you
supply an instance of NSStringDrawingContext, a simple value class whose total-
Bounds property tells you where you just drew.

The documentation lists additional features of NSStringDrawingContext, such as
its minimumScaleFactor; but these appear to be nonfunctional.

Labels
A label (UILabel) is a simple built-in interface object for displaying text. I listed some
of its chief properties in Chapter 8 (“Built-In Cell Styles” on page 450).

If you’re displaying a plain NSString in a label, by way of the label’s text property,
then you are likely also to set the label’s font, textColor, and textAlignment proper‐
ties, and possibly its shadowColor and shadowOffset properties. The label’s text can
have an alternate highlightedTextColor, to be used when its isHighlighted prop‐
erty is true, as when the label is in a selected cell of a table view.

On the other hand, if you’re using an NSAttributedString, then you’ll set just the
label’s attributedText property and let the attributes dictate things like color, align‐
ment, and shadow. In general, if your intention is to display text in a single font, size,

Labels | 643

color, and alignment, you probably won’t bother with attributedText; but if you do
set the attributedText, you should make it your only way of dictating text style fea‐
tures. Those other UILabel properties do mostly work when you have set the
attributedText, but they’re going to change the attributes of your entire attributed
string, with results that you might not intend. Setting the text of a UILabel that has
attributedText will effectively override the attributes.

The highlightedTextColor property affects the attributedText only if the lat‐
ter is the same color as the textColor.

Number of Lines
A UILabel’s numberOfLines property is extremely important. Together with the
label’s line breaking behavior and resizing behavior, it determines how much of the
text will appear. The default is 1 — a single line — which can come as a surprise. To
make a label display more than one line of text, you must explicitly set its numberOf-
Lines to a value greater than 1, or to 0 to indicate that there is to be no maximum.

Line break characters in a label’s text are honored. In a single-line label, you won’t see
whatever follows the first line break character.

Wrapping and Truncation
UILabel line breaking (wrapping) and truncation behavior, which applies to both
single-line and multiline labels, is determined by the lineBreakMode (of the label or
the attributed string). The options (NSLineBreakMode) are those that I listed earlier
in discussing NSParagraphStyle, but their behavior within a label needs to be
described:

.byClipping

Lines break at word-end, but the last line can continue past its boundary, even if
this leaves a character showing only partially.

.byWordWrapping

Lines break at word-end, but if this is a single-line label, indistinguishable
from .byClipping.

.byCharWrapping

Lines break in midword in order to maximize the number of characters in each
line.

644 | Chapter 10: Text

.byTruncatingHead

.byTruncatingMiddle

.byTruncatingTail

Lines break at word-end; if the text is too long for the label, then the last line dis‐
plays an ellipsis at the start, middle, or end of the line respectively, and text is
omitted at the point of the ellipsis.

The allowsDefaultTighteningForTruncation property, if true, permits some
negative kerning to be applied automatically to a truncating label if this would
prevent truncation.

A UILabel’s line break behavior is not the same as what happens when an
NSAttributedString draws itself into a graphics context:

• The default line break mode for an NSAttributedString’s NSParagraphStyle
is .byWordWrapping, but the default line break mode for a new label is .by-
TruncatingTail.

• An NSAttributedString whose NSParagraphStyle’s lineBreakMode doesn’t have
wrapping in its name doesn’t wrap when it draws itself (it consists of a single
line), but a multiline UILabel always wraps, regardless of its line break mode.

Fitting Label and Text
If a label is too small for its text, the entire text won’t show. If a label is too big for its
text, the text is vertically centered in the label, with space above and below. Either of
those might be undesirable; you might prefer the label to fit its text.

If you’re not using autolayout, in most simple cases sizeToFit will do the right thing;
I believe that behind the scenes it is calling boundingRect(with:options:context:).

If you’re using autolayout, a label will correctly configure its own intrinsicContent-
Size automatically, based on its contents — and therefore, all other things being
equal, the label will size itself to fit its contents with no code at all. Every time you
reconfigure the label in a way that affects its contents (setting its text, changing its
font, setting its attributed text, and so forth), the label automatically invalidates and
recalculates its intrinsic content size and resizes itself to fit. There are two general
cases to consider:

Short single-line label
You might give the label no width or height constraints; you’ll constrain its posi‐
tion, but you’ll let the label’s intrinsicContentSize provide both the label’s
width and its height.

Labels | 645

Multiline label
Most likely, you’ll want to dictate the label’s width, while letting the label’s height
change automatically to accommodate its contents. There are two ways to do
this:

Set the label’s internal width constraint
This is appropriate particularly when the label’s width is to remain fixed ever
after.

Set the label’s preferredMaxLayoutWidth
This property is a hint to help the label’s calculation of its intrinsicContent-
Size. It is the width at which the label, as its contents increase, will stop
growing horizontally to accommodate those contents, and start growing
vertically instead.

Consider a label whose top, left, and right edges are pinned to its superview, while its
height is free to change based on its intrinsicContentSize. Presume also that the
superview’s width can change, possibly due to rotation, changing the width of the
label. Then the label’s height will always perfectly fit its contents, provided that, after
every width change, the label’s preferredMaxLayoutWidth is adjusted to match its
current width.

How can we make that happen? It’s easy. It turns out that if we simply set the label’s
preferredMaxLayoutWidth to 0, that will be taken as a signal that the label should
change its preferredMaxLayoutWidth to match its width automatically whenever its
width changes. Moreover, that happens to be the default preferredMaxLayoutWidth
value! (In the nib editor, at the top of a label’s Size inspector, when the Explicit check‐
box is unchecked and the Desired Width field says “Automatic,” that means the
label’s preferredMaxLayoutWidth is 0; again, this is the default.) So a label in this
configuration will always fit its contents, with no effort on your part.

Instead of letting a label grow, you can permit its text font size to shrink if this would
allow more of the text to fit. How the text is repositioned when the font size shrinks is
determined by the label’s baselineAdjustment property. For this feature to operate,
all of the following conditions must be met:

• The label’s adjustsFontSizeToFitWidth property must be true.
• The label’s minimumScaleFactor must be less than 1.0.
• The label’s size must be limited.
• Either this must be a single-line label (numberOfLines is 1) or the line break

mode (of the label or the attributed string) must not have wrapping in its name.

646 | Chapter 10: Text

Customized Label Drawing
Methods that you can override in a subclass to modify a label’s drawing are draw-
Text(in:) and textRect(forBounds:limitedToNumberOfLines:). This is the code
for a UILabel subclass that outlines the label with a black rectangle and puts a five-
point inset around the label’s contents:

class BoundedLabel: UILabel {
 override func awakeFromNib() {
 super.awakeFromNib()
 self.layer.borderWidth = 2.0
 self.layer.cornerRadius = 3.0
 }
 override func drawText(in rect: CGRect) {
 super.drawText(in: rect.insetBy(dx: 5, dy: 5).integral)
 }
}

A CATextLayer (Chapter 3) is like a lightweight, layer-level version of a UILabel.
If the width of the layer is insufficient to display the entire string, we can get
truncation behavior with the truncationMode property. If the isWrapped prop‐
erty is set to true, the string will wrap. We can also set the alignment with the
alignmentMode property. And its string property can be an NSAttributedString.

Text Fields
A text field (UITextField) is for brief user text entry. It portrays just a single line of
text; any line break characters in its text are treated as spaces. It has many of the same
properties as a label. You can provide it with a plain NSString, setting its text, font,
textColor, and textAlignment, or provide it with an attributed string, setting its
attributedText. You can learn (and set) a text field’s overall text attributes as an
attributes dictionary through its defaultTextAttributes property.

UITextField adopts the UITextInput protocol, which itself adopts the UIKeyInput
protocol. These protocols endow a text field with methods for such things as obtain‐
ing the text field’s current selection and inserting text at the current selection. I’ll give
examples later in this section.

Under autolayout, a text field’s intrinsicContentSize will attempt to set its width to
fit its contents; if its width is fixed, you can set its adjustsFontSizeToFitWidth and
minimumFontSize properties to allow the text size to shrink somewhat.

Text that is too long for the text field is displayed with an ellipsis at the end. To
change the position of the ellipsis, assign the text field an attributed string with differ‐
ent truncation behavior, such as .byTruncatingHead. When long text is being edited,
the ellipsis is removed and the text shifts to show the insertion point.

Text Fields | 647

Regardless of whether you originally supplied a plain string or an attributed string, if
the text field’s allowsEditingTextAttributes property is true, the user, when edit‐
ing in the text field, can summon a menu toggling the selected text’s bold, italics, or
underline features.

A text field has a placeholder property, which is the text that appears faded within
the text field when it has no text (its text or attributedText has been set to nil, or
the user has removed all the text); the idea is that you can use this to suggest to the
user what the text field is for. It has a styled text alternative, attributedPlaceholder.

If a text field’s clearsOnBeginEditing property is true, it automatically deletes its
existing text (and displays the placeholder) when editing begins within it. If a text
field’s clearsOnInsertion property is true, then when editing begins within it, the
text remains, but is invisibly selected, and will be replaced by the user’s typing.

A text field’s border drawing is determined by its borderStyle property. Your
options (UITextField.BorderStyle) are:

.none

No border.

.line

A plain black rectangle.

.bezel

A gray rectangle, where the top and left sides have a very slight, thin shadow.

.roundedRect

A larger rectangle with slightly rounded corners and a flat, faded gray color.

You can supply a background image (background) — though it is ignored if the
borderStyle is .roundedRect. If you combine a background image with a border-
Style of .none, or if the image has no transparency so that it covers the existing bor‐
der, you get to draw your own border. The image is automatically resized, and you
will probably want to supply a resizable image. A second image (disabled-
Background) can be displayed when the text field’s isEnabled property, inherited
from UIControl, is false. The user can’t interact with a disabled text field, but
without a disabledBackground image, the user may lack a sufficient visual clue to
this fact. You can’t set the disabledBackground unless you have also set the
background.

A text field may contain one or two ancillary overlay views, its leftView and right-
View, and possibly a Clear button (a gray circle with a white X). The automatic visi‐
bility of each of these is determined by the leftViewMode, rightViewMode, and
clearButtonMode, respectively. The view mode values (UITextField.ViewMode) are:

648 | Chapter 10: Text

.never

The view never appears.

.whileEditing

A Clear button appears if there is text in the field and the user is editing. A left or
right view appears if the user is editing, even if there is no text in the field.

.unlessEditing

A Clear button appears if there is text in the field and the user is not editing. A
left or right view appears if the user is not editing, or if the user is editing but
there is no text in the field.

.always

A Clear button appears if there is text in the field. A left or right view always
appears.

Depending on what sort of view you use, your leftView and rightView may have to
be sized manually (possibly using internal constraints) so as not to overwhelm the
text view contents. If a right view and a Clear button appear at the same time, the
right view may cover the Clear button unless you reposition it.

The positions and sizes of any of the components of the text field can be set in rela‐
tion to the text field’s bounds by overriding the appropriate method in a subclass:

• clearButtonRect(forBounds:)

• leftViewRect(forBounds:)

• rightViewRect(forBounds:)

• borderRect(forBounds:)

• textRect(forBounds:)

• placeholderRect(forBounds:)

• editingRect(forBounds:)

You should make no assumptions about when or how frequently these methods will
be called; the same method might be called several times in quick succession. (Also,
these methods should all be called with a parameter that is the bounds of the text
field, but some are sometimes called with a 100×100 bounds; this feels like a bug.)

You can also override in a subclass the methods drawText(in:) and draw-
Placeholder(in:). You should either draw the specified text or call super to draw it;
if you do neither, the text won’t appear. Both these methods are called with a parame‐
ter whose size is the dimensions of the text field’s text area, but whose origin is .zero.
In effect what you’ve got is a graphics context for just the text area; any drawing you
do outside the given rectangle will be clipped.

Text Fields | 649

Summoning and Dismissing the Keyboard
The presence or absence of the virtual keyboard is intimately tied to a text field’s edit‐
ing state. They both have to do with the text field’s status as the first responder:

• When a text field is first responder, it is being edited and the keyboard is present.
• When a text field is no longer first responder, it is no longer being edited, and if

no other text field (or text view) becomes first responder, the keyboard is not
present. The keyboard is not dismissed if one text field takes over first responder
status from another.

When the user taps in a text field, by default it is first responder, and so the keyboard
appears automatically if it was not already present. You can also control the presence
or absence of the keyboard in code, together with a text field’s editing state, by way of
the text field’s first responder status:

Becoming first responder
To make the insertion point appear within a text field and to cause the keyboard
to appear, you send becomeFirstResponder to that text field.

Resigning first responder
To make a text field stop being edited and to cause the keyboard to disappear,
you send resignFirstResponder to that text field. (Actually, resignFirst-
Responder returns a Bool, because a responder might return false to indicate
that for some reason it refuses to obey this command.)

Alternatively, call the UIView endEditing(_:) method on the first responder or
any superview (including the window) to ask or compel the first responder to
resign first responder status.

The endEditing(_:) method is useful particularly because there may be times when
you want to dismiss the keyboard without knowing who the first responder is. You
can’t send resignFirstResponder if you don’t know who to send it to. And, amaz‐
ingly, there is no simple way to learn what view is first responder!

In a view presented in the .formSheet modal presentation style on the iPad
(Chapter 6), the keyboard, by default, does not disappear when a text field
resigns first responder status. This is presumably because a form sheet is
intended primarily for text input, so the keyboard is felt as accompanying the
form as a whole, not individual text fields. Optionally, you can prevent this
exceptional behavior: in your UIViewController subclass, override disables-
AutomaticKeyboardDismissal to return false.

Once the user has tapped in a text field and the keyboard has automatically appeared,
how is the user supposed to get rid of it? On the iPad, the keyboard may contain a
button that dismisses the keyboard. Otherwise, this is an oddly tricky issue. You

650 | Chapter 10: Text

would think that the Return key in the keyboard would dismiss the keyboard, since
you can’t enter a Return character in a text field; but, of itself, it doesn’t.

One solution is to be the text field’s delegate and to implement a text field delegate
method, textFieldShouldReturn(_:). When the user taps the Return key in the key‐
board, we hear about it through this method, and we receive a reference to the text
field; we can respond by telling the text field to resign its first responder status, which
dismisses the keyboard:

func textFieldShouldReturn(_ tf: UITextField) -> Bool {
 tf.resignFirstResponder()
 return false
}

Certain virtual keyboards lack a Return key. In that case, you’ll need some other way
to allow the user to dismiss the keyboard, such as a button elsewhere in the interface.
If there’s a scroll view in the interface, you can set its keyboardDismissMode to pro‐
vide a way of letting the user dismiss the keyboard. The options (UIScroll‐
View.KeyboardDismissMode) are:

.none

The default; if the keyboard doesn’t contain a button that lets the user dismiss it,
we must use code to dismiss it.

.interactive

The user can dismiss the keyboard by dragging it down.

.onDrag

The keyboard dismisses itself if the user scrolls the scroll view.

A scroll view with a keyboardDismissMode that isn’t .none also calls resignFirst-
Responder on the text field when it dismisses the keyboard.

Keyboard Covers Text Field
The keyboard, having appeared from offscreen, occupies on the iPhone a position
“docked” at the bottom of the screen. This may cover the text field in which the user
wants to type, even if it is first responder.

This is not likely to be a major issue on the iPad, because the user has ways of moving
the keyboard. New in iOS 13, the user has a choice of three ways to unmoor the text
field from its “docked” position at the bottom of the screen:

Undock
The keyboard moves up slightly while continuing to occupy the full width of the
screen; the user can drag it up and down.

Text Fields | 651

Split
The keyboard becomes smaller and splits into two separate parts pinned to oppo‐
site edges of the screen; the user can drag them up and down together.

Floating
The keyboard becomes even smaller and looks like an iPhone keyboard, less than
half the width of the screen; the user can drag it anywhere.

So on the iPad your interface probably won’t need to compensate for the keyboard,
because the user can move the keyboard instead.

You’ll typically want to reveal the text field on the iPhone so as to ensure that it is not
covered by the keyboard. To help with this, you can register for keyboard-related
notifications:

• UIResponder.keyboardWillShowNotification

• UIResponder.keyboardDidShowNotification

• UIResponder.keyboardWillHideNotification

• UIResponder.keyboardDidHideNotification

Those notifications all have to do with the docked position of the keyboard. On the
iPhone, keyboard docking and keyboard visibility are equivalent: the keyboard is visi‐
ble if and only if it is docked.

Two additional notifications are sent both when the keyboard enters and leaves the
screen and (on the iPad) when the user drags it, splits or unsplits it, and docks or
undocks it:

• UIResponder.keyboardWillChangeFrameNotification

• UIResponder.keyboardDidChangeFrameNotification

On the iPad, where the user can undock the keyboard, the keyboard is said to show if
it is being docked, whether that’s because it is appearing from offscreen or because
the user is docking it, and it is said to hide if it is being undocked, whether that’s
because it is moving offscreen or because the user is undocking it. If the keyboard is
already undocked and the user moves it around the screen, or if the keyboard appears
into or disappears from an undocked configuration, you get only changeFrame
notifications.

The most important situations to respond to on the iPhone are those corresponding
to the willShow and willHide notifications, when the keyboard is attaining or leav‐
ing its docked position at the bottom of the screen. You might think that it would
also be necessary to handle the changeFrame notification, in case the keyboard
changes its height — as when the user switches from the text keyboard to the emoji
keyboard on the iPhone. But the willShow notification is sent in that situation too.

652 | Chapter 10: Text

Each notification’s userInfo dictionary contains information describing what the
keyboard will do or has done, under these keys:

• UIResponder.keyboardFrameBeginUserInfoKey

• UIResponder.keyboardFrameEndUserInfoKey

• UIResponder.keyboardAnimationDurationUserInfoKey

• UIResponder.keyboardAnimationCurveUserInfoKey

When you receive a willShow notification, you can look at the user info’s
UIResponder.keyboardFrameEndUserInfoKey to learn what position the keyboard is
moving to. It is an NSValue wrapping a CGRect in screen coordinates. By converting
the coordinate system as appropriate, you can compare the keyboard’s new frame
with the frame of your interface items. If the keyboard’s new frame intersects a text
field’s frame (in the same coordinates), the keyboard is going to cover that text field.
You’re going to want to take evasive maneuvers.

A natural-looking approach is to slide the entire interface upward as the keyboard
appears, just enough to expose the text field being edited above the top of the key‐
board. The simplest way to do that is for the entire interface to be inside a scroll view
— which is, after all, a view that knows how to slide its contents. This scroll view need
not be ordinarily scrollable by the user; in fact, the user may be completely unaware
of its existence. But after the keyboard appears, the scroll view should be scrollable by
the user, so that the user can inspect the entire interface at will, even while the key‐
board is covering part of it. We can ensure that by adjusting the scroll view’s content-
Inset.

This behavior is in fact implemented automatically by a UITableViewController.
When a text field inside a table cell is first responder, the table view controller adjusts
the bottom of the table view’s adjustedContentInset to compensate for the key‐
board. The result is that the entire table view content is available within the space
between the top of the table view and the top of the keyboard.

Moreover, a scroll view has two additional bits of built-in behavior that will help us:

• It scrolls automatically to reveal the first responder. This will make it easy for us
to expose the text field being edited.

• It has, as I already mentioned, a keyboardDismissMode, which can give us an
additional way to allow the user to dismiss the keyboard.

Let’s imitate UITableViewController’s behavior with a scroll view containing text
fields. In particular, our interface consists of a scroll view containing a content view;
the content view contains several text fields.

In viewDidLoad, we register for keyboard notifications:

Text Fields | 653

NotificationCenter.default.addObserver(self,
 selector: #selector(keyboardShow),
 name: UIResponder.keyboardWillShowNotification, object: nil)
NotificationCenter.default.addObserver(self,
 selector: #selector(keyboardHide),
 name: UIResponder.keyboardWillHideNotification, object: nil)

We are the delegate of any text fields, so that we can hear about it when the user taps
the Return key in the keyboard. We use that as a signal to dismiss the keyboard, as I
suggested earlier:

func textFieldShouldReturn(_ tf: UITextField) -> Bool {
 tf.resignFirstResponder()
 return false
}

It will help to have on hand a utility function that works out the geometry based on
the notification’s userInfo dictionary and the bounds of the view we’re concerned
with (which will be the scroll view). If the keyboard wasn’t within the view’s bounds
and now it will be, it is entering; if it was within the view’s bounds and now it won’t
be, it is exiting. We return that information, along with the keyboard’s frame in the
view’s bounds coordinates:

enum KeyboardState {
 case unknown
 case entering
 case exiting
}
func keyboardState(for d:[AnyHashable:Any], in v:UIView?)
 -> (KeyboardState, CGRect?) {
 var rold = d[UIResponder.keyboardFrameBeginUserInfoKey] as! CGRect
 var rnew = d[UIResponder.keyboardFrameEndUserInfoKey] as! CGRect
 var ks : KeyboardState = .unknown
 var newRect : CGRect? = nil
 if let v = v {
 let co = UIScreen.main.coordinateSpace
 rold = co.convert(rold, to:v)
 rnew = co.convert(rnew, to:v)
 newRect = rnew
 if !rold.intersects(v.bounds) && rnew.intersects(v.bounds) {
 ks = .entering
 }
 if rold.intersects(v.bounds) && !rnew.intersects(v.bounds) {
 ks = .exiting
 }
 }
 return (ks, newRect)
}

When we get a willShow notification, we first check whether the keyboard is about to
enter our scroll view’s bounds; if so, we store the scroll view’s current content offset,

654 | Chapter 10: Text

content inset, and scroll indicator insets. Then we alter the scroll view’s insets appro‐
priately, allowing the scroll view itself to scroll the first responder into view if needed:

@objc func keyboardShow(_ n:Notification) {
 let d = n.userInfo!
 let (state, rnew) = keyboardState(for:d, in:self.scrollView)
 if state == .entering {
 self.oldContentInset = self.scrollView.contentInset
 self.oldIndicatorInset = self.scrollView.scrollIndicatorInsets
 self.oldOffset = self.scrollView.contentOffset
 }
 if let rnew = rnew {
 let h = rnew.intersection(self.scrollView.bounds).height
 self.scrollView.contentInset.bottom = h
 self.scrollView.scrollIndicatorInsets.bottom = h
 }
}

When the keyboard hides, we reverse the process, restoring the saved values:

@objc func keyboardHide(_ n:Notification) {
 let d = n.userInfo!
 let (state, _) = keyboardState(for:d, in:self.scrollView)
 if state == .exiting {
 self.scrollView.contentOffset = self.oldOffset
 self.scrollView.scrollIndicatorInsets = self.oldIndicatorInset
 self.scrollView.contentInset = self.oldContentInset
 }
}

Behind the scenes, we are inside an animations function at the time that our notifica‐
tions arrive. This means that our changes to the scroll view are nicely animated in
coordination with the keyboard appearing and disappearing.

Under iPad multitasking (Chapter 9), your app can receive keyboard show and hide
notifications if another app summons or dismisses the keyboard. This makes sense
because the keyboard is, after all, covering your app. You can distinguish whether
your app was responsible for summoning the keyboard by examining the show notifi‐
cation userInfo dictionary’s UIResponder.keyboardIsLocalUserInfoKey; but in
general you probably won’t have to, provided you handle keyboard notifications
coherently in the first place.

Text Field Delegate and Control Event Messages
As editing begins and proceeds in a text field, various messages are sent to the text
field’s delegate, adopting the UITextFieldDelegate protocol. Some of these messages
are also available as notifications. Using them, you can customize the text field’s
behavior during editing:

Text Fields | 655

textFieldShouldBeginEditing(_:)

Return false to prevent the text field from becoming first responder.

textFieldDidBeginEditing(_:)

UITextField.textDidBeginEditingNotification

The text field has become first responder.

textFieldShouldClear(_:)

Return false to prevent the operation of the Clear button or of automatic clear‐
ing on entry (clearsOnBeginEditing). This event is not sent when the text is
cleared because clearsOnInsertion is true, presumably because the user is not
clearing the text but rather changing it.

textFieldShouldReturn(_:)

The user has tapped the Return button in the keyboard. We have already seen
that this can be used as a signal to dismiss the keyboard.

textFieldDidChangeSelection(_:)

(New in iOS 13.) The text field selection has changed. This happens any time the
position of the insertion point or the selection changes for any reason, so this
delegate message reports almost any editing action. Merely typing a character
changes the selection, because the insertion point position is now greater by
one character.

textField(_:shouldChangeCharactersIn:replacementString:)

UITextField.textDidChangeNotification

The notification is a signal that the user has edited the text, but the delegate
method is your chance to interfere with the user’s editing before it takes effect.
You can return false to prevent the proposed change; if you’re going to do that,
you can replace the user’s edit with your own, by changing the text field’s text
directly (there is no circularity, as this delegate method is not called when you
do that).

In this example, the user can enter only lowercase characters (the insertText
method comes from the UIKeyInput protocol, which UITextField adopts):

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {
 if string.isEmpty { // backspace
 return true
 }
 let lc = string.lowercased()
 textField.insertText(lc)
 return false
}

656 | Chapter 10: Text

As the example shows, you can distinguish whether the user is typing or pasting,
on the one hand, or backspacing or cutting, on the other; in the latter case, the
replacement string will be empty. You are not notified when the user changes
text styling through the Bold, Italics, or Underline menu items.

textFieldShouldEndEditing(_:)

Return false to prevent the text field from resigning first responder (even if you
just sent resignFirstResponder to it). You might do this because the text is
invalid or unacceptable in some way. The user will not know why the text field is
refusing to end editing, so the usual thing is to put up an alert (Chapter 13)
explaining the problem.

textFieldDidEndEditing(_:)

UITextField.textDidEndEditingNotification

The text field has resigned first responder. See “Editable Content in Cells” on
page 511 for an example of using the delegate method to fetch the text field’s cur‐
rent text and store it in the model.

A text field is a control (UIControl; see also Chapter 12). That means you can attach a
target–action pair to any of the events that it reports in order to receive a message
when that event occurs. Of the various control event messages emitted by a text field,
the two most useful (in my experience) are:

Editing Changed (.editingChanged)
Sent after the user performs any editing. If your goal is to respond to changes,
rather than to forestall them, this is a better way than the delegate method text-
Field(_:shouldChangeCharactersIn:replacementString:), because it arrives
at the right moment, namely after the change has occurred, and because it can
detect attributes changes, which the delegate method can’t do.

Did End on Exit (.editingDidEndOnExit)
Sent when the user taps the Return button in the text field’s keyboard. Surpris‐
ingly, if this control event is configured to trigger an action message, the key‐
board is dismissed automatically — even if the action method does nothing. In
fact, the action method doesn’t even have to exist! The action can be nil-
targeted. There is no penalty for implementing a nil-targeted action that walks
up the responder chain without finding a method that handles it.

In this example, I create a UITextField subclass that automatically dismisses itself
when the user taps Return:

@objc protocol Dummy {
 func dummy(_ sender: Any)
}
class MyTextField: UITextField {
 required init?(coder: NSCoder) {

Text Fields | 657

 super.init(coder:coder)
 self.addTarget(nil,
 action:#selector(Dummy.dummy), for:.editingDidEndOnExit)
 }
}

You can configure the same thing in the nib editor. Edit the First Responder
proxy object in the Attributes inspector, adding a new First Responder Action;
call it dummy:. Now hook the Did End on Exit event of the text field to the dummy:
action of the First Responder proxy object.

Text Field Menu
When the user double taps or long presses in a text field, a menu appears. It contains
menu items such as Select, Select All, Paste, Copy, Cut, and Replace; which menu
items appear depends on the circumstances. Many of the selectors for these standard
menu items are listed in the UIResponderStandardEditActions protocol. Commonly
used standard actions are:

• cut(_:)

• copy(_:)

• select(_:)

• selectAll(_:)

• paste(_:)

• delete(_:)

• toggleBoldface(_:)

• toggleItalics(_:)

• toggleUnderline(_:)

Some other menu items are known only through their Objective-C selectors:

• _promptForReplace:

• _define:

• _showTextStyleOptions:

The menu can be customized; this involves setting the shared UIMenuController
object’s menuItems property to an array of UIMenuItem instances representing the
menu items that may appear in addition to those that the system puts there.

Actions for menu items are nil-targeted, so they percolate up the responder chain.
You can implement a menu item’s action anywhere up the responder chain; if you do
this for a standard menu item at a point in the responder chain before the system
receives it, you can interfere with and customize what it does. You govern the

658 | Chapter 10: Text

presence or absence of a menu item by implementing the UIResponder method can-
PerformAction(_:withSender:) in the responder chain.

To illustrate, we’ll devise a text field whose menu includes our own menu item,
Expand. I’m imagining a text field where the user can select a U.S. state’s two-letter
abbreviation (such as “CA”) and can then summon the menu and tap Expand to
replace it with the state’s full name (such as “California”). I’ll implement this in a
UITextField subclass called MyTextField, in order to guarantee that the Expand
menu item will be available when an instance of this subclass is first responder, but at
no other time.

At some moment before the user taps in an instance of MyTextField (such as our
view controller’s viewDidLoad), we modify the global menu:

let mi = UIMenuItem(title:"Expand", action:#selector(MyTextField.expand))
let mc = UIMenuController.shared
mc.menuItems = [mi]

The text field subclass has a property, self.list, which has been set to a dictionary
whose keys are state name abbreviations and whose values are the corresponding
state names. A utility function looks up an abbreviation in the dictionary:

func state(for abbrev:String) -> String? {
 return self.list[abbrev.uppercased()]
}

We implement canPerformAction(_:withSender:) to govern the contents of the
menu. Let’s presume that we want our Expand menu item to be present only if the
selection consists of a two-letter state abbreviation. UITextField conforms to the
UITextInput protocol, which lets us learn the selected text:

override func canPerformAction(_ action: Selector,
 withSender sender: Any?) -> Bool {
 if action == #selector(expand) {
 if let r = self.selectedTextRange, let s = self.text(in:r) {
 return (s.count == 2 && self.state(for:s) != nil)
 }
 }
 return super.canPerformAction(action, withSender:sender)
}

When the user chooses the Expand menu item, the expand message is sent up the res‐
ponder chain. We catch it in our UITextField subclass and obey it by replacing the
selected text with the corresponding state name:

Text Fields | 659

@objc func expand(_ sender: Any) {
 if let r = self.selectedTextRange, let s = self.text(in:r) {
 if let ss = self.state(for:s) {
 self.replace(r, withText:ss)
 }
 }
}

We can also implement the selector for, and modify the behavior of, any of the stan‐
dard menu items. Here, I’ll implement copy(_:) and modify its behavior. First we
call super to get standard copying behavior; then we modify what’s now on the
pasteboard:

override func copy(_ sender: Any?) {
 super.copy(sender)
 let pb = UIPasteboard.general
 if let s = pb.string {
 let ss = // ... alter s here ...
 pb.string = ss
 }
}

Drag and Drop
A text field implements drag and drop (Chapter 9) by way of the UITextDraggable
and UITextDroppable protocols. By default, a text field’s text is draggable (even on
iPhone, new in iOS 13), but you can set the isEnabled property of its textDrag-
Interaction to change that. If a text field’s text is draggable, then by default its drag‐
ged text can be dropped within the same text field.

To customize a text field’s drag and drop behavior, provide a textDragDelegate
(UITextDragDelegate) or textDropDelegate (UITextDropDelegate) and implement
any of their various methods. You can change the drag preview, change the drag
items, and so forth. To turn a text field’s droppability on or off depending on some
condition, give it a textDropDelegate and implement textDroppable-

View(_:proposalForDrop:) to return an appropriate UITextDropProposal.

Keyboard and Input Configuration
There are various ways to configure the virtual keyboard that appears when a text
field becomes first responder. This configuration is performed through properties,
not of the keyboard, but of the text field.

Text input traits
A UITextField adopts the UITextInputTraits protocol. This protocol’s properties cus‐
tomize physical features and behaviors of the keyboard, as well as the text field’s
response to input (and these properties can also be set in the nib editor):

660 | Chapter 10: Text

• Set the keyboardType to choose one of many alternate built-in keyboard layouts.
For instance, set it to .numberPad to make the virtual keyboard for this text field
consist of digits.
Setting the keyboard type does not prevent the user from entering certain charac‐
ters into this text field. On an iPhone, even with a .numberPad keyboard type, the
user can paste letters or type them with an external keyboard; on an iPad, the
user can switch the .numberPad keyboard to show letters. To limit what charac‐
ters can be entered into a text field, use the textField(_:shouldChange-
CharactersIn:replacementString:) delegate method that I described earlier.

• Set the returnKeyType to determine the text of the Return key (if the keyboard is
of a type that has one).

• Give the keyboard a dark or light shade (keyboardAppearance).
• Turn off autocapitalization or autocorrection (autocapitalizationType,
autocorrectionType).

• Use or don’t use smart quotes, smart dashes, and smart spaces during insertion
and deletion (smartQuotesType, smartDashesType, smartInsertDeleteType).

• Make the Return key disable itself if the text field has no content (enablesReturn-
KeyAutomatically).

• Make the text field a password field (secureTextEntry).
• Set the textContentType to assist the system in making semantically appropriate

spelling and autofill suggestions.

Accessory view
You can attach an accessory view to the top of the keyboard by setting the text field’s
inputAccessoryView. For instance, an accessory view containing a button can serve
as a way to let the user dismiss keyboards whose type has no Return key, such
as .numberPad, .phonePad, and .decimalPad.

Figure 10-13 shows a .phonePad keyboard. It has no Return key, so we’ve added a
Done button in its accessory view. The accessory view itself is designed in a view .xib
file. We (the view controller) are the text field’s delegate; when the text field becomes
first responder, we configure the keyboard:

func textFieldDidBeginEditing(_ tf: UITextField) {
 self.currentField = tf // keep track of first responder
 let arr =
 UINib(nibName:"AccessoryView", bundle:nil).instantiate(withOwner:nil)
 let accessoryView = arr[0] as! UIView
 let b = accessoryView.subviews[0] as! UIButton
 b.addTarget(self, action:#selector(doNextButton), for:.touchUpInside)
 let b2 = accessoryView.subviews[1] as! UIButton

Text Fields | 661

Figure 10-13. A phonePad keyboard with an accessory view

 b2.addTarget(self, action:#selector(doDone), for:.touchUpInside)
 tf.inputAccessoryView = accessoryView
 tf.keyboardAppearance = .dark
 tf.keyboardType = .phonePad
}

When the Done button is tapped, we dismiss the keyboard:

@objc func doDone(_ sender: Any) {
 self.currentField = nil
 self.view.endEditing(false)
}

The Next button lets the user navigate to the next text field. I have an array property
(self.textFields) populated with references to all the text fields in the interface. My
textFieldDidBeginEditing implementation stores a reference to the current text
field in a property (self.currentField), because in order to determine the next text
field, I need to know which one is this text field:

@objc func doNextButton(_ sender: Any) {
 var ix = self.textFields.firstIndex(of:self.currentField)!
 ix = (ix + 1) % self.textFields.count
 let v = self.textFields[ix]
 v.becomeFirstResponder()
}

Input view
Going even further, you can replace the system keyboard entirely with a view of your
own creation. This is done by setting the text field’s inputView. For best results, the
custom view should be a UIInputView, and ideally it should be the inputView (and
view) of a UIInputViewController. The input view controller needs to be retained,
but not as a child view controller in the view controller hierarchy; the keyboard is not
one of your app’s views, but is layered by the system in front of your app. The input
view’s contents might imitate a standard system keyboard, or may consist of any
interface you like.

662 | Chapter 10: Text

An input view controller, used in this way, is also the key to supplying other apps
with a keyboard. See the “Custom Keyboard” chapter of Apple’s App Extension
Programming Guide in the documentation archive.

To illustrate, I’ll implement a standard beginner example: I’ll replace a text field’s
keyboard with a UIPickerView. Here’s the input view controller, MyPickerVC. Its
viewDidLoad puts the UIPickerView into the inputView and positions it with auto‐
layout constraints:

class MyPickerVC : UIInputViewController {
 override func viewDidLoad() {
 let iv = self.inputView!
 iv.translatesAutoresizingMaskIntoConstraints = false
 let p = UIPickerView()
 p.delegate = self
 p.dataSource = self
 iv.addSubview(p)
 p.translatesAutoresizingMaskIntoConstraints = false
 NSLayoutConstraint.activate([
 p.topAnchor.constraint(equalTo: iv.topAnchor),
 p.bottomAnchor.constraint(equalTo: iv.bottomAnchor),
 p.leadingAnchor.constraint(equalTo: iv.leadingAnchor),
 p.trailingAnchor.constraint(equalTo: iv.trailingAnchor),
])
 }
}
extension MyPickerVC : UIPickerViewDelegate, UIPickerViewDataSource {
 // ...
}

The text field itself is configured in our main view controller:

class ViewController: UIViewController {
 @IBOutlet weak var tf: UITextField!
 let pvc = MyPickerVC()
 override func viewDidLoad() {
 super.viewDidLoad()
 self.tf.inputView = self.pvc.inputView
 }
}

It is also possible to use an input view controller to manage a text field’s input-
AccessoryView. To do that, you set the text field’s inputAccessoryViewController
instead of its inputAccessoryView. To do that, you have to subclass UITextField to
give it a writable inputAccessoryViewController (because this property, as inher‐
ited from UIResponder, is read-only):

class MyTextField : UITextField {
 var _iavc : UIInputViewController?
 override var inputAccessoryViewController: UIInputViewController? {
 get {
 return self._iavc

Text Fields | 663

 }
 set {
 self._iavc = newValue
 }
 }
}

Let’s use that feature to give the user a way to dismiss the “keyboard” consisting
entirely of a UIPickerView. We’ll attach a Done button as the text field’s accessory
input view and manage it with another input view controller, MyDoneButtonVC. I’ll
configure the button much as I configured the picker view, by putting it into the
input view controller’s inputView:

class MyDoneButtonVC : UIInputViewController {
 weak var delegate : UIViewController?
 override func viewDidLoad() {
 let iv = self.inputView!
 iv.translatesAutoresizingMaskIntoConstraints = false
 iv.allowsSelfSizing = true // crucial
 let b = UIButton(type: .system)
 b.tintColor = .black
 b.setTitle("Done", for: .normal)
 b.sizeToFit()
 b.addTarget(self, action: #selector(doDone), for: .touchUpInside)
 b.backgroundColor = UIColor.lightGray
 iv.addSubview(b)
 b.translatesAutoresizingMaskIntoConstraints = false
 NSLayoutConstraint.activate([
 b.topAnchor.constraint(equalTo: iv.topAnchor),
 b.bottomAnchor.constraint(equalTo: iv.bottomAnchor),
 b.leadingAnchor.constraint(equalTo: iv.leadingAnchor),
 b.trailingAnchor.constraint(equalTo: iv.trailingAnchor),
])
 }
 @objc func doDone() {
 if let del = self.delegate {
 (del as AnyObject).doDone?()
 }
 }
}

Now our main view controller configures the text field like this:

class ViewController: UIViewController {
 @IBOutlet weak var tf: UITextField!
 let pvc = MyPickerVC()
 let mdbvc = MyDoneButtonVC()
 override func viewDidLoad() {
 super.viewDidLoad()
 self.tf.inputView = self.pvc.inputView

664 | Chapter 10: Text

 (self.tf as! MyTextField).inputAccessoryViewController = self.mdbvc
 self.mdbvc.delegate = self
 }
}

When the Done button is tapped, MyDoneButtonVC’s doDone method is called. It, in
turn, calls the doDone method of its delegate, if there is one. Its delegate is our original
ViewController, which can implement doDone to set the text of the text field and
dismiss the keyboard.

An important advantage of using an input view controller is that it is a view control‐
ler. Despite not being part of the app’s view controller hierarchy, it is sent standard
view controller messages such as viewDidLayoutSubviews and traitCollectionDid-
Change, allowing you to respond coherently to rotation and other changes.

Input view without a text field
With only a slight modification, you can use the techniques described in the preced‐
ing section to present a custom input view to the user without the user editing any
text field. Suppose we have a label in our interface; we can allow the user to tap a but‐
ton to summon our custom input view and use that input to change the text of the
label. (See Figure 10-14; as usual, my example revolves around letting the user specify
one of the Pep Boys.)

The trick here is that the relevant UITextField properties and methods are all inher‐
ited from UIResponder — and a UIViewController is a UIResponder. All we have to
do is override our view controller’s canBecomeFirstResponder to return true, and
then call its becomeFirstResponder — just like a text field. If the view controller has
overridden inputView, our custom input view will appear as the virtual keyboard. If
the view controller has overridden inputAccessoryView or inputAccessoryView-
Controller, the accessory view will be attached to that keyboard.

Here’s an implementation of that scenario. Normally, our view controller’s can-
BecomeFirstResponder returns false, so that the input view won’t appear. But when
the user taps the button in our interface, we switch to returning true and call become-
FirstResponder. Presto, the input view appears along with the accessory view,
because we’ve also overridden inputView and inputAccessoryViewController.
When the user taps the Done button in the accessory view, we update the label and
dismiss the keyboard:

class ViewController: UIViewController {
 @IBOutlet weak var lab: UILabel!
 let pvc = MyPickerVC()
 let mdbvc = MyDoneButtonVC()
 override func viewDidLoad() {
 super.viewDidLoad()
 self.mdbvc.delegate = self // for dismissal

Text Fields | 665

Figure 10-14. Editing a label with a custom input view

 }
 var showKeyboard = false
 override var canBecomeFirstResponder: Bool {
 return showKeyboard
 }
 override var inputView: UIView? {
 return self.pvc.inputView
 }
 override var inputAccessoryViewController: UIInputViewController? {
 return self.mdbvc
 }
 @IBAction func doPickBoy(_ sender: Any) { // button in the interface
 self.showKeyboard = true
 self.becomeFirstResponder()
 }
 @objc func doDone() { // user tapped Done button in accessory view
 self.lab.text = pvc.currentPep // update label
 self.resignFirstResponder() // dismiss keyboard
 self.showKeyboard = false
 }
}

Shortcuts bar
On the iPad, the shortcuts bar appears along with spelling suggestions at the top of
the keyboard. You can customize it by adding bar button items.

The shortcuts bar is the text field’s inputAssistantItem (inherited from UIRes‐
ponder), and it has leadingBarButtonGroups and trailingBarButtonGroups. A but‐
ton group is a UIBarButtonItemGroup, an array of UIBarButtonItems along with an
optional representativeItem to be shown if there isn’t room for the whole array; if
the representative item has no target–action pair, tapping it will summon a popover
containing the actual group.

666 | Chapter 10: Text

In this example, we add a Camera bar button item to the right (trailing) side of the
shortcuts bar for our text field (self.tf):

let bbi = UIBarButtonItem(
 barButtonSystemItem: .camera, target: self, action: #selector(doCamera))
let group = UIBarButtonItemGroup(
 barButtonItems: [bbi], representativeItem: nil)
let shortcuts = self.tf.inputAssistantItem
shortcuts.trailingBarButtonGroups.append(group)

Keyboard language
Suppose your app performs a Russian dictionary lookup. It would be nice to be able
to force the keyboard to appear as Russian in conjunction with your text field. But
you can’t. You can’t access the Russian keyboard unless the user has explicitly
enabled it; and even if the user has explicitly enabled it, your text field can only
express a preference as to the language in which the keyboard initially appears. To do
so, override your view controller’s textInputMode property along these lines:

override var textInputMode: UITextInputMode? {
 for tim in UITextInputMode.activeInputModes {
 if tim.primaryLanguage == "ru-RU" {
 return tim
 }
 }
 return super.textInputMode
}

Another keyboard language–related property is textInputContextIdentifier. You
can use this to ensure that the runtime remembers the language to which the key‐
board was set the last time each text field was edited. To do so, override textInput-
ContextIdentifier in your view controller as a computed variable whose getter
fetches the value of a stored variable, and set that stored variable to some appropriate
unique value whenever the editing context changes, whatever that may mean for
your app.

Text Views
A text view (UITextView) is a scroll view subclass (UIScrollView); it is not a control.
It displays multiline text, possibly scrollable, possibly editable. Many of its properties
are similar to those of a text field:

• A text view has text, font, textColor, and textAlignment properties.
• A text view has attributedText, allowsEditingTextAttributes, and typing-
Attributes properties, as well as clearsOnInsertion.

Text Views | 667

• An editable text view governs its keyboard just as a text field does: when it is first
responder, it is being edited and shows the keyboard, and it adopts the UIText‐
Input protocol and has inputView and inputAccessoryView properties.

• A text view’s menu works the same way as a text field’s.
• A text view implements drag and drop similarly to a text field.

A text view can be editable or not, according to its isEditable property. You can do
things with a noneditable text view that you can’t do otherwise, as I’ll explain later. A
text field can be selectable without being editable, if its isEditable property is false
but its isSelectable property is true; in that case, the user can select text and
copy it.

A text view is a scroll view, so everything you know about scroll views applies (see
Chapter 7). It can be scrollable (by the user) or not. Its contentSize is maintained for
you automatically as the text changes, so as to contain the text exactly; if the text view
is scrollable, the user can see any of its text. The text view’s delegate (UITextView‐
Delegate) is its scroll view delegate (UIScrollViewDelegate). A text view has a scroll-
RangeToVisible(_:) method so that you can scroll in terms of a range of its text.

A text view provides information about, and control of, its selection: it has a
selectedRange property which you can get and set.

A text view’s delegate messages (UITextViewDelegate) and notifications are similar
to those of a text field. The following delegate methods and notifications should have
a familiar ring:

• textViewShouldBeginEditing(_:)

• textViewDidBeginEditing(_:)
UITextView.textDidBeginEditingNotification

• textViewShouldEndEditing(_:)

• textViewDidEndEditing(_:)
UITextView.textDidEndEditingNotification

• textView(_:shouldChangeTextIn:replacementText:)

• textViewDidChange(_:)
UITextView.textDidChangeNotification

Links, Text Attachments, and Data
A link is a stretch of attributed text to which the .link attribute has been applied.
The default appearance of links in a text view is determined by the text view’s link-
TextAttributes. By default, this is a bluish color with no underline, but you can
change it. Alternatively, you can apply any desired attributes to the individual links in

668 | Chapter 10: Text

the text view’s attributedText; in that case, set the text view’s linkTextAttributes
to an empty dictionary to prevent it from overriding the individual link attributes.

The user can tap on a link, or on a text attachment, if the text view is selectable but
not editable. The text view’s delegate can then decide how to respond to the tap:

textView(_:shouldInteractWith:in:interaction:)

The third parameter is a range. The last parameter tells you what the user is
doing (UITextItemInteraction):

• .invokeDefaultAction means tap.
• .presentActions means long press.
• .preview means 3D touch, but (new in iOS 13) it won’t occur.

This method comes in two forms:

The second parameter is a URL
The user is interacting with a link. The default is true.

The second parameter is an NSTextAttachment
The user is interacting with an inline image. The default is false.

Return true to get a default response. By returning false, you can substitute your
own response, effectively treating the link or image as a button. Default responses
when the second parameter is a URL are:

.invokeDefaultAction

The URL is opened in Safari.

.presentActions

A UIMenu (new in iOS 13) is presented, with menu items Open, Add to Reading
List, Copy, and Share.

Default responses when the second parameter is a text attachment are:

.invokeDefaultAction

Nothing happens.

.presentActions

A UIMenu is presented, with menu items Copy Image and Save to Camera Roll.

A text view also has a dataDetectorTypes property; if the text view is selectable but
not editable, this allows text of these types, specified as a UIDataDetectorTypes bit‐
mask (and presumably located using NSDataDetector), to be treated as tappable
links.

textView(_:shouldInteractWith:in:interaction:) will catch these taps as well;
the second parameter will be a URL, but it won’t necessarily be much use to you. You

Text Views | 669

can distinguish a phone number through the URL’s scheme (it will be "tel"), and the
rest of the URL is the phone number; but other types will be more or less opaque (the
scheme is "x-apple-data-detectors"). More important, you have the range, so you
can obtain the tapped text. You can return true for the default response, or return
false and substitute your own response. Some common UIDataDetectorTypes are:

.phoneNumber

Default responses are:

.invokeDefaultAction

An alert is presented, with an option to call the number.

.presentActions

A UIMenu presented, with menu items Call, FaceTime, Send Message, Add
to Contacts, and Copy.

.address

Default responses are:

.invokeDefaultAction

The address is looked up in the Maps app.

.presentActions

A UIMenu is presented, with menu items Get Directions, Open in Maps,
Add to Contacts, and Copy Address, and a preview displaying a map show‐
ing the address if possible.

.calendarEvent

Default responses are:

.invokeDefaultAction

An action sheet is presented, with menu items Create Event, Create
Reminder, Show in Calendar, and Copy Event.

.presentActions

A UIMenu is presented, with the same menu items as the default action,
along with a preview showing the relevant time in the user’s Calendar.

(There are three more data detector types: .shipmentTrackingNumber, .flight-
Number, and .lookupSuggestion.)

In my tests, returning false from your textView(_:shouldInteract-

With:in:interaction:) implementation does not always prevent the default
response in iOS 13. I regard this as a bug.

670 | Chapter 10: Text

Self-Sizing Text View
On some occasions, you may want a self-sizing text view — that is, a text view that
adjusts its height automatically to embrace the amount of text it contains.

The simplest approach, under autolayout, is to prevent the text view from scrolling
by setting its isScrollEnabled to false. The text view now has an intrinsic content
size and will behave just like a label (“Fitting Label and Text” on page 645). Pin the
top and sides of the text view, and the bottom will shift automatically to accommo‐
date the content as the user types. In effect, you’ve made a cross between a label
(there are multiple lines and the height adjusts to fit the text) and a text field (the user
can edit).

To put a limit on how tall a self-sizing text view can grow, keep track of the height of
its contentSize (perhaps in viewDidLayoutSubviews) and, if it gets too big, set the
text view’s isScrollEnabled to true and constrain its height.

Text View and Keyboard
The fact that a text view is a scroll view comes in handy when the keyboard partially
covers a text view. The text view usually dominates the screen, and you can respond
to the keyboard partially covering it by adjusting the text view’s contentInset and
scrollIndicatorInsets, exactly as we did earlier in this chapter with a scroll view
containing a text field (“Keyboard Covers Text Field” on page 651). There is no need
to worry about the text view’s contentOffset; the text view will scroll as needed to
reveal the insertion point as the keyboard shows, and will scroll itself correctly as the
keyboard hides.

How is the keyboard to be dismissed? The Return key is meaningful for character
entry, so you won’t want to use it to dismiss the keyboard. On the iPad, there is usu‐
ally a separate button in the keyboard that dismisses the keyboard, solving the prob‐
lem; on the iPhone there might be no such button.

On the iPhone, the interface might consist of a text view and the keyboard, which is
always showing. Instead of dismissing the keyboard, the user dismisses the entire
interface. In Apple’s Mail app on the iPhone, when the user is composing a message,
the keyboard is present; if the user taps Cancel or Send, the mail composition inter‐
face is dismissed and so is the keyboard.

Alternatively, you can provide interface for dismissing the keyboard explicitly. In
Apple’s Notes app, when a note is being edited, the keyboard is present and a Done
button appears; the user taps the Done button to dismiss the keyboard. If there’s no
good place to put a Done button in the interface, you could attach an accessory view
to the keyboard itself, as I did in an earlier example.

Text Views | 671

Also, being a scroll view, a text view has a keyboardDismissMode. By setting this
to .interactive or .onDrag, you can permit the user to hide the keyboard by scroll‐
ing or dragging. Apple does that in both the Mail app and the Notes app.

Text Kit
Text Kit comes originally from macOS, where you may already be more familiar with
it than you realize. Much of the text-editing “magic” of Xcode itself is due to Text Kit;
and the TextEdit app is just a thin wrapper around Text Kit. Text Kit comprises a
small group of classes that are responsible for drawing text; simply put, they turn an
NSAttributedString into graphics. You can take advantage of Text Kit to modify text
drawing in ways that were once possible only by dipping down to the low-level C-
based world of Core Text.

Text Kit has three chief classes: NSTextStorage, NSLayoutManager, and NSTextCon‐
tainer. Instances of these three classes join to form a “stack” of objects that allow Text
Kit to operate. In the minimal and most common case, a text storage has a layout
manager, and a layout manager has a text container, forming the “stack.”

Here’s what the three chief Text Kit classes do:

NSTextStorage
A subclass of NSMutableAttributedString. It is, or holds, the underlying text. It
has one or more layout managers, and notifies them when the text changes.

By subclassing and delegation (NSTextStorageDelegate), a text storage’s behavior
can be modified so that it applies attributes in a custom fashion.

NSLayoutManager
This is the master text drawing class. It has one or more text containers, and is
owned by a text storage. It draws the text storage’s text into the boundaries
defined by the text container(s).

A layout manager can have a delegate (NSLayoutManagerDelegate), and can be
subclassed. This, as you may well imagine, is a powerful and sophisticated class.

NSTextContainer
Owned by a layout manager; helps that layout manager by defining the region in
which the text is to be laid out. It does this in three primary ways:

Size
The text container’s top left is the origin for the text layout coordinate sys‐
tem, and the text will be laid out within the text container’s rectangle.

672 | Chapter 10: Text

Exclusion paths
The exclusionPaths property consists of UIBezierPath objects within which
no text is to be drawn.

Subclassing
By subclassing, you can place each chunk of text drawing anywhere at all
(except inside an exclusion path).

Text View and Text Kit
A UITextView provides direct access to the underlying Text Kit engine. It has the fol‐
lowing Text Kit–related properties:

textContainer

The text view’s text container (an NSTextContainer instance). UITextView’s des‐
ignated initializer is init(frame:textContainer:); the textContainer: can be
nil to get a default text container, or you can supply your own custom text
container.

textContainerInset

The margins of the text container, designating the area within the contentSize
rectangle in which the text as a whole is drawn. Changing this value changes the
margins immediately, causing the text to be freshly laid out. The default is a top
and bottom of 8.

layoutManager

The text view’s layout manager (an NSLayoutManager instance).

textStorage

The text view’s text storage (an NSTextStorage instance).

When you initialize a text view with a custom text container, you hand it the entire
“stack” of Text Kit instances, the stack is retained, and the text view is operative. The
simplest case might look like this:

let r = // ... frame for the new text view
let lm = NSLayoutManager()
let ts = NSTextStorage()
ts.addLayoutManager(lm)
let tc = NSTextContainer(size:CGSize(r.width, .greatestFiniteMagnitude))
lm.addTextContainer(tc)
let tv = UITextView(frame:r, textContainer:tc)

Text Container
An NSTextContainer has a size, within which the text will be drawn.

Text Kit | 673

In a text view, by default, the text container’s width is the width of the text view, while
its height is effectively infinite, allowing the drawing of the text to grow vertically but
not horizontally beyond the bounds of the text view, and making it possible to scroll
the text vertically.

NSTextContainer also has heightTracksTextView and widthTracksTextView prop‐
erties, causing the text container to be resized to match changes in the size of the text
view — if the text view is resized because of interface rotation, for instance. By
default, as you might expect, widthTracksTextView is true, while heightTracksText-
View is false: the text fills the width of the text view, and is laid out freshly if the text
view’s width changes, but its height remains effectively infinite. The text view itself
configures its own contentSize so that the user can scroll just to the bottom of the
existing text.

When you change a text view’s textContainerInset, it modifies its text container’s
size as necessary. In the default configuration, this means that it modifies the text
container’s width; the top and bottom insets are implemented through the text con‐
tainer’s position within the content rect. Within the text container, additional side
margins are imposed by the text container’s lineFragmentPadding; the default is 5,
but you can change it.

If the text view’s isScrollEnabled is false, then by default its text container’s
heightTracksTextView and widthTracksTextView are both true, and the text con‐
tainer size is adjusted so that the text fills the text view. In that case, you can also set
the text container’s lineBreakMode. This works like the line break mode of a UILabel:
for instance, if the line break mode is .byTruncatingTail, then the last line has an
ellipsis at the end (if the text is too long for the text view). You can also set the text
container’s maximumNumberOfLines, which is like a UILabel’s numberOfLines. In
effect, you’ve turned the text view into a label!

But a nonscrolling text view isn’t just a label, because you’ve got access to the Text Kit
stack that backs it. For example, you can apply exclusion paths to the text container.
Figure 10-15 shows a case in point. The text wraps in longer and longer lines, and
then in shorter and shorter lines, because there’s an exclusion path on the right side
of the text container that’s a rectangle with a large V-shaped indentation.

In Figure 10-15, the text view (self.tv) is initially configured in the view controller’s
viewDidLoad:

self.tv.attributedText = // ...
self.tv.textContainerInset =
 UIEdgeInsets(top: 20, left: 20, bottom: 20, right: 0)
self.tv.isScrollEnabled = false

The exclusion path is then drawn and applied in viewDidLayoutSubviews:

674 | Chapter 10: Text

Figure 10-15. A text view with an exclusion path

Figure 10-16. A text view with a subclassed text container

override func viewDidLayoutSubviews() {
 let sz = self.tv.textContainer.size
 let p = UIBezierPath()
 p.move(to: CGPoint(sz.width/4.0,0))
 p.addLine(to: CGPoint(sz.width,0))
 p.addLine(to: CGPoint(sz.width,sz.height))
 p.addLine(to: CGPoint(sz.width/4.0,sz.height))
 p.addLine(to: CGPoint(sz.width,sz.height/2.0))
 p.close()
 self.tv.textContainer.exclusionPaths = [p]
}

You can also subclass NSTextContainer to modify the rectangle in which the layout
manager wants to position a piece of text. (Each piece of text is actually a line frag‐
ment; I’ll explain in the next section what a line fragment is.) In Figure 10-16, the text
is inside a circle.

To achieve the layout shown in Figure 10-16, I set the attributed string’s line break
mode to .byCharWrapping (to bring the right edge of each line as close as possible to

Text Kit | 675

the circular shape), and construct the Text Kit stack by hand to include an instance of
my NSTextContainer subclass:

let r = self.tv.frame
let lm = NSLayoutManager()
let ts = NSTextStorage()
ts.addLayoutManager(lm)
let tc = MyTextContainer(size:CGSize(r.width, r.height))
lm.addTextContainer(tc)
let tv = UITextView(frame:r, textContainer:tc)

Here’s my NSTextContainer subclass; it overrides just one property and one method,
to dictate the rect of each line fragment:

class MyTextContainer : NSTextContainer {
 override var isSimpleRectangularTextContainer : Bool { return false }
 override func lineFragmentRect(forProposedRect proposedRect: CGRect,
 at characterIndex: Int,
 writingDirection baseWritingDirection: NSWritingDirection,
 remaining remainingRect: UnsafeMutablePointer<CGRect>?) -> CGRect {
 var result = super.lineFragmentRect(
 forProposedRect:proposedRect, at:characterIndex,
 writingDirection:baseWritingDirection,
 remaining:remainingRect)
 let r = self.size.height / 2.0
 // convert initial y so that circle is centered at origin
 let y = r - result.origin.y
 let theta = asin(y/r)
 let x = r * cos(theta)
 // convert resulting x from circle centered at origin
 let offset = self.size.width / 2.0 - r
 result.origin.x = r-x+offset
 result.size.width = 2*x
 return result
 }
}

Alternative Text Kit Stack Architectures
The default Text Kit stack consists of one text storage, which has one layout manager,
which has one text container. But a text storage can have multiple layout managers,
and a layout manager can have multiple text containers. What’s that all about?

Multiple text containers
If one layout manager has multiple text containers, the overflow from each text con‐
tainer is drawn in the next one. In Figure 10-17, there are two text views; the text has
filled the first text view, and has then continued by flowing into and filling the second
text view. As far as I can tell, the text views can’t be made editable in this

676 | Chapter 10: Text

Figure 10-17. A layout manager with two text containers

configuration; but clearly this is a way to achieve a multicolumn or multipage layout,
or you could use text views of different sizes for a magazine-style layout.

It is possible to achieve that arrangement by disconnecting the layout managers of
existing text views from their text containers and rebuilding the stack from below. In
this example, though, I’ll build the entire stack by hand:

let r = // frame
let r2 = // frame
let mas = // content
let ts1 = NSTextStorage(attributedString:mas)
let lm1 = NSLayoutManager()
ts1.addLayoutManager(lm1)
let tc1 = NSTextContainer(size:r.size)
lm1.addTextContainer(tc1)
let tv = UITextView(frame:r, textContainer:tc1)
let tc2 = NSTextContainer(size:r2.size)
lm1.addTextContainer(tc2)
let tv2 = UITextView(frame:r2, textContainer:tc2)

Multiple layout managers
If one text storage has multiple layout managers, then each layout manager is laying
out the same text. In Figure 10-18, there are two text views displaying the same text.
The remarkable thing is that if you edit one text view, the other changes to match.
(That’s how Xcode lets you edit the same code file in different windows, tabs, or
panes.)

Again, this arrangement is probably best achieved by building the entire text stack by
hand:

let r = // frame
let r2 = // frame
let mas = // content
let ts1 = NSTextStorage(attributedString:mas)

Text Kit | 677

Figure 10-18. A text storage with two layout managers

let lm1 = NSLayoutManager()
ts1.addLayoutManager(lm1)
let lm2 = NSLayoutManager()
ts1.addLayoutManager(lm2)
let tc1 = NSTextContainer(size:r.size)
let tc2 = NSTextContainer(size:r2.size)
lm1.addTextContainer(tc1)
lm2.addTextContainer(tc2)
let tv = UITextView(frame:r, textContainer:tc1)
let tv2 = UITextView(frame:r2, textContainer:tc2)

Layout Manager
The first thing to know about a layout manager is the geometry in which it thinks. To
envision a layout manager’s geometrical world, think in terms of glyphs and line
fragments:

Glyph
The drawn analog of a character. The correspondence is not one-to-one; multiple
glyphs can correspond to one character, and multiple characters can correspond
to one glyph. The layout manager’s job is to translate the characters into glyphs,
get those glyphs from a font, and draw them.

Line fragment
A rectangle in which glyphs are drawn, one after another. (The reason it’s a line
fragment, and not simply a line, is that a line might be interrupted by the text
container’s exclusion paths.)

A glyph has a location in terms of the line fragment into which it is drawn. A line
fragment’s coordinates are in terms of the text container. The layout manager can
convert between these coordinate systems, and between text and glyphs:

678 | Chapter 10: Text

• Given a range of text in the text storage, the layout manager knows where the
corresponding glyphs are drawn in the text container.

• Conversely, given a location in the text container, the layout manager knows
what glyph is drawn there and what range of text in the text storage that glyph
represents.

What’s missing from that geometry is what, if anything, the text container corre‐
sponds to in the real world. A text container is not, itself, a real rectangle in the real
world; it’s just a class that tells the layout manager a size to draw into. Making that
rectangle meaningful for drawing purposes is up to some other class outside the Text
Kit stack.

A UITextView is a case in point. It has a text container, which it shares with a layout
manager. The text view knows how its own content is scrolled and how the rectangle
represented by its text container is inset within that scrolling content. The layout
manager doesn’t know anything about that; it sees the text container as a purely theo‐
retical rectangular boundary. Only when the layout manager actually draws does it
make contact with the real world of some graphics context — and it must be told, on
those occasions, how the text container’s rectangle is offset within that graphics
context.

Layout geometry of a text view
Consider a text view scrolled so as to place some word at the top left of its visible
bounds. I’ll use the layout manager to learn what word it is.

I can ask the layout manager what character or glyph corresponds to a certain point
in the text container, but what point should I ask about? Translating from the real
world to text container coordinates is up to me; I must take into account both the
scroll position of the text view’s content and the inset of the text container within that
content:

let off = self.tv.contentOffset
let top = self.tv.textContainerInset.top
let left = self.tv.textContainerInset.left
var tctopleft = CGPoint(off.x - left, off.y - top)

Now I’m speaking in text container coordinates, which are layout manager coordi‐
nates. One possibility is then to ask directly for the index (in the text storage’s string)
of the corresponding character:

let ixx = self.tv.layoutManager.characterIndex(for:tctopleft,
 in:self.tv.textContainer,
 fractionOfDistanceBetweenInsertionPoints:nil)

That, however, does not give quite the results one might intuitively expect. If any of a
word is poking down from above into the visible area of the text view, that is the
word whose first character is returned. I think we intuitively expect, if a word isn’t

Text Kit | 679

fully visible, that the answer should be the word that starts the next line, which is fully
visible. So I’ll modify that code in a simpleminded way. I’ll obtain the index of the
glyph at my initial point; from this, I can derive the rect of the line fragment contain‐
ing it. If that line fragment is not at least three-quarters visible, I’ll add one line frag‐
ment height to the starting point and derive the glyph index again. Then I’ll convert
the glyph index to a character range:

var ix = self.tv.layoutManager.glyphIndex(for:tctopleft,
 in:self.tv.textContainer, fractionOfDistanceThroughGlyph:nil)
let frag = self.tv.layoutManager.lineFragmentRect(
 forGlyphAt:ix, effectiveRange:nil)
if tctopleft.y > frag.origin.y + 0.5*frag.size.height {
 tctopleft.y += frag.size.height
 ix = self.tv.layoutManager.glyphIndex(for:tctopleft,
 in:self.tv.textContainer, fractionOfDistanceThroughGlyph:nil)
}
let charRange = self.tv.layoutManager.characterRange(
 forGlyphRange: NSMakeRange(ix,0), actualGlyphRange:nil)

Finally, I’ll use NLTokenizer (import NaturalLanguage) to get the range of the
entire word to which this character belongs:

let tokenizer = NLTokenizer(unit: .word)
tokenizer.setLanguage(.english)
let text = self.tv.text!
tokenizer.string = text
let range = NSMakeRange(charRange.location, 100)
let words = tokenizer.tokens(for: Range(range, in:text)!)
if let word = words.first {
 print(text[word])
}

Clearly, the same sort of technique could be used to formulate a custom response to a
tap — answering the question, “What word did the user just tap on?”

Layout manager drawing
By subclassing NSLayoutManager (and by implementing its delegate), many power‐
ful effects can be achieved. As a simple example, I’ll carry on from the preceding code
by drawing a rectangular outline around the word we just located. To make this pos‐
sible, I have an NSLayoutManager subclass, MyLayoutManager, an instance of which
is built into the Text Kit stack for this text view. MyLayoutManager has a public
NSRange property, wordRange. Having worked out what word I want to outline, I set
the layout manager’s wordRange and invalidate its drawing of that word, to force a
redraw:

let range = NSRange(word, in:text)
let lm = self.tv.layoutManager as! MyLayoutManager
lm.wordRange = range
lm.invalidateDisplay(forCharacterRange:range)

680 | Chapter 10: Text

In MyLayoutManager, I’ve overridden the method that draws the background behind
glyphs, drawBackground(forGlyphRange:at:). At the moment this method is called,
there is already a graphics context, so all we have to do is draw.

First, I call super. Then, if the range of glyphs to be drawn includes the glyphs for the
range of characters in self.wordRange, I ask for the rect of the bounding box of those
glyphs, and stroke it to form the rectangle. As I mentioned earlier, the bounding box
is in text container coordinates, but now we’re drawing in the real world, so I have to
compensate by offsetting the drawn rectangle by the same amount that the text con‐
tainer is supposed to be offset in the real world; fortunately, the text view tells us
(through the origin: parameter) what that offset is:

override func drawBackground(forGlyphRange glyphsToShow: NSRange,
 at origin: CGPoint) {
 super.drawBackground(forGlyphRange:glyphsToShow, at:origin)
 if self.wordRange.length == 0 {
 return
 }
 var range = self.glyphRange(forCharacterRange:self.wordRange,
 actualCharacterRange:nil)
 range = NSIntersectionRange(glyphsToShow, range)
 if range.length == 0 {
 return
 }
 if let tc = self.textContainer(forGlyphAt:range.location,
 effectiveRange:nil, withoutAdditionalLayout:true) {
 var r = self.boundingRect(forGlyphRange:range, in:tc)
 r.origin.x += origin.x
 r.origin.y += origin.y
 let c = UIGraphicsGetCurrentContext()!
 c.saveGState()
 c.setStrokeColor(UIColor.black.cgColor)
 c.setLineWidth(1.0)
 c.stroke(r)
 c.restoreGState()
 }
}

Text Kit Without a Text View
UITextView is the only built-in iOS class that has a Text Kit stack to which you are
given programmatic access. But that doesn’t mean it’s the only place where you can
draw with Text Kit! You can draw with Text Kit anywhere you can draw — that is, in
any graphics context (Chapter 2). When you do so, you should always call both draw-
Background(forGlyphRange:at:) (the method I overrode in the previous example)
and drawGlyphs(forGlyphRange:at:), in that order. The at: argument is the point
where you consider the text container’s origin to be within the current graphics
context.

Text Kit | 681

To illustrate, I’ll change the implementation of the StringDrawer class that I
described earlier in this chapter. Previously, StringDrawer’s draw(_:) implementa‐
tion told the attributed string (self.attributedText) to draw itself:

override func draw(_ rect: CGRect) {
 let r = rect.offsetBy(dx: 0, dy: 2)
 let opts : NSStringDrawingOptions = .usesLineFragmentOrigin
 self.attributedText.draw(with:r, options: opts, context: context)
}

Instead, I’ll construct the Text Kit stack and tell its layout manager to draw the text:

override func draw(_ rect: CGRect) {
 let lm = NSLayoutManager()
 let ts = NSTextStorage(attributedString:self.attributedText)
 ts.addLayoutManager(lm)
 let tc = NSTextContainer(size:rect.size)
 lm.addTextContainer(tc)
 tc.lineFragmentPadding = 0
 let r = lm.glyphRange(for:tc)
 lm.drawBackground(forGlyphRange:r, at:CGPoint(0,2))
 lm.drawGlyphs(forGlyphRange: r, at:CGPoint(0,2))
}

Building the entire Text Kit stack by hand may seem like overkill for that simple
example, but imagine what else I could do now that I have access to the entire Text
Kit stack! I can use properties, subclassing, delegation, and alternative stack architec‐
tures to achieve customizations and effects that, before Text Kit was migrated to iOS,
were difficult or impossible to achieve without dipping down to the level of Core
Text.

The two-column display of U.S. state names on the iPad shown in Figure 10-19 was a
Core Text example in early editions of this book, requiring 50 or 60 lines of elaborate
C code, complicated by the necessity of flipping the context to prevent the text from
being drawn upside-down. Nowadays, it can be achieved easily through Text Kit —
effectively just by reusing code from earlier examples in this chapter.

We can also make the display of state names interactive, with the name of the tapped
state briefly outlined with a rectangle (Figure 10-20). When I implemented this using
Core Text in earlier editions of the book, it was insanely difficult, not least because we
had to keep track of all the line fragment rectangles ourselves. But it’s easy with Text
Kit, because the layout manager knows all the answers.

We have a UIView subclass, StyledText. In its layoutSubviews, it creates the Text Kit
stack — a layout manager with two text containers, to achieve the two-column layout
— and stores the whole stack, along with the rects at which the two text containers
are to be drawn, in properties:

682 | Chapter 10: Text

Figure 10-19. Two-column text in small caps

Figure 10-20. The user has tapped on California

override func layoutSubviews() {
 super.layoutSubviews()
 var r1 = self.bounds
 r1.origin.y += 2 // a little top space
 r1.size.width /= 2.0 // column 1
 var r2 = r1
 r2.origin.x += r2.size.width // column 2
 let lm = MyLayoutManager()
 let ts = NSTextStorage(attributedString:self.text)
 ts.addLayoutManager(lm)
 let tc = NSTextContainer(size:r1.size)
 lm.addTextContainer(tc)

Text Kit | 683

 let tc2 = NSTextContainer(size:r2.size)
 lm.addTextContainer(tc2)
 self.lm = lm; self.ts = ts; self.tc = tc; self.tc2 = tc2
 self.r1 = r1; self.r2 = r2
}

Our draw(_:) is just like the previous example, except that we have two text contain‐
ers to draw:

override func draw(_ rect: CGRect) {
 let range1 = self.lm.glyphRange(for:self.tc)
 self.lm.drawBackground(forGlyphRange:range1, at: self.r1.origin)
 self.lm.drawGlyphs(forGlyphRange:range1, at: self.r1.origin)
 let range2 = self.lm.glyphRange(for:self.tc2)
 self.lm.drawBackground(forGlyphRange:range2, at: self.r2.origin)
 self.lm.drawGlyphs(forGlyphRange:range2, at: self.r2.origin)
}

So much for drawing the text! We now have Figure 10-19.

On to Figure 10-20. When the user taps on our view, a tap gesture recognizer’s action
method is called. We are using the same layout manager subclass developed in the
preceding section of this chapter: it draws a rectangle around the glyphs correspond‐
ing to the characters of its wordRange property. All we have to do in order to make
the flashing rectangle around the tapped word is work out what that range is, set our
layout manager’s wordRange property and redraw ourselves, and then (after a short
delay) set the wordRange property back to a zero range and redraw ourselves again to
remove the rectangle.

We start by working out which column the user tapped in; this tells us which text
container it is, and what the tapped point is in text container coordinates (g is the tap
gesture recognizer):

var p = g.location(in:self)
var tc = self.tc!
if !self.r1.contains(p) {
 tc = self.tc2!
 p.x -= self.r1.size.width
}

Now we can ask the layout manager what glyph the user tapped on, and hence the
whole range of glyphs within the line fragment the user tapped in. If the user tapped
to the left of the first glyph or to the right of the last glyph, no word was tapped, and
we return:

var f : CGFloat = 0
let ix =
 self.lm.glyphIndex(for:p, in:tc, fractionOfDistanceThroughGlyph:&f)
var glyphRange : NSRange = NSMakeRange(0,0)
self.lm.lineFragmentRect(forGlyphAt:ix, effectiveRange:&glyphRange)
if ix == glyphRange.location && f == 0.0 {

684 | Chapter 10: Text

 return
}
if ix == glyphRange.location + glyphRange.length - 1 && f == 1.0 {
 return
}

If the last glyph of the line fragment is a whitespace glyph, we don’t want to include it
in our rectangle, so we subtract it from the end of our range. Then we’re ready to
convert to a character range, and we can learn the name of the state that the user tap‐
ped on:

func lastCharIsControl () -> Bool {
 let lastCharRange = glyphRange.location + glyphRange.length - 1
 let property = self.lm.propertyForGlyph(at:lastCharRange)
 return property.contains(.controlCharacter)
}
while lastCharIsControl() {
 glyphRange.length -= 1
}
let characterRange =
 self.lm.characterRange(forGlyphRange:glyphRange, actualGlyphRange:nil)
let s = self.text.string
if let r = Range(characterRange, in:s) {
 let stateName = s[r]
 print("you tapped \(stateName)")
}

Finally, we flash the rectangle around the state name by setting and resetting the word-
Range property of the subclassed layout manager:

let lm = self.lm as! MyLayoutManager
lm.wordRange = characterRange
self.setNeedsDisplay()
delay(0.3) {
 lm.wordRange = NSMakeRange(0, 0)
 self.setNeedsDisplay()
}

Text Kit | 685

CHAPTER 11

Web Views

A web view is a web browser, which is a powerful thing: it knows how to fetch resour‐
ces through the internet, and it can render HTML and CSS, and can respond to Java‐
Script. It is a network communication device, as well as an interactive layout,
animation, and media display engine.

In a web view, links and other ancillary resources work automatically. If your web
view’s HTML refers to an image, the web view will fetch it and display it. If the user
taps on a link, the web view will fetch that content and display it; if the link is to some
sort of media (a sound or video file), the web view will allow the user to play it.

A web view can also display some other types of content commonly encountered as
internet resources. It can display PDF files, as well as documents in such formats
as .rtf, Microsoft Word (.doc and .docx), and Pages. (A Pages file that is actually a
bundle must be compressed to form a single .pages.zip resource.)

A web view should also be able to display .rtfd files, but this feature is not work‐
ing properly; Apple suggests that you convert to an attributed string as I
described in Chapter 10 (specifying a document type of NSRTFDTextDocument-
Type), or use a QLPreviewController (Chapter 22).

The loading and rendering of a web view’s content takes time, and may involve net‐
working. Your app’s interface, however, is not blocked or frozen while the content is
loading. On the contrary, your interface remains accessible and operative. The web
view, in fetching and rendering a web page and its linked components, is doing
something quite complex, involving both threading and network interaction — I’ll
have a lot more to say about this in Chapters 23 and 24 — but it shields you from this
complexity, and it operates in the background, off the main thread. Your own inter‐
action with the web view stays on the main thread and is straightforward. You ask the
web view to load some content; then you sit back and let it worry about the details.

687

iOS 9 introduced App Transport Security. Your app, by default, cannot load
external URLs that are not secure (https:). You can turn off this restriction
completely or in part in your Info.plist. See Chapter 23 for details.

WKWebView
WKWebView is part of the WebKit framework (import WebKit). The designated ini‐
tializer is init(frame:configuration:). The second parameter, configuration:, is
a WKWebViewConfiguration. You can create a configuration beforehand:

let config = WKWebViewConfiguration()
// ... configure config here ...
let wv = WKWebView(frame: rect, configuration:config)

Alternatively, you can modify the web view’s configuration later, through its
configuration property. Either way, you’ll probably want to perform configurations
before the web view has a chance to load any content, because some settings will
affect how it loads or renders that content. Here are some of the more important
WKWebViewConfiguration properties:

suppressesIncrementalRendering

If true, the web view’s visible content doesn’t change until all linked renderable
resources (such as images) have finished loading. The default is false.

allowsInlineMediaPlayback

If true, linked media are played inside the web page. The default is false (the
fullscreen player is used).

mediaTypesRequiringUserActionForPlayback

Types of media that won’t start playing automatically, without a user gesture. A
bitmask (WKAudiovisualMediaTypes) with possible values .audio, .video,
and .all.

allowsPictureInPictureMediaPlayback

See Chapter 15 for a discussion of picture-in-picture playback.

dataDetectorTypes

Types of content that may be transformed automatically into tappable links. Sim‐
ilar to a text view’s data detectors (Chapter 10).

websiteDataStore

A WKWebsiteDataStore. By supplying a data store, you get control over stored
resources. Its httpCookieStore is a WKHTTPCookieStore where you can exam‐
ine, add, and remove cookies.

688 | Chapter 11: Web Views

preferences

A WKPreferences object. This is a value class embodying four properties:

• minimumFontSize

• javaScriptEnabled

• javaScriptCanOpenWindowsAutomatically

• isFraudulentWebsiteWarningEnabled (new in iOS 13)

userContentController

A WKUserContentController object. This is how you can inject JavaScript into a
web page and communicate between your code and the web page’s content. I’ll
give an example later. Also, you can give the userContentController a rule list
(WKContentRuleList) that filters the web view’s content.

A WKWebView is not a scroll view, but it has a scroll view (scrollView). You can
use this to scroll the web view’s content programmatically and to respond as the
scroll view’s delegate when the user scrolls, plus you can get references to the scroll
view’s gesture recognizers and add gesture recognizers of your own.

You can take a snapshot of a web view’s content by calling take-

Snapshot(with:completionHandler:). The snapshot image is passed into the com‐
pletion function as a UIImage.

In the nib editor, the Objects library contains a WKWebView object that you can
drag into your interface as you design it; you might need to link to the WebKit frame‐
work manually (in the app target’s Link Binary With Libraries build phase) to pre‐
vent the app from crashing as the nib loads. Many WKWebViewConfiguration and
WKPreferences properties can be configured in the nib editor as well.

Web View Content
You can supply a web view with content using one of four methods, depending on
the content’s type:

A URLRequest
Form a URLRequest from a URL and call load(_:). The URLRequest initializer
is init(url:cachePolicy:timeoutInterval:), but the second and third param‐
eters are optional and will often be omitted. Additional URLRequest configura‐
tion includes such properties as allowsExpensiveNetworkAccess (see
Chapter 23):

let url = URL(string: "https://www.apple.com")!
let req = URLRequest(url: url)
// could set req.allowsExpensiveNetworkAccess here
self.wv.load(req)

WKWebView | 689

A local file
Obtain a local file URL and call loadFileURL(_:allowingReadAccessTo:). The
second parameter effectively sandboxes the web view into a single file or direc‐
tory. In this example from one of my apps, the HTML file zotzhelp.html refers to
images in the same directory as itself:

let url = Bundle.main.url(
 forResource: "zotzhelp", withExtension: "html")!
view.loadFileURL(url, allowingReadAccessTo: url)

An HTML string
Prepare a string consisting of valid HTML, and call loadHTMLString(_:base-
URL:). The baseURL: specifies how partial URLs in your HTML are to be
resolved (as when the HTML refers to resources in your app bundle). Starting
with an HTML string is useful particularly when you want to construct your
HTML programmatically or make changes to it before handing it to the web
view. In this example from the TidBITS News app, my HTML consists of two
strings: a wrapper with the usual <html> tags, and the body content derived from
an RSS feed. I assemble them and hand the resulting string to my web view for
display:

let templatepath = Bundle.main.path(
 forResource: "htmlTemplate", ofType:"txt")!
let base = URL(fileURLWithPath:templatepath)
var s = try! String(contentsOfFile:templatepath)
let ss = // actual body content for this page
s = s.replacingOccurrences(of:"<content>", with:ss)
self.wv.loadHTMLString(s, baseURL:base)

A Data object
Call load(_:MIMEType:characterEncodingName:baseURL:). This is useful par‐
ticularly when the content has itself arrived from the network, as the parameters
correspond to the properties of a URLResponse. This example will be more
meaningful to you after you’ve read Chapter 23:

let sess = URLSession.shared
let url = URL(string:"https://www.someplace.net/someImage.jpg")!
let task = sess.dataTask(with: url) { data, response, err in
 if let response = response,
 let mime = response.mimeType,
 let enc = response.textEncodingName,
 let data = data {
 self.wv.load(data, mimeType: mime,
 characterEncodingName: enc, baseURL: url)
 }
}

690 | Chapter 11: Web Views

All four methods return a WKNavigation object, but I ignored it in my examples. If
you like, you can capture it to identify an individual page-loading operation, as I’ll
explain later.

Tracking Changes in a Web View
A WKWebView has properties that can be tracked with key–value observing, such as:

• isLoading

• estimatedProgress

• url

• title

You can observe these properties to be notified as a web page loads or changes.

To illustrate, I’ll give the user feedback while a page is loading by displaying an activ‐
ity indicator (Chapter 12). I’ll start by putting the activity indicator in the center of
my web view and keeping a reference to it:

let act = UIActivityIndicatorView(style:.large)
act.backgroundColor = UIColor(white:0.1, alpha:0.5)
act.color = .white
self.wv.addSubview(act)
act.translatesAutoresizingMaskIntoConstraints = false
NSLayoutConstraint.activate([
 act.centerXAnchor.constraint(equalTo:wv.centerXAnchor),
 act.centerYAnchor.constraint(equalTo:wv.centerYAnchor)
])
self.activity = act

Now I observe the web view’s isLoading property (self.obs is a Set instance prop‐
erty). When the web view starts loading or stops loading, I’m notified, so I can show
or hide the activity view:

let ob = self.wv.observe(\.isLoading, options:.new) {[unowned self] wv,ch in
 if let val = ch.newValue {
 if val {
 self.activity.startAnimating()
 } else {
 self.activity.stopAnimating()
 }
 }
}
self.obs.insert(ob)

WKWebView | 691

Web View Navigation
A WKWebView maintains a back and forward list of the URLs to which the user has
navigated. The list is its backForwardList, a WKBackForwardList, which is a collec‐
tion of read-only properties (and one method):

• currentItem

• backItem

• forwardItem

• item(at:)

Each item in the list is a WKBackForwardItem, a simple value class basically consist‐
ing of a url and a title.

A WKWebView responds to goBack, goForward and go(to:), so you can tell it in
code to navigate the list. Its properties canGoBack and canGoForward are key–value
observable; typically you would use that fact to enable or disable a Back and Forward
button in your interface in response to the list changing.

A WKWebView also has a settable property, allowsBackForwardNavigation-

Gestures. The default is false; if true, the user can swipe sideways to go back and
forward in the list. This property can also be set in the nib editor.

To prevent or reroute navigation that the user tries to perform by tapping links, set
yourself as the WKWebView’s navigationDelegate (WKNavigationDelegate) and
implement webView(_:decidePolicyFor:decisionHandler:), where the for:

parameter is a WKNavigationAction that you can examine to help make your deci‐
sion. Among other things, its request property is the URLRequest we are proposing
to perform — look at its url to see where we are proposing to go — along with a
navigationType, which will be one of the following (WKNavigationType):

• .linkActivated

• .backForward

• .reload

• .formSubmitted

• .formResubmitted

• .other

You are also handed a decisionHandler function which you must call with a
WKNavigationActionPolicy argument — either .cancel or .allow.

692 | Chapter 11: Web Views

In this example, I permit navigation in the most general case — otherwise nothing
would ever appear in my web view! — but if the user taps a link, I forbid it and show
that URL in Mobile Safari instead:

func webView(_ webView: WKWebView,
 decidePolicyFor navigationAction: WKNavigationAction,
 decisionHandler: @escaping (WKNavigationActionPolicy) -> Void) {
 if navigationAction.navigationType == .linkActivated {
 if let url = navigationAction.request.url {
 UIApplication.shared.open(url)
 decisionHandler(.cancel)
 return
 }
 }
 decisionHandler(.allow)
}

New in iOS 13, a web view has a content mode (WKWebpagePreferences.Content‐
Mode), determining how the web view represents itself as a browser to the server:

.desktop

The default on an iPad when the web view is fullscreen. Web sites will appear in
their desktop version.

.mobile

The default on an iPhone, or on the iPad when the web view is not fullscreen
(perhaps it’s in a popover, or we’re doing iPad multitasking). Web sites will
appear in their mobile version.

To access desktop mode in a WKWebView, you’ll need to set the configuration’s
applicationNameForUserAgent property to a desktop browser’s user agent string,
such as "Version/13.0.1 Safari/605.1.15". You can set this in the nib editor.

If you want to change the content mode for a particular web page during navigation,
implement webView(_:decidePolicyFor:preferences:decisionHandler:). The
third parameter is a WKWebpagePreferences object, a simple value class with just
one property — its preferredContentMode. Set this property to .desktop or .mobile,
and pass the WKWebpagePreferences object into the decisionHandler call as the
second argument.

Several other WKNavigationDelegate methods can notify you as a page loads (or fails
to load). Under normal circumstances, you’ll receive them in this order:

• webView(_:didStartProvisionalNavigation:)

• webView(_:didCommit:)

• webView(_:didFinish:)

WKWebView | 693

Those delegate methods, and all navigation commands, including the four ways of
loading your web view with initial content, supply a WKNavigation object. You can
use this in an equality comparison to determine whether the navigations referred to
in different methods are the same navigation (roughly speaking, the same page-
loading operation). New in iOS 13, this object also has an effectiveContentMode
property that tells you the current content mode (.desktop or .mobile).

Communicating with a Web Page
Your code can pass JavaScript messages into and out of a WKWebView’s web page,
allowing you to change the page’s contents or respond to changes within it, even
while it is being displayed.

Communicating into a web page

To send a message into an already loaded WKWebView web page, call evaluateJava-
Script(_:completionHandler:). Your JavaScript runs within the context of the web
page.

In this example, the user is able to decrease the size of the text in the web page. We
have prepared some JavaScript that generates a <style> element containing CSS that
sets the font-size for the page’s <body> in accordance with a property,
self.fontsize:

var fontsize = 18
var cssrule : String {
 return """
 var s = document.createElement('style');
 s.textContent = 'body { font-size: \(self.fontsize)px; }';
 document.documentElement.appendChild(s);
 """
}

When the user taps a button, we decrement self.fontsize, construct that Java‐
Script, and send it to the web page:

func doDecreaseSize (_ sender: Any) {
 self.fontsize -= 1
 if self.fontsize < 10 {
 self.fontsize = 20
 }
 let s = self.cssrule
 self.wv.evaluateJavaScript(s)
}

That’s clever, but we have not done anything about setting the web page’s initial
font-size. Let’s fix that.

694 | Chapter 11: Web Views

A WKWebView allows us to inject JavaScript into the web page at the time it is
loaded. To do so, we use the userContentController of the WKWebView’s
configuration. We create a WKUserScript, specifying the JavaScript it contains,
along with an injectionTime which can be either before (.documentStart) or after
(.documentEnd) a page’s content has loaded. In this case, we want it to be before;
otherwise, the user will see the font size change suddenly:

let script = WKUserScript(source: self.cssrule,
 injectionTime: .atDocumentStart, forMainFrameOnly: true)
let config = self.wv.configuration
config.userContentController.addUserScript(script)

Communicating out of a web page
To communicate out of a web page, you need first to install a message handler to
receive the communication. Again, this involves the userContentController. You
call add(_:name:), where the first argument is an object that must implement the
WKScriptMessageHandler protocol, so that its userContentController(_:did-
Receive:) method can be called later:

let config = self.wv.configuration
config.userContentController.add(self, name: "playbutton")

We have just installed a playbutton message handler. This means that the DOM for
our web page now contains an element, among its window.webkit.messageHandlers,
called playbutton. A message handler sends its message when it receives a post-
Message() function call. The WKScriptMessageHandler (self in this example) will
get a call to its userContentController(_:didReceive:) method if JavaScript inside
the web page sends postMessage() to the window.webkit.message-

Handlers.playbutton object.

To make that actually happen, I’ve put an tag into my web page’s HTML,
defining an image that will act as a tappable button:

<img src="listen.png"
 onclick="window.webkit.messageHandlers.playbutton.postMessage('play')">

When the user taps that image, the message is posted, and so my code runs and I can
respond:

func userContentController(_ userContentController: WKUserContentController,
 didReceive message: WKScriptMessage) {
 if message.name == "playbutton" {
 if let body = message.body as? String {
 if body == "play" {
 // ... do stuff here ...

WKWebView | 695

 }
 }
 }
}

There’s just one little problem: that code causes a retain cycle. The reason is that a
WKUserContentController leaks, and it retains the WKScriptMessageHandler,
which in this case is self — and so self will never be deallocated. But self is the
view controller, so that’s very bad. My solution is to create an intermediate trampo‐
line object that can be harmlessly retained, and that has a weak reference to self:

class MyMessageHandler : NSObject, WKScriptMessageHandler {
 weak var delegate : WKScriptMessageHandler?
 init(delegate:WKScriptMessageHandler) {
 self.delegate = delegate
 super.init()
 }
 func userContentController(_ ucc: WKUserContentController,
 didReceive message: WKScriptMessage) {
 self.delegate?.userContentController(ucc, didReceive: message)
 }
}

Now when I add myself as a script message handler, I do it by way of the trampoline
object:

let config = self.wv.configuration
let handler = MyMessageHandler(delegate:self)
config.userContentController.add(handler, name: "playbutton")

Now that I’ve broken the retain cycle, my own deinit is called, and I can release the
offending objects:

deinit {
 let ucc = self.wv.configuration.userContentController
 ucc.removeAllUserScripts()
 ucc.removeScriptMessageHandler(forName:"playbutton")
}

JavaScript alerts
If a web page tries to put up a JavaScript alert, nothing will happen in your app unless
you assign the WKWebView a uiDelegate, an object adopting the WKUIDelegate
protocol, and implement these methods:

webView(_:runJavaScriptAlertPanelWithMessage:initiatedByFrame:completion-

Handler:)

Called by JavaScript alert.

696 | Chapter 11: Web Views

webView(_:runJavaScriptConfirmPanelWithMessage:initiatedByFrame:

completionHandler:)

Called by JavaScript confirm.

webView(_:runJavaScriptTextInputPanelWithPrompt:defaultText:initiatedBy-

Frame:completionHandler:)

Called by JavaScript prompt.

Your implementation should put up an appropriate alert (UIAlertController, see
Chapter 13) and call the completion function when it is dismissed. Here’s a minimal
implementation for the alert method:

func webView(_ webView: WKWebView,
 runJavaScriptAlertPanelWithMessage message: String,
 initiatedByFrame frame: WKFrameInfo,
 completionHandler: @escaping () -> Void) {
 let host = frame.request.url?.host
 let alert = UIAlertController(title: host, message: message,
 preferredStyle: .alert)
 alert.addAction(UIAlertAction(title: "OK", style: .default) { _ in
 completionHandler()
 })
 self.present(alert, animated:true)
}

Similarly, if a web page’s JavaScript calls window.open, implement this method:

• webView(_:createWebViewWith:for:windowFeatures:)

Your implementation can return nil, or else create a new WKWebView, get it into
the interface, and return it.

Custom Schemes
Starting in iOS 11, you can feed data into a web page by implementing a custom URL
scheme. When the web page asks for the data by way of the scheme, the WKWeb‐
View turns to your code to supply the data.

Let’s say I have an MP3 file called "theme" in my app’s asset catalog, and I want the
user to be able to play it through an <audio> tag in my web page. I’ve invented a cus‐
tom scheme that signals to my app that we want this audio data, and my web page’s
<source> tag asks for its data using that scheme:

weak var wv: WKWebView!
let sch = "neuburg-custom-scheme-demo-audio" // custom scheme
override func viewDidLoad() {
 super.viewDidLoad()
 let config = WKWebViewConfiguration()
 // ... configure the web view ...
 let r = // ... CGRect for web view frame ...

WKWebView | 697

 let wv = WKWebView(frame: r, configuration: config)
 self.view.addSubview(wv)
 self.wv = wv
 let s = """
 <!DOCTYPE html><html><head>
 <meta name="viewport" content="initial-scale=1.0, user-scalable=no" />
 </head><body>
 <p>Here you go:</p>
 <audio controls>
 <source src="\(sch)://theme" />
 </audio>
 </body></html>
 """
 self.wv.loadHTMLString(s, baseURL: nil)
}

Now let’s fill in the missing code, where we configure the web view to accept sch as a
custom scheme:

let sh = SchemeHandler()
sh.sch = self.sch
config.setURLSchemeHandler(sh, forURLScheme: self.sch)

The call to setURLSchemeHandler requires that we provide an object that adopts the
WKURLSchemeHandler protocol. That object cannot be self, or we’ll get ourselves
into a retain cycle (similar to the problem we had with WKScriptMessageHandler
earlier); so I’m configuring and passing a custom SchemeHandler helper object
instead.

The WKURLSchemeHandler protocol methods are where the action is. When the
web page wants data with our custom scheme, it calls our SchemeHandler’s web-
View(_:start:) method. The second parameter is a WKURLSchemeTask that
operates as our gateway back to the web view. Its request property contains the
URLRequest from the web page. We must call the WKURLSchemeTask’s methods,
first supplying a URLResponse, then handing it the data, then telling it that we’ve
finished:

class SchemeHandler : NSObject, WKURLSchemeHandler {
 var sch : String?
 func webView(_ webView: WKWebView, start task: WKURLSchemeTask) {
 if let url = task.request.url,
 let sch = self.sch,
 url.scheme == sch,
 let host = url.host,
 let theme = NSDataAsset(name:host) {
 let data = theme.data
 let resp = URLResponse(url: url, mimeType: "audio/mpeg",
 expectedContentLength: data.count,
 textEncodingName: nil)
 task.didReceive(resp)
 task.didReceive(data)

698 | Chapter 11: Web Views

 task.didFinish()
 } else {
 task.didFailWithError(NSError(domain: "oops", code: 0))
 }
 }
 func webView(_ webView: WKWebView, stop task: WKURLSchemeTask) {
 print("stop")
 }
}

The outcome is that the audio controls appear in our web page, and when the user
taps the Play button, what plays is the MP3 file from the app’s asset catalog.

This feature works only if we create the web view ourselves, in code, using the
init(frame:configuration:) initializer, with the WKWebViewConfiguration
object prepared beforehand. So we can’t use a custom scheme with a web view
instantiated from a nib. I regard this limitation as a bug.

Web View Previews and Context Menus
As I described earlier (“Previews and Context Menus” on page 382), 3D touch peek
and pop is superseded in iOS 13 by the use of a long press to summon a preview with
a context menu. If a WKWebView’s allowsLinkPreview property is true, the user
can long press on a link to summon a preview of the linked page, along with default
menu items Open Link, Add to Reading List, Copy Link, Share, and Hide Link
Previews. (This property can be set in the nib editor.)

The default response to the user tapping on the preview is to open the link in Safari.
This mechanism does not pass through your navigation delegate’s implementation of
webView(_:decidePolicyFor:decisionHandler:). Instead, if you wish to customize
your app’s response to the user previewing links, you can implement methods in your
uiDelegate (WKUIDelegate) that are parallel to the UIContextMenuInteraction‐
Delegate methods:

webView(_:contextMenuConfigurationForElement:completionHandler:

The element: is a WKContextMenuElementInfo, which is merely a value class
carrying a single property, the linkURL for the link that the user is pressing on.
Your job is to call the completionHandler with one of these as argument:

• A fully configured UIContextMenuConfiguration created by calling the ini‐
tializer init(identifier:previewProvider:actionProvider:). If you sup‐
ply an action provider function, the incoming parameter is an array of the
default UIActions, so you can keep any or all of those as menu items if you
want to.

• nil to permit the default behavior.

WKWebView | 699

• An empty UIContextMenuConfiguration (no preview provider, no action
provider) to prevent anything from happening.

webView(_:contextMenuWillPresentForElement:)

The context menu is about to appear.

webView(_:contextMenuForElement:willCommitWithAnimator:)

The user has tapped the preview. You might add a completion handler to the
animator to perform a view controller transition.

webView(_:contextMenuDidEndForElement:)

The preview and menu have been dismissed, no matter how.

Safari View Controller
A Safari view controller (SFSafariViewController) embeds the Mobile Safari interface
in a separate process inside your app. It provides the user with a browser interface
familiar from Mobile Safari itself. In a toolbar, which can be shown or hidden by
scrolling, there are Back and Forward buttons, a Share button including standard
Safari features such as Add Bookmark and Add to Reading List, and a Safari button
that lets the user load the same page in the real Safari app. In a navigation bar, which
can be shrunk or grown by scrolling, are a read-only URL field, a Text button where
the user can change the text size, enter Reader view, and configure site settings, plus a
Refresh button, along with a Done button. The user has access to autofill and to
Safari cookies with no intervention by your app.

The idea, according to Apple, is that when you want to present internal HTML con‐
tent, such as an HTML string, you’ll use a WKWebView, but when you really want to
allow the user to access the web, you’ll use a Safari view controller. In this way, you
are saved from the trouble of trying to build a full-fledged web browser yourself.

To use a Safari view controller (import SafariServices), create the SFSafariView‐
Controller, initialize it with a URL, and present it:

let svc = SFSafariViewController(url: url)
self.present(svc, animated: true)

In this example, we interfere (as a WKWebView’s navigationDelegate) with the
user tapping on a link in our web view, so that the linked page is displayed in an
SFSafariViewController within our app:

func webView(_ webView: WKWebView,
 decidePolicyFor navigationAction: WKNavigationAction,
 decisionHandler: @escaping (WKNavigationActionPolicy) -> Void) {
 if navigationAction.navigationType == .linkActivated {
 if let url = navigationAction.request.url {
 let svc = SFSafariViewController(url: url)
 self.present(svc, animated: true)

700 | Chapter 11: Web Views

 decisionHandler(.cancel)
 return
 }
 }
 decisionHandler(.allow)
}

When the user taps the Done button in the navigation bar, the Safari view controller
is dismissed. You can change the title of the Done button; to do so, set the Safari view
controller’s dismissButtonStyle to .done, .close, or .cancel.

You can set the color of the Safari view controller’s navigation bar (preferredBar-
TintColor) and bar button items (preferredControlTintColor). This allows the
look of the view to harmonize with the rest of your app.

You can configure a Safari view controller by creating an SFSafariView‐
Controller.Configuration object and passing it to the Safari view controller through
its initializer init(url:configuration:). Using the configuration object, you can
prevent the Safari view controller’s top and bottom bars from collapsing when the
user scrolls; to do so, set its barCollapsingEnabled property to false.

You can make yourself the Safari view controller’s delegate (SFSafariViewController‐
Delegate) and implement any of these methods:

safariViewController(_:didCompleteInitialLoad:)

safariViewControllerDidFinish(_:)

Called on presentation and dismissal of the Safari view controller, respectively.

func safariViewController(_:initialLoadDidRedirectTo:)

Reports that the Safari view controller’s initial web page differs from the URL
you originally provided, because redirection occurred.

safariViewController(_:activityItemsFor:title:)

Allows you to supply your own Share button items; I’ll explain what activity
items are in Chapter 13.

safariViewController(_:excludedActivityTypesFor:title:)

In a sense, the converse of the preceding: allows you to eliminate unwanted activ‐
ity types from the Share button.

Developing Web View Content
Before designing the HTML to be displayed in a web view, you might want to read up
on the brand of HTML native to the mobile WebKit rendering engine. There are cer‐
tain limitations; mobile WebKit doesn’t use plug-ins such as Flash, and it imposes
limits on the size of resources (such as images) that it can display. On the plus side,
WebKit is in the vanguard of the march toward HTML5 and CSS3, and has many

Developing Web View Content | 701

special capabilities suited for display on a mobile device. For documentation and
other resources, see Apple’s Safari Dev Center.

A good place to start is the Safari Web Content Guide (in the documentation
archive). It contains links to other relevant documentation, such as the Safari CSS
Visual Effects Guide, which describes some things you can do with WebKit’s imple‐
mentation of CSS3 (like animations), and the Safari HTML5 Audio and Video Guide,
which describes WebKit’s audio and video player support.

If nothing else, you’ll want to be aware of one important aspect of web page content
— the viewport. This is typically set through a <meta> tag in the <head> area:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no">

Without that line, or something similar, a web page may be laid out incorrectly when
it is rendered: your content may appear tiny (because it is being rendered as if the
screen were large), or it may be too wide for the view, forcing the user to scroll hori‐
zontally to read it. The viewport’s user-scalable attribute can be treated as yes by
setting the WKWebViewConfiguration’s ignoresViewportScaleLimits to true.

Another important section of the Safari Web Content Guide describes how you can
use a media attribute in the <link> tag that loads your CSS to load different CSS
depending on what kind of device your app is running on (also known as a responsive
web page); you might have one CSS file that lays out your web view’s content on an
iPhone, and another that lays it out on an iPad.

Inspecting, debugging, and experimenting with web view content is greatly eased by
the Web Inspector, built into Safari on the desktop. It can see a web view in your app
running on a device or the Simulator, and lets you analyze every aspect of how it
works. You can hover the mouse over a web page element in the Web Inspector to
highlight the rendering of that element in the running app. Moreover, the Web
Inspector lets you change your web view’s content in real time, with many helpful
features such as CSS autocompletion.

JavaScript and the document object model (DOM) are also extremely powerful. Event
listeners allow JavaScript code to respond directly to touch and gesture events, so that
the user can interact with elements of a web page much as if they were iOS-native
touchable views; it can also take advantage of Core Location and Core Motion facili‐
ties to respond to where the user is on earth and how the device is positioned (see
Chapter 21). Additional helpful documentation includes Apple’s WebKit DOM Pro‐
gramming Topics and the WebKit JS framework reference page.

702 | Chapter 11: Web Views

CHAPTER 12

Controls and Other Views

This chapter discusses all UIView subclasses provided by UIKit that haven’t been dis‐
cussed already. It’s remarkable how few of them there are; UIKit exhibits a notable
economy of means in this regard.

Additional UIView subclasses, as well as UIViewController subclasses that create
interface, are provided by other frameworks. There will be examples in Part III.

UIActivityIndicatorView
An activity indicator (UIActivityIndicatorView) appears as the spokes of a small
wheel. You set the spokes spinning with startAnimating, giving the user a sense that
some time-consuming process is taking place. You stop the spinning with stop-
Animating. If the activity indicator’s hidesWhenStopped is true (the default), it is
visible only while spinning.

An activity indicator comes in a style; if it is created in code, you’ll set its style with
init(style:). Your choices (UIActivityIndicatorView.Style) are:

• .large

• .medium

(Those styles are new in iOS 13, replacing the older .whiteLarge, .white, and gray.)

An activity indicator has a standard size, which depends on its style. Changing its size
in code changes the size of the view, but not the size of the spokes. For bigger spokes,
you can resort to a scale transform.

You can assign an activity indicator a color; this overrides the default gray color of
the spokes. An activity indicator is a UIView, so you can also set its background-

703

Figure 12-1. A large activity indicator

Color; a nice effect is to give an activity indicator a contrasting background color and
to round its corners by way of the view’s layer (Figure 12-1).

Here’s some code from a UITableViewCell subclass in one of my apps. In this app, it
takes some time, after the user taps a cell to select it, for me to construct the next view
and navigate to it; to cover the delay, I show a spinning activity indicator in the cen‐
ter of the cell while it’s selected:

override func setSelected(_ selected: Bool, animated: Bool) {
 if selected {
 let v = UIActivityIndicatorView(style:.large)
 v.color = .yellow
 v.backgroundColor = UIColor(white:0.2, alpha:0.6)
 v.layer.cornerRadius = 10
 v.frame = v.frame.insetBy(dx: -10, dy: -10)
 v.center = self.contentView.convert(self.bounds.center, from: self)
 v.tag = 1001
 self.contentView.addSubview(v)
 v.startAnimating()
 } else {
 self.viewWithTag(1001)?.removeFromSuperview()
 }
 super.setSelected(selected, animated: animated)
}

If activity involves the network, you might want to set the UIApplication’s isNetwork-
ActivityIndicatorVisible to true. This displays a small spinning activity indicator
in the status bar. The indicator is not reflecting actual network activity; if it’s visible,
it’s spinning. Be sure to set it back to false when the activity is over.

An activity indicator is simple and standard, but you can’t change the way it’s drawn.
One obvious alternative would be a UIImageView with an animated image, as
described in Chapter 4. Another solution is a CAReplicatorLayer, a layer that makes
multiple copies of its sublayer; by animating the sublayer, you animate the copies.
This is a very common approach (in fact, it wouldn’t surprise me to learn that
UIActivityIndicatorView is implemented using CAReplicatorLayer). Here’s an
example:

let lay = CAReplicatorLayer()
lay.frame = CGRect(0,0,100,20)
let bar = CALayer()
bar.frame = CGRect(0,0,10,20)
bar.backgroundColor = UIColor.red.cgColor

704 | Chapter 12: Controls and Other Views

Figure 12-2. A custom activity indicator

lay.addSublayer(bar)
lay.instanceCount = 5
lay.instanceTransform = CATransform3DMakeTranslation(20, 0, 0)
let anim = CABasicAnimation(keyPath: #keyPath(CALayer.opacity))
anim.fromValue = 1.0
anim.toValue = 0.2
anim.duration = 1
anim.repeatCount = .greatestFiniteMagnitude
bar.add(anim, forKey: nil)
lay.instanceDelay = anim.duration / Double(lay.instanceCount)
self.view.layer.addSublayer(lay)
// ... give the replicator layer a position ...

Our single red vertical bar (bar) is replicated to make five red vertical bars. We
repeatedly fade the bar from opaque to transparent, but because we’ve set the replica‐
tor layer’s instanceDelay, the replicated bars fade in sequence, so that the darkest
bar appears to be marching repeatedly to the right (Figure 12-2).

UIProgressView
A progress view (UIProgressView) is a “thermometer” graphically displaying a per‐
centage. This may be a static percentage, or it might represent a time-consuming pro‐
cess whose percentage of completion is known (if the percentage of completion is
unknown, you’re more likely to use an activity indicator). In one of my apps, I use a
progress view to show how many cards are left in the deck; in another of my apps, I
use a progress view to show the current position within the song being played by the
built-in music player.

A progress view comes in a style, its progressViewStyle; if the progress view is cre‐
ated in code, you’ll set its style with init(progressViewStyle:). Your choices
(UIProgressView.Style) are:

• .default

• .bar

A .bar progress view is intended for use in a UIBarButtonItem, as the title view of a
navigation item, and so on. Both styles draw the thermometer extremely thin — just
2 pixels and 3 pixels, respectively. Figure 12-3 shows a .default progress view.
Changing a progress view’s frame height directly has no visible effect on how the
thermometer is drawn. Under autolayout, to make a thicker thermometer, supply a

UIProgressView | 705

Figure 12-3. A progress view

Figure 12-4. A thicker progress view using a custom progress image

height constraint with a larger value, overriding the intrinsic content height. Alterna‐
tively, subclass UIProgressView and override sizeThatFits(_:).

The fullness of the thermometer is the progress view’s progress property. This is a
value between 0 and 1, inclusive; you’ll usually do some elementary arithmetic to
convert from the value you’re reflecting to a value within that range. It is also a Float;
in Swift, you may have to coerce explicitly. A change in progress value can be ani‐
mated by calling setProgress(_:animated:). This progress view reflects the number
of cards remaining in a deck of 52 cards:

let r = self.deck.cards.count
self.prog.setProgress(Float(r)/52, animated: true)

The default color of the filled portion of a progress view is the tintColor (which may
be inherited from higher up the view hierarchy). The default color for the unfilled
portion is gray for a .default progress view and transparent for a .bar progress
view. You can customize the colors; set the progress view’s progressTintColor and
trackTintColor, respectively. This can also be done in the nib editor.

Alternatively, you can customize the image used to draw the filled portion of the pro‐
gress view (its progressImage), along with the image used to draw the unfilled por‐
tion (its trackImage). This can also be done in the nib editor. Each image must be
stretched to the length of the filled or unfilled area, so you’ll want to use a resizable
image. Be sure to give the progress view sufficient height, as I explained earlier, to
accommodate your images. Here’s a simple example from one of my apps
(Figure 12-4):

let r = UIGraphicsImageRenderer(size:CGSize(10,10))
var trackim : UIImage?
let im = r.image { ctx in
 let con = ctx.cgContext
 // track
 con.setFillColor(UIColor.black.cgColor)
 con.fill(CGRect(0,0,10,10))
 trackim = ctx.currentImage
 // progress
 con.setFillColor(UIColor.yellow.cgColor)
 con.fillEllipse(in: CGRect(2,2,6,6))

706 | Chapter 12: Controls and Other Views

Figure 12-5. A circular custom progress view

}
self.prog.trackImage = trackim?.resizableImage(
 withCapInsets:UIEdgeInsets(top: 4, left: 4, bottom: 4, right: 4),
 resizingMode:.stretch)
self.prog.progressImage = im.resizableImage(
 withCapInsets:UIEdgeInsets(top: 4, left: 4, bottom: 4, right: 4),
 resizingMode:.stretch)

Progress View Alternatives
For maximum flexibility, you can design your own UIView subclass that behaves like
a thermometer. It doesn’t have to look like a thermometer! A common interface (as
in Apple’s App Store app during a download) is to draw the arc of a circle. This effect
is easily achieved by setting the strokeEnd of a CAShapeLayer with a circular path.
Here’s a UIButton subclass that implements it (Figure 12-5):

class MyCircularProgressButton : UIButton {
 var progress : Float = 0 {
 didSet {
 self.shapelayer?.strokeEnd = CGFloat(self.progress)
 }
 }
 private weak var shapelayer : CAShapeLayer?
 override func layoutSubviews() {
 super.layoutSubviews()
 guard self.shapelayer == nil else {return}
 let layer = CAShapeLayer()
 layer.frame = self.bounds
 layer.lineWidth = 2
 layer.fillColor = nil
 layer.strokeColor = UIColor.red.cgColor
 let b = UIBezierPath(ovalIn: self.bounds.insetBy(dx: 3, dy: 3))
 layer.path = b.cgPath
 layer.strokeStart = 0
 layer.strokeEnd = 0
 layer.setAffineTransform(CGAffineTransform(rotationAngle: -.pi/2.0))
 self.layer.addSublayer(layer)
 self.shapelayer = layer
 }
}

UIProgressView | 707

The Progress Class
A progress view has an observedProgress property that you can set to a Progress
object. Progress is a Foundation class that abstracts the notion of task progress: it has
a totalUnitCount property and a completedUnitCount property, and their ratio gen‐
erates its fractionCompleted, which is read-only and observable with KVO.

If you assign a Progress object to a progress view’s observedProgress property and
configure and update it, the progress view will automatically use the changes in the
Progress object’s fractionCompleted to update its own progress. That’s useful
because you might already have a time-consuming process that maintains and vends
its own Progress object. (For a case in point, see “Slow Data Delivery” on page 597.)

How should your progress view’s observedProgress be related to the Progress object
vended by the time-consuming process? There are two possibilities:

• In simple cases, you might assign the process’s Progress object directly to your
progress view’s observedProgress.

• Alternatively, you can configure your progress view’s observedProgress as the
parent of the process’s Progress object.

When Progress objects stand in a parent–child relationship, the progress of an opera‐
tion reported to the child automatically forms an appropriate fraction of the progress
reported by the parent; this allows a single Progress object, acting as the ultimate par‐
ent, to conglomerate the progress of several individual operations. There are two
ways to put two Progress objects into a parent–child relationship:

Explicit parent
Call the parent’s addChild(_:withPendingUnitCount:) method. Alternatively,
create the child by initializing it with reference to the parent, by calling
init(totalUnitCount:parent:pendingUnitCount:).

Implicit parent
This approach uses the notion of the current Progress object. The rule is that
while a Progress object is current, any new Progress objects will become its child
automatically. The whole procedure comes down to doing things in the right
order:

1. Tell the prospective parent Progress object to becomeCurrent(withPending-
UnitCount:).

2. Create the child Progress object without an explicit parent, by calling
init(totalUnitCount:). As if by magic, it becomes the other Progress
object’s child (because the other Progress object is current).

708 | Chapter 12: Controls and Other Views

3. Tell the parent to resignCurrent. This balances the earlier become-

Current(withPendingUnitCount:) and completes the configuration.

UIPickerView
A picker view (UIPickerView) displays selectable choices using a rotating drum met‐
aphor. Its default height is adaptive — 162 in an environment with a .compact verti‐
cal size class (an iPhone in landscape orientation) and 216 otherwise — but you are
free to set its height to something else. Its width is generally up to you.

Each drum, or column, is called a component. Your code configures the UIPicker‐
View’s content through its data source (UIPickerViewDataSource) and delegate
(UIPickerViewDelegate), which are usually the same object. Your data source and
delegate must answer some Big Questions similar to those posed by a UITableView
(Chapter 8):

numberOfComponents(in:)

How many components (drums) does this picker view have?

pickerView(_:numberOfRowsInComponent:)

How many rows does this component have? The first component is numbered 0.

pickerView(_:titleForRow:forComponent:)

pickerView(_:attributedTitleForRow:forComponent:)

pickerView(_:viewForRow:forComponent:reusing:)

What should this row of this component display? The first row is numbered 0.
You can supply a simple string, an attributed string (Chapter 10), or an entire
view such as a UILabel; but you should supply every row of every component the
same way.

In pickerView(_:viewForRow:forComponent:reusing:), the reusing: parame‐
ter, if not nil, is supposed to be a view that you supplied for a row now no longer
visible, giving you a chance to reuse it, much as cells are reused in a table view. In
actual fact, the reusing: parameter is always nil. Views don’t leak — they go
out of existence in good order when they are no longer visible — but they aren’t
reused. I regard this as a bug.

Here’s the code for a UIPickerView (Figure 12-6) that displays the names of the
50 U.S. states, stored in an array (self.states). We implement pickerView(_:view-
ForRow:forComponent:reusing:) just because it’s the most interesting case; as our
views, we supply UILabel instances. The view parameter is always nil, so we ignore it
and make a new UILabel every time we’re called. The state names appear centered
because the labels are centered within the picker view:

UIPickerView | 709

Figure 12-6. A picker view

func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
}
func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return self.states.count
}
func pickerView(_ pickerView: UIPickerView,
 viewForRow row: Int,
 forComponent component: Int,
 reusing view: UIView?) -> UIView {
 let lab = UILabel()
 lab.text = self.states[row]
 lab.backgroundColor = .clear
 lab.sizeToFit()
 return lab
}

The delegate may further configure the UIPickerView’s physical appearance by
means of these methods:

• pickerView(_:rowHeightForComponent:)

• pickerView(_:widthForComponent:)

The delegate may implement pickerView(_:didSelectRow:inComponent:), so as to
be notified each time the user spins a drum to a new position. You can also query the
picker view directly by sending it selectedRow(inComponent:).

You can set the value to which any drum is turned by calling selectRow(_:in-
Component:animated:). Other handy picker view methods allow you to request that
the data be reloaded, and there are properties and methods to query the picker view’s
structure:

• reloadComponent(_:)

• reloadAllComponents

• numberOfComponents

710 | Chapter 12: Controls and Other Views

Figure 12-7. A search bar with a search results button

• numberOfRows(inComponent:)

• view(forRow:forComponent:)

By implementing pickerView(_:didSelectRow:inComponent:) and calling reload-
Component(_:), you can make a picker view where the values displayed by one drum
depend dynamically on what is selected in another. One can imagine extending our
U.S. states example to include a second drum listing major cities in each state; when
the user switches to a different state in the first drum, a different set of major cities
appears in the second drum.

UISearchBar
A search bar (UISearchBar) is essentially a wrapper for a text field; it has a text field
as one of its subviews. It is displayed by default as a rounded rectangle containing a
magnifying glass icon, where the user can enter text (Figure 12-7). It does not, of
itself, do any searching or display the results of a search; a common interface involves
displaying the results of a search in a table view, and the UISearchController class
makes this easy to do (see Chapter 8).

A search bar’s current text is its text property. It can have a placeholder, which
appears when there is no text. A prompt can be displayed above the search bar to
explain its purpose. Delegate methods (UISearchBarDelegate) notify you of editing
events; for their use, compare the text field and text view delegate methods discussed
in Chapter 10:

• searchBarShouldBeginEditing(_:)

• searchBarTextDidBeginEditing(_:)

• searchBar(_:textDidChange:)

• searchBar(_:shouldChangeTextIn:replacementText:)

• searchBarShouldEndEditing(_:)

• searchBarTextDidEndEditing(_:)

A search bar has a barStyle (UIBarStyle):

• .default, in iOS 12 and before, a flat light gray background and a white search
field; in iOS 13, a white background and a light gray search field

• .black, a black background and a black search field

UISearchBar | 711

In addition, there’s a searchBarStyle property (UISearchBar.Style):

• .default, as already described
• .prominent, identical to .default
• .minimal, transparent background without a border

Alternatively, you can set a search bar’s barTintColor to change its background
color; if the bar style is .black, the barTintColor will also tint the search field itself.
The tintColor property, meanwhile, whose value may be inherited from higher up
the view hierarchy, governs the color of search bar components such as the Cancel
button title and the flashing insertion cursor.

A search bar can also have a custom backgroundImage; this will be treated as a resiza‐
ble image. The backgroundImage overrides all other ways of determining the back‐
ground, and the search bar’s backgroundColor, if any, appears behind it — though
under some circumstances, if the search bar’s isTranslucent is false, the barTint-
Color may appear behind it instead.

The search field area where the user enters text can be offset with respect to its back‐
ground, using the searchFieldBackgroundPositionAdjustment property; you might
do this if you had enlarged the search bar’s height and wanted to position the search
field within that height. The text can be offset within the search field with the search-
TextPositionAdjustment property.

You can also replace the image of the search field itself; this is the image that is nor‐
mally a rounded rectangle. To do so, call setSearchFieldBackgroundImage(_:for:).
The second parameter is a UIControl.State; the possible states are .normal

and .disabled. But a search bar has no disabled state; the state here refers to the
search field, which is a text field and can be disabled. Before iOS 13, there was no offi‐
cial access to this text field; you had to cycle through the search bar’s subviews
recursively to find it (for subviews(ofType:), see Appendix B):

if let tf = self.sb.subviews(ofType: UITextField.self).first {
 tf.isEnabled = false
}

New in iOS 13, the search field is exposed through the search bar’s searchTextField
property:

self.sb.searchTextField.isEnabled = false

The search field image will be drawn vertically centered in front of the background
and behind the contents of the search field (such as the text); its width will be adjus‐
ted for you, but it is up to you choose an appropriate height, and to ensure an
appropriate background color so that the user can read the text.

712 | Chapter 12: Controls and Other Views

A search bar displays an internal cancel button automatically (normally an X in a cir‐
cle) if there is text in the search field. Internally, at its right end, a search bar may
display a search results button (showsSearchResultsButton), which may be selected
or not (isSearchResultsButtonSelected), or a bookmark button (showsBookmark-
Button); if you ask to display both, you’ll get the search results button. These buttons
vanish if text is entered in the search bar so that the cancel button can be displayed.
There is also an option to display a Cancel button externally (showsCancelButton, or
call setShowsCancelButton(_:animated:)). The internal cancel button works auto‐
matically to remove whatever text is in the field; the other buttons do nothing, but
delegate methods notify you when they are tapped:

• searchBarResultsListButtonClicked(_:)

• searchBarBookmarkButtonClicked(_:)

• searchBarCancelButtonClicked(_:)

You can customize the images used for the search icon (a magnifying glass, by
default) and any of the internal right icons (the internal cancel button, the search
results button, and the bookmark button) with setImage(_:for:state:); about
20×20 seems to be a good size. The icon in question (the for: parameter) is specified
using one of these values (UISearchBar.Icon):

• .search

• .clear (the internal cancel button)
• .bookmark

• .resultsList

The documentation says that the possible state: values are .normal and .disabled,
but this is wrong; the choices are .normal and .highlighted. The highlighted image
appears while the user taps on the icon (except for the search icon, which isn’t a but‐
ton). If you don’t supply a normal image, the default image is used; if you supply a
normal image but no highlighted image, the normal image is used for both. Setting
isSearchResultsButtonSelected to true reverses the search results button’s behav‐
ior: it displays the highlighted image, but when the user taps it, it displays the normal
image. To change an icon’s location, call setPositionAdjustment(_:for:).

It may appear that there is no way to customize the external Cancel button, but in
fact, although you’ve no official direct access to it through the search bar, you can
customize it using the UIBarButtonItem appearance proxy, as discussed later in this
chapter.

A search bar may also display scope buttons. These are intended to let the user alter
the meaning of the search; precisely how you use them is up to you. To make the
scope buttons appear, use the showsScopeBar property. The actual button titles are

UISearchBar | 713

Figure 12-8. A horrible search bar

the scopeButtonTitles property; the currently selected scope button is the selected-
ScopeButtonIndex property. The delegate is notified when the user taps a different
scope button:

• searchBar(_:selectedScopeButtonIndexDidChange:)

The overall look of the scope bar can be heavily customized, using these properties
and methods:

scopeBarBackgroundImage

The scope bar background. It will be stretched or tiled as needed.

setScopeBarButtonBackgroundImage(_:for:)

Sets the background of the smaller area constituting the actual buttons; the states
(the for: parameter) are .normal and .selected. You should supply a resizable
image; if you don’t, the image will be made resizable for you, but you might not
like the way the runtime decides what region of the image will be stretched
behind each button.

setScopeBarButtonDividerImage(_:forLeftSegmentState:rightSegmentState:)

The dividers between the buttons are normally vertical lines, but you can cus‐
tomize them with this method. A full complement of dividers consists of three
images, one when the buttons on both sides of the divider are normal (unselec‐
ted) and one each when a button on one side or the other is selected; if you sup‐
ply an image for just one state combination, it is used for the other two state
combinations. The height of the divider image is adjusted for you, but the width
is not; you’ll normally use an image just a few pixels wide.

setScopeBarButtonTitleTextAttributes(_:for:)

The text attributes of the titles of the scope buttons. The attributes are specified
like the attributes dictionary of an NSAttributedString (Chapter 10).

By combining the various customization possibilities, a completely unrecognizable
search bar of inconceivable ugliness can easily be achieved (Figure 12-8). Let’s be
careful out there.

714 | Chapter 12: Controls and Other Views

The problem of allowing the keyboard to appear without covering the search bar is
exactly as for a text field (Chapter 10). Text input properties of the search bar config‐
ure its keyboard and typing behavior like a text field as well. When the user taps the
Search key in the keyboard, the delegate is notified, and it is then up to you to dismiss
the keyboard (resignFirstResponder) and perform the search:

• searchBarSearchButtonClicked(_:)

New in iOS 13, a search bar’s text field’s class is public: it is a UISearchTextField, a
UITextField subclass that lets you display search tokens (UISearchToken). A search
token is initialized with text (and possibly an image) and is displayed as a rounded-
rectangle cartouche; you should also set its representedObject so you know what
the search token signifies. The user can select and delete an entire token, unless you
set the field’s allowsDeletingTokens to false. Each search token is a single-length
“character,” and any search tokens in the search field must precede any actual text; if
you try to put a search token anywhere else, you’ll crash. The field’s textualRange
tells you what part of the field consists of real text.

A search bar can be embedded in a toolbar or navigation bar as a bar button item’s
custom view, or in a navigation bar as a titleView. A common configuration is a
UISearchController’s search bar in a navigation bar; see the discussion of the
UINavigationItem searchController property in Chapter 8. Alternatively, a
UISearchBar can itself function as a top bar, without being inside any other bar. In
that case, you’ll want the search bar’s height to be extended automatically under the
status bar; I’ll explain later in this chapter how to arrange that.

UIControl
UIControl is a subclass of UIView whose chief purpose is to be the superclass of sev‐
eral further built-in classes (controls) and to endow them with common behavior.

The most important thing that controls have in common is that they automatically
track and analyze touch events (Chapter 5) and report them to your code as signifi‐
cant control events by way of action messages. Each control implements some subset
of the possible control events. The control events (UIControl.Event) are:

• .touchDown

• .touchDownRepeat

• .touchDragInside

• .touchDragOutside

• .touchDragEnter

• .touchDragExit

• .touchUpInside

UIControl | 715

• .touchUpOutside

• .touchCancel

• .valueChanged

• .editingDidBegin

• .editingChanged

• .editingDidEnd

• .editingDidEndOnExit

• .allTouchEvents

• .allEditingEvents

• .allEvents

The control events also have informal names that are visible in the Connections
inspector when you’re editing a nib. I’ll mostly use the informal names in the next
couple of paragraphs.

Control events fall roughly into three groups:

• The user has touched the screen (Touch Down, Touch Drag Inside, Touch Up
Inside, etc.).

• The user has edited text (Editing Did Begin, Editing Changed, etc.).
• The user has changed the control’s value (Value Changed).

Apple’s documentation is rather coy about which controls normally emit actions for
which control events, so here’s a list obtained through experimentation:

UIButton
All Touch events

UIDatePicker
Value Changed

UIPageControl
All Touch events, Value Changed

UIRefreshControl
Value Changed

UISegmentedControl
Value Changed

UISlider
All Touch events, Value Changed

716 | Chapter 12: Controls and Other Views

Touch Inside and Touch Outside
There is no explicit Touch Down Inside event, because any sequence of Touch events
begins with Touch Down, which must be inside the control. If it weren’t, this
sequence of touches would not belong to this control, and there would be no control
events at all!

There is some virtual leeway as to where the “outside” of a control is. When the user
taps within a control and starts dragging, the Inside events are triggered even after the
drag moves outside the control’s bounds. But after a certain distance from the control
is exceeded, an invisible boundary is crossed, Touch Drag Exit is triggered, and now
Outside events are reported until the drag crosses back within the invisible boundary,
at which point Touch Drag Enter is triggered and the Inside events are reported
again. In the case of a UIButton, the crossing of this invisible boundary is exactly
when the button automatically unhighlights (as the drag exits); to catch a legitimate
button press, you probably want to consider only Touch Up Inside.

For other controls, there may be some slight complications. A UISwitch will unhigh‐
light when a drag reaches a certain distance from it, but the touch is still considered
legitimate and can still change the UISwitch’s value; therefore, when the user’s finger
leaves the screen, the UISwitch reports a Touch Up Inside event, even while reporting
Touch Drag Outside events.

UISwitch
All Touch events, Value Changed

UIStepper
All Touch events, Value Changed

UITextField
All Touch events except the Up events, and all Editing events (see Chapter 10 for
details)

UIControl (generic)
All Touch events

A control also has a primary control event called .primaryActionTriggered, pre‐
sumably to save you from having to remember what the primary control event is. The
primary control event is Value Changed for all controls except for UIButton, where it
is Touch Up Inside, and UITextField, where it is Did End On Exit.

For each control event that you want to hear about, you attach to the control one or
more target–action pairs. You can do this in the nib editor or in code. For any given
control, each control event and its target–action pairs form a dispatch table. These
methods and properties permit you to manipulate and query the dispatch table:

UIControl | 717

• addTarget(_:action:for:)

• removeTarget(_:action:for:)

• actions(forTarget:forControlEvent:)

• allTargets

• allControlEvents (a bitmask of control events with at least one target–action
pair attached)

An action method (the method that will be called on the target when the control
event occurs) may adopt any of three signatures, whose parameters are:

• The control and the UIEvent
• The control only
• No parameters

The second signature is by far the most common. It’s unlikely that you’d want to dis‐
pense altogether with the parameter telling you which control sent the control event.
It’s equally unlikely that you’d want to examine the original UIEvent that triggered
this control event, since control events deliberately shield you from dealing with the
nitty-gritty of touches. (I suppose you might, on rare occasions, have some reason to
examine the UIEvent’s timestamp.)

When a control event occurs, the control consults its dispatch table, finds all the tar‐
get–action pairs associated with that control event, and reports the control event by
sending each action message to the corresponding target.

The action messaging mechanism is actually more complex than I’ve just stated.
The UIControl does not really send the action message directly; rather, it tells the
shared application to send it. When a control wants to send an action message
reporting a control event, it calls its own sendAction(_:to:for:) method. This
in turn calls the shared application instance’s sendAction(_:to:from:for:),
which actually sends the specified action message to the specified target. In
theory, you could call or override either of these methods to customize this
aspect of the message-sending architecture, but it is extremely unlikely that you
would do so.

To make a control emit its action message(s) corresponding to a particular control
event right now, in code, call its sendActions(for:) method (which is never called
automatically by the runtime). Suppose you tell a UISwitch programmatically to
change its setting from Off to On. This doesn’t cause the switch to report a control
event, as it would if the user had slid the switch from Off to On; if you wanted it to do
so, you could use sendActions(for:), like this:

self.sw.setOn(true, animated: true)
self.sw.sendActions(for:.valueChanged)

718 | Chapter 12: Controls and Other Views

You might also use sendActions(for:) in a subclass to customize the circumstances
under which a control reports control events. I’ll give an example later in this
chapter.

A control has isEnabled, isSelected, and isHighlighted properties; any of these
can be true or false independently of the others. Together, they correspond to the
control’s state, a bitmask of three possible values (UIControl.State):

• .highlighted (isHighlighted is true)
• .disabled (isEnabled is false)
• .selected (isSelected is true)

A fourth state, .normal, corresponds to a zero state bitmask, meaning that
isEnabled is true and that isSelected and isHighlighted are both false.

A control that is not enabled does not respond to user interaction. Whether the con‐
trol also portrays itself differently, to cue the user to this fact, depends upon the
control. A disabled UISwitch is faded, but a rounded rect text field, by default, gives
the user no obvious cue that it is disabled. The visual nature of control selection and
highlighting, too, depends on the control. Neither highlighting nor selection make
any difference to the appearance of a UISwitch, but a highlighted UIButton usually
looks quite different from a normal UIButton.

A control has contentHorizontalAlignment and contentVerticalAlignment prop‐
erties. These matter only if the control has content that can be aligned. You are most
likely to use them in connection with a UIButton to position its title and internal
image (I’ll say more about that later in this chapter).

A text field (UITextField) is a control; see Chapter 10. A refresh control (UIRefresh‐
Control) is a control; see Chapter 8. The remaining controls are covered here, and
then I’ll give a simple example of writing your own custom control.

UISwitch
A switch (UISwitch, Figure 12-9) portrays a Bool value: it looks like a sliding switch,
and its isOn property is either true or false. The user can slide or tap to toggle the
switch’s setting. When the user changes the switch’s setting, the switch reports a
Value Changed control event. To change the isOn property’s value with accompany‐
ing animation, call setOn(_:animated:).

A switch has only one size; any attempt to set its size will be ignored. You can cus‐
tomize a switch’s appearance by setting these properties:

onTintColor

The color of the track when the switch is at the On setting.

UIControl | 719

Figure 12-9. A switch

Figure 12-10. A stepper

thumbTintColor

The color of the slidable button.

tintColor

The color of the outline when the switch is at the Off setting.

There is no offTintColor property. A switch’s track when the switch is at the Off
setting is a translucent gray, and its color can’t be customized. I regard this as a bug.
Merely changing the switch’s backgroundColor is not a successful workaround,
because the background color shows outside the switch’s outline. New in iOS 13, a
hacky workaround is to locate the switch’s subview that draws its filled shape when
the switch is off, and change its background color:

self.sw.subviews[0].subviews[0].backgroundColor = .green

The UISwitch properties onImage and offImage, added in iOS 6 after much
clamoring (and hacking) by developers, have no effect in iOS 7 and later.

UIStepper
A stepper (UIStepper, Figure 12-10) looks like two buttons side by side, one labeled
(by default) with a minus sign, the other with a plus sign. The user can tap or hold a
button, and can slide a finger from one button to the other as part of the same inter‐
action with the stepper.

The stepper maintains a numeric value, which is its value; this is what the user is
manipulating with the stepper’s buttons, incrementing or decrementing it by 1. Each
time the user increments or decrements the value, it changes by the stepper’s step-
Value. If the minimumValue or maximumValue is reached, the user can go no further in
that direction, and to show this, the corresponding button is disabled — unless the
stepper’s wraps property is true, in which case the value goes beyond the maximum
by starting again at the minimum, and vice versa.

720 | Chapter 12: Controls and Other Views

As the user changes the stepper’s value, a Value Changed control event is reported.
Portraying the numeric value itself is up to you; you might use a label or (as here) a
progress view:

@IBAction func doStep(_ sender: Any) {
 let step = sender as! UIStepper
 self.prog.setProgress(
 Float(step.value / (step.maximumValue - step.minimumValue)),
 animated:true)
}

If a stepper’s isContinuous is true (the default), a long touch on one of the buttons
will update the value repeatedly; the updates start slowly and get faster. If the step‐
per’s autorepeat is false, the updated value is not reported as a Value Changed con‐
trol event until the entire interaction with the stepper ends; the default is true.

A stepper has only one size; any attempt to set its size will be ignored. But most other
aspects of the appearance of a stepper can be customized. The color of the outline
and the button captions is the stepper’s tintColor, which may be inherited from fur‐
ther up the view hierarchy. You can also dictate the images that constitute the
stepper’s structure with these methods:

• setDecrementImage(_:for:)

• setIncrementImage(_:for:)

• setDividerImage(_:forLeftSegmentState:rightSegmentState:)

• setBackgroundImage(_:for:)

The images work similarly to a search bar’s scope bar (described earlier in this chap‐
ter). The background images should probably be resizable; they are stretched behind
both buttons, half the image being seen as the background of each button. If the but‐
ton is disabled (because we’ve reached the value’s limit in that direction), it displays
the .disabled background image; otherwise, it displays the .normal background
image, except that it displays the .highlighted background image while the user is
tapping it. You’ll probably want to provide all three background images if you’re
going to provide any; the default is used if a state’s background image is nil. You’ll
probably want to provide three divider images as well, to cover the three combina‐
tions of one or neither segment being highlighted. The increment and decrement
images, replacing the default minus and plus signs, are composited on top of the
background image; they are treated as template images, colored by the tintColor,
unless you explicitly provide an .alwaysOriginal image. If you provide only
a .normal image, it will be adjusted automatically for the other two states.
Figure 12-11 shows a customized stepper.

UIControl | 721

Figure 12-11. A customized stepper

UIPageControl
A page control (UIPageControl) is a row of dots; each dot is called a page, because it
is intended to be used in conjunction with some other interface that portrays some‐
thing analogous to pages, such as a UIScrollView with its isPagingEnabled set to
true. Coordinating the page control with this other interface is usually up to you; see
Chapter 7 for an example. A UIPageViewController in scroll style can optionally dis‐
play a page control that’s automatically coordinated with its content (Chapter 6).

The number of dots is the page control’s numberOfPages. To learn the minimum
bounds size required to accommodate a given number of dots, call size(forNumber-
OfPages:). You can make the page control wider than the dots to increase the target
region on which the user can tap. The user can tap to one side or the other of the
current page’s dot to increment or decrement the current page; the page control then
reports a Value Changed control event.

The dot colors differentiate the current page, the page control’s currentPage, from
the others; by default, the current page is portrayed as a solid dot, while the others are
slightly transparent. You can customize a page control’s pageIndicatorTintColor
(the color of the dots in general) and currentPageIndicatorTintColor (the color of
the current page’s dot); you will almost certainly want to do this, as the default dot
color is white, which under normal circumstances may be hard to see.

It is possible to set a page control’s backgroundColor; you might do this to show the
user the tappable area, or to make the dots more clearly visible by contrast.

If a page control’s hidesForSinglePage is true, the page control becomes invisible
when its numberOfPages changes to 1.

If a page control’s defersCurrentPageDisplay is true, then when the user taps to
increment or decrement the page control’s value, the display of the current page is
not changed. A Value Changed control event is reported, but it is up to your code to
handle this action and call updateCurrentPageDisplay. A case in point might be if
the user’s changing the current page triggers an animation, and you don’t want the
current page dot to change until the animation ends.

UIDatePicker
A date picker (UIDatePicker) looks like a UIPickerView (discussed earlier in this
chapter), but it is not a UIPickerView subclass; it uses a UIPickerView to draw itself,

722 | Chapter 12: Controls and Other Views

but it provides no official access to that picker view. Its purpose is to express the
notion of a date and time, taking care of the calendrical and numerical complexities
so that you don’t have to. When the user changes its setting, the date picker reports a
Value Changed control event.

A UIDatePicker has one of four modes (datePickerMode), determining how it is
drawn (UIDatePicker.Mode):

.time

The date picker displays a time; for example, it has an hour component and a
minutes component.

.date

The date picker displays a date; for example, it has a month component, a day
component, and a year component.

.dateAndTime

The date picker displays a date and time; for example, it has a component show‐
ing day of the week, month, and day, plus an hour component and a minutes
component.

.countDownTimer

The date picker displays a number of hours and minutes; for example, it has an
hours component and a minutes component.

Exactly what components a date picker displays, and what values they contain,
depends by default upon the user’s preferences in the Settings app (General →
Language & Region → Region). A U.S. time displays an hour numbered 1 through 12
plus minutes and AM or PM, but a British time displays an hour numbered 1
through 24 plus minutes. If the user changes the region format in the Settings app,
the date picker’s display will change immediately.

A date picker has calendar and timeZone properties, respectively a Calendar and a
TimeZone; these are nil by default, meaning that the date picker responds to the
user’s system settings. You can also change these values manually; if you live in Cali‐
fornia and you set a date picker’s timeZone to GMT, the displayed time is shifted for‐
ward by 8 hours, so that 11 AM is displayed as 7 PM (if it is winter).

The minutes component, if there is one, defaults to showing every minute, but you
can change this with the minuteInterval property. The maximum value is 30, in
which case the minutes component values are 0 and 30. An attempt to set the minute-
Interval to a value that doesn’t divide evenly into 60 will be silently ignored.

The date represented by a date picker (unless its mode is .countDownTimer) is its
date property, a Date. The default date is now, at the time the date picker is instanti‐
ated. For a .date date picker, the time by default is 12 AM (midnight), local time; for

UIControl | 723

a .time date picker, the date by default is today. The internal value is reckoned in the
local time zone, so it may be different from the displayed value, if you have changed
the date picker’s timeZone.

The maximum and minimum values enabled in the date picker are determined by its
maximumDate and minimumDate properties. Values outside this range may appear, but
they will be disabled and the user won’t be able to choose one (the date picker will
snap back so that its value stays within range). There isn’t really any practical limit on
the range that a date picker can display, because displayed values are appended
dynamically as the user spins the “drums.” In this example, we set the initial mini‐
mum and maximum dates of a date picker (dp) to the beginning and end of 1954. We
also set the actual date, so that the date picker will be set initially to a value within the
minimum–maximum range:

dp.datePickerMode = .date
var dc = DateComponents(year:1954, month:1, day:1)
let c = Calendar(identifier:.gregorian)
let d1 = c.date(from: dc)!
dp.minimumDate = d1
dp.date = d1
dc.year = 1955
let d2 = c.date(from: dc)!
dp.maximumDate = d2

The value displayed in a .countDownTimer date picker is its countDownDuration; this
is a TimeInterval, which is a Double representing a number of seconds, even though
the minimum interval displayed is a minute. A .countDownTimer date picker does
not actually do any counting down! You are expected to count down in some other
way, and to use some other interface to display the countdown. The Timer tab of
Apple’s Clock app shows a typical interface; the user configures a picker view to set
the countDownDuration initially, but once the counting starts, the picker view is hid‐
den and a label displays the remaining time.

Don’t change the timeZone of a .countDownTimer date picker; if you do, the dis‐
played value will be shifted, and you will confuse the heck out of yourself (and
your users). Don’t set the maximumDate and minimumDate properties values for
a .countDownTimer date picker; if you do, you might cause a crash with an out-
of-range exception. A nasty bug makes the Value Changed event from a .count-
DownTimer date picker unreliable (especially just after the app launches, and
whenever the user has tried to set the timer to zero). The workaround is not to
rely on the Value Changed event; you might provide a button in the interface
that the user can tap to make your code read the date picker’s countDown-
Duration.

724 | Chapter 12: Controls and Other Views

UISlider
A slider (UISlider) is an expression of a continuously settable value (its value, a
Float) between some minimum and maximum (its minimumValue and maximumValue;
they are 0 and 1 by default). It is portrayed as an object, the thumb, positioned along
a track. As the user changes the thumb’s position, the slider reports a Value Changed
control event; it may do this continuously as the user presses and drags the thumb (if
the slider’s isContinuous is true, the default) or only when the user releases the
thumb (if isContinuous is false). While the user is pressing on the thumb, the slider
is in the .highlighted state. To change a slider’s value with animation of the thumb,
call setValue(_:animated:) in an animations function.

A commonly expressed desire is to modify a slider’s behavior so that if the user taps
on its track, the slider moves to the spot where the user tapped. Unfortunately, a
slider does not, of itself, respond to taps on its track; no control event is reported.
Still, with a gesture recognizer, most things are possible; here’s the action method for
a UITapGestureRecognizer attached to a UISlider:

@objc func tapped(_ g:UIGestureRecognizer) {
 let s = g.view as! UISlider
 if s.isHighlighted {
 return // tap on thumb, let slider deal with it
 }
 let pt = g.location(in:s)
 let track = s.trackRect(forBounds: s.bounds)
 if !track.insetBy(dx: 0, dy: -10).contains(pt) {
 return // not on track, forget it
 }
 let percentage = pt.x / s.bounds.size.width
 let delta = Float(percentage) * (s.maximumValue - s.minimumValue)
 let value = s.minimumValue + delta
 delay(0.1) {
 UIView.animate(withDuration: 0.15) {
 s.setValue(value, animated:true) // animate sliding the thumb
 }
 }
}

A slider’s tintColor (which may be inherited from further up the view hierarchy)
determines the color of the track to the left of the thumb. You can change the color of
the two parts of the track with the minimumTrackTintColor and maximumTrackTint-
Color properties. You can change the color of the thumb with the thumbTintColor
property.

The images at the ends of the track are the slider’s minimumValueImage and maximum-
ValueImage, and they are nil by default. If you set them to actual images (which can
also be done in the nib editor), the slider will attempt to position them within its own

UIControl | 725

Figure 12-12. Repositioning a slider’s images and track

Figure 12-13. Replacing a slider’s thumb

bounds, shrinking the drawing of the track to compensate. You can change that
behavior by overriding these methods in a subclass:

• minimumValueImageRect(forBounds:)

• maximumValueImageRect(forBounds:)

• trackRect(forBounds:)

The bounds passed in are the slider’s bounds. In this example (Figure 12-12), we
expand the track width to the full width of the slider, and draw the images outside the
slider’s bounds. The images are still visible, because the slider does not clip its sub‐
views to its bounds. In the figure, I’ve given the slider a background color so you can
see how the track and images are related to its bounds:

override func maximumValueImageRect(forBounds bounds: CGRect) -> CGRect {
 return super.maximumValueImageRect(
 forBounds:bounds).offsetBy(dx: 31, dy: 0)
}
override func minimumValueImageRect(forBounds bounds: CGRect) -> CGRect {
 return super.minimumValueImageRect(
 forBounds: bounds).offsetBy(dx: -31, dy: 0)
}
override func trackRect(forBounds bounds: CGRect) -> CGRect {
 var result = super.trackRect(forBounds: bounds)
 result.origin.x = 0
 result.size.width = bounds.size.width
 return result
}

The thumb is also an image, and you set it with setThumbImage(_:for:). There are
two chiefly relevant states, .normal and .highlighted. If you supply images for both,
the thumb will change automatically while the user is dragging it. By default, the
image will be centered in the track at the point represented by the slider’s current
value; you can shift this position by overriding thumbRect(forBounds:track-
Rect:value:) in a subclass. In this example, the image is repositioned slightly
upward (Figure 12-13):

726 | Chapter 12: Controls and Other Views

Figure 12-14. Replacing a slider’s track

override func thumbRect(forBounds bounds: CGRect,
 trackRect rect: CGRect, value: Float) -> CGRect {
 return super.thumbRect(forBounds: bounds,
 trackRect: rect, value: value).offsetBy(dx: 0, dy: -7)
}

Enlarging or offsetting a slider’s thumb can mislead the user as to the area where it
can be touched to drag it. The slider, not the thumb, is the touchable UIControl; only
the part of the thumb that intersects the slider’s bounds will be draggable. The user
may try to drag the part of the thumb that is drawn outside the slider’s bounds, and
will fail (and be confused). One solution is to increase the slider’s height; if you’re
using autolayout, you can add an explicit height constraint in the nib editor, or over‐
ride intrinsicContentSize in code (Chapter 1). Another solution is to subclass and
use hit-test munging (Chapter 5):

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 let tr = self.trackRect(forBounds: self.bounds)
 if tr.contains(point) { return self }
 let r = self.thumbRect(
 forBounds: self.bounds, trackRect: tr, value: self.value)
 if r.contains(point) { return self }
 return nil
}

The track is two images, one appearing to the left of the thumb, the other to its right.
They are set with setMinimumTrackImage(_:for:) and setMaximumTrack-

Image(_:for:). If you supply images both for .normal state and for .highlighted
state, the images will change while the user is dragging the thumb. The images should
be resizable, because that’s how the slider cleverly makes it look like the user is drag‐
ging the thumb along a single static track. In reality, there are two images; as the user
drags the thumb, one image grows horizontally and the other shrinks horizontally.
For the left track image, the right end will be hidden under the thumb; for the right
track image, the left end will be hidden under the thumb. Figure 12-14 shows a track
derived from a single 15×15 image of a circular object (a coin):

let coinEnd = UIImage(named:"coin")!.resizableImage(withCapInsets:
 UIEdgeInsets(top: 0, left: 7, bottom: 0, right: 7), resizingMode: .stretch)
self.setMinimumTrackImage(coinEnd, for:.normal)
self.setMaximumTrackImage(coinEnd, for:.normal)

UIControl | 727

Figure 12-15. A segmented control

UISegmentedControl
A segmented control (UISegmentedControl, Figure 12-15) is a row of tappable seg‐
ments; a segment is rather like a button. The user taps a segment to select it, choosing
among options. New in iOS 13, the selected segment is indicated by a rounded rec‐
tangle overlay. The behavior of this overlay depends on the segmented control’s
isMomentary property:

isMomentary is false
The default. Tapping a segment causes the overlay to slide over to cover that seg‐
ment, where it remains.

isMomentary is true
When a segment is tapped, the overlay appears momentarily and then vanishes,
so that there is no visible indication that any segment is selected. Internally, the
tapped segment remains the selected segment.

The selected segment can be set and retrieved with the selectedSegmentIndex prop‐
erty; when you set it in code, the selected segment remains visibly selected, even for
an isMomentary segmented control. A selectedSegmentIndex value of UISegmented-
Control.noSegment means no segment is selected; in iOS 13, the overlay won’t disap‐
pear unless you also call setNeedsLayout on the segmented control (this feels like a
bug). When the user taps a segment that isn’t already visibly selected, the segmented
control reports a Value Changed event.

A segment can be individually enabled or disabled with setEnabled(_:forSegment-
At:), and its enabled state can be retrieved with isEnabledForSegment(at:). A
disabled segment, by default, is drawn faded; the user can’t tap it, but it can still be
selected in code.

New in iOS 13, the background color of the selection overlay is dictated by the seg‐
mented control’s selectedSegmentTintColor.

A segment has either a title or an image; when one is set, the other becomes nil. The
methods for setting and fetching the title and image for existing segments are:

• setTitle(_:forSegmentAt:), titleForSegment(at:)
• setImage(_:forSegmentAt:), imageForSegment(at:)

728 | Chapter 12: Controls and Other Views

An image is treated as a template image unless you explicitly provide an .always-
Original image. A template image or a title gets its default color from the effective
tint color. New in iOS 13, the effective tint color is not the segmented control’s tint-
Color; the tintColor does nothing (I regard this as a bug). The default effective tint
color in iOS 13 is .label, and the way to change it (tinting both titles and images) is
to call the segmented control’s setTitleTextAttributes(_:for:) with a
different .foregroundColor:

self.seg.setTitleTextAttributes([
 .foregroundColor: UIColor.red
], for: .normal)

If you’re creating the segmented control in code, configure the segments with
init(items:), which takes an array, each item being either a string or an image:

let seg = UISegmentedControl(items:
 [UIImage(named:"one")!.withRenderingMode(.alwaysOriginal), "Two"])

Methods for managing segments dynamically are:

• insertSegment(withTitle:at:animated:)

• insertSegment(with:at:animated:) (the first parameter is a UIImage)
• removeSegment(at:animated:)

• removeAllSegments

The number of segments can be retrieved with the read-only numberOfSegments
property.

If the segmented control’s apportionsSegmentWidthsByContent property is false,
segment sizes will be made equal to one another; if it is true, each segment’s width
will be sized individually to fit its content. Alternatively, you can set a segment’s
width explicitly with setWidth(_:forSegmentAt:); setting a segment’s width to 0
means that this segment is to be sized automatically.

A segmented control has a standard height; if you’re using autolayout, you can
change the height through constraints or by overriding intrinsicContentSize — or
by setting its background image, as I’ll describe in a moment. A segmented control’s
height does not automatically increase to accommodate a segment image that’s too
tall; instead, the image’s height is squashed to fit the segmented control’s height.

To change the position of the content (title or image) within a segment, call set-
ContentOffset(_:forSegmentAt:).

Further methods for customizing a segmented control’s appearance are parallel to
those for setting the look of a stepper or the scope bar portion of a search bar:

UIControl | 729

Figure 12-16. A segmented control, customized

• setBackgroundImage(_:for:barMetrics:)

• setDividerImage(_:forLeftSegmentState:rightSegmentState:barMetrics:)

• setContentPositionAdjustment(_:forSegmentType:barMetrics:)

I’ll talk later about what the barMetrics: is (“Bar Metrics” on page 740); you’ll usually
pass .default. The segmentType: parameter is needed because, by default, the seg‐
ments at the two extremes have rounded ends (and, if a segment is the lone segment,
both its ends are rounded); the argument (UISegmentedControl.Segment) lets you
distinguish among the possibilities:

• .any

• .left

• .center

• .right

• .alone

As I mentioned a moment ago, setting a background image changes the segmented
control’s height. New in iOS 13, it also removes the selection overlay, leaving it up to
you to indicate selection by supplying different background images for the .normal
and .selected states (Figure 12-16):

let sz = CGSize(100,60)
let linen = UIImage(named:"linen")!
let im = UIGraphicsImageRenderer(size:sz).image {_ in
 linen.draw(in:CGRect(origin: .zero, size: sz))
 }.resizableImage(withCapInsets:
 UIEdgeInsets(top: 0,left: 10,bottom: 0,right: 10),
 resizingMode: .stretch)
self.seg.setBackgroundImage(im, for:.normal, barMetrics: .default)
let im2 = UIGraphicsImageRenderer(size:sz).image {ctx in
 let r = CGRect(origin: .zero, size: sz)
 ctx.cgContext.setFillColor(UIColor.blue.withAlphaComponent(0.1).cgColor)
 ctx.cgContext.fill(r)
 linen.draw(in: r, blendMode: .destinationAtop, alpha: 1)
 }.resizableImage(withCapInsets:
 UIEdgeInsets(top: 0,left: 10,bottom: 0,right: 10),
 resizingMode: .stretch)
self.seg.setBackgroundImage(im2, for:.selected, barMetrics: .default)

730 | Chapter 12: Controls and Other Views

UIButton
A button (UIButton) is a fundamental tappable control, which may contain a title, an
internal image (referred to simply as the button’s “image”), and a background image:

Title
Along with the title, you can add a title color and a title shadow color — or you
can supply an attributed title, dictating these features and more in a single value
through an NSAttributedString (Chapter 10).

Image
The button can have both a title and an image, provided the image is small
enough, in which case the image is shown to the left of the title by default; if the
image is too large, the title won’t appear.

New in iOS 13, a button can have a preferred symbol configuration, in case the
internal image is a symbol image. This is similar to the UIImageView preferred
symbol configuration: you apply it to the button and it is applied to the symbol
image for you. If the button has both a symbol image and a title, and if the title
font is not the default, matching the symbol configuration to the title is up
to you.

Background image
The background image size will always match the button’s bounds (technically,
its backgroundRect(forBounds:)). Either it will resize the button to match its
own size or it will stretch to match the button size. This is different from the
behavior of the internal image, which might be sized down if the button is too
small for it, but will never be sized up larger than its own actual size.

These features can vary depending on the button’s current state, which may be
either .normal or any combination of one or more of the other states
— .highlighted, .selected, and .disabled. In this way, a state change, whether
automatic (the button is highlighted while the user is tapping it) or programmatically
imposed, can of itself alter a button’s appearance. Therefore, you do not simply set
them as properties; instead, you have to specify a corresponding state — or multiple
states, using a bitmask:

• setTitle(_:for:)

• setTitleColor(_:for:)

• setTitleShadowColor(_:for:)

• setAttributedTitle(_:for:)

• setImage(_:for:)

UIControl | 731

• setBackgroundImage(_:for:)

• setPreferredSymbolConfiguration(_:forImageIn:)

Similarly, when getting these button features, you must either specify a single state
you’re interested in or ask about the feature as currently displayed:

• title(for:), currentTitle
• titleColor(for:), currentTitleColor
• titleShadowColor(for:), currentTitleShadowColor
• attributedTitle(for:), currentAttributedTitle
• image(for:), currentImage
• backgroundImage(for:), currentBackgroundImage
• preferredSymbolConfigurationForImage(in:)
currentPreferredSymbolConfiguration

When configuring these features with the set methods (or in the nib editor), if you
don’t specify a feature for a particular state, or if the button adopts more than one
state at once, an internal heuristic is used to determine what to display. I can’t
describe all possible combinations, but here are some general observations:

• If you specify a feature for a particular state (highlighted, selected, or disabled),
and the button is in only that state, that feature will be used.

• If you don’t specify a feature for a particular state (highlighted, selected, or dis‐
abled), and the button is in only that state, the normal version of that feature will
be used as fallback. (That’s why many examples earlier in this book have assigned
a title for .normal only; that’s sufficient to give the button a title in every state.)

• Combinations of states often cause the button to fall back on the feature for nor‐
mal state. If a button is both highlighted and selected, the button will display its
normal title, even if it has a highlighted title, a selected title, or both.

Some of the set methods may be animated, and this can have unpleasant side effects.
Preventing the animation can be tricky. A workaround that seems reliable is to ask
for layout without animation, like this:

self.button.setAttributedTitle(t, for: .normal) // t is an attributed string
UIView.performWithoutAnimation {
 self.button.layoutIfNeeded()
}

A button has a type, and the initializer is init(type:). The types (UIButton.Button‐
Type) are:

732 | Chapter 12: Controls and Other Views

.system

If you don’t provide an attributed title with an explicit color, the title text appears
in the button’s tintColor, which may be inherited from further up the view hier‐
archy; when the button is tapped, the title text color momentarily changes to a
color derived from what’s behind it (which might be the button’s background-
Color). The image is treated as a template image, colored by the tintColor,
unless you explicitly provide an .alwaysOriginal image; when the button is tap‐
ped, the image (even if it isn’t a template image) is momentarily tinted to a color
derived from what’s behind it.

New in iOS 13, in the special case where you want a .system button consisting of
a symbol image and nothing else, you can use a convenience class factory
method, systemButton(with:target:action:), where the first parameter is
intended to be a symbol image.

.custom

There’s no automatic coloring of the title or the image, and the image is a normal
image by default.

.detailDisclosure, .infoLight, .infoDark, .contactAdd
System buttons whose image is set automatically to a standard image. The first
three are an “i” in a circle, and are indistinguishable from one another in
iOS 13. .contactAdd is a Plus in a circle.

.close

New in iOS 13. A system button that has a dark gray “x” (the "xmark" symbol
image) as its image and a light gray filled circle as its background image, both
unaffected by the tint color. You probably should not add a title, as that would
deform the filled circle.

There is no built-in button type with an outline (border), comparable to the Rounded
Rect style of iOS 6 and before. You can provide an outline by some simple manipula‐
tion of the button’s layer, or by constructing a background image (as in
Figure 12-19).

A UIButton has some properties determining how it draws its images in various
states, which can save you the trouble of specifying different images for different
states:

showsTouchWhenHighlighted

If true, then the button projects a circular white glow when highlighted. If the
button has an internal image, the glow is centered behind it. This feature is suit‐
able particularly if the button image is small and circular. If the button has no
internal image, the glow is centered at the button’s center. The glow is drawn on
top of the background image or color, if any.

UIControl | 733

adjustsImageWhenHighlighted

In a .custom button, if this property is true (the default), then if there is no sepa‐
rate highlighted image (and if showsTouchWhenHighlighted is false), the nor‐
mal image is darkened when the button is highlighted. This applies equally to the
internal image and the background image. (A .system button is already tinting
its highlighted image, so this property doesn’t apply.)

adjustsImageWhenDisabled

If true, then if there is no separate disabled image, the normal image is shaded
when the button is disabled. This applies equally to the internal image and the
background image. The default is true for a .custom button and false for
a .system button.

A button has a natural size in relation to its contents. If you’re using autolayout, the
button can adopt that size automatically as its intrinsicContentSize, and you can
modify the way it does this by overriding intrinsicContentSize in a subclass or by
applying explicit constraints. If you’re not using autolayout and you create a button
in code, send it sizeToFit or give it an explicit size; otherwise, the button may have
size .zero, making it invisible. Creating a zero-size button and then wondering why
the button isn’t visible in the interface is a common beginner mistake.

The title is displayed in a UILabel (Chapter 10), and the label features of the title can
be accessed through the button’s titleLabel. Beginners often wonder how to make a
button’s title consist of more than one line; the answer is obvious, once you remem‐
ber that the title is displayed in a label: set the button’s titleLabel.numberOfLines.
In general, the label’s properties may be set, provided they do not conflict with exist‐
ing UIButton features. You can use the label to set the title’s font and shadowOffset;
but the title’s text, color, and shadow color should be set using the appropriate button
methods specifying a button state. If the title is given a shadow in this way, then the
button’s reversesTitleShadowWhenHighlighted property also applies: if true, the
shadowOffset values are replaced with their additive inverses when the button is
highlighted. But the modern way to do that sort of thing is through the button’s
attributed title.

The internal image is drawn by a UIImageView (Chapter 2), whose features can be
accessed through the button’s imageView. For instance, you can change the internal
image view’s alpha to make the image more transparent.

The internal position of the image and title as a whole are governed by the button’s
contentVerticalAlignment and contentHorizontalAlignment (inherited from
UIControl). You can also tweak the position of the image and title, together or sepa‐
rately, by setting the button’s contentEdgeInsets, titleEdgeInsets, or imageEdge-
Insets. Increasing an inset component increases that margin; a positive top
component makes the distance between that object and the top of the button larger

734 | Chapter 12: Controls and Other Views

Figure 12-17. A customized button

than normal (where “normal” is where the object would be according to the align‐
ment settings). The titleEdgeInsets or imageEdgeInsets values are added to the
overall contentEdgeInsets values. For instance, you could make the internal image
appear to the right of the title by decreasing the left titleEdgeInsets and increasing
the left imageEdgeInsets.

Four methods also let you customize a button’s positioning of its elements by over‐
riding them in a subclass:

• titleRect(forContentRect:)

• imageRect(forContentRect:)

• contentRect(forBounds:)

• backgroundRect(forBounds:)

Those methods are called whenever the button is redrawn, including every time it
changes state. The content rect is the area in which the title and image are placed. By
default, the content rect and the background rect are the same.

Here’s an example of a customized button (Figure 12-17). In a UIButton subclass, we
increase the button’s intrinsicContentSize to give it larger margins around its con‐
tent (for withDelta, see Appendix B), and we configure the background rect to
shrink the button slightly when highlighted as a way of providing feedback when the
user taps the button:

override var intrinsicContentSize : CGSize {
 return super.intrinsicContentSize.withDelta(dw:25, dh: 20)
}
override func backgroundRect(forBounds bounds: CGRect) -> CGRect {
 var result = super.backgroundRect(forBounds:bounds)
 if self.isHighlighted {
 result = result.insetBy(dx: 3, dy: 3)
 }
 return result
}

The button, which is a .custom button, is assigned an internal image and a back‐
ground image from the same resizable image, along with attributed titles for
the .normal and .highlighted states. The internal image glows when highlighted,
thanks to adjustsImageWhenHighlighted.

UIControl | 735

Figure 12-18. A custom control

Custom Controls
If you create your own UIControl subclass, you automatically get the built-in Touch
events; in addition, there are several methods that you can override in order to cus‐
tomize touch tracking, along with properties that tell you whether touch tracking is
going on:

• beginTracking(_:with:)

• continueTracking(_:with:)

• endTracking(_:with:)

• cancelTracking(with:)

• isTracking

• isTouchInside

The main reason for using a custom UIControl subclass — rather than, say, a UIView
subclass and gesture recognizers — would probably be to obtain the convenience of
control events. Also, the touch-tracking methods, though not as high-level as gesture
recognizers, are at least a level up from the UIResponder touch methods (Chapter 5):
they track a single touch, and both beginTracking and continueTracking return a
Bool, giving you a chance to stop tracking the current touch.

To illustrate, we’ll build a simplified knob control (Figure 12-18). The control starts
life at its minimum position, with an internal angle value of 0; it can be rotated clock‐
wise with a single finger as far as its maximum position, with an internal angle value
of 5 (radians). The words “Min” and “Max” appearing in the interface are actually
labels; the control just draws the knob, and to rotate it we’ll apply a rotation trans‐
form.

Our control is a UIControl subclass, MyKnob. It has a public CGFloat angle prop‐
erty, and there’s a private CGFloat property self.initialAngle that we’ll use inter‐
nally during rotation. Because a UIControl is a UIView, it can draw itself, which it
does with an image file included in our app bundle:

736 | Chapter 12: Controls and Other Views

override func draw(_ rect: CGRect) {
 UIImage(named:"knob")!.draw(in: rect)
}

We’ll need a utility function for transforming a touch’s Cartesian coordinates into
polar coordinates, giving us the angle to be applied as a rotation to the view:

func pToA (_ t:UITouch) -> CGFloat {
 let loc = t.location(in: self)
 let c = self.bounds.center
 return atan2(loc.y - c.y, loc.x - c.x)
}

Now we’re ready to override the tracking methods. beginTracking simply notes
down the angle of the initial touch location. continueTracking uses the difference
between the current touch location’s angle and the initial touch location’s angle to
apply a transform to the view, and updates the angle property. endTracking triggers
the Value Changed control event. So our first draft looks like this:

override func beginTracking(_ t: UITouch, with _: UIEvent?) -> Bool {
 self.initialAngle = pToA(t)
 return true
}
override func continueTracking(_ t: UITouch, with _: UIEvent?) -> Bool {
 let ang = pToA(t) - self.initialAngle
 let absoluteAngle = self.angle + ang
 self.transform = self.transform.rotated(by: ang)
 self.angle = absoluteAngle
 return true
}
override func endTracking(_: UITouch?, with _: UIEvent?) {
 self.sendActions(for: .valueChanged)
}

That works: we can put a MyKnob into the interface and hook up its Value Changed
control event (this can be done in the nib editor), and sure enough, when we run the
app, we can rotate the knob and, when our finger lifts from the knob, the Value
Changed action method is called.

However, our class needs modification. When the angle is set programmatically, we
should respond by rotating the knob; at the same time, we need to clamp the incom‐
ing value to the allowable minimum or maximum:

var angle : CGFloat = 0 {
 didSet {
 self.angle = min(max(self.angle, 0), 5) // clamp
 self.transform = CGAffineTransform(rotationAngle: self.angle)
 }
}

Now we should revise continueTracking. We no longer need to perform the rota‐
tion, since setting the angle will do that for us. On the other hand, we do need to

UIControl | 737

clamp the gesture when the minimum or maximum rotation is exceeded. My solu‐
tion is simply to stop tracking; in that case, endTracking will never be called, so we
also need to trigger the Value Changed control event. Also, it might be nice to give
the programmer the option to have the Value Changed control event reported con‐
tinuously as continueTracking is called repeatedly; so we’ll add a public
isContinuous Bool property and obey it:

override func continueTracking(_ t: UITouch, with _: UIEvent?) -> Bool {
 let ang = pToA(t) - self.initialAngle
 let absoluteAngle = self.angle + ang
 switch absoluteAngle {
 case -CGFloat.greatestFiniteMagnitude...0:
 self.angle = 0
 self.sendActions(for: .valueChanged)
 return false
 case 5...CGFloat.greatestFiniteMagnitude:
 self.angle = 5
 self.sendActions(for: .valueChanged)
 return false
 default:
 self.angle = absoluteAngle
 if self.isContinuous {
 self.sendActions(for: .valueChanged)
 }
 return true
 }
}

Bars
There are three bar types:

UINavigationBar
A navigation bar should appear only at the top of the screen. It is usually used in
conjunction with a UINavigationController.

UIToolbar
A toolbar may appear at the bottom or at the top of the screen, though the bot‐
tom is more common. It is usually used in conjunction with a UINavigation‐
Controller, where it appears at the bottom.

UITabBar
A tab bar should appear only at the bottom of the screen. It is usually used in
conjunction with a UITabBarController.

This section summarizes the facts about the three bar types and the items that popu‐
late them.

738 | Chapter 12: Controls and Other Views

Bar Position
If a bar is to occupy the top of the screen, its apparent height should be increased to
underlap the transparent status bar. This is taken care of for you in the case of a
UINavigationBar owned by a UINavigationController; otherwise, it’s up to you. The
mechanism for doing that involves the notion of a bar position. The UIBarPosition‐
ing protocol is adopted by the bars that can go at the top of the screen, namely
UINavigationBar and UIToolbar — along with UISearchBar, because it can be used
independently as a top bar. This protocol defines one property, barPosition, whose
possible values (UIBarPosition) are:

• .any

• .bottom

• .top

• .topAttached

But barPosition is read-only, so how are you supposed to set it? Use the bar’s dele‐
gate! The delegate protocols UINavigationBarDelegate, UIToolbarDelegate, and
UISearchBarDelegate all conform to UIBarPositioningDelegate, which defines one
method, position(for:). This provides a way for a bar’s delegate to dictate the bar’s
barPosition. In this example, we have a “loose” navigation bar that’s not owned by a
navigation controller:

class ViewController: UIViewController, UINavigationBarDelegate {
 @IBOutlet weak var navbar: UINavigationBar!
 override func viewDidLoad() {
 super.viewDidLoad()
 self.navbar.delegate = self
 }
 func position(for bar: UIBarPositioning) -> UIBarPosition {
 return .topAttached
 }
}

The bar’s apparent height will be extended upward so as to underlap the status bar if
the bar’s delegate returns .topAttached from its implementation of position(for:).
To get the final position right, the bar’s top should also have a zero-constant con‐
straint to the safe area layout guide’s top.

Similarly, a toolbar or tab bar whose bottom has a zero-constant constraint to the safe
area layout guide bottom will have its apparent height extended downward behind
the home indicator on an iPhone without a bezel.

Bars | 739

I say that a bar’s apparent height is extended, because in fact its height remains
untouched. It is drawn extended, and this drawing is visible because the bar’s
clipsToBounds is false. For this reason (and others), you should not set a bar’s
clipsToBounds to true.

Bar Metrics
Bars are almost always used in conjunction with standard parent view controllers,
UINavigationController and UITabBarController. These parent view controllers will
change the height of the bar in a .compact horizontal size class environment,
depending on the vertical size class (reflecting the app’s orientation), either .regular
or .compact.

For this reason, some methods for setting features of a bar or a bar button item (or a
view that might be used in a bar, such as a segmented control) take a bar metrics
parameter — because you might want those features to vary depending on the auto‐
matic height applied to the bar. Possible bar metrics values are (UIBarMetrics):

• .default

• .compact

• .defaultPrompt

• .compactPrompt

The compact metrics apply in a .compact vertical size class environment. The prompt
metrics apply to a bar whose height is extended downward to accommodate prompt
text (and to a search bar whose scope buttons are showing). But in general you’ll
probably just supply .default; the feature you are configuring will then be set for all
bar metrics that you don’t specify separately.

Bar and Item Appearance
A problem with bar metrics is that it doesn’t distinguish sufficiently amongst the pos‐
sible bar configurations. For instance, a navigation controller’s navigation bar can be
extended downward in order to display a large title — and in iOS 13, it then takes on
a special look (the bar becomes transparent). Similarly, a tab bar controller’s tab bar
on an iPhone in portrait orientation draws its tab bar items with the title under the
image rather than beside it.

New in iOS 13, therefore, a hierarchy of appearances is introduced. Each bar type has
various appearance properties (UIBarAppearance); when you customize the bar, you
do so by customizing a particular bar appearance. Moreover, a bar appearance has
various bar item appearances, so that you can dictate certain common features of bar
button items belonging to that kind of bar. And to complete the picture, each bar

740 | Chapter 12: Controls and Other Views

item appearance comes in different flavors corresponding to the bar item’s state.
Here’s a hierarchical outline of the various bar and bar item appearance properties:

UINavigationBar
A navigation bar has three bar appearances with three item appearances:

• standardAppearance, compactAppearance, scrollEdgeAppearance
(UINavigationBarAppearance, a UIBarAppearance subclass)
▪ buttonAppearance, backButtonAppearance, doneButtonAppearance

(UIBarButtonItemAppearance)
⚬ normal, disabled, highlighted

(UIBarButtonItemStateAppearance)

UIToolbar
A toolbar has two bar appearances with two item appearances:

• standardAppearance, compactAppearance
(UIToolbarAppearance, a UIBarAppearance subclass)
▪ buttonAppearance, doneButtonAppearance

(UIBarButtonItemAppearance)
⚬ normal, disabled, highlighted

(UIBarButtonItemStateAppearance)

UITabBar
A tab bar has one bar appearance with three item appearances:

• standardAppearance
(UITabBarAppearance, a UIBarAppearance subclass)
▪ stackedLayoutAppearance, inlineLayoutAppearance, compactInline-
LayoutAppearance
(UITabBarItemAppearance)
⚬ normal, disabled, highlighted

(UITabBarItemStateAppearance)

A bar’s standard appearance always exists, but the others don’t (they are Optionals
and are nil by default). If a bar has no compact appearance, the standard appearance
is used. You can create a bar appearance or item appearance and assign it to an
appearance property; the state appearance properties are read-only, so you just set
their properties as desired.

This architecture may seem elaborate, but in fact it makes customizing bars much
simpler and clearer than before, because the actual properties of the various appear‐
ance objects are simple and direct, and your customization code is easy to read and
understand, as subsequent examples will show.

Bars | 741

Bar Background and Shadow
The default bar background in iOS 13 is a blur of whatever is behind the bar, whitish
in light mode and blackish in dark mode (.systemChromeMaterial) — except that a
navigation bar, when extended to show the large title, is completely transparent with
no blur. To override those defaults, use these properties of the appropriate bar
appearance (UIBarAppearance):

backgroundColor

A UIColor that occupies the entire bar.

backgroundImage

backgroundImageContentMode

A UIImage that appears in front of the background color, along with the content
mode for drawing it. The default content mode is .scaleToFill, which is proba‐
bly what you want. You can supply a resizable image if you like. If the image is a
template image, its color is the bar’s tintColor by default.

backgroundEffect

A UIBlurEffect. If the background color is not opaque, and if the background
image has some nonopaque pixels or does not completely fill the bar, content
behind the bar will be visible; this property determines how that content will be
blurred to get the standard translucent effect. The default is .systemChrome-
Material, which is probably what you want. nil means no blur.

To illustrate, I’ll configure a navigation bar to adopt three different colors depending
on its configuration; the so-called scrollEdgeAppearance is used when the naviga‐
tion bar is extended to show the large title:

let bar = self.navigationController!.navigationBar
bar.prefersLargeTitles = true
let app = UINavigationBarAppearance()
app.backgroundColor = UIColor.red.withAlphaComponent(0.2)
bar.standardAppearance = app
app.backgroundColor = UIColor.blue.withAlphaComponent(0.2)
bar.compactAppearance = app
app.backgroundColor = UIColor.orange.withAlphaComponent(0.2)
bar.scrollEdgeAppearance = app

If I hadn’t set the compactAppearance, a compact navigation bar would be red (using
the standardAppearance), but I must set the scrollEdgeAppearance if I don’t want
the large title navigation bar to be transparent.

By default, a bar (except for the transparent large title navigation bar) casts a thin
gray-tinted shadow upon whatever is behind it, at its bottom edge if it is a top bar, at
its top edge if it is a bottom bar. To change the shadow, use these properties of the
appropriate bar appearance:

742 | Chapter 12: Controls and Other Views

shadowImage

If nil, the default shadow is used. If you supply an image, it should probably be
very small, just one or two pixels in height and one pixel in width; the image will
be tiled to the width of the bar.

shadowColor

If there is no shadow image, this color tints the default shadow. If there is an
image and it is a template image, this color tints it. If there is an image and it is
not a template image, the shadow color is ignored. If both the shadowImage and
the shadowColor are nil, the bar will have no shadow.

As a shortcut, three convenience methods on UIBarAppearance are provided for set‐
ting a bar appearance’s background properties:

configureWithDefaultBackground

The background has the .systemChromeMaterial blur effect and the default
shadow.

configureWithOpaqueBackground

The background has the system background color and the default shadow.

configureWithTransparentBackground

All properties are nil. There is no background color, no blur, and no shadow.

The old isTranslucent bar property is not needed in iOS 13 and should proba‐
bly be avoided. The default is true and you should leave it there. Setting it to
false accomplishes nothing useful and can have unwanted side effects.

Bar Button Items
You don’t add subviews to a bar. Instead, you populate the bar with bar items. For a
navigation bar or toolbar, these will be bar button items (UIBarButtonItem, a
subclass of UIBarItem). A bar button item is not a UIView, but you can still put an
arbitrary view into a bar, because a bar button item can contain a custom view.

A bar button item may be instantiated with any of five methods:

• init(barButtonSystemItem:target:action:)

• init(title:style:target:action:)

• init(image:style:target:action:)

• init(image:landscapeImagePhone:style:target:action:)

• init(customView:)

The style: options (UIBarButtonItem.Style) are .plain and .done; the difference is
that .done title text is bold. No bar button item style supplies an outline (border).

Bars | 743

Figure 12-19. A bar button item with a border

(The .bordered style is deprecated, and its appearance is identical to .plain.) If you
want an outline, you have to supply it yourself; for the left bar button item in the set‐
tings view of my Zotz! app (Figure 12-19), I use a custom view that’s a UIButton with
a background image.

The image is not resized for you; roughly 24×24 is a reasonable size. If you provide
both an image and a landscapeImagePhone, the latter is used when the bar is com‐
pact (on an iPhone in landscape orientation — hence the name). New in iOS 13, if
the image is a symbol image, there is no need for a separate landscapeImagePhone,
because the scale of the symbol image configuration is adjusted automatically. A bar
button item’s image is treated by default as a template image, unless you explicitly
provide an .alwaysOriginal image.

A bar button item’s tintColor property tints the title text or template image of the
button; it is inherited from the tintColor of the bar, or you can override it for an
individual bar button item.

A bar button item inherits from UIBarItem the ability to adjust the image position
with imageInsets (and landscapeImagePhoneInsets), plus the isEnabled and tag
properties.

You can set a bar button item’s width property, but if the bar button item has a cus‐
tom view, you can and should size the view from the inside out using autolayout
constraints.

You can also give a bar button item a background image, and you can adjust the
background image’s position. In addition, you can apply text attributes to the bar
button item’s title, and you can adjust the title’s position. There are two ways to do
these things: you can do them to individual bar button items, or you can apply them
to a bar’s bar button items as a whole, by way of the bar’s appearance.

New in iOS 13, a bar buttom item’s background image is resized horizontally to
fit the bar button item, but not vertically (unless this is a system button). This is a
major change from iOS 12, where the background image is resized in both
dimensions; it can break your existing interface, and I regard it as a bug.

Individual bar button item settings
Here are the UIBarButtonItem methods for customizing the title and background
image of an individual bar button item. Some of these methods take a parameter
that’s a UIControl.State (.normal, .highlighted, and so forth). Some of them take a

744 | Chapter 12: Controls and Other Views

UIBarMetrics parameter (.default, .compact, and so forth). Some take both. Con‐
fusingly, the for: parameter, if there is no separate barMetrics: parameter, is some‐
times a UIControl.State and sometimes a UIBarMetrics (this is an unfortunate
consequence of Swift 3 “renamification”). The backButton methods apply only if the
bar button item is being used as a back button item in a navigation bar (as I’ll
describe in the next section):

Applying an attributes dictionary to a bar button item’s title
• setTitleTextAttributes(_:for:)

• setTitlePositionAdjustment(_:for:)

• setBackButtonTitlePositionAdjustment(_:for:)

Giving a bar button item a background image
• setBackgroundImage(_:for:barMetrics:)

• setBackgroundImage(_:for:style:barMetrics:)

• setBackButtonBackgroundImage(_:for:barMetrics:)

• setBackgroundVerticalPositionAdjustment(_:for:)

• setBackButtonBackgroundVerticalPositionAdjustment(_:for:)

Appearance bar button item settings
The appearance methods (UIBarButtonItemStateAppearance) are:

• titleTextAttributes

• titlePositionAdjustment

• backgroundImage

• backgroundImagePositionAdjustment

They are useful particularly when you want to configure features of all (or most) of a
bar’s bar button items at once. You usually do want to do that, because uniformity is
generally desirable; and if there’s an exception, you can override the general appear‐
ance property settings with the individual setting methods.

Let’s say I want every bar button item in my navigation bar to have a white back‐
ground normally and a yellow background while the user is tapping it:

let bar = self.navigationController!.navigationBar
let r = UIGraphicsImageRenderer(size: CGSize(40,30))
let im = r.image { ctx in
 let con = ctx.cgContext
 con.setFillColor(UIColor.white.cgColor)
 ctx.fill(CGRect(0,0,40,30))
}
bar.standardAppearance.buttonAppearance.normal.backgroundImage = im

Bars | 745

let im2 = r.image { ctx in
 let con = ctx.cgContext
 con.setFillColor(UIColor.yellow.cgColor)
 ctx.fill(CGRect(0,0,40,30))
}
bar.standardAppearance.buttonAppearance.highlighted.backgroundImage = im2

That code exemplifies how neatly we can express ourselves, thanks to the hierarchical
organization of the appearance properties. If we want a different variant for a differ‐
ent bar configuration, we specify a different bar appearance; for example, if we want a
smaller image height when the bar is compact, we set the bar’s compactAppearance
instead of its standardAppearance. If we want a different variant for a different type
of bar button item, we specify a different item appearance; for example, if we don’t
want these settings to apply to the back button, we give the back button an empty
(not nil!) image:

let none = UIImage()
bar.standardAppearance.backButtonAppearance.normal.backgroundImage = none

Navigation Bar
A navigation bar (UINavigationBar) is populated by navigation items (UINavigation‐
Item). The UINavigationBar maintains a stack; UINavigationItems are pushed onto
and popped off of this stack. The UINavigationItem that is currently topmost in the
stack (the UINavigationBar’s topItem), in combination with the UINavigationItem
just beneath it in the stack (the UINavigationBar’s backItem), determines what
appears in the navigation bar:

title, titleView
The title (string) or titleView (UIView) of the topItem appears in the center
of the navigation bar. You can and should size the titleView from the inside out
using autolayout constraints.

largeTitleDisplayMode

Whether the navigation bar’s large title can be displayed; possible values
are .always, .never, or .automatic (meaning inherited from further down the
stack). The large title will not be displayed if this property is .never, or the navi‐
gation bar is compact, or the navigation bar’s prefersLargeTitles is false. If
the top view controller’s main view is or contains a UIScrollView, the large title,
if displayed, collapses as it is scrolled upward.

prompt

The prompt (string) appears at the top of the navigation bar, whose height
increases to accommodate it.

746 | Chapter 12: Controls and Other Views

Figure 12-20. A back button animating to the left

rightBarButtonItem, rightBarButtonItems
leftBarButtonItem, leftBarButtonItems

The rightBarButtonItem and leftBarButtonItem appear at the right and left
ends of the navigation bar. A UINavigationItem can have multiple right bar but‐
ton items and multiple left bar button items; its rightBarButtonItems and left-
BarButtonItems properties are arrays (of bar button items). The bar button
items are displayed from the outside in: that is, the first item in the leftBar-
ButtonItems is leftmost, while the first item in the rightBarButtonItems is
rightmost. If there are multiple buttons on a side, the rightBarButtonItem is the
first item of the rightBarButtonItems array, and the leftBarButtonItem is the
first item of the leftBarButtonItems array.

backBarButtonItem

The backBarButtonItem of the backItem appears at the left end of the navigation
bar. It is automatically configured so that, when tapped, the topItem is popped
off the stack. Even if the backItem has no backBarButtonItem, there is still a back
button at the left end of the navigation bar, taking its title from the title of the
backItem.

The back button can be suppressed, if:

• The topItem has its hidesBackButton set to true.
• The topItem has a leftBarButtonItem. But if the topItem has its leftItems-
SupplementBackButton set to true, it can have both a leftBarButtonItem
and a back button.

The indication that the back button is a back button is supplied by the navigation
bar’s backIndicatorImage, which by default is a left-pointing chevron appearing to
the left of the back button. You can customize this image; the image that you supply
is treated as a template image by default. You must also supply a backIndicator-
TransitionMaskImage. The purpose of the mask image is to indicate the region
where the back button should disappear as it slides out to the left when a new naviga‐
tion item is pushed onto the stack. In Figure 12-20, the back button title, which is
sliding out to the left, is visible to the right of the chevron but not to the left of the
chevron; that’s because on the left side of the chevron it is masked out.

New in iOS 13, we can and should perform this setting through a UINavigationBar‐
Appearance property, by calling setBackIndicatorImage(_:transitionMask-

Image:). But there’s a bug: this method uses the image as the mask and the mask as

Bars | 747

the image! So we have to swap them to compensate. (Try it both ways, in case Apple
fixes the bug by the time you read this.) In this example, I replace the chevron with a
left-pointing triangle (a symbol image):

let sz = CGSize(20,20)
let arrow = UIImage(systemName:"arrowtriangle.left")!
let indic =
 UIGraphicsImageRenderer(size:sz).image { ctx in
 arrow.draw(in:CGRect(0,0,20,20)) // indicator is arrow
}
let indicmask =
 UIGraphicsImageRenderer(size:sz).image { ctx in
 ctx.fill(CGRect(0,0,20,20)) // mask is entire image
 }
// but it's backward! so reverse them
bar.standardAppearance.setBackIndicatorImage(
 indicmask, transitionMaskImage: indic)

You can configure the attributes dictionary for the title by setting the navigation bar’s
titleTextAttributes, and you can shift the title’s position through the title-
PositionAdjustment. You can configure the large title’s attributes dictionary by set‐
ting the navigation bar’s largeTitleTextAttributes. New in iOS 13, these are all
UINavigationBarAppearance properties. Here’s how my Zotz! app configures the
title shown in Figure 12-19:

bar.standardAppearance.titleTextAttributes = [
 .font: UIFont(name:"Chalkduster", size:20)!,
 .foregroundColor: UIColor.black
]

New in iOS 13, a view controller’s navigationItem, like a UINavigationBar, has
standardAppearance, compactAppearance, and scrollEdgeAppearance properties.
Using these, different view controllers can configure the navigation bar differently,
depending on which one is currently the navigation controller’s topViewController.

Toolbar
A toolbar (UIToolbar, Figure 12-21) displays a row of UIBarButtonItems, which are
its items. The items are displayed from left to right in the order in which they appear
in the items array. You can set the items with animation by calling set-
Items(_:animated:). The items within the toolbar are positioned automatically; you
can intervene in this positioning by using the system bar button items .flexible-
Space and .fixedSpace, along with the UIBarButtonItem width property.

When a toolbar is used as part a navigation interface (a UINavigationController’s
toolbar), its items are set by each child view controller through its toolbarItems
property. To change the items before the user’s eyes, call setToolbar-

Items(_:animated:).

748 | Chapter 12: Controls and Other Views

Figure 12-21. A toolbar

New in iOS 13, to configure all of the toolbar’s bar button items uniformly, use the
buttonAppearance (or doneButtonAppearance) of the toolbar’s standardAppearance
or compactAppearance.

Tab Bar
A tab bar (UITabBar) displays tab bar items (UITabBarItem), its items, each consist‐
ing of a title and an image. To change the items with animation, call
setItems(_:animated:). If, as will usually be the case, the tab bar is owned by a
UITabBarController, the tab bar items are the tabBarItem properties of the tab bar
controller’s children, and you manipulate them with the tab bar controller’s view-
Controllers and by calling setViewControllers(_:animated:).

The tab bar maintains a current selection among its items, its selectedItem, which is
a UITabBarItem, not an index number; you can set it in code, or the user can set it by
tapping on a tab bar item. When the user changes the selection, tabBar(_:did-
Select:) is sent to the delegate (UITabBarDelegate). With a UITabBarController,
the tab bar controller is the delegate, and you’ll use its selectedViewController or
selectedIndex, along with its delegate (UITabBarControllerDelegate).

You get very little control over how the tab bar items are laid out, and even then only
when the tab bar items are “stacked,” meaning that the icon appears above the title
(only on an iPhone in portrait orientation):

Item positioning
New in iOS 13, this can be set through the tab bar’s standardAppearance, using
the UITabBarAppearance stackedItemPositioning property. There are three
possible values (UITabBar.ItemPositioning):

.centered

The items are crowded together at the center.

.fill

The items are spaced out evenly.

.automatic

On the iPhone, the same as .fill. (On the iPad, the same as .centered; but
tab bar items are never stacked on the iPad nowadays, so this appears to be a
dead letter.)

Bars | 749

Item spacing
In iOS 13, the standard appearance’s stackedItemSpacing. The space between
items, if the positioning is .centered. For the default space, specify 0.

Item width
In iOS 13, the standard appearance’s stackedItemWidth. The width of the items,
if the positioning is .centered. For the default width, specify 0.

Here’s an example:

let tb = self.tabBarController!.tabBar
let tbapp = UITabBarAppearance()
tbapp.stackedItemPositioning = .centered
tbapp.stackedItemSpacing = 0
tbapp.stackedItemWidth = 35
tb.standardAppearance = tbapp

You can set an image to be drawn behind the selected tab bar item to indicate that it’s
selected; it is the tab bar’s selectionIndicatorImage. The documentation claims
that in iOS 13 you can set the selectionIndicatorImage, along with the selection-
IndicatorTintColor, through the tab bar’s standardAppearance; but in my tests this
is not working.

A UITabBarItem is created with one of these methods:

• init(tabBarSystemItem:tag:)

• init(title:image:tag:)

• init(title:image:selectedImage:)

UITabBarItem is a subclass of UIBarItem, so in addition to its title and image it
inherits the ability to adjust the image position with imageInsets, plus the isEnabled
and tag properties. The UITabBarItem itself adds the selectedImage property; this
image replaces the image when this item is selected.

You can assign a tab bar item an alternate landscapeImagePhone (inherited from
UIBarItem) to be used on the iPhone in landscape orientation. However, doing so
disables the selectedImage; I regard that as a bug. The best workaround is to supply
the image only, as a vector image or symbol image (Chapter 2).

A tab bar item’s image is treated, by default, as a template image, tinted with the tab
bar’s tintColor when selected and with its unselectedItemTintColor otherwise.
New in iOS 13, you can use the UITabBarAppearance iconColor property instead:

let app = UITabBarAppearance()
app.stackedLayoutAppearance.normal.iconColor = .red
app.stackedLayoutAppearance.selected.iconColor = .green
tb.standardAppearance = app

750 | Chapter 12: Controls and Other Views

Figure 12-22. A tab bar

A tab bar item’s title is also tinted when selected, by default, with the the tab bar’s
tintColor.

Getting full control of a tab bar item’s title color and other text attributes is not easy.
In theory, you should be able to call setTitleTextAttributes(_:for:), inherited
from UIBarItem, setting a color for .normal and a color for .selected:

let f = UIFont(name: "Georgia", size: 13)!
self.tabBarItem.setTitleTextAttributes(
 [.font:f, .foregroundColor:UIColor.red], for: .normal)
self.tabBarItem.setTitleTextAttributes(
 [.font:f, .foregroundColor:UIColor.green], for: .selected)

The trouble is that in iOS 13 the .normal color is ignored. I regard that as a bug. You
can work around it by setting the tab bar’s unselectedItemTintColor:

self.tabBarController?.tabBar.unselectedItemTintColor = .red

But that’s too broad a brush; what if you wanted to set the .normal title color of dif‐
ferent tab bar items to different colors?

Here’s another problem. In theory, you should be able to set the titleText-
Attributes for a tab bar’s items by way of the tab bar’s standardAppearance, like
this:

let app = UITabBarAppearance()
app.stackedLayoutAppearance.normal.titleTextAttributes = [
 .font:UIFont(name:"Avenir-Heavy", size:14)!,
 .foregroundColor:UIColor.black
]
self.tabBarController?.tabBar.standardAppearance = app

Unfortunately, that causes the tab bar item titles to be truncated. That’s a clear bug,
and I have not found a workaround.

New in iOS 13, a tab bar item has a standardAppearance property. Using this, differ‐
ent view controllers can configure the tab bar differently, depending on which one’s
tab bar item is currently selected. (But you can’t use it to work around the tab bar
standardAppearance bugs.)

Figure 12-22 is an example of a customized tab bar; I’ve set the tab bar’s selection
indicator image (the checkmark), the icon color (golden when selected), and the text
attributes of the tab bar items (green when selected).

Bars | 751

Figure 12-23. Automatically generated More list

The user can be permitted to alter the contents of the tab bar, setting its tab bar items
from among a larger repertoire of tab bar items. When used in conjunction with a
UITabBarController, the customization interface is provided automatically. If there
are a lot of items, a More item is present as the last item in the tab bar; the user can
tap this to access the remaining items through a table view. In this table view, the user
can select any of the excess items to navigate to the corresponding view, or switch to
the customization interface by tapping the Edit button. Figure 12-23 shows how a
More list looks by default.

The way this works is that the automatically provided More item corresponds to a
UINavigationController with a root view controller whose view is a UITableView.
You have access to this navigation controller as the UITabBarController’s more-
NavigationController, and therefore you can customize its appearance to some
extent.

Tint Color
Both UIView and UIBarButtonItem have a tintColor property. This property has a
remarkable built-in feature: its value, if not set explicitly (or if set to nil), is inherited
from its superview. (UIBarButtonItems don’t have a superview, because they aren’t
views; but for purposes of this feature, pretend that they are views, and that the con‐
taining bar is their superview.)

The idea is to simplify the task of giving your app a consistent overall appearance.
Many built-in interface objects use the tintColor for some aspect of their appear‐
ance, as I’ve already described. If a .system button’s tintColor is red, either because
you’ve set it directly or because it has inherited that color from higher up the view
hierarchy, it will have red title text by default.

The inheritance architecture works exactly the way you would expect:

Superviews and subviews
When you set the tintColor of a view, that value is inherited by all subviews of
that view. The ultimate superview is the window; you can set the tintColor of

752 | Chapter 12: Controls and Other Views

your UIWindow instance, and its value will be inherited by every view that ever
appears in your interface.

Overriding
The inherited tintColor can be overridden by setting a view’s tintColor explic‐
itly. You can set the tintColor of a view partway down the view hierarchy so
that it and all its subviews have a different tintColor from the rest of the inter‐
face. In this way, you might subtly suggest that the user has entered a different
world.

Propagation
If you change the tintColor of a view, the change immediately propagates down
the hierarchy of its subviews — except, of course, that a view whose tintColor
has been explicitly set to a color of its own is unaffected, along with its subviews.

Whenever a view’s tintColor changes, including when its tintColor is initially set at
launch time, and including when you set it in code, this view and all its affected sub‐
views are sent the tintColorDidChange message. A subview whose tintColor has
been explicitly set to a color of its own is not sent the tintColorDidChange message
merely because its superview’s tintColor changes; that’s because the subview’s own
tintColor didn’t change.

When you ask a view for its tintColor, what you get is the tintColor of the view
itself, if its own tintColor has been explicitly set to a color, or else the tintColor
inherited from higher up the view hierarchy. In this way, you can always learn what
the effective tint color of a view is.

A UIView also has a tintAdjustmentMode. Under certain circumstances, such as the
summoning of an alert (Chapter 13) or a popover (Chapter 9), the system will set the
tintAdjustmentMode of the view at the top of the view hierarchy to .dimmed. This
causes the tintColor to change to a variety of gray. The idea is that the tinting of the
background should become monochrome, emphasizing the primacy of the view that
occupies the foreground (the alert or popover). See “Custom Presented View Con‐
troller Transition” on page 361 for an example of my own code making this change.

By default, a change in the tintAdjustmentMode propagates all the way down the
view hierarchy, changing all tintAdjustmentMode values and all tintColor values —
and sending all subviews the tintColorDidChange message. When the foreground
view goes away, the system will set the topmost view’s tintAdjustmentMode
to .normal, and that change, too, will propagate down the hierarchy.

This propagation behavior is governed by the tintAdjustmentMode of the subviews.
The default tintAdjustmentMode value is .automatic, meaning that you want this
view’s tintAdjustmentMode to adopt its superview’s tintAdjustmentMode automati‐
cally. When you ask for a view’s tintAdjustmentMode, what you get is just like what

Tint Color | 753

you get for tintColor — you’re told the effective tint adjustment mode (.normal
or .dimmed) inherited from up the view hierarchy.

If, on the other hand, you set a view’s tintAdjustmentMode explicitly to .normal
or .dimmed, this tells the system that you want to be left in charge of the tint-
AdjustmentMode for this part of the hierarchy, preventing automatic propagation. To
turn automatic propagation back on, set the tintAdjustmentMode back
to .automatic.

Appearance Proxy
When you want to customize the look of an interface object, instead of sending a
message to the object itself, you can send that message to an appearance proxy for
that object’s class. The appearance proxy then passes that same message along to the
actual future instances of that class. You’ll usually configure your appearance proxies
once very early in the lifetime of the app, and never again. The app delegate’s
application(_:didFinishLaunchingWithOptions:), before the window has been
displayed, is the obvious place to do this, because your code runs before any instances
of any interface objects are created, and affects all of them.

This architecture, like the tintColor that I discussed in the previous section, helps
you give your app a consistent appearance with a minimum of code. Also, the
appearance proxy sometimes allows customization of interface objects that you have
no official way to refer to directly (such as a search bar’s external Cancel button).

There are four class methods for obtaining an appearance proxy:

appearance

Returns a general appearance proxy for the receiver class. The method you call
on the appearance proxy will be applied generally to future instances of this class.

appearance(for:)

The parameter is a trait collection. The method you call on the appearance proxy
will be applied to future instances of the receiver class when the environment
matches the specified trait collection.

appearance(whenContainedInInstancesOf:)

The argument is an array of classes, arranged in order of containment from inner
to outer. The method you call on the appearance proxy will be applied only to
instances of the receiver class that are actually contained in the way you describe.
The notion of what “contained” means is deliberately left vague; basically, it
works the way you intuitively expect it to work.

appearance(for:whenContainedInInstancesOf:)

A combination of the preceding two.

754 | Chapter 12: Controls and Other Views

When configuring appearance proxy objects, specificity trumps generality. You could
call appearance to say what should happen for most instances of some class, and call
the other methods to say what should happen instead for certain instances of that
class. Similarly, longer whenContainedInInstancesOf: chains are more specific than
shorter ones.

Here’s some code from my Latin flashcard app (myGolden and myPaler are class
properties defined by an extension on UIColor):

UIBarButtonItem.appearance().tintColor = .myGolden
UIBarButtonItem.appearance(
 whenContainedInInstancesOf: [UIToolbar.self])
 .tintColor = .myPaler
UIBarButtonItem.appearance(
 whenContainedInInstancesOf: [UIToolbar.self, DrillViewController.self])
 .tintColor = .myGolden

That means:

In general, bar button items should be tinted golden.

But bar button items in a toolbar are an exception: they should be tinted paler.

But bar button items in the toolbar in DrillViewController’s view are an excep‐
tion to the exception: they should be tinted golden.

Sometimes, in order to express sufficient specificity, I find myself defining subclasses
for no other purpose than to refer to them when obtaining an appearance proxy.
Here’s some more code from my Latin flashcard app:

let app = UINavigationBarAppearance()
app.backgroundImage = marble
UINavigationBar.appearance().compactAppearance = app
let app2 = UINavigationBarAppearance()
app2.titleTextAttributes = [.foregroundColor: UIColor.white]
app2.backgroundColor = .black
BlackNavigationBar.appearance().compactAppearance = app2

In that code, BlackNavigationBar is a UINavigationBar subclass that does nothing
whatever. Its sole purpose is to tag one navigation bar in my interface so that I can
refer to it in that code! As a result, I’m able to say, in effect, “All navigation bars in
this app should have marble as their background image, except for the one
BlackNavigationBar.”

(That code also demonstrates that the new iOS 13 bar appearance properties can
themselves be applied to a class appearance proxy.)

The ultimate in specificity is to customize the look of an instance directly. If you set
one particular UIBarButtonItem’s tintColor property, then setting the tint color by

Appearance Proxy | 755

way of a UIBarButtonItem appearance proxy will have no effect on that particular bar
button item.

Not every message that can be sent to an instance of a class can be sent to that class’s
appearance proxy. Unfortunately, the compiler can’t help you here; illegal code like
this will compile, but will probably crash at runtime:

UIBarButtonItem.appearance().action = #selector(configureAppearance)

The problem is not that UIBarButtonItem has no action property; on the contrary,
that code compiles because it does have an action property! But that property is not
one that you can set by way of the appearance proxy, and the mistake isn’t caught
until that line executes and the runtime tries to configure an actual UIBarButtonItem.

When in doubt, look at the class documentation; there should be a section that lists
the properties and methods applicable to the appearance proxy for this class. The
UINavigationBar class documentation has a section called “Customizing the Bar
Appearance,” the UIBarButtonItem class documentation has a section called “Cus‐
tomizing Appearance,” and so forth.

To define your own appearance-compliant property, declare that property @objc
dynamic in your UIView subclass.

756 | Chapter 12: Controls and Other Views

CHAPTER 13

Modal Dialogs

A modal dialog demands attention; while it is present, the user can do nothing other
than work within it or dismiss it. This chapter discusses various forms of modal
dialog:

• Within your app, you can show alerts and action sheets. An alert is basically a
message, possibly with an opportunity for text entry, and some buttons. An
action sheet is effectively a column of buttons.

• You can provide a sort of action sheet even when your app is not frontmost (or
even running) by allowing the user to summon quick actions — also known as
shortcut items — by long pressing on your app’s icon.

• A local notification is an alert that the system presents on your app’s behalf, even
when your app isn’t frontmost.

• A today widget is interface that appears in the screen that the user sees by swiping
sideways in the lock screen or home screen. Your app can provide a today widget
by means of a today extension. Your today widget can also appear as a quick
action.

• An activity view is typically summoned by the user from a Share button. It dis‐
plays possible courses of external and internal action (activities), such as handing
off data to another app, or processing data within your app. Your app can also
provide activities that other apps can display in their activity views, through an
action extension or share extension.

Alerts and Action Sheets
Alerts and action sheets are both forms of presented view controller (Chapter 6).
They are managed through the UIAlertController class, a UIViewController subclass.
To show an alert or an action sheet is a three-step process:

757

1. Instantiate UIAlertController with init(title:message:preferredStyle:).
The title: and message: are large and small descriptive text to appear at the top
of the dialog. The preferredStyle: argument (UIAlertController.Style) will be
either .alert or .actionSheet.

2. Configure the dialog by calling addAction(_:) on the UIAlertController as
many times as needed. An action is a UIAlertAction, which basically means it’s a
button to appear in the dialog, along with a function to be executed when the
button is tapped; to create one, call init(title:style:handler:). Possible
style: values are (UIAlertAction.Style):

• .default

• .cancel

• .destructive

An alert may also have text fields (I’ll talk about that in a moment).
3. Call present(_:animated:completion:) to present the UIAlertController.

The dialog is automatically dismissed when the user taps any button.

Alerts
An alert (UIAlertController style .alert) pops up unexpectedly in the middle of the
screen, with an elaborate animation, and may be thought of as an attention-getting
interruption. It contains a title, a message, and some number of buttons, one of
which may be the cancel button, meaning that it does nothing but dismiss the alert.
In addition, an alert may contain one or two text fields.

Alerts are minimal, and intentionally so: they are meant for simple, quick interac‐
tions or display of information. Often there is only a cancel button, the primary pur‐
pose of the alert being to show the user the message (“You won the game!”);
additional buttons may be used to give the user a choice of how to proceed (“You
won the game; would you like to play another?” “Cancel,” “Play Another,” “Replay”).

Figure 13-1 shows a basic alert, illustrating the title, the message, and the three button
styles: .destructive, .default, and .cancel respectively. Here’s the code that gen‐
erated it:

let alert = UIAlertController(title: "Not So Fast!",
 message: """
 Do you really want to do this \
 tremendously destructive thing?
 """,
 preferredStyle: .alert)
func handler(_ act:UIAlertAction) {
 print("User tapped \(act.title as Any)")
}

758 | Chapter 13: Modal Dialogs

Figure 13-1. An alert

alert.addAction(UIAlertAction(title: "Cancel",
 style: .cancel, handler: handler))
alert.addAction(UIAlertAction(title: "Just Do It!",
 style: .destructive, handler: handler))
alert.addAction(UIAlertAction(title: "Maybe",
 style: .default, handler: handler))
self.present(alert, animated: true)

In Figure 13-1, the .destructive button appears first and the .cancel button
appears last, without regard to the order in which they were added with addAction.
The order in which the .default buttons were added, on the other hand, will be the
order of the buttons themselves. If no .cancel button is added, the last .default
button will be displayed as a .cancel button.

You can also designate an action as the alert’s preferredAction. This appears to bol‐
dify the title of that button. Suppose I append this to the preceding code:

alert.preferredAction = alert.actions[2]

The order of the actions array is the order in which we added actions, so the prefer‐
red action is now the Maybe button. The order isn’t changed — the Maybe button
still appears second — but the bold styling is removed from the Cancel button and
placed on the Maybe button instead.

The dialog is dismissed automatically when the user taps a button. If you don’t want
to respond to the tap of a particular button, you can supply nil as the handler: argu‐
ment (or omit it altogether), but the dialog will still be dismissed. In the preceding
code, I’ve provided a minimal handler: function, just to show what one looks like.
As the example demonstrates, the function receives the original UIAlertAction as a
parameter, and can examine it as desired. The function can also access the alert con‐
troller itself, provided the alert controller is in scope at the point where the handler:
function is defined (which will usually be the case). My example code assigns the
same function to all three buttons, but more often you’ll give each button its own

Alerts and Action Sheets | 759

individual handler: function, probably as an anonymous function using trailing
closure syntax.

Text fields may be added to an alert. Because space is limited on the smaller iPhone
screen, especially when the keyboard is present, an alert that is to contain a text field
should probably be assigned at most two buttons, with short titles such as “OK” and
“Cancel,” and at most two text fields. To add a text field to an alert, call addText-
Field(configurationHandler:). The configurationHandler: function is called
before the alert appears; it will receive the text field as a parameter. Button handler:
functions can access the text field through the alert’s textFields property, which is
an array.

In this example, the user is invited to enter a number in a text field. When the text
field is added, its configurationHandler: function configures the keyboard. If the
alert is dismissed with the OK button, the OK button’s handler: function reads the
text from the text field:

let alert = UIAlertController(title: "Enter a number:",
 message: nil, preferredStyle: .alert)
alert.addTextField { tf in
 tf.keyboardType = .numberPad
}
func handler(_ act:UIAlertAction) {
 let tf = alert.textFields![0]
 // ... can read tf.text here ...
}
alert.addAction(UIAlertAction(title: "Cancel", style: .cancel))
alert.addAction(UIAlertAction(title: "OK",
 style: .default, handler: handler))
self.present(alert, animated: true)

A puzzle arises as to how to prevent the user from dismissing the alert if the text
fields are not acceptably filled in. The alert will be dismissed if the user taps a button,
and no button handler: function can prevent this. The solution is to disable the rele‐
vant buttons until the text fields are satisfactory. A UIAlertAction has an isEnabled
property for this very purpose. I’ll modify the preceding example so that the OK but‐
ton is disabled initially:

alert.addAction(UIAlertAction(title: "Cancel", style: .cancel))
alert.addAction(UIAlertAction(title: "OK",
 style: .default, handler: handler))
alert.actions[1].isEnabled = false
self.present(alert, animated: true)

But this raises a new puzzle: how will the OK button ever be enabled? The text field
can have a delegate or a control event target–action pair (Chapter 10), and so we can
hear about the user typing in it. I’ll modify the example again so that I’m notified as
the user edits the text field:

760 | Chapter 13: Modal Dialogs

alert.addTextField { tf in
 tf.keyboardType = .numberPad
 tf.addTarget(self,
 action: #selector(self.textChanged), for: .editingChanged)
}

Our textChanged method will now be called when the user edits, but this raises a fur‐
ther puzzle: how will this method, which receives a reference to the text field, get a
reference to the OK button in the alert in order to enable it? My approach is to work
my way up the responder chain from the text field to the alert controller. Here, I
enable the OK button if and only if the text field contains some text:

@objc func textChanged(_ sender: Any) {
 let tf = sender as! UITextField
 var resp : UIResponder? = tf
 while !(resp is UIAlertController) { resp = resp?.next }
 let alert = resp as? UIAlertController
 alert?.actions[1].isEnabled = (tf.text != "")
}

But there is a hole in our implementation, because a user with a hardware keyboard
can still enter nondigits and can still press Return to dismiss the alert even when the
text field is empty. To prevent that, we also give the text field a delegate (in the
handler: function for alert.addTextField) and implement the appropriate delegate
methods:

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {
 if string.isEmpty { return true }
 if Int(string) == nil { return false }
 return true
}
func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 return textField.text != ""
}

Action Sheets
An action sheet (UIAlertController style .actionSheet) may be considered the iOS
equivalent of a menu; it consists primarily of buttons. On the iPhone, it slides up
from the bottom of the screen; on the iPad, it appears as a popover.

Where an alert is an interruption, an action sheet is a crossroads: it presents courses
of action between which the user is to choose. In Apple’s Messages app, the edit but‐
ton summons an action sheet whose buttons are Select Messages, Edit Name and
Photo, and Cancel. An action sheet is often used to give the user a second chance
before taking a possibly destructive action. In Apple’s Photos app, asking to delete a
photo brings up an action sheet whose buttons are Delete Photo and Cancel; in

Alerts and Action Sheets | 761

Figure 13-2. An action sheet on the iPhone

Apple’s Calendar app, starting to create a new event and then canceling brings up an
action sheet whose buttons are Discard Changes and Keep Editing.

Figure 13-2 shows a basic action sheet on the iPhone. It was constructed with the
following code:

let action = UIAlertController(
 title: "Choose New Layout", message: nil, preferredStyle: .actionSheet)
action.addAction(UIAlertAction(title: "Cancel", style: .cancel))
func handler(_ act:UIAlertAction) {
 // ... do something here with act.title ...
}
for s in ["3 by 3", "4 by 3", "4 by 4", "5 by 4", "5 by 5"] {
 action.addAction(UIAlertAction(title: s,
 style: .default, handler: handler))
}
self.present(action, animated: true)

On the iPad, an action sheet wants to be a popover. This means that a UIPopover‐
PresentationController will take charge of it. It is incumbent upon you to provide
something for the popover’s arrow to point to (as explained in Chapter 9) or you’ll
crash at runtime:

self.present(action, animated: true)
if let pop = action.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
}

762 | Chapter 13: Modal Dialogs

Figure 13-3. A presented view behaving like an alert

The cancel button for a popover action sheet on the iPad is suppressed, because the
user can dismiss the popover by tapping outside it. On the iPhone, too, where the
cancel button is displayed, the user can still dismiss the action sheet by tapping out‐
side it. When the user does that, the cancel button’s handler: function will be called,
just as if the user had tapped the cancel button — even if the cancel button is not
displayed.

Alert Alternatives
Alerts and action sheets are deliberately limited, inflexible, and inappropriate to any
but the simplest cases. Their interface can contain title text, buttons, and (for an alert)
one or two text fields, and that’s all. What if you wanted more interface than that?

Some developers have hacked into their alerts or action sheets in an attempt to force
them to be more customizable. This is wrong, and in any case there is no need for
such extremes. These are just presented view controllers, and if you don’t like what
they contain, you can make your own presented view controller with its own custom‐
ized view. If you also want that view to look and behave like an alert or an action
sheet, then make it so!

As I have shown (“Custom Presented View Controller Transition” on page 361), it is
easy to create a small presented view that looks and behaves quite like an alert or
action sheet, floating in front of the main interface and darkening everything behind
it — the difference being that this is an ordinary view controller’s view, belonging
entirely to you, so that you can populate it with any interface you like (Figure 13-3).

But a presented view controller doesn’t have to look like an alert in order to have the
same effect. A popover is virtually a secondary window, and can be truly modal. The
popovers in Figure 9-1 are effectively modal dialogs. A presented view controller on
an iPad can use the .formSheet presentation style, which is effectively a dialog win‐
dow smaller than the screen. On the iPhone, any presented view is essentially a
modal dialog, and can replace an alert or action sheet. In Apple’s Mail app, when
reading a mail message, the action button in iOS 12 and earlier summons an action
sheet letting the user reply to the current message, forward it, or print it; in iOS 13,

Alerts and Action Sheets | 763

Apple wanted to add many more options, so now that button summons a custom
presented view controller instead of an action sheet.

Quick Actions
Quick actions are essentially a column of buttons summoned when the user long
presses on your app’s icon. They should represent convenient ways of accessing func‐
tionality that the user could equally have performed from within your app.

Quick actions are of two kinds:

Static quick actions
Static quick actions are described in your app’s Info.plist. The system can present
them even if your app isn’t running — indeed, even if your app has never run —
because it can read your app’s Info.plist.

Dynamic quick actions
Dynamic quick actions are configured in code. This means that they are not
available until your app’s code has actually run. Your code can alter and remove
dynamic quick actions, but it cannot affect your app’s static quick actions.

When the user taps a quick action, your app is brought to the front (launching it if
necessary) and a delegate method is called. In iOS 12 and before, this was an app del‐
egate method; in iOS 13 with window scene support, it is a scene delegate method.
You’ll be handed a UIApplicationShortcutItem describing the button the user
tapped; now you can respond as appropriate.

A UIApplicationShortcutItem is just a value class, embodying five properties describ‐
ing the button that will appear in the interface. Those five properties have analogs in
the Info.plist, so that you can configure your static quick actions. The Info.plist
UIApplicationShortcutItems entry is an array of dictionaries, one for each quick
action, each containing the properties and values you wish to set.

The UIApplicationShortcutItem properties and corresponding Info.plist keys are:

type

UIApplicationShortcutItemType

An arbitrary string. You can use this string in your delegate method to distin‐
guish which button was tapped. Required.

localizedTitle

UIApplicationShortcutItemTitle

The button title; a string. Required.

764 | Chapter 13: Modal Dialogs

localizedSubtitle

UIApplicationShortcutItemSubtitle

The button subtitle; a string. Optional.

icon

UIApplicationShortcutItemIconType

UIApplicationShortcutItemIconFile

An icon to appear in the button. Optional, but it’s good to supply some icon,
because if you don’t, you’ll get an ugly filled circle by default. When forming a
UIApplicationShortcutItem in code, you’ll supply a UIApplicationShortcutIcon
object as its icon property. UIApplicationShortcutIcon has four initializers:

init(type:)

A UIApplicationShortcutIcon.IconType. This is an enum of about 30 cases,
each representing a built-in standard image, such as .time (a clock icon).

init(templateImageName:)

Works like UIImage’s init(named:). The image will be treated as a template
image. Apple says that the image should be 35×35, though a larger image will
be scaled down appropriately.

init(systemImageName:)

New in iOS 13. Works like UIImage’s init(systemName:). The image
should be a symbol image.

init(contact:)

A CNContact (see Chapter 18). The icon will be based on the contact’s pic‐
ture or initials.

In the Info.plist, you may use either the IconType key or the IconFile key. The
value for the IconType key is the Objective-C name of a UIApplicationShortcut‐
Icon.IconType case, such as UIApplicationShortcutIconTypeTime. The value
for the IconFile key is the name of an image file in your app, suitable for use
with UIImage(named:).

userInfo

UIApplicationShortcutItemUserInfo

An optional dictionary of additional information, whose usage is completely up
to you.

To illustrate, imagine that our app’s purpose is to remind the user periodically to go
get a cup of coffee. Figure 13-4 shows a quick actions menu of three items generated
when the user long presses our app’s icon. The first two items are static items, gener‐
ated by our settings in the Info.plist, which is shown in Figure 13-5.

Quick Actions | 765

Figure 13-4. Quick actions

Figure 13-5. Static quick actions in the Info.plist

The third quick action item in Figure 13-4 is a dynamic item. The idea is that our app
lets the user set a time interval as a favorite default interval. We cannot know what
this favorite interval will be until the app runs and the user sets it; that’s why this item
is dynamic. Here’s the code that generates it; all we have to do is set our shared
UIApplication object’s shortcutItems property:

let subtitle = "In 1 hour..." // or whatever
let time = 60 // or whatever
let item = UIApplicationShortcutItem(type: "coffee.schedule",
 localizedTitle: "Coffee Reminder", localizedSubtitle: subtitle,
 icon: UIApplicationShortcutIcon(templateImageName: "cup"),
 userInfo: ["time":time as NSNumber])
UIApplication.shared.shortcutItems = [item]

Both in the Info.plist static quick actions and in this dynamic quick action, I’ve con‐
figured the userInfo so that when I receive this UIApplicationShortcutItem in my
delegate method, I can look at the value of its "time" key to find out what time inter‐
val the user specified.

So now let’s say the user taps one of the quick action buttons. Our delegate method is
called! If our app is already running, this will be the scene delegate’s window-

766 | Chapter 13: Modal Dialogs

Scene(_:performActionFor:completionHandler:) method. In our response, we are
supposed to finish by calling the completionHandler, passing a Bool to indicate suc‐
cess or failure; but in fact I see no difference in behavior regardless of whether we
pass true or false, or even if we omit to call the completionHandler entirely:

func windowScene(_ windowScene: UIWindowScene,
 performActionFor shortcutItem: UIApplicationShortcutItem,
 completionHandler: @escaping (Bool) -> Void) {
 if shortcutItem.type == "coffee.schedule" {
 if let d = shortcutItem.userInfo {
 if let time = d["time"] as? Int {
 // ... do something with time ...
 completionHandler(true)
 }
 }
 }
 completionHandler(false)
}

If our app is launched from scratch by the user tapping a quick action button, window-
Scene(_:performActionFor:completionHandler:) is not called. Instead, we have to
implement scene(_:willConnectTo:options:) and check whether the options:
parameter’s shortcutItem isn’t nil:

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 if let shortcutItem = connectionOptions.shortcutItem {
 if shortcutItem.type == "coffee.schedule" {
 if let d = shortcutItem.userInfo {
 if let time = d["time"] as? Int {
 // ... do something with time ...
 }
 }
 }
 }
}

New in iOS 13, if your app supports multiple windows on iPad, the runtime needs a
way to know which window scene’s delegate to call. To answer that question, use your
UIScene’s activationConditions: set it to a UISceneActivationConditions object
whose canActivateForTargetContentIdentifierPredicate and prefersTo-

ActivateForTargetContentIdentifierPredicate properties specify appropriate
predicates. The targetContentIdentifier in question is a property of UIApplica‐
tionShortcutItem; it’s just a string, such as "myShortcutIdentifier". The predicate’s
self is the incoming targetContentIdentifier string, so the predicate will be
something like this:

let pred = NSPredicate(format: "self == 'myShortcutIdentifier'")

Quick Actions | 767

Figure 13-6. A local notification

Apple has not explained how to specify a symbol image or a target content iden‐
tifier for a static UIApplicationShortcutItem defined in the Info.plist.

Local Notifications
A local notification (Figure 13-6) is an alert to the user that can appear even if your
app is not frontmost — indeed, even if your app is not running. Your app does not
present a local notification; the system does. You instruct the system as to when the
notification should fire, and then you just stand back and let the system deal with it.
(The notification can appear even when your app is frontmost; but even then it is the
system that is presenting it on your behalf.)

Notification alerts can appear in any of these venues:

• On the lock screen.
• In the notification center; this is the interface that appears when the user swipes

down from the top screen edge.
• As a banner at the top of the screen.

A local notification, as it fires, can do other things:

• It can play a sound.
• It can cause a badge number to appear on, or to be removed from, your app’s

icon.
Taken together, those five possibilities constitute your app’s delivery options for local
notifications. The user, in the Settings app, can veto any of the delivery options for
your app’s local notifications, and can even turn off your app’s local notifications
entirely. The user can also do just the opposite, turning on delivery options that were
previously turned off. A user who permits your notifications to appear as a banner
also gets to choose between a temporary banner, which vanishes spontaneously after
displaying itself briefly, and a persistent banner, which remains until the user
dismisses it.

The user can also, upon receipt of a notification from your app, summon a Manage
Notifications dialog, where a Deliver Quietly button limits your app’s notifications to
appear only in the notification center; there is also a Turn Off button that suppresses
them entirely (Figure 13-7). Other user settings can affect notification delivery as

768 | Chapter 13: Modal Dialogs

Figure 13-7. The user manages your app’s notifications

well; for instance, the user turning on Do Not Disturb has the same effect as choosing
Deliver Quietly.

The user can interact with local notification alerts in some rudimentary ways. At a
minimum, a local notification alert can be tapped as a way for the user to summon
your app, bringing it to the front if it is backgrounded, and launching it if it isn’t run‐
ning. This response to the notification is its default action. In the lock screen or noti‐
fication center, the user can slide the notification to reveal standard buttons such as
Clear (to close the alert), Manage (to bring up the dialog shown in Figure 13-7), and
Open (to summon your app).

The user can also elect to view the notification. Depending on the circumstances, the
user might slide the notification sideways to reveal the View button and tap it, or
drag it downward, or long press it. This produces the notification’s secondary inter‐
face, which you get to design.

You can add custom actions, in the form of buttons to appear in the secondary inter‐
face. A local notification can also carry an attachment, which may be an image, a
sound file, or a video; in the secondary interface, if the attachment is an image, the
image is displayed, and if the attachment is audio or video, interface is provided for
playing it.

Local Notifications | 769

Figure 13-8. Local notification secondary interface

In Figure 13-6, the little image at the right of the alert is the thumbnail of an image
attachment. In Figure 13-8, the user has summoned the alert’s secondary interface,
displaying the image as well as two custom action buttons.

But wait, there’s more! You can modify the secondary interface still further by writ‐
ing a notification content extension. This lets you design the interior of the secondary
interface however you like. Figure 13-9 shows an example; I’ve replaced the default
title and body with a caption in my own font, and I’ve shown the attachment image
in a smaller size.

Use of a local notification involves several steps:

1. Your app must obtain authorization for notifications.
2. You might register a notification category.
3. Your app creates and schedules the local notification, handing it over to the

system.
4. Your app is prepared to hear about the user responding to the notification after it

fires.
I’ll describe this sequence one step at a time; then I’ll talk about writing a notification
content extension.

770 | Chapter 13: Modal Dialogs

Figure 13-9. Local notification with custom secondary interface

You’ll need to import the User Notifications framework (import User-

Notifications). Most of your activity will ultimately involve the user notification
center, a singleton UNUserNotificationCenter instance available by calling UNUser-
NotificationCenter.current().

Authorization for Local Notifications
You have a choice of two strategies for obtaining initial authorization for your app’s
notifications:

Full authorization
This form of authorization, broadly speaking, has been around since iOS 8.
Before trying to schedule any local notifications, you ask the system to present a
one-time authorization alert on your behalf. The user must choose between
granting and denying authorization to your app (Figure 13-10, on the left). An
app that gains full authorization in this way is eligible initially for all delivery
options.

Provisional authorization
This form of authorization was introduced in iOS 12. With no explicit user
authorization, you can be automatically authorized for “quiet” delivery: your
notifications can appear in the notification center only, with no sound and no
icon badging. In the notification center, your notification is accompanied by
options to keep or turn off your app’s notifications (Figure 13-10, on the right). If
the user ignores this choice, “quiet” delivery of your app’s notifications will con‐
tinue. If the user taps Keep, an action sheet lets the user grant your app full
authorization.

Local Notifications | 771

Figure 13-10. Two ways of requesting user authorization

Which strategy should you choose? Full authorization, if you can obtain it, gives your
notifications the widest range of possible venues immediately; but it can be hard to
obtain. Who of us hasn’t seen that alert (Figure 13-10, on the left) and wondered:
“What’s that all about?” If you’re like me, you instinctively tap Don’t Allow and move
on. The idea of provisional authorization is that the user, having seen your notifica‐
tions in the notification center, and having understood what they are for, might then
grant full authorization. But whatever sort of authorization you obtain initially is just
that — initial authorization. The user, at any time, can return to the Settings app and
increase or decrease the powers of your local notifications.

Whichever strategy you decide on, your first step before scheduling any local notifi‐
cations should be to find out whether we are already authorized. To do so, call the
user notification center’s getNotificationSettings method. It returns a UNNotifi‐
cationSettings object asynchronously; examine the authorizationStatus property of
that object. The possibilities are (UNAuthorizationStatus):

.denied

The user has explicitly disallowed all notifications from your app. There may be
no point scheduling any local notifications, as they will not fire unless the user’s
settings are changed. (You might put up an alert begging the user to switch to the
Settings app and authorize your app’s notifications.)

.authorized

You have full authorization. Go ahead and schedule a local notification.

.provisional

You have provisional authorization. Go ahead and schedule a local notification.

.notDetermined

This is the really interesting case — the moment when you’re going to try to get
authorization! You should immediately send requestAuthorization(options:)
to the user notification center. A Bool is returned asynchronously, telling you

772 | Chapter 13: Modal Dialogs

whether authorization was granted. The options: argument is a UNAuthoriza‐
tionOptions object, an option set that can include any of the following:

.badge

.sound

.alert

The maximum range of abilities you want your app to have. .badge means
you might want your app’s icon to be badged with a number when a notifi‐
cation fires. .sound means you might want a sound to play when a notifica‐
tion fires. .alert means you might want a notification alert to be presented
when a notification fires. Be sure to include all choices that might be needed
for any of your app’s notifications, as you won’t get another chance! For
instance, if you don’t include .badge, the switch that lets the user turn on
badges for your app’s notifications will never even appear in Settings.

.provideAppNotificationSettings

I’ll discuss this more in a moment.

.provisional

You are opting for provisional authorization.

If your UNAuthorizationOptions doesn’t include .provisional, your call to
requestAuthorization(options:) when the authorization status is .not-

Determined will cause the authorization alert to appear (Figure 13-10, on the
left), and the user must make a choice on the spot. The outcome of that choice is
the Bool that is returned from the call to requestAuthorization(options:). If it
does include .provisional, that alert will never appear, and you will be granted
provisional authorization immediately — the Bool will be true.

Both getNotificationSettings and requestAuthorization(options:) return their
results asynchronously (see Appendix C) and possibly on a background thread
(Chapter 24). This means that you cannot simply follow a call to getNotification-
Settings with a call to requestAuthorization(options:); if you do, request-
Authorization(options:) will run before getNotificationSettings has a chance
to return its UNNotificationSettings object! Instead, you must nest the calls by means
of their completion functions, like this:

let center = UNUserNotificationCenter.current()
center.getNotificationSettings { settings in
 switch settings.authorizationStatus {
 case .denied: break // or beg for authorization
 case .authorized, .provisional: break // or schedule a notification
 case .notDetermined:
 center.requestAuthorization(options:[.alert, .sound]) { ok, err in
 if let err = err {
 return // could do something with the error information

Local Notifications | 773

 }
 if ok {
 // authorized; could schedule a notification
 }
 }
 }
 @unknown default: fatalError()
}

The parameter that arrives in your getNotificationSettings completion function
(settings in the preceding code) is a UNNotificationSettings object. This object
describes your app’s notification settings in the Settings app as they are configured at
this moment. That information might be of interest at any time, especially because
the user can change those settings. In addition to its authorizationStatus, a
UNNotificationSettings object has the following properties:

soundSetting

badgeSetting

alertSetting

notificationCenterSetting

lockScreenSetting

How the user has configured the notification settings for your app. A UNNotifi‐
cationSetting:

• .enabled

• .disabled

• .notSupported

alertStyle

How the user has configured the alert style setting for your app. A UNAlertStyle:

• .banner

• .alert

• .none

showPreviewsSetting

How the user has configured previews for your app. I’ll discuss the implications
of this setting later. A UNShowPreviewsSetting:

• .always

• .whenAuthenticated

• .never

774 | Chapter 13: Modal Dialogs

providesAppNotificationSettings

This depends on whether your app included .provideAppNotification-

Settings when requesting authorization. I’ll explain that later, when I talk about
the user notification center delegate.

Notification Categories
A notification category is a somewhat nebulous entity, embracing a miscellany of
possible settings to be associated with individual notifications. You register any
desired categories with the user notification center; each category has an arbitrary
string identifier. Later, when you create a notification, you associate it with a previ‐
ously registered category by means of that string identifier.

Categories have grown over the years to embrace more and more settings, so a cate‐
gory (UNNotificationCategory) now has three initializers with increasingly more
parameters. The fullest form is:

• init(identifier:actions:intentIdentifiers:hiddenPreviewsBody-

Placeholder:categorySummaryFormat:options:)

The identifier: is how a subsequent notification will be matched to this category.
I’ll talk about the other parameters later (except for intentIdentifiers:; it has to do
with SiriKit, which is not covered in this book).

To bring a category into force, you register it with the user notification center by call‐
ing setNotificationCategories. The parameter is an array of categories:

let cat1 = UNNotificationCategory(identifier: /* ... */)
let cat2 = UNNotificationCategory(identifier: /* ... */)
let cat3 = UNNotificationCategory(identifier: /* ... */)
let center = UNUserNotificationCenter.current()
center.setNotificationCategories([cat1, cat2, cat3])

There are no category management commands, in the sense of adding or removing
individual categories. But the categories are maintained as a Set, so it does no harm to
register the same identical category multiple times. Moreover, there is a command
that allows you to get categories; you can retrieve the existing categories, add a cate‐
gory to the list, and set the categories again:

let center = UNUserNotificationCenter.current()
center.getNotificationCategories { cats in
 var cats = cats
 let newcat = UNNotificationCategory(identifier: /* ... */)
 cats.insert(newcat)
 center.setNotificationCategories(cats)
}

You might use a notification category for any of the following purposes:

Local Notifications | 775

• You want your notification’s secondary interface to display custom actions.
• You want your app to be notified when the user dismisses your notification.
• You want to customize the text of your notification when the user has suppressed

previews.
• You want to customize the text that summarizes your notifications when they are

grouped.
I’ll talk now about the first three of those uses, leaving grouped notifications for later.

Custom actions
Custom actions are basically buttons that appear in a notification’s secondary inter‐
face (Figure 13-8). Before iOS 12, the only way to get these was through a notification
category. Starting in iOS 12, you can create custom actions in a notification context
extension, so you don’t need to use a category for this unless your notification has no
corresponding notification context extension.

A custom action is a UNNotificationAction, a value class whose initializer is:

• init(identifier:title:options:)

The identifier: is an arbitrary string; you might use it later to distinguish which
button was tapped. The title: is the text to appear in the button. The options: are a
UNNotificationActionOptions bitmask; here are the options and what they mean if
you include them:

.foreground

Tapping this button summons your app to the foreground. Otherwise, this but‐
ton will call your app in the background; your app will be given just enough time
to respond and will then be suspended.

.destructive

This button will be marked in the interface as dangerous (by being displayed in
red).

.authenticationRequired

If this is not a .foreground button, then if the user’s device requires authentica‐
tion (such as a passcode) to go beyond the lock screen, tapping this button in the
lock screen will also require authentication. The idea is to prevent performance
of this action from the lock screen without the user explicitly unlocking it.

Alternatively, an action can be a text field where the user can type and then tap a but‐
ton to send the text to your app. This is a UNTextInputNotificationAction, a
UNNotificationAction subclass. Its initializer is:

776 | Chapter 13: Modal Dialogs

• init(identifier:title:options:textInputButtonTitle:textInput-

Placeholder:)

Having created your actions, initialize your UNNotificationCategory with the actions
in an array as the actions: argument. I’ll explain how your app responds to the tap‐
ping of a custom action button later, when I talk about the user notification center
delegate (and custom content extensions).

Dismiss action
The user can dismiss your local notification (removing it from the notification cen‐
ter) without interacting with it in any other way that might cause your app to get an
event — without tapping it to summon your app (the default action) and without
tapping a custom action button. Normally, when that happens, your app will get no
event at all, so you won’t even know that the user has seen the notification.

However, you can change that. In the UNNotificationCategory initializer, the
options: parameter is a UNNotificationCategoryOptions, an option set.
Include .customDismissAction if you want your code to get an event under those
circumstances. I’ll explain how your app gets this event later, when I talk about the
user notification center delegate.

Previews
Notifications can pop up unexpectedly, including on the lock screen. So the user
might prefer, in the interests of privacy, to suppress the notification’s text when the
alert initially appears. The text would then be visible only in the notification’s secon‐
dary interface. The text in a local notification alert when it initially appears is called
the preview of the notification.

In the Settings app, the user has three choices about when previews should be permit‐
ted to appear: always, when the phone is unlocked (to prevent the previews on the
lock screen only), and never.

By default, if previews are turned off, the title and subtitle of the notification are sup‐
pressed, and the body text is replaced by a placeholder — the word “Notification.”
Instead of “Notification,” you can supply your own placeholder. In the UNNotifica‐
tionCategory initializer, set the hiddenPreviewsBodyPlaceholder: argument to the
desired placeholder.

If your notification’s title and subtitle contain no sensitive information, you can cause
them to appear even if previews are turned off. To do so, include the UNNotification‐
CategoryOptions .hiddenPreviewsShowTitle and .hiddenPreviewsShowSubtitle
in the options: argument when you initialize your UNNotificationCategory.

Local Notifications | 777

Scheduling a Local Notification
To schedule a notification, you create a UNNotificationRequest, by calling its desig‐
nated initializer:

• init(identifier:content:trigger:)

You then tell the user notification center to add(_:) this notification to its internal
list of scheduled notifications.

The identifier: is an arbitrary string. You might use this later on to distinguish
which notification this is. And it lets you prevent clutter. If you schedule a notifica‐
tion when a previous notification with the same identifier is already scheduled, the
previous notification is deleted; if a notification fires (is delivered) when a previous
notification with the same identifier is already sitting in the notification center, the
previous notification is deleted.

The content: is the heart and soul of this individual notification — what it is to dis‐
play, what information it carries, and so forth. It is sometimes referred to as the pay‐
load of the notification. It is a UNNotificationContent object, but that class is
immutable; in order to form the payload, you’ll start by instantiating its mutable sub‐
class, UNMutableNotificationContent. You will then assign values to as many of its
properties as you like. Those properties are:

title, subtitle, body
Text visible in the notification alert.

attachments

UNNotificationAttachment objects. An attachment is created by calling its desig‐
nated initializer:

• init(identifier:url:options:)

The identifier: is an arbitrary string. The url: is the attachment itself; it must
be a file URL pointing to an image file, an audio file, or a video file on disk. The
file must be fairly small, because the system, in order to present it on your behalf
in the notification’s interface after the notification fires some time in the future,
is going to copy it off to a private secure area of its own.

sound

A sound (UNNotificationSound) to be played when the notification fires. You
can specify a sound file in your app bundle by name (UNNotificationSound‐
Name), or call default to specify the default sound:

content.sound =
 UNNotificationSound(named: UNNotificationSoundName("test.aif"))

778 | Chapter 13: Modal Dialogs

badge

A number to appear on your app’s icon after this notification fires. Specify 0 to
remove an existing badge. (You can also set or remove your app’s icon badge at
any time by means of the shared application’s applicationIconBadgeNumber.)

categoryIdentifier

The identifier string of a previously registered category. This is how your local
notification will be associated with the settings you’ve applied to that category.

userInfo

An arbitrary dictionary, to carry extra information you’ll retrieve later.

threadIdentifier

A string; notification alerts with the same thread identifier are grouped together
physically in the lock screen and notification center. I’ll talk more about that
later.

launchImageName

Your app might be launched from scratch by the user tapping this notification’s
alert. Suppose that when this happens, you’re going to configure your app so that
it appears differently from how it normally launches. You might want the
momentary launch screen, shown while your app starts up, to correspond to that
different interface. This is how you specify the alternative launch image to be
used in that situation.

The trigger: parameter tells the system how to know when it’s time for this notifi‐
cation to fire. It will be expressed as a subclass of UNNotificationTrigger:

UNTimeIntervalNotificationTrigger
Fires starting a certain number of seconds from now, possibly repeating every
time that number of seconds elapses. The initializer is:

• init(timeInterval:repeats:)

UNCalendarNotificationTrigger
Fires at a certain date-time, expressed using DateComponents, possibly repeating
when the same DateComponents occurs again. For instance, if you use the Date‐
Components to express nine o’clock in the morning, without regard to date, then
the trigger, if repeating, would be nine o’clock every morning. The initializer is:

• init(dateMatching:repeats:)

UNLocationNotificationTrigger
Fires when the user enters or leaves a certain geographical region. I’ll discuss this
further in Chapter 21.

As an example, here’s the code that generated Figure 13-6:

Local Notifications | 779

let interval = // ... whatever ...
let trigger = UNTimeIntervalNotificationTrigger(
 timeInterval: interval, repeats: false)
let content = UNMutableNotificationContent()
content.title = "Caffeine!"
content.body = "Time for another cup of coffee!"
content.sound = UNNotificationSound.default
content.categoryIdentifier = self.categoryIdentifier
let url = Bundle.main.url(forResource: "cup2", withExtension: "jpg")!
if let att = try? UNNotificationAttachment(
 identifier: "cup", url: url, options:nil) {
 content.attachments = [att]
}
let req = UNNotificationRequest(
 identifier: "coffeeNotification", content: content, trigger: trigger)
let center = UNUserNotificationCenter.current()
center.add(req)

Hearing About a Local Notification
In order to hear about your scheduled local notification after it fires, you need to con‐
figure some object to be the user notification center’s delegate, adopting the
UNUserNotificationCenterDelegate protocol. You’ll want to do this very early in
your app’s lifetime, because you might need to be sent a delegate message immedi‐
ately upon launching; application(_:didFinishLaunchingWithOptions:) is a good
place. The user notification center delegate might be the app delegate itself, or it
might be some helper object that the app delegate creates and retains:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplication.LaunchOptionsKey : Any]?) -> Bool {
 let center = UNUserNotificationCenter.current()
 center.delegate = self // or whatever
 return true
}

The UNUserNotificationCenterDelegate protocol consists of three optional methods.
All three of them provide you with a UNNotification object containing the fire date
and your original request (UNNotificationRequest). You can identify the local noti‐
fication, and you can extract information from it, such as an attachment or the user-
Info dictionary. Here are the delegate methods:

userNotificationCenter(_:willPresent:withCompletionHandler:)

This method is called only if your app is frontmost when your local notification
fires. By default, when that happens, the notification’s entire user interface is
suppressed: no sound is played, no banner appears, no notification is added to
the notification center or the lock screen. This method lets you know that the
notification fired, but the user has no way of knowing. The idea is that your app

780 | Chapter 13: Modal Dialogs

itself, as it is already frontmost, might inform the user of whatever the user needs
to know.

However, you can opt to let the system do what it would have done if your app
had not been frontmost. You are handed a completion function; you must call it,
with some combination of UNNotificationPresentationOptions values
— .alert, .sound, and .badge — or an empty option set, if you want the default
behavior. Here’s an example where we tell the runtime to present the local notifi‐
cation alert within our app:

func userNotificationCenter(_ center: UNUserNotificationCenter,
 willPresent notification: UNNotification,
 withCompletionHandler completionHandler:
 @escaping (UNNotificationPresentationOptions) -> ()) {
 completionHandler([.sound, .alert])
}

userNotificationCenter(_:didReceive:withCompletionHandler:)

Called when the user interacts with your local notification alert. The second
parameter is a UNNotificationResponse, consisting of two properties. One, the
notification, is the UNNotification object. The other, the actionIdentifier, is
a string telling you what the user did; there are three possibilities:

UNNotificationDefaultActionIdentifier

The user performed the default action, tapping the alert or the Open button
to summon your app.

UNNotificationDismissActionIdentifier

The user dismissed the local notification alert. You won’t hear about this
(and this method won’t be called) unless you specified the .customDismiss-
Action option for this notification’s category.

A custom action identifier string
The user tapped a custom action button, and this is its identifier.

If the custom action was a text input action, then the UNNotificationResponse
will be a subclass, UNTextInputNotificationResponse, which has an additional
userText property. You’ll cast down safely and retrieve the userText:

if let textresponse = response as? UNTextInputNotificationResponse {
 let text = textresponse.userText
 // ...
}

You are handed a completion function, which you must call when you’re done.
You must be quick, because it may be that you are being awakened momentarily
in the background, and your code is running on the main thread. Here’s an
example where the user has tapped a custom action button; I use a background

Local Notifications | 781

task (Chapter 24) and my delay utility (Appendix B) so as to return immediately
before proceeding to obey the button:

func userNotificationCenter(_ center: UNUserNotificationCenter,
 didReceive response: UNNotificationResponse,
 withCompletionHandler completionHandler: @escaping () -> ()) {
 let id = response.actionIdentifier
 if id == "snooze" {
 var id = UIBackgroundTaskIdentifier.invalid
 id = UIApplication.shared.beginBackgroundTask {
 UIApplication.shared.endBackgroundTask(id)
 }
 delay(0.1) {
 self.createNotification()
 UIApplication.shared.endBackgroundTask(id)
 }
 }
 completionHandler()
}

If the user tapped on your notification alert (the default action), your app is acti‐
vated and, if necessary, launched from scratch. New in iOS 13, if your app with
window scene support is launched from scratch or if the notification is routed to
a scene that was previously disconnected, your scene delegate’s scene(_:will-
ConnectTo:options:) is called with the notificationResponse in its options:
parameter. As with a shortcut item, you can set your notification request con‐
tent’s targetContentIdentifier to specify which scene the notification should
be routed to. In any case, userNotificationCenter(_:didReceive:with-

CompletionHandler:) is still called.

userNotificationCenter(_:openSettingsFor:)

When you requested authorization, you may have included the .provideApp-
NotificationSettings option. Doing so constitutes a promise that your app
provides its own internal interface for letting the user manage notifications-
related settings. In response, the runtime provides on your behalf a special app
notification settings button in appropriate places like the Settings app. The user
has now tapped that button, and you should immediately display that interface.

How might you use this feature? Well, suppose your app has several clearly dis‐
tinct categories of notification; you might want to allow the user to elect to turn
notifications on or off for a particular category. Your app provides interface for
letting the user do that, and the button in the Settings app provides a direct path‐
way to that interface. The idea is that permitting the user to perform fine-grained
notification management will reduce clutter in the user’s interface and might
increase the chances that the user will allow your app to continue sending
notifications.

782 | Chapter 13: Modal Dialogs

Figure 13-11. A local notification group

Figure 13-12. Customizing a group summary

Grouped Notifications
In iOS 12 and later, grouping of notifications by app is the default (though, as usual,
the user can turn it off). So you do not need to set the threadIdentifier of a notifi‐
cation request’s payload (UNMutableNotificationContent) merely in order to group
your notifications in the lock screen and the notification center. Rather, the purpose
of the threadIdentifier is so that, if you have multiple notification types, you can
use different threadIdentifier values to subdivide your app’s group into multiple
groups.

Another way to tweak your grouped notifications is to change the summary text that
labels each group. In Figure 13-11, the summary text “2 more notifications” is gener‐
ated automatically. It might be nice to customize it, depending on what sort of thing
my notifications represent. For example, I might like to describe these notifications as
“reminders.” That’s the purpose of the categorySummaryFormat: parameter of the
UNNotificationCategory initializer.

The categorySummaryFormat: is a format string. At a minimum, it will contain a
"%u" format specifier where the count is to go, such as "%u more reminders"

(Figure 13-12).

When you create the payload for your notification, you can supply a summary-
Argument string. By default, the summary text will then incorporate this as the sender
or source of the notification; if the summaryArgument for three notifications is "Matt",
the summary text will say “2 more notifications from Matt.” To customize that, my
categorySummaryFormat string would need to contain a "%@" format specifier where
the summary argument is to go, such as "%u more reminders from %@".

Local Notifications | 783

(Rarely, an app might also include a summaryArgumentCount in the payload. This is to
cover the special case where a single notification represents more than one of what‐
ever is represented. In the summary text, the count will be sum of the summary-
ArgumentCount values of the grouped notifications, rather than just the count of the
grouped notifications.)

Managing Notifications
The user notification center is introspectable. It vends two lists of notifications: those
that have been scheduled but have not yet fired, and those that have fired but have
not yet been removed from the user’s notification center:

Scheduled notifications
These are the methods for managing scheduled notifications:

• getPendingNotificationRequests(completionHandler:)

• removePendingNotificationRequests(withIdentifiers:)

• removeAllPendingNotificationRequests

You can examine the list of scheduled notifications, and you can remove a notifi‐
cation from the list to cancel it; that also means you can effectively reschedule a
notification (by removing it, copying it with any desired alterations, and adding
the resulting notification).

Delivered notifications
These are the methods for managing delivered notifications:

• getDeliveredNotifications(completionHandler:)

• removeDeliveredNotifications(withIdentifiers:)

• removeAllDeliveredNotifications

By judicious removal of notifications from this list, you can keep the user’s noti‐
fication center trimmed. You might prefer that only your most recently delivered
notification should appear in the notification center. You can even modify the
text of a delivered notification, so that the notification will be up-to-date when
the user gets around to dealing with it; to do so, you add a notification whose
identifier is the same as that of an existing notification.

Canceling a repeating local notification is up to your code; if you don’t provide a
way of doing that, then if the user wants to prevent the notification from recur‐
ring, the only recourse may be to delete your app.

784 | Chapter 13: Modal Dialogs

Notification Content Extensions
You can customize what appears in your notification’s secondary interface. To do so,
you write a notification content extension. This is a target, separate from your app tar‐
get, because the system needs to access it outside your app, possibly when your app
isn’t even running.

To add a notification content extension to your app, create a new target and specify
iOS → Application Extension → Notification Content Extension. The template gives
you a good start on your extension. You have a storyboard with a single scene, and
the code for a corresponding view controller. The code file imports both the User
Notifications framework and the User Notifications UI framework, and the view con‐
troller adopts the UNNotificationContentExtension protocol.

The view controller code contains a stub implementation of the didReceive(_:)
method, which is the only required method. The parameter is a UNNotification
whose request is your original UNNotificationRequest; you can examine this and
extract information from it as you configure your interface. If you want to extract an
attachment, you’ll have to wrap your access in calls to these URL methods:

• startAccessingSecurityScopedResource

• stopAccessingSecurityScopedResource

The only other thing your view controller really needs to do is to set its own
preferredContentSize to the desired dimensions of the custom interface. Alterna‐
tively, you can use autolayout to size the interface from the inside out.

To illustrate, here’s how the custom interface in Figure 13-9 was attained. The inter‐
face consists of a label and an image view. The image view is to contain the image
attachment from the local notification, so I extract the image from the attachment
and set it as the image view’s image. I find that the interface doesn’t reliably appear
unless we also call setNeedsLayout at the end:

override func viewDidLoad() {
 super.viewDidLoad()
 self.preferredContentSize = CGSize(320, 80)
}
func didReceive(_ notification: UNNotification) {
 let req = notification.request
 let content = req.content
 let atts = content.attachments
 if let att = atts.first, att.identifier == "cup" {
 if att.url.startAccessingSecurityScopedResource() {
 if let data = try? Data(contentsOf: att.url) {
 self.imageView.image = UIImage(data: data)
 }
 att.url.stopAccessingSecurityScopedResource()

Local Notifications | 785

Figure 13-13. A content extension’s Info.plist

 }
 }
 self.view.setNeedsLayout()
}

The template also includes an Info.plist for your extension. You will need to modify it
by configuring these keys:

UNNotificationExtensionCategory

A string corresponding to the categoryIdentifier of the local notification(s) to
which this custom secondary interface is to be applied. This is how the runtime
knows to associate this notification content extension with this notification!
There does not have to be an actual category with this identifier.

UNNotificationExtensionInitialContentSizeRatio

A number representing the width of your custom interface divided by its height.
This doesn’t have to be perfect — and indeed it probably can’t be, since you don’t
know the actual width of the screen on which this interface will be displayed —
but the idea is to give the system a rough idea of the size as it prepares to display
the custom interface.

UNNotificationExtensionDefaultContentHidden

Optional. A Boolean. Set to YES if you want to eliminate the default display of the
local notification’s title, subtitle, and body from the custom interface.

UNNotificationExtensionOverridesDefaultTitle

Optional. A Boolean. Set to YES if you want to replace the default display of your
app’s name at the top of the interface (where it says “Coffee Time!” in
Figure 13-9) with a title of your own choosing. To determine that title, set your
view controller’s title property in your didReceive(_:) implementation.

Figure 13-13 shows the relevant part of the Info.plist for my content extension.

Action button management
Your secondary interface may include custom action buttons. If the user taps one of
these, your user notification center delegate’s userNotificationCenter(_:did-
Receive:withCompletionHandler:) is called, as I described earlier. However, your

786 | Chapter 13: Modal Dialogs

notification content extension view controller can intervene in this mechanism by
implementing didReceive(_:completionHandler:). This is different from did-
Receive(_:)! The parameter is a UNNotificationResponse, not a UNNotification,
and there’s a second parameter, the completion function.

What you do in your implementation of didReceive(_:completionHandler:) is up
to you. You might respond by changing the interface in some way. When you’ve fin‐
ished doing whatever you came to do, the runtime needs to know how to proceed;
you tell it by calling the completion function with one of these responses (UNNotifi‐
cationContentExtensionResponseOption):

.doNotDismiss

The local notification alert remains in place, still displaying the custom secon‐
dary interface.

.dismiss

The alert is dismissed.

.dismissAndForwardAction

The alert is dismissed and the action is passed along to your user notification
center delegate’s userNotificationCenter(_:didReceive:withCompletion-

Handler:).

Even if you tell the completion function to dismiss the alert, you can still modify the
interface, delaying the call to the completion function so that the user has time to see
the change.

Your notification content extension view controller can create and remove custom
actions on the fly, in code. Your view controller inherits the UIViewController
extensionContext property, which is an NSExtensionContext object. Its
notificationActions property is an array of UNNotificationAction. A UNNotifica‐
tionAction is an action button! This array therefore initially consists of whatever
action buttons you configured in your category — and any changes you make to it
will immediately be reflected by the action buttons the user sees.

This means you don’t have to create your custom actions in your category configura‐
tion in the first place! Creating custom action buttons in your category configuration
allows you to have custom buttons without a notification content extension. But if
you have a notification content extension, you can create the custom actions in the
view controller’s didReceive(_:completionHandler:) instead.

Interface interaction
Prior to iOS 12, a custom secondary interface (the notification content extension
view controller’s main view) is not interactive. If the user taps it, nothing happens —
except that the notification’s default action is performed, which means that the

Local Notifications | 787

notification is dismissed and your app is summoned. The exception is that the run‐
time can add a tappable play/pause button for you; this is useful if your custom inter‐
face contains video or audio material. Three UNNotificationContentExtension
properties can be overridden to dictate that the play/pause button should appear and
where it should go, and two methods can be implemented to hear when the user taps
the play/pause button.

Starting in iOS 12, the view controller’s main view can be interactive. This is an opt-
in feature: under the NSExtensionAttributes in the Info.plist, add the
UNNotificationExtensionUserInteractionEnabled Boolean key and set its value to
YES. Now the entire mechanism for user interaction springs to life. For instance, your
interface can contain a button; if you’ve configured its action in the storyboard to call
a method in your view controller, the user can tap the button to call that method.

Making your content extension view interactive in this way means that the user can
no longer tap in the view to trigger the notification’s default action, dismissing the
notification and summoning your app. Therefore, there is a way for your code to trig‐
ger the notification’s default action: tell the extension context to perform-

NotificationDefaultAction. In your app, the user notification center delegate’s
userNotificationCenter(_:didReceive:withCompletionHandler:) will be called
with the UNNotificationDefaultActionIdentifier, as you would expect.

You can also dismiss the notification without summoning your app: tell the extension
context to dismissNotificationContentExtension. In that case, userNotification-
Center(_:didReceive:withCompletionHandler:) is not called, even if you have reg‐
istered for the .customDismissAction (I regard that as a bug).

Today Extensions
The interface that appears when the user swipes sideways in the lock screen, the
home screen, or the notification center is the today list. (New in iOS 13, the user can
elect to have the today list appear on the left side of the home screen.) Here, apps can
contribute today widgets — informative bits of interface. Apple’s Weather app posts
the local temperature here, in a widget that the user can tap to open the Weather app
itself (Figure 13-14).

Your app, too, can provide a widget to appear here. To make that happen, you give
your app a today extension. Your app vends the extension, and the user has the
option of adding it to the today list (Figure 13-15).

To add a today extension to your app, create a new target and specify iOS → Applica‐
tion Extension → Today Extension. The template gives you a good start on your
extension. You have a storyboard with a single scene, and the code for a correspond‐
ing view controller that adopts the NCWidgetProviding protocol. You might need to

788 | Chapter 13: Modal Dialogs

Figure 13-14. A built-in today extension

Figure 13-15. A custom today extension

edit the extension’s Info.plist to set the “Bundle display name” entry — this is the title
that will appear above your extension.

Design your extension’s interface in the storyboard provided. To size your exten‐
sion’s height, provide sufficient constraints to determine the full height of the inter‐
face from the inside out, or set your view controller’s preferredContentSize.

Each time your today extension’s interface is about to appear, your today extension
view controller is given an opportunity to update its interface, through its implemen‐
tation of the NCWidgetProviding method widgetPerformUpdate(completion-

Handler:). Be sure to finish up by calling the completionHandler, handing it an
NCUpdateResult, which will be .newData, .noData, or .failed. Time-consuming
work should be performed off the main thread (see Chapter 24):

func widgetPerformUpdate(completionHandler:
 @escaping (NCUpdateResult) -> ()) {
 // ... do stuff quickly ...
 completionHandler(.newData)
}

Communication back to your app can be a little tricky. In Figure 13-15, two buttons
invite the user to set up a reminder notification; I’ve implemented these to open our
CoffeeTime app by calling open(_:completionHandler:) — a method of the view
controller’s extensionContext, not the shared application, which is not available
from here:

Today Extensions | 789

Figure 13-16. A custom URL declaration

@IBAction func doButton(_ sender: Any) {
 let v = sender as! UIView
 var comp = URLComponents()
 comp.scheme = "coffeetime"
 comp.host = String(v.tag) // button's tag is number of minutes
 if let url = comp.url {
 self.extensionContext?.open(url)
 }
}

The CoffeeTime app receives this message because I’ve given it three things:

A custom URL scheme
The coffeetime scheme is declared in the app’s Info.plist (Figure 13-16).

An implementation of scene(_:openURLContexts:)
In the scene delegate, I’ve implemented this method to analyze the URL when it
arrives. (In iOS 12 and before, this would be application(_:open:options:) in
the app delegate.) I’ve coded the original URL so that its host is actually the
number of minutes specified in the tapped button’s title. By retrieving that value,
I can respond appropriately (presumably by scheduling a local notification for
that number of minutes from now):

func scene(_ scene: UIScene,
 openURLContexts URLContexts: Set<UIOpenURLContext>) {
 guard let url = URLContexts.first?.url else { return }
 let scheme = url.scheme
 let host = url.host
 if scheme == "coffeetime" {
 if let host = host, let min = Int(host) {
 print("got \(min) from our today extension")
 }
 }
}

An implementation of scene(_:willConnectTo:options:)
If our app is not running when the message is sent from the today extension,
scene(_:openURLContexts:) will not be called. Instead, our scene delegate’s
implementation of scene(_:willConnectTo:options:) must look in the

790 | Chapter 13: Modal Dialogs

urlContexts property of the options: parameter, discover the URL there, and
respond.

A today extension’s widget interface can have two heights: compact and expanded. If
you take advantage of this feature, your widget will have a Show More or Show Less
button (similar to the Weather app’s widget, Figure 13-14). To do so:

1. Run this code early in the life of your view controller, probably in its viewDid-
Load implementation:

self.extensionContext?.widgetLargestAvailableDisplayMode = .expanded

2. Implement widgetActiveDisplayModeDidChange(_:withMaximumSize:). The
first parameter is an NCWidgetDisplayMode, either .compact or .expanded. The
idea is that you would respond by changing your view controller’s preferred-
ContentSize to the smaller or larger size, respectively.

If your app has a today extension, the today extension widget is displayed automati‐
cally when the user performs the long press gesture that summons quick actions
(“Quick Actions” on page 764). The widget can be interactive (as ours is), so you
might be able to use it instead of quick action buttons.

Activity Views
An activity view is the view belonging to a UIActivityViewController, typically
appearing when the user taps a Share button. To display it, you start with one or
more pieces of data, such as a string or an image, that you want the user to have the
option of sharing or working with. The activity view, when it appears, will then con‐
tain a menu item or app icon for every activity (UIActivity) that can work with this
type of data. The user may tap one of these to send the data to the activity, and is then
perhaps shown additional interface belonging to the provider of the chosen activity.

Figure 13-17 shows an activity view from Mobile Safari. There’s a row displaying the
icons of some apps that provide applicable built-in system-wide activities; this is fol‐
lowed by menu items representing activities provided internally by Safari itself.
When you present an activity view within your app, you can add menu items for
activities provided internally by your app. Moreover, your app can provide system-
wide activities that are available when any app presents an activity view; these come
in two forms:

Share extensions
A share extension is represented as an app icon in the upper row of an activity
view. Share extensions are for apps that can accept information into themselves,
either for storage, such as Notes and Reminders, or for sending out to a server,
such as Twitter and Facebook.

Activity Views | 791

Figure 13-17. An activity view

Action extensions
An action extension is represented among the menu items of an activity view.
Action extensions offer to perform some kind of manipulation on the data pro‐
vided by the host app.

I’ll describe how to present an activity view and how to construct an activity that’s
internal to your app. Then I’ll give an example of writing an action extension, and
finally an example of writing a share extension.

Presenting an Activity View
You will typically want to present an activity view in response to the user tapping a
Share button in your app. To do so:

1. Instantiate UIActivityViewController. The initializer you’ll be calling is:
• init(activityItems:applicationActivities:)

The activityItems: argument is an array of objects to be shared or operated on,
such as string or image objects. Presumably these are objects associated somehow
with the interface the user is looking at right now.

2. Set the activity view controller’s completionWithItemsHandler property to a
function that will be called when the user’s interaction with the activity interface
has finished.

3. Present the activity view controller, as a presented view controller; on the iPad, it
will be a popover, so you’ll also configure the popover presentation controller.
The presented view will be dismissed automatically when the user cancels or
chooses an activity.

792 | Chapter 13: Modal Dialogs

Here’s an example:

let url = Bundle.main.url(forResource:"sunglasses", withExtension:"png")!
let things : [Any] = ["This is a cool picture", url]
let avc = UIActivityViewController(
 activityItems:things, applicationActivities:nil)
avc.completionWithItemsHandler = { type, ok, items, err in
 // ...
}
self.present(avc, animated:true)
if let pop = avc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
}

The activity view is populated automatically with known system-wide activities that
can handle any of the types of data you provided as the activityItems: argument.
These activities represent UIActivity types (UIActivity.ActivityType):

• .postToFacebook

• .postToTwitter

• .postToWeibo

• .message

• .mail

• .print

• .copyToPasteboard

• .assignToContact

• .saveToCameraRoll

• .addToReadingList

• .postToFlickr

• .postToVimeo

• .postToTencentWeibo

• .airDrop

• .openInIBooks

• .markupAsPDF

Consult the UIActivity class documentation to learn what types of activity item each
of these activities can handle. For instance, the .mail activity will accept a string, an
image, or a file (such as an image file) designated by a URL; it will present a mail
composition interface with the activity item(s) in the body.

Activity Views | 793

Since the default is to include all the system-wide activities that can handle the pro‐
vided data, if you don’t want a certain system-wide activity included in the activity
view, you must exclude it explicitly. You do this by setting the UIActivityView‐
Controller’s excludedActivityTypes property to an array of activity type constants.

Apps other than Messages, Mail, and Books have no corresponding UIActivity
type, because they are implemented as share extensions; it is up to the user to
include or exclude them.

In the UIActivityViewController initializer init(activityItems:application-

Activities:), if you would prefer that an element of the activityItems: array
should be an object that will supply the data instead of the data itself, make it an
object that adopts the UIActivityItemSource protocol. Typically, this object will be
self (the view controller in charge of all this code). Here’s a minimal, artificial
example:

extension ViewController : UIActivityItemSource {
 func activityViewControllerPlaceholderItem(
 _ activityViewController: UIActivityViewController) -> Any {
 return ""
 }
 func activityViewController(
 _ activityViewController: UIActivityViewController,
 itemForActivityType activityType: UIActivity.ActivityType?) -> Any? {
 return "Coolness"
 }
}

The first method provides a placeholder that exemplifies the type of data that will be
returned; the second method returns the actual data. The second method can return
different data depending on the activity type that the user chose; in this way, you
could provide one string to Notes and another string to Mail.

The UIActivitySource protocol also answers a commonly asked question about how
to get the Mail activity to populate the mail composition form with a default subject:

extension ViewController : UIActivityItemSource {
 // ...
 func activityViewController(
 _ activityViewController: UIActivityViewController,
 subjectForActivityType activityType: UIActivity.ActivityType?)
 -> String {
 return "This is cool"
 }
}

If your activityItems: data is time-consuming to provide, substitute an instance of
a UIActivityItemProvider subclass:

794 | Chapter 13: Modal Dialogs

let avc = UIActivityViewController(
 activityItems:[MyProvider(placeholderItem: "")],
 applicationActivities:nil)

The placeholderItem: in the initializer signals the type of data that this UIActivity‐
ItemProvider object will actually provide. Your UIActivityItemProvider subclass
should override the item property to return the actual object. This property will be
consulted on a background thread, and UIActivityItemProvider is itself an Operation
subclass (see Chapter 24).

Custom Activities
The purpose of the applicationActivities: parameter of init(activity-

Items:applicationActivities:) is for you to list any additional activities imple‐
mented internally by your own app. These will appear as menu items when your app
presents an activity view. Each activity will be an instance of one of your own UIAc‐
tivity subclasses.

To illustrate, I’ll create a minimal (and nonsensical) activity called Be Cool that
accepts string activity items. It is a UIActivity subclass called MyCoolActivity. So, to
include Be Cool among the choices presented to the user by a UIActivityView‐
Controller, I’d say:

let things : [Any] = ["This is a cool picture", url]
let avc = UIActivityViewController(
 activityItems:things, applicationActivities:[MyCoolActivity()])

Now let’s implement MyCoolActivity. It has an array property called items, for rea‐
sons that will be apparent in a moment. We need to arm ourselves with an image to
represent this activity in the activity view; this will be treated as a template image and
will be scaled down automatically. Here’s the preparatory part of the implementation
of MyCoolActivity:

var items : [Any]?
var image : UIImage
override init() {
 // ... construct self.image ...
 super.init()
}
override class var activityCategory : UIActivity.ActivityCategory {
 return .action // the default
}
override var activityType : UIActivity.ActivityType {
 return UIActivity.ActivityType("com.neuburg.matt.coolActivity")
}
override var activityTitle : String? {
 return "Be Cool"
}
override var activityImage : UIImage? {

Activity Views | 795

Figure 13-18. Our activity appears in our activity view

 return self.image
}
override func canPerform(withActivityItems activityItems: [Any]) -> Bool {
 for obj in activityItems {
 if obj is String {
 return true
 }
 }
 return false
}
override func prepare(withActivityItems activityItems: [Any]) {
 self.items = activityItems
}

If we return true from canPerform(withActivityItems:), then a menu item for this
activity with title Be Cool and displaying our activityImage will appear in the activ‐
ity view (Figure 13-18).

If the user taps our menu item, prepare(withActivityItems:) will be called. We
retain the activityItems into our items property, because they won’t be arriving
again when we are actually told to perform the activity.

The next step is that we are told to perform the activity. To do so, we implement one
of these:

perform method
We immediately perform the activity directly, using the activity items we’ve
already retained. If the activity is time-consuming, it should be performed on a
background thread (Chapter 24) so that we can return immediately; the activity
view interface will be taken down and the user will be able to go on interacting
with the app.

activityViewController property
We have further interface that we’d like to show the user as part of the activity, so
we provide an instance of a UIViewController subclass. The activity view mecha‐
nism will present this view controller for us; it is not our job to present or dismiss
it. (Nevertheless, we may present or dismiss dependent interface. If our view con‐
troller is a navigation controller with a custom root view controller, we might

796 | Chapter 13: Modal Dialogs

push another view controller onto its stack while the user is interacting with the
activity.)

No matter which of these two methods we implement, we must eventually call this
activity instance’s activityDidFinish(_:). This is the signal to the activity view
mechanism that the activity is over. If the activity view mechanism is still presenting
any interface, it will be taken down, and the argument we supply here, a Bool signify‐
ing whether the activity completed successfully, will be passed into the function we
supplied earlier as the activity view controller’s completionWithItemsHandler:

override func perform() {
 // ... do something with self.items here ...
 self.activityDidFinish(true)
}

If the UIActivity is providing a view controller as its activityViewController, it will
want to hand that view controller a reference to self beforehand, so that the view
controller can call the activity’s activityDidFinish(_:) when the time comes.

Suppose our activity involves letting the user draw a mustache on a photo of some‐
one. Our view controller will provide interface for doing that, including some way of
letting the user signal completion, such as a Cancel button and a Done button. When
the user taps either of those, we’ll do whatever else is necessary (such as saving the
altered photo somewhere if the user tapped Done) and then call activityDid-
Finish(_:). We could implement the activityViewController property like this:

override var activityViewController : UIViewController? {
 let mvc = MustacheViewController(activity: self, items: self.items!)
 return mvc
}

And then MustacheViewController would have code like this:

weak var activity : UIActivity?
var items: [Any]
init(activity:UIActivity, items:[Any]) {
 self.activity = activity
 self.items = items
 super.init(nibName: "MustacheViewController", bundle: nil)
}
// ... other stuff ...
@IBAction func doCancel(_ sender: Any) {
 self.activity?.activityDidFinish(false)
}
@IBAction func doDone(_ sender: Any) {
 self.activity?.activityDidFinish(true)
}

Note that MustacheViewController’s reference to the UIActivity (self.activity) is
weak; otherwise, a retain cycle ensues.

Activity Views | 797

Our activityViewController is displayed as a presented view controller. In iOS 13,
this is a sheet that the user can dismiss by dragging down. If the user does that, the
right thing happens automatically: activityDidFinish is called for us with an argu‐
ment of false.

The purpose of the SFSafariViewController delegate method safariView-
Controller(_:activityItemsFor:title:) (Chapter 11) is now clear. This view
controller’s view appears inside your app, but it isn’t your view controller, its
Share button is not your button, and the activity view that it presents is not your
activity view. Therefore, you need some other way to add custom UIActivity
items to that activity view; to do so, implement this method.

Action Extensions
Your app’s activity can appear among the menu items when some other app displays
an activity view. To make that happen, you write an action extension. A single app
can provide multiple action extensions.

To write an action extension, start with the appropriate target template, iOS → Appli‐
cation Extension → Action Extension. There are two kinds of action extension, with
or without an interface; you’ll make your choice in the second pane as you create the
target.

In the Info.plist, in addition to setting the bundle name, which will appear below the
activity’s icon in the activity view, you’ll need to specify what types of data this activ‐
ity accepts as its operands. In the NSExtensionActivationRule dictionary, you’ll pro‐
vide one or more keys, such as:

• NSExtensionActivationSupportsFileWithMaxCount

• NSExtensionActivationSupportsImageWithMaxCount

• NSExtensionActivationSupportsMovieWithMaxCount

• NSExtensionActivationSupportsText

• NSExtensionActivationSupportsWebURLWithMaxCount

For the full list, see the “Action Extension Keys” section of Apple’s Information Prop‐
erty List Key Reference. It is also possible to declare in a more sophisticated way what
types of data your activity accepts, by writing an NSPredicate string as the value of
the NSExtensionActivationRule key. Figure 13-19 shows the relevant part of the
Info.plist for an action extension that accepts one text object.

To supply the image that will appear in the menu item for your activity, add an asset
catalog to the action extension target and create an iOS app icon in the asset catalog.
The icon will be treated as a template image.

798 | Chapter 13: Modal Dialogs

Figure 13-19. An action extension Info.plist

How to Debug an Extension
An extension doesn’t run in your process, so breakpoints and logging are ineffective.
Here is a simple technique that solves the problem.

Your project contains multiple schemes — one for your host app, and one each for
any extensions it contains. Build and run the host app, to copy it onto the destination
(a simulator or device). Now switch the Scheme pop-up menu in the Xcode window
toolbar to your extension, and run it. A dialog appears asking what app to run. Select
your host app and click Run.

Your host app will run; proceed to summon your extension and exercise it. What
you’re debugging is the extension, and all debugging features will work as expected.

I’ll describe how to implement an action extension with an interface. This, in effect, is
your chance to inject an entire presented view controller into another app! As an
example, our extension accepts a string that might be the two-letter abbreviation of
one of the U.S. states, and if it is, it provides the name of the state.

The template provides a storyboard with one scene, along with the code for a corre‐
sponding UIViewController subclass called ActionViewController. I’ll give the inter‐
face a Cancel button, a Done button (self.doneButton), and a label (self.lab). I’ll
also declare two Optional string properties to hold our data, self.orig (the incom‐
ing string) and self.expansion (the state name, if any). Finally, self.list will be a
dictionary whose keys are state name abbreviations and whose values are the corre‐
sponding state names; that information comes from a text file in the action extension
bundle:

let list : [String:String] = {
 let path = Bundle.main.url(forResource:"abbrevs", withExtension:"txt")!
 // ... load the text file as a string, parse into dictionary (result)
 return result
}()

I have a little utility method that looks up a string in that dictionary:

Activity Views | 799

func state(for abbrev:String) -> String? {
 return self.list[abbrev]
}

Our view controller’s viewDidLoad starts by preparing the interface:

override func viewDidLoad() {
 super.viewDidLoad()
 self.doneButton.isEnabled = false
 self.lab.text = "No expansion available."
 // ...
}

We turn next to the data from the host app, which is supposed to be a string that
might be a state abbreviation. It arrives by way of the view controller extension-
Context property, which is an NSExtensionContext (wrapped in an Optional). Think
of this as a holding a nest of envelopes that we must examine and open:

• The NSExtensionContext’s inputItems is an array of NSExtensionItem objects.
• An NSExtensionItem has an attachments array of NSItemProvider objects.
• An NSItemProvider vends items, each of which represents the data in a particu‐

lar format. In particular:
▪ We can ask whether an NSItemProvider has an item of a particular type, by

calling hasItemConformingToTypeIdentifier(_:).
▪ We can retrieve the item of a particular type, by calling loadItem(forType-
Identifier:options:completionHandler:). The item may be vended lazily,
and can take time to prepare and provide; so we proceed in the completion-
Handler: function to receive the item and do something with it.

We are expecting only one item, so it will be provided by the first NSItemProvider
inside the first NSExtensionItem. So my first move is to look inside that envelope and
make sure it contains a string:

if self.extensionContext == nil {
 return
}
let items = self.extensionContext!.inputItems
let desiredType = kUTTypePlainText as String
guard let extensionItem = items[0] as? NSExtensionItem
 else {return}
guard let provider = extensionItem.attachments?.first
 else {return}
guard provider.hasItemConformingToTypeIdentifier(self.desiredType)
 else {return}

If we’ve gotten this far, there’s a string in that envelope, and we’re now ready to
retrieve it and see if it is the abbreviation of a state. If it is, I’ll enable the Done button
and offer to place the abbreviation on the clipboard if the user taps that button:

800 | Chapter 13: Modal Dialogs

provider.loadItem(forTypeIdentifier: desiredType) { item, err in
 DispatchQueue.main.async {
 if let orig = (item as? String)?.uppercased() {
 self.orig = orig
 if let exp = self.state(for:orig) {
 self.expansion = exp
 self.lab.text = """
 Can expand \(orig) to \(exp).
 Tap Done to place on clipboard.
 """
 self.doneButton.isEnabled = true
 }
 }
 }
}

All that remains is to implement the action methods for the Cancel and Done but‐
tons. They must both call this method of the extension context:

• completeRequest(returningItems:completionHandler:)

That call is the signal that our interface should be taken down. The only difference
between the two buttons is that the Done button puts the expanded state name onto
the clipboard:

@IBAction func cancel(_ sender: Any) {
 self.extensionContext?.completeRequest(returningItems: nil)
}
@IBAction func done(_ sender: Any) {
 UIPasteboard.general.string = self.expansion!
 self.extensionContext?.completeRequest(returningItems: nil)
}

Share Extensions
Your app can appear in the row of app icons when some other app displays an activ‐
ity view. To make that happen, you write a share extension. A share extension is simi‐
lar to an action extension, but instead of processing the data it receives, it is expected
to deposit that data somehow, such as storing it or posting it to a server. Your app
can provide at most one share extension.

The user, after tapping your app’s icon in the activity view, is given an opportunity to
interact further with the data before completing the share operation, possibly modify‐
ing it or canceling altogether. To make this possible, the Share Extension template,
when you create the target (iOS → Application Extension → Share Extension), will
give you a storyboard and a view controller. This view controller can be one of
two types:

Activity Views | 801

Figure 13-20. A share extension

An SLComposeServiceViewController
The SLComposeServiceViewController provides a standard interface for display‐
ing editable text in a UITextView along with a possible preview, plus user-
configurable option buttons, along with a Cancel button and a Post button.

A plain view controller subclass
If you opt for a plain view controller subclass, then designing its interface,
including providing a way to dismiss it, will be up to you.

Whichever form of interface you elect to use, your way of dismissing it will be this
familiar-looking incantation:

self.extensionContext?.completeRequest(returningItems:nil)

I’ll describe the basics of working with an SLComposeServiceViewController. Its view
contains a text view that is already populated with the text passed along from the host
app when the view appears, so there’s very little more for you to do; you can add a
preview view and option buttons, and that’s just about all. Figure 13-20 shows my
share extension, summoned from within the Notes app; the text of the note has been
copied automatically into the SLComposeServiceViewController’s text view.

An option button displays a title string and a value string. When tapped, it will typi‐
cally summon interface where the user can change the value string. My SLCompose‐
ServiceViewController implements an option button, visible in Figure 13-20. It’s a
Size button, whose value can be Large, Medium, or Small. (I have no idea what this
choice is supposed to signify for my app; it’s only an example!) I’ll explain how I
did that.

To create the configuration option, I override the SLComposeServiceViewController
configurationItems method to return an array of one SLComposeSheetConfigura‐
tionItem. Its title and value are displayed in the button. Its tapHandler will be

802 | Chapter 13: Modal Dialogs

called when the button is tapped. Typically, you’ll create a view controller and push it
into the interface with pushConfigurationViewController:

weak var config : SLComposeSheetConfigurationItem?
var selectedText = "Large" {
 didSet {
 self.config?.value = self.selectedText
 }
}
override func configurationItems() -> [Any]! {
 let c = SLComposeSheetConfigurationItem()!
 c.title = "Size"
 c.value = self.selectedText
 c.tapHandler = { [unowned self] in
 let tvc = TableViewController(style: .grouped)
 tvc.selectedSize = self.selectedText
 tvc.delegate = self
 self.pushConfigurationViewController(tvc)
 }
 self.config = c
 return [c]
}

My TableViewController is a UITableViewController subclass. Its table view displays
three rows whose cells are labeled Large, Medium, and Small, along with a checkmark
(compare the table view described in “Cell Choice and Static Tables” on page 491).
The tricky part is that I need a way to communicate with this table view controller: I
need to tell it what the configuration item’s value is now, and I need to hear from it
what the user chooses in the table view. So I’ve given the table view controller a prop‐
erty (selectedSize) where I can deposit the configuration item’s value, and I’ve
declared a delegate protocol so that the table view controller can set the selected-
Text of the SLComposeServiceViewController. This is the relevant portion of my
TableViewController class:

protocol SizeDelegate : class {
 var selectedText : String {get set}
}
class TableViewController: UITableViewController {
 var selectedSize : String?
 weak var delegate : SizeDelegate?
 override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let cell = tableView.cellForRow(at:indexPath)!
 let s = cell.textLabel!.text!
 self.selectedSize = s
 self.delegate?.selectedText = s
 tableView.reloadData()
 }
 // ...
}

Activity Views | 803

The navigation interface is provided for me, so I don’t have to do anything about
popping the table view controller: the user will do that by tapping the Back button
after choosing a size. In my configurationItems implementation, I cleverly kept a
reference to my configuration item as self.config. When the user chooses from the
table view, its tableView(_:didSelectRowAt:) sets my selectedText, and my
selectedText setter observer promptly changes the value of the configuration item
to whatever the user chose.

The user, when finished interacting with the share extension interface, will tap one of
the provided buttons, either Cancel or Post. The Cancel button is handled automati‐
cally: the interface is dismissed. The Post button is hooked automatically to my did-
SelectPost implementation, where I fetch the text from my own contentText
property, do something with it, and dismiss the interface:

override func didSelectPost() {
 let s = self.contentText
 // ... do something with it ...
 self.extensionContext?.completeRequest(returningItems:nil)
}

If the material provided from the host app were more elaborate, I would pull it out of
self.extensionContext in the same way as for an action extension. If there were
networking to do at this point, I would initiate a background URLSession (as I’ll
explain in Chapter 23).

There is no official way, as far as I can tell, to change the title or appearance of the
Cancel and Post buttons. Apps that show different buttons, such as Reminders and
Notes, are either not using SLComposeServiceViewController or are using a techni‐
que available only to Apple. I was able to change my Post button to a Save button
like this:

override func viewDidLayoutSubviews() {
 super.viewDidLayoutSubviews()
 self.navigationController?.navigationBar.topItem?
 .rightBarButtonItem?.title = "Save"
}

But whether that’s legal, and whether it will keep working on future systems, is any‐
body’s guess.

804 | Chapter 13: Modal Dialogs

PART III

Some Frameworks

This part of the book gets you started on some of Cocoa’s specialized frameworks:

• Chapter 14 talks about playing sound.
• Chapter 15 talks about playing video and introduces the powerful AV Founda‐

tion framework.
• Chapter 16 is about how to access the user’s music library.
• Chapter 17 is about how to access the user’s photo library, and discusses using

the device’s camera.
• Chapter 18 is about how to access the user’s contacts.
• Chapter 19 is about how to access the user’s calendars and reminders.
• Chapter 20 explains how to display and customize a map, how to show the user’s

current location, and how to convert between a location and an address.
• Chapter 21 is about the sensors that tell your app where the device is located and

how it is oriented.

CHAPTER 14

Audio

iOS provides various technologies that allow your app to produce, record, and pro‐
cess sound. The topic is a large one, so I’ll concentrate on the basics. Suggestions for
further exploration appear at the end of this chapter.

None of the classes discussed in this chapter provides any transport interface within
your app — that is, interface for allowing the user to stop and start playback of
sound. If you want transport interface, here are some options:

• You can create your own interface.
• You can associate the built-in “remote control” buttons with your app, as I’ll

explain in this chapter.
• A web view (Chapter 11) supports the HTML5 <audio> tag; this can be a simple,

lightweight way to play audio and to allow the user to control playback (includ‐
ing use of AirPlay).

• You could treat the sound as a movie and use the interface-providing classes that
I’ll discuss in Chapter 15; this can also be a good way to play a sound file located
remotely over the internet.

System Sounds
The simplest form of sound is system sound, which is the iOS equivalent of the basic
computer “beep.” This is implemented through System Sound Services, part of the
Audio Toolbox framework; you’ll need to import AudioToolbox. The API for play‐
ing a system sound comes in two forms — the old form, and a new form that was
introduced in iOS 9.

The old form involves calling one of two C functions, which behave very similarly to
one another:

807

AudioServicesPlayAlertSound

On an iPhone, may also vibrate the device, depending on the user’s settings.

AudioServicesPlaySystemSound

On an iPhone, there won’t be an accompanying vibration, but you can elect to
have this “sound” be a device vibration (by passing kSystemSoundID_Vibrate as
the name of the “sound”).

The sound file to be played needs to be an uncompressed AIFF or WAV file (or an
Apple CAF file wrapping one of those). To hand the sound to these functions, you’ll
need a SystemSoundID, which you obtain by calling AudioServicesCreateSystem-
SoundID with a URL that points to a sound file. In this example, the sound file is in
our app bundle:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesPlaySystemSound(snd)

That code works — we hear the sound — but there’s a problem: we have failed to
exercise proper memory management. We need to call AudioServicesDispose-
SystemSoundID to release our SystemSoundID. But when shall we do this? Audio-
ServicesPlaySystemSound executes asynchronously. So the solution can’t be to call
AudioServicesDisposeSystemSoundID in the next line, because this would release
our sound just as it is about to start playing, resulting in silence:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesPlaySystemSound(snd)
AudioServicesDisposeSystemSoundID(snd) // oops, no sound!

The correct approach is to implement a sound completion function to be called when
the sound has finished playing. The sound completion function is specified by calling
AudioServicesAddSystemSoundCompletion. It must be supplied as a C pointer-to-
function, but Swift lets you pass a global or local Swift function (including an anony‐
mous function) where a C pointer-to-function is expected. So our code now looks
like this:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesAddSystemSoundCompletion(snd, nil, nil, { snd, _ in
 AudioServicesRemoveSystemSoundCompletion(snd)
 AudioServicesDisposeSystemSoundID(snd)
}, nil)
AudioServicesPlaySystemSound(snd)

808 | Chapter 14: Audio

Note that when we are about to release the sound, we first release the sound comple‐
tion function itself.

Now for the new form. The new calls take two parameters: a SystemSoundID and a
completion function. The completion function takes no parameters; we can still refer
to the SystemSoundID in order to dispose of its memory, because it is in scope. Here,
we’ll call AudioServicesPlaySystemSoundWithCompletion instead of AudioServices-
PlaySystemSound; we no longer need to call AudioServicesRemoveSystemSound-
Completion, because we never called AudioServicesAddSystemSoundCompletion:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesPlaySystemSoundWithCompletion(snd) {
 AudioServicesDisposeSystemSoundID(snd)
}

Audio Session
Audio on the device — all audio belonging to all apps and processes — is controlled
and mediated by the media services daemon. This daemon must juggle many
demands; your app is just one of many clamoring for its attention and cooperation.
As a result, your app’s audio can be affected and even overruled by other apps and
external factors.

Your communication with the audio services daemon is conducted through an audio
session, which is a singleton AVAudioSession instance created automatically as your
app launches. This is part of the AV Foundation framework; you’ll need to import
AVFoundation. You’ll refer to your app’s AVAudioSession by way of the class method
sharedInstance.

Category
Your app, if it is going to be producing sound, needs to specify a policy regarding that
sound and tell the media services daemon about it. This policy will answer such ques‐
tions as:

• Should your app’s sound be stopped when the screen is locked?
• If other sound is being produced (as when the Music app is playing a song in the

background), should your app stop that sound or be layered on top of it?
To declare your audio session’s policy, you’ll set its category (AVAudio‐
Session.Category) by calling setCategory(_:mode:options:). I’ll explain later about
the mode: and options:; the options: parameter may be omitted, and if you have no
mode, you can use a mode of .default. Your app needn’t set just one category for all

Audio Session | 809

time; different activities or stages in the lifetime of your app might require that the
category should change.

The basic policies for audio playback are:

Ambient (.ambient)
Your app’s audio plays even while another app is playing audio, and is stopped
by the phone’s Silent switch and screen locking.

Solo Ambient (.soloAmbient, the default)
Your app stops any audio being played by other apps, and is stopped by the
phone’s Silent switch and screen locking.

Playback (.playback)
Your app stops any audio being played by other apps, and is not stopped by the
Silent switch. It is stopped by screen locking, unless it is also configured to play
in the background (as explained later in this chapter).

Audio session category options (the options: parameter, AVAudioSession.Category‐
Options) allow you to modify the playback policies:

Mixable audio (.mixWithOthers)
You can override the Playback policy so as to allow other apps to continue play‐
ing audio. Your sound is then said to be mixable. Mixability can also affect you in
the other direction: another app’s mixable audio can continue to play even when
your app’s Playback policy is not mixable.

Mixable except for speech (.interruptSpokenAudioAndMixWithOthers)
Similar to .mixWithOthers, but although you are willing to mix with background
music, you are electing to stop background speech. An app’s audio is marked as
speech by setting its audio session mode to .spokenAudio.

Ducking audio (.duckOthers)
You can override a policy that allows other audio to play, so as to duck (diminish
the volume of) that other audio. Ducking is a form of mixing.

Activation and Deactivation
Your audio session policy is not in effect unless your audio session is also active. By
default, it isn’t. Asserting your audio session policy is done by a combination of con‐
figuring the audio session and activating the audio session. To activate your audio
session, you call setActive(true).

The question is when to call setActive(true). This depends on whether you need
your audio session to be active all the time or only when you are producing sound. In
many cases, it will be best not to activate your audio session until just before you

810 | Chapter 14: Audio

really need it, that is, when you are starting to produce sound. But let’s take a very
simple case where our sounds are always occasional, intermittent, and nonessential.
We want sound from other apps, such as the Music app, to be allowed to continue
playing when the user launches or switches to our app. That’s the Ambient policy.
Our policy will never vary, and it doesn’t stop other audio, so we might as well set our
app’s category and activate it at launch time:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplication.LaunchOptionsKey : Any]?) -> Bool {
 let sess = AVAudioSession.sharedInstance()
 try? sess.setCategory(.ambient, mode:.default)
 try? sess.setActive(true)
 return true
}

It is also possible to call setActive(false), deactivating your audio session. There
are various reasons why you might deactivate (and perhaps reactivate) your audio
session over the lifetime of your app.

One possible reason is that you want to change something about your audio session
policy. Certain changes in your audio session category and options don’t take effect
unless you deactivate the existing policy and activate the new policy. Ducking is a
good example; I’ll demonstrate in the next section.

Another reason for deactivating your audio session is that you have stopped playing
sound; you no longer need to hog the device’s audio, and you want to yield to other
apps that were stopped by your audio session policy, so that they can resume playing.
You can even send a message to other apps as you do this, by supplying the .notify-
OthersOnDeactivation option in a call to setActive(_:options:), like this:

let sess = AVAudioSession.sharedInstance()
try? sess.setActive(false, options: .notifyOthersOnDeactivation)

Apple suggests that you might want to register for AVAudioSession.media-
ServicesWereResetNotification. If this notification arrives, the media services
daemon was somehow hosed. In this situation, you should basically start from
scratch, configuring your category and activating your audio session, as well as
resetting and recreating any audio-related objects.

Ducking
As an example of deactivating and activating your audio session, I’ll describe how to
implement ducking.

Presume that we have configured and activated an Ambient category audio session,
as described in the preceding sections. This category permits other audio to continue
playing. Now let’s say we do sometimes play a sound, but it’s brief and doesn’t

Audio Session | 811

require other sound to stop entirely — but we’d like other audio to be quieter
momentarily while we’re playing our sound. That’s ducking!

Background sound is not ducked automatically just because we play a sound of our
own. It is up to us to duck the background sound as we start to play our sound, and
to stop ducking when our sound ends. We do this by changing our Ambient category
to use or not to use the .duckOthers option. To make such a change, the most
reliable approach is three steps:

1. Deactivate our audio session.
2. Reconfigure our audio session category with a changed set of options.
3. Activate our audio session.

So, just before we play our sound, we duck any other sound by adding .duckOthers
to the options on our Ambient category:

let sess = AVAudioSession.sharedInstance()
try? sess.setActive(false)
let opts = sess.categoryOptions.union(.duckOthers)
try? sess.setCategory(sess.category, mode: sess.mode, options: opts)
try? sess.setActive(true)

When our sound finishes playing, we unduck any other sound by removing .duck-
Others from the options on our category:

let sess = AVAudioSession.sharedInstance()
try? sess.setActive(false)
let opts = sess.categoryOptions.subtracting(.duckOthers)
try? sess.setCategory(sess.category, mode: sess.mode, options:opts)
try? sess.setActive(true)

Interruptions
Management of your audio session is complicated by the fact that it can be interrup‐
ted. On an iPhone, a phone call can arrive or an alarm can go off. Or another app
might assert its audio session over yours, possibly because your app went into the
background and the other app came into the foreground. Under certain circumstan‐
ces, merely going into the background will interrupt your audio session.

When your audio session is interrupted, it is deactivated. That means you need to
know when the interruption ends, so that you can reactivate your audio session. In
order to know that, you will need to register for the AVAudioSession.interruption-
Notification. You should do this as early as possible, perhaps at launch time.

The AVAudioSession.interruptionNotification can arrive either because an inter‐
ruption begins or because it ends. To learn whether the interruption began or ended,
you’ll examine the AVAudioSessionInterruptionTypeKey entry in the notification’s

812 | Chapter 14: Audio

userInfo dictionary; this will be a UInt encoding an AVAudioSession.Interruption‐
Type, either .began or .ended.

When an interruption to your audio session begins, your audio has already paused
and your audio session has been deactivated. If your app contains interface for play‐
ing and pausing, you might change a Pause button to a Play button. But apart from
this there’s no particular work for you to do. When the interruption ends, on the
other hand, activating your audio session and possibly resuming playback of your
audio might be up to you:

NotificationCenter.default.addObserver(forName:
 AVAudioSession.interruptionNotification, object: nil, queue: nil) { n in
 let why = n.userInfo![AVAudioSessionInterruptionTypeKey] as! UInt
 let type = AVAudioSession.InterruptionType(rawValue: why)!
 switch type {
 case .began:
 // update interface if needed
 case .ended:
 try? AVAudioSession.sharedInstance().setActive(true)
 // update interface if needed
 // resume playback?
 @unknown default: fatalError()
 }
}

The notification telling you that the interruption is over can include a message from
some other app that interrupted you and has now deactivated its audio session. The
other app sends that message by deactivating its audio session along with the .notify-
OthersOnDeactivation option, as I demonstrated earlier. You’ll receive the message
in the userInfo dictionary’s AVAudioSessionInterruptionOptionKey entry; its value
will be a UInt encoding an AVAudioSession.InterruptionOptions, which might
be .shouldResume:

guard let opt = n.userInfo![AVAudioSessionInterruptionOptionKey] as? UInt
 else {return}
if AVAudioSession.InterruptionOptions(rawValue:opt).contains(.shouldResume) {
 // resume playback
}

Secondary Audio
Apple draws a fine-grained distinction between two types of audio, primary audio
and secondary audio. Apple’s example is a game app, where intermittent sound
effects are the primary audio, while an ongoing underlying soundtrack is the secon‐
dary audio. The idea is that the user might be playing a song in the background (from
the Music app, for instance), and that your app would therefore suppress its own sec‐
ondary audio while continuing to produce its primary audio, allowing the user’s
chosen Music track to function as the soundtrack behind your game’s sound effects.

Audio Session | 813

At key moments, such as when your app is activated or when you’re thinking of pro‐
ducing secondary audio, you should check your audio session’s secondaryAudio-
ShouldBeSilencedHint property. If it is true, don’t play your secondary audio.

It is also possible, under certain circumstances, that the secondaryAudioShouldBe-
SilencedHint will go from false to true while your app is frontmost. An example is
when your app is frontmost with an .ambient audio session and the user brings up
the control center and uses the Play button to resume the current Music app song.
There may be no interruption of your audio session, because your app never went
into the background — but the secondaryAudioShouldBeSilencedHint may now
have become true.

To hear about this, register for AVAudioSession.silenceSecondaryAudioHint-
Notification. To respond to this notification, examine the AVAudioSessionSilence-
SecondaryAudioHintTypeKey entry in the notification’s userInfo dictionary; this
will be a UInt encoding an AVAudioSession.SilenceSecondaryAudioHintType,
either .begin or .end:

NotificationCenter.default.addObserver(forName:
 AVAudioSession.silenceSecondaryAudioHintNotification,
 object: nil, queue: nil) { n in
 let why = n.userInfo![AVAudioSessionSilenceSecondaryAudioHintTypeKey]
 as! UInt
 let type = AVAudioSession.SilenceSecondaryAudioHintType(rawValue:why)!
 switch type {
 case .begin:
 // pause secondary audio
 case .end:
 // resume secondary audio
 @unknown default: fatalError()
 }
}

Routing Changes
Your audio is routed through a particular output (and input). External events, such
as a phone call arriving, can cause a change in audio routing, and the user can also
make changes in audio routing — for instance, by plugging headphones into the
device, which causes sound to stop coming out of the speaker and to come out of the
headphones instead. You can and should register for the AVAudioSession.route-
ChangeNotification to hear about routing changes and respond to them.

The notification’s userInfo dictionary is chock full of useful information about what
just happened. Here’s the console log of the dictionary that results when I detach
headphones from the device:

814 | Chapter 14: Audio

AVAudioSessionRouteChangeReasonKey = 2;
AVAudioSessionRouteChangePreviousRouteKey =
 <AVAudioSessionRouteDescription: 0x174019ee0,
 inputs = (null);
 outputs = (
 <AVAudioSessionPortDescription: 0x174019f00,
 type = Headphones;
 name = Headphones;
 UID = Wired Headphones;
 selectedDataSource = (null)>
)>;

Upon receipt of this notification, I can find out what the audio route is now, by call‐
ing AVAudioSession’s currentRoute method; here’s the result logged to the console:

<AVAudioSessionRouteDescription: 0x174019fc0,
 inputs = (null);
 outputs = (
 <AVAudioSessionPortDescription: 0x17401a000,
 type = Speaker;
 name = Speaker;
 UID = Speaker;
 selectedDataSource = (null)>
)>

The classes mentioned here — AVAudioSessionRouteDescription and AVAudio‐
SessionPortDescription — are value classes. The AVAudioSessionRouteChangeReason-
Key refers to an AVAudioSessionRouteChangeReason; the value in this instance, 2,
is .oldDeviceUnavailable — we stopped using the headphones and started using
the speaker, because there are no headphones any longer.

A routing change may not of itself interrupt your sound, but Apple suggests that in
this particular situation you should respond by stopping your audio deliberately,
because otherwise sound may now suddenly be coming out of the speaker in a public
place.

Audio Player
The easiest way to play sounds is to use an audio player (AVAudioPlayer). AVAudio‐
Player is part of the AV Foundation framework; you’ll need to import

AVFoundation.

An audio player is initialized with its sound, using a local file URL or Data; option‐
ally, the initializer can also state the expected sound file format. A wide range of
sound types is acceptable, including MP3, AAC, and ALAC, as well as AIFF and
WAV. Starting in iOS 11, FLAC is an acceptable format, as well as Opus (a lossy
compression codec commonly used for streaming and VoIP). A single audio player
can possess and play only one sound; but you can have multiple audio players, they

Audio Player | 815

can play separately or simultaneously, and you can synchronize them. You can set a
sound’s volume and stereo pan features, loop a sound, change the playing rate, and
set playback to begin somewhere in the middle of a sound. You can even execute a
fade in or fade out over time.

Having created and initialized an audio player, you must retain it, typically by assign‐
ing it to an instance property. Assigning an audio player to a local variable and telling
it to play, and hearing nothing — because the player has gone out of existence imme‐
diately, before it even has a chance to start playing — is a common beginner mistake.

To play the sound, first make sure your audio session is configured correctly. Now
tell the audio player to prepareToPlay, causing it to load buffers and initialize hard‐
ware; then tell it to play. The audio player’s delegate (AVAudioPlayerDelegate) is
notified when the sound has finished playing, through a call to audioPlayerDid-
FinishPlaying(_:successfully:); do not repeatedly check the audio player’s
isPlaying property to learn its state.

The playAtTime(_:) method allows playing to be scheduled to start at a certain time.
The time should be described in terms of the audio player’s deviceCurrentTime
property. Other useful methods include pause and stop; the chief difference between
them is that pause doesn’t release the buffers and hardware set up by prepareToPlay,
but stop does, so you’d want to call prepareToPlay again before resuming play. Nei‐
ther pause nor stop changes the playhead position, the point in the sound where
playback will start if play is sent again; for that, use the currentTime property.

Devising a strategy for instantiating, retaining, and releasing your audio players is up
to you. In one of my apps, I define a class called Player, which implements a play-
File(atPath:) method expecting a string path to a sound file. This method creates a
new AVAudioPlayer, stores it as a property, and tells it to play the sound file; it also
sets itself as that audio player’s delegate, and notifies its own delegate when the sound
finishes playing (by way of a PlayerDelegate protocol that I define). In this way, by
maintaining a single Player instance, I can play different sounds in succession:

protocol PlayerDelegate : class {
 func soundFinished(_ sender: Any)
}
class Player : NSObject, AVAudioPlayerDelegate {
 var player : AVAudioPlayer!
 weak var delegate : PlayerDelegate?
 func playFile(atPath path:String) {
 self.player?.delegate = nil
 self.player?.stop()
 let fileURL = URL(fileURLWithPath: path)
 guard let p = try? AVAudioPlayer(contentsOf:fileURL) else {return}
 self.player = p
 self.player.prepareToPlay()
 self.player.delegate = self

816 | Chapter 14: Audio

 self.player.play()
 }
 func audioPlayerDidFinishPlaying(_ player: AVAudioPlayer,
 successfully flag: Bool) {
 self.delegate?.soundFinished(self)
}

Here are some useful AVAudioPlayer properties:

pan, volume
Stereo positioning and loudness, respectively.

numberOfLoops

How many times the sound should repeat after it finishes playing; 0 (the default)
means it doesn’t repeat. A negative value causes the sound to repeat indefinitely
(until told to stop).

duration

The length of the sound (read-only).

currentTime

The playhead position within the sound. If the sound is paused or stopped, play
will start at the currentTime. You can set this property in order to “seek” to a
playback position within the sound.

enableRate, rate
These properties allow the sound to be played at anywhere from half speed (0.5)
to double speed (2.0). Set enableRate to true before calling prepareToPlay; you
are then free to set the rate.

isMeteringEnabled

If true (the default is false), you can call updateMeters followed by average-
Power(forChannel:) or peakPower(forChannel:) periodically to track how
loud the sound is. Presumably this would be so you could provide some sort of
graphical representation of this value in your interface.

settings

A read-only dictionary describing features of the sound, such as its bit rate
(AVEncoderBitRateKey), its sample rate (AVSampleRateKey), and its data format
(AVFormatIDKey). You can alternatively learn the sound’s data format from the
format property.

An audio player handles certain types of interruption seamlessly; in particular, if your
sound was forced to stop playing when your app was moved to the background, then
when your app comes to front, the audio player reactivates your audio session and
resumes playing — and you won’t get any interruption notifications. But resumption

Audio Player | 817

Figure 14-1. The software remote controls in the control center

of play is not automatic for every kind of interruption, so you may still need to regis‐
ter for interruption notifications, as I described earlier.

Remote Control of Your Sound
Various sorts of signal constitute remote control. There is hardware remote control,
such as the buttons on certain models of earbuds. There is also software remote con‐
trol — the playback controls that you see in the control center (Figure 14-1) and in
the lock screen.

Your app can arrange to be targeted by remote control events reporting that the user
has tapped a remote control, and can then respond to the remote play/pause button
(probably by playing or pausing its sound). For this to work, your app’s audio session
category must be Solo Ambient or Playback, and your app must actually produce
some sound; this causes your app’s sound to become the device’s now playing sound.
The rule is that the running app that is capable of receiving remote control events
and actually produced sound most recently is the target of remote control events. The
Music app is the default remote control event target if no other app takes precedence
by this rule.

To configure your app to receive remote control events, use the Media Player frame‐
work (import MediaPlayer). You talk to the remote command center, through the
shared command center that you get from the MPRemoteCommandCenter shared
class method, and configure its commands to send you messages, to which you then
respond as appropriate. There are two ways to perform such configuration: you can
give a command a target–action pair, or you can hand it a function directly.

818 | Chapter 14: Audio

Let’s say that our app plays audio, and we want to respond to remote commands to
pause or resume this audio. We will need to configure the play command and the
pause command, because they are triggered by the software play/pause button, as
well as the play/pause command, because it is triggered by an earbud button. I’ll
demonstrate the target–action style of configuration. This code could appear in our
view controller’s viewDidLoad:

let scc = MPRemoteCommandCenter.shared()
scc.playCommand.addTarget(self, action:#selector(doPlay))
scc.pauseCommand.addTarget(self, action:#selector(doPause))
scc.togglePlayPauseCommand.addTarget(self, action: #selector(doPlayPause))

Obviously, that code won’t compile unless we also have doPlay, doPause, and doPlay-
Pause methods. Each of these methods will be sent the appropriate remote command
event (MPRemoteCommandEvent). Assuming that self.player is an AVAudio‐
Player, our implementations might look like this:

@objc func doPlayPause(_ event:MPRemoteCommandEvent)
 -> MPRemoteCommandHandlerStatus {
 let p = self.player
 if p.isPlaying { p.pause() } else { p.play() }
 return .success
}
@objc func doPlay(_ event:MPRemoteCommandEvent)
 -> MPRemoteCommandHandlerStatus {
 let p = self.player
 p.play()
 return .success
}
@objc func doPause(_ event:MPRemoteCommandEvent)
 -> MPRemoteCommandHandlerStatus {
 let p = self.player
 p.pause()
 return .success
}

This works! Once our app is playing a sound, that sound can be paused and resumed
using the control center or an earbud switch. (It can also be paused and resumed
using the lock screen, but only if our app is capable of playing sound in the back‐
ground; I’ll explain in the next section how to arrange that.)

However, we are not quite finished. Having registered a target with the remote com‐
mand center, we must remember to unregister when that target is about to go out of
existence; otherwise, there is a danger that the remote command center will attempt
to send a remote command event to a nonexistent target, resulting in a crash. If we
registered in our view controller’s viewDidLoad, we can conveniently unregister in its
deinit:

Remote Control of Your Sound | 819

deinit {
 let scc = MPRemoteCommandCenter.shared()
 scc.togglePlayPauseCommand.removeTarget(self)
 scc.playCommand.removeTarget(self)
 scc.pauseCommand.removeTarget(self)
}

Having formed the connection between our app and the software remote control
interface, we can proceed to refine that interface. One refinement is to specify what
information is displayed about what’s being played. For that, we use the MPNow‐
PlayingInfoCenter. Call the class method default and set the resulting instance’s now-
PlayingInfo property to a dictionary. The relevant keys are listed in the class
documentation; many of these are actually MPMediaItem properties, and will make
more sense after you’ve read Chapter 16. Here we make the command center show
the title and artist of the sound file our app is playing:

let mpic = MPNowPlayingInfoCenter.default()
mpic.nowPlayingInfo = [
 MPMediaItemPropertyArtist: "Matt Neuburg",
 MPMediaItemPropertyTitle: "About Tiagol",
]

To make the progress view appear in the software remote control interface, display‐
ing our sound’s duration and the current play position within it, we need to tell the
MPNowPlayingInfoCenter what that duration is. If we also tell it that we are actively
playing, it will automatically increment its display of the current play position as the
time goes by. So, when we start playing, we would say something like this:

let mpic = MPNowPlayingInfoCenter.default()
mpic.nowPlayingInfo = [
 MPMediaItemPropertyArtist: "Matt Neuburg",
 MPMediaItemPropertyTitle: "About Tiagol",
 MPMediaItemPropertyPlaybackDuration: self.player.duration,
 MPNowPlayingInfoPropertyElapsedPlaybackTime: 0,
 MPNowPlayingInfoPropertyPlaybackRate: 1
]

The MPNowPlayingInfoCenter is not actually watching our sound play; it just
blindly advances the current play position display. Therefore, if our sound pauses or
resumes, we need to keep the MPNowPlayingInfoCenter updated. When the sound
pauses, we need to tell it not only that we have paused, but also what the current play
position is; otherwise, it will assume that the play position is zero:

let p = self.player
let mpic = MPNowPlayingInfoCenter.default()
if var d = mpic.nowPlayingInfo {
 d[MPNowPlayingInfoPropertyPlaybackRate] = 0
 d[MPNowPlayingInfoPropertyElapsedPlaybackTime] = p.currentTime
 mpic.nowPlayingInfo = d
}

820 | Chapter 14: Audio

Figure 14-2. Using Capabilities to enable background audio

If we don’t want the user to be able to slide the slider that would tell our app to
change the current play position, we must use the MPRemoteCommandCenter to
disable it:

let scc = MPRemoteCommandCenter.shared()
scc.changePlaybackPositionCommand.isEnabled = false

The MPRemoteCommandCenter offers many other commands you can configure.
When you do so, the appropriate software remote control interface springs to life.
For instance, if you assign a target–action pair to the likeCommand, a menu button
appears in the control center; the user taps this button to see an action sheet that
includes your like command button.

Playing Sound in the Background
When the user switches away from your app to another app, by default, your app is
suspended and stops producing sound. But if the business of your app is to play
sound, you might like your app to continue playing sound in the background. To
play sound in the background, your app must do these things:

• In your Info.plist, you must include the “Required background modes” key
(UIBackgroundModes) with an array value that includes “App plays audio or
streams audio/video using AirPlay” (audio). The simplest way to arrange that is
to add the Background Modes capability in the Signing & Capabilities tab of the
target editor, and then check “Audio, AirPlay, and Picture in Picture”
(Figure 14-2).

• Your audio session’s policy must be active and must be Playback.
If those things are true, then the sound that your app is playing in the foreground will
go right on playing when the user clicks the Home button and dismisses your app, or
when the user switches to another app, or when the screen is locked. Your app is now
running in the background for the purpose of playing sound.

Your app, playing in the background, may be interrupted by the foreground app’s
audio session policy. However, having registered for the AVAudio-

Session.interruptionNotification, your app may receive this notification in the
background, and, if the AVAudioSession.InterruptionType is .ended, may be able to
resume playing — still in the background.

Playing Sound in the Background | 821

Remote control events continue to work when your app is in the background. In fact,
even if your app was not actively playing at the time it was put into the background, it
may nevertheless be the remote control target (because it was playing sound earlier,
as explained in the preceding section). In that case, if the user causes a remote control
event to be sent, your app, if suspended in the background, will be woken up (still in
the background) in order to receive the remote control event, and can then begin
playing sound. Your app may also be able to start playing in the background if it is
mixable (.mixWithOthers, see earlier in this chapter), even if it was not playing
previously.

While your app is playing sound in the background, there’s an interesting byproduct:
a Timer can fire. This is remarkable, because many other sorts of activity are forbid‐
den when your app is running in the background. The timer must have been created
and scheduled in the foreground, but after that, it will fire even while your app is in
the background, unless your app is currently not playing any sound.

Another curious byproduct of your app playing sound in the background has to do
with app delegate events (see Appendix A). Typically, your app delegate will probably
never receive the applicationWillTerminate(_:) message, because by the time the
app terminates, it will already have been suspended and incapable of receiving any
events. However, an app that is playing sound in the background is obviously not
suspended, even though it is in the background. If it is terminated while playing
sound in the background, it will receive applicationWillTerminate(_:).

AVAudioRecorder
AVAudioRecorder is the simplest way to record sound through the device’s micro‐
phone. To use it, your audio session category will need to be .record (or .playAnd-
Record). You will also need the user’s permission to use the microphone. You’ll need
to have a meaningful entry in your Info.plist under the “Privacy — Microphone
Usage Description” key (NSMicrophoneUsageDescription) explaining to the user
why you want to use the microphone. You don’t have to request authorization explic‐
itly; the system will put up an authorization request dialog on your behalf as soon as
you try to use microphone. If you do want to request authorization explicitly, check
your AVAudioSession’s recordPermission to learn whether we have authorization,
and call its requestRecordPermission, if it is .undetermined, to request authoriza‐
tion. A user who denies your app microphone authorization may grant it later in Set‐
tings. (See “Checking for Authorization” on page 861 for detailed discussion of user
authorization requests.)

Here’s a minimal example of recording through an AVAudioRecorder. The recorder
is created with a file URL where the recording is to be saved, along with information

822 | Chapter 14: Audio

about the format of the sound file to be created. It is then assigned to an instance
property, just like an AVAudioPlayer, and told to record:

var recorder : AVAudioRecorder?
let recurl : URL = {
 let temp = FileManager.default.temporaryDirectory
 return temp.appendingPathComponent("rec.m4a")
}()
func startRecording() {
 try? AVAudioSession.sharedInstance().setCategory(.record, mode:.default)
 try? AVAudioSession.sharedInstance().setActive(true)
 let format = AVAudioFormat(settings: [
 AVFormatIDKey : Int(kAudioFormatMPEG4AAC),
 AVSampleRateKey : 44100.0,
 AVEncoderBitRateKey : 192000,
 AVNumberOfChannelsKey : 2
])
 do {
 let rec = try AVAudioRecorder(url:self.recurl, format:format!)
 self.recorder = rec
 rec.record(forDuration: 10)
 } catch {
 print("oops")
 }
}

Our little sound recording app would presumably also have a way to tell the recorder
to stop, but just in case, I’ve limited the recording time to ten seconds.

AVAudioEngine
AVAudioEngine is modeled after a mixer board. You can construct and manipulate a
graph of sound-producing objects in real time, varying their relative volumes and
other attributes, mixing them down to a single sound. This is a deep topic; I’ll provide
an introductory overview.

The key classes are:

AVAudioEngine
The overall engine object, representing the world in which everything else hap‐
pens. You’ll probably make and retain just one at a time; it is perfectly reasonable
to replace your engine with a new one, as a way of starting over with a clean slate.
Its chief jobs are:

• To connect and disconnect nodes (AVAudioNode), like configuring the
patch cords on a mixer board. The engine itself has three built-in nodes —
its inputNode, its mixerNode, and its outputNode — and you can add others.

AVAudioEngine | 823

• To start and stop the production of sound. The engine must be running if
any sound is to be produced; on the other hand, configuration changes gen‐
erally need to be made with the engine stopped.

AVAudioNode
An abstract class embracing the various types of object for producing, process‐
ing, mixing, and receiving sound. An audio node is useful only when it has been
attached to the audio engine. An audio node has inputs and outputs, and the
audio engine can connect the output of one node to the input of another. It is
also possible to put a tap on a node, copying the node’s sound data off into a
buffer as it passes through the node; this might be for analysis, monitoring, or
saving into a file. Some subclasses are:

AVAudioMixerNode
A node with an output volume; it mixes its inputs down to a single output.
The AVAudioEngine’s built-in mixerNode is an AVAudioMixerNode.

AVAudioIONode
A node that patches through to the system’s (device’s) own input (AVAudio‐
InputNode) or output (AVAudioOutputNode). The AVAudioEngine’s
built-in inputNode and outputNode are AVAudioIONodes.

AVAudioPlayerNode
A node that produces sound, analogous to an AVAudioPlayer. It can play
from a file or from a buffer.

AVAudioSourceNode
AVAudioSinkNode

New in iOS 13. Nodes that let you produce or process a buffer’s contents
directly.

AVAudioEnvironmentNode
Gives three-dimensional spatial control over sound sources (suitable for
games). With it, a bunch of additional AVAudioNode properties spring to
life.

AVAudioUnit
A node that processes its input with special effects before passing it to the
output. Built-in subclasses include:

AVAudioUnitTimePitch
Independently changes the pitch and rate of the input.

AVAudioUnitVarispeed
Changes the pitch and rate of the input together.

824 | Chapter 14: Audio

AVAudioUnitDelay
Adds to the input a delayed version of itself.

AVAudioUnitDistortion
Adds distortion to the input.

AVAudioUnitEQ
Constructs an equalizer, for processing frequency bands separately.

AVAudioUnitReverb
Adds a reverb effect to the input.

To give an idea of what working with AVAudioEngine looks like, I’ll start by simply
playing a file. Our AVAudioEngine has already been instantiated and assigned to an
instance property, self.engine, so that it will persist for the duration of the exercise.
We will need an AVAudioPlayerNode and an AVAudioFile. We attach the AVAudio‐
PlayerNode to the engine and patch it to the engine’s built-in mixer node. (In this
simple case, we could have patched the player node to the engine’s output node; but
the engine’s mixer node is already patched to the output node, so it makes no differ‐
ence.) We associate the file with the player node, supplying a completion function
that stops the engine so as not to waste resources after the file finishes playing.
Finally, we start the engine running and tell the player node to play:

let player = AVAudioPlayerNode()
let url = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!
let f = try! AVAudioFile(forReading: url)
let mixer = self.engine.mainMixerNode
self.engine.attach(player)
self.engine.connect(player, to: mixer, format: f.processingFormat)
player.scheduleFile(f, at: nil) { [unowned self] in
 delay(0.1) {
 if self.engine.isRunning {
 self.engine.stop()
 }
 }
}
self.engine.prepare()
try! self.engine.start()
player.play()

(Instead of stopping the engine in our player node’s completion function, we can
configure the engine to stop automatically by setting its isAutoShutdownEnabled
property to true.)

So far, we’ve done nothing that we couldn’t have done with an AVAudioPlayer. But
now let’s start patching some more nodes into the graph. I’ll play two sounds simul‐
taneously, the first one directly from a file, the second one through a buffer — which
will allow me to loop the second sound. I’ll also pass the first sound through a

AVAudioEngine | 825

time-pitch effect node and then through a reverb effect node. And I’ll set the volumes
and pan positions of the two sounds:

// first sound
let player = AVAudioPlayerNode()
let url = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!
let f = try! AVAudioFile(forReading: url)
self.engine.attach(player)
// add some effect nodes to the chain
let effect = AVAudioUnitTimePitch()
effect.rate = 0.9
effect.pitch = -300
self.engine.attach(effect)
self.engine.connect(player, to: effect, format: f.processingFormat)
let effect2 = AVAudioUnitReverb()
effect2.loadFactoryPreset(.cathedral)
effect2.wetDryMix = 40
self.engine.attach(effect2)
self.engine.connect(effect, to: effect2, format: f.processingFormat)
// patch last node into engine mixer and start playing first sound
let mixer = self.engine.mainMixerNode
self.engine.connect(effect2, to: mixer, format: f.processingFormat)
player.scheduleFile(f, at: nil) {
 delay(0.1) {
 if self.engine.isRunning {
 self.engine.stop()
 }
 }
}
self.engine.prepare()
try! self.engine.start()
player.play()
// second sound; loop it
let url2 = Bundle.main.url(forResource:"Hooded", withExtension: "mp3")!
let f2 = try! AVAudioFile(forReading: url2)
let buffer = AVAudioPCMBuffer(
 pcmFormat: f2.processingFormat, frameCapacity: UInt32(f2.length))
try! f2.read(into:buffer!)
let player2 = AVAudioPlayerNode()
self.engine.attach(player2)
self.engine.connect(player2, to: mixer, format: f2.processingFormat)
player2.scheduleBuffer(buffer!, at: nil, options: .loops)
// mix down a little, start playing second sound
player.pan = -0.5
player2.volume = 0.5
player2.pan = 0.5
player2.play()

You can split a node’s output between multiple nodes. Instead of calling
connect(_:to:format:), you call connect(_:to:fromBus:format:), where the sec‐
ond argument is an array of AVAudioConnectionPoint objects, each of which is
simply a node and a bus. In this example, I’ll split my player’s output three ways: I’ll

826 | Chapter 14: Audio

connect it simultaneously to a delay effect and a reverb effect, both of which are
connected to the output mixer, and I’ll connect the player itself directly to the output
mixer as well:

let effect = AVAudioUnitDelay()
effect.delayTime = 0.4
effect.feedback = 0
self.engine.attach(effect)
let effect2 = AVAudioUnitReverb()
effect2.loadFactoryPreset(.cathedral)
effect2.wetDryMix = 40
self.engine.attach(effect2)
let mixer = self.engine.mainMixerNode
// patch player node to _both_ effect nodes _and_ the mixer
let cons = [
 AVAudioConnectionPoint(node: effect, bus: 0),
 AVAudioConnectionPoint(node: effect2, bus: 0),
 AVAudioConnectionPoint(node: mixer, bus: 1),
]
self.engine.connect(player, to: cons,
 fromBus: 0, format: f.processingFormat)
// patch both effect nodes into the mixer
self.engine.connect(effect, to: mixer, format: f.processingFormat)
self.engine.connect(effect2, to: mixer, format: f.processingFormat)

Finally, I’ll demonstrate how to process sound into a file. When AVAudioEngine
appeared in iOS 8, I was hoping that the processing might be done rapidly in the
background, but that turned out to be impossible; you had to play the sound in real
time, install a tap on a node to collect its sound into a buffer, and write the buffer into
a file. Starting in iOS 11, rapid offline rendering through AVAudioEngine is possible.

To demonstrate, I’ll pass a sound file through a reverb effect and save the output into
a new file. Initial configuration is much as you would expect:

let url = Bundle.main.url(forResource:"Hooded", withExtension: "mp3")!
let f = try! AVAudioFile(forReading: url)
let player = AVAudioPlayerNode()
self.engine.attach(player)
// patch the player into the effect
let effect = AVAudioUnitReverb()
effect.loadFactoryPreset(.cathedral)
effect.wetDryMix = 40
self.engine.attach(effect)
self.engine.connect(player, to: effect, format: f.processingFormat)
let mixer = self.engine.mainMixerNode
self.engine.connect(effect, to: mixer, format: f.processingFormat)

We create an output file with an appropriate format:

AVAudioEngine | 827

let fm = FileManager.default
let doc = try! fm.url(for:.documentDirectory, in: .userDomainMask,
 appropriateFor: nil, create: true)
let outurl = doc.appendingPathComponent("myfile.aac", isDirectory:false)
let outfile = try! AVAudioFile(forWriting: outurl, settings: [
 AVFormatIDKey : kAudioFormatMPEG4AAC,
 AVNumberOfChannelsKey : 1,
 AVSampleRateKey : 22050,
])

Now comes the interesting part. Before we start playing through the audio engine, we
configure it for offline rendering:

var done = false
player.scheduleFile(f, at: nil)
let sz : UInt32 = 4096
try! self.engine.enableManualRenderingMode(.offline,
 format: f.processingFormat, maximumFrameCount: sz)
self.engine.prepare()
try! self.engine.start()
player.play()

We have told the engine to start and the player to play, but nothing happens. That’s
because it’s up to us to pull the sound data through the engine into a buffer one
chunk at a time, and write the buffer into a file. I create the buffer, and then loop
repeatedly until all the sound data has been read:

let outbuf = AVAudioPCMBuffer(
 pcmFormat: f.processingFormat, frameCapacity: sz)!
var rest : Int64 { return f.length - self.engine.manualRenderingSampleTime }
while rest > 0 {
 let ct = min(outbuf.frameCapacity, UInt32(rest))
 let stat = try! self.engine.renderOffline(ct, to: outbuf)
 if stat == .success {
 try! outfile.write(from: outbuf)
 }
}

The result is that the input file is processed very quickly into the output file. I have
one quibble with the result: our reverb effect is not given a chance to fade away at the
end of the output, because we stop writing to the output file as soon as the input file
is exhausted. One solution might be to add a couple of seconds arbitrarily onto the
size of rest; another might be to examine the contents of outbuf and keep looping
after reading the input file until the amplitude of the sound data falls below some
threshold.

828 | Chapter 14: Audio

MIDI Playback
Playing a MIDI file is as simple as playing an audio file. In this example, I’m already
armed with a MIDI file, which provides the music, and a SoundFont file, which
provides the instrument that will play it; self.player will be an AVMIDIPlayer:

let midurl = Bundle.main.url(forResource: "presto", withExtension: "mid")!
let sndurl = Bundle.main.url(forResource: "Piano", withExtension: "sf2")!
self.player = try! AVMIDIPlayer(contentsOf: midurl, soundBankURL: sndurl)
self.player.prepareToPlay()
self.player.play()

A MIDI player can also act as a source in an AVAudioEngine. In this case, you’ll
want an AVAudioUnitSampler as your starting AVAudioUnit. The MIDI file will be
parsed by an AVAudioSequencer; this is not part of the audio engine node structure,
but rather it has the audio engine as a property, so you’ll need to retain it in a
property (self.seq in this example):

let midurl = Bundle.main.url(forResource: "presto", withExtension: "mid")!
let sndurl = Bundle.main.url(forResource: "Piano", withExtension: "sf2")!
let unit = AVAudioUnitSampler()
self.engine.attach(unit)
let mixer = self.engine.outputNode
self.engine.connect(unit, to: mixer, format: mixer.outputFormat(forBus:0))
try! unit.loadInstrument(at:sndurl)
self.seq = AVAudioSequencer(audioEngine: self.engine)
try! self.seq.load(from:midurl)
self.engine.prepare()
try! engine.start()
try! self.seq.start()

That code is rather mysterious: where’s the connection between the AVAudio‐
Sequencer and the AVAudioUnitSampler? The answer is that the sequencer just finds
the first AVAudioUnitSampler in the audio engine graph and proceeds to drive it. If
that isn’t what you want, get the AVAudioSequencer’s tracks property, which is an
array of AVMusicTrack; now you can set each track’s destinationAudioUnit
explicitly.

Text to Speech
Text can be transformed into synthesized speech using the AVSpeechUtterance and
AVSpeechSynthesizer classes. As with an AVAudioPlayer, you’ll need to retain the
AVSpeechSynthesizer (self.talker in my example); here, I also use the AVSpeech‐
SynthesisVoice class to make sure the device speaks the text in English, regardless of
the user’s language settings:

MIDI Playback | 829

let utter = AVSpeechUtterance(string:"Polly, want a cracker?")
if let v = AVSpeechSynthesisVoice(language: "en-US") {
 utter.voice = v
 self.talker.delegate = self
 self.talker.speak(utter)
}

You can set the utterance’s speech rate; the value ranges between 0 and 1, where 0.5
is normal. You can also set pitch (higher or lower voice) and volume (louder or
softer). The delegate (AVSpeechSynthesizerDelegate) is told when the speech starts,
when it comes to a new range of text (usually a word), and when it finishes.

To get the user’s current language, call the AVSpeechSynthesisVoice class method
currentLanguageCode. Instead of specifying a voice by language, you can use the
system’s identifier. To get a list of all voices, call the class method speechVoices.

If a word within your AVSpeechUtterance needs extra pronunciation guidance, you
can write it out using the international phonetic alphabet (IPA):

1. Form an NSMutableAttributedString from your overall phrase.
2. Call addAttribute(_:value:range:):

• The first parameter is NSAttributedString.Key(rawValue: AVSpeech-

SynthesisIPANotationAttribute).
• The second parameter is the IPA notation to be substituted at the range of

that word.

3. Form the speech utterance from the attributed string with the initializer
init(attributedString:).

Speech to Text
Your app can participate in the same speech recognition engine used by Siri and the
virtual keyboard’s Dictate button. In this way, you can transcribe speech to text. To
do so, you’ll use the Speech framework (import Speech).

Use of the speech recognition engine requires authorization from the user. You’ll
need to have a meaningful entry in your Info.plist under the “Privacy — Speech Rec‐
ognition Usage Description” key (NSSpeechRecognitionUsageDescription) explain‐
ing to the user why you want to do speech recognition. In your code, check the value
of SFSpeechRecognizer.authorizationStatus(). If it is .notDetermined, request
authorization by calling SFSpeechRecognizer.requestAuthorization. The system
will put up an alert requesting authorization from the user for your app to do speech
recognition. A user who denies your app speech recognition authorization may grant
it later in Settings.

830 | Chapter 14: Audio

https://www.internationalphoneticassociation.org/content/ipa-chart

Once you have authorization, the basic procedure is simple. You form a speech rec‐
ognition request and hand it off to an SFSpeechRecognizer. Recognition can be per‐
formed in various languages, which are expressed as locales; to learn what these are,
call the supportedLocales class method. The device’s current locale is used by
default, or you can specify a locale when you initialize the SFSpeechRecognizer.

There are two modes of speech recognition:

Over the air
In this mode (present also in iOS 12 and earlier), recognition is performed by
Apple’s servers. This is a resource-heavy operation. It requires an internet con‐
nection, with the work being done by Apple’s servers; such a connection can fail.
Apple also warns that recognized snippets must be short, and that excessive use
of the server may result in access being throttled.

On the device
In this mode (new in iOS 13), recognition is performed on the device. This may
be less accurate than over-the-air recognition, and only ten languages are recog‐
nized; but no internet connection is required, and there is no limit on the num‐
ber and frequency of recognitions you can perform. To specify this mode, ask the
SFSpeechRecognizer for its supportsOnDeviceRecognition and, if true, set the
speech recognition request’s requiresOnDeviceRecognition to true.

There are also two kinds of speech recognition: transcription of an existing file, and
transcription of live speech. For transcription of a file, your speech recognition
request will be an SFSpeechURLRecognitionRequest initialized with the file URL. In
this example, I have a recording of myself saying “This is a test.” I speak American
English, so just to be on the safe side, I initialize my SFSpeechRecognizer with the
"en-US" locale. Interestingly, none of the objects needs to be retained in an instance
property:

let f = Bundle.main.url(forResource: "test", withExtension: "aif")!
let req = SFSpeechURLRecognitionRequest(url: f)
let loc = Locale(identifier: "en-US")
guard let rec = SFSpeechRecognizer(locale:loc)
 else {return} // no recognizer
rec.recognitionTask(with: req) { result, err in
 if let result = result {
 let trans = result.bestTranscription
 let s = trans.formattedString
 print(s)
 if result.isFinal {
 print("finished!")
 }
 } else {
 print(err!)
 }
}

Speech to Text | 831

In that code, we’re calling recognitionTask(with:resultHandler:) with an anony‐
mous function. The function is called several times, passing us an SFSpeechRecogni‐
tionResult containing possible transcriptions (an array of SFTranscription). We
ignore these, asking instead for the bestTranscription and extracting its formatted-
String. We know when we’ve been called for the last time because the recognition
result’s isFinal is true. In real life, it might be sufficient to extract the transcription
only on the final pass, but for the purposes of this demonstration, I’ve logged every
call to the function; the resulting console log looks like this:

This
This is
This is
This is
This is a test
This is a test
finished!

For transcription of live speech, your app is going to be using the device’s micro‐
phone, so you’ll need microphone usage permission, as I described earlier in this
chapter. Once you have authorization for both speech recognition and microphone
usage, the procedure is almost exactly the same as before — except that the speech
recognition request will be an SFSpeechAudioBufferRecognitionRequest, and we
need a way to pass the microphone input to it. A buffer recognition request has an
append method whose parameter is an AVAudioPCMBuffer. To obtain an AVAudio‐
PCMBuffer, we can use AVAudioEngine and put a tap on a node. Here, that node
will be the audio engine’s inputNode, representing the device’s microphone:

let engine = AVAudioEngine()
let req = SFSpeechAudioBufferRecognitionRequest()
func doLive() {
 let loc = Locale(identifier: "en-US")
 guard let rec = SFSpeechRecognizer(locale:loc)
 else {return} // no recognizer
 let input = self.engine.inputNode
 input.installTap(onBus: 0, bufferSize: 4096,
 format: input.outputFormat(forBus: 0)) { buffer, time in
 self.req.append(buffer)
 }
 self.engine.prepare()
 try! self.engine.start()
 // provide the user with "recording" feedback
 rec.recognitionTask(with: self.req) { result, err in
 // ... and the rest is as before ...
 }
}

You must provide the user with a clear indication in the interface that the micro‐
phone is now live and the speech recognition engine is listening. You must also pro‐
vide a way for the user to stop recognition, signaling that the speech is over (like the

832 | Chapter 14: Audio

Done button in the dictation interface). That’s why our buffer recognition request is
an instance property (self.req): the buffer recognition request has an endAudio
instance method, which we need to able to call when the user taps our Done button. I
also stop the audio engine and remove the tap from its input node, so as to be ready if
the user wants to do more speech recognition later:

@IBAction func endLive(_ sender: Any) {
 self.engine.stop()
 self.engine.inputNode.removeTap(onBus: 0)
 self.req.endAudio()
 // take down "recording" feedback
}

Instead of calling recognitionTask(with:resultHandler:), you can call
recognitionTask(with:delegate:), providing an adopter of the SFSpeechRecogni‐
tionTaskDelegate protocol. Here you can implement any of half a dozen optional
methods, called at various stages of the recognition process, to allow your response to
be more fine-grained. You can also assist the recognition request with hints, retrieve
confidence levels and alternatives from the segments of a transcription, and move the
task messages onto a background queue.

Further Topics in Sound
iOS is a powerful milieu for production and processing of sound; its sound-related
technologies are extensive. This is a big topic, and an entire book could be written
about it (in fact, such books do exist). I’ll talk in Chapter 16 about accessing sound
files in the user’s music library. Here are some further topics that there is no room to
discuss here (and see Apple’s Core Audio Overview in the documentation archive):

Other audio session policies
If your app accepts sound input or does audio processing, you’ll want to look
into audio session policies such as Record, Play and Record, and Audio Process‐
ing. In addition, if you’re using Record or Play and Record, there are modes —
voice chat, video recording, and measurement (of the sound being input) — that
optimize how sound is routed and how it is modified.

Audio queues
Audio queues — Audio Queue Services, part of the Audio Toolbox framework —
implement sound playing and recording through a C API with more granularity
than the Objective-C AVAudioPlayer and AVAudioRecorder (though it is still
regarded as a high-level API), giving you access to the buffers used to move
chunks of sound data between a storage format (a sound file) and sound
hardware.

Further Topics in Sound | 833

Extended Audio File Services
A C API for reading and writing sound files in chunks. It is useful in connection
with technologies such as audio queues.

Audio Converter Services
Originally, a C API for converting sound files between formats. Starting in iOS 9,
the AVAudioConverter class (along with AVAudioCompressedBuffer) gives this
API an object-oriented structure.

Streaming audio
Audio streamed in real time over the network, such as an internet radio station,
can be played with Audio File Stream Services, in connection with audio queues.

Audio units
Plug-ins that generate sound or modify sound as it passes through them. Starting
in iOS 9, the API was migrated from C into Objective-C and given a modern
object-oriented structure; audio units can vend interface (AUViewController);
and an audio unit from one app can be hosted inside another (audio unit
extensions).

Core MIDI
The CoreMIDI framework manages direct communication with MIDI devices.

Core Haptics
New in iOS 13, the Core Haptics framework lets you construct precise vibration
patterns to be played on certain iPhone models (iPhone 8 and higher); these are
typically used to supplement and reinforce sounds.

834 | Chapter 14: Audio

CHAPTER 15

Video

Video playback is performed using classes provided by the AV Foundation frame‐
work (import AVFoundation), such as AVPlayer. An AVPlayer is not a view; rather,
an AVPlayer’s content is made visible through a CALayer subclass, AVPlayerLayer,
which can be added to your app’s interface. An AV Foundation video playback inter‐
face can be wrapped in a simple view controller, AVPlayerViewController: you
provide an AVPlayer, and the AVPlayerViewController automatically hosts an asso‐
ciated AVPlayerLayer in its own main view, providing standard playback transport
controls so that the user can start and stop play, seek to a different frame, and so
forth. AVPlayerViewController is provided by the AVKit framework; you’ll need to
import AVKit.

A simple interface for letting the user trim video (UIVideoEditorController) is also
supplied. Sophisticated video editing can be performed in code through the AV
Foundation framework, as I’ll demonstrate later in this chapter.

If an AVPlayer produces sound, you may need to concern yourself with your applica‐
tion’s audio session; see Chapter 14. You almost certainly want the category to
be .playback. AVPlayer deals gracefully with the app being sent into the back‐
ground: it will pause when your app is backgrounded and resume when your app
returns to the foreground.

A movie file can be in a standard movie format, such as .mov or .mp4, but it can also
be a sound file. An AVPlayerViewController is an easy way to play a sound file,
including a sound file obtained in real time over the internet, along with standard
controls for pausing the sound and moving the playhead — unlike AVAudioPlayer,
which, as I pointed out in Chapter 14, lacks a transport interface.

835

A web view (Chapter 11) supports the HTML5 <video> tag. This can be a simple
lightweight way to present video and to allow the user to control playback. Both web
view video and AVPlayer support AirPlay.

AVPlayerViewController
An AVPlayerViewController is a view controller whose view contains an AVPlayer‐
Layer and transport controls. It must be assigned a player, which is an AVPlayer. An
AVPlayer can be initialized directly from the URL of the video it is to play, with
init(url:). You’ll instantiate AVPlayerViewController, create and set its AVPlayer,
and get the AVPlayerViewController into the view controller hierarchy. You can
instantiate an AVPlayerViewController in code or from a storyboard; look for the
AVKit Player View Controller object in the Library.

The simplest approach is to use an AVPlayerViewController as a presented view con‐
troller. In this example, I present a video from the app bundle:

let av = AVPlayerViewController()
let url = Bundle.main.url(forResource:"ElMirage", withExtension: "mp4")!
let player = AVPlayer(url: url)
av.player = player
self.present(av, animated: true)

The AVPlayerViewController is presented fullscreen. (This is a good example of the
new iOS 13 .automatic modal presentation style in action: normally, this would
resolve to .pageSheet, but for an AVPlayerViewController it is .fullScreen.) It
knows that it’s being shown as a fullscreen presented view controller, so it provides
fullscreen video controls, including a Done button which automatically dismisses the
presented view controller. There is literally no further work for you to do.

Figure 15-1 shows a fullscreen presented AVPlayerViewController. Exactly what con‐
trols you’ll see depends on the circumstances; in my case, at the top there’s the Done
button (which appears as an X), the zoom button, and a volume slider, and at the
bottom are transport controls including the current playhead position slider, along
with the AirPlay button. The user can hide or show the controls by tapping the video.

If the AVPlayer’s file is in fact a sound file, the central region is blacked out, and the
controls can’t be hidden.

Instead of a presented AVPlayerViewController, you might push the AVPlayerView‐
Controller onto a navigation controller’s stack. Again, the AVPlayerViewController
behaves intelligently. The controls include a fullscreen button, which results in
almost exactly the same interface shown in Figure 15-1. There is now no Done but‐
ton, because the user can tap the back button when finished with this screen. Ensur‐
ing that the back button is visible is up to you! You might set the navigation

836 | Chapter 15: Video

Figure 15-1. A presented AVPlayerViewController

controller’s hidesBarsWhenVerticallyCompact to false and the AVPlayerViewCon‐
troller’s edgesForExtendedLayout to [].

If you want the convenience and the control interface that come from using an
AVPlayerViewController, while displaying its view as a subview of your own view
controller’s view, make your view controller a parent view controller with the
AVPlayerViewController as its child, adding the AVPlayerViewController’s view in
good order (see “Container View Controllers” on page 375):

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let player = AVPlayer(url:url)
let av = AVPlayerViewController()
av.player = player
av.view.frame = CGRect(10,10,300,200)
self.addChild(av)
self.view.addSubview(av.view)
av.didMove(toParent:self)

Once again, the AVPlayerViewController behaves intelligently, reducing its controls
to a minimum to adapt to the reduced size of its view. On my device, at the given
view size, there is room for a fullscreen button, a volume button, a play button, a
playhead position slider, and the AirPlay button (Figure 15-2). From here, the user
can enter fullscreen mode, either by tapping the fullscreen button or by pinching out‐
ward on the video view, and now the full complement of controls is present (exactly
as in Figure 15-1).

New in iOS 13, the AVPlayerViewController’s delegate (AVPlayerViewController‐
Delegate) can be notified when the user enters and exits fullscreen mode. There are

AVPlayerViewController | 837

Figure 15-2. An embedded AVPlayerViewController’s view

two relevant delegate methods; when you build against iOS 13, they are backward
compatible to iOS 12:

• playerViewController(_:willBeginFullScreenPresentationWithAnimation-

Coordinator:)

• playerViewController(_:willEndFullScreenPresentationWithAnimation-

Coordinator:)

The user can start to enter fullscreen mode with an outward pinch without complet‐
ing the gesture; to find out whether the user really entered fullscreen mode, check the
transition coordinator to see whether the transition was cancelled:

func playerViewController(_ av: AVPlayerViewController,
 willBeginFullScreenPresentationWithAnimationCoordinator
 coordinator: UIViewControllerTransitionCoordinator) {
 coordinator.animate(alongsideTransition: { con in
 // ...
 }) { con in
 if con.isCancelled {
 // ...
 } else {
 // really went fullscreen!
 }
 }
}

Other AVPlayerViewController Properties
An AVPlayerViewController has very few properties:

player

The view controller’s AVPlayer, whose AVPlayerLayer will be hosted in the view
controller’s view. You can set the player while the view is visible, to change what
video it displays (though you are more likely to keep the player and tell it to
change the video). It is legal to assign an AVQueuePlayer, an AVPlayer subclass;
an AVQueuePlayer has multiple items, and the AVPlayerViewController will

838 | Chapter 15: Video

treat these as chapters of the video. An AVPlayerLooper object can be used in
conjunction with an AVQueuePlayer to repeat play automatically. (I’ll give an
AVQueuePlayer example in Chapter 16, and an AVPlayerLooper example in
Chapter 17.)

showsPlaybackControls

If false, the controls are hidden. This could be useful if you want to display a
video for decorative purposes, or if you are substituting your own controls.

contentOverlayView

A UIView to which you are free to add subviews. These subviews will appear
overlaid in front of the video but behind the playback controls. Starting in iOS
11, the content overlay is sized to fit its contents, or you can give it constraints to
size it as you prefer.

videoGravity

How the video should be positioned within the view. Possible values are
(AVLayerVideoGravity):

• .resizeAspect (the default)
• .resizeAspectFill

• .resize (fills the view, possibly distorting the video)

videoBounds

isReadyForDisplay

Read-only. The video position within the view, and the ability of the video to
display its first frame and start playing, respectively. If the video is not ready for
display, we probably don’t yet know its bounds either. In any case, isReadyFor-
Display will initially be false and the videoBounds will initially be reported
as .zero. This is because, with video, things take time to prepare. I’ll explain in
detail later in this chapter.

updatesNowPlayingInfoCenter

If true (the default), the AVPlayerViewController keeps the MPNowPlaying‐
InfoCenter (Chapter 14) apprised of the movie’s duration and current playhead
position. If false, it doesn’t do that, leaving your code in charge of managing the
MPNowPlayingInfoCenter. New in iOS 13, you can leave this property at true
and still govern what information appears in the remote control interface, by set‐
ting the player item’s externalMetadata; here’s an example (without further
comment):

AVPlayerViewController | 839

Figure 15-3. The picture-in-picture button appears

let metadata = AVMutableMetadataItem()
metadata.keySpace = .common
metadata.key = AVMetadataKey.commonKeyTitle as NSString
metadata.value = "El Mirage" as NSString
av.player?.currentItem?.externalMetadata = [metadata]

entersFullScreenWhenPlaybackBegins

exitsFullScreenWhenPlaybackEnds

If true, a child AVPlayerViewController’s view switches to and from fullscreen
mode automatically when play begins and ends.

Everything else there is to know about an AVPlayerViewController comes from its
player, an AVPlayer. I’ll discuss AVPlayer in more detail in a moment.

Picture-in-Picture
An iPad capable of running iOS 13 supports picture-in-picture video playback
(unless the user turns it off in the Settings app). This means that the user can move
your video into a small system window that floats in front of everything else on the
screen. This floating window persists if your app is put into the background.

Your iPad app will support picture-in-picture if it supports background audio, as I
described in Chapter 14: you check the checkbox in the Signing & Capabilities tab of
the target editor (Figure 14-2), and your audio session’s policy must be active and
must be Playback. If you want to do those things without your app being forced to
support picture-in-picture, set the AVPlayerViewController’s allowsPictureIn-
PicturePlayback to false.

If picture-in-picture is supported, an extra button appears among the upper set of
playback controls (Figure 15-3). When the user taps this button, the video is moved
into the system window (and the AVPlayerViewController’s view displays a place‐
holder). The user is now free to leave your app while continuing to see and hear the
video. Moreover, if the video is being played fullscreen when the user leaves your
app, the video is moved into the picture-in-picture system window automatically.

The user can move the system window to any corner. Buttons in the system window,
which can be shown or hidden by tapping, allow the user to play and pause the video
or to dismiss the system window. There’s also a button to dismiss the system window

840 | Chapter 15: Video

plus return to your app; if the user taps it while the video is playing, the video goes
right on playing as it moves back into place within your app.

If your AVPlayerViewController is being presented fullscreen when the video is
taken into picture-in-picture mode, then the presented view controller, by default, is
dismissed. If the user tries to return to your app from the system picture-in-picture
window, the video has no place to return to. To handle this situation, give the
AVPlayerViewController a delegate (AVPlayerViewControllerDelegate) and deal
with it in a delegate method. You have two choices:

Don’t dismiss the presented view controller
Implement this method:

• playerViewControllerShouldAutomaticallyDismissAtPictureInPicture-

Start(_:)

Return false. Now the presented view controller remains, and the video has a
place in your app to which it can be restored.

Recreate the presented view controller
Implement this method:

• playerViewController(_:restoreUserInterfaceForPictureInPicture-

StopWithCompletionHandler:)

Do what the name tells you: restore the user interface! The first parameter is your
original AVPlayerViewController; all you have to do is get it back into the view
controller hierarchy. At the end of the process, call the completion function.

I’ll demonstrate the second approach:

func playerViewController(_ pvc: AVPlayerViewController,
 restoreUserInterfaceForPictureInPictureStopWithCompletionHandler
 ch: @escaping (Bool) -> ()) {
 self.present(pvc, animated:true) {
 ch(true)
 }
}

Other delegate methods inform you of various stages as picture-in-picture mode
begins and ends. One good reason for being conscious that you’ve entered picture-in-
picture mode is that at that point you are effectively a background app, and you
should reduce resources and activity so that playing the video is all you’re doing until
picture-in-picture mode ends.

AVPlayerViewController | 841

Introducing AV Foundation
The video display performed by AVPlayerViewController is supplied by classes from
the AV Foundation framework. This is a big framework with a lot of classes, but
there’s a good reason for that: video has a lot of structure and can be manipulated in
many ways, and AV Foundation very carefully and correctly draws all the distinc‐
tions needed for good object-oriented encapsulation. I’ll just point out some of the
principal classes, features, and techniques associated with video. Further AV Founda‐
tion examples will appear in Chapters 16 and 17.

Some AV Foundation Classes
The heart of AV Foundation video playback is AVPlayer. AVPlayer is not a UIView,
but rather is the locus of video transport; the actual video, if shown, appears in an
AVPlayerLayer associated with the AVPlayer. AVPlayerViewController provides a
play button, but what if you wanted to start video playback in code? You’d talk to the
AVPlayerViewController’s player — an AVPlayer. You’d tell it to play or set its
rate to 1.

An AVPlayer’s video is its currentItem, an AVPlayerItem. In the examples earlier in
this chapter we initialized an AVPlayer directly from a URL, with no reference to any
AVPlayerItem; but that was just a shortcut. AVPlayer’s real initializer is init(player-
Item:), which takes an AVPlayerItem; when we called init(url:), the AVPlayer‐
Item was created for us.

An AVPlayerItem, too, can be initialized from a URL with init(url:), but again,
this is just a shortcut. AVPlayerItem’s real initializer is init(asset:), which takes an
AVAsset. An AVAsset is an actual video resource, and comes in one of two
subclasses:

AVURLAsset

An asset specified through a URL.

AVComposition

An asset constructed by editing video in code. I’ll give an example later in this
chapter.

To configure an AVPlayer using the complete “stack” of objects that constitute it, you
could say something like this:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
let item = AVPlayerItem(asset:asset)
let player = AVPlayer(playerItem:item)

Once an AVPlayer exists and has an AVPlayerItem, that player item’s tracks, as seen
from the player’s perspective, are AVPlayerItemTrack objects, which can be

842 | Chapter 15: Video

individually enabled or disabled. That’s different from an AVAssetTrack, which is a
fact about an AVAsset. This distinction is a good example of how AV Foundation
encapsulates its objects correctly: an AVAssetTrack is a hard and fast reality, but an
AVPlayerItemTrack lets a track be manipulated for purposes of playback on a partic‐
ular occasion.

Things Take Time
Working with video is time-consuming. Just because you give an AVPlayer a com‐
mand or set a property doesn’t mean that it obeys immediately. All sorts of
operations, from reading a video file and learning its metadata to transcoding and
saving a video file, take a significant amount of time. The user interface must not
freeze while a video task is in progress, so AV Foundation relies heavily on threading
(Chapter 24). In this way, AV Foundation covers the complex and time-consuming
nature of its operations; but your code must cooperate. You’ll frequently use key–
value observing and callbacks to run your code at the right moment.

Here’s an example; it’s slightly artificial, but it illustrates the principles and techni‐
ques you need to know about. There’s an elementary interface flaw when we create an
embedded AVPlayerViewController:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
let item = AVPlayerItem(asset:asset)
let player = AVPlayer(playerItem:item)
let av = AVPlayerViewController()
av.view.frame = CGRect(10,10,300,200)
av.player = player
self.addChild(av)
self.view.addSubview(av.view)
av.didMove(toParent: self)

There are two issues here:

• The AVPlayerViewController’s view is initially appearing empty in the interface,
because the video is not yet ready for display. Then there’s a visible flash when
the video appears, because now it is ready for display.

• The proposed frame of the AVPlayerViewController’s view doesn’t fit the actual
aspect ratio of the video, which results in the video being letterboxed within that
frame (visible in Figure 15-2).

Fixing those issues requires us to grapple with the fact that it takes time to learn when
the video is ready for display and what its aspect ratio is.

Key–value observing a property
To prevent the flash, we can start out with the AVPlayerViewController’s view
hidden, and not show it until isReadyForDisplay is true. But how will we know

Introducing AV Foundation | 843

when that is? Not by repeatedly polling the isReadyForDisplay property! That sort
of behavior is absolutely wrong. Rather, we should use KVO to register as an observer
of this property. Sooner or later, isReadyForDisplay will become true, and we’ll be
notified. Now we can unregister from KVO and show the AVPlayerViewController’s
view:

av.view.isHidden = true
var ob : NSKeyValueObservation!
ob = av.observe(\.isReadyForDisplay, options: [.initial, .new]) { vc, ch in
 guard let ok = ch.newValue, ok else {return}
 self.obs.remove(ob)
 DispatchQueue.main.async {
 vc.view.isHidden = false
 }
}
self.obs.insert(ob) // obs is a Set<NSKeyValueObservation>

Note that, in that code, I make no assumptions about what thread KVO calls me back
on: I intend to operate on the interface, so I step out to the main thread.

Asynchronous property loading

Next, let’s talk about setting the AVPlayerViewController’s view.frame in accord‐
ance with the video’s aspect ratio. An AVAsset has tracks (AVAssetTrack); in par‐
ticular, an AVAsset representing a video has a video track. A video track has a
naturalSize, which will give me the aspect ratio I need. But we cannot access these
properties immediately. For the sake of efficiency, these and many other AV Founda‐
tion object properties don’t even have a value unless we specifically request that they
be evaluated — and when we do, it takes time to fulfill our request.

AV Foundation objects that behave this way conform to the AVAsynchronousKey‐
ValueLoading protocol. You call loadValuesAsynchronously(forKeys:completion-
Handler:) ahead of time, for any properties you’re going to be interested in. When
your completion function is called, you check the status of a key and, if its status
is .loaded, you are now free to access the property.

To obtain the video’s aspect ratio, I’m going to need to do that twice — first for the
AVAsset’s tracks property, in order to get the video track, and then for the video
track’s naturalSize property, in order to get the aspect ratio. Let’s go all the way
back to the beginning. I’ll start by creating the AVAsset and then stop, waiting to hear
in the completion function that the AVAsset’s tracks property is ready:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
let track = #keyPath(AVURLAsset.tracks)
asset.loadValuesAsynchronously(forKeys:[track]) {
 let status = asset.statusOfValue(forKey:track, error: nil)
 if status == .loaded {

844 | Chapter 15: Video

 DispatchQueue.main.async {
 self.getVideoTrack(asset)
 }
 }
}

When the tracks property is ready, my completion function is called, and I call my
getVideoTrack method. Here, I obtain the video track and then stop once again,
waiting to hear in the completion function that the video track’s naturalSize
property is ready:

func getVideoTrack(_ asset:AVAsset) {
 let visual = AVMediaCharacteristic.visual
 let vtrack = asset.tracks(withMediaCharacteristic: visual)[0]
 let size = #keyPath(AVAssetTrack.naturalSize)
 vtrack.loadValuesAsynchronously(forKeys: [size]) {
 let status = vtrack.statusOfValue(forKey: size, error: nil)
 if status == .loaded {
 DispatchQueue.main.async {
 self.getNaturalSize(vtrack, asset)
 }
 }
 }
}

When the video track’s naturalSize property is ready, my completion function is
called, and I call my getNaturalSize method. Here, at long last, I get the natural size
and use it to finish constructing the AVPlayer and to set AVPlayerController’s frame:

func getNaturalSize(_ vtrack:AVAssetTrack, _ asset:AVAsset) {
 let sz = vtrack.naturalSize
 let item = AVPlayerItem(asset:asset)
 let player = AVPlayer(playerItem:item)
 let av = AVPlayerViewController()
 av.view.frame = AVMakeRect(
 aspectRatio: sz, insideRect: CGRect(10,10,300,200))
 av.player = player
 // ... and the rest is as before ...
}

AVPlayerItem provides another way of loading an asset’s properties: initialize it with
init(asset:automaticallyLoadedAssetKeys:) and then observe its status using
KVO. When that status is .readyToPlay, you are guaranteed that the player item’s
asset has attempted to load those keys, and you can query them just as you would in
loadValuesAsynchronously.

Actually, Apple recommends that, as a matter of best practice, you should use KVO
to observe the player item’s status in any case. The reason is that if that status
changes to .failed, you’re going to want to know about it. Fetch the player item’s
error property to find out more. For possible errors, consult the AVError

Introducing AV Foundation | 845

documentation. If the error is .mediaServicesWereReset, the media services daemon
is hosed (similar to AVAudioSession.mediaServicesWereResetNotification in
Chapter 14), and you should recreate your AVFoundation objects from scratch.

Remote assets
An AVURLAsset’s URL doesn’t have to be a local file URL; it can point to a resource
located across the internet. Now things really take time: the asset has to arrive by way
of the network, which may be slow, interrupted, or missing in action. There’s a
buffer, and if it isn’t sufficiently full of your AVAsset’s data, playback will stutter
or stop.

Before iOS 10, you had to use your AVPlayer’s AVPlayerItem as the locus of infor‐
mation about the arrival and playback of your AVAsset from across the network,
keeping track of properties such as playbackLikelyToKeepUp and the accessLog,
along with notifications such as AVPlayerItemPlaybackStalled, to keep abreast of
any issues, pausing and resuming to optimize the user experience.

Starting in iOS 10, Apple made this entire procedure much easier: just tell the
AVPlayer to play and stand back! Play won’t start until the buffer has filled to the
point where the whole video can play without stalling, and if it does stall, it will
resume automatically. To learn what’s happening, check the AVPlayer’s timeControl-
Status; if it is .waitingToPlayAtSpecifiedRate and you want to know why, check
the AVPlayer’s reasonForWaitingToPlay. To learn the actual current play rate, call
CMTimebaseGetRate with the AVPlayerItem’s timebase.

Time Is Measured Oddly
Another peculiarity of AV Foundation is that time is measured in an unfamiliar way.
This is necessary because calculations using an ordinary built-in numeric class such
as CGFloat will always have slight rounding errors that quickly begin to matter when
you’re trying to specify a time within a large piece of media. Therefore, the Core
Media framework provides the CMTime class, which under the hood is a pair of inte‐
gers; they are called the value and the timescale, but they are simply the numerator
and denominator of a rational number.

When you call the CMTime initializer init(value:timescale:) (equivalent to C
CMTimeMake), that’s what you’re providing. The denominator represents the degree of
granularity; a typical value is 600, sufficient to specify individual frames in common
video formats.

In the convenience initializer init(seconds:preferredTimescale:) (equivalent to C
CMTimeMakeWithSeconds), the two arguments are not the numerator and denomina‐
tor; they are the time’s equivalent in seconds and the denominator. For instance,
CMTime(seconds:2.5, preferredTimescale:600) yields the CMTime (1500,600).

846 | Chapter 15: Video

Constructing Media
AV Foundation allows you to construct your own media asset in code as an AVCom‐
position, an AVAsset subclass, using its subclass, AVMutableComposition. An
AVComposition is an AVAsset, so given an AVMutableComposition, we could make
an AVPlayerItem from it (by calling init(asset:)) and hand it over to an AVPlayer‐
ViewController’s player; we will be creating and displaying our own movie!

Cutting and pasting

In this example, I start with an AVAsset (asset1, a video file) and assemble its first 5
seconds of video and its last 5 seconds of video into an AVMutableComposition
(comp):

let type = AVMediaType.video
let arr = asset1.tracks(withMediaType: type)
let track = arr.last!
let duration : CMTime = track.timeRange.duration
let comp = AVMutableComposition()
let comptrack = comp.addMutableTrack(withMediaType: type,
 preferredTrackID: Int32(kCMPersistentTrackID_Invalid))!
try! comptrack.insertTimeRange(CMTimeRange(
 start: CMTime(seconds:0, preferredTimescale:600),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track, at:CMTime(seconds:0, preferredTimescale:600))
try! comptrack.insertTimeRange(CMTimeRange(
 start: duration - CMTime(seconds:5, preferredTimescale:600),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track, at:CMTime(seconds:5, preferredTimescale:600))

This works perfectly. But we are not very good video editors, as we have forgotten the
corresponding soundtrack from asset1. Let’s go back and get it and add it to our
AVMutableComposition (comp):

let type2 = AVMediaType.audio
let arr2 = asset1.tracks(withMediaType: type2)
let track2 = arr2.last!
let comptrack2 = comp.addMutableTrack(withMediaType: type2,
 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))!
try! comptrack2.insertTimeRange(CMTimeRange(
 start: CMTime(seconds:0, preferredTimescale:600),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track2, at:CMTime(seconds:0, preferredTimescale:600))
try! comptrack2.insertTimeRange(CMTimeRange(
 start: duration - CMTime(seconds:5, preferredTimescale:600),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track2, at:CMTime(seconds:5, preferredTimescale:600))

Introducing AV Foundation | 847

To display our edited movie in an AVPlayerViewController, we would talk to its
player, replacing its player item with a new player item made from our AVMutable‐
Composition:

let item = AVPlayerItem(asset:comp)
let p = vc.player! // vc is an AVPlayerViewController
p.replaceCurrentItem(with: item)

Adding tracks
We can use the same technique to overlay another audio track from another asset;
this might be, let’s say, some additional narration taken from a sound file (comp is the
AVMutableComposition from the previous example):

let type3 = AVMediaType.audio
let s = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!
let asset2 = AVURLAsset(url:s)
let arr3 = asset2.tracks(withMediaType: type3)
let track3 = arr3.last!
let comptrack3 = comp.addMutableTrack(withMediaType: type3,
 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))!
try! comptrack3.insertTimeRange(CMTimeRange(
 start: CMTime(seconds:0, preferredTimescale:600),
 duration: CMTime(seconds:10, preferredTimescale:600)),
 of:track3, at:CMTime(seconds:0, preferredTimescale:600))

Transitions
You can apply audio volume changes, and video opacity and transform changes, to
the playback of individual tracks. I’ll continue from the previous example, applying a
fadeout to the second half of the narration track (comptrack3) by creating an
AVAudioMix:

let params = AVMutableAudioMixInputParameters(track:comptrack3)
params.setVolume(1, at:CMTime(seconds:0, preferredTimescale:600))
params.setVolumeRamp(fromStartVolume: 1, toEndVolume:0,
 timeRange:CMTimeRange(
 start: CMTime(seconds:5, preferredTimescale:600),
 duration: CMTime(seconds:5, preferredTimescale:600)))
let mix = AVMutableAudioMix()
mix.inputParameters = [params]

The audio mix must be applied to a playback milieu, such as an AVPlayerItem. So
when we make an AVPlayerItem out of our AVComposition, we can set its audioMix
property to our AVAudioMix:

let item = AVPlayerItem(asset:comp)
item.audioMix = mix

848 | Chapter 15: Video

Filters
You can add a CIFilter (Chapter 2) to be applied to your video. In this example, I’ll
apply a sepia filter to my entire edited video (comp from the previous examples):

let vidcomp = AVVideoComposition(asset: comp) { req in
 // req is an AVAsynchronousCIImageFilteringRequest
 let f = "CISepiaTone"
 let im = req.sourceImage.applyingFilter(
 f, parameters: ["inputIntensity":0.95])
 req.finish(with: im, context: nil)
}

Like an AVAudioMix, an AVVideoComposition must be applied to a playback
milieu:

let item = AVPlayerItem(asset:comp)
item.videoComposition = vidcomp

You can also use an AVVideoComposition to dictate how video tracks are to be
composited.

Synchronizing animation with video
An intriguing feature of AV Foundation is AVSynchronizedLayer, a CALayer sub‐
class that effectively crosses the bridge between video time (the CMTime within the
progress of a movie) and Core Animation time (the time within the progress of an
animation). This means that you can coordinate animation in your interface (Chap‐
ter 4) with the playback of a movie! You attach an animation to a layer in more or
less the usual way, but the animation takes place in movie playback time: if the movie
is stopped, the animation is stopped; if the movie is run at double rate, the animation
runs at double rate; and the current “frame” of the animation always corresponds to
the current frame of the video within its overall duration.

The synchronization is performed with respect to an AVPlayer’s AVPlayerItem. To
demonstrate, I’ll draw a long thin gray rectangle containing a little black square; the
horizontal position of the black square within the gray rectangle will be synchronized
to the movie playhead position:

let vc = self.children[0] as! AVPlayerViewController
let p = vc.player!
// create synch layer, put it in the interface
let item = p.currentItem!
let syncLayer = AVSynchronizedLayer(playerItem:item)
syncLayer.frame = CGRect(10,220,300,10)
syncLayer.backgroundColor = UIColor.lightGray.cgColor
self.view.layer.addSublayer(syncLayer)
// give synch layer a sublayer
let subLayer = CALayer()
subLayer.backgroundColor = UIColor.black.cgColor
subLayer.frame = CGRect(0,0,10,10)

Introducing AV Foundation | 849

Figure 15-4. The black square’s position is synchronized to the movie

syncLayer.addSublayer(subLayer)
// animate the sublayer
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.position))
anim.fromValue = subLayer.position
anim.toValue = CGPoint(295,5)
anim.isRemovedOnCompletion = false
anim.beginTime = AVCoreAnimationBeginTimeAtZero // important trick
anim.duration = item.asset.duration.seconds
subLayer.add(anim, forKey:nil)

The result is shown in Figure 15-4. The long gray rectangle is the AVSynchronized‐
Layer, tied to our movie. The little black square inside it is its sublayer; when we ani‐
mate the black square, that animation will be synchronized to the movie, changing its
position from the left end of the gray rectangle to the right end, starting at the begin‐
ning of the movie and with the same duration as the movie. Although we attach this
animation to the black square layer in the usual way, that animation is frozen: the
black square doesn’t move until we start the movie playing. Moreover, if we pause the
movie, the black square stops. The black square is automatically representing the cur‐
rent play position within the movie. This may seem a silly example, but if you were to
suppress the video controls it could prove downright useful.

Adding layers to video
Instead of adding a CALayer to the interface, you can render a CALayer into the
video itself. In effect, you treat the video itself as a layer, combine it with other layers
however you like, and then package everything into a new video.

Suppose, for instance, that we want to add a caption, title, or other text to our video.
If the video itself is a layer, the text is obviously a CATextLayer in front of it. I’ll
describe the procedure backward, starting with some boilerplate.

To render layers into a video, you have to export the video to a file on disk. That
requires an AVExportSession. To demonstrate, I’ll export comp, the AVMutable‐

850 | Chapter 15: Video

Composition from the earlier examples, and load the exported video into our
AVPlayerViewController:

let pre = AVAssetExportPresetHighestQuality
guard let exporter = AVAssetExportSession(asset:comp, presetName:pre) else {
 print("oops")
 return
}
// create a URL to export to
let fm = FileManager.default
var url = fm.temporaryDirectory
let uuid = UUID().uuidString
url.appendPathComponent(uuid + ".mov")
exporter.outputURL = url
exporter.outputFileType = AVFileType.mov
// warning: this can take a long time!
exporter.exportAsynchronously() {
 DispatchQueue.main.async {
 let item = AVPlayerItem(url: url)
 let p = vc.player! // vc is an AVPlayerViewController
 p.replaceCurrentItem(with:item)
 }
}

(In real life, you’d probably want to put up some kind of interface to cover the fact
that exporting can take a significant amount of time.) The result of that code isn’t
very interesting, because we didn’t make any change to our video. To make a change
— in particular, to render the video as a layer along with other layers — we need to
attach an AVVideoComposition to the exporter:

exporter.videoComposition = vidcomp

Very well, but what’s vidcomp? I’ll continue with some more boilerplate. First, we
construct our layer architecture. At a minimum, you need two layers — a parent layer
with the video layer as its sublayer:

let vidtrack = comp.tracks(withMediaType: .video)[0]
let sz = vidtrack.naturalSize
let parent = CALayer()
parent.frame = CGRect(origin: .zero, size: sz)
let child = CALayer()
child.frame = parent.bounds
parent.addSublayer(child)

Next, we package up that layer architecture into an animation tool, and attach it to an
AVVideoComposition. There’s a lot of boilerplate here, but if you don’t perform this
complete dance, you can crash at runtime or end up with a black video:

let tool = AVVideoCompositionCoreAnimationTool(
 postProcessingAsVideoLayer: child, in: parent)
let vidcomp = AVMutableVideoComposition()
vidcomp.animationTool = tool

Introducing AV Foundation | 851

vidcomp.renderSize = sz
vidcomp.frameDuration = CMTime(value: 1, timescale: 30)
let inst = AVMutableVideoCompositionInstruction()
let dur = comp.duration
inst.timeRange = CMTimeRange(start: .zero, duration: dur)
let layinst = AVMutableVideoCompositionLayerInstruction(assetTrack: vidtrack)
inst.layerInstructions = [layinst]
vidcomp.instructions = [inst]

If we now attach vidcomp to exporter as we export comp, we still end up with a video
that looks like comp itself. But that’s not bad; it’s good! Our boilerplate is working,
and now at long last we are ready to introduce more layers into the architecture. Let’s
go back and add our text layer:

let lay = CATextLayer()
lay.string = "This is cool!"
lay.alignmentMode = .center
lay.foregroundColor = UIColor.black.cgColor
lay.frame = child.bounds
child.addSublayer(lay)
// ... and the rest is as before ...

The exported version of comp now displays the words “This is cool!” superimposed in
front of it.

We’ve accomplished our original goal, but let’s go further. These are CALayers. That
means we can animate them! To demonstrate, I’ll cause our text to fade in slowly,
starting one second after the start of the video. To do so, I simply add an opacity ani‐
mation to the text layer (lay). As with a synchronized layer, it is crucial to coordinate
our timing by starting at AVCoreAnimationBeginTimeAtZero:

let ba = CABasicAnimation(keyPath: #keyPath(CALayer.opacity))
ba.duration = 1
ba.fromValue = 0
ba.toValue = 1
ba.beginTime = AVCoreAnimationBeginTimeAtZero + 1 // crucial
ba.fillMode = .backwards
lay.add(ba, forKey: nil)

AVPlayerLayer
An AVPlayer is not an interface object. The corresponding interface object — an
AVPlayer made visible, as it were — is an AVPlayerLayer (a CALayer subclass). It has
no controls for letting the user play and pause a movie and visualize its progress; it
just shows the movie, acting as a bridge between the AV Foundation world of media
and the CALayer world of things the user can see.

An AVPlayerViewController’s view hosts an AVPlayerLayer for you automatically;
otherwise you would not see any video in the AVPlayerViewController’s view. But
there may be situations where you find AVPlayerViewController too heavyweight,

852 | Chapter 15: Video

where you don’t need the standard transport controls, where you don’t want the
video to be expandable or to have a fullscreen mode — you just want the simple
direct power that can be obtained only by putting an AVPlayerLayer into the inter‐
face yourself.

Here, I’ll display the same movie as before, but without an AVPlayerViewController:

let m = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:m)
let item = AVPlayerItem(asset:asset)
let p = AVPlayer(playerItem:item)
self.player = p // might need a reference later
let lay = AVPlayerLayer(player:p)
lay.frame = CGRect(10,10,300,200)
self.playerLayer = lay // might need a reference later
self.view.layer.addSublayer(lay)

As before, if we want to prevent a flash when the video becomes ready for display, we
can postpone adding the AVPlayerLayer to our interface until its isReadyForDisplay
property becomes true — which we can learn through KVO.

In a WWDC 2016 video, Apple suggests an interesting twist on the preceding code:
create the AVPlayer without an AVPlayerItem, create the AVPlayerLayer, and then
assign the AVPlayerItem to AVPlayer, like this:

let m = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:m)
let item = AVPlayerItem(asset:asset)
let p = AVPlayer() // *
self.player = p
let lay = AVPlayerLayer(player:p)
lay.frame = CGRect(10,10,300,200)
self.playerLayer = lay
p.replaceCurrentItem(with: item) // *
self.view.layer.addSublayer(lay)

Apparently, there is some increase in efficiency if you do things in that order. The
reason, it turns out, is that when an AVPlayerItem is assigned to an AVPlayer that
doesn’t have an associated AVPlayerLayer, the AVPlayer assumes that only the audio
track of the AVAsset is important — and then, when an AVPlayerLayer is assigned to
it, the AVPlayer must scramble to pick up the video track as well.

The movie is now visible in the interface, but it isn’t doing anything. We haven’t told
our AVPlayer to play, and there are no transport controls, so the user can’t tell the
video to play either. That’s why I kept a reference to the AVPlayer in a property! We
can start play either by calling play or by setting the AVPlayer’s rate. Here, I imag‐
ine that we’ve provided a simple play/pause button that toggles the playing status of
the movie by changing its rate:

Introducing AV Foundation | 853

@IBAction func doButton (_ sender: Any) {
 let rate = self.player.rate
 self.player.rate = rate < 0.01 ? 1 : 0
}

Without trying to replicate the full transport controls, we might also like to give the
user a way to jump the playhead back to the start of the movie. The playhead position
is a feature of an AVPlayerItem:

@IBAction func restart (_ sender: Any) {
 let item = self.player.currentItem!
 let time: CMTime = CMTime(seconds:0, preferredTimescale:600)
 item.seek(to:time, completionHandler:nil)
}

If we want our AVPlayerLayer to support picture-in-picture, then (in addition to
making the app itself support picture-in-picture, as I’ve already described) we need to
call upon AVKit to supply us with an AVPictureInPictureController. This is not a
view controller; it merely endows our AVPlayerLayer with picture-in-picture behav‐
ior. You create the AVPictureInPictureController (checking first to see whether the
environment supports picture-in-picture in the first place), initialize it with the
AVPlayerLayer, and retain it:

if AVPictureInPictureController.isPictureInPictureSupported() {
 let pic = AVPictureInPictureController(playerLayer: self.playerLayer)
 self.pic = pic
}

There are no transport controls, so there is no picture-in-picture button. Supplying
one is up to you. Don’t forget to hide the button if picture-in-picture isn’t supported!
When the button is tapped, tell the AVPictureInPictureController to startPicture-
InPicture:

@IBAction func doPicInPic(_ sender: Any) {
 if self.pic.isPictureInPicturePossible {
 self.pic.startPictureInPicture()
 }
}

You might also want to set yourself as the AVPictureInPictureController’s delegate
(AVPictureInPictureControllerDelegate). As with the AVPlayerViewController
delegate, you are informed of stages in the life of the picture-in-picture window so
that you can adjust your interface accordingly. When the user taps the button that
dismisses the system window and returns to your app, then if the AVPlayerLayer is
still sitting in your interface, there may be no work to do. If you removed the
AVPlayerLayer from your interface, and you now want to restore it, implement this
delegate method:

• pictureInPictureController(_:restoreUserInterfaceForPictureInPicture-

StopWithCompletionHandler:)

854 | Chapter 15: Video

In your implementation, configure your interface so that the AVPlayerLayer is
present. Make sure that the AVPlayerLayer that you now put into your interface is
the same one that was removed earlier; in other words, your player layer must con‐
tinue to be the same as the AVPictureInPictureController’s playerLayer.

Further Exploration of AV Foundation
Here are some other things you can do with AV Foundation:

• Extract single images (sometimes referred to as thumbnails or poster images)
from a movie (AVAssetImageGenerator). Displaying a poster image of a video’s
initial frame can help cover up for the delay before the video is ready to start
playing.

• Export a movie in a different format (AVAssetExportSession), or read/write raw
uncompressed data through a buffer to or from a track (AVAssetReader,
AVAssetReaderOutput, AVAssetWriter, AVAssetWriterInput, and so on).

• Capture audio, video, and stills through the device’s hardware (AVCapture‐
Session and so on). I’ll say more about that in Chapter 17.

• Tap into video and audio being captured or played, including capturing video
frames as still images (AVPlayerItemVideoOutput, AVCaptureVideoDataOut‐
put, and so on; and see Apple’s Technical Q&A QA1702).

The media capabilities of AV Foundation are nicely summarized in a classic WWDC
video, https://developer.apple.com/videos/play/wwdc2011/415/.

UIVideoEditorController
UIVideoEditorController is a view controller that presents an interface where the
user can trim video. Its view and internal behavior are outside your control, and
you’re not supposed to subclass it. You are expected to treat the view controller as a
presented view controller on the iPhone or as a popover on the iPad, and respond by
way of its delegate.

UIVideoEditorController is one of the creakiest pieces of interface in iOS. It
dates back to iOS 3.1, and hasn’t been revised since its inception — and it looks
like it. It has never worked properly on the iPad, and still doesn’t. I’m not going
to dwell on its bugginess or we’d be here all day.

Before summoning a UIVideoEditorController, be sure to call its class method can-
EditVideo(atPath:). (This call can take some noticeable time to return.) If it returns
false, don’t instantiate UIVideoEditorController to edit the given file. Not every
video format is editable, and not every device supports video editing. You must also
set the UIVideoEditorController instance’s delegate and videoPath before present‐
ing it; the delegate should adopt both UINavigationControllerDelegate and

UIVideoEditorController | 855

https://developer.apple.com/videos/play/wwdc2011/415/

UIVideoEditorControllerDelegate. You must manually set the video editor control‐
ler’s modalPresentationStyle to .popover on the iPad (a good instance of the creak‐
iness I was just referring to):

let path = Bundle.main.path(forResource:"ElMirage", ofType: "mp4")!
let can = UIVideoEditorController.canEditVideo(atPath:path)
if !can {
 print("can't edit this video")
 return
}
let vc = UIVideoEditorController()
vc.delegate = self
vc.videoPath = path
if UIDevice.current.userInterfaceIdiom == .pad {
 vc.modalPresentationStyle = .popover
}
self.present(vc, animated: true)
if let pop = vc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 pop.delegate = self
}

The view’s interface (on the iPhone) contains Cancel and Save buttons, a trimming
box displaying thumbnails from the movie, a play/pause button, and the movie itself.
The user slides the ends of the trimming box to set the beginning and end of the
saved movie. The Cancel and Save buttons do not dismiss the presented view; you
must do that in your implementation of the delegate methods. There are three of
them, and you should implement all three and dismiss the presented view in all
of them:

• videoEditorController(_:didSaveEditedVideoToPath:)

• videoEditorControllerDidCancel(_:)

• videoEditorController(_:didFailWithError:)

Implementing the second two delegate methods is straightforward:

func videoEditorControllerDidCancel(_ editor: UIVideoEditorController) {
 self.dismiss(animated:true)
}
func videoEditorController(_ editor: UIVideoEditorController,
 didFailWithError error: Error) {
 self.dismiss(animated:true)
}

Saving the trimmed video is more involved. Like everything else about a movie, it
takes time. When the user taps Save, there’s a progress view while the video is trim‐
med and compressed. The trimmed video has already been saved to a file in your

856 | Chapter 15: Video

app’s temporary directory by the time the delegate method videoEditor-

Controller(_:didSaveEditedVideoToPath:) is called.

videoEditorController(_:didSaveEditedVideoToPath:) is actually called
twice in quick succession. That’s more of its creaky bugginess.

Doing something useful with the saved file at this point is up to you; if you merely
leave it in the temporary directory, you can’t rely on it to persist. In this example, I
copy the edited movie into the Camera Roll album of the user’s photo library, by call‐
ing UISaveVideoAtPathToSavedPhotosAlbum. For this to work, our app’s Info.plist
must have a meaningful “Privacy — Photo Library Additions Usage Description”
entry (NSPhotoLibraryAddUsageDescription) so that the runtime can ask for the
user’s permission on our behalf:

func videoEditorController(_ editor: UIVideoEditorController,
 didSaveEditedVideoToPath path: String) {
 self.dismiss(animated:true)
 if UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(path) {
 UISaveVideoAtPathToSavedPhotosAlbum(path, self,
 #selector(savedVideo), nil)
 } else {
 // can't save to photo album, try something else
 }
}

The function reference #selector(savedVideo) in that code refers to a callback
method that must take three parameters: a String (the path), an Optional wrapping
an Error, and an UnsafeMutableRawPointer. It’s important to check for errors,
because things can still go wrong. In particular, the user could deny us access to the
photo library (see Chapter 17 for more about that). If that’s the case, we’ll get an
Error whose domain is ALAssetsLibraryErrorDomain:

@objc func savedVideo(at path:String, withError error:Error?,
 ci:UnsafeMutableRawPointer) {
 if let error = error {
 print("error: \(error)")
 }
}

UIVideoEditorController | 857

CHAPTER 16

Music Library

An iOS device can be used for the same purpose as the original iPod — to hold and
play music, podcasts, and audiobooks. These items constitute the device’s music
library. iOS provides the programmer with various forms of access to the music
library; you can:

• Explore the music library.
• Play an item from the music library.
• Control the Music app’s music player.
• Present a standard interface where the user can select a music library item.

These features are all provided by the Media Player framework; you’ll need to import
MediaPlayer.

This chapter assumes that the user’s music library consists of sound files that are
actually present on the device. However, the user might be using the iCloud Music
Library (iTunes Match); and, starting in iOS 11, MusicKit allows your app to inter‐
face on the user’s behalf with the cloud-based Apple Music service. That’s beyond the
scope of this book; see the Apple Music API Reference for information about it.

Music Library Authorization
Access to the music library requires authorization from the user. You’ll need to
include in your Info.plist a meaningful entry under the “Privacy — Media Library
Usage Description” key (NSAppleMusicUsageDescription) justifying to the user your
desire for access, to be displayed in the authorization alert that will be presented to
the user on your behalf (Figure 16-1).

859

Figure 16-1. The system prompts for music library access

The system, by default, will automatically present the authorization alert the first
time your app attempts to access the music library. But instead of letting that happen,
you will probably want to take control by checking for authorization yourself and
requesting it if necessary. To learn whether you already have authorization, call the
MPMediaLibrary authorizationStatus class method. The result is an MPMedia‐
LibraryAuthorizationStatus:

.notDetermined

Authorization has never been requested. You should request authorization, caus‐
ing the system’s authorization alert to appear.

.authorized

You’re already authorized. Go ahead and access the music library.

.denied

You have been refused authorization. If your app depends upon music library
access, you might put up an alert begging for authorization. The alert can even
take the user directly to the spot in the Settings app where the user can provide
authorization:

let url = URL(string:UIApplication.openSettingsURLString)!
UIApplication.shared.open(url)

.restricted

You have been refused authorization and the user may not have the power to
authorize you. There’s no point harassing the user about this, so it is best to do
nothing.

If the authorization status is .notDetermined and you want to request authorization,
call the MPMediaLibrary class method requestAuthorization. This method exe‐
cutes asynchronously. To hear about the user’s response to the alert, you pass a com‐
pletion function as parameter; it will be called, possibly on a background thread,
when the user dismisses the alert, with an MPMediaLibraryAuthorizationStatus
parameter. If the status is now .authorized, you can go ahead and access the music

860 | Chapter 16: Music Library

Checking for Authorization
Taking the MPMediaLibrary as an example, let’s construct a general strategy for per‐
forming an action if and only if we have or can obtain authorization. This is a little
tricky, because we must proceed to our action by two different paths. If we learn that
we are already authorized, we can take our action directly; but if we request authoriza‐
tion, the reply arrives asynchronously in the completion function (see Appendix C).
Since the same “next action” appears in two places, we can encapsulate our strategy
neatly into a utility function that takes the “next action” as a function parameter; it’s
an Optional in case we want to request the authorization dialog (if needed) with no
immediate “next action”:

func checkForMusicLibraryAccess(andThen f:(()->())? = nil) {
 // check for authorization
 let status = MPMediaLibrary.authorizationStatus()
 switch status {
 case .authorized: f?() // already have it, proceed directly
 case .notDetermined:
 // request authorization
 MPMediaLibrary.requestAuthorization() { status in
 if status == .authorized {
 DispatchQueue.main.async {
 f?() // got it, proceed asynchronously
 }
 }
 }
 case .restricted: break // do nothing
 case .denied: break // do nothing, or beg for authorization
 @unknown default: fatalError()
 }
}

To retest the system authorization request alert and other access-related behaviors, go
to the Settings app and choose General → Reset → Reset Location & Privacy.

library. (The sidebar “Checking for Authorization” encapsulates this entire procedure
into a general utility function.)

Exploring the Music Library
Everything in the user’s music library, as seen by your code, is an MPMediaEntity.
This is an abstract class. It has two concrete subclasses:

MPMediaItem
An MPMediaItem is a single item (a “song”).

Exploring the Music Library | 861

MPMediaCollection
An MPMediaCollection is an ordered list of MPMediaItems, rather like an array;
it has a count, and its items property is an array.

MPMediaEntity endows its subclasses with the ability to describe themselves through
key–value pairs called properties. The property keys have names like MPMediaItem-
PropertyTitle. To fetch a property’s value, call value(forProperty:) with its key.
You can fetch multiple properties with enumerateValues(forProperties:using:).
As a convenience, MPMediaEntity and its subclasses also have instance properties
whose names correspond to the property key names. With an MPMediaItem, for
instance, you can say either myItem.value(forProperty:MPMediaItemProperty-
Title) or myItem.title, and in most cases you will surely prefer the latter. But you’ll
still need the full property key name if you’re going to form an MPMediaProperty‐
Predicate, as I’ll demonstrate later.

An MPMediaItem has a type (mediaType, or MPMediaItemPropertyMediaType); it
might be music, a podcast, or an audiobook. Different types of item have slightly dif‐
ferent properties; these will be intuitively familiar from your use of iTunes. A song
(music) has a title, an album title, a track number, an artist, a composer, and so on; a
podcast, in addition to its normal title, has a podcast title.

A playlist is an MPMediaPlaylist, a subclass of MPMediaCollection. Its properties
include its name, along with its attributes (playlistAttributes), an option set that
tells you (for instance) whether this is a “smart” playlist.

An item’s artwork image is available through an instance of the MPMediaItem‐
Artwork class. From this, you are supposed to be able to get the image itself scaled to
a specified size by calling image(at:). My experience is that in reality you’ll receive
an image of any old size the system cares to give you, so you may have to scale it fur‐
ther yourself (see “UIImage Drawing” on page 100).

Querying the Music Library
Obtaining actual information from the music library involves a query, an MPMedia‐
Query. Querying the music library can be time-consuming; it is perfectly reasonable
to do this work on a background thread (see Chapter 24).

Forming a query
First, you form the query. There are three main ways to do this:

Without limits
Create a simple MPMediaQuery by calling init (that is, MPMediaQuery()). The
result is an unlimited query; it asks for everything in the music library.

862 | Chapter 16: Music Library

With a convenience constructor
MPMediaQuery provides several class methods that form a query asking the
music library for a limited subset of its contents — all of its songs, or all of its
podcasts, and so on:

• songs

• podcasts

• audiobooks

• playlists

• albums

• artists

• composers

• genres

• compilations

With filter predicates
You can limit a query more precisely by attaching to it one or more MPMedia‐
PropertyPredicate instances. These predicates filter the music library according
to criteria you specify; to be included in the result, a media item must success‐
fully pass through all the filters (in other words, the predicates are combined
using logical-and). A predicate is a simple comparison. It has three aspects:

A property
The key name of the property you want to compare against. Not every prop‐
erty can be used in a filter predicate; the documentation makes the distinc‐
tion clear, and you can get additional help from an MPMediaEntity class
method, canFilter(byProperty:).

A value
The value that the property must have in order to pass through the filter.

A comparison type (optional)
An MPMediaPredicateComparison. In order to pass through the filter, a
media item’s property value can either match the value you provide (.equal-
To, the default) or contain the value you provide (.contains).

The two ways of forming a limited query are actually the same; a convenience con‐
structor is just a quick way of obtaining a query already endowed with a filter
predicate.

A query also groups its results, according to its groupingType (MPMediaGrouping).
Your choices are:

Exploring the Music Library | 863

• .title

• .album

• .artist

• .albumArtist

• .composer

• .genre

• .playlist

• .podcastTitle

The query convenience constructors all involve a groupingType. Indeed, the group‐
ing is often the salient aspect of the query. An albums query, for instance, is merely a
songs query grouped by album.

Performing a query
After you form the query, you perform the query. You do this by asking for the
query’s properties:

• You can ask for its items, an array of MPMediaItems, if you don’t care about the
groups returned from the query.

• Alternatively, you can ask for its collections, an array of MPMediaItemCollec‐
tions each of which represents one group.

An MPMediaItemCollection has a representativeItem property that can come in
handy when it is obtained from a grouped query. It gives you just one item from the
collection, and the reason you need it is that properties of a group collection are often
embodied in its items rather than in the collection itself. For example, an album has
no title; rather, its items have album titles that are all the same. So to learn the title of
an album, you ask for the album title of a representative item.

To illustrate, I’ll discover the titles of all the albums:

let query = MPMediaQuery.albums() // form the query
guard let result = query.collections else {return} // perform the query
// prove we've performed the query, by logging the album titles
for album in result {
 print(album.representativeItem!.albumTitle!)
}
/*
Bach, CPE, Symphonies
Beethoven Canons
Beethoven Dances
Scarlatti Continuo
*/

864 | Chapter 16: Music Library

Now let’s make our query more elaborate; we’ll get the titles of all the albums whose
name contains “Beethoven.” We simply add a filter predicate to the previous query:

let query = MPMediaQuery.albums()
let hasBeethoven = MPMediaPropertyPredicate(value:"Beethoven",
 forProperty:MPMediaItemPropertyAlbumTitle,
 comparisonType:.contains)
query.addFilterPredicate(hasBeethoven)
guard let result = query.collections else {return}
for album in result {
 print(album.representativeItem!.albumTitle!)
}
/*
Beethoven Canons
Beethoven Dances
*/

Similarly, we can get the titles of all the albums containing any songs whose name
contains “Sonata.” This is like the previous example, but here we are concerned with
the song’s own title rather than its album title:

let query = MPMediaQuery.albums()
let hasSonata = MPMediaPropertyPredicate(value:"Sonata",
 forProperty:MPMediaItemPropertyTitle,
 comparisonType:.contains)
query.addFilterPredicate(hasSonata)
guard let result = query.collections else {return}
for album in result {
 print(album.representativeItem!.albumTitle!)
}
/*
Scarlatti Continuo
*/

An album is a collection of songs (MPMediaItems). Let’s modify the output from our
previous query to print the titles of all the matching songs in the first album returned.
We don’t have to change our query, so I’ll start at the point where we perform it;
result is the array of collections returned from our query, so result[0] is an
MPMediaItemCollection holding the filtered songs of one album:

// ... same as before ...
let album = result[0]
for song in album.items {
 print(song.title!)
}
/*
Sonata in E minor Kk 81 - I Grave
Sonata in E minor Kk 81 - II Allegro
Sonata in E minor Kk 81 - III Grave
Sonata in E minor Kk 81 - IV Allegro
... and so on ...
*/

Exploring the Music Library | 865

Persistence and Change in the Music Library
One of the properties of an MPMediaEntity is its persistentID, which uniquely
identifies it. All sorts of things have persistent IDs — entities in general, songs (media
items), albums, artists, composers, and more. Two songs or two playlists can have the
same title, but a persistent ID is unique. It is also persistent: using the persistent ID,
you can retrieve again at a later time the same song or playlist you retrieved earlier,
even across launches of your app.

While you are maintaining the results of a search, the contents of the music library
may themselves change. The user might connect the device to a computer and add or
delete music with iTunes. This can put your results out of date. For this reason, the
library’s own modified date is available through the MPMediaLibrary class. Call the
class method default to get the actual library instance; now you can ask for its last-
ModifiedDate.

You can also register to receive a notification, .MPMediaLibraryDidChange, when the
music library is modified. This notification is not emitted unless you first call the
MPMediaLibrary instance method beginGeneratingLibraryChangeNotifications;
you should eventually balance this with a call to endGeneratingLibraryChange-
Notifications.

Music Player
The music player (MPMusicPlayerController) is the Media Player framework class
for playing an MPMediaItem. Actually the music player plays from a queue of items.
This behavior is familiar from iTunes and the Music app. In the Music app, when you
tap the first song of a playlist to start playing it, when the end of that song is reached,
we proceed by default to the next song in the playlist. That’s because tapping the first
song of a playlist causes the queue to be the totality of songs in the playlist. The music
player behaves the same way: when it reaches the end of a song, it proceeds to the
next song in its queue.

Your methods for controlling playback reflect the music player’s queue-based orien‐
tation. In addition to the expected play, pause, and stop commands, there’s a skipTo-
NextItem and skipToPreviousItem command. Anyone who has ever used iTunes or
the Music app (or, for that matter, an old-fashioned iPod) will have an intuitive grasp
of this and everything else a music player does. You can even set a music player’s
repeatMode and shuffleMode, just as in iTunes.

866 | Chapter 16: Music Library

The music player has a prepareToPlay method that takes a completion function
where you can receive an error parameter; but I find that this is not useful,
because you can get an error here and nevertheless be able to play. In fact, in my
experience the player starts playing more reliably if you omit prepareToPlay
altogether.

The music player comes in two flavors, depending on which class property you use to
get an instance:

systemMusicPlayer

The very same player used by the Music app. This might already be playing an
item, or it might be paused with a current item, at any time while your app runs;
you can learn or change what item this is. The system music player continues
playing independently of the state of your app. It has a complete built-in user
interface, namely the Music app itself, where the user can at any time alter what
it is doing. It communicates automatically with the remote playback controls
(Figure 14-1).

applicationQueuePlayer

A separate player, independent of the Music app; the song it is playing can be
different from the Music app’s current song. Nevertheless, this player isn’t
entirely inside your app. It has its own audio session. Telling it to play interrupts
your app’s audio session; if your app’s capabilities include the Audio background
mode (Chapter 14), then the player will keep playing when your app is back‐
grounded, even if your app’s audio session category is not Playback. Like the
systemMusicPlayer, it communicates automatically with the remote playback
controls, allowing the user to control it by pausing, seeking, and skipping
forward or backward in the queue.

Setting the Queue
To provide a music player with its queue, you call setQueue(with:). The parameter
can be:

A query
You hand the music player an MPMediaQuery. The query’s items are the items
of the queue.

A collection
You hand the music player an MPMediaItemCollection. This might be derived
from a query you performed, but you can also assemble your own collection of
MPMediaItems in any way you like, putting them into an array and calling
MPMediaItemCollection’s init(items:).

Music Player | 867

A descriptor
You hand the music player an MPMusicPlayerQueueDescriptor. This class was
introduced in iOS 10.1 to allow the queue to contain Apple Music songs. It is
abstract; its concrete subclasses are:

• MPMusicPlayerMediaItemQueueDescriptor
• MPMusicPlayerPlayParametersQueueDescriptor
• MPMusicPlayerStoreQueueDescriptor

MPMusicPlayerMediaItemQueueDescriptor has two initializers, init(query:)
and init(itemCollection:). You don’t need this class merely to set a music
player’s queue, but you can use it if you like; it will come in handy particularly
when you want to modify a music player’s queue, as I’ll explain a little later. (The
other two descriptor classes have to do with Apple Music, and I’m not going to
discuss them further.)

My experience is that the player can behave in unexpected ways if you don’t ask it to
play immediately after setting the queue; apparently the queue does not actually take
effect until you do that. In addition, setting the queue seems to be most reliable if you
tell the player to stop beforehand. It may also be useful to insert a brief delay between
setting the queue and starting to play; otherwise, the player might silently fail to play,
or you can even crash. Finally, both players behave much better, in my experience, if
you keep a persistent reference to your player as an instance property.

In this example, we collect all songs actually present in the library that are shorter
than 30 seconds, and set them playing in random order using the application queue
player (self.player):

DispatchQueue.global(qos:.userInitiated).async {
 let query = MPMediaQuery.songs()
 let isPresent = MPMediaPropertyPredicate(value:false,
 forProperty:MPMediaItemPropertyIsCloudItem,
 comparisonType:.equalTo)
 query.addFilterPredicate(isPresent)
 guard let items = query.items else {return}
 let shorties = items.filter {
 let dur = $0.playbackDuration
 return dur < 30
 }
 guard shorties.count > 0 else {
 print("no songs that short!")
 return
 }
 let queue = MPMediaItemCollection(items:shorties)
 DispatchQueue.main.async {
 if self.player.playbackState == .playing {
 self.player.stop()
 }

868 | Chapter 16: Music Library

 self.player.shuffleMode = .songs
 self.player.setQueue(with:queue)
 delay(0.2) {
 self.player.play()
 }
 }
}

Modifying the Queue
You can modify a player’s existing queue. There are two distinct approaches:

Play next and play later
Call prepend(_:) or append(_:). Apple characterizes these as equivalent to Play
Next and Play Later functionality; prepend(_:) inserts into the queue just after
the currently playing item, while append(_:) inserts at the end of the queue. The
parameter is an MPMusicPlayerQueueDescriptor.

Insert and remove
This feature is available only for the application queue player:

1. Call perform(queueTransaction:completionHandler:). Be careful with
this call; if calls overlap, you can crash (“Only one queue transaction may be
performed at a time”).

2. Inside the queueTransaction: function, the parameter is an MPMusicPlayer‐
ControllerMutableQueue. This is a mutable subclass of MPMusicPlayerCon‐
trollerQueue; you can use its items property to examine the queue.

3. Call insert(_:after:) or remove(_:) on the mutable queue. The first
parameter of insert(_:after:) is an MPMusicPlayerQueueDescriptor.

4. In the completionHandler: function, the first parameter is an MPMusic‐
PlayerControllerQueue, so you can examine the effect of your insertion or
removal on the queue. The second parameter tells you whether there was an
error. You can have an empty completionHandler: function body, but you
can’t omit the function altogether.

Player State
You can ask a music player for its nowPlayingItem, and since this is an MPMedia‐
Item, you can learn all about it through its properties. You can ask a music player
which song within the queue is currently playing (indexOfNowPlayingItem).
Unfortunately, you can’t ask the system music player for its actual queue! You can
obtain the application queue player’s current queue by misusing perform(queue-
Transaction:completionHandler:). You can learn that the application queue

Music Player | 869

player’s queue has changed by registering for the .MPMusicPlayerControllerQueue-
DidChange notification.

A music player has a playbackState that you can query to learn what it’s doing
(whether it is playing, paused, stopped, or seeking). Do not use the music player’s
currentPlaybackRate to learn whether the player is playing; it is not as reliable as the
playbackState. The music player also emits notifications informing you of changes
in its state:

• .MPMusicPlayerControllerPlaybackStateDidChange

• .MPMusicPlayerControllerNowPlayingItemDidChange

• .MPMusicPlayerControllerVolumeDidChange

These notifications are not emitted until you tell the music player to begin-
GeneratingPlaybackNotifications. (You should eventually balance this call with a
call to endGeneratingPlaybackNotifications.) This is an instance method, so you
can arrange to receive notifications from either of the two music players. If you are
receiving notifications from both, you can distinguish them by examining the Notifi‐
cation’s object and comparing it to each player.

To illustrate, I’ll extend the previous example to set the text of a UILabel in our inter‐
face (self.label) every time a different song starts playing. Before we start the
player playing, we insert these lines to generate the notifications:

self.player.beginGeneratingPlaybackNotifications()
NotificationCenter.default.addObserver(self,
 selector: #selector(self.changed),
 name: .MPMusicPlayerControllerNowPlayingItemDidChange,
 object: self.player)

And here’s how we respond to those notifications:

@objc func changed(_ n:Notification) {
 self.label.text = ""
 let player = self.player
 guard let obj = n.object, obj as AnyObject === player else {return}
 guard let title = player.nowPlayingItem?.title else {return}
 if player.playbackState != .playing {return}
 let ix = player.indexOfNowPlayingItem
 guard ix != NSNotFound else {return}
 player.perform(queueTransaction: { _ in }) { q,_ in
 self.label.text = "\(ix+1) of \(q.items.count): \(title)"
 }
}

There’s no periodic notification as a song plays and the current playhead position
advances. To get that information, you’ll have to resort to polling. This is not objec‐
tionable as long as your polling interval is reasonably sparse; your display may occa‐
sionally fall a little behind reality, but that won’t usually matter. To illustrate, let’s add

870 | Chapter 16: Music Library

to our existing example a UIProgressView (self.prog) showing the current percent‐
age of the current song being played by the music player. I’ll use a Timer to poll the
state of the player every second:

self.timer = Timer.scheduledTimer(timeInterval:1,
 target: self, selector: #selector(self.timerFired),
 userInfo: nil, repeats: true)
self.timer.tolerance = 0.1

When the timer fires, the progress view displays the state of the currently playing
item:

@objc func timerFired(_: Any) {
 let player = self.player
 guard let item = player.nowPlayingItem,
 player.playbackState != .stopped else {
 self.prog.isHidden = true
 return
 }
 self.prog.isHidden = false
 let current = player.currentPlaybackTime
 let total = item.playbackDuration
 self.prog.progress = Float(current / total)
}

MPVolumeView
The Media Player framework offers a slider for letting the user set the system output
volume, along with an AirPlay route button if appropriate; this is an MPVolume‐
View. It is customizable similarly to a UISlider (Chapter 12); you can set the images
for the two halves of the track and the thumb for both the normal and the highlighted
state (while the user is touching the thumb).

For further customization, you can subclass MPVolumeView and override volume-
SliderRect(forBounds:). (An additional overridable method is documented,
volumeThumbRect(forBounds:volumeSliderRect:value:), but in my testing it is
never called; I regard this as a bug.)

Playing Songs with AV Foundation
MPMusicPlayerController is convenient and easy, but it’s also restrictive. The music
player doesn’t really belong to you. It has a fixed set of music playing behaviors, simi‐
lar to iTunes or the Music app. Its audio session isn’t your audio session. It takes con‐
trol of the remote command center. What if that isn’t what you want? How else
might you play an MPMediaItem?

An MPMediaItem representing a file in the user’s music library has an assetURL
property whose value is a file URL. Therefore, everything from Chapters 14 and 15

MPVolumeView | 871

comes into play. Having obtained an MPMediaItem’s asset URL, you can use that
URL to initialize an AVAudioPlayer, an AVAsset, or an AVPlayer (which might be
wrapped in an AVPlayerViewController).

In this example, I’ll use an AVQueuePlayer (an AVPlayer subclass) to play a sequence
of MPMediaItems, just as an MPMusicPlayerController does. The queue player is
retained in an instance property, self.qp. We might be tempted to treat it as a play‐
list, handing it the entire array of songs to be played:

let arr = // array of MPMediaItem
let items = arr.map {
 let url = $0.assetURL!
 let asset = AVAsset(url:url)
 return AVPlayerItem(asset: asset)
}
self.qp = AVQueuePlayer(items:items)
self.qp.play()

Instead of adding a whole batch of AVPlayerItems to an AVQueuePlayer all at once,
we should probably add just a few AVPlayerItems to start with, and then append
each additional AVPlayerItem when an item finishes playing. So I’ll start out by stor‐
ing the array in a property (self.items) and adding just three AVPlayerItems to the
queue player. Then I’ll use key–value observing to watch for changes in the
AVQueuePlayer’s currentItem:

let arr = // array of MPMediaItem
self.items = arr.map {
 let url = $0.assetURL!
 let asset = AVAsset(url:url)
 return AVPlayerItem(asset: asset)
}
let seed = min(3,self.items.count)
self.qp = AVQueuePlayer(items:Array(self.items.prefix(upTo:seed)))
self.items = Array(self.items.suffix(from:seed))
// use .initial option so that we get an observation for the first item
let ob = qp.observe(\.currentItem, options: .initial) { _,_ in
 self.changed()
}
self.obs.insert(ob) // self.obs is a Set<NSKeyValueObservation>
self.qp.play()

In our changed method, we pull an AVPlayerItem off the front of our items array
and add it to the end of the AVQueuePlayer’s queue. The AVQueuePlayer itself
deletes an item from the start of its queue after playing it, so in this way the queue
never exceeds four items in length:

guard let item = self.qp.currentItem else {return}
guard self.items.count > 0 else {return}
let newItem = self.items.removeFirst()
self.qp.insert(newItem, after:nil) // means "at end"

872 | Chapter 16: Music Library

Now let’s go further. Since we’re already being notified each time a new song starts
playing, we can insert some code to update a label’s text with the title of each succes‐
sive song. This will demonstrate how to extract metadata from an AVAsset by way of
an AVMetadataItem. Here, we fetch the AVMetadata.commonKeyTitle and get its
value property — the inverse of what I did in Chapter 15, when I set a player item’s
external metadata:

var arr = item.asset.commonMetadata
arr = AVMetadataItem.metadataItems(from:arr,
 withKey:AVMetadataKey.commonKeyTitle,
 keySpace:.common)
let met = arr[0]
let value = #keyPath(AVMetadataItem.value)
met.loadValuesAsynchronously(forKeys:[value]) {
 if met.statusOfValue(forKey:value, error:nil) == .loaded {
 guard let title = met.value as? String else {return}
 DispatchQueue.main.async {
 self.label.text = "\(title)"
 }
 }
}

Going even further, we can also update a progress view to reflect the current item’s
current time and duration. Unlike an MPMusicPlayerController, we don’t need to
poll with a Timer; an AVPlayer can have a time observer. We need to retain the time
observer in a property:

self.timeObserver = self.qp.addPeriodicTimeObserver(
 forInterval: CMTime(seconds:0.5, preferredTimescale:600),
 queue: nil) { [unowned self] t in
 self.timerFired(time:t)
}

To get our AVPlayerItems to load their duration property, we’ll need to go back and
modify the code we used to initialize them:

let url = $0.assetURL!
let asset = AVAsset(url:url)
return AVPlayerItem(asset: asset,
 automaticallyLoadedAssetKeys: [#keyPath(AVAsset.duration)])

Our time observer now causes our timerFired method to be called periodically,
reporting the current time of the current player item; we obtain the current item’s
duration and update our progress view (self.prog):

func timerFired(time:CMTime) {
 if let item = self.qp.currentItem {
 let asset = item.asset
 let dur = #keyPath(AVAsset.duration)
 if asset.statusOfValue(forKey:dur, error: nil) == .loaded {
 let dur = asset.duration

Playing Songs with AV Foundation | 873

 self.prog.setProgress(Float(time.seconds/dur.seconds),
 animated: false)
 }
 }
}

Media Picker
The media picker (MPMediaPickerController), supplied by the Media Player frame‐
work, is a view controller whose view is a self-contained navigation interface in which
the user can select a media item from the music library, similar to the Music app. You
are expected to treat the picker as a presented view controller. As with any access to
the music library, the media picker requires user authorization (“Checking for
Authorization” on page 861); if you don’t have authorization, don’t present the
picker.

You can use the initializer, init(mediaTypes:), to limit the type of media items dis‐
played. You can make a prompt appear at the top of the navigation bar (prompt). You
can govern whether the user can choose multiple media items or just one, with the
allowsPickingMultipleItems property. You can filter out items stored in the cloud
by setting showsCloudItems to false.

Starting in iOS 9, the mediaTypes: values .podcast and .audioBook don’t work.
I believe that this is because podcasts are considered to be the purview of the
Podcasts app, and audiobooks are considered to be the purview of the Books app
— not the Music app. You can see podcasts and audiobooks as MPMediaEntity
objects in the user’s music library, but not by way of an MPMediaPicker‐
Controller.

While the media picker controller’s view is showing, you learn what the user is doing
through two delegate methods (MPMediaPickerControllerDelegate); the presented
view controller is not automatically dismissed, so it is up to you dismiss it in these
delegate methods:

• mediaPicker(_:didPickMediaItems:)

• mediaPickerDidCancel(_:)

The behavior of the delegate methods depends on the value of the controller’s allows-
PickingMultipleItems:

The controller’s allowsPickingMultipleItems is false (the default)
There’s a Cancel button. When the user taps a media item, your media-
Picker(_:didPickMediaItems:) is called, handing you an MPMediaItem‐
Collection consisting of that item; you are likely to dismiss the presented view
controller at this point. When the user taps Cancel, your mediaPickerDid-
Cancel(_:) is called.

874 | Chapter 16: Music Library

The controller’s allowsPickingMultipleItems is true
There’s a Done button. Every time the user taps a media item, it is checked to
indicate that it has been selected. When the user taps Done, your media-
Picker(_:didPickMediaItems:) is called, handing you an MPMediaItem‐
Collection consisting of all items the user selected — unless the user selected no
items, in which case your mediaPickerDidCancel(_:) is called.

In this example, we put up the media picker; we then play the user’s chosen media
item(s) with the application queue player. The example works equally well whether
allowsPickingMultipleItems is true or false:

func presentPicker (_ sender: Any) {
 checkForMusicLibraryAccess {
 let picker = MPMediaPickerController(mediaTypes:.music)
 picker.delegate = self
 self.present(picker, animated: true)
 }
}
func mediaPicker(_ mediaPicker: MPMediaPickerController,
 didPickMediaItems mediaItemCollection: MPMediaItemCollection) {
 let player = MPMusicPlayerController.applicationQueuePlayer
 player.stop()
 player.setQueue(with:mediaItemCollection)
 delay(0.2) {
 player.play()
 }
 self.dismiss(animated:true)
}
func mediaPickerDidCancel(_ mediaPicker: MPMediaPickerController) {
 self.dismiss(animated:true)
}

On the iPad, the media picker can be displayed as a fullscreen presented view, but it
also works reasonably well in a popover, especially if we increase its preferred-
ContentSize. This code presents as fullscreen on an iPhone and as a reasonably sized
popover on an iPad:

let picker = MPMediaPickerController(mediaTypes:.music)
picker.delegate = self
picker.modalPresentationStyle = .popover
picker.preferredContentSize = CGSize(500,600)
self.present(picker, animated: true)
if let pop = picker.popoverPresentationController {
 if let b = sender as? UIBarButtonItem {
 pop.barButtonItem = b
 }
}

Media Picker | 875

CHAPTER 17

Photo Library and Camera

The stored photos and videos accessed by the user through the Photos app constitute
the device’s photo library:

• The UIImagePickerController class can be used to give the user an interface for
exploring the photo library and choosing a photo.

• The Photos framework, also known as PhotoKit, lets you access the photo library
and its contents programmatically — including the ability to modify a photo’s
image. You’ll need to import Photos.

The user’s device may include one or more cameras, and your app might want to let
the user take (capture) a photo or video:

• The UIImagePickerController class can be used to give the user an interface
similar to the Camera app, letting the user capture photos and videos.

• At a deeper level, the AV Foundation framework (Chapter 15) provides direct
control over the camera hardware. You’ll need to import AVFoundation.

The two subjects are related, especially because having allowed the user to capture an
image, you will typically store it in the photo library, just as the Camera app does. So
this chapter treats them together.

Constants such as kUTTypeImage, referred to in this chapter, are provided by the
Mobile Core Services framework; you’ll need to import MobileCoreServices.

Browsing with UIImagePickerController
UIImagePickerController is a view controller providing an interface in which the
user can choose an item from the photo library, similar to the Photos app. You are
expected to treat the UIImagePickerController as a presented view controller.

877

The documentation says that on the iPad you should make this a popover, but per‐
sonally I find a fullscreen presentation more usable.

Image Picker Controller Presentation
To let the user choose an item from the photo library, first call the UIImagePicker‐
Controller class method isSourceTypeAvailable(_:) with a parameter of .photo-
Library; if it returns false, stop. Now instantiate UIImagePickerController and
assign .photoLibrary to its sourceType.

There’s another source type, .savedPhotosAlbum; I don’t recommend its use. In
theory, it should mean the user is confined to the contents of the Camera Roll
album, which would be great. Instead, ever since iOS 8, the user sees the
Moments interface and all items in the library are shown. To add insult to injury,
in iOS 13 the Photos app no longer has the Moments interface, so the interface
displayed in the UIImagePickerController may be unfamiliar and confusing.

You’ll probably want to specify an array of mediaTypes you’re interested in. This
array will usually contain kUTTypeImage, kUTTypeMovie, or both; or you can specify
all available types by calling the class method availableMediaTypes(for:).

A UIImagePickerController can also return a live photo as a live photo if the follow‐
ing two conditions are met:

• The picker’s mediaTypes includes both kUTTypeLivePhoto and kUTTypeImage.
The results from availableMediaTypes(for:) do not include kUTTypeLive-
Photo; you have to add it to the mediaTypes explicitly.

• The picker’s allowsEditing property is false (the default).
I’ll talk later about how to display a live photo as a live photo. If you fail to include
kUTTypeLivePhoto in the mediaTypes array, then if the user chooses a live photo,
you’ll receive it as an ordinary still image.

The videoExportPreset property lets you set the transcoding format to be used if the
user chooses a video. For the preset names, consult the AVAssetExportSession docu‐
mentation.

Optionally, you can set the picker’s allowsEditing property to true. In the case of an
image, the interface then allows the user to scale the image up and to move it so as to
be cropped by a preset rectangle; in the case of a movie, the user can trim the movie
as with a UIVideoEditorController (Chapter 15).

After configuring the picker as desired, and having supplied a delegate (adopting
UIImagePickerControllerDelegate and UINavigationControllerDelegate), present the
picker:

878 | Chapter 17: Photo Library and Camera

let src = UIImagePickerController.SourceType.photoLibrary
guard UIImagePickerController.isSourceTypeAvailable(src)
 else {return}
guard let arr UIImagePickerController.availableMediaTypes(for:src)
 else {return}
let picker = UIImagePickerController()
picker.sourceType = src
picker.mediaTypes = arr
picker.delegate = self
picker.videoExportPreset = AVAssetExportPreset640x480 // or whatever
self.present(picker, animated: true)

Image Picker Controller Delegate
When the user has finished working with the image picker controller, the delegate
will receive one of these messages:

imagePickerController(_:didFinishPickingMediaWithInfo:)

The user selected an item from the photo library. The info: parameter describes
it; I’ll give details in a moment.

imagePickerControllerDidCancel(_:)

The user tapped Cancel.

If a UIImagePickerControllerDelegate method is not implemented, the view control‐
ler is dismissed automatically at the point where that method would be called; but
rather than relying on this, you should probably implement both delegate methods
and dismiss the view controller yourself in each.

The info parameter in the first delegate method is a dictionary of information about
the chosen item. The keys in this dictionary (UIImagePickerController.InfoKey)
depend on the media type:

An image
The .mediaType key’s value will be kUTTypeImage. The other keys are:

.phAsset

A PHAsset representing the image in the photo library; I’ll discuss how to
access PHAsset information later in this chapter.

.originalImage

A UIImage.

.imageURL

A file URL to a copy of the image data saved into a temporary directory.

If the picker’s allowsEditing was true, these further keys may be present:

Browsing with UIImagePickerController | 879

.cropRect

An NSValue wrapping a CGRect.

.editedImage

A UIImage. This becomes the image you are expected to use.

A live photo
The .mediaType key’s value will be kUTTypeLivePhoto. In addition to the image
keys, there’s a further key:

.livePhoto

A PHLivePhoto (a type supplied by the Photos framework). But in iOS 13
this is always nil; I’ll explain later what to do about that.

A movie
The .mediaType key’s value will be kUTTypeMovie. The other keys are:

.phAsset

A PHAsset representing the video in the photo library; I’ll discuss how to
access PHAsset information later in this chapter.

.mediaURL

A file URL to a copy of the movie data saved into a temporary directory.

Many of these keys will yield nil values unless you have previously obtained user
authorization! Merely presenting an image picker controller does not require user
authorization to access the photo library, presumably because an image is just an
image. But getting the full repertoire of information in the delegate method does
require user authorization; without it, you’ll get the image (for a still image) and
a file URL, but that’s all. Obtaining user authorization to access the photo library
is discussed later in this chapter.

Here’s an implementation of the first delegate method that picks up all the needed
keys; the idea is that we then dismiss the picker and proceed to deal with the chosen
item in the completion function:

func imagePickerController(_ picker: UIImagePickerController,
 didFinishPickingMediaWithInfo
 info: [UIImagePickerController.InfoKey : Any]) {
 let asset = info[.phAsset] as? PHAsset
 let url = info[.mediaURL] as? URL
 var im = info[.originalImage] as? UIImage
 if let ed = info[.editedImage] as? UIImage {
 im = ed
 }
 let live = info[.livePhoto] as? PHLivePhoto
 let imurl = info[.imageURL] as? URL

880 | Chapter 17: Photo Library and Camera

 self.dismiss(animated:true) {
 // do something with the chosen item here
 }
}

Dealing with Image Picker Controller Results
The preceding code gathered all the information from the UIImagePickerController
about the user’s chosen photo library item; but it didn’t do anything with it. That’s
the job of the dismiss completion function — where I left a blank. Let’s fill it in.

A common reason for presenting a UIImagePickerController is to display the user’s
chosen item in your interface. In that case, you’ll want to deal differently with each
possible type that the user can choose.

You might suppose that the info dictionary’s .mediaType would sufficiently distin‐
guish the possible types — kUTTypeImage, kUTTypeLivePhoto, or kUTTypeMovie.
Indeed, that was true up through iOS 10. But iOS 11 introduced two new possible
image types that might be present in the photo library, so the .mediaType turns out
to be insufficiently fine-grained. Instead, use the PHAsset returned by the .phAsset
key, and examine its playbackStyle. (Recall that without user authorization,
the .phAsset value will be nil.)

There are five possible playbackStyle values (PHAsset.PlaybackStyle):

.image

You have received (im) a UIImage, suitable for display in a UIImageView. The
image may be very large; to save memory, you should downsize it to the largest
size and resolution needed for actual display in the interface (see “UIImage
Drawing” on page 100, along with the discussion of the Image I/O framework in
Chapter 22).

.imageAnimated

You have received an animated GIF. Unfortunately, iOS doesn’t include any
native ability to display an animated GIF as animated in your interface. You can
display the UIImage you have already received (im) as a still image, or you can
use the image URL (imurl) to load the GIF data and convert it yourself into a
sequence of images for animated display.

.livePhoto

You have received a PHLivePhoto. To display it in your interface, use a PHLive‐
PhotoView (supplied by the Photos UI framework; import PhotosUI). This view
has many powerful properties and delegate methods, but you don’t need any of
them just to display the live photo; the live photo is treated as a live photo auto‐
matically, meaning that the user can use press it to show the accompanying
movie. The only properties of the PHLivePhotoView that you really need to set,

Browsing with UIImagePickerController | 881

besides its livePhoto, are its frame and possibly its contentMode (similar to a
UIImageView).

The PHLivePhoto should arrive by way of the .livePhoto key, but it appears
that this is always nil in iOS 13. I regard this as a bug. The workaround is to use
the PHAsset to fetch the live photo manually from photo library by way of a
PHImageManager, as I’ll explain later in this chapter.

.video

You have received (url) the file URL of the exported video in the temporary
directory, suitable for display with AVPlayer and other AVFoundation and
AVKit classes discussed in Chapter 15.

.videoLooping

You have received a live photo to which the Loop or Bounce effect has been
applied. It comes to you as a video file URL (url), but implementing the looping
is up to you. You can do this easily using an AVPlayerLooper object (mentioned
in Chapter 15). Start with an AVQueuePlayer rather than an AVPlayer, configure
the AVPlayerLooper and retain it in an instance property, and use the AVQueue‐
Player to show the video:

let av = AVPlayerViewController()
let player = AVQueuePlayer(url:url)
av.player = player
self.looper = AVPlayerLooper(
 player: player, templateItem: player.currentItem!)
// ... and so on ...

Still image metadata can be obtained from the image data stored at the .imageURL,
using the Image I/O framework to extract the metadata as a dictionary (import
ImageIO, and see Chapter 22):

let src = CGImageSourceCreateWithURL(imurl! as CFURL, nil)!
let d = CGImageSourceCopyPropertiesAtIndex(src,0,nil) as! [AnyHashable:Any]

Photos Framework
The Photos framework (import Photos), also known as PhotoKit, does for the photo
library roughly what the Media Player framework does for the music library (Chap‐
ter 16), letting your code explore the library’s contents — and then some. You can
manipulate albums, add photos, and even perform edits on the user’s photos.

The photo library itself is represented by the PHPhotoLibrary class, and by its shared
instance, which you can obtain through the shared method; you do not need to
retain the shared photo library instance. Then there are the classes representing the
kinds of things that inhabit the library (the photo entities):

882 | Chapter 17: Photo Library and Camera

PHAsset
A single photo or video file.

PHCollection
An abstract class representing collections of all kinds. Its concrete subclasses are:

PHAssetCollection
A collection of photos. Albums and smart albums are PHAssetCollections.

PHCollectionList
A collection of asset collections. A folder of albums, or a smart folder, is a
collection list.

Finer typological distinctions are drawn, not through subclasses, but through a sys‐
tem of types and subtypes, which are properties:

• A PHAsset has mediaType and mediaSubtypes properties.
• A PHAssetCollection has assetCollectionType and assetCollectionSubtype

properties.
• A PHCollectionList has collectionListType and collectionListSubtype

properties.
A PHAsset might have a type of .image and a subtype of .photoPanorama; a PHAsset‐
Collection might have a type of .album and a subtype of .albumRegular; and so on.
Smart albums on the user’s device help draw further distinctions: a PHAsset‐
Collection with a type of .smartAlbum and a subtype of .smartAlbumPanoramas con‐
tains all the user’s panorama photos. A PHAsset’s playbackStyle (discussed earlier
in this chapter) draws the distinction between a still image and an animated GIF, and
between a video and a looped or bounced live photo.

The photo entity classes are actually all subclasses of PHObject, an abstract class that
endows them with a localIdentifier property that functions as a persistent unique
identifier.

Access to the photo library requires user authorization. You’ll use the PHPhoto‐
Library class for this. To learn what the current authorization status is, call the class
method authorizationStatus. To ask the system to put up the authorization request
alert if the status is .notDetermined, call the class method request-

Authorization(_:). The Info.plist must contain some meaningful text that the sys‐
tem authorization request alert can use to explain why your app wants access. For the
photo library, the relevant key is “Privacy — Photo Library Usage Description”
(NSPhotoLibraryUsageDescription). See “Checking for Authorization” on page 861
for a discussion of authorization strategy.

Photos Framework | 883

Querying the Photo Library
When you want to know what’s in the photo library, start with the photo entity class
that represents the type of entity you want to know about. It will supply class meth‐
ods whose names begin with fetch; you’ll pick the class method that expresses the
kind of criteria you’re starting with. So to fetch one or more PHAssets, you’ll call a
PHAsset fetch method; you can fetch by local identifier, by media type, or by con‐
taining asset collection. Similarly, to fetch one or more PHAssetCollections, you’ll
call a PHAssetCollection fetch method; you can fetch by identifier, by type and sub‐
type, or by whether they contain a given PHAsset.

In addition to the various fetch method parameters, you can supply a PHFetch‐
Options object letting you refine the results even further. You can set its predicate
to limit your request results, and its sortDescriptors to determine the results order.
Its fetchLimit can limit the number of results returned, and its includeAssetSource-
Types can specify where the results should come from, such as eliminating cloud
items.

What you get back from a fetch method query is not images or videos but informa‐
tion. A fetch method returns a list of PHObjects of the type to which you sent the
fetch method originally; these refer to entities in the photo library, rather than hand‐
ing you an entire file (which would be huge and might take considerable time). The
list itself is expressed as a PHFetchResult, which behaves very like an array: you can
ask for its count, obtain the object at a given index, look for an object within the col‐
lection, extract objects into an array, and enumerate the objects with an enumerate
method.

You cannot directly enumerate a PHFetchResult with for...in in Swift, even
though you can do so in Objective-C. I regard this as a bug (caused by the fact
that PHFetchResult is a generic).

Let’s list all albums created by the user. An album is a PHAssetCollection, so the rele‐
vant class is PHAssetCollection:

let result = PHAssetCollection.fetchAssetCollections(
 with: .album, subtype: .albumRegular, options: nil)
let albums = result.objects(at: IndexSet(0..<result.count))
for album in albums {
 let count = album.estimatedAssetCount
 print("\(album.localizedTitle!):",
 "approximately \(count) photos")
}

In that code, we can learn how many assets are in each album only as its estimated-
AssetCount. This is probably the right answer, but to obtain the real count, we’d have
to dive one level deeper and fetch the album’s actual assets. Let’s do that: given an

884 | Chapter 17: Photo Library and Camera

album, let’s list its contents. An album’s contents are its assets (photos and videos), so
the relevant class is PHAsset:

let result = PHAsset.fetchAssets(in:album, options: nil)
let assets = result.objects(at: IndexSet(0..<result.count))
for asset in assets {
 print(asset.localIdentifier)
}

If the fetch method you need seems not to exist, don’t forget about PHFetchOptions.
There is no PHAsset fetch method for fetching from a certain collection all assets of
a certain type; you cannot specify, for instance, that you want all photos (but no vid‐
eos) from the user’s Camera Roll. But you can perform such a fetch by setting a
PHFetchOptions object’s predicate property. To illustrate, I’ll fetch ten ordinary
photos (no videos, and no HDR photos) from the user’s Recent smart album:

let recentAlbums = PHAssetCollection.fetchAssetCollections(
 with: .smartAlbum, subtype: .smartAlbumRecentlyAdded, options: nil)
guard let rec = recentAlbums.firstObject else {return}
let options = PHFetchOptions()
let pred = NSPredicate(
 format: "mediaType == %d && !((mediaSubtype & %d) == %d)",
 PHAssetMediaType.image.rawValue,
 PHAssetMediaSubtype.photoHDR.rawValue,
 PHAssetMediaSubtype.photoHDR.rawValue)
options.predicate = pred // photos only, please, no HDRs
options.fetchLimit = 10 // let's not take all day about it
let photos = PHAsset.fetchAssets(in:rec, options: options)

Modifying the Library
Structural modifications to the photo library are performed through a change request
class corresponding to the class of photo entity we wish to modify. The name of the
change request class is the name of a photo entity class followed by “ChangeRequest.”
For PHAsset, there’s the PHAssetChangeRequest class — and so on.

To use a change request, you’ll call a performChanges method on the shared photo
library. Typically, that method will be performChanges(_:completionHandler:),
which takes two functions. The first function, the changes function, is where you
describe the changes you want performed; the second function, the completion func‐
tion, is called back after the changes have been performed.

Each change request class comes with methods that ask for a change of some particu‐
lar type. Here are some examples:

PHAssetChangeRequest
Class methods include deleteAssets(_:), creationRequestForAssetFrom-

Image(atFileURL:), and so on.

Photos Framework | 885

If you’re creating an asset and what you’re starting with is raw data, use the
PHAssetCreationRequest class; it’s a subclass of PHAssetChangeRequest that
provides instance methods such as addResource(with:data:options:).

PHAssetCollectionChangeRequest
Class methods include deleteAssetCollections(_:) and creationRequestFor-
AssetCollection(withTitle:).

In addition, there are initializers like init(for:), which takes an asset collection,
along with instance methods addAssets(_:), removeAssets(_:), and so on.

A creationRequest class method also returns an instance of the change request class.
You can throw this away if you don’t need it for anything. Its purpose is to let you
perform further changes as part of the same batch. For example, once you have a
PHAssetChangeRequest instance, you can use its properties to initialize the asset’s
features, such as its creation date or its associated geographical location; those would
be read-only if accessed through the PHAsset.

To illustrate, let’s create an album called “Test Album.” An album is a PHAsset‐
Collection, so we start with the PHAssetCollectionChangeRequest class and call its
creationRequestForAssetCollection(withTitle:) class method in the perform-
Changes function. This method returns a PHAssetCollectionChangeRequest
instance, but we don’t need that instance for anything, so we simply throw it away:

PHPhotoLibrary.shared().performChanges({
 let t = "TestAlbum"
 typealias Req = PHAssetCollectionChangeRequest
 Req.creationRequestForAssetCollection(withTitle:t)
})

(The class name PHAssetCollectionChangeRequest is very long, so purely as a matter
of style I’ve shortened it with a type alias.)

It may appear, in that code, that we didn’t actually do anything — we asked for a
creation request, but we didn’t tell it to do any creating. Nevertheless, that code is suf‐
ficient; generating the creation request for a new asset collection in the perform-
Changes function constitutes an instruction to create an asset collection.

All the same, that code is rather silly. The album was created asynchronously, so to
use it, we need a completion function (see Appendix C). Moreover, we’re left with no
reference to the album we created. For that, we need a PHObjectPlaceholder. This
minimal PHObject subclass has just one property — localIdentifier, which it
inherits from PHObject. That’s sufficient to permit a reference to the created object
to survive into the completion function, where we can do something useful with it,
such as saving it off to an instance property:

886 | Chapter 17: Photo Library and Camera

var ph : PHObjectPlaceholder?
PHPhotoLibrary.shared().performChanges({
 let t = "TestAlbum"
 typealias Req = PHAssetCollectionChangeRequest
 let cr = Req.creationRequestForAssetCollection(withTitle:t)
 ph = cr.placeholderForCreatedAssetCollection
}) { ok, err in
 if ok, let ph = ph {
 self.newAlbumId = ph.localIdentifier
 }
}

Now suppose we subsequently want to populate our newly created album. Let’s say
we want to make the first asset in the user’s Recently Added smart album a member
of our new album as well. No problem! First, we need a reference to the Recently
Added album; then we need a reference to its first asset; and finally, we need a refer‐
ence to our newly created album (whose identifier we’ve already captured as
self.newAlbumId). Those are all basic fetch requests, which we can perform in suc‐
cession, and we then use their results to form the change request:

// find Recently Added smart album
let result = PHAssetCollection.fetchAssetCollections(
 with: .smartAlbum, subtype: .smartAlbumRecentlyAdded, options: nil)
guard let rec = result.firstObject else { return }
// find its first asset
let result2 = PHAsset.fetchAssets(in:rec, options: nil)
guard let asset1 = result2.firstObject else { return }
// find our newly created album by its local id
let result3 = PHAssetCollection.fetchAssetCollections(
 withLocalIdentifiers: [self.newAlbumId], options: nil)
guard let alb2 = result3.firstObject else { return }
// ready to perform the change request
PHPhotoLibrary.shared().performChanges({
 typealias Req = PHAssetCollectionChangeRequest
 let cr = Req(for: alb2)
 cr?.addAssets([asset1] as NSArray)
})

A PHObjectPlaceholder has a further use. What if we created, say, an asset collection
and wanted to add it to something (presumably to a PHCollectionList), all in one
batch request? Requesting the creation of an asset collection gives us a PHAsset‐
CollectionChangeRequest instance; you can’t add that to a collection. And the
requested PHAssetCollection itself hasn’t been created yet! The solution is to obtain a
PHObjectPlaceholder. Because it is a PHObject, it can be used as the argument of
change request methods such as addChildCollections(_:).

Photos Framework | 887

Being Notified of Changes
When the library is modified, whether by your code or by some other means while
your app is running, any information you’ve collected about the library — informa‐
tion which you may even be displaying in your interface at that very moment — may
become out of date. To cope with this possibility, you should, perhaps very early in
the life of your app, register a change observer (adopting the PHPhotoLibraryChange‐
Observer protocol) with the photo library:

PHPhotoLibrary.shared().register(self)

The outcome is that, whenever the library changes, the observer’s photoLibraryDid-
Change(_:) method is called, with a PHChange object encapsulating a description of
the change. The observer can then probe the PHChange object by calling change-
Details(for:). The idea is that if you’re hanging on to information in an instance
property, you can use what the PHChange object tells you to modify that information
(and possibly your interface). The parameter can be one of two types:

A PHObject
The parameter is a single PHAsset, PHAssetCollection, or PHCollectionList
you’re interested in. The result is a PHObjectChangeDetails object, with proper‐
ties like objectBeforeChanges, objectAfterChanges, and objectWasDeleted.

A PHFetchResult
The result is a PHFetchResultChangeDetails object, with properties like fetch-
ResultBeforeChanges, fetchResultAfterChanges, removedObjects, inserted-
Objects, and so on.

Suppose my interface is displaying a list of album names, which I obtained originally
through a PHAssetCollection fetch request. And suppose that, at the time that I per‐
formed the fetch request, I also retained as an instance property (self.albums) the
PHFetchResult that it returned. Then if my photoLibraryDidChange(_:) method is
called, I can update the fetch result and change my interface accordingly:

func photoLibraryDidChange(_ changeInfo: PHChange) {
 if self.albums !== nil {
 let details = changeInfo.changeDetails(for:self.albums)
 if details !== nil {
 self.albums = details!.fetchResultAfterChanges
 // ... and adjust interface if needed ...
 }
 }
}

888 | Chapter 17: Photo Library and Camera

Fetching Images
Sooner or later, you’ll probably want to go beyond information about the structure of
the photo library and fetch an actual photo or video for display in your app. The pro‐
cess of obtaining an image can be time-consuming: not only may the image data be
large, but also it may be stored in the cloud. Therefore you will typically supply a
completion function that can be called back asynchronously with the data (see
Appendix C).

To obtain an image, you’ll need an image manager, which you’ll get by calling the
PHImageManager default class method. You then call a method whose name starts
with request, supplying a completion function. For an image, you can ask for a
UIImage or the original data; for a video, you can ask for an AVPlayerItem or an
AVAsset configured for display of the video, or an AVAssetExportSession suitable
for exporting the video to a new file (see Chapter 15). The result comes back to you as
a parameter passed into your completion function.

Asking for a UIImage
If you’re asking for a UIImage, information about the image may increase in accuracy
and detail in the course of time — with the curious consequence that your comple‐
tion function may be called multiple times. The idea is to give you some image to dis‐
play as fast as possible, with better versions of the image arriving later. If you would
rather receive just one version of the image, you can specify that through a PHImage‐
RequestOptions object (as I’ll explain in a moment).

The various request methods take parameters letting you refine the details of the
data-retrieval process. When asking for a UIImage, you supply these parameters:

targetSize:

The size of the desired image. It is a waste of memory to ask for an image larger
than you need for actual display, and a larger image may take longer to supply
(and a photo, remember, is a very large image). The image retrieval process per‐
forms the desired downsizing so that you don’t have to. For the largest possible
size, pass PHImageManagerMaximumSize.

contentMode:

A PHImageContentMode, either .aspectFit or .aspectFill, with respect to
your targetSize. With .aspectFill, the image retrieval process does any
needed cropping so that you don’t have to.

options:

A PHImageRequestOptions object. This is a value class representing a grab-bag
of additional tweaks, such as:

Photos Framework | 889

.version

Do you want the original image (.original) or the edited image
(.current)?

.resizeMode

Do you want the image sized exactly to your targetSize (.exact), or will
you accept a larger version (.fast)?

.normalizedCropRect

Do you want custom cropping?

.isNetworkAccessAllowed, .progressHandler
Do you want the image fetched over the network if necessary, and if so, do
you want to install a progress callback function?

.deliveryMode

Do you want one call to your completion function, or many
(.opportunistic)? If one, do you want a degraded thumbnail which will
arrive quickly (.fastFormat), or the best possible quality which may take
some considerable time (.highQualityFormat)?

.isSynchronous

Do you want the image fetched synchronously? If you do, you will get only
one call to your completion function — but then you must make your call on
a background thread, and the image will arrive on that same background
thread (see Chapter 24).

In this simple example, I have a view controller called DataViewController, good for
displaying one photo in an image view (self.iv). It has a PHAsset property,
self.asset, which is assumed to have been set when this view controller instance
was created. In viewDidLoad, I call my setUpInterface utility method to populate
the interface:

func setUpInterface() {
 guard let asset = self.asset else { return }
 let opts = PHImageRequestOptions()
 opts.resizeMode = .exact
 PHImageManager.default().requestImage(for: asset,
 targetSize: CGSize(300,300), contentMode: .aspectFit,
 options: opts) { im, info in
 if let im = im {
 self.iv.image = im
 }
 }
}

This may result in the image view’s image being set multiple times, as the requested
image is supplied repeatedly, with its quality improving each time; but there is

890 | Chapter 17: Photo Library and Camera

nothing wrong with that. Using this technique with a UIPageViewController, you
can easily write an app that allows the user to browse photos one at a time.

The second parameter in an image request’s completion function is a dictionary
whose elements may be useful in certain circumstances. Among the keys are:

PHImageResultRequestIDKey

Uniquely identifies a single image request for which this result function is being
called multiple times. This value is also returned by the original request method
call (I didn’t bother to capture it in the previous example). You can also use this
identifier to call cancelImageRequest(_:) if it turns out that you don’t need this
image after all.

PHImageCancelledKey

Reports that an attempt to cancel an image request with cancelImage-

Request(_:) succeeded.

PHImageResultIsInCloudKey

Warns that the image is in the cloud and that your request must be resubmitted
with the PHImageRequestOptions isNetworkAccessAllowed property set to
true.

Canceling and caching
If your interface is a table view or collection view, the asynchronous, time-consuming
nature of image fetching is clearly significant. As the user scrolls, a cell comes into
view and you request the corresponding image. But as the user keeps scrolling, that
cell goes out of view, and now the requested image, if it hasn’t arrived, is no longer
needed, so you cancel the request. (I’ll tackle the same sort of problem with regard to
internet-based images in a table view in Chapter 23.)

There is also a PHImageManager subclass, PHCachingImageManager, that can help
do the opposite: you can prefetch some images before the user scrolls to view them,
improving response time. For an example that displays photos in a UICollection‐
View, look at Apple’s SamplePhotosApp sample code (also called “Example app
using Photos framework”). It uses the PHImageManager class to fetch individual
photos; but for the UICollectionViewCell thumbnails, it uses PHCachingImage‐
Manager.

Even the default shared PHImageManager does some caching when it performs
a request. This can cause the image manager to get out of sync with the photo
library, and I have not found a way to tell it to clear its cache. The workaround is
to call PHImageManager() instead of PHImageManager.default().

Photos Framework | 891

Live photos, videos, and data

If a PHAsset represents a live photo, you can call the PHImageManager requestLive-
Photo method, parallel to requestImage; what you get in the completion function is a
PHLivePhoto. I mentioned earlier that in iOS 13 a UIImagePickerControllerDelegate
doesn’t receive a PHLivePhoto through the .livePhoto key, so you have to use the
PHAsset to fetch the live photo from the photo library instead. Here, I’ll fetch the live
photo and display it in the interface:

func fetchLivePhoto(from asset:PHAsset?) {
 if let asset = asset {
 PHImageManager.default().requestLivePhoto(
 for: asset, targetSize: self.redView.bounds.size,
 contentMode: .aspectFit, options: nil) { photo, info in
 if let photo = photo {
 self.showLivePhoto(photo)
 }
 }
 }
}
func showLivePhoto(_ ph:PHLivePhoto) {
 let v = PHLivePhotoView(frame:self.redView.bounds)
 v.contentMode = .scaleAspectFit
 v.livePhoto = ph
 self.redView.addSubview(v)
}

Fetching a video resource is far simpler, and there’s little to say about it. In this exam‐
ple, I fetch a reference to the first video in the user’s photo library and display it in
the interface (using an AVPlayerViewController); unlike an image, I am not guaran‐
teed that the result will arrive on the main thread, so I must step out to the main
thread before interacting with the app’s user interface:

func fetchMovie() {
 let opts = PHFetchOptions()
 opts.fetchLimit = 1
 let result = PHAsset.fetchAssets(with: .video, options: opts)
 guard let asset = result.firstObject else {return}
 PHImageManager.default().requestPlayerItem(
 forVideo: asset, options: nil) { item, info in
 if let item = item {
 DispatchQueue.main.async {
 self.display(item:item)
 }
 }
 }
}
func display(item:AVPlayerItem) {
 let player = AVPlayer(playerItem: item)
 let vc = AVPlayerViewController()
 vc.player = player

892 | Chapter 17: Photo Library and Camera

 vc.view.frame = self.v.bounds
 self.addChild(vc)
 self.v.addSubview(vc.view)
 vc.didMove(toParent: self)
}

You can also access an asset’s various kinds of data directly through the PHAsset‐
ResourceManager class. The request method takes a PHAssetResource object based
on a PHAsset or PHLivePhoto. You can retrieve an image’s RAW and JPEG data sep‐
arately. For a list of the data types we’re talking about here, see the documentation on
the PHAssetResourceType enum.

Editing Images
Astonishingly, PhotoKit allows you to change an image in the user’s photo library.
Why is this even legal? There are two reasons:

• The user will have to give permission every time your app proposes to modify a
photo in the library, and will be shown the proposed modification beforehand.

• Changes to library photos are undoable, because the original image remains in
the database along with the changed image that the user sees, and the user can
revert to that original at any time.

How to change a photo image
To change a photo image is a three-step process:

1. You send a PHAsset this message:
• requestContentEditingInput(with:completionHandler:)

Your completion function is called, and is handed a PHContentEditingInput
object. This object wraps some image data which you can display to the user
(displaySizeImage), along with a pointer to the real image data as a file (full-
SizeImageURL).

2. You create a PHContentEditingOutput object by calling its initializer:
• init(contentEditingInput:)

The argument is the PHContentEditingInput object. The PHContentEditing‐
Output object has a renderedContentURL property, representing a file URL.
Your mission is to write the edited photo image data to that URL. What you’ll
typically do is:

a. Fetch the image data from the PHContentEditingInput object’s fullSize-
ImageURL.

b. Process the image.

Photos Framework | 893

c. Write the resulting image data to the PHContentEditingOutput object’s
renderedContentURL.

3. You notify the photo library that it should pick up the edited version of the
photo. To do so, you call performChanges(_:completionHandler:) and, inside
the changes function, create a PHAssetChangeRequest and set its content-
EditingOutput property to the PHContentEditingOutput object. The user will
now be shown the alert requesting permission to modify this photo; your com‐
pletion function is then called, with a first parameter of false if the user refuses
(or if anything else goes wrong).

Handling the adjustment data
So far, so good. However, if you do only what I have just described, your attempt to
modify the photo will fail. The reason is that I have omitted something: before the
third step, you must set the PHContentEditingOutput object’s adjustmentData prop‐
erty to a newly instantiated PHAdjustmentData object. The initializer is:

• init(formatIdentifier:formatVersion:data:)

What goes into the initializer parameters is completely up to you, but the goal is to
store with the photo a message to your future self in case you are called upon to edit
the same photo again on some later occasion. In that message, you describe to your‐
self how you edited the photo on this occasion.

Your handling of the adjustment data works in three steps, interwoven with the three
steps I already outlined. As you start to edit the photo, first you say whether you can
read its existing PHAdjustmentData, and then you do read its existing PHAdjust‐
mentData and use it as part of your editing; when you have finished editing the
photo, you make a new PHAdjustmentData, ready for the next time you edit this
same photo:

1. When you call requestContentEditingInput, the first argument (with:) should
be a PHContentEditingInputRequestOptions object. You have created this object
and set its canHandleAdjustmentData property to a function that takes a
PHAdjustmentData and returns a Bool. This Bool will be based mostly on
whether you recognize this photo’s PHAdjustmentData as yours — typically
because you recognize its formatIdentifier. That determines what image you’ll
get when you receive your PHContentEditingInput object:

Your canHandleAdjustmentData function returns false
The image you’ll be editing is the edited image displayed in the Photos app.

894 | Chapter 17: Photo Library and Camera

Your canHandleAdjustmentData function returns true
The image you’ll be editing is the original image, stripped of your edits. This
is because, by returning true, you are asserting that you can reconstruct
your edits based on what’s in the PHAdjustmentData’s data.

2. When your completion function is called and you receive your PHContent‐
EditingInput object, it has (you guessed it) an adjustmentData property, which
is an Optional wrapping a PHAdjustmentData object. If this isn’t nil, and if you
edited this image previously, its data is the data you put in the last time you edi‐
ted this image, and you are expected to extract it and use it to recreate the edited
state of the image.

3. After editing the image, when you prepare the PHContentEditingOutput object,
you give it a new PHAdjustmentData object whose data summarizes the new
edited state of the photo from your point of view — and so the whole cycle can
start again if the same photo is to be edited again later.

Example: Before editing
An actual implementation is quite straightforward and almost pure boilerplate. The
details will vary only in regard to the actual editing of the photo and the particular
form of the data by which you’ll summarize that editing — so, in constructing an
example, I’ll keep that part very simple. Recall my example of a custom “vignette”
CIFilter called MyVignetteFilter (“CIFilter and CIImage” on page 106). I’ll provide
an interface whereby the user can apply that filter to a photo. My interface will
include:

• A slider that allows the user to set the degree of vignetting that should be applied
(MyVignetteFilter’s inputPercentage).

• A button that lets the user remove all vignetting from the photo, even if that
vignetting was applied in a previous editing session.

First, I’ll plan the structure of the PHAdjustmentData:

formatIdentifier

This can be any unique string; I’ll use "com.neuburg.matt.PhotoKit-

Images.vignette", a constant that I’ll store in a property (self.myidentifier).

formatVersion

This is likewise arbitrary; I’ll use "1.0".

data

This will express the only thing about my editing that is adjustable — the input-
Percentage. The data will wrap an NSNumber which itself wraps a Double
whose value is the inputPercentage.

Photos Framework | 895

As editing begins, I construct the PHContentEditingInputRequestOptions object that
determines whether a photo’s most recent editing belongs to me. Then, starting with
the photo that is to be edited (a PHAsset), I ask for the PHContentEditingInput
object:

let options = PHContentEditingInputRequestOptions()
options.canHandleAdjustmentData = { adjustmentData in
 return adjustmentData.formatIdentifier == self.myidentifier
}
var id : PHContentEditingInputRequestID = 0
id = self.asset.requestContentEditingInput(with: options) { input, info in
 // ...
}

In the completion function, I receive my PHContentEditingInput object as a parame‐
ter (input). I’m going to need this object later when editing ends, so I immediately
store it in a property. I then unwrap its adjustmentData, extract the data, and con‐
struct the editing interface; in this case, that happens to be a presented view control‐
ler, but the details are irrelevant and are omitted here:

guard let input = input else {
 self.asset.cancelContentEditingInputRequest(id)
 return
}
self.input = input
let im = input.displaySizeImage! // show this to user during editing
if let adj = input.adjustmentData,
adj.formatIdentifier == self.myidentifier {
 if let vigNumber = try? NSKeyedUnarchiver.unarchivedObject(
 ofClass: NSNumber.self, from: adj.data),
 let vigAmount = vigNumber as? Double {
 // ... store vigAmount ...
 }
}
// ... present editing interface, passing it the vigAmount ...

The important thing about that code is how we deal with the adjustmentData and its
data. The question is whether we have data, and whether we recognize this as our
data from some previous edit on this image. This will affect how our editing interface
needs to behave. There are two possibilities:

It’s our data
If we were able to extract a vigAmount from the adjustmentData, then the
displaySizeImage is the original, unvignetted image. Therefore, our editing
interface initially applies the vigAmount of vignetting to this image — recon‐
structing the vignetted state of the photo as shown in the Photos app, while
allowing the user to change the amount of vignetting, or even to remove all
vignetting entirely.

896 | Chapter 17: Photo Library and Camera

It’s not our data
On the other hand, if we weren’t able to extract a vigAmount from the
adjustmentData, then there is nothing to reconstruct; the displaySizeImage is
the actual photo image from the Photos app, and our editing interface will apply
vignetting to it directly.

Example: After editing
Let’s skip ahead now to the point where the user’s interaction with our editing inter‐
face comes to an end. If the user cancelled, that’s all; the user doesn’t want to modify
the photo after all. Otherwise, the user either asked to apply a certain amount of
vignetting (vignette) or asked to remove all vignetting; in the latter case, I use an
arbitrary vignette value of -1 as a signal.

Up to now, our editing interface has been using the displaySizeImage to show the
user a preview of what the edited photo would look like. Now the time has come to
perform the vignetting that the user is asking us to perform — that is, we must apply
this amount of vignetting to the real photo image, which has been sitting waiting for
us all this time, untouched, at the PHContentEditingInput’s fullSizeImageURL. This
is a big image, which will take significant time to load, to alter, and to save (which is
why we haven’t been working with it in the editing interface).

So, depending on the value of vignette requested by the user, I either pass the input
image from the fullSizeImageURL through my vignette filter or I don’t:

let inurl = self.input.fullSizeImageURL!
let output = PHContentEditingOutput(contentEditingInput:self.input)
let outurl = output.renderedContentURL
var ci = CIImage(contentsOf: inurl, options: [.applyOrientationProperty:true])!
let space = ci.colorSpace!
if vignette >= 0.0 {
 let vig = MyVignetteFilter()
 vig.setValue(ci, forKey: "inputImage")
 vig.setValue(vignette, forKey: "inputPercentage")
 ci = vig.outputImage!
}

Don’t forget about setting the PHContentEditingOutput’s adjustmentData! My goal
here is to send a message to myself, in case I am asked later to edit this same image
again, stating what amount of vignetting is already applied to the image. That
amount is represented by vignette — so that’s the value I store in the adjustment-
Data:

let data = try! NSKeyedArchiver.archivedData(
 withRootObject: vignette, requiringSecureCoding: true)
output.adjustmentData = PHAdjustmentData(
 formatIdentifier: self.myidentifier, formatVersion: "1.0", data: data)

Photos Framework | 897

Finally, I must write a JPEG to the PHContentEditingOutput’s renderedContentURL:

try! CIContext().writeJPEGRepresentation(of:ci, to:outurl, colorSpace:space)

Some of that code is time-consuming, particularly where I read and write the data
with these methods:

• CIImage init(contentsOf:options:)
• CIContext writeJPEGRepresentation(of:to:colorSpace:)

So in real life I call it on a background thread (Chapter 24), and I also show a
UIActivityIndicatorView to let the user know that work is being done.

We conclude by telling the photo library to retrieve the edited image. This will cause
the alert to appear, asking the user whether to allow us to modify this photo. If the
user taps Modify, the modification is made, and if we are displaying the image, we
should get onto the main thread and redisplay it:

PHPhotoLibrary.shared().performChanges({
 typealias Req = PHAssetChangeRequest
 let req = Req(for: self.asset)
 req.contentEditingOutput = output // triggers alert
}) { ok, err in
 if ok {
 // if we are displaying image, redisplay it — on main thread
 } else {
 // user refused to allow modification, do nothing
 }
}

You can also edit a live photo, using a PHLivePhotoEditingContext: you are handed
each frame of the video as a CIImage, making it easy to apply a CIFilter. For a dem‐
onstration, see Apple’s Photo Edit sample app (also known as Sample Photo Editing
Extension).

Photo Editing Extension
A photo editing extension is photo-modifying code supplied by your app that is
effectively injected into the Photos app. When the user edits a photo from within the
Photos app, your extension appears as an option and can modify the photo being
edited.

To make a photo editing extension, create a new target in your app, specifying iOS →
Application Extension → Photo Editing Extension. The template supplies a story‐
board containing one scene, along with the code file for a corresponding UIView‐
Controller subclass. This file imports not only the Photos framework but also the
Photos UI framework, which supplies the PHContentEditingController protocol, to
which the view controller conforms. This protocol specifies the methods through
which the runtime will communicate with your extension’s code.

898 | Chapter 17: Photo Library and Camera

A photo editing extension works almost exactly the same way as modifying photo
library assets in general, as I described in the preceding section. The chief differences
are:

• You don’t put a Done or a Cancel button into your editing interface. The Photos
app will wrap your editing interface in its own interface, providing those buttons
when it presents your view.

• You must situate the pieces of your code so as to respond to the calls that will
come through the PHContentEditingController methods.

The PHContentEditingController methods are:

canHandle(_:)

You will not be instantiating PHContentEditingInput; the runtime will do it for
you. Therefore, instead of configuring a PHContentEditingInputRequestOptions
object and setting its canHandleAdjustmentData, you implement this method;
you’ll receive the PHAdjustmentData and return a Bool.

startContentEditing(with:placeholderImage:)

The runtime has obtained the PHContentEditingInput object for you. Now it
supplies that object to you, along with a very temporary initial version of the
image to be displayed in your interface; you are expected to replace this with the
PHContentEditingInput object’s displaySizeImage. Just as in the previous sec‐
tion’s code, you should retain the PHContentEditingInput object in a property,
as you will need it again later.

cancelContentEditing

The user tapped Cancel. You may well have nothing to do here.

finishContentEditing(completionHandler:)

The user tapped Done. In your implementation, you get onto a background
thread (the template configures this for you) and do exactly the same thing you
would do if this were not a photo editing extension — get the PHContentEditing‐
Output object and set its adjustmentData; get the photo from the PHContent‐
EditingInput object’s fullSizeImageURL, modify it, and save the modified image
as a full-quality JPEG at the PHContentEditingOutput object’s renderedContent-
URL. When you’re done, don’t notify the PHPhotoLibrary; instead, call the
completionHandler that arrived as a parameter, handing it the PHContent‐
EditingOutput object.

During the time-consuming part of this method, the Photos app puts up a
UIActivityIndicatorView, just as I suggested you might want to do in your own
app. When you call the completionHandler, there is no alert asking the user to
confirm the modification of the photo; the user is already in the Photos app and
has explicitly asked to edit the photo, so no confirmation is needed.

Photos Framework | 899

Using the Camera
Use of the camera requires user authorization. You’ll use the AVCaptureDevice class
for this (part of the AV Foundation framework; import AVFoundation). To learn
what the current authorization status is, call the class method authorization-
Status(forMediaType:). To ask the system to put up the authorization request alert
if the status is .notDetermined, call the class method requestAccess(forMedia-
Type:completionHandler:). The media type (AVMediaType) will be .video; this
embraces capturing both still photos and movies. Your app’s Info.plist must contain
some meaningful text that the system authorization request alert can use to explain
why your app wants camera use; the relevant key is “Privacy — Camera Usage
Description” (NSCameraUsageDescription).

If your app will let the user capture movies (as opposed to still photos), you will also
need to obtain permission from the user to access the microphone. The same meth‐
ods apply, but with argument .audio. Your app’s Info.plist must contain some
explanatory text under the “Privacy — Microphone Usage Description” key
(NSMicrophoneUsageDescription). See “Checking for Authorization” on page 861
for discussion of authorization strategy.

Use of the camera is greatly curtailed, and is interruptible, under iPad multitask‐
ing. Watch WWDC 2015 video 211 for details.

Capture with UIImagePickerController
The simplest way to prompt the user to take a photo or video is with the same
UIImagePickerController class discussed earlier in this chapter. It provides an inter‐
face that is effectively a limited subset of the Camera app.

The procedure is similar to what you do when you use UIImagePickerController to
browse the photo library. First, check isSourceTypeAvailable(_:) for .camera; it
will be false if the user’s device has no camera or the camera is unavailable. If it is
true, call availableMediaTypes(for:.camera) to learn whether the user can take a
still photo (kUTTypeImage), a video (kUTTypeMovie), or both. Now instantiate
UIImagePickerController, set its source type to .camera, and set its mediaTypes in
accordance with which types you just learned are available; if your setting is an array
of both kUTTypeImage and kUTTypeMovie, the user will see a Camera-like interface
allowing a choice of either one. Finally, set a delegate (adopting UINavigation‐
ControllerDelegate and UIImagePickerControllerDelegate), and present the picker:

let src = UIImagePickerController.SourceType.camera
guard UIImagePickerController.isSourceTypeAvailable(src)
 else {return}
guard = UIImagePickerController.availableMediaTypes(for:src) != nil

900 | Chapter 17: Photo Library and Camera

 else {return}
let picker = UIImagePickerController()
picker.sourceType = src
picker.mediaTypes = arr
picker.delegate = self
self.present(picker, animated: true)

For video, you can also specify the videoQuality and videoMaximumDuration. More‐
over, these additional properties and class methods allow you to discover the camera
capabilities:

isCameraDeviceAvailable:

Checks to see whether the front or rear camera is available, using one of these
values as argument (UIImagePickerController.CameraDevice):

• .front

• .rear

cameraDevice

Lets you learn and set which camera is being used.

availableCaptureModes(for:)

Checks whether the given camera can capture still photos, video, or both. You
specify the front or rear camera; returns an array of integers. Possible modes are
(UIImagePickerController.CameraCaptureMode):

• .photo

• .video

cameraCaptureMode

Lets you learn and set the capture mode (still photo or video).

isFlashAvailable(for:)

Checks whether flash is available.

cameraFlashMode

Lets you learn and set the flash mode (or, for a movie, toggles the LED “torch”).
Your choices are (UIImagePickerController.CameraFlashMode):

• .off

• .auto

• .on

When the view controller’s view appears, the user will see the interface for taking a
picture, familiar from the Camera app, possibly including flash options, camera selec‐
tion button, photo/video option (if your mediaTypes setting allows both), and Cancel

Using the Camera | 901

and shutter buttons. If the user takes a picture, the presented view offers an opportu‐
nity to use the picture or to retake it.

Allowing the user to edit the captured image or movie (allowsEditing), and han‐
dling the outcome with the delegate messages, is the same as I described earlier for
dealing with an image or movie selected from the photo library, with these additional
points regarding the info dictionary delivered to the delegate:

• There won’t be any .phAsset key, because the image isn’t in the photo library.
• There won’t be any .imageURL key; if the user takes a still image, no copy is saved

as a file.
• There won’t be any .livePhoto key; the user can’t capture a live photo with the

UIImagePickerController camera interface.
• A still image might be accompanied by a .mediaMetadata key containing the

metadata for the photo.
The photo library was not involved in the process of media capture, so no user per‐
mission to access the photo library is needed. But if you now propose to save the
media into the photo library, you will need permission. Suppose that the user takes a
still image, and you now want to save it into the user’s Camera Roll album. Creating
the PHAsset is sufficient:

func imagePickerController(_ picker: UIImagePickerController,
 didFinishPickingMediaWithInfo
 info: [UIImagePickerController.InfoKey : Any]) {
 var im = info[.originalImage] as? UIImage
 if let ed = info[.editedImage] as? UIImage {
 im = ed
 }
 let m = info[.mediaMetadata] as? NSDictionary
 self.dismiss(animated:true) {
 let mediatype = info[.mediaType]
 guard let type = mediatype as? NSString else {return}
 switch type as CFString {
 case kUTTypeImage:
 if im != nil {
 checkForPhotoLibraryAccess {
 let lib = PHPhotoLibrary.shared()
 lib.performChanges({
 typealias Req = PHAssetChangeRequest
 Req.creationRequestForAsset(from: im!)
 })
 }
 }
 default:break
 }
 }
}

902 | Chapter 17: Photo Library and Camera

In that code, the metadata associated with the photo is received (m), but nothing is
done with it, and it is not folded into the PHAsset created from the image (im). To
attach the metadata to the photo, use the Image I/O framework (import ImageIO) to
make a copy of the image data along with the metadata. Now you can use a PHAsset‐
CreationRequest to make the PHAsset from the data:

let jpeg = im!.jpegData(compressionQuality:1)
let src = CGImageSourceCreateWithData(jpeg as CFData, nil)!
let data = NSMutableData()
let uti = CGImageSourceGetType(src)!
let dest = CGImageDestinationCreateWithData(
 data as CFMutableData, uti, 1, nil)!
CGImageDestinationAddImageFromSource(dest, src, 0, m)
CGImageDestinationFinalize(dest)
let lib = PHPhotoLibrary.shared()
lib.performChanges({
 let req = PHAssetCreationRequest.forAsset()
 req.addResource(with: .photo, data: data as Data, options: nil)
})

You can customize the UIImagePickerController image capture interface. If you need
to do that, you should probably consider dispensing entirely with UIImagePicker‐
Controller and instead designing your own image capture interface from scratch,
based around AV Foundation and AVCaptureSession, which I’ll introduce in the
next section. Still, it may be that a modified UIImagePickerController is all you need.

In the image capture interface, you can hide the standard controls by setting shows-
CameraControls to false, replacing them with your own overlay view, which you
supply as the value of the cameraOverlayView. That removes the shutter button, so
you’re probably going to want to provide some new means of allowing the user to
take a picture! You can do that through these methods:

• takePicture

• startVideoCapture

• stopVideoCapture

The UIImagePickerController is a UINavigationController, so if you need additional
interface — possibly to let the user vet the captured picture before dismissing the
picker — you can push it onto the navigation interface.

Capture with AV Foundation
Instead of using UIImagePickerController, you can control the camera directly using
the AV Foundation framework (Chapter 15). You get no help with interface, but you
get vastly more power than UIImagePickerController can give you. For stills, you can
control focus and exposure directly and independently, and for video, you can deter‐
mine the quality, size, and frame rate of the resulting movie.

Using the Camera | 903

To understand how AV Foundation classes are used for image capture, imagine how
the Camera app works. When you are running the Camera app, you have, at all
times, a “window on the world” — the screen is showing you what the camera sees.
At some point, you might tap the button to take a still image or start taking a video;
now what the camera sees goes into a file.

Think of all that as being controlled by an engine. This engine, the heart of all AV
Foundation capture operations, is an AVCaptureSession object. It has inputs (such as
a camera) and outputs (such as a file). It also has an associated layer in your interface.
When you start the engine running, by calling startRunning, data flows from the
input through the engine; that is how you get your “window on the world,” display‐
ing on the screen what the camera sees.

As a rock-bottom example, let’s start by implementing just the “window on the
world” part of the engine. Our AVCaptureSession is retained in an instance property
(self.sess). We also need a special CALayer that will display what the camera is
seeing — namely, an AVCaptureVideoPreviewLayer. This layer is not really an
AVCaptureSession output; rather, the layer receives its imagery by association with
the AVCaptureSession. Our capture session’s input is the default camera. We have no
intention, as yet, of capturing anything to a file, so no output is needed:

self.sess = AVCaptureSession()
guard let cam = AVCaptureDevice.default(for: .video),
 let input = try? AVCaptureDeviceInput(device:cam)
 else {return}
self.sess.addInput(input)
let lay = AVCaptureVideoPreviewLayer(session:self.sess)
lay.frame = // ... some reasonable frame ...
self.view.layer.addSublayer(lay)
self.sess.startRunning()

Presto! Our interface now displays a “window on the world,” showing what the
camera sees.

Suppose now that our intention is that, while the engine is running and the “window
on the world” is showing, the user is to be allowed to tap a button that will capture a
still photo. Now we do need an output for our AVCaptureSession. This will be an
AVCapturePhotoOutput instance. We should also configure the session with a preset
(AVCaptureSession.Preset) to match our intended use of it; in this case, the preset
will be .photo.

So let’s modify the preceding code to give the session an output and a preset. We can
do this directly before we start the session running. We can also do it while the ses‐
sion is already running (and in general, if you want to reconfigure a running session,
doing so while it is running is far more efficient than stopping the session and start‐
ing it again), but then we must wrap our configuration changes in begin-
Configuration and commitConfiguration:

904 | Chapter 17: Photo Library and Camera

self.sess.beginConfiguration()
guard self.sess.canSetSessionPreset(self.sess.sessionPreset)
 else {return}
self.sess.sessionPreset = .photo
let output = AVCapturePhotoOutput()
guard self.sess.canAddOutput(output)
 else {return}
self.sess.addOutput(output)
self.sess.commitConfiguration()

The session is now running and is ready to capture a photo. The user taps the button
that asks to capture a photo, and we respond by telling the session’s photo output to
capturePhoto(with:delegate:). The first parameter is an AVCapturePhotoSettings
object. It happens that for a standard JPEG photo a default instance will do, but to
make things more interesting I’ll specify explicitly that I want the camera to use auto‐
matic flash and automatic image stabilization:

let settings = AVCapturePhotoSettings()
settings.flashMode = .auto
settings.isAutoStillImageStabilizationEnabled = true

As part of our configuration of the AVCapturePhotoSettings object, if we intend to
display the user’s captured photo in our interface, we should request a preview image
explicitly. It’s a lot more efficient for AV Foundation to create an uncompressed pre‐
view image of the correct size than for us to try to display or downsize a huge photo
image. Here’s how we might ask for the preview image:

let pbpf = settings.availablePreviewPhotoPixelFormatTypes[0]
let len = // desired maximum dimension
settings.previewPhotoFormat = [
 kCVPixelBufferPixelFormatTypeKey as String : pbpf,
 kCVPixelBufferWidthKey as String : len,
 kCVPixelBufferHeightKey as String : len
]

Another good idea, when configuring the AVCapturePhotoSettings object, is to ask
for a thumbnail image. This is different from the preview image: the preview image is
for you to display in your interface, but the thumbnail image is stored with the photo
and is suitable for rapid display by other applications. Here’s how to request a
thumbnail image at a standard size (160×120):

settings.embeddedThumbnailPhotoFormat = [
 AVVideoCodecKey : AVVideoCodecType.jpeg
]

When the AVCapturePhotoSettings object is fully configured, we’re ready to call
capturePhoto(with:delegate:), like this:

guard let output = self.sess.outputs[0] as? AVCapturePhotoOutput
 else {return}
output.capturePhoto(with: settings, delegate: self)

Using the Camera | 905

In that code, I specified self as the delegate (an AVCapturePhotoCaptureDelegate
adopter). Functioning as the delegate, we will now receive a sequence of events. The
exact sequence depends on what sort of capture we’re doing; in this case, it will be:

1. photoOutput(_:willBeginCaptureFor:)

2. photoOutput(_:willCapturePhotoFor:)

3. photoOutput(_:didCapturePhotoFor:)

4. photoOutput(_:didFinishProcessingPhoto:error:)

5. photoOutput(_:didFinishCaptureFor:)

The for: parameter throughout is an AVCaptureResolvedSettings object, embodying
the settings actually used during the capture; for instance, we could use it to find out
whether flash was actually used.

The delegate event of most interest to our example is the fourth one. This is where we
receive the photo! It will arrive in the second parameter as an AVCapturePhoto
object. This object contains a lot of information. It provides the resolved settings in
its resolvedSettings property. Its previewPixelBuffer property contains the data
for the preview image, if we requested one in our AVCapturePhotoSettings. We can
extract the image data from the AVCapturePhoto by calling its fileData-

Representation method. (There is also a longer form of the same method, fileData-
Representation(with:), allowing you to do such things as modify the metadata and
the thumbnail.)

In this example, we implement the fourth delegate method to store the preview image
as a property, for subsequent display in our interface, and then save the actual image
as a PHAsset in the user’s photo library:

func photoOutput(_ output: AVCapturePhotoOutput,
 didFinishProcessingPhoto photo:
 AVCapturePhoto, error: Error?) {
 if let cgim =
 photo.previewCGImageRepresentation()?.takeUnretainedValue() {
 let orient = // work out desired UIImage.Orientation
 self.previewImage = UIImage(
 cgImage: cgim, scale: 1, orientation: orient)
 }
 if let data = photo.fileDataRepresentation() {
 let lib = PHPhotoLibrary.shared()
 lib.performChanges({
 let req = PHAssetCreationRequest.forAsset()
 req.addResource(with: .photo, data: data, options: nil)
 })
 }
 }

906 | Chapter 17: Photo Library and Camera

Image capture with AV Foundation is a huge subject, and our example of a simple
photo capture has barely scratched the surface. AVCaptureVideoPreviewLayer pro‐
vides methods for converting between layer coordinates and capture device coordi‐
nates; without such methods, this can be a very difficult problem to solve. You can
scan bar codes, shoot video at 60 frames per second (on some devices), and more.
You can turn on the LED “torch” by setting the back camera’s torchMode to
AVCaptureTorchModeOn, even if no AVCaptureSession is running. You get direct
hardware-level control over the camera focus, manual exposure, and white balance.
You can capture bracketed images; starting in iOS 10, you can capture live images on
some devices, and you can capture RAW images on some devices; and since iOS 11
even more new features have been introduced, such as depth-based image capture
and multicamera capture. There are very good WWDC videos about all this, stretch‐
ing back over the past several years, and the AVCam-iOS and AVCamManual sample
code examples are absolutely superb, demonstrating how to deal with tricky issues
such as orientation that would otherwise be very difficult to figure out.

Using the Camera | 907

CHAPTER 18

Contacts

The user’s contacts constitute a database. The user can interact with this database
through the Contacts app. Your code can access the user’s contacts database pro‐
grammatically through the Contacts framework. You’ll need to import Contacts. An
interface similar to the Contacts app for letting the user interact with the contacts
database from within your app is provided by the Contacts UI framework. You’ll
need to import ContactsUI.

Access to the contacts database requires user authorization. You’ll use the CNContact‐
Store class for this. To learn what the current authorization status is, call the class
method authorizationStatus(for:) with a CNEntityType of .contacts. (This is a
curious requirement, as .contacts is the only CNEntityType!) To ask the system to
put up the authorization request alert if the status is .notDetermined, call the
instance method requestAccess(for:completionHandler:). The Info.plist must
contain some meaningful text that the system authorization request alert can use to
explain why your app wants access. The relevant key is “Privacy — Contacts Usage
Description” (NSContactsUsageDescription). See “Checking for Authorization” on
page 861 for a discussion of authorization strategy.

Contact Classes
Here are the chief object types you’ll be concerned with when you work with the
user’s contacts:

CNContactStore
The contacts database is accessed through an instance of the CNContactStore
class. You do not need to keep a reference to an instance of this class. When you
want to fetch a contact from the database, or when you want to save a created or
modified contact into the database, instantiate CNContactStore, do your fetching

909

or saving, and let the CNContactStore instance vanish. CNContactStore instance
methods for fetching and saving information can take time. Therefore, they
should be called on a background thread (see Chapter 24).

CNContact
An individual contact is an instance of the CNContact class. Its properties corre‐
spond to the fields displayed in the Contacts app. In addition, it has an
identifier which is unique and persistent. A CNContact that comes from the
CNContactStore has no connection with the database; it is safe to preserve it and
to pass it around between objects and between threads. It is also immutable by
default (its properties are read-only). To create your own CNContact, start with
its mutable subclass, CNMutableContact; to modify an existing contact, call
mutableCopy to make it a CNMutableContact.

The properties of a CNContact are matched by constant key names designating
those properties. For instance, a CNContact has a familyName property, and
there is also a CNContactFamilyNameKey. This should remind you of MPMedia‐
Item (Chapter 16), and indeed the purpose is similar: the key names allow you,
when you fetch a CNContact from the CNContactStore, to state which proper‐
ties of the CNContact you want populated. By limiting the properties to be
fetched, you fetch more efficiently and quickly.

Most properties of a CNContact have familiar types such as String or an enum.
However, the Contacts framework defines a number of specialized types as well;
a phone number is a CNPhoneNumber, and a postal address is a CNPostal‐
Address. Such types tend to be wrapped up in a generic CNLabeledValue, whose
purpose I’ll explain later. Dates, such as a birthday, are not Date objects but
rather DateComponents; this is because they do not necessarily require full date
information (I know when someone’s birthday is without knowing the year they
were born).

CNContactFormatter, CNPostalAddressFormatter
A formatter is an engine for displaying aspects of a CNContact as a string. A
CNContactFormatter whose style is .fullName, for instance, assembles the
name-related properties of a CNContact into a name string. A formatter will tell
you which properties it needs in order to form its string, so that you can easily
include them among the contact properties that you fetch initially from the store.

The contacts database can change while your app is running. To detect this, register
for the .CNContactStoreDidChange notification. The arrival of this notification
means that any contacts-related objects that you are retaining, such as CNContact
instances, may be outdated.

910 | Chapter 18: Contacts

Fetching Contact Information
You now know enough to get started! Let’s fetch some contacts. When we perform a
fetch, there are two parameters to provide in order to limit the information to be
returned to us:

A predicate
An NSPredicate. CNContact provides class methods that will generate the predi‐
cates you’re allowed to use. You are most likely to call predicateFor-

Contacts(matchingName:) or predicateForContacts(withIdentifiers:);
there are also predicates for fetching by email address and fetching by phone
number.

Keys for properties to be fetched
An array of objects adopting the CNKeyDescriptor protocol; such an object will
be either a string key name, such as CNContactFamilyNameKey, or a descriptor
provided by a formatter such as CNContactFormatter.

Fetching a Contact
I’ll start by finding the contact that represents me in my contacts database. To do so,
I’ll fetch all contacts whose name is Matt Neuburg and assume that the first one is
me. I’ll call the CNContactStore instance method unifiedContacts(matching:keys-
ToFetch:) with the matchingName predicate. Lots of combinations will work as the
name: "Matt Neuburg", "Neuburg Matt", "Neuburg, Matt", and so on.

To prove that I’ve found myself, I don’t need more than the first name and the last
name of those contacts, so those are the keys I’ll ask for. There are some parts of the
process that I’m not bothering to show: we are using a CNContactStore fetch
method, so everything should be done on a background thread, and the fetch should
be wrapped in a do...catch construct because it can throw:

let pred = CNContact.predicateForContacts(matchingName: "Matt Neuburg")
let matts = try CNContactStore().unifiedContacts(matching: pred,
 keysToFetch: [
 CNContactFamilyNameKey as CNKeyDescriptor,
 CNContactGivenNameKey as CNKeyDescriptor
])
guard let moi = matts.first else {
 print("couldn't find myself")
 return
}
print(moi)
// CNContact: 0x10331dce0: givenName=Matt, familyName=Neuburg, ...

Alternatively, I could call enumerateContacts(with:usingBlock:), which hands me
contacts one at a time. The parameter is a CNContactFetchRequest, a simple value

Fetching Contact Information | 911

class; in addition to keysToFetch and predicate, it has some powerful properties
allowing me to retrieve CNMutableContacts instead of CNContacts, to dictate the
sort order, and to suppress the unification of linked contacts (I’ll talk later about what
that means). One should perhaps regard enumerateContacts(with:usingBlock:) as
the primary way to fetch contacts. I don’t need those extra features here, but I’ll
demonstrate anyway. Again, assume we’re in a background thread and inside a
do...catch construct:

let pred = CNContact.predicateForContacts(matchingName:"Matt Neuburg")
let req = CNContactFetchRequest(keysToFetch: [
 CNContactFamilyNameKey as CNKeyDescriptor,
 CNContactGivenNameKey as CNKeyDescriptor
])
req.predicate = pred
var matt : CNContact? = nil
try CNContactStore().enumerateContacts(with:req) { con, stop in
 matt = con
 stop.pointee = true
}
guard let moi = matt else {
 print("couldn't find myself")
 return
}

A commonly asked question is: where’s the predicate for fetching information about
all contacts? There isn’t one. Simply call enumerateContacts(with:usingBlock:)
without a predicate.

Repopulating a Contact
The contact that I fetched in the preceding examples is only partially populated. That
means I can’t use it to obtain any further contact property information. To illustrate,
let’s say that I now want to access my own email addresses. If I were to carry on
directly from the preceding code by reading the emailAddresses property of moi, I’d
crash because that property isn’t populated:

let emails = moi.emailAddresses // crash

If I’m unsure what properties of a particular contact are populated, I can test for
safety beforehand with the isKeyAvailable(_:) method:

if moi.isKeyAvailable(CNContactEmailAddressesKey) {
 let emails = moi.emailAddresses
}

But even though I’m not crashing any more, I still want those email addresses. One
solution, obviously, would have been to plan ahead and include CNContactEmail-
AddressesKey in the list of properties to be fetched. Unfortunately, I failed to do that.

912 | Chapter 18: Contacts

Luckily, there’s another way; I can go back to the store and repopulate this contact,
based on its identifier:

let moi2 = try CNContactStore().unifiedContact(withIdentifier: moi.identifier,
 keysToFetch: [
 CNContactFamilyNameKey as CNKeyDescriptor,
 CNContactGivenNameKey as CNKeyDescriptor,
 CNContactEmailAddressesKey as CNKeyDescriptor
])
let emails = moi2.emailAddresses

Labeled Values
Now let’s talk about the structure of the thing I’ve just obtained — the value of the
emailAddresses property. It’s an array of CNLabeledValue objects.

A CNLabeledValue has a label and a value (and an identifier). This class handles
the fact that some contact attributes can have more than one value, each intended for
a specific purpose described by the label; for instance, I might have both a home
email address and a work email address. This is not a dictionary; the values are not
keyed by their labels. That’s because the same label can be used with more than one
value — I can have two work email addresses. The label is just a piece of information
paired with the value. You can make up your own labels, or you can use the built-in
labels; the latter are very strange-looking strings like "_$!<Work>!$_", but there are
also some constants that you can use instead, such as CNLabelWork.

Carrying on from the previous example, I’ll look for all my work email addresses:

let workemails = emails.filter{ $0.label == CNLabelWork }.map{ $0.value }

A phone number is a CNLabeledValue whose value is a CNPhoneNumber object. A
postal address is a CNLabeledValue whose value is a CNPostalAddress, which is
mostly a value class providing properties such as street, city, state, and country.

Contact Formatters
When presenting the user with contact information as a string, you should look to
see whether there’s a formatter for that information. For a name string, there’s
CNContactFormatter; for a CNPostalAddress string, there’s CNPostalAddress‐
Formatter.

To illustrate, let’s say that I want to present the full name and work email of the moi
contact to the user, as a string. I should not assume that the full name is to be con‐
structed as givenName followed by familyName, nor that those are the only two pieces
that constitute it. Rather, I should rely on the intelligence of a CNContactFormatter:

Fetching Contact Information | 913

let full = CNContactFormatterStyle.fullName
let keys = CNContactFormatter.descriptorForRequiredKeys(for:full)
let moi3 = try CNContactStore().unifiedContact(withIdentifier: moi.identifier,
 keysToFetch: [
 keys,
 CNContactEmailAddressesKey as CNKeyDescriptor
])
if let name = CNContactFormatter.string(from: moi3, style: full) {
 print("\(name): \(workemails[0])") // Matt Neuburg: matt@tidbits.com
}

CNPostalAddressFormatter turns a CNPostalAddress into a string, nicely lineated
and dealing with the numerous international variations. An intriguing feature of
CNPostalAddressFormatter is that it can also provide an attributed string, marked
with a custom attribute called CNPostalAddressPropertyAttribute (see “Custom
Attributes” on page 641). This attribute is applied to each piece of the address, with
the attribute’s value indicating which piece of the address this is. We could use this to
present a formatted address to the user, modifying the style of particular semantic
stretches. In this example, I’ll obtain a contact’s postal address, derive the attributed
string, learn what range of that string contains the contact’s country name, and
underline it:

let pred = CNContact.predicateForContacts(matchingName:"Charlotte Wilson")
let c = try CNContactStore().unifiedContacts(matching: pred,
 keysToFetch: [CNContactPostalAddressesKey as CNKeyDescriptor])[0]
let addr = c.postalAddresses[0]
let form = CNPostalAddressFormatter()
let attr = form.attributedString(from:addr.value, withDefaultAttributes:[:])
let s = attr.string as NSString
let range = NSRange(location: 0, length: s.length)
let key = NSAttributedString.Key(rawValue:CNPostalAddressPropertyAttribute)
attr.enumerateAttributes(in: range, options: []) { result, r, stop in
 if let val = result[key] as? String {
 if val == "country" {
 // r is the range of the country name; I'll prove it...
 print("country is:", s.substring(with: r)) // New Zealand
 // underline it
 if let mas = attr.mutableCopy() as? NSMutableAttributedString {
 mas.addAttributes([
 .underlineStyle: NSUnderlineStyle.single.rawValue
], range: r)
 // ... do something with the attributed string ...
 }
 stop.pointee = true
 }
 }
}

914 | Chapter 18: Contacts

Figure 18-1. A contact created programmatically

Saving Contact Information
All saving of information into the user’s contacts database involves a CNSaveRequest
object. You describe to this object your proposed changes by calling instance meth‐
ods such as add(_:toContainerWithIdentifier:), update(_:), and delete(_:).
The CNSaveRequest object batches those proposed changes. Then you hand the
CNSaveRequest object over to the CNContactStore with execute(_:), and the
changes are performed in a single transaction.

In this example, I’ll create a contact for Snidely Whiplash with a Home email
snidely@villains.com and add him to the contacts database:

let snidely = CNMutableContact()
snidely.givenName = "Snidely"
snidely.familyName = "Whiplash"
let email = CNLabeledValue(label: CNLabelHome,
 value: "snidely@villains.com" as NSString)
snidely.emailAddresses.append(email)
snidely.imageData = UIImage(named:"snidely")!.pngData()
let save = CNSaveRequest()
save.add(snidely, toContainerWithIdentifier: nil)
try CNContactStore().execute(save)

Sure enough, if we then check the state of the database through the Contacts app, our
Snidely contact exists (Figure 18-1).

Contact Sorting, Groups, and Containers
Contacts are naturally sorted either by family name or by given name, and the user
can choose between them (in the Settings app) in arranging the list of contacts to be
displayed by the Contacts app and other apps that display the same list. The

Saving Contact Information | 915

CNContact class provides a comparator, through the comparator(forNameSort-
Order:) class method, suitable for use with NSArray methods such as sorted-
Array(comparator:). To make sure your CNContact is populated with the
properties needed for sorting, call the class method descriptorForAllComparator-
Keys. Your sort order choices (CNContactSortOrder) are:

• .givenName

• .familyName

• .userDefault

Contacts can belong to groups, and the Contacts application in macOS provides an
interface for manipulating contact groups — though the Contacts app on an iOS
device does not. A group in the Contacts framework is a CNGroup; its mutable sub‐
class, CNMutableGroup, allows you to create a group and set its name. All manipula‐
tion of contacts and groups — creating, renaming, or deleting a group, adding a
contact to a group or removing a contact from a group — is performed through
CNSaveRequest instance methods.

Contacts come from sources. A contact or group might be on the device or might
come from an Exchange server or a CardDAV server. The source really does, in a
sense, own the group or contact; a contact can’t belong to two sources. A complicat‐
ing factor, however, is that the same real person might be listed in two different
sources as two different contacts; to deal with this, it is possible for multiple contacts
to be linked, indicating that they are the same person. That’s why the methods that
fetch contacts from the database describe the resulting contacts as “unified” — the
linkage between linked contacts from different sources has already been used to con‐
solidate the information into a single CNContact object. In the rare event that you
don’t want unification of linked contacts across sources as you fetch contacts, call
enumerateContacts(with:usingBlock:) with a CNContactFetchRequest whose
unifyResults property is false.

In the Contacts framework, a source is a CNContainer. When I called the CNSave‐
Request instance method add(_:toContainerWithIdentifier:) earlier, I supplied a
container identifier of nil, signifying the user’s default container.

Contacts Interface
The Contacts UI framework endows your app with an interface similar to the Con‐
tacts app, where the user can perform common tasks involving the listing, display,
and editing of contacts in the database. The framework provides two UIView‐
Controller subclasses:

916 | Chapter 18: Contacts

CNContactPickerViewController
Presents a navigation interface, effectively the same as the Contacts app but
without an Edit button: it lists the contacts in the database and allows the user to
pick one and view the details.

CNContactViewController
Presents an interface showing the properties of an individual contact. It comes in
three variants:

Existing contact
Displays the details, possibly editable, of an existing contact fetched from the
database.

New contact
Displays editable properties of a new contact, allowing the user to save the
edited contact into the database.

Unknown contact
Displays a proposed contact with a partial set of properties, for editing and
saving or merging into an existing contact in the database.

Some of the Contacts UI framework view controllers allow the user to select (tap) a
property of a contact in the interface. Therefore, they need a way to package up the
information about that property so as to communicate to your code what property
this is, such as “Matt Neuburg’s work email whose value is matt@tidbits.com.” For
this purpose, the Contacts framework provides the CNContactProperty class. This a
value class, consisting of a key (effectively the name of the property), a value, a label
(in case the property comes from a CNLabeledValue), a contact, and an identifier.
The contact arrives fully populated, so we can access all its properties from here
without returning to the CNContactStore.

You do not need user authorization to use these view controllers, and in the case
of an editable CNContactViewController you cannot prevent the user from sav‐
ing the edited contact into the database.

CNContactPickerViewController
A CNContactPickerViewController is a UINavigationController. With it, the user
can see a list of all contacts in the database, and can filter that list by group and by
searching.

To use CNContactPickerViewController, instantiate it, assign it a delegate (CNCon‐
tactPickerDelegate), and present it as a presented view controller:

let picker = CNContactPickerViewController()
picker.delegate = self
self.present(picker, animated:true)

Contacts Interface | 917

That code works — the picker appears, and there’s a Cancel button so the user can
dismiss it. When the user taps a contact, that contact’s details are pushed onto the
navigation controller. When the user taps a piece of information among the details,
some default action is performed: for a postal address, it is displayed in the Maps app;
for an email address, it becomes the addressee of a new message in the Mail app; for a
phone number, the number is dialed; and so on.

However, we have so far provided no way for any information to travel from the
picker to our app. For that, we need to implement the delegate method contact-
Picker(_:didSelect:). This method comes in two basic forms:

The second parameter is a CNContact
When the user taps a contact name, the contact’s details are not pushed onto the
navigation controller. Instead, the delegate method is called, the tapped contact is
passed to us, and the picker is dismissed.

The second parameter is a CNContactProperty
When the user taps a contact name, the contact’s details are pushed onto the
navigation controller. If the user now taps a piece of information among the
details, the delegate method is called, the tapped property is passed to us, and the
picker is dismissed.

(If we implement both forms of this method, it is as if we had implemented only the
first form. However, it’s possible to change that, using the predicateForSelectionOf-
Contact property, as I’m about to explain.)

You can perform additional configuration of what information appears in the picker
and what happens when it is tapped, by setting properties of the picker before you
present it. These properties are all NSPredicates:

predicateForEnablingContact

The predicate describes the contact. A contact will be enabled in the picker only
if the predicate evaluates to true. A disabled contact cannot be tapped, so it can’t
be selected and its details can’t be displayed.

predicateForSelectionOfContact

The predicate describes the contact. If the predicate evaluates to true, tapping
the contact calls the first delegate method (the parameter is the contact). Other‐
wise, tapping the contact displays the contact details.

predicateForSelectionOfProperty

The predicate describes the property (in the detail view). If the predicate evalu‐
ates to true, tapping the property calls the second delegate method (the parame‐
ter is a CNContactProperty). Otherwise, tapping the property performs the
default action.

918 | Chapter 18: Contacts

You can also determine what properties appear in the detail view, by setting the
displayedPropertyKeys property.

Let’s say we want the user to pass us an email address, and that’s the only reason
we’re displaying the picker. Then a reasonable configuration would be:

picker.displayedPropertyKeys =
 [CNContactEmailAddressesKey]
picker.predicateForEnablingContact =
 NSPredicate(format: "emailAddresses.@count > 0")

We would then implement only the second form of the delegate method (the param‐
eter is a CNContactProperty). Our code then effectively says: “Only enable contacts
that have email addresses. When the user taps an enabled contact, show the details.
In the details view, show only email addresses. When the user taps an email address,
report it to the delegate method and dismiss the picker.”

It is also possible to enable multiple selection. To do so, we implement a different pair
of delegate methods:

contactPicker(_:didSelect:)

The second parameter is an array of CNContact.

contactPicker(_:didSelectContactProperties:)

The second parameter is an array of CNContactProperty.

This causes a Done button to appear in the interface, and our delegate method is
called when the user taps it.

The interface for letting the user select multiple properties, if incorrectly config‐
ured, can be clumsy and confusing, and can even send your app into limbo.
Experiment carefully before deciding to use it.

CNContactViewController
A CNContactViewController is a UIViewController. It comes, as I’ve already said, in
three flavors, depending on how you instantiate it:

• Existing contact: init(for:)
• New contact: init(forNewContact:)
• Unknown contact: init(forUnknownContact:)

The first and third flavors display a contact initially, with an option to show a secon‐
dary editing interface. The second flavor consists solely of the editing interface.

Contacts Interface | 919

Unfortunately, as of this writing, there are problems with the CNContactView‐
Controller interface. In all three flavors, the view controller behaves incorrectly
with respect to the navigation bar: the navigation bar becomes transparent, and
the view controller’s main view underlaps it. In the second flavor, if the user taps
the Cancel button while the keyboard is showing, the view controller is not dis‐
missed. These are cosmetic issues, but test thoroughly before electing to use this
view controller.

You can configure the initial display of the contact in the first and third flavors, by
means of these properties:

allowsActions

Refers to extra buttons that can appear in the interface if it is true — things like
Share Contact, Add to Favorites, and Share My Location. Exactly what buttons
appear depends on what categories of information are displayed.

displayedPropertyKeys

Limits the properties shown for this contact.

message

A string displayed beneath the contact’s name.

There are two delegate methods (CNContactViewControllerDelegate):

contactViewController(_:shouldPerformDefaultActionFor:)

Used by the first and third flavors, in the initial display of the contact. This is like
a live version of the picker predicateForSelectionOfProperty, except that the
meaning is reversed: returning true means that the tapped property should pro‐
ceed to trigger the Mail app or the Maps app or whatever is appropriate. This
includes the message and mail buttons at the top of the interface. You are handed
the CNContactProperty, so you know what was tapped and can take action your‐
self if you return false.

contactViewController(_:didCompleteWith:)

Used by all three flavors. Called when the user dismisses the editing interface. If
the user taps Done in the editing interface, you receive the edited contact, which
has already been saved into the database. (If the user cancels out of the editing
interface, then if this delegate method is called, the received contact will be nil.)

Existing contact

To display an existing contact in a CNContactViewController, call init(for:) with a
CNContact that has already been populated with all the information needed to dis‐
play it in this view controller. For this purpose, CNContactViewController supplies a
class method descriptorForRequiredKeys, and you will want to call it to set the keys

920 | Chapter 18: Contacts

when you fetch your contact from the store, prior to using it with a CNContactView‐
Controller. Here’s an example:

let pred = CNContact.predicateForContacts(matchingName: "Snidely Whiplash")
let keys = CNContactViewController.descriptorForRequiredKeys()
let snides = try CNContactStore().unifiedContacts(matching: pred,
 keysToFetch: [keys])
guard let snide = snides.first else {
 print("no snidely")
 return
}

We now have a sufficiently populated contact, snide, and can use it in a subsequent
call to CNContactViewController’s init(for:).

Handing an insufficiently populated contact to CNContactViewController’s
init(for:) will crash your app.

Having instantiated CNContactViewController, you set its delegate (CNContact‐
ViewControllerDelegate) and push the view controller onto an existing
UINavigationController’s stack.

An Edit button appears at the top right, and the user can tap it to edit this contact in a
presented view controller — unless you have set the view controller’s allowsEditing
property to false, in which case the Edit button is suppressed.

Here’s a minimal working example; I’ll display the Snidely Whiplash contact that I
obtained earlier. Note that, if we were in a background thread earlier when we
fetched snide from the database, we need to be on the main thread now:

let vc = CNContactViewController(for:snide)
vc.delegate = self
vc.message = "Nyah ah ahhh"
self.navigationController?.pushViewController(vc, animated: true)

New contact
To use a CNContactViewController to allow the user to create a new contact, instan‐
tiate it with init(forNewContact:). The parameter can be nil, or it can be a
CNMutableContact that you’ve created and partially populated; but your properties
will be only suggestions, because the user is going to be shown the contact editing
interface and can change anything you’ve put.

Having set the view controller’s delegate, you then do a little dance: you instantiate a
UINavigationController with the CNContactViewController as its root view control‐
ler, and present the navigation controller as a presented view controller. Here is a
minimal implementation:

Contacts Interface | 921

let con = CNMutableContact()
con.givenName = "Dudley"
con.familyName = "Doright"
let npvc = CNContactViewController(forNewContact: con)
npvc.delegate = self
self.present(UINavigationController(rootViewController: npvc),
 animated:true)

You must dismiss the presented navigation controller yourself in your implementa‐
tion of contactViewController(_:didCompleteWith:).

Unknown contact
To use a CNContactViewController to allow the user to edit an unknown contact,
instantiate it with init(forUnknownContact:). You must provide a CNContact
parameter, which you may have made up from scratch using a CNMutableContact.
You must set the view controller’s contactStore to a CNContactStore instance; if
you don’t, it’s not an error, but the view controller is then useless. You then set a del‐
egate and push the view controller onto an existing navigation controller:

let con = CNMutableContact()
con.givenName = "Johnny"
con.familyName = "Appleseed"
con.phoneNumbers.append(CNLabeledValue(label: "woods",
 value: CNPhoneNumber(stringValue: "555-123-4567")))
let unkvc = CNContactViewController(forUnknownContact: con)
unkvc.message = "He knows his trees"
unkvc.contactStore = CNContactStore()
unkvc.delegate = self
unkvc.allowsActions = false
self.navigationController?.pushViewController(unkvc, animated: true)

The interface contains these two buttons (among others):

Create New Contact
The editing interface is presented, with a Cancel button and a Done button.

Add to Existing Contact
The contact picker is presented. The user can tap Cancel or tap an existing con‐
tact. If the user taps an existing contact, that contact is presented for editing, with
fields from the partial contact merged in, along with a Cancel button and an
Update button.

If the framework thinks that this partial contact is the same as an existing contact,
there will be a third button offering explicitly to update that particular contact. The
result is as if the user had tapped Add to Existing Contact and picked this existing
contact. In the editing interface, if the user taps Cancel, you’ll never hear about it;
contactViewController(_:didCompleteWith:) won’t even be called.

922 | Chapter 18: Contacts

CHAPTER 19

Calendar

The user’s calendar information constitutes a database of calendar events. This data‐
base also includes reminders. The user can interact with the calendar events through
the Calendar app, and with the reminders through the Reminders app. Your code can
access the database through the EventKit framework. You’ll need to import Event-
Kit. An interface for allowing the user to interact with the calendar from within your
app is also provided, through the EventKit UI framework. You’ll need to import
EventKitUI.

The database is accessed as an instance of the EKEventStore class. This instance is
expensive to obtain but lightweight to maintain, so your usual strategy will be to
instantiate and retain one EKEventStore instance. There is no harm in initializing a
property or global as an EKEventStore instance and keeping that reference for the
rest of the app’s lifetime:

let database = EKEventStore()

In the examples in this chapter, my EKEventStore instance is called self.database
throughout.

Access to the database requires user authorization. You’ll use the EKEventStore class
for this. Although there is one database, access to calendar events and access to
reminders are considered two separate forms of access and require separate authori‐
zations. To learn what the current authorization status is, call the class method
authorizationStatus(for:) with an EKEntityType, either .event (for access to cal‐
endar events) or .reminder (for access to reminders). To ask the system to put up the
authorization request alert if the status is .notDetermined, call the instance method
requestAccess(to:completion:). The Info.plist must contain some meaningful text
that the system authorization request alert can use to explain why your app wants
access. The relevant key is either “Privacy — Calendars Usage Description”

923

(NSCalendarsUsageDescription) or “Privacy — Reminders Usage Description”
(NSRemindersUsageDescription). See “Checking for Authorization” on page 861 for
a discussion of authorization strategy.

Calendar Database Contents
Starting with an EKEventStore instance, you can obtain two kinds of object — a cal‐
endar or a calendar item.

Calendars
A calendar represents a named (title) collection of calendar items, meaning events
or reminders. It is an instance of EKCalendar. But an EKCalendar instance doesn’t
contain or link to its calendar items; to obtain and create calendar items, you work
directly with the EKEventStore itself. A calendar’s allowedEntityTypes, despite the
plural, will probably return just one entity type; you can’t create a calendar that
allows both.

Calendars themselves come in various types (type, an EKCalendarType), reflecting
the nature of their origin: a calendar can be created and maintained by the user
locally (.local), but it might also live remotely on the network (.cal-
DAV, .exchange); the Birthday calendar (.birthday) is generated automatically from
information in the contacts database; and so on.

The type is supplemented and embraced by the calendar’s source, an EKSource
whose sourceType (EKSourceType) can be .local, .exchange, .calDAV (which
includes iCloud), and so forth; a source can also have a title, and it has a unique
identifier (sourceIdentifier). You can get an array of all sources known to the
EKEventStore, or specify a source by its identifier. You’ll probably use the source
exclusively and ignore the calendar’s type property.

There are three ways of requesting a calendar:

All calendars
Fetch all calendars permitting a particular calendar item type (.event
or .reminder), by calling calendars(for:). You can send this message either to
the EKEventStore or to an EKSource.

Particular calendar
Fetch an individual calendar from the EKEventStore by means of a previously
obtained calendarIdentifier, by calling calendar(withIdentifier:).

Default calendar
Fetch the default calendar for a particular calendar item type, by asking for the
defaultCalendarForNewEvents or defaultCalendarForNewReminders of the

924 | Chapter 19: Calendar

EKEventStore; this is appropriate particularly if your intention is to create a new
calendar item.

You can also create a calendar, by means of the initializer init(for:eventStore:).
At that point, you can specify the source to which the calendar belongs. I’ll give an
example later.

Depending on the source, a calendar will be modifiable in various ways. The calen‐
dar’s isSubscribed might be true. If the calendar’s isImmutable is true, you can’t
delete the calendar or change its attributes; but its allowsContentModifications
might still be true, in which case you can add, remove, and alter its events.

Calendar Items
A calendar item (EKCalendarItem) is either a calendar event (EKEvent) or a
reminder (EKReminder). Think of it as a memorandum describing when something
happens. As I mentioned a moment ago, you don’t get calendar items from a calen‐
dar; rather, a calendar item has a calendar, but you get it from the EKEventStore as a
whole. There are two chief ways of getting a calendar item:

By predicate
Fetch all events or reminders according to a predicate (NSPredicate):

• events(matching:)

• enumerateEvents(matching:using:)

• fetchReminders(matching:completion:)

EKEventStore methods starting with predicateFor supply the needed predicate.
I’ll give an example later.

By identifier
Fetch an individual calendar item by means of a previously obtained calendar-
ItemIdentifier, by calling calendarItem(withIdentifier:).

Calendar Database Changes
Changes to the database can be atomic. There are two prongs to the implementation
of this feature:

• The EKEventStore methods for saving and removing calendar items and calen‐
dars have a commit: parameter. If you pass false as the argument, the changes
that you’re ordering are batched without performing them; later, you can call
commit (or reset if you change your mind). If you pass false and fail to call
commit later, your changes will never happen.

Calendar Database Contents | 925

• An abstract class, EKObject, functions as the superclass for all the other persis‐
tent object types, such as EKCalendar, EKCalendarItem, EKSource, and so on. It
endows those classes with methods refresh, rollback, and reset, along with
read-only properties isNew and hasChanges.

The database can change while your app is running (the user might sync, or the user
might edit with the Calendar app), which can put your information out of date. You
can register for a single EKEventStore notification, .EKEventStoreChanged; if you
receive it, you should assume that any calendar-related instances you’re holding are
invalid. This situation is made relatively painless by the fact that every calendar-
related instance can be refreshed with refresh. Keep in mind that refresh returns a
Boolean; if it returns false, this object is really invalid and you should stop working
with it entirely (it may have been deleted from the database).

Creating Calendars, Events, and Reminders
You now know enough for an example! Let’s start by creating an events calendar. We
need to assign a source type (EKSourceType); we’ll choose .local, meaning that the
calendar will be created on the device itself. We can’t ask the database for the local
source directly, so we have to cycle through all sources looking for it. When we find
it, we make a new calendar called “CoolCal” (saving into the database can fail, so
assume we’re running inside a do...catch construct):

let locals = self.database.sources.filter {$0.sourceType == .local}
guard let src = locals.first else {
 print("failed to find local source")
 return
}
let cal = EKCalendar(for:.event, eventStore:self.database)
cal.source = src
cal.title = "CoolCal"
try self.database.saveCalendar(cal, commit:true)

On a device where the calendar is subscribed to a remote source, .local calen‐
dars are inaccessible. The examples in this chapter use a local calendar, because I
don’t want to risk damaging your online calendars; to test the examples, you’ll
need to turn off iCloud for your Calendar app temporarily.

Events
Now let’s create an event. EKEvent is a subclass of EKCalendarItem, from which it
inherits some of its properties. If you’ve ever used the Calendar app in iOS or macOS,
you already have a sense for how an EKEvent can be configured. It has a title and
optional notes. It is associated with a calendar, as I’ve already said. It can have one
or more alarms and one or more recurrence rules; I’ll talk about those in a moment.
All of that is inherited from EKCalendarItem.

926 | Chapter 19: Calendar

EKEvent itself adds the startDate and endDate properties; these are Dates and
involve both date and time. If the event’s isAllDay property is true, the time aspect
of its dates is ignored; the event is associated with a day or a stretch of days as a
whole. If the event’s isAllDay property is false, the time aspect of its dates matters;
an event will then typically be bounded by two times on the same day.

Making an event is simple, if tedious. You must provide a startDate and an endDate!
The simplest way to construct dates, and to do the date math that you’ll often need in
order to derive one date from another, is with DateComponents. I’ll create an event
and add it to our new calendar. First, I need a way to locate the new calendar. I’ll
locate it by its title. I really should be using the calendarIdentifier; the title isn’t
reliable, since the user might change it, and since multiple calendars can have the
same title. However, it’s only an example:

func calendar(name:String) -> EKCalendar? {
 let cals = self.database.calendars(for:.event)
 return cals.filter {$0.title == name}.first
}

Now I’ll create an event, configure it, and add it to our CoolCal calendar:

guard let cal = self.calendar(name:"CoolCal") else {
 print("failed to find calendar")
 return
}
// form the start and end dates
let greg = Calendar(identifier:.gregorian)
var comp = DateComponents(year:2019, month:8, day:10, hour:15)
let d1 = greg.date(from:comp)!
comp.hour = comp.hour! + 1
let d2 = greg.date(from:comp)!
// form the event
let ev = EKEvent(eventStore:self.database)
ev.title = "Take a nap"
ev.notes = "You deserve it!"
ev.calendar = cal
(ev.startDate, ev.endDate) = (d1,d2)
// save it
try self.database.save(ev, span:.thisEvent, commit:true)

Alarms
An alarm is an EKAlarm, a very simple class; it can be set to fire either at an absolute
date or at a relative offset from the event time. On an iOS device, a calendar alarm
fires through a local notification (Chapter 13); if the user turns off local notifications
for the Calendar app, there will be no indication that the alarm has fired. We could
easily have added an alarm to our event as we were configuring it:

let alarm = EKAlarm(relativeOffset:-3600) // one hour before
ev.addAlarm(alarm)

Creating Calendars, Events, and Reminders | 927

Recurrence
Recurrence is embodied in a recurrence rule (EKRecurrenceRule); a calendar item
can have multiple recurrence rules, which you manipulate through its recurrence-
Rules property and addRecurrenceRule(_:) and removeRecurrenceRule(_:)

methods. A simple EKRecurrenceRule is described by three properties:

Frequency
By day, by week, by month, or by year.

Interval
Fine-tunes the notion “by” in the frequency. A value of 1 means “every.” A value
of 2 means “every other.” And so on.

End
Optional, because the event might recur forever. It is an EKRecurrenceEnd
instance, describing the limit of the event’s recurrence either as an end date or as
a maximum number of occurrences.

The options for describing a more complex EKRecurrenceRule are best summarized
by its initializer:

init(recurrenceWith type: EKRecurrenceFrequency,
 interval: Int,
 daysOfTheWeek: [EKRecurrenceDayOfWeek]?,
 daysOfTheMonth: [NSNumber]?,
 monthsOfTheYear: [NSNumber]?,
 weeksOfTheYear: [NSNumber]?,
 daysOfTheYear: [NSNumber]?,
 setPositions: [NSNumber]?,
 end: EKRecurrenceEnd?)

The meanings of all those parameters are mostly obvious from their names and types.
The EKRecurrenceDayOfWeek class allows specification of a week number as well as
a day number so that you can say things like “the fourth Thursday of the month.”
Many of the numeric values can be negative to indicate counting backward from the
last one. Numbers are all 1-based, not 0-based. The setPositions: parameter is an
array of numbers filtering the occurrences defined by the rest of the specification
against the interval; for instance, if daysOfTheWeek is Sunday, -1 means the final
Sunday.

An EKRecurrenceRule is intended to embody the RRULE event component in the
iCalendar standard specification (http://datatracker.ietf.org/doc/rfc5545); in fact, the
documentation tells you how each EKRecurrenceRule property corresponds to an
RRULE attribute, and if you log an EKRecurrenceRule, what you’re shown is the
underlying RRULE. RRULE can describe some amazingly sophisticated recurrence rules,
such as this one:

928 | Chapter 19: Calendar

http://datatracker.ietf.org/doc/rfc5545

RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU

That means: “Every Sunday in January, every other year.” Let’s form this rule.
Observe that we should attach it to an event whose startDate and endDate actually
obey the rule — that is, the event should fall on a Sunday in January. Fortunately,
DateComponents makes that easy:

let everySunday = EKRecurrenceDayOfWeek(.sunday)
let january = 1 as NSNumber
let recur = EKRecurrenceRule(
 recurrenceWith:.yearly, // every year
 interval:2, // no, every *two* years
 daysOfTheWeek:[everySunday],
 daysOfTheMonth:nil,
 monthsOfTheYear:[january],
 weeksOfTheYear:nil,
 daysOfTheYear:nil,
 setPositions: nil,
 end:nil)
let ev = EKEvent(eventStore:self.database)
ev.title = "Mysterious biennial Sunday-in-January morning ritual"
ev.addRecurrenceRule(recur)
ev.calendar = cal // assume we have our calendar
// need a start date and end date
let greg = Calendar(identifier:.gregorian)
var comp = DateComponents(year:2019, month:1, hour:10)
comp.weekday = 1 // Sunday
comp.weekdayOrdinal = 1 // *first* Sunday
ev.startDate = greg.date(from:comp)!
comp.hour = 11
ev.endDate = greg.date(from:comp)!
try self.database.save(ev, span:.futureEvents, commit:true)

In that code, the event we save into the database is a recurring event. When we save
or delete a recurring event, we must specify a span: argument (EKSpan). This is
either .thisEvent or .futureEvents, and corresponds to the two buttons the user
sees in the Calendar interface when saving or deleting a recurring event
(Figure 19-1). The buttons and the span types reflect their meaning exactly: the
change affects either this event alone, or this event plus all future (not past) recurren‐
ces. This choice determines not only how this and future recurrences of the event are
affected now, but also how they relate to one another from now on.

Reminders
A reminder (EKReminder) is very similar to an event (EKEvent); the chief difference
is that EKReminder was invented some years after EKEvent and so its API is a little
more modern. They both inherit from EKCalendarItem, so a reminder has a calendar
(which the Reminders app refers to as a “list”), a title, notes, alarms, and recurrence
rules.

Creating Calendars, Events, and Reminders | 929

Figure 19-1. The user specifies a span

A remainder has an isCompleted property and a completionDate. Setting the
isCompleted property to true sets the completionDate, and vice versa.

Instead of a start date and an end date, a reminder has a start date (startDate-
Components) and a due date (dueDateComponents). As the names suggest, these are
expressed directly as DateComponents, so you can supply any desired degree of
detail.

You are free to create a reminder with no date information, and that’s a common
thing to do:

let cal = self.database.defaultCalendarForNewReminders()
let rem = EKReminder(eventStore:self.database)
rem.title = "Get bread"
rem.calendar = cal
try self.database.save(rem, commit:true)

Here’s how to change that to a reminder for tomorrow:

// ... create rem as before ...
let greg = Calendar(identifier:.gregorian)
let tomorrow = greg.date(byAdding: DateComponents(day:1), to: Date())
let comps : Set<Calendar.Component> = [.year, .month, .day]
rem.dueDateComponents = greg.dateComponents(comps, from:tomorrow!)
try self.database.save(rem, commit:true)

But although we have set the reminder’s due date, this reminder will not actively
remind the user of anything! If we want to alert the user when the due date arrives,
we must also add an EKAlarm to the reminder.

The reminder’s startDateComponents are needed only if you attach a recurrence rule
to the reminder. You’ll typically want the reminding to start immediately. Unlike a
recurring calendar event, a recurring reminder doesn’t generate multiple reminders
stretching out into the future; instead, it generates one reminder that automatically
generates the next reminder upon completion.

930 | Chapter 19: Calendar

Proximity Alarms
A proximity alarm is triggered by the user’s approaching or leaving a certain location
(also known as geofencing). This is appropriate particularly for reminders: one might
wish to be reminded of some task when approaching the place where that task can be
accomplished. To form the location, you’ll need to use the CLLocation class (see
Chapter 21). Here, I’ll attach a proximity alarm to a reminder (rem); the alarm will
fire when I’m near my local Trader Joe’s:

let alarm = EKAlarm()
let loc = EKStructuredLocation(title:"Trader Joe's")
loc.geoLocation = CLLocation(latitude:34.271848, longitude:-119.247714)
loc.radius = 10*1000 // meters
alarm.structuredLocation = loc
alarm.proximity = .enter // "geofence": we alarm when *arriving*
rem.addAlarm(alarm)

Use of a proximity alarm requires Location Services authorization, but that’s of no
concern here, because the app that needs this authorization is not our app but
the Reminders app! Now that we’ve placed a reminder with a proximity alarm into
the database, the Reminders app will request authorization, if needed, the next time
the user brings it frontmost. If you add a proximity alarm to the event database and
the Reminders app can’t perform background geofencing, the alarm will not fire
(unless the Reminders app is frontmost).

You can also construct a local notification based on geofencing without involv‐
ing reminders or the Reminders app. See Chapter 21.

Fetching Events and Reminders
Now let’s talk about how to extract an event from the database. One way, as I men‐
tioned earlier, is by its identifier (calendarItemIdentifier). Not only is this identi‐
fier a fast and unique way to obtain an event, but also it’s just a string, which means
that it persists even if the EKEventStore subsequently goes out of existence, whereas
an actual EKEvent drawn from the database loses its meaning and its usability if the
EKEventStore instance is destroyed.

You can also extract events from the database by matching a predicate (NSPredicate).
To form this predicate, you specify a start and end date and an array of eligible calen‐
dars, and call this EKEventStore method:

• predicateForEvents(withStart:end:calendars:)

That’s the only kind of predicate you can use, so any further filtering of events is then
up to you. In this example, I’ll look through the events of our CoolCal calendar to
find the nap event I created earlier; because I have to specify a date range, I ask for

Fetching Events and Reminders | 931

events occurring over a two-year span. Because calling enumerate-

Events(matching:using:) can be time-consuming, it’s a good idea to run it on a
background thread (Chapter 24):

let greg = Calendar(identifier:.gregorian)
let d = Date() // today
let d1 = greg.date(byAdding:DateComponents(year:-1), to:d)!
let d2 = greg.date(byAdding:DateComponents(year:2), to:d)!
let pred = self.database.predicateForEvents(withStart:
 d1, end:d2, calendars:[cal]) // assume we have our calendar
DispatchQueue.global(qos:.default).async {
 self.database.enumerateEvents(matching:pred) { ev, stop in
 if ev.title.range(of:"nap") != nil {
 self.napid = ev.calendarItemIdentifier
 stop.pointee = true
 }
 }
}

When you fetch events from the database, they are provided in no particular order;
the convenience method compareStartDate(with:) is provided as a sort selector to
put them in order by start date:

events.sort { $0.compareStartDate(with:$1) == .orderedAscending }

When you extract events from the database, event recurrences are treated as separate
events. Recurrences of the same event will have different start and end dates but the
same calendarItemIdentifier. When you fetch an event by identifier, you get the
earliest event with that identifier. This makes sense, because if you’re going to make a
change affecting this and future recurrences of the event, you’ll want to start with the
earliest possible recurrence (so that “future” means “all”).

Fetching reminders is similar to fetching events, but simpler. When you call fetch-
Reminders(matching:completion:), the possible predicates let you fetch all remind‐
ers in given calendars, incomplete reminders, or completed reminders. You don’t
have to call it on a background thread, because it calls your completion function
asynchronously.

Calendar Interface
The EventKit UI framework provides three view controller classes that manage views
for letting the user work with events and calendars:

EKEventViewController
Shows the description of a single event, possibly editable.

EKEventEditViewController
Allows the user to create or edit an event.

932 | Chapter 19: Calendar

EKCalendarChooser
Allows the user to pick a calendar.

These view controllers automatically listen for changes in the database and, if needed,
will automatically call refresh on the information being edited, updating their dis‐
play to match. If a view controller is displaying an event in the database and the event
is deleted while the user is viewing it, the delegate will get the same notification as if
the user had deleted it.

EKEventViewController
EKEventViewController displays an event in the manner familiar from the Calendar
app, listing the event’s title, date and time, calendar, alert, and notes. To use
EKEventViewController, instantiate it, give it an event from the database, assign it a
delegate (EKEventViewDelegate), and push it onto an existing navigation controller:

let ev = self.database.calendarItem(withIdentifier:self.napid) as! EKEvent
let evc = EKEventViewController()
evc.event = ev
evc.delegate = self
self.navigationController?.pushViewController(evc, animated: true)

Do not use EKEventViewController for an event that isn’t in the database, or at a
time when the database isn’t open! It won’t function correctly if you do.

If allowsEditing is true, an Edit button appears in the navigation bar, and by tap‐
ping this, the user can edit the various aspects of an event in an interface just like the
Calendar app, including the Delete button at the bottom. If the user ultimately deletes
the event, or edits it and taps Done, the change is saved into the database.

If the user deletes the event, you will be notified in the delegate method, eventView-
Controller(_:didCompleteWith:). The second parameter is an EKEventView‐
Action, which will be .deleted; it is then up to you to pop the navigation controller:

func eventViewController(_ controller: EKEventViewController,
 didCompleteWith action: EKEventViewAction) {
 if action == .deleted {
 self.navigationController?.popViewController(animated:true)
 }
}

Even if allowsEditing is false (the default), the user can change what calendar
this event belongs to, can change the event’s alert firing time, and can delete the
event. I regard this as a bug.

Calendar Interface | 933

EKEventEditViewController
EKEventEditViewController (a UINavigationController) presents the interface for
editing an event. To use it, set its eventStore and editViewDelegate (EKEventEdit‐
ViewDelegate, not delegate), and optionally its event, and present it as a presented
view controller (which looks best on the iPad as a popover). The event can be nil for
a completely empty new event; it can be an event you’ve just created (and possibly
partially configured) and not stored in the database; or it can be an existing event
from the database.

The delegate method eventEditViewControllerDefaultCalendar(forNewEvents:)
may be implemented to specify what calendar a completely new event should be
assigned to. If you’re partially constructing a new event, you can assign it a calendar
then, and of course an event from the database already has a calendar.

You must implement the delegate method eventEditViewController(_:did-

CompleteWith:) so that you can dismiss the presented view controller. The second
parameter is an EKEventEditViewAction telling you what the user did; possible
actions are that the user cancelled (.canceled), saved the edited event into the data‐
base (.saved), or deleted an already existing event from the database (.deleted).
You can get a reference to the edited event as the view controller’s event.

EKCalendarChooser
EKCalendarChooser displays a list of calendars, choosable by tapping; a chosen cal‐
endar displays a checkmark. To use it, instantiate it with its initializer:

• init(selectionStyle:displayStyle:entityType:eventStore:)

The selectionStyle dictates whether the user can pick one or multiple calendars;
the displayStyle states whether all calendars or only writable calendars will be dis‐
played. Now set a delegate (adopting the EKCalendarChooserDelegate protocol)
and do a little dance: make the EKCalendarChooser the root view controller of a
UINavigationController and present the navigation controller as a presented view
controller (which looks best as a popover on the iPad). Two properties, showsCancel-
Button and showsDoneButton, determine whether these buttons will appear in the
navigation bar. You can perform additional customizations through the view control‐
ler’s navigationItem.

There are three delegate methods, the first two being required:

• calendarChooserDidFinish(_:) (the user tapped Done)
• calendarChooserDidCancel(_:)

• calendarChooserSelectionDidChange(_:)

934 | Chapter 19: Calendar

In the finish and cancel methods, you should dismiss the presented view controller.

In this example, we offer to delete the selected calendar. Because this is potentially
destructive, we pass through an action sheet for confirmation:

@IBAction func deleteCalendar (_ sender: Any) {
 let choo = EKCalendarChooser(
 selectionStyle:.single, displayStyle:.allCalendars,
 entityType:.event, eventStore:self.database)
 choo.showsDoneButton = true
 choo.showsCancelButton = true
 choo.delegate = self
 choo.navigationItem.prompt = "Pick a calendar to delete:"
 let nav = UINavigationController(rootViewController: choo)
 self.present(nav, animated: true)
}
func calendarChooserDidCancel(_ choo: EKCalendarChooser) {
 self.dismiss(animated:true)
}
func calendarChooserDidFinish(_ choo: EKCalendarChooser) {
 let cals = choo.selectedCalendars
 guard cals.count > 0 else { self.dismiss(animated:true); return }
 let calsToDelete = cals.map {$0.calendarIdentifier}
 let alert = UIAlertController(title:"Delete selected calendar?",
 message:nil, preferredStyle:.actionSheet)
 alert.addAction(UIAlertAction(title:"Cancel", style:.cancel))
 alert.addAction(UIAlertAction(title:"Delete", style:.destructive) {_ in
 for id in calsToDelete {
 if let cal = self.database.calendar(withIdentifier:id) {
 try? self.database.removeCalendar(cal, commit: true)
 }
 }
 self.dismiss(animated:true) // dismiss *everything*
 })
 choo.present(alert, animated: true)
}

Calendar Interface | 935

CHAPTER 20

Maps

Your app can imitate the Maps app, displaying a map interface and placing annota‐
tions and overlays on the map. The relevant classes are provided by the Map Kit
framework. You’ll need to import MapKit. The types that describe locations in terms
of latitude and longitude, whose names start with “CL,” come from the Core Location
framework, but you won’t need to import it explicitly if you’re already importing the
Map Kit framework.

Map Views
A map is displayed through a UIView subclass, an MKMapView. You can instantiate
an MKMapView in code like any other view. Alternatively, in the nib editor, the
Objects library contains an MKMapView object that you can drag into your interface
as you design it; you might need to link to the MapKit framework manually (in the
app target’s Link Binary With Libraries build phase) to prevent the app from crashing
as the nib loads.

A map has a type, which is usually one of the following (MKMapType):

• .standard

• .satellite

• .hybrid

(A further MKMapType, .mutedStandard, dims the map elements so that your addi‐
tions to the map view stand out.)

937

Figure 20-1. A map view

Displaying a Region
The area displayed on the map is its region, an MKCoordinateRegion. This is a
struct comprising two things:

center

A CLLocationCoordinate2D. The latitude and longitude of the point at the cen‐
ter of the region.

span

An MKCoordinateSpan. The quantity of latitude and longitude embraced by the
region (and hence the scale of the map).

In this example, I’ll initialize the display of an MKMapView (self.map) to show a
place where I like to go dirt biking (Figure 20-1):

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let span = MKCoordinateSpan(latitudeDelta: 0.015, longitudeDelta: 0.015)
let reg = MKCoordinateRegion(center:loc, span:span)
self.map.region = reg

An MKCoordinateSpan is described in degrees of latitude and longitude. It may be,
however, that what you know is the region’s proposed dimensions in meters. To con‐
vert, call this MKCoordinateRegion initializer:

• init(center:latitudinalMeters:longitudinalMeters:)

The ability to perform this conversion is important, because an MKMapView shows
the world through a Mercator projection, where longitude lines are parallel and equi‐
distant, and scale increases at higher latitudes. I happen to know that the area I want
to display is about 1200 meters on a side, so this is another way of displaying roughly
the same region:

938 | Chapter 20: Maps

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let reg = MKCoordinateRegion(
 center:loc, latitudinalMeters:1200, longitudinalMeters:1200)
self.map.region = reg

Another way of describing a map region is with an MKMapRect, a struct built up
from MKMapPoint and MKMapSize. The earth has already been projected onto the
map for us, and now we are describing a rectangle of that map, in terms of the units
in which the map is drawn. The exact relationship between an MKMapPoint and the
corresponding location coordinate is arbitrary and of no interest; what matters is that
you can ask for the conversion, along with the ratio of points to meters (which will
vary with latitude):

• MKMapPoint(_:) (coerces from CLLocationCoordinate2D)
• coordinate (coerces to CLLocationCoordinate2D)
• distance(to:) (meters between map points)
• MKMetersPerMapPointAtLatitude(_:)

• MKMapPointsPerMeterAtLatitude(_:)

To determine what the map view is showing in MKMapRect terms, use its visible-
MapRect property. So this is yet another way of displaying approximately the same
region:

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let pt = MKMapPoint(loc)
let w = MKMapPointsPerMeterAtLatitude(loc.latitude) * 1200
self.map.visibleMapRect =
 MKMapRect(x:pt.x - w/2.0, y:pt.y - w/2.0, width:w, height:w)

In none of those examples did I bother with the question of the actual dimensions of
the map view itself. I simply threw a proposed region at the map view, and it decided
how best to portray the corresponding area. Values you assign to the map view’s
region and visibleMapRect are unlikely to be the exact values it adopts, because the
map view will optimize for display without distorting the map’s scale. You can per‐
form this same optimization in code by calling these methods:

• regionThatFits(_:)

• mapRectThatFits(_:)

• mapRectThatFits(_:edgePadding:)

Scrolling and Zooming
By default, the user can zoom and scroll the map with the usual gestures; you can
turn this off by setting the map view’s isZoomEnabled and isScrollEnabled to

Map Views | 939

false. Usually you will set them both to true or both to false. New in iOS 13, you
can limit how far the user can zoom and scroll, using these properties:

cameraZoomRange

An MKMapView.CameraZoomRange. How far the “camera” (the eye through
which the map view is looking at the earth) is permitted to be from the center of
the region displayed. The initializer takes a maximum distance, a minimum dis‐
tance, or both (in meters).

cameraBoundary

An MKMapView.CameraBoundary. The maximum region of the earth that the
map view can display; the map view cannot be scrolled so as to reveal anything
outside this region. Can be expressed as an MKCoordinateRegion or as an
MKMapRect, just like the visible region of the map view.

Here, I’ll modify my map view to restrict how far the user can zoom and scroll from
the initial display:

self.map.cameraBoundary = MKMapView.CameraBoundary(
 coordinateRegion: MKCoordinateRegion(
 center: loc, span: MKCoordinateSpan(
 latitudeDelta: 0.6, longitudeDelta: 0.6)))
self.map.cameraZoomRange = MKMapView.CameraZoomRange(
 maxCenterCoordinateDistance: 130_000)

You can change programmatically the region displayed, optionally with animation,
by calling these methods:

• setRegion(_:animated:)

• setCenter(_:animated:)

• setVisibleMapRect(_:animated:)

• setVisibleMapRect(_:edgePadding:animated:)

Even programmatically, you cannot violate the limits set by the map view’s camera-
ZoomRange and cameraBoundary.

The map view’s delegate (MKMapViewDelegate) is notified as the map loads and as
the region changes (including changes triggered programmatically):

• mapViewWillStartLoadingMap(_:)

• mapViewDidFinishLoadingMap(_:)

• mapViewDidFailLoadingMap(_:withError:)

• mapViewDidChangeVisibleRegion(_:)

• mapView(_:regionWillChangeAnimated:)

• mapView(_:regionDidChangeAnimated:)

940 | Chapter 20: Maps

Other Map View Customizations
An MKMapView has Bool properties such as showsCompass, showsScale, and shows-
Traffic; set these to dictate whether those elements of the map should be displayed.
Starting in iOS 11, the compass and the scale legend can be displayed as independent
views, an MKCompassButton and an MKScaleView; if you use these, you’ll probably
want to set the corresponding Bool property to false so as not to get two compasses
or scales. Both views are initialized with the map view as parameter, so that their dis‐
play will reflect the rotation and zoom of the map. The MKCompassButton, like the
internal compass, is a button; if the user taps it, the map is reoriented with north at
the top. The visibility of these views is governed by properties (compassVisibility
and scaleVisibility) whose value is one of these (MKFeatureVisibility):

• .hidden

• .visible

• .adaptive

The .adaptive behavior (the default) is that the compass is visible only if the map is
rotated, and the scale legend is visible only if the map is zoomed.

New in iOS 13, you can dictate what sorts of POI (point of interest) are displayed on
the map. In iOS 12 and before, your only choices were to show or suppress points of
interest as a whole (showsPointsOfInterest). In iOS 13, the MKPointOfInterest‐
Category class consists of static properties (representing strings) that draw fine-
grained distinctions, such as .bakery and .brewery. Use these to initialize an
MKPointOfInterestFilter with init(excluding:) or init(including:), and assign
the filter to the map view’s pointOfInterestFilter.

You can also enable 3D viewing of the map (pitchEnabled), and there’s a large and
powerful API putting control of 3D viewing in your hands. Discussion of 3D map
viewing is beyond the scope of this chapter; an excellent WWDC 2013 video surveys
the topic. Starting in iOS 9, there are 3D flyover map types .satelliteFlyover
and .hybridFlyover; a WWDC 2015 video explains about these.

Map Images
To capture a map display as an image, use an MKMapSnapshotter. This is useful
when you want to display a mere picture of a map (that is, a noninteractive map).
The result is an MKMapSnapshotter.Snapshot whose image is the screenshot. The
screenshot captures a runtime-generated map, not your map view; therefore, your
map view’s annotations and overlays are not included. Use the snapshotter’s options
(MKMapSnapshotter.Options) to configure the region displayed:

Map Views | 941

let opts = MKMapSnapshotter.Options()
opts.region = self.map.region
let snap = MKMapSnapshotter(options: opts)
snap.start { shot, err in
 if let shot = shot {
 let im = shot.image
 // ...
 }
}

New in iOS 13, you can configure the types of POI shown in the snapshot by setting
the options object’s pointOfInterestFilter.

In iOS 13, a map view will switch to dark mode automatically. An MKMapSnapshot‐
ter will portray a light mode map or a dark mode map, according to the trait-
Collection you assign to its options; but the resulting image does not magically
change just because the user changes modes, so arranging to change images when the
mode changes is up to you.

Annotations
An annotation is a marker associated with a location on a map. To make an annota‐
tion appear on a map, two objects are needed:

The object attached to the MKMapView
The annotation itself is attached to the MKMapView. It is an instance of any
class that adopts the MKAnnotation protocol, which specifies a coordinate, a
title, and a subtitle for the annotation. You might have reason to define your
own class to handle this task, or you can use the simple built-in MKPoint‐
Annotation class. The annotation’s coordinate is crucial; it says where on earth
the annotation should be drawn. The title and subtitle are optional.

The object that draws the annotation
An annotation is drawn by an MKAnnotationView, a UIView subclass. This can
be extremely simple. In fact, even a nil MKAnnotationView might be perfectly
satisfactory, because the runtime will then automatically supply a view for you.
In iOS 10 and before, this automatic view was a realistic rendering of a physical
pin, red by default but configurable to any color, supplied by the built-in MKPin‐
AnnotationView class. Starting in iOS 11, it is an MKMarkerAnnotationView, by
default portraying a pin schematically in a circular red “balloon.”

Not only does an annotation require two distinct objects, but in fact those two objects
do not initially exist together. An annotation object has no pointer to the annotation
view object that will draw it. Rather, it is up to you to supply the annotation view
object in real time, on demand. This architecture may sound confusing, but in fact
it’s a clever way of reducing the amount of resources needed at any given moment.

942 | Chapter 20: Maps

Figure 20-2. A simple annotation

An annotation itself is merely a lightweight object that a map can always possess; the
corresponding annotation view is a heavyweight object that is needed only so long as
that annotation’s coordinates are within the visible portion of the map.

Let’s add the simplest possible annotation to our map. The point where the annota‐
tion is to go has been stored in an instance property (self.annloc):

let annloc = CLLocationCoordinate2DMake(34.923964,-120.219558)

We create the annotation, configure it, and add it to the MKMapView:

let ann = MKPointAnnotation()
ann.coordinate = self.annloc
ann.title = "Park here"
ann.subtitle = "Fun awaits down the road!"
self.map.addAnnotation(ann)

That code is sufficient to produce Figure 20-2. I didn’t take any steps to supply an
MKAnnotationView, so the MKAnnotationView is nil. But a nil MKAnnotation‐
View, as I’ve already said, means an MKMarkerAnnotationView that produces a
drawing of a pin in a red balloon.

By default, an MKMarkerAnnotationView displays its title below the annotation.
This differs markedly from an MKPinAnnotationView, whose title and subtitle
are displayed in a separate callout view that appears above the annotation view only
when the annotation is selected (because the user taps it, or because you set the
MKAnnotationView’s isSelected to true). A selected MKMarkerAnnotationView
is drawn larger and displays the subtitle in addition to the title.

Customizing an MKMarkerAnnotationView
MKMarkerAnnotationView has many customizable properties affecting its display:

markerTintColor

The balloon color.

Annotations | 943

glyphTintColor

The color used to tint the glyph portrayed inside the balloon. Has no effect on
the default pin image.

glyphText

One or two characters, portrayed as the image in the middle of the balloon.

glyphImage

Replaces the glyphText; a 40×40 image, which will be sized down automatically
to 20×20 when the view is not selected. Alternatively, supply both a larger and a
smaller image, the selectedGlyphImage and glyphImage respectively. An iOS 13
symbol image works fine here as well. The image is treated as a template image;
setting the rendering mode to .alwaysOriginal has no effect.

titleVisibility

subtitleVisibility

The visibility of the title and subtitle. These are MKFeatureVisibility enums,
where .adaptive is the default behavior that I’ve already described. The
subtitleVisibility has no effect unless you also set the titleVisibility.

Doubtless you are now thinking: that’s all very well, but what MKMarkerAnnotation‐
View are we talking about? No such view appears in our code, so there is no object
whose properties we can set!

One way to access the annotation view is to give the map view a delegate and imple‐
ment the MKMapViewDelegate method mapView(_:viewFor:). The second parame‐
ter is the MKAnnotation for which we are to supply a view. In our implementation of
this method, we can dequeue an annotation view from the map view, passing in a
string reuse identifier:

dequeueReusableAnnotationView(withIdentifier:for:)

In the minimal case, pass as the identifier: the constant MKMapViewDefault-
AnnotationViewReuseIdentifier. The second argument should be the annota‐
tion that arrived as the second parameter of the delegate method.

If we have taken no steps to the contrary, this will give us the default view, which in
this case is an MKMarkerAnnotationView. Having obtained an annotation view, our
mapView(_:viewFor:) can configure it; ultimately, it will return the annotation view.

The notion of view reuse here is similar to the reuse of table view cells (Chapter 8).
The map may have a huge number of annotations, but it needs to display annotation
views only for the annotations within its current region. So annotation views that
have been scrolled out of view can be reused, and are held for us by the map view in a
cache for exactly this purpose.

944 | Chapter 20: Maps

Figure 20-3. Customizing a marker annotation view

In this example, I check to see that my MKAnnotationView is indeed an MKMarker‐
AnnotationView, as expected. I also attempt to distinguish this particular annotation
by looking at its title; that’s not a very good way to distinguish annotation types, but
I’ll postpone further discussion of the matter until later:

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {
 let id = MKMapViewDefaultAnnotationViewReuseIdentifier
 if let v = mapView.dequeueReusableAnnotationView(
 withIdentifier: id, for: annotation) as? MKMarkerAnnotationView {
 if let t = annotation.title, t == "Park here" {
 v.titleVisibility = .visible
 v.subtitleVisibility = .visible
 v.markerTintColor = .green
 v.glyphText = "!"
 v.glyphTintColor = .black
 return v
 }
 }
 return nil
}

The result is shown in Figure 20-3.

Changing the Annotation View Class
Instead of accepting the default MKMarkerAnnotationView as the class of our anno‐
tation view, we can substitute a different MKAnnotationView subclass. This might be
our own MKMarkerAnnotationView subclass, or some other MKAnnotationView
subclass, or MKAnnotationView itself. The way to do that is to register our class with
the map view, associating it with the reuse identifier, by calling this method before‐
hand:

• register(_:forAnnotationViewWithReuseIdentifier:)

To illustrate, I’ll use MKAnnotationView itself as our annotation view class. We
won’t get the default drawing of a balloon and a pin, because we’re not using
MKMarkerAnnotationView any longer; instead, I’ll set the MKAnnotationView’s

Annotations | 945

Figure 20-4. A custom annotation image

image property directly. We also won’t get the title and subtitle drawn beneath the
image; instead, I’ll set the annotation view’s canShowCallout to true, and the title
and subtitle will appear in the callout when the annotation view is selected.

So, assume that I have an identifier declared as an instance property:

let bikeid = "bike"

And assume that I’ve registered MKAnnotationView as the class that goes with that
identifier:

self.map.register(MKAnnotationView.self,
 forAnnotationViewWithReuseIdentifier: self.bikeid)

Then my implementation of mapView(_:viewFor:) might look like this:

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {
 let v = mapView.dequeueReusableAnnotationView(
 withIdentifier: self.bikeid, for: annotation)
 if let t = annotation.title, t == "Park here" {
 v.image = UIImage(named:"clipartdirtbike.gif")
 v.bounds.size.height /= 3.0
 v.bounds.size.width /= 3.0
 v.centerOffset = CGPoint(0,-20)
 v.canShowCallout = true
 return v
 }
 return nil
}

The dirt bike image is too large, so I shrink the view’s bounds before returning it; I
also move the view up a bit, so that the bottom of the image is at the coordinates on
the map. The result is shown in Figure 20-4.

946 | Chapter 20: Maps

Custom Annotation View Class
A better way to write the preceding example might be for us to create our own
MKAnnotationView subclass and endow it with the ability to draw itself. This will
allow us to move the code that configures the image and the callout out of the dele‐
gate method and into the subclass itself, where it more properly belongs.

A minimal implementation of an MKAnnotationView subclass should override the
annotation property with a setter observer, so that every time the view is reused and
a new annotation value is assigned, the view is reconfigured. It might also override
the designated initializer, init(annotation:reuseIdentifier:), and possibly
declare some additional instance variables; but for purposes of this example, I’ll sim‐
ply move what I was previously doing in the delegate method directly into my
annotation setter observer:

class MyBikeAnnotationView : MKAnnotationView {
 override var annotation: MKAnnotation? {
 willSet {
 self.image = UIImage(named:"clipartdirtbike.gif")
 let scale = UIScreen.main.scale
 self.bounds.size.height /= 3.0 / scale
 self.bounds.size.width /= 3.0 / scale
 self.centerOffset = CGPoint(0,-20)
 self.canShowCallout = true
 }
 }
}

We register our custom annotation view class to associate it with our identifier:

self.map.register(MyBikeAnnotationView.self,
 forAnnotationViewWithReuseIdentifier: self.bikeid)

Our implementation of mapView(_:viewFor:) now has much less work to do:

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {
 let v = mapView.dequeueReusableAnnotationView(
 withIdentifier: self.bikeid, for: annotation)
 if let t = annotation.title, t == "Park here" {
 // nothing else to do!
 return v
 }
 return nil
}

If, in fact, MyBikeAnnotationView is the only annotation view type we will ever use,
we can go even further: we can register MyBikeAnnotationView as the default:

self.map.register(MyBikeAnnotationView.self,
 forAnnotationViewWithReuseIdentifier:
 MKMapViewDefaultAnnotationViewReuseIdentifier)

Annotations | 947

At that point, we can delete our implementation of mapView(_:viewFor:) entirely! It
has no work to do, because it has no choices to make; our MKBikeAnnotationView,
which configures itself, will be the annotation view class automatically.

Custom Annotation Class
Let’s suppose precisely the opposite of what I just said — namely, that our implemen‐
tation of mapView(_:viewFor:) does have choices to make. Depending on the nature
of the annotation, it must configure our annotation view class differently, or even
pick a different annotation view class. Some annotations might show a dirt bike, but
other annotations might show a different image.

This difference will need to be expressed somehow as part of the annotation itself.
Different annotation types must therefore be somehow distinguishable from one
another. So far, I’ve been avoiding that issue entirely by having my mapView(_:view-
For:) implementation examine the incoming annotation’s title; but that is obvi‐
ously a fragile and inappropriate solution. The proper way is to use one or more
custom annotation classes that allow the desired distinction to be drawn.

A minimal custom annotation class will look like this:

class MyBikeAnnotation : NSObject, MKAnnotation {
 dynamic var coordinate : CLLocationCoordinate2D
 var title: String?
 var subtitle: String?
 init(location coord:CLLocationCoordinate2D) {
 self.coordinate = coord
 super.init()
 }
}

When we create our annotation and add it to the map, our code looks like this:

let ann = MyBikeAnnotation(location:self.annloc)
ann.title = "Park here"
ann.subtitle = "Fun awaits down the road!"
self.map.addAnnotation(ann)

In mapView(_:viewFor:), we can decide what to do just by looking at the class of the
incoming annotation:

if annotation is MyBikeAnnotation {
 let v = mapView.dequeueReusableAnnotationView(
 withIdentifier: self.bikeid, for: annotation)
 // ...
 return v
}
return nil

948 | Chapter 20: Maps

You can readily see how this architecture gives our implementation room to grow. At
the moment, every MyBikeAnnotation is drawn the same way, but we could now add
another property to MyBikeAnnotation that tells us what drawing to use. We could
also give MyBikeAnnotation further properties saying such things as which way the
bike should face, what angle it should be drawn at, and so on. Each MyBikeAnnota‐
tionView instance will end up with a reference to a MyBikeAnnotation instance (as
its annotation property), so it will be able to read those properties and configure the
drawing of its own image appropriately.

Annotation View Hiding and Clustering
Annotation views don’t change size as the map is zoomed in and out, so if there are
several annotations and they are brought close together by the user zooming out, the
display can become crowded. Moreover, if too many annotation views are being
drawn simultaneously in a map view, scroll and zoom performance can degrade.

Before iOS 11, the only way to prevent this was to respond to changes in the map’s
visible region — typically in the delegate method mapView(_:regionDidChange-
Animated:) — by removing and adding annotations dynamically. MKMapView has
extensive support for adding and removing annotations, and its annotations(in:)
method efficiently lists the annotations within a given MKMapRect. Also, given a
bunch of annotations, you can ask your MKMapView to zoom in such a way that all
of them are showing (showAnnotations(_:animated:)). Nevertheless, deciding
which annotations to eliminate or restore, and when, was left up to you, and was
decidedly a tricky problem.

Starting in iOS 11, annotation views can automatically show and hide themselves as
the display becomes crowded. And the built-in solution goes even further: if annota‐
tions are hidden, they can be replaced by a special cluster annotation so that the user
knows there are hidden annotations. MKAnnotationView has properties that allow
you to customize what happens:

displayPriority

An MKFeatureDisplayPriority struct, which works rather like a layout constraint
priority: a value of .required, corresponding to 1000, means that the view
shouldn’t be hidden, and values defaultHigh and defaultLow, corresponding to
750 and 250, give some alternative priorities, but you can set any value you like
through the struct’s init(rawValue:) initializer. If all your annotation views
have a displayPriority of .required (the default), your map view will not par‐
ticipate at all in automatic annotation view hiding.

clusteringIdentifier

A string. The idea is that birds of a feather should flock together: if two annota‐
tion views have the same clustering identifier, then the same cluster annotation

Annotations | 949

can be used to represent them when they are hidden. This will in fact happen
only if the runtime judges that they are sufficiently close to one another when
they are hidden. If you don’t set an annotation view’s clusteringIdentifier, it
won’t participate in clustering. Giving all annotation views the same clustering-
Identifier gives the runtime permission to cluster them however it sees fit.

collisionMode

An MKAnnotationView.CollisionMode. Two annotation views with the same
clusteringIdentifier will be replaced by a cluster annotation if the map is
zoomed out so far that they collide. But what constitutes a collision between two
annotation views? To know that, we need a collision edge. It might be:

.rectangle

The edge is the view’s frame.

.circle

The edge is the largest circle inscribable in and centered within the view’s
frame.

If you need to offset or resize the boundary of the rectangle or circle that
describes the collision edge, use the annotation view’s alignmentRectInsets.

To make your annotation views opt in to both hiding and clustering, a minimal
approach would be to set the displayPriority of all your annotation views
to .defaultHigh and the clusteringIdentifier of all your annotation views to
some single string.

A cluster annotation is a real annotation — an MKClusterAnnotation. Its member-
Annotations are the annotations whose views have been hidden and subsumed into
this cluster. It has a title and subtitle; by default, these are based on the member-
Annotations, but you can customize them.

A cluster annotation’s view is a real annotation view. It has, itself, a displayPriority
and a collisionMode. (The displayPriority is, by default, the highest display-
Priority among the annotation views it replaces.) If an annotation view has been
hidden and replaced by a cluster annotation view, its cluster property points to the
cluster annotation view. The default cluster annotation view corresponds to a reuse
identifier MKMapViewDefaultClusterAnnotationViewReuseIdentifier.

You can customize a cluster annotation view as you would any other annotation
view. You can substitute your own MKAnnotationView subclass by registering or
dequeuing it, exactly as in the earlier examples. Your mapView(_:viewFor:) will
know that this annotation is a cluster annotation because it will be an MKCluster‐
Annotation. Or you can register your custom cluster annotation view as the class for

950 | Chapter 20: Maps

MKMapViewDefaultClusterAnnotationViewReuseIdentifier, in which case you
might not need an implementation of mapView(_:viewFor:) at all.

Other Annotation Features
When an MKPinAnnotationView initially appears on the map, if its animatesDrop
property is true, it drops into place from above. When an MKMarkerAnnotation‐
View initially appears on the map, if its animatesWhenAdded property is true, it
grows slightly into place.

In like fashion, we can add our own animation to an annotation view as it initially
appears on the map. To do so, we implement the map view delegate method map-
View(_:didAdd:), which hands us an array of MKAnnotationViews. When this
method is called, the annotation views have been added but the redraw moment has
not yet arrived (Chapter 4); so if we animate a view, that animation will be performed
as the view appears onscreen. Here, I’ll animate the opacity of our annotation view so
that it fades in, while growing the view from a point to its full size; I identify the view
type through its reuseIdentifier:

func mapView(_ mapView: MKMapView, didAdd views: [MKAnnotationView]) {
 for aView in views {
 if aView.reuseIdentifier == self.bikeid {
 aView.transform = CGAffineTransform(scaleX: 0, y: 0)
 aView.alpha = 0
 UIView.animate(withDuration:0.8) {
 aView.alpha = 1
 aView.transform = .identity
 }
 }
 }
}

Certain annotation properties and annotation view properties are automatically ani‐
matable through view animation, provided you’ve implemented them in a KVO com‐
pliant way. In MyBikeAnnotation, the coordinate property is KVO compliant
(because we declared it dynamic); therefore, we are able to animate shifting the anno‐
tation’s position:

self.map.addAnnotation(ann)
// ...
UIView.animate(withDuration:0.25) {
 var loc = ann.coordinate
 loc.latitude = loc.latitude + 0.0005
 loc.longitude = loc.longitude + 0.001
 ann.coordinate = loc
}

MKMapView has methods allowing annotations to be selected or deselected pro‐
grammatically, doing in code the same thing that happens when the user taps. The

Annotations | 951

delegate has methods notifying you when the user selects or deselects an annotation,
and you are free to override your custom MKAnnotationView’s set-

Selected(_:animated:) if you want to change what happens when the user taps an
annotation. You could show and hide a custom view instead of, or in addition to, the
built-in callout.

A callout can contain left and right accessory views; these are the MKAnnotation‐
View’s leftCalloutAccessoryView and rightCalloutAccessoryView. They are
UIViews, and should be small (less than 32 pixels in height). There is also a detail-
CalloutAccessoryView which replaces the subtitle; you could supply a multiline label
with smaller text. You can respond to taps on these views as you would any view or
control. The map view’s tintColor (see Chapter 12) affects such accessory view ele‐
ments as template images and button titles.

An MKAnnotationView can optionally be draggable by the user; set its draggable
property to true. If you’re using a custom annotation class, its coordinate property
must also be settable. In our custom annotation class, MyBikeAnnotation, the
coordinate property is settable; it is explicitly declared as a read-write property
(var), as opposed to the coordinate property in the MKAnnotation protocol which
is read-only. You can also customize changes to the appearance of the view as it is
dragged, by implementing your annotation view class’s setDragState(_:animated:)
method.

Overlays
An overlay differs from an annotation in being drawn entirely with respect to points
on the surface of the earth. Whereas an annotation’s size is always the same, an over‐
lay’s size is tied to the zoom of the map view.

Overlays are implemented much like annotations. You provide an object that adopts
the MKOverlay protocol (which itself conforms to the MKAnnotation protocol) and
add it to the map view. When the map view delegate method mapView(_:renderer-
For:) is called, you provide an MKOverlayRenderer and hand it the overlay object;
the overlay renderer then draws the overlay on demand. As with annotations, this
architecture means that the overlay itself is a lightweight object, and the overlay is
drawn only if the part of the earth that the overlay covers is actually being displayed
in the map view. An MKOverlayRenderer has no reuse identifier; it isn’t a view, but
rather a drawing engine that draws into a graphics context supplied by the map view.

Some built-in MKShape subclasses adopt the MKOverlay protocol: MKCircle,
MKPolygon, and MKPolyline (and its subclass MKGeodesicPolyline). In parallel to
those, MKOverlayRenderer has built-in subclasses MKCircleRenderer, MKPolygon‐
Renderer, and MKPolylineRenderer, ready to draw the corresponding shapes. New in
iOS 13, multiple polygons or polylines can be combined into an MKMultiPolygon or

952 | Chapter 20: Maps

Figure 20-5. An overlay

MKMultiPolyline and drawn by an MKMultiPolygonRenderer or MKMultiPolyline‐
Renderer; this can be useful because renderers, even though they are not views, do
involve overhead, so one would like as few separate overlays as possible on the screen
simultaneously.

As with annotations, you can base your overlay entirely on the power of existing
classes. In this example, I’ll use MKPolygonRenderer to draw an overlay triangle
pointing up the road from the parking place annotated in our earlier examples
(Figure 20-5). We add the MKPolygon as an overlay to our map view, and supply its
corresponding MKPolygonRenderer in our implementation of mapView(_:renderer-
For:). First, the MKPolygon overlay:

let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
var c = MKMapPoint(self.annloc)
c.x += 150/metersPerPoint
c.y -= 50/metersPerPoint
var p1 = MKMapPoint(x:c.x, y:c.y)
p1.y -= 100/metersPerPoint
var p2 = MKMapPoint(x:c.x, y:c.y)
p2.x += 100/metersPerPoint
var p3 = MKMapPoint(x:c.x, y:c.y)
p3.x += 300/metersPerPoint
p3.y -= 400/metersPerPoint
var points = [p1, p2, p3]
let tri = MKPolygon(points:&points, count:3)
self.map.addOverlay(tri)

Second, the delegate method, where we provide the MKPolygonRenderer:

func mapView(_ mapView: MKMapView,
 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {
 if let overlay = overlay as? MKPolygon {
 let r = MKPolygonRenderer(polygon:overlay)
 r.fillColor = UIColor.red.withAlphaComponent(0.1)
 r.strokeColor = UIColor.red.withAlphaComponent(0.8)

Overlays | 953

 r.lineWidth = 2
 return r
 }
 return MKOverlayRenderer()
}

Custom Overlay Class
The triangle in Figure 20-5 is rather crude; I could draw a better arrow shape using a
CGPath (Chapter 2). The built-in MKOverlayRenderer subclass that lets me do that
is MKOverlayPathRenderer. To structure things similarly to the preceding example,
I’d like to supply the CGPath when I add the overlay instance to the map view. No
built-in class lets me do that, so I’ll use a custom class, MyPathOverlay, that adopts
the MKOverlay protocol.

A minimal overlay class looks like this:

class MyPathOverlay : NSObject, MKOverlay {
 var coordinate : CLLocationCoordinate2D {
 get {
 let pt = MKMapPoint(
 x:self.boundingMapRect.midX,
 y:self.boundingMapRect.midY)
 return pt.coordinate
 }
 }
 var boundingMapRect : MKMapRect
 init(rect:MKMapRect) {
 self.boundingMapRect = rect
 super.init()
 }
}

Our actual MyPathOverlay class will also have a path property; this will be a
UIBezierPath that holds our CGPath and supplies it to the MKOverlayPathRenderer.

Just as the coordinate property of an annotation tells the map view where on earth
the annotation is to be drawn, the boundingMapRect property of an overlay tells the
map view where on earth the overlay is to be drawn. Whenever any part of the
boundingMapRect is displayed within the map view’s bounds, the map view will have
to concern itself with drawing the overlay. With MKPolygon, we supplied the points
of the polygon in earth coordinates and the boundingMapRect was calculated for us.
With our custom overlay class, we must supply or calculate it ourselves.

At first it may appear that there is a typological impedance mismatch: the bounding-
MapRect is an MKMapRect, whereas a CGPath is defined by CGPoints. However, it
turns out that these units are interchangeable: the CGPoints of our CGPath will be
translated for us directly into MKMapPoints on the same scale — that is, the distance
between any two CGPoints will be the distance between the two corresponding

954 | Chapter 20: Maps

MKMapPoints. However, the origins are different: the CGPath must be described rel‐
ative to the top-left corner of the boundingMapRect. To put it another way, the
boundingMapRect is described in earth coordinates, but the top-left corner of the
boundingMapRect is .zero as far as the CGPath is concerned. (You might think of
this difference as analogous to the difference between a UIView’s frame and its
bounds.)

To make life simple, I’ll think in meters; actually, I’ll think in chunks of 75 meters,
because this turns out to be a good unit for positioning and laying out this particular
arrow. A line one unit long would in fact be 75 meters long if I were to arrive at this
actual spot on the earth and discover the overlay literally drawn on the ground. Hav‐
ing derived this chunk (unit), I use it to lay out the boundingMapRect, four units on a
side and positioned slightly east and north of the annotation point (because that’s
where the road is). Then I simply construct the arrow shape within the 4×4-unit
square, rotating it so that it points in roughly the same direction as the road:

// start with our position and derive a nice unit for drawing
let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
let c = MKMapPoint(self.annloc)
let unit = CGFloat(75.0/metersPerPoint)
// size and position the overlay bounds on the earth
let sz = CGSize(4*unit, 4*unit)
let mr = MKMapRect(
 x:c.x + 2*Double(unit), y:c.y - 4.5*Double(unit),
 width:Double(sz.width), height:Double(sz.height))
// describe the arrow as a CGPath
let p = CGMutablePath()
let start = CGPoint(0, unit*1.5)
let p1 = CGPoint(start.x+2*unit, start.y)
let p2 = CGPoint(p1.x, p1.y-unit)
let p3 = CGPoint(p2.x+unit*2, p2.y+unit*1.5)
let p4 = CGPoint(p2.x, p2.y+unit*3)
let p5 = CGPoint(p4.x, p4.y-unit)
let p6 = CGPoint(p5.x-2*unit, p5.y)
let points = [start, p1, p2, p3, p4, p5, p6]
// rotate the arrow around its center
let t1 = CGAffineTransform(translationX: unit*2, y: unit*2)
let t2 = t1.rotated(by:-.pi/3.5)
let t3 = t2.translatedBy(x: -unit*2, y: -unit*2)
p.addLines(between: points, transform: t3)
p.closeSubpath()
// create the overlay and give it the path
let over = MyPathOverlay(rect:mr)
over.path = UIBezierPath(cgPath:p)
// add the overlay to the map
self.map.addOverlay(over)

The delegate method, where we provide the MKOverlayPathRenderer, is simple. We
pull the CGPath out of the MyPathOverlay instance; we hand the CGPath to the

Overlays | 955

Figure 20-6. A nicer overlay

MKOverlayPathRenderer; and we tell the MKOverlayPathRenderer how to stroke
and fill that path:

func mapView(_ mapView: MKMapView,
 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {
 if let overlay = overlay as? MyPathOverlay {
 let r = MKOverlayPathRenderer(overlay:overlay)
 r.path = overlay.path.cgPath
 r.fillColor = UIColor.red.withAlphaComponent(0.2)
 r.strokeColor = .black
 con.setLineWidth(2)
 return r
 }
 return MKOverlayRenderer()
}

The result is a much nicer arrow (Figure 20-6), and of course this technique can be
generalized to draw an overlay from any CGPath we like.

Custom Overlay Renderer
For full generality, you could define your own MKOverlayRenderer subclass; your
subclass must override and implement draw(_:zoomScale:in:). The first parameter
is an MKMapRect describing a tile of the visible map (not the size and position of the
overlay); the third parameter is the CGContext into which you are to draw. Your
implementation may be called several times simultaneously on different background
threads, one for each tile, so be sure to draw in a thread-safe way. The overlay itself is
available through the inherited overlay property, and MKOverlayRenderer instance
methods such as rect(for:) are provided for converting between the map’s
MKMapRect coordinates and the overlay renderer’s graphics context coordinates.
The graphics context arrives already configured such that our drawing will be clipped
to the current tile. (All this should remind you of CATiledLayer, Chapter 7.)

In our example, we can move the entire functionality for drawing the arrow into an
MKOverlayRenderer subclass, which I’ll call MyPathOverlayRenderer. Its initializer
takes an angle: parameter, with which I’ll set its angle property; now our arrow can

956 | Chapter 20: Maps

point in any direction. Another nice benefit of this architectural change is that we can
use the zoomScale: parameter to determine the stroke width. For simplicity, my
implementation of draw(_:zoomScale:in:) ignores the incoming MKMapRect value
and just draws the entire arrow every time it is called:

var angle : CGFloat = 0
init(overlay:MKOverlay, angle:CGFloat) {
 self.angle = angle
 super.init(overlay:overlay)
}
override func draw(_ mapRect: MKMapRect,
 zoomScale: MKZoomScale, in con: CGContext) {
 con.setStrokeColor(UIColor.black.cgColor)
 con.setFillColor(UIColor.red.withAlphaComponent(0.2).cgColor)
 let scale = UIScreen.main.scale
 con.setLineWidth(2/(zoomScale/scale))
 let unit =
 CGFloat(self.overlay.boundingMapRect.width/4.0)
 let p = CGMutablePath()
 let start = CGPoint(0, unit*1.5)
 let p1 = CGPoint(start.x+2*unit, start.y)
 let p2 = CGPoint(p1.x, p1.y-unit)
 let p3 = CGPoint(p2.x+unit*2, p2.y+unit*1.5)
 let p4 = CGPoint(p2.x, p2.y+unit*3)
 let p5 = CGPoint(p4.x, p4.y-unit)
 let p6 = CGPoint(p5.x-2*unit, p5.y)
 let points = [start, p1, p2, p3, p4, p5, p6]
 let t1 = CGAffineTransform(translationX: unit*2, y: unit*2)
 let t2 = t1.rotated(by:self.angle)
 let t3 = t2.translatedBy(x: -unit*2, y: -unit*2)
 p.addLines(between: points, transform: t3)
 p.closeSubpath()
 con.addPath(p)
 con.drawPath(using: .fillStroke)
}

To add the overlay to our map, we still must determine its MKMapRect:

let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
let c = MKMapPoint(self.annloc)
let unit = 75.0/metersPerPoint
// size and position the overlay bounds on the earth
let sz = CGSize(4*CGFloat(unit), 4*CGFloat(unit))
let mr = MKMapRect(
 x:c.x + 2*unit, y:c.y - 4.5*unit,
 width:Double(sz.width), height:Double(sz.height))
let over = MyPathOverlay(rect:mr)
self.map.addOverlay(over, level:.aboveRoads)

The delegate method, providing the overlay renderer, now has very little work to do;
in our implementation, it merely supplies an angle for the arrow:

Overlays | 957

func mapView(_ mapView: MKMapView,
 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {
 if overlay is MyPathOverlay {
 let r = MyPathOverlayRenderer(overlay:overlay, angle: -.pi/3.5)
 return r
 }
 return MKOverlayRenderer()
}

Other Overlay Features
Our MyPathOverlay class, adopting the MKOverlay protocol, implements the
coordinate property by means of a getter method to return the center of the
boundingMapRect. This is crude, but it’s a good minimal implementation. The pur‐
pose of this property is to specify the position where you would add an annotation
describing the overlay:

// ... create overlay and assign it a path as before ...
self.map.addOverlay(over, level:.aboveRoads)
let annot = MKPointAnnotation()
annot.coordinate = over.coordinate
annot.title = "This way!"
self.map.addAnnotation(annot)

The MKOverlay protocol also lets you provide an implementation of
intersects(_:) to refine your overlay’s definition of what constitutes an intersection
with itself; the default is to use the boundingMapRect, but if your overlay is drawn in
some nonrectangular shape, you might want to use its actual shape as the basis for
determining intersection.

Overlays are maintained by the map view as an array and are drawn from back to
front starting at the beginning of the array. MKMapView has extensive support for
adding and removing overlays, and for managing their layering order. When you add
the overlay to the map, you can say where you want it drawn among the map view’s
sublayers. This is also why methods for adding and inserting overlays have a level:
parameter. The levels are (MKOverlayLevel):

• .aboveRoads (and below labels)
• .aboveLabels

Perhaps you have your own topo map or your own transit map, and you want to use
this as the content of the map view. The MKTileOverlay class, adopting the MKOver‐
lay protocol, lets you supplement or replace Apple’s map content with your own cus‐
tom map drawing. You provide a set of tiles at multiple sizes to match multiple zoom
levels, and the map view fetches and draws the tiles needed for the current region
and degree of zoom. It takes a lot of tiles to draw an area of any size, so the

958 | Chapter 20: Maps

MKTileOverlay class is initialized with a URL, which can be a remote URL for tiles to
be fetched across the internet.

Map Kit and Current Location
A device may have sensors that can report its current location. Map Kit provides inte‐
gration with these facilities. Keep in mind that the user can turn off these sensors or
can refuse your app access to them (in the Settings app, under Privacy → Location
Services), so trying to use these features may fail. Also, determining the device’s loca‐
tion can take time.

The real work here is being done by a CLLocationManager instance, which needs to
be created and retained; the usual thing is to initialize a view controller instance
property by assigning a new CLLocationManager instance to it:

let locman = CLLocationManager()

Moreover, you must obtain user authorization, and your Info.plist must state the rea‐
son why you want it (as I’ll explain in more detail in Chapter 21):

self.locman.requestWhenInUseAuthorization()

You can then ask an MKMapView in your app to display the device’s location just by
setting its showsUserLocation property to true; the map will automatically put an
annotation at that location. This will be an MKUserLocation, adopting the MKAnno‐
tation protocol. The map view’s userLocation property will also point to this
annotation. If your map view delegate’s implementation of mapView(_:viewFor:)
returns nil for this annotation, or if there is no such implementation, you’ll get the
default user location annotation view; you are free to substitute your own annotation
view.

An MKUserLocation has a location property, a CLLocation, whose coordinate is a
CLLocationCoordinate2D; if the map view’s showsUserLocation is true and the map
view has actually worked out the user’s location, the coordinate describes that loca‐
tion. It also has title and subtitle properties, which appear in a callout if the anno‐
tation view is selected; plus you can check whether it currently isUpdating.

MKMapViewDelegate methods keep you informed of the map’s attempts to locate
the user:

• mapViewWillStartLocatingUser(_:)

• mapViewDidStopLocatingUser(_:)

• mapView(_:didUpdate:) (provides the new MKUserLocation)
• mapView(_:didFailToLocateUserWithError:)

Map Kit and Current Location | 959

In this cheeky example, I use mapView(_:viewFor:) to substitute my own title —
though if that’s all I want to do, it might be simpler to implement mapView(_:did-
Update:) instead:

func mapView(_ mapView: MKMapView,
 viewFor annotation: MKAnnotation) -> MKAnnotationView? {
 if let annotation = annotation as? MKUserLocation {
 annotation.title = "You are here, stupid!"
 return nil // or could substitute my own MKAnnotationView
 }
 return nil
}

You can ask the map view whether the user’s location, if known, is in the visible
region of the map (isUserLocationVisible). But what if it isn’t? Assigning an
appropriate value to the map’s region — that is, actually showing the part of the
world where the user is located — is a separate task. The simplest way is to take
advantage of the MKMapView’s userTrackingMode property, which determines how
the user’s real-world location should be tracked automatically by the map display;
your options are (MKUserTrackingMode):

.none

If showsUserLocation is true, the map gets an annotation at the user’s location,
but that’s all; the map’s region is unchanged. You could set it manually in
mapView(_:didUpdate:).

.follow

Setting this mode sets showsUserLocation to true. The map automatically cen‐
ters the user’s location, and scales itself appropriately. When the map is in this
mode, you should not set the map’s region, as you’ll be struggling against the
tracking mode’s attempts to do the same thing.

.followWithHeading

Like .follow, but the map is also rotated so that the direction the user is facing is
up. In this case, the userLocation annotation also has a heading property, a
CLHeading; I’ll talk more about headings in Chapter 21.

This code, then, turns out to be sufficient to start displaying the user’s location:

self.map.userTrackingMode = .follow

When the userTrackingMode is one of the .follow modes, if the user is left free to
zoom and scroll the map, the userTrackingMode may be automatically changed back
to .none (and the user location annotation may be removed). You’ll probably want to
provide a way to let the user turn tracking back on again, or to toggle among the
three tracking modes.

960 | Chapter 20: Maps

Figure 20-7. The Maps app displays our point of interest

One way to do that is with an MKUserTrackingBarButtonItem, a UIBarButtonItem
subclass. You initialize MKUserTrackingBarButtonItem with a map view, and its
behavior is automatic from then on: when the user taps it, it switches the map view to
the next tracking mode, and its icon reflects the current tracking mode. A map view
delegate method tells you when the MKUserTrackingMode changes:

• mapView(_:didChange:animated:)

Alternatively, you can use an MKUserTrackingButton; like an MKScaleView or
MKCompassButton, it has the advantage that it can be used anywhere (not just in a
toolbar or navigation bar).

Communicating with the Maps App
Your app can communicate with the Maps app. Instead of displaying a point of inter‐
est in a map view in our own app, we can ask the Maps app to display it. The user
could then bookmark or share the location. The channel of communication between
your app and the Maps app is the MKMapItem class.

Here, I’ll ask the Maps app to display the same point marked by the annotation in our
earlier examples, on a standard map portraying the same region of the earth that our
map view is currently displaying (Figure 20-7):

let p = MKPlacemark(coordinate:self.annloc, addressDictionary:nil)
let mi = MKMapItem(placemark: p)
mi.name = "A Great Place to Dirt Bike" // label to appear in Maps app
let coord = self.map.region.center
let span = self.map.region.span
mi.openInMaps(launchOptions:[

Communicating with the Maps App | 961

 MKLaunchOptionsMapTypeKey: MKMapType.standard.rawValue,
 MKLaunchOptionsMapCenterKey: coord as NSValue,
 MKLaunchOptionsMapSpanKey: span as NSValue
])

The need to convert the CLLocationCoordinate2D and MKCoordinateSpan
manually to an NSValue is new in iOS 13. I regard this as a bug.

If you start with an MKMapItem returned by the forCurrentLocation class method,
you’re asking the Maps app to display the device’s current location. This call doesn’t
attempt to determine the device’s location, nor does it contain any location informa‐
tion; it merely generates an MKMapItem which, when sent to the Maps app, will
cause it to attempt to determine (and display) the device’s location:

let mi = MKMapItem.forCurrentLocation()
mi.openInMaps(launchOptions:[
 MKLaunchOptionsMapTypeKey: MKMapType.standard.rawValue
])

Geocoding, Searching, and Directions
Map Kit provides your app with three services that involve performing queries over
the network:

Geocoding
Translation of a street address to a coordinate and vice versa. What address am I
at right now? Or conversely, what are the coordinates of my home address?

Searching
Lookup of possible matches for a natural language search. What are some Thai
restaurants near me?

Directions
Lookup of turn-by-turn instructions and route mapping from a source location
to a destination location. How do I get to that Thai restaurant from here?

These services take time and might not succeed at all, as they depend upon network
and server availability; moreover, results may be more or less uncertain. Therefore,
they involve a completion function that is called back asynchronously on the main
thread (see Appendix C). The completion function is called with a single response
object plus an Error, each wrapped in an Optional. If the response object is nil, the
Error tells you what the problem was.

962 | Chapter 20: Maps

Geocoding
Geocoding functionality is encapsulated in the CLGeocoder class. You call one of
these methods:

• geocodeAddressString(_:completionHandler:)

• geocodePostalAddress(_:completionHandler:)

The second method takes a CNPostalAddress, from the Contacts framework, so
you’ll need to import Contacts (see Chapter 18).

The response, if things went well, is an array of CLPlacemark objects, a series of
guesses from best to worst; if things went really well, the array will contain exactly
one CLPlacemark. A CLPlacemark can be used to initialize an MKPlacemark, a
CLPlacemark subclass that adopts the MKAnnotation protocol, and is therefore suit‐
able to be handed directly over to an MKMapView for display.

Here is a simplified example that allows the user to enter an address in a UISearchBar
(Chapter 12) to be displayed in an MKMapView:

guard let s = searchBar.text else { return }
let geo = CLGeocoder()
geo.geocodeAddressString(s) { placemarks, error in
 guard let placemarks = placemarks else { return }
 let p = placemarks[0]
 let mp = MKPlacemark(placemark:p)
 self.map.addAnnotation(mp)
 self.map.setRegion(
 MKCoordinateRegion(center:mp.coordinate,
 latitudinalMeters:1000, longitudinalMeters:1000),
 animated: true)
}

By default, the resulting annotation’s title contains a nicely formatted string
describing the address.

The converse operation is reverse geocoding: you start with a coordinate — actually a
CLLocation, which you’ll obtain from elsewhere, or construct from a coordinate
using init(latitude:longitude:) — and then, in order to obtain the correspond‐
ing address, you call this method:

• reverseGeocodeLocation(_:completionHandler:)

The address is expressed through the CLPlacemark postalAddress property; this is a
CNPostalAddress, so you’ll need to import Contacts. Recall that you can ask the
CNPostalAddress for its street, city, state, and other properties, and that you can
use a CNPostalAddressFormatter to format the address nicely. Alternatively, you can
consult directly such CLPlacemark properties as subthoroughfare (a house number),
thoroughfare (a street name), locality (a town), and administrativeArea (a state).

Geocoding, Searching, and Directions | 963

In this example of reverse geocoding, we have an MKMapView that is already track‐
ing the user, and so we have the user’s location as the map’s userLocation; we ask for
the corresponding address:

guard let loc = self.map.userLocation.location else { return }
let geo = CLGeocoder()
geo.reverseGeocodeLocation(loc) { placemarks, error in
 guard let ps = placemarks, ps.count > 0 else {return}
 let p = ps[0]
 if let addy = p.postalAddress {
 let f = CNPostalAddressFormatter()
 print(f.string(from: addy))
 }
}

Searching
The MKLocalSearch class, along with MKLocalSearch.Request and MKLocal‐
Search.Response, lets you ask the server to perform a natural language search for you.
This is less formal than forward geocoding, described in the previous section; instead
of searching for an address, you can search for a point of interest by name or descrip‐
tion. It can be useful, for some types of search, to constrain the area of interest by
setting the request’s region. New in iOS 13, you can characterize a request’s result
types as .address or .pointOfInterest (or both), and you can assign an MKPointOf‐
InterestFilter to the request’s pointOfInterestFilter to limit the applicable
categories of POI result.

In this example, I’ll do a natural language search for a Thai restaurant near the user
location currently displayed in the map (illustrating the new iOS 13 POI filtering),
and I’ll display the first (and probably closest) result as an annotation in our map
view:

guard let loc = self.map.userLocation.location else { return }
let req = MKLocalSearch.Request()
req.naturalLanguageQuery = "Thai"
req.region = MKCoordinateRegion(center: loc.coordinate,
 span: MKCoordinateSpan(latitudeDelta:1, longitudeDelta:1))
req.resultTypes = .pointOfInterest
let filter = MKPointOfInterestFilter(including: [.restaurant])
req.pointOfInterestFilter = filter
let search = MKLocalSearch(request:req)
search.start { response, error in
 guard let response = response else { print(error); return }
 self.map.showsUserLocation = false
 let mi = response.mapItems[0] // I'm feeling lucky
 let place = mi.placemark
 let loc = place.location!.coordinate
 let reg = MKCoordinateRegion(center:loc,
 latitudinalMeters:1200, longitudinalMeters:1200)

964 | Chapter 20: Maps

 self.map.setRegion(reg, animated:true)
 let ann = MKPointAnnotation()
 ann.title = mi.name
 ann.subtitle = mi.phoneNumber
 ann.coordinate = loc
 self.map.addAnnotation(ann)
}

MKLocalSearchCompleter lets you use the MKLocalSearch remote database to sug‐
gest completions as the user types a search query. In effect, you are performing the
search after every character that the user types; most likely you’ll use a UISearch‐
Controller (Chapter 8). Initialize and configure the MKLocalSearchCompleter object
and give it a delegate (MKLocalSearchCompleterDelegate); new in iOS 13, an
MKPointOfInterestFilter can be applied to the completer. Each time the search bar
text changes, set the completer’s queryFragment with the current contents of the
search field. When the delegate method completerDidUpdateResults(_:) is called,
grab the completer’s results, which is an array of MKLocalSearchCompletion
objects. These have string properties title and subtitle suitable for display in a
table view; you’ll probably set your table view data source model object to the com‐
pleter’s results and tell the table to reload.

Directions
The MKDirections class, along with MKDirections.Request, looks up walking or
driving directions between two locations expressed as MKMapItem objects. The
resulting MKDirections.Response includes an array of MKRoute objects; each
MKRoute includes an MKPolyline suitable for display as an overlay in your map, as
well as an array of MKRoute.Step objects, each of which provides its own MKPolyline
plus instructions and distances. The response also has its own source and
destination MKMapItems, which may be different from what we started with.

To illustrate, I’ll continue from the Thai food example in the previous section, start‐
ing at the point where we obtained the Thai restaurant’s MKMapItem:

// ... same as before up to this point ...
let mi = response.mapItems[0] // I'm still feeling lucky
let req = MKDirectionsRequest()
req.source = MKMapItem.forCurrentLocation()
req.destination = mi
let dir = MKDirections(request:req)
dir.calculate { response, error in
 guard let response = response else { print(error); return }
 let route = response.routes[0] // I'm feeling insanely lucky
 let poly = route.polyline
 self.map.addOverlay(poly)

Geocoding, Searching, and Directions | 965

 for step in route.steps {
 print("After \(step.distance) meters: \(step.instructions)")
 }
}

The step-by-step instructions appear in the console; in real life, of course, we would
presumably display these in our app’s interface. The route is drawn in our map view,
provided we have an appropriate implementation of mapView(_:rendererFor:),
such as this:

func mapView(_ mapView: MKMapView,
 rendererFor overlay: MKOverlay) -> MKOverlayRenderer {
 if let overlay = overlay as? MKPolyline {
 let r = MKPolylineRenderer(polyline:overlay)
 r.strokeColor = UIColor.blue.withAlphaComponent(0.8)
 r.lineWidth = 2
 return r
 }
 return MKOverlayRenderer()
}

You can also ask MKDirections to estimate the time of arrival, by calling calculate-
ETA(completionHandler:), and there is arrival time estimation for some public
transit systems (and you can tell the Maps app to display a transit directions map).

966 | Chapter 20: Maps

CHAPTER 21

Sensors

A device may contain hardware for sensing the world around itself — where it is
located, how it is oriented, how it is moving.

Information about the device’s current location and how that location is changing
over time using its WiFi, cellular networking, and GPS capabilities, along with infor‐
mation about the device’s orientation relative to north using its magnetometer, is
provided through the Core Location framework.

Information about the device’s change in speed and attitude using its accelerometer is
provided through the UIEvent class (for device shake) and the Core Motion frame‐
work, which provides increased accuracy by incorporating the device’s gyroscope, if
it has one, as well as the magnetometer. In addition, the device may have an extra
chip that analyzes and records the user’s activity, such as walking or running, and
even a barometer that reports changes in altitude; the Core Motion framework pro‐
vides access to this information as well.

A challenge associated with writing code that takes advantage of the sensors is that
different devices have different hardware. If you don’t want to impose stringent
restrictions on what devices your app will run on in the first place (UIRequired-
DeviceCapabilities in the Info.plist), your code must be prepared to fail gracefully,
perhaps providing a subset of your app’s full capabilities, when it turns out that the
current device lacks certain features.

Even on a device that has the necessary hardware, certain sensors may be switched off
or may experience momentary inadequacy; for instance, Core Location might not be
able to get a fix on the device’s position because it can’t see cell towers, GPS satellites,
or both. And some sensors take time to “warm up,” so that the values you’ll get from
them initially will be invalid. You’ll want to respond nimbly to such changes in the

967

external circumstances, in order to give the user a decent experience of your applica‐
tion regardless.

One final consideration: all sensor usage means battery usage, to a lesser or greater
degree — sometimes to a considerably greater degree. There’s a compromise to be
made here: you want to please the user with your app’s convenience and usefulness,
without disagreeably surprising and annoying the user through rapid depletion of the
device’s battery charge.

Core Location
The Core Location framework (import CoreLocation) provides facilities for the
device to determine and report its location (location services). It takes advantage of
three sensors:

WiFi
The device, if WiFi is turned on, may scan for nearby WiFi networks and com‐
pare these against an online database.

Cell
The device, if it has cell capabilities and they are not turned off, may detect
nearby telephone cell towers and compare them against an online database.

GPS
The device’s GPS, if it has one, may be able to obtain a position fix from GPS
satellites. The GPS is obviously the most accurate location sensor, but it takes the
longest to get a fix, and in some situations it will fail, such as when the user is
indoors or among tall buildings where the device can’t “see” enough of the sky.

Core Location will automatically use whatever facilities the device has available; all
you have to do is ask for the device’s location. Core Location allows you to specify
how accurate a position fix you want; trying to get a more accurate fix may require
more time.

To help you test code that depends on where the device is, Xcode lets you pretend
that the device is at a particular location on earth. The Simulator’s Debug → Location
menu lets you enter a location; the Scheme editor lets you set a default location
(under Options); and the Debug → Simulate Location menu lets you switch among
locations. You can set a built-in location or supply a standard GPX file containing a
waypoint. You can also set the location to None; it’s important to test for what hap‐
pens when no location information is available.

Location Manager and Delegate
Use of Core Location requires a location manager object, an instance of CLLocation‐
Manager. This object needs to be created on the main thread and retained thereafter.

968 | Chapter 21: Sensors

A standard strategy is to pick an instance that persists throughout the life of your app
— your app delegate, or your root view controller, is a good place — and initialize an
instance property with a location manager:

let locman = CLLocationManager()

Your location manager will generally be useless without a delegate (CLLocation‐
ManagerDelegate). You don’t want to change a location manager’s delegate, so you’ll
want to set it once, early in the life of the location manager. This delegate will need to
be an instance that persists together with the location manager. If locman is, say, a
constant property of our root view controller, then we can set the root view controller
as its delegate. It’s a good idea to do this as early as possible; the root view controller’s
initializer is a good place:

required init?(coder: NSCoder) {
 super.init(coder:coder)
 self.locman.delegate = self
}

Location Services Authorization
You must explicitly request authorization from the user when you first start tracking
the device’s location. There are two types of authorization:

When In Use authorization
When In Use authorization allows your app to use Core Location when the app
is running. “Running” here means in the foreground or running (not suspended)
in the background. New in iOS 13, an app with When In Use authorization can
use any Core Location features.

Always authorization
Always authorization permits your app to configure the system to perform cer‐
tain Core Location activities on your behalf even when your app is not running.
I’ll describe later what those activities are.

The user can turn off location services as a whole. The CLLocationManager class
method locationServicesEnabled reports whether location services are switched
off. If location services are off, don’t bother with authorization.

However, even if location services are off, you might like to try to use Core Location
anyway. The reason is that this may cause the runtime to put up an alert on your
behalf offering to switch to the Settings app so that the user can turn location services
on (Figure 21-1). The attempt to learn the device’s location will fail, but this failure
may also cause the user to see the system alert:

Core Location | 969

Figure 21-1. Location services are turned off

if !CLLocationManager.locationServicesEnabled() {
 self.locman.startUpdatingLocation()
 return
}

The user may see the alert, may tap Settings, and may turn on Core Location. The
user just might even find your app’s listing in Settings and grant it authorization then
and there. But don’t count on the user doing that, and don’t count on the alert
actually appearing.

Once location services are enabled, you’ll call the CLLocationManager class method
authorizationStatus to learn your app’s actual authorization status. There are two
types of authorization, so there are two status cases reporting that you have authori‐
zation: .authorizedWhenInUse and .authorizedAlways. If the status is .not-
Determined, you can request that the system put up the authorization request alert on
your behalf by calling one of two instance methods, either requestWhenInUse-
Authorization or requestAlwaysAuthorization. You must also have a correspond‐
ing meaningful entry in your app’s Info.plist providing the body of the authorization
request alert; these are “Privacy — Location When In Use Description” (NSLocation-
WhenInUseUsageDescription) and “Privacy — Location Always and When In Use
Usage Description” (NSLocationAlwaysAndWhenInUseUsageDescription) — and if
you’re planning to call requestAlwaysAuthorization, you will need both of them.

Because location tracking is both battery-intensive and a potential invasion of pri‐
vacy, Apple wants the user to feel confident that secret or inadvertent location track‐
ing is not taking place. At the same time, Apple wants to give your app a chance to
demonstrate to the user its use of Core Location, in order to encourage the user to
give your app the authorization it needs. Therefore iOS 13 provides a revised user
interface for authorizing your app, intended to maximize your chances of obtaining
authorization from a confused or mistrustful user. I’ll talk about When In Use
authorization now, postponing the rarer Always authorization until later.

New in iOS 13, the alert that the user sees when you request When In Use authoriza‐
tion includes an Allow Once option (Figure 21-2). This gives the user an opportunity
to let your app use location services on a limited basis. If the user taps Allow Once,
your app will get When In Use authorization, just as if the user had tapped Allow

970 | Chapter 21: Sensors

Figure 21-2. Authorization alert for When In Use authorization

Figure 21-3. Authorization choices in Settings

While Using App — but the next time your app goes into the background and is sus‐
pended, your authorization will be revoked. Then the next time your app runs, you’ll
discover that your authorization status is .notDetermined, and you can ask for
authorization again (and the alert will appear again).

The user can also change your app’s authorization at any time. The Settings app lets
the user turn on and off location access for your app (Figure 21-3). There are four
possibilities: Never, Ask Next Time, While Using the App, and Always (which will
appear only if your app has actually requested Always authorization). The second
option, Ask Next Time, is new in iOS 13: it returns your authorization status to .not-
Determined, so you can ask for authorization again (and the alert will appear again).

Oddly, the request methods do not take a completion function. Your code just con‐
tinues blithely on. If you call requestWhenInUseAuthorization and then attempt to
track the device’s location by calling startUpdatingLocation, you might succeed if
the user grants authorization, but you might fail because the user denies it. The Core
Location API provides no simple way for you to proceed only after you know the
outcome of the authorization request.

Core Location | 971

On the other hand, whenever the user changes your authorization status, in the
authorization request alert or the Settings app, your location manager delegate’s
locationManager(_:didChangeAuthorization:) is called. So if you were to store
whatever action you want to perform before obtaining authorization, you could per‐
form that action after obtaining authorization.

Here’s a strategy for doing that. Instead of making our CLLocationManager a prop‐
erty of the root view controller, we have a utility class, ManagerHolder; it creates and
retains the location manager, asks for authorization if needed, and stores the function
we want to call when we have authorization:

class ManagerHolder {
 let locman = CLLocationManager()
 var doThisWhenAuthorized : (() -> ())?
 func checkForLocationAccess(always:Bool = false,
 andThen f: (()->())? = nil) {
 // no services? try to get alert
 guard CLLocationManager.locationServicesEnabled() else {
 self.locman.startUpdatingLocation()
 return
 }
 let status = CLLocationManager.authorizationStatus()
 switch status {
 case .authorizedWhenInUse:
 if always { // try to step up
 self.doThisWhenAuthorized = f
 self.locman.requestAlwaysAuthorization()
 } else {
 f?()
 }
 case .authorizedAlways:
 f?()
 case .notDetermined:
 self.doThisWhenAuthorized = f
 always ?
 self.locman.requestAlwaysAuthorization() :
 self.locman.requestWhenInUseAuthorization()
 case .restricted: break // do nothing
 case .denied: break // do nothing, or beg for authorization
 @unknown default: fatalError()
 }
 }
}

With the ManagerHolder utility class, ownership and authorization of the location
manager is encapsulated. I’ll attach a ManagerHolder instance to the root view con‐
troller. The root view controller initializer creates and stores a ManagerHolder
instance as an instance property, bringing the location manager to life as early as pos‐
sible. For convenience, I’ll give the root view controller a locman property, but this

972 | Chapter 21: Sensors

will be a computed property that bounces to the ManagerHolder’s location manager
instance:

class ViewController: UIViewController, CLLocationManagerDelegate {
 let managerHolder = ManagerHolder()
 var locman : CLLocationManager {
 return self.managerHolder.locman
 }
 required init?(coder: NSCoder) {
 super.init(coder:coder)
 self.locman.delegate = self
 }
 // ...
}

Acting as the location manager delegate, the root view controller can implement
locationManager(_:didChangeAuthorizationStatus:) to call the function stored
in the ManagerHolder:

func locationManager(_ manager: CLLocationManager,
 didChangeAuthorization status: CLAuthorizationStatus) {
 switch status {
 case .authorizedAlways, .authorizedWhenInUse:
 self.managerHolder.doThisWhenAuthorized?()
 self.managerHolder.doThisWhenAuthorized = nil
 default: break
 }
}

If we now call our ManagerHolder’s checkForLocationAccess before tracking loca‐
tion, everything will work correctly. If we pass a completion function in our call to
checkForLocationAccess, then if we already have authorization, that function will be
called immediately; if our status is .notDetermined and the authorization request
alert is presented, that function will be called as soon as the user authorizes us.

Location Tracking
The primary use of a location manager is to track the user’s location. Make sure the
location manager has a delegate, configure the location manager further as needed
(I’ll go into more detail in a moment), and then tell the location manager to start-
UpdatingLocation.

The location manager will then begin calling the delegate’s locationManager(_:did-
UpdateLocations:) method repeatedly. The delegate will deal with each such call as
it arrives. In this way, you will be kept more or less continuously informed of where
the device is. This will go on until you call stopUpdatingLocation; don’t forget to
call it when you no longer need location tracking! Your delegate should also imple‐
ment locationManager(_:didFailWithError:) to receive error messages.

Core Location | 973

That pattern is common to virtually all uses of the location manager. The location
manager can do various kinds of tracking, but they all work the same way: you’ll tell
it to start, a corresponding delegate method will be called repeatedly (or you’ll receive
an error), and ultimately you’ll tell the location manager to stop.

Here are some location manager configuration properties that are useful to set before
you start location tracking:

desiredAccuracy

Your choices are:

• kCLLocationAccuracyBestForNavigation

• kCLLocationAccuracyBest

• kCLLocationAccuracyNearestTenMeters

• kCLLocationAccuracyHundredMeters

• kCLLocationAccuracyKilometer

• kCLLocationAccuracyThreeKilometers

It might be sufficient for your purposes to know quickly but roughly the device’s
location; in that case, use kCLLocationAccuracyKilometer or kCLLocation-
AccuracyThreeKilometers. At the other end of the scale, highest accuracy may
cause the highest battery drain; indeed, kCLLocationAccuracyBestFor-

Navigation is supposed to be used only when the device is connected to external
power. The accuracy setting is not a filter: the location manager will send you
whatever location information it has, even if it isn’t as accurate as you asked for,
and checking a location’s horizontalAccuracy to see if it’s good enough is up
to you.

distanceFilter

Perhaps you don’t need a location report unless the device has moved a certain
distance since the previous report. This property can help keep you from being
bombarded with events you don’t need. The distance is measured in meters. To
turn off the distance filter entirely, set this property to kCLDistanceFilterNone
(the default).

pausesLocationUpdatesAutomatically

A Bool. The default, true, means that your setting for the location manager’s
activityType is significant. Your activityType choices are (CLActivityType):

• .fitness

• .automotiveNavigation

• .otherNavigation

974 | Chapter 21: Sensors

• .other (the default)

Think of these as an autopause setting, based on the movement of the device; if
we don’t seem to be moving sufficiently to warrant updates based on the activity
type, updates can pause and we’ll conserve power.

The idea here is that the user may have stopped working out, driving, or what‐
ever, but has forgotten to turn off your app’s location tracking. A paused location
manager does not automatically resume updates; it’s up to you to implement the
delegate method locationManagerDidPauseLocationUpdates(_:) and config‐
ure updates to resume when appropriate. Apple suggests that, as an alternative,
you might save power by setting pausesLocationUpdatesAutomatically to
false but accepting the broadest desiredAccuracy (namely kCLLocation-
AccuracyThreeKilometers), which will probably mean that the GPS isn’t used.

Here’s a basic example, taking advantage of the authorization strategy described in
the previous section. Presume that we want to get a very accurate location as soon as
possible and keep tracking the user’s location until we say to stop:

self.managerHolder.checkForLocationAccess {
 self.locman.desiredAccuracy = kCLLocationAccuracyBest
 self.locman.distanceFilter = kCLDistanceFilterNone
 self.locman.activityType = .other
 self.locman.pausesLocationUpdatesAutomatically = false
 self.locman.startUpdatingLocation()
}

In that code, we have requested authorization if needed, and if we have or can get
authorization, we have configured the location manager and started tracking loca‐
tion. Now we must sit back and wait for our implementation of location-
Manager(_:didUpdateLocations:) to be called. The second parameter is an array of
CLLocation, a value class that encapsulates the notion of a location. Its properties
include:

coordinate

A CLLocationCoordinate2D, a struct consisting of two Doubles representing
latitude and longitude.

altitude

A CLLocationDistance, which is a Double representing a number of meters.

speed

A CLLocationSpeed, which is a Double representing meters per second.

course

A CLLocationDirection, which is a Double representing degrees (not radians)
clockwise from north.

Core Location | 975

horizontalAccuracy

A CLLocationAccuracy, which is a Double representing meters.

timestamp

A Date.

In this situation, the array that we receive is likely to contain just one CLLocation —
and even if it contains more than one, the last CLLocation in the array is guaranteed
to be the newest. So it suffices for our locationManager(_:didUpdateLocations:)
implementation to extract the last element of the array:

let REQ_ACC : CLLocationAccuracy = 10
func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 let loc = locations.last!
 let acc = loc.horizontalAccuracy
 print(acc)
 if acc < 0 || acc > REQ_ACC {
 return // wait for the next one
 }
 let coord = loc.coordinate
 print("You are at \(coord.latitude) \(coord.longitude)")
}

It’s instructive to see, from the console logs, how the accuracy improves as the sen‐
sors warm up and the GPS obtains a fix:

1285.19869645162
1285.19869645172
1285.19869645173
65.0
65.0
30.0
30.0
30.0
10.0
You are at ...

Where Am I?
Rather than tracking location continuously, you might like to get one location once. A
common beginner mistake is to call startUpdatingLocation and implement
locationManager(_:didUpdateLocations:) to stop updating as soon as it is called:

func locationManager(_ manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 let loc = locations.last!
 let coord = loc.coordinate
 print("You are at \(coord.latitude) \(coord.longitude)")
 manager.stopUpdatingLocation() // this won't work!
}

976 | Chapter 21: Sensors

As I demonstrated in the preceding section, however, the sensors take time to warm
up, and many calls to locationManager(_:didUpdateLocations:) may be needed
before a reasonably accurate CLLocation arrives. The correct strategy would be to do
just what I did in the preceding section, and then call stopUpdatingLocation at the
very end, when a sufficiently accurate location has in fact been received. But that’s a
lot of work to get just one reading, and there’s a simpler way. Instead of calling start-
UpdatingLocation, call requestLocation:

self.locman.desiredAccuracy = kCLLocationAccuracyBest
self.locman.requestLocation()

Your locationManager(_:didUpdateLocations:) will be called once with a good
location, based on the desiredAccuracy you’ve already set:

func locationManager(manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 let loc = locations.last!
 let coord = loc.coordinate
 print("You are at \(coord.latitude) \(coord.longitude)")
}

Calling requestLocation will not magically cause an accurate location to arrive any
faster! It’s a great convenience that locationManager(_:didUpdateLocations:) will
be called just once, but some considerable time may elapse before that call arrives.
You do not have to call stopUpdatingLocation, though you can do so if you change
your mind and decide before the location arrives that it is no longer needed.

If you call requestLocation soon after calling it previously, you may get a
cached value rather than a new position fix.

Continuous Background Location
Continuous background location is an extension of basic location tracking. You tell
the location manager to startUpdatingLocation, and when the app goes into the
background it keeps running and keeps receiving updates. Use of Core Location to
perform continuous background updates is parallel to production of sound in the
background (Chapter 14):

• In your app’s Info.plist, the “Required background modes” key (UIBackground-
Modes) should include location; you can set this up easily by adding the Back‐
ground Modes capability in the Signing & Capabilities tab when editing the
target, and checking “Location updates.”

• You must also set your location manager’s allowsBackgroundLocationUpdates
to true. You should do this only at moments when you actually need to start get‐
ting background location updates — ideally, just as you go into the background

Core Location | 977

(see Appendix A). You should set it back to false as soon as you no longer need
background updates.

The result is that if you have a location manager to which you have sent start-
UpdatingLocation and the user sends your app into the background, your app is not
suspended: the use of location services continues, and your delegate keeps receiving
location updates.

You cannot start tracking locations when your app is already in the background
(well, you can try, but in all probability your app will be suspended and location
tracking will cease).

How the device lets the user know that you’re tracking location in the background
depends on what sort of authorization you have:

Your app has only When In Use authorization
The device will make the user aware that your app is doing background location
tracking by displaying a blue status bar. The user can tap this to summon your
app to the front. (If you see the blue bar momentarily as your app goes into the
background, that’s because you didn’t do what I said a moment ago: set allows-
BackgroundLocationUpdates to true only when you really are going to track
location in the background.)

Your app has Always authorization
The blue status bar doesn’t appear, because the user has already agreed to let you
use location services always. But Apple recommends that you set the location
manager’s showsBackgroundLocationIndicator to true so the blue status bar
does appear.

Background use of location services can cause a power drain, but if you want your
app to function as a positional data logger, it may be the only way. You can help con‐
serve power by making judicious choices, such as:

• By setting a coarse distanceFilter value.
• By not requiring overly high accuracy.
• By being correct about the activityType and allowing updates to pause.

Location Monitoring
Location monitoring is not something your app does; it’s something the system does
on your behalf. It doesn’t require your app to run continuously in the background; in
fact, your app doesn’t need to be running at all! You do not have to set the
UIBackgroundModes of your Info.plist.

Your app still requires a location manager with a delegate, and it needs appropriate
user authorization. In general, this will be Always authorization. New in iOS 13, even

978 | Chapter 21: Sensors

if your app has only When In Use authorization, it can receive delegate messages
from location monitoring any time it is running (including running in the back‐
ground to receive location updates).

Always authorization
The only reason you would ever need Always authorization is that you want the sys‐
tem to do location monitoring for you even when your app is suspended or not run‐
ning. How will you get it?

New in iOS 13, when you ask for Always authorization, the user is not informed of
that fact. Instead, there are two possibilities:

The authorization status is .notDetermined
If you ask for Always authorization when the authorization status is .not-
Determined, the alert that appears to the user is the same as Figure 21-2. The
user’s choices are Allow While Using App and Allow Once.

The authorization status is .authorizedWhenInUse
No alert appears.

Okay, so when does the user get to provide Always authorization explicitly? Here’s
what happens (this is all new in iOS 13):

1. If the user has granted you authorization at all, then when you ask for Always
authorization you receive it immediately.

2. When your app next goes into the background, you must actually use your
mighty Always powers to begin location monitoring.

3. If you do that, then at some future moment, such as when your app comes back
to the foreground or the user returns to the device from the lock screen, the user
will be informed that your app has been using location services when it isn’t run‐
ning, and is offered a chance to permit that to continue (Figure 21-4). The user is
determining, in effect, whether your authorization status after this moment will
be .authorizedAlways or .authorizedWhenInUse.

Forms of location monitoring
There are four distinct forms of location monitoring:

Significant location change monitoring
Check this class method:

• significantLocationChangeMonitoringAvailable

If it returns true, you can call this method:

• startMonitoringSignificantLocationChanges

Core Location | 979

Figure 21-4. The Always authorization alert

Implement this delegate method:

locationManager(_:didUpdateLocations:)

Called whenever the device’s location has changed significantly.

Visit monitoring
By tracking significant changes in your location along with the pauses between
those changes, the system decides that the user is visiting a spot. Visit monitoring
is basically a form of significant location change monitoring, but requires even
less power and notifies you less often, because locations that don’t involve pauses
are filtered out.

Check this class method:

• significantLocationChangeMonitoringAvailable

If it returns true, you can call this method:

• startMonitoringVisits

Implement this delegate method:

locationManager(_:didVisit:)

Called whenever the user’s location pauses in a way that suggests a visit is
beginning, and again whenever a visit ends. The second parameter is a
CLVisit, a simple value class wrapping visit data; in addition to coordinate
and horizontalAccuracy, you get an arrivalDate and departureDate. If
this is an arrival, the departureDate will be Date.distantFuture. If this is a
departure and we were not monitoring visits when the user arrived, the
arrivalDate will be Date.distantPast.

980 | Chapter 21: Sensors

Region monitoring
Region monitoring depends upon your defining one or more regions. A region is
a CLRegion, which basically expresses a geofence, an area that triggers an event
when the user enters or leaves it (or both). This class is divided into two sub‐
classes, CLBeaconRegion and CLCircularRegion. CLBeaconRegion is used in
connection with iBeacon monitoring; I’m not going to discuss iBeacon in this
book, so that leaves us with only CLCircularRegion. Its initializer is
init(center:radius:identifier:); the center: parameter is a CLLocation‐
Coordinate2D, and the identifier: serves as a unique key. The region’s notify-
OnEntry and notifyOnExit properties are both true by default; set one to false
if you’re interested only in the other type of event.

Check this class method:

• isMonitoringAvailable(for:CLCircularRegion.self)

If it returns true, then you can call this method:

• startMonitoring(for:)

Call that method for each region in which you are interested. Regions being
monitored are maintained as a set, which is the location manager’s monitored-
Regions. A region’s identifier serves as a unique key, so that if you start moni‐
toring for a region whose identifier matches that of a region already in the
monitoredRegions set, the latter will be ejected from the set. Implement these
delegate methods:

• locationManager(_:didEnterRegion:)

• locationManager(_:didExitRegion:)

• locationManager(_:monitoringDidFailFor:withError:)

Geofenced local notifications
This is a special case of region monitoring where everything is handled through
the local notification mechanism (Chapter 13); therefore, you only need When In
Use authorization, you don’t start monitoring or stop monitoring, and you don’t
implement any delegate methods.

You configure a local notification request (UNNotificationRequest) whose trig‐
ger is a UNLocationNotificationTrigger. Create the trigger by calling its initial‐
izer, init(region:repeats:), supplying a CLRegion. If repeats: is true, the
notification won’t be unscheduled after it fires; rather, it will fire again whenever
the user crosses the region boundary in the specified direction again (depending
on the CLRegion’s notifyOnEntry and notifyOnExit settings).

Core Location | 981

Delegate method calls when your app isn’t running
If your app isn’t in the foreground at the time the system wants to send your location
manager delegate a location monitoring event, there are two possible states in which
your app might find itself:

Your app is suspended in the background
Your app is woken up (remaining in the background) long enough to receive the
delegate event and do something with it.

Your app is not running at all
Your app is relaunched (remaining in the background), and your app delegate
will be sent application(_:didFinishLaunchingWithOptions:) with the
options: dictionary containing the .location key, allowing you to discern the
special nature of the situation. As soon as possible, you need to make sure you
have a location manager with a delegate so that you can receive the appropriate
delegate events. (This is another reason why you should create a location man‐
ager and assign it a delegate early in the lifetime of the app.)

Location monitoring best practices
Location monitoring is less battery-intensive than full-fledged location tracking.
That’s because it relies on cell tower positions to estimate the device’s location. Since
the cell is probably operating anyway — if the device is a phone, the cell is usually on
and concerned with what cell towers are available — little or no additional power is
required. Apple says that the system will also take advantage of other clues requiring
no extra battery drain to decide that there may have been a change in location: for
instance, the device may observe a change in the available WiFi networks, strongly
suggesting that the device has moved.

Nevertheless, location monitoring does use the battery, and over the course of time
the user will notice this. Therefore, you should use it only during periods when you
need it. Every startMonitoring method has a corresponding stopMonitoring
method. Don’t forget to call that method when location monitoring is no longer
needed! The system is performing this work on your behalf, and it will continue to do
so until you tell it not to.

It is crucial that you remember to stop location monitoring. A failure to do this
will eventually drain the battery significantly. The user can figure out, by looking
at the Battery screen in Settings, that your app is responsible, and if you have
provided no other way to turn location monitoring off, the user will have no
choice but to delete your app.

982 | Chapter 21: Sensors

Heading
For appropriately equipped devices, Core Location supports use of the magnetometer
to determine which way the device is facing (its heading). Although this information
is accessed through a location manager, you do not need location services merely to
use the magnetometer to report the device’s orientation with respect to magnetic
north; you do need location services to report true north, as this depends on the
device’s location.

As with location, you’ll first check that the desired feature is available (heading-
Available); then you’ll configure the location manager, and call startUpdating-
Heading. The delegate will be sent locationManager(_:didUpdateHeading:)

repeatedly until you call stopUpdatingHeading (or else locationManager(_:didFail-
WithError:) will be called).

A heading object is a CLHeading instance; its magneticHeading and trueHeading
properties are CLLocationDirection values, which report degrees (not radians) meas‐
ured clockwise from the reference direction (magnetic or true north, respectively). If
the trueHeading is not available, it will be reported as -1. The trueHeading will not
be available unless both of the following are true in the Settings app:

• Location services are turned on (Privacy → Location Services).
• Compass calibration is turned on (Privacy → Location Services → System

Services).
Beyond that, explicit user authorization is not needed in order to get the device’s
heading with respect to true north.

If you want the system’s compass calibration alert to be permitted to appear if
needed, implement this delegate method to return true:

• locationManagerShouldDisplayHeadingCalibration(_:)

In this example, I’ll use the device as a compass. The headingFilter setting is to pre‐
vent us from being bombarded constantly with readings. For best results, the device
should probably be held level (like a tabletop, or a compass); we are setting the
headingOrientation so that the reported heading will be the direction in which the
top of the device (the end away from the Home button) is pointing:

guard CLLocationManager.headingAvailable() else {return} // no hardware
self.locman.headingFilter = 5
self.locman.headingOrientation = .portrait
self.locman.startUpdatingHeading()

In the delegate, I’ll display our heading as a rough cardinal direction in a label in the
interface (self.lab). If we have a trueHeading, I’ll use it; otherwise I’ll use the
magneticHeading:

Core Location | 983

func locationManager(_ manager: CLLocationManager,
 didUpdateHeading newHeading: CLHeading) {
 var h = newHeading.magneticHeading
 let h2 = newHeading.trueHeading // -1 if no location info
 if h2 >= 0 {
 h = h2
 }
 let cards = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"]
 func degToName(_ d:Double) -> String {
 let divCount = cards.count
 let angularRange = 360.0 / Double(divCount)
 let bucket = Int((d + angularRange/2.0)/angularRange)
 return cards[bucket % divCount]
 }
 let dir = degToName(h)
 if self.lab.text != dir {
 self.lab.text = dir
 }
 if self.lab.text != dir {
 self.lab.text = dir
 }
}

Heading is not the same as course. A boat may be facing north (its heading) but mov‐
ing northeast (its course). There are times, however, when what you are interested in
really is course. In a moving automobile, how the user is holding the device is usually
unimportant to you: what you want to know is which way the car is moving. If the
runtime concludes, from the nature of the device’s motion, that when you ask for
heading you probably mean course, it will provide the course as the heading.

If that’s not what you want, then instead of using Core Location to determine head‐
ing, you can use Core Motion (discussed in the next section) to obtain the device’s
orientation in space as a CMDeviceMotion object’s heading property.

Acceleration, Attitude, and Activity
Acceleration results from the application of a force to the device, and is detected
through the device’s accelerometer, supplemented by the gyroscope if the device has
one. Gravity is a force, so the accelerometer always has something to measure, even if
the user isn’t applying a force to the device, and the device can use acceleration detec‐
tion to report its attitude relative to the vertical.

Acceleration information can arrive in two ways:

As a prepackaged UIEvent
You can receive a UIEvent notifying you of a predefined gesture performed by
accelerating the device. At present, the only such gesture is the user shaking the
device.

984 | Chapter 21: Sensors

With the Core Motion framework
You instantiate CMMotionManager and then obtain information of a desired
type. You can ask for accelerometer, gyroscope, or device motion information;
device motion combines the gyroscope data with data from other sensors to give
you the best possible description of the device’s attitude in space, along with
magnetometer and heading information.

Shake Events
A shake event is a UIEvent (Chapter 5). Receiving shake events involves the notion of
the first responder. To receive shake events, your app must contain a UIResponder
which:

• Returns true from canBecomeFirstResponder.
• Is in fact first responder.

This responder, or a UIResponder further up the responder chain, should implement
some or all of these methods:

motionBegan(_:with:)

Something has started to happen that might or might not turn out to be a shake.

motionEnded(_:with:)

The motion reported in motionBegan is over and has turned out to be a shake.

motionCancelled(_:with:)

The motion reported in motionBegan wasn’t a shake after all.

It might be sufficient to implement motionEnded(_:with:), because this arrives if
and only if the user performs a shake gesture. The first parameter will be the event
subtype, but this is guaranteed to be .motionShake, so testing it is pointless.

The view controller in charge of the current view is a good candidate to receive shake
events. A minimal implementation might look like this:

override var canBecomeFirstResponder : Bool {
 return true
}
override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 self.becomeFirstResponder()
}
override func motionEnded(_ motion: UIEvent.EventSubtype, with e: UIEvent?) {
 print("hey, you shook me!")
}

Suppose some other object is first responder and is of a type that supports undo, such
as a UITextField. Then (assuming you have not set the shared UIApplication’s

Acceleration, Attitude, and Activity | 985

applicationSupportsShakeToEdit property to false) a shake event that percolates
all the way to the top of the responder chain will be handled by the runtime: it will
display an Undo or Redo alert, and will perform undo or redo on that object. Your
view controller might not want to rob any responders in its view of this capability. A
simple way to avoid doing so is to test whether the view controller is itself the first
responder; if it isn’t, we call super to pass the event on up the responder chain:

override func motionEnded(_ motion: UIEvent.EventSubtype, with e: UIEvent?) {
 if self.isFirstResponder {
 print("hey, you shook me!")
 } else {
 super.motionEnded(motion, with: e)
 }
}

New in iOS 13, double tap or left swipe with three fingers signifies Undo, and
shake gestures will probably diminish in importance.

Using Core Motion
The standard pattern for using the Core Motion framework (import CoreMotion) is
reminiscent of how you use Core Location:

1. You start by instantiating CMMotionManager; retain the instance somewhere,
typically as an instance property. There is no reason not to initialize the property
directly:

let motman = CMMotionManager()

2. Confirm that the desired hardware is available by checking the appropriate
instance property, such as isAccelerometerAvailable.

3. Set the interval at which you wish the motion manager to update itself with new
sensor readings by setting the appropriate property, such as accelerometer-
UpdateInterval.

4. Call the appropriate start method, such as startAccelerometerUpdates.
5. You probably expect me to say now that the motion manager will call into a dele‐

gate. Surprise! A motion manager has no delegate. You have two choices:

Pull
Poll the motion manager whenever you want data, asking for the appropriate
data property. The polling interval doesn’t have to be the same as the
motion manager’s update interval; when you poll, you’ll obtain the motion
manager’s current data — that is, the data generated by its most recent
update, whenever that was.

986 | Chapter 21: Sensors

Push
If your purpose is to collect all the data, then instead of calling a simple
start method, you can call a related method that takes a function that will
be called back, preferably on a background thread managed by an Opera‐
tionQueue (Chapter 24). The name of this method will have the form
start...Updates(to:withHandler:). For example, for accelerometer
updates, instead of startAccelerometerUpdates, you would call start-
AccelerometerUpdates(to:withHandler:).

6. Don’t forget to call the corresponding stop method, such as stopAccelerometer-
Updates, when you no longer need data.

So there are two ways to get motion manager data — pull and push. Which approach
should you use? It depends on what you’re trying to accomplish. Polling (pull) is a
good way to learn the device’s instantaneous state at some significant moment. A
stream of callbacks (push) is a good way to detect a gesture, typically by recording the
most recent data into a circular buffer for subsequent analysis. It’s perfectly possible
to use both methods; having configured push, you can perform an occasional pull.

Raw Acceleration
If the device has an accelerometer but no gyroscope, you can learn about the forces
being applied to it, but some compromises will be necessary. The chief problem is
that, even if the device is completely motionless, its acceleration values will constitute
a normalized vector pointing toward the center of the earth, popularly known as
gravity. The accelerometer is constantly reporting a combination of gravity and user-
induced acceleration. This is good and bad. It’s good because it means that, with cer‐
tain restrictions, you can use the accelerometer to detect the device’s attitude in
space. It’s bad because gravity values and user-induced acceleration values are mixed
together. Fortunately, there are ways to separate them mathematically:

With a low-pass filter
A low-pass filter will damp out user acceleration so as to report gravity only.

With a high-pass filter
A high-pass filter will damp out the effect of gravity so as to detect user accelera‐
tion only, reporting a motionless device as having zero acceleration.

In some situations, it is desirable to apply both a low-pass filter and a high-pass filter,
so as to learn both the gravity values and the user acceleration values. A common
additional technique is to run the output of the high-pass filter itself through a low-
pass filter to reduce noise and small twitches. Apple provides some nice sample code
for implementing a low-pass or a high-pass filter; see especially the Accelerometer‐
Graph example, which is also helpful for exploring how the accelerometer behaves.

Acceleration, Attitude, and Activity | 987

The technique of applying filters to the accelerometer output has some serious down‐
sides, which are inevitable in a device that lacks a gyroscope:

• It’s up to you to apply the filters; you have to implement boilerplate code and
hope that you don’t make a mistake.

• Filters mean latency. Your response to the accelerometer values will lag behind
what the device is actually doing; this lag may be noticeable.

Gravity and attitude
In this example, I will simply report whether the device is lying flat on its back. I start
by configuring my motion manager; then I launch a repeating timer to trigger
polling:

guard self.motman.isAccelerometerAvailable else { return }
self.motman.accelerometerUpdateInterval = 1.0 / 30.0
self.motman.startAccelerometerUpdates()
self.timer = Timer.scheduledTimer(
 timeInterval:self.motman.accelerometerUpdateInterval,
 target: self, selector: #selector(pollAccel),
 userInfo: nil, repeats: true)

My pollAccel method is now being called repeatedly. In it, I ask the motion manager
for its accelerometer data. This arrives as a CMAccelerometerData object, which is a
timestamp plus a CMAcceleration; a CMAcceleration is simply a struct of three val‐
ues, one for each axis of the device, measured in Gs:

• The positive x-axis points to the right of the device.
• The positive y-axis points toward the top of the device.
• The positive z-axis points out the front of the screen.

The two axes orthogonal to gravity, which are the x- and y-axes when the device is
lying more or less on its back, are much more accurate and sensitive to small varia‐
tion than the axis pointing toward or away from gravity. So our approach is to ask
first whether the x and y values are close to zero; only then do we use the z value to
learn whether the device is on its back or on its face. To keep from updating our
interface constantly, we implement a crude state machine; the state property
(self.state) starts out at .unknown, and then switches between .lyingDown (device
on its back) and .notLyingDown (device not on its back), and we update the interface
only when there is a state change:

guard let data = self.motman.accelerometerData else {return}
let acc = data.acceleration
let x = acc.x
let y = acc.y
let z = acc.z
let accu = 0.08
if abs(x) < accu && abs(y) < accu && z < -0.5 {

988 | Chapter 21: Sensors

 if self.state == .unknown || self.state == .notLyingDown {
 self.state = .lyingDown
 self.label.text = "I'm lying on my back... ahhh..."
 }
} else {
 if self.state == .unknown || self.state == .lyingDown {
 self.state = .notLyingDown
 self.label.text = "Hey, put me back down on the table!"
 }
}

This works, but it’s sensitive to small motions of the device on the table. To damp this
sensitivity, we can run our input through a low-pass filter. The low-pass filter code
comes straight from Apple’s own examples, and involves maintaining the previously
filtered reading as a set of properties:

func add(acceleration accel:CMAcceleration) {
 let alpha = 0.1
 self.oldX = accel.x * alpha + self.oldX * (1.0 - alpha)
 self.oldY = accel.y * alpha + self.oldY * (1.0 - alpha)
 self.oldZ = accel.z * alpha + self.oldZ * (1.0 - alpha)
}

Our polling code now starts out by passing the data through the filter:

guard let data = self.motman.accelerometerData else {return}
self.add(acceleration: data.acceleration)
let x = self.oldX
let y = self.oldY
let z = self.oldZ
// ... and the rest is as before ...

As I mentioned earlier, instead of polling (pull), you can receive callbacks to a func‐
tion (push). This approach is useful particularly if your goal is to collect updates or to
receive updates on a background thread (or both). To illustrate, I’ll rewrite the previ‐
ous example to use this technique; to keep things simple, I’ll ask for my callbacks on
the main thread (the documentation advises against this, but Apple’s own sample
code does it). We now start our accelerometer updates like this:

self.motman.startAccelerometerUpdates(to: .main) { data, err in
 guard let data = data else {
 print(err)
 self.stopAccelerometer()
 return
 }
 self.receive(acceleration:data)
}

receive(acceleration:) is just like our earlier pollAccel, except that we already
have the accelerometer data:

Acceleration, Attitude, and Activity | 989

func receive(acceleration data:CMAccelerometerData) {
 self.add(acceleration: data.acceleration)
 let x = self.oldX
 let y = self.oldY
 let z = self.oldZ
 // ... and the rest is as before ...
}

Force applied by the user
In this next example, the user is allowed to slap the side of the device into an open
hand — perhaps as a way of telling it to go to the next or previous image or whatever
it is we’re displaying. We pass the acceleration input through a high-pass filter to
eliminate gravity (again, the filter code comes straight from Apple’s examples):

func add(acceleration accel:CMAcceleration) {
 let alpha = 0.1
 self.oldX = accel.x - ((accel.x * alpha) + (self.oldX * (1.0 - alpha)))
 self.oldY = accel.y - ((accel.y * alpha) + (self.oldY * (1.0 - alpha)))
 self.oldZ = accel.z - ((accel.z * alpha) + (self.oldZ * (1.0 - alpha)))
}

What we’re looking for, in our polling routine, is a high positive or negative x value.
A single slap is likely to consist of several consecutive readings above our threshold,
but we want to report each slap only once, sο we take advantage of the timestamp
attached to a CMAccelerometerData, maintaining the timestamp of our previous
high reading as a property and ignoring readings that are too close to one another in
time. Another problem is that a sudden jerk involves both an acceleration (as the user
starts the device moving) and a deceleration (as the device stops moving); a left slap
might be preceded by a high value in the opposite direction, which we might inter‐
pret wrongly as a right slap. We can compensate crudely, at the expense of some
latency, with delayed performance:

@objc func pollAccel(_: Any) {
 guard let data = self.motman.accelerometerData else {return}
 self.add(acceleration: data.acceleration)
 let x = self.oldX
 let thresh = 1.0
 if x < -thresh {
 if data.timestamp - self.oldTime > 0.5 || self.lastSlap == .right {
 self.oldTime = data.timestamp
 self.lastSlap = .left
 self.canceltimer?.invalidate()
 self.canceltimer = .scheduledTimer(
 withTimeInterval:0.5, repeats: false) { _ in
 print("left")
 }
 }
 } else if x > thresh {
 if data.timestamp - self.oldTime > 0.5 || self.lastSlap == .left {

990 | Chapter 21: Sensors

 self.oldTime = data.timestamp
 self.lastSlap = .right
 self.canceltimer?.invalidate()
 self.canceltimer = .scheduledTimer(
 withTimeInterval:0.5, repeats: false) { _ in
 print("right")
 }
 }
 }
}

The gesture we’re detecting is a little tricky to make: the user must slap the device
into an open hand and hold it there; if the device jumps out of the open hand, that
movement may be detected as the last in the series, resulting in the wrong report (left
instead of right, or vice versa). And the latency of our gesture detection is very high.

Of course we might try tweaking some of the magic numbers in this code to improve
accuracy and performance, but a more sophisticated analysis would probably involve
storing a stream of all the most recent CMAccelerometerData objects in a circular
buffer and studying the buffer contents to work out the overall trend.

Gyroscope
The inclusion of an electronic gyroscope in the panoply of onboard hardware in
some devices makes a huge difference in the accuracy and speed of gravity and atti‐
tude reporting. A gyroscope has the property that its attitude in space remains
constant, so it can detect any change in the attitude of the containing device. This has
two important consequences for accelerometer measurements:

• The accelerometer can be supplemented by the gyroscope to detect quickly the
difference between gravity and user-induced acceleration.

• The gyroscope can observe pure rotation, where little or no acceleration is
involved and so the accelerometer would not have been helpful. The extreme
case is constant attitudinal rotation around the gravity axis, which the accelerom‐
eter alone would be unable to detect (because there is no user-induced force, and
gravity remains constant).

It is possible to track the raw gyroscope data: make sure the device has a gyroscope
(isGyroAvailable), and then call startGyroUpdates. What we get from the motion
manager is a CMGyroData object, which combines a timestamp with a CMRotation‐
Rate that reports the rate of rotation around each axis, measured in radians per
second, where a positive value is counterclockwise as seen by someone whose eye is
pointed to by the positive axis. (This is the opposite of the direction graphed in
Figure 1-11.)

But there’s a problem: the gyroscope values are scaled and biased. This means that the
values are based on an arbitrary scale and are gradually increasing (or decreasing)

Acceleration, Attitude, and Activity | 991

over time at a roughly constant rate. So in real life you are unlikely to want raw gyro‐
scope data. Instead, you’ll use device motion.

Device motion
The most reliable way to obtain the device’s attitude is through a combination of at
least the gyroscope and the accelerometer. The mathematics required to combine the
data from these sensors can be daunting. Fortunately, there’s no need to know any‐
thing about that. Core Motion will happily package up the calculated combination of
data as a device motion instance (CMDeviceMotion), with the effects of the sensors’
internal bias and scaling already factored out.

CMDeviceMotion consists of the following properties, all of which provide a triple of
values corresponding to the device’s natural 3D frame (x increasing to the right, y
increasing to the top, z increasing out the front):

gravity

A CMAcceleration expressing a vector with value 1 pointing to the center of the
earth, measured in Gs.

userAcceleration

A CMAcceleration describing user-induced acceleration, with no gravity compo‐
nent, measured in Gs.

rotationRate

A CMRotationRate describing how the device is rotating around its own center.
This is essentially the CMGyroData rotationRate with scale and bias already
accounted for.

magneticField

A CMCalibratedMagneticField describing (in its field, a CMMagneticField) the
magnetic forces acting on the device, measured in microteslas. The sensor’s
internal bias has already been factored out. The accuracy is one of the following
(CMMagneticFieldCalibrationAccuracy):

• .uncalibrated

• .low

• .medium

• .high

attitude

A CMAttitude, descriptive of the device’s instantaneous attitude in space. The
attitude is measured against a reference frame (CMAttitudeReferenceFrame)
which you specify when you ask the motion manager to start generating updates,

992 | Chapter 21: Sensors

having first called the class method availableAttitudeReferenceFrames to
ascertain that the desired reference frame is available on this device. In every
case, the negative z-axis points at the center of the earth; what varies between ref‐
erence frames is where the x-axis is (and the y-axis is then orthogonal to the
other two):

.xArbitraryZVertical

The x-axis could be pointing anywhere.

.xArbitraryCorrectedZVertical

The same as the previous option, but the magnetometer is used to maintain
accuracy (preventing drift of the reference frame over time).

.xMagneticNorthZVertical

The x-axis points toward magnetic north.

.xTrueNorthZVertical

The x-axis points toward true north. This value will be inaccurate unless you
are also using Core Location to obtain the device’s location.

The attitude value’s numbers can be accessed through various CMAttitude
properties corresponding to three different systems, each being convenient for a
different purpose:

pitch, roll, yaw
The device’s angle of offset from the reference frame, in radians, around the
device’s natural x-axis, y-axis, and z-axis respectively (also known as Euler
angles).

rotationMatrix

A CMRotationMatrix struct embodying a 3×3 matrix expressing a rotation
in the reference frame.

quaternion

A CMQuaternion describing an attitude. (Quaternions are commonly used
in 3D contexts such as SceneKit and Metal.)

heading

A Double giving the device’s orientation as a number of degrees (not radians)
clockwise from north, in accordance with the reference frame which must
be .xMagneticNorthZVertical or .xTrueNorthZVertical (otherwise, you’ll get
a value of -1). Unlike a Core Location CLHeading, it is a pure orientation read‐
ing, without the course folded into it. Not only the magnetometer but also the
accelerometer and gyroscope are used, helping to eliminate errors caused by local
magnetic anomalies.

Acceleration, Attitude, and Activity | 993

Absolute attitude
In this example, we turn the device into a simple compass/clinometer, merely by ask‐
ing for its attitude with reference to magnetic north and taking its pitch, roll, and
yaw. We begin by making the usual preparations; notice the use of the showsDevice-
MovementDisplay property, intended to allow the runtime to prompt the user if the
magnetometer needs calibration:

guard self.motman.isDeviceMotionAvailable else { return }
let r = CMAttitudeReferenceFrame.xMagneticNorthZVertical
guard CMMotionManager.availableAttitudeReferenceFrames().contains(r) else {
 return
}
self.motman.showsDeviceMovementDisplay = true
self.motman.deviceMotionUpdateInterval = 1.0 / 30.0
self.motman.startDeviceMotionUpdates(using: r)
let t = self.motman.deviceMotionUpdateInterval * 10
self.timer = Timer.scheduledTimer(timeInterval:t,
 target:self, selector:#selector(pollAttitude),
 userInfo:nil, repeats:true)

In pollAttitude, we wait until the magnetometer is ready, and then we start taking
attitude readings (converted to degrees):

guard let mot = self.motman.deviceMotion else {return}
let acc = mot.magneticField.accuracy.rawValue
if acc <= CMMagneticFieldCalibrationAccuracy.low.rawValue {
 return // not ready yet
}
let att = mot.attitude
let to_deg = 180.0 / .pi
print("\(att.pitch * to_deg), \(att.roll * to_deg), \(att.yaw * to_deg)")

The values are all close to zero when the device is level (flat on its back) with its x-axis
(right edge) pointing to magnetic north, and each value increases as the device is
rotated counterclockwise with respect to an eye that has the corresponding positive
axis pointing at it. A device held upright (top pointing at the sky) has a pitch
approaching 90; a device lying on its right edge has a roll approaching 90; and a
device lying on its back with its top pointing north has a yaw approaching -90.

There are some quirks in the way Euler angles operate mathematically:

• roll and yaw increase with counterclockwise rotation from 0 to π (180 degrees)
and then jump to -π (-180 degrees) and continue to increase to 0 as the rotation
completes a circle; but pitch increases to π/2 (90 degrees) and then decreases to
0, then decreases to -π/2 (-90 degrees) and increases to 0. This means that
attitude alone, if we are exploring it through pitch, roll, and yaw, is insuffi‐
cient to describe the device’s attitude, since a pitch value of, say, π/4 (45 degrees)

994 | Chapter 21: Sensors

could mean two different things. To distinguish those two things, we can supple‐
ment attitude with the z-component of gravity:

let g = mot.gravity
let whichway = g.z > 0 ? "forward" : "back"
print("pitch is tilted \(whichway)")

• Values become inaccurate in certain orientations. In particular, when pitch
approaches ±90 degrees (the device is upright or inverted), roll and yaw become
erratic. (You may see this effect referred to as “the singularity” or “gimbal lock.”)
I believe that, depending on what you are trying to accomplish, you can solve this
by using a different expression of the attitude, such as the rotationMatrix,
which does not suffer from this limitation.

Relative attitude

This next example illustrates a use of CMAttitude’s rotationMatrix property. Our
goal is to make a CALayer rotate in response to the current attitude of the device. We
start as before, except that our reference frame is .xArbitraryZVertical; we are
interested in how the device moves from its initial attitude, without reference to any
particular fixed external direction such as magnetic north. In pollAttitude, our first
step is to store the device’s current attitude in a CMAttitude property, self.ref:

guard let mot = self.motman.deviceMotion else {return}
let att = mot.attitude
if self.ref == nil {
 self.ref = att
 return
}

That code works correctly because on the first few polls, as the attitude-detection
hardware warms up, att is nil, so we don’t get past the return call until we have a
valid initial attitude. Our next step is highly characteristic of how CMAttitude is used:
we call the CMAttitude instance method multiply(byInverseOf:), which trans‐
forms our attitude so that it is relative to the stored initial attitude:

att.multiply(byInverseOf: self.ref)

Finally, we apply the attitude’s rotation matrix directly to a layer in our interface as a
transform. Well, not quite directly: a rotation matrix is a 3×3 matrix, whereas a
CATransform3D, which is what we need in order to set a layer’s transform, is a 4×4
matrix. However, it happens that the top left nine entries in a CATransform3D
matrix constitute its rotation component, so we start with an identity matrix and set
those entries directly:

let r = att.rotationMatrix
var t = CATransform3DIdentity
t.m11 = CGFloat(r.m11)
t.m12 = CGFloat(r.m12)

Acceleration, Attitude, and Activity | 995

t.m13 = CGFloat(r.m13)
t.m21 = CGFloat(r.m21)
t.m22 = CGFloat(r.m22)
t.m23 = CGFloat(r.m23)
t.m31 = CGFloat(r.m31)
t.m32 = CGFloat(r.m32)
t.m33 = CGFloat(r.m33)
let lay = // whatever
CATransaction.setAnimationDuration(1.0/10.0)
lay.transform = t

The result is that the layer apparently tries to hold itself still as the device rotates. The
example is rather crude because we aren’t drawing a three-dimensional object, but it
illustrates the principle well enough.

There is a quirk to be aware of in this case as well: over time, the transform has a
tendency to drift. Even if we leave the device stationary, the layer will gradually
rotate. That is the sort of effect that .xArbitraryCorrectedZVertical is designed to
help mitigate, at the expense of some CPU and battery usage, by bringing the magne‐
tometer into play.

Core Motion best practices
Here are some additional considerations to be aware of when using Core Motion:

• Your app should create only one CMMotionManager instance.
• Core Motion requires that various sensors be turned on, such as the magnetome‐

ter and the gyroscope. This can result in some increased battery drain, so try not
to use any sensors you don’t have to, and remember to stop generating updates
as soon as you no longer need them.

• Use of Core Motion is legal while your app is running in the background. To take
advantage of this, your app would need to be running in the background for
some other reason; there is no Core Motion UIBackgroundModes setting in an
Info.plist. You might run in the background because you’re using Core Location,
and take advantage of this to employ Core Motion as well.

• If your app will not be running in the background, then you should tell the
motion manager explicitly to stop generating updates when your app goes into
the background.

Other Core Motion Data
In addition to CMDeviceMotion, the Core Motion framework lets you obtain four
other types of data:

996 | Chapter 21: Sensors

CMMotionActivityManager
Some devices have a motion coprocessor chip with the ability to detect, analyze,
and keep a record of device motion even while the device is asleep and with very
little drain on power. This is not a form of location determination; it is an analy‐
sis of the device’s physical motion and attitude in order to draw conclusions
about what the user has been doing while carrying or wearing the device. You
can learn that the user is walking, or walked for an hour, but not where the user
was walking.

Start by maintaining a CMMotionActivityManager instance, typically as an
instance property. To find out whether the device has a motion coprocessor, call
the CMMotionActivityManager class method isActivityAvailable. There are
two ways to query the motion activity manager:

Real-time updates
This is similar to getting motion manager updates with a callback function.
You call this method:

• startActivityUpdates(to:withHandler:)

Your callback function is called periodically. When you no longer need
updates, call stopActivityUpdates.

Historical data
The motion coprocessor stores about a week’s-worth of the most recent data.
You ask for a chunk of that recorded data by calling this method:

• queryActivityStarting(from:to:to:withHandler:)

It’s fine to query the historical data while the motion activity manager is
already delivering updates.

CMPedometer
The pedometer is a step counter, deducing steps from the back and forth motion
of the device; it can also be used to receive events alerting you that the user has
started or stopped activity. The pedometer may work reliably under circumstan‐
ces where Core Location doesn’t.

Start by maintaining a CMPedometer instance, typically as an instance property.
Before using the pedometer, check the isStepCountingAvailable class method.
Different devices add further capabilities. Some devices can deduce the size of the
user’s stride and compute distance (isDistanceAvailable); some devices can
use barometric data to estimate whether the user mounted a flight of stairs
(isFloorCountingAvailable). You can also ask for instantaneous cadence
(isCadenceAvailable) and pace (isPaceAvailable).

Pedometer data is queried just like motion activity data:

Acceleration, Attitude, and Activity | 997

Real-time updates
You can ask for constant updates with this method:

• startUpdates(from:withHandler:)

Historical data
You can ask for the stored history with this method:

• queryPedometerData(from:to:withHandler:)

Each bit of data arrives as a CMPedometerData object.

To be notified of changes in the user’s motion, call startEvent-

Updates(handler:); the handler: function receives a CMPedometerEvent
whose type (CMPedometerEventType) is .pause or .resume.

CMAltimeter
Some devices have an altimeter — in essence, a barometer. The idea here is not
so much to tell you the user’s absolute altitude, since atmospheric pressure can
vary considerably at a fixed altitude, but to alert you to changes in the user’s rela‐
tive altitude during activity.

Start by maintaining a CMAltimeter instance, typically as an instance property.
Before using the altimeter, check the isRelativeAltitudeAvailable class
method. Then call startRelativeAltitudeUpdates(to:withHandler:) to start
delivery of CMAltitudeData objects; the key metric is the relativeAltitude
property, an NSNumber wrapping a Double representing meters. It starts life at
0, and subsequent CMAltitudeData objects provide a measurement relative to
that initial base.

CMSensorRecorder
Some devices can record the output of the accelerometer over time in the back‐
ground. Before using the recorder, check the isAccelerometerRecording-
Available. Then instantiate CMSensorRecorder (you do not need to retain the
instance) and call recordAccelerometer(forDuration:). Recording is done by
the system, 50 times per second, on your behalf, regardless of whether your app
is in the foreground or even whether it is running, and stops automatically when
the duration is over.

To retrieve the data, instantiate CMSensorRecorder again, and call
accelerometerData(from:to:). You are given a CMSensorDataList, which
unfortunately is rather tricky to deal with. First, you’ll need to make CMSensor‐
DataList conform to Sequence by means of an extension:

998 | Chapter 21: Sensors

extension CMSensorDataList: Sequence {
 public typealias Iterator = NSFastEnumerationIterator
 public func makeIterator() -> NSFastEnumerationIterator {
 return NSFastEnumerationIterator(self)
 }
}

Now you can iterate over CMSensorDataList to get CMRecordedAccelerometer‐
Data instances, each consisting of a timestamp and an acceleration (a CMAc‐
celeration, discussed earlier in this chapter):

let rec = CMSensorRecorder() // and d1 and d2 are Dates
if let list = rec.accelerometerData(from: d1, to: d2) {
 for datum in list {
 if let accdatum = datum as? CMRecordedAccelerometerData {
 let accel = accdatum.acceleration
 let t = accdatum.timestamp
 // do something with data here
 }
 }
}

All four types of data have in common that you need user authorization to obtain
them (and even if you obtain such authorization, the user can later use the Settings
app to withdraw it). Your Info.plist must contain an entry under the “Privacy —
Motion Usage Description” key (NSMotionUsageDescription) explaining your pur‐
pose. Oddly, there is no requestAuthorization method. In the past, there wasn’t
even any easy way to learn in advance whether we had authorization; the technique
was to “tickle” the appropriate class by trying to query it for data and see if you got an
error. In this example, I have a Bool property, self.authorized, which I set based on
the outcome of trying to query the motion activity manager:

guard CMMotionActivityManager.isActivityAvailable() else { return }
let now = Date()
self.actman.queryActivityStarting(from:now, to:now, to:.main) { arr, err in
 let notauth = Int(CMErrorMotionActivityNotAuthorized.rawValue)
 if err != nil && (err! as NSError).code == notauth {
 self.isAuthorized = false
 } else {
 self.isAuthorized = true
 }
}

On the first run of that code, the system puts up the authorization request alert if
necessary. The completion function is not called until the user deals with the alert, so
the outcome tells you what the user decided. On subsequent runs, that same code
reports the current authorization status.

Acceleration, Attitude, and Activity | 999

Starting in iOS 11, there’s an easier way: you can ask the class in question for its
authorizationStatus. This returns a status enum with the usual four cases. You still
need to “tickle” the class to summon the authorization alert if the status is .not-
Determined. This allows us to use a strategy similar to the one devised earlier
(“Checking for Authorization” on page 861). I assume here that self.actman is a
CMMotionActivityManager instance:

func checkAuthorization(andThen f:(()->())? = nil) {
 let status = CMMotionActivityManager.authorizationStatus()
 switch status {
 case .notDetermined: // bring up alert
 let now = Date()
 self.actman.queryActivityStarting(from: now, to:now, to:.main) {
 _,err in
 print("asked for authorization")
 if err == nil {
 f?()
 }
 }
 case .authorized: f?()
 case .restricted: break // do nothing
 case .denied: break // could beg for authorization here
 @unknown default: fatalError()
 }
}

I’ll illustrate querying for historical motion activity manager data by fetching the data
for the past 24 hours. I have prepared an OperationQueue property, self.queue:

let now = Date()
let yester = now - (60*60*24)
self.actman.queryActivityStarting(
 from: yester, to: now, to: self.queue) { arr, err in
 guard var acts = arr else {return}
 // ...
}

We now have an array of CMMotionActivity objects representing every change in the
device’s activity status. This is a value class. It has a startDate, a confidence (a
CMMotionActivityConfidence, .low, .medium, or .high) ranking the activity man‐
ager’s faith in its own categorization of what the user was doing, and a bunch of Bool
properties actually categorizing the activity:

• stationary

• walking

• running

• automotive

1000 | Chapter 21: Sensors

• cycling

• unknown

A common first response to the flood of data is to pare it down (sometimes referred
to as smoothing or decimating). To help with this, I’ve extended CMMotionActivity
with a utility method that summarizes its Bool properties as a string:

extension CMMotionActivity {
 private func tf(_ b:Bool) -> String {
 return b ? "t" : "f"
 }
 func overallAct() -> String {
 let s = tf(self.stationary)
 let w = tf(self.walking)
 let r = tf(self.running)
 let a = tf(self.automotive)
 let c = tf(self.cycling)
 let u = tf(self.unknown)
 return "\(s) \(w) \(r) \(a) \(c) \(u)"
 }
}

As a straightforward way of paring down the data, I remove every CMMotionActivity
with no definite activity, or with a low degree of confidence, or with an activity that is
the same as its predecessor. Then I set an instance property with my data, ready for
use:

let blank = "f f f f f f"
acts = acts.filter {act in act.overallAct() != blank}
acts = acts.filter {act in act.confidence == .high}
for i in (1..<acts.count).reversed() {
 if acts[i].overallAct() == acts[i-1].overallAct() {
 acts.remove(at:i)
 }
}
DispatchQueue.main.async {
 self.data = acts
}

Acceleration, Attitude, and Activity | 1001

PART IV

Final Topics

This part of the book is a miscellany of topics:

• Chapter 22 is about files and how your app can store data persistently. It also
discusses sharing files with the user and with other apps, plus the document
architecture and iCloud, and surveys some common file formats.

• Chapter 23 introduces networking, with an emphasis on downloading of data,
along with some specialized forms of networking such as on-demand resources
and in-app purchases.

• Chapter 24 is about making your code multithreaded.
• Chapter 25 describes how to support undo in your app.
• Appendix A discusses the lifetime event messages sent to your app.
• Appendix B is a catalog of some useful Swift utility functions that I’ve written.
• Appendix C is an excursus on asynchronous code execution.

CHAPTER 22

Persistent Storage

Your app can save data into files that persist on the device when your app isn’t run‐
ning or the device is powered down. This chapter is about how and where files are
saved and retrieved. It also talks about some of the additional ways in which files can
be manipulated, such as how apps can share documents with one another and with
the cloud. The chapter also explains how user preferences are maintained in User‐
Defaults, and describes some specialized file formats and ways of working with their
data, such as XML, JSON, SQLite, Core Data, PDF, and images.

The Sandbox
The device’s file contents as a whole are not open to your app’s view. Instead, a limi‐
ted region of the device’s persistent storage is dedicated to each app: this is the app’s
sandbox. The idea is that every app, seeing only its own sandbox, is hindered from
impinging on the files belonging to other apps, and in turn is protected from having
its own files impinged on by other apps. Your sandbox, and hence your data, will be
deleted if the user deletes your app; otherwise, it should reliably persist.

Standard Directories
The preferred way to refer to a file or directory is with a file URL, a URL instance.
The other possible way is with a file path, or pathname, which is a string; if necessary,
you can convert from a file URL to a file path by asking for the URL’s path, or from a
pathname to a file URL with the URL initializer init(fileURLWithPath:). But on
the whole, you should try to stick with URL objects.

The sandbox contains some standard directories, and there are built-in methods for
referring to them. You can obtain a URL for a standard directory by starting with a

1005

FileManager instance, which will usually be FileManager.default, and calling
url(for:in:appropriateFor:create:), like this:

do {
 let fm = FileManager.default
 let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
 // use docsurl here
} catch {
 // deal with error here
}

A question that will immediately occur to you is: where should I put files and folders
that I want to save now and read later? The Documents directory can be a good place.
But if your app supports file sharing (discussed later in this chapter), the user can see
and modify your app’s Documents directory, so you might not want to put things
there that the user isn’t supposed to see and change. A good alternative is the Appli‐
cation Support directory. In iOS, each app gets a private Application Support direc‐
tory in its own sandbox, so you can safely put files directly into it. This directory may
not exist initially, but you can obtain it and create it at the same time:

do {
 let fm = FileManager.default
 let suppurl = try fm.url(for:.applicationSupportDirectory,
 in: .userDomainMask, appropriateFor: nil, create: true)
 // use suppurl here
} catch {
 // deal with error here
}

Temporary files whose loss you are willing to accept (because their contents can be
recreated) can be written into the Caches directory (.cachesDirectory) or the Tem‐
porary directory (the FileManager’s temporaryDirectory). You can write temporary
files into the Application Support folder, but by default this means they can be
backed up by the user through iTunes or iCloud; to prevent that, exclude such a file
from backup by way of its attributes:

var rv = URLResourceValues()
rv.isExcludedFromBackup = true
try myFileURL.setResourceValues(rv)

Inspecting the Sandbox
While developing your app, you might like to peek inside its sandbox for debugging
purposes, to make sure your files are being saved as you expect. The Simulator’s
sandbox for your app is a folder on your Mac that you can, with some cunning,
inspect visually. In your app’s code, print to the Xcode console the path of your app’s
Documents directory. Copy that value from the console, switch to the Finder, choose
Go → Go to Folder, paste the path into the dialog that appears, and click Go. Now

1006 | Chapter 22: Persistent Storage

Figure 22-1. An app’s sandbox in the Simulator

Figure 22-2. Summoning and displaying an app’s sandbox on a device

you’re looking at your app’s Documents directory in the Finder; to see more of the
sandbox, press Command-Up arrow.

Figure 22-1 displays my app’s sandbox. The Documents folder contains a folder and
a couple of files that I’ve created programmatically (the code that created them will
appear later in this chapter).

You can also view the file structure of your app’s sandbox on a device. When the
device is connected, choose Window → Devices and Simulators, and switch to the
Devices tab. Select your device on the left; on the right, under Installed Apps, select
your app. Click the Gear icon and choose Show Container; after an extremely long
delay, your app’s sandbox hierarchy is displayed in a modal sheet (Figure 22-2).
Alternatively, choose Download Container to copy your app’s sandbox to your com‐
puter; the sandbox arrives on your computer as an .xcappdata package, and you can
open it in the Finder with Show Package Contents.

Basic File Operations
Let’s say we intend to create a folder MyFolder inside the Documents directory. We
already know how to use a FileManager instance to get a URL pointing at the Docu‐
ments directory; from this, we can generate a reference to the MyFolder folder. Using
that reference, we can ask the FileManager to create the folder if it doesn’t exist
already:

The Sandbox | 1007

let foldername = "MyFolder"
let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let myfolder = docsurl.appendingPathComponent(foldername)
try fm.createDirectory(at:myfolder, withIntermediateDirectories: true)

To learn what files and folders exist within a directory, you can ask for an array of the
directory’s contents:

let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let arr = try fm.contentsOfDirectory(at:docsurl,
 includingPropertiesForKeys: nil)
arr.forEach{ print($0.lastPathComponent) } // MyFolder

The array resulting from contentsOfDirectory lists full URLs of the directory’s
immediate contents; it is shallow. For a deep traversal of a directory’s contents, you
can enumerate it by means of a directory enumerator (FileManager.Directory‐
Enumerator); this is efficient with regards to memory, because you are handed just
one file reference at a time. In this example, MyFolder is in the Documents directory,
and I am looking for two .txt files that I have saved into MyFolder (as explained in the
next section); I find them by doing a deep traversal of the Documents directory:

let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let dir = fm.enumerator(at:docsurl, includingPropertiesForKeys: nil)!
for case let f as URL in dir where f.pathExtension == "txt" {
 print(f.lastPathComponent) // file1.txt, file2.txt
}

A directory enumerator also permits you to decline to dive into a particular subdirec‐
tory (skipDescendants), so you can make your traversal even more efficient.

Consult the FileManager class documentation for more about what you can do with
files, and see also Apple’s File System Programming Guide in the documentation
archive.

Saving and Reading Files
Four Cocoa classes provide a write instance method that saves an instance to a file,
and an initializer that creates an instance by reading from a file. The file is repre‐
sented by its file URL:

NSString and NSData
NSString and NSData objects map directly between their own contents and the
contents of a file. Here, I’ll generate a text file in MyFolder directly from a string:

1008 | Chapter 22: Persistent Storage

Don’t Store Absolute File URLs!
The absolute URLs of the sandbox directories, though they will persist during a single
run of your app, are volatile over the long term; they may be different during differ‐
ent runs of your app. This means that you must not store your app’s absolute file
URLs or path strings into any form of persistent storage, as they will be incorrect the
next time your app launches. (This is a common beginner mistake.)

Suppose we are about to create a folder in the Documents directory. We generate its
URL as a variable myfolder:

let foldername = // whatever
let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let myfolder = docsurl.appendingPathComponent(foldername)

After that code, do not store the URL myfolder into persistent storage! If you must
store information about files and folders, store their names (or relative URLs or par‐
tial paths), along with some knowledge of what sandbox directory they are in, and
reconstruct the URL every time you need it, by running again the code that generated
it in the first place.

try "howdy".write(to: myfolder.appendingPathComponent("file1.txt"),
 atomically: true, encoding:.utf8)

NSArray and NSDictionary
NSArray and NSDictionary objects are written to a file as a property list. This
means that all the contents of the array or dictionary must be property list types,
which are:

• NSString
• NSData
• NSDate
• NSNumber
• NSArray
• NSDictionary

If you have an array or dictionary containing only those types (or Swift types that
are bridged to them), you can write it out directly to a file with write(to:).
Here, I create an array of strings and write it out as a property list file:

The Sandbox | 1009

let arr = ["Manny", "Moe", "Jack"]
let temp = FileManager.default.temporaryDirectory
let f = temp.appendingPathComponent("pep.plist")
try (arr as NSArray).write(to: f)

But how do you save an object of some other type to a file? The strategy is to serialize
it to an NSData object (Swift Data). This, as we already know, can be saved directly to
a file, or can be part of an array or dictionary to be saved to a file — and so the prob‐
lem is solved.

Serializing means that we describe the object in terms of the values of its properties.
There are two approaches to serializing an object as Data — the older Cocoa way
(NSCoding) and the newer Swift way (Codable).

NSCoding
The NSCoding protocol is defined in Cocoa’s Foundation framework. If an object’s
class adopts NSCoding, that object can be converted to NSData and back again, by
way of the NSCoder subclasses NSKeyedArchiver and NSKeyedUnarchiver. This
means that the class implements encode(with:) to archive the object and
init(coder:) to unarchive the object.

Many built-in Cocoa classes adopt NSCoding — and you can make your own class
adopt NSCoding as well. This can become somewhat involved, because an object can
refer (through a property) to another object, which may also adopt NSCoding, and
you can end up saving an entire graph of interconnected objects. I’ll confine myself to
illustrating a simple case (and for more, see Apple’s Archives and Serializations Pro‐
gramming Guide, in the documentation archive).

Let’s say that we have a simple Person class with a firstName property and a last-
Name property. We’ll declare that it adopts the NSCoding protocol. For this to work,
the properties must themselves adopt NSCoding. We can declare them as Swift
Strings because String is toll-free bridged to NSString, which adopts NSCoding. Start‐
ing in iOS 12, Apple encourages us to step up our game to NSSecureCoding, a proto‐
col that adopts NSCoding; to do so, we implement the static supportsSecureCoding
property to return true:

class Person: NSObject, NSSecureCoding {
 static var supportsSecureCoding: Bool { return true }
 var firstName : String
 var lastName : String
 override var description : String {
 return self.firstName + " " + self.lastName
 }
 init(firstName:String, lastName:String) {
 self.firstName = firstName
 self.lastName = lastName

1010 | Chapter 22: Persistent Storage

 super.init()
 }
 // ...
}

So far so good, but our code does not yet compile, because we do not yet conform to
NSCoding (or to NSSecureCoding). We need to implement encode(with:) and
init(coder:).

In encode(with:), we must first call super if the superclass adopts NSCoding — in
this case, it doesn’t — and then call the encode method for each property we want
preserved:

func encode(with coder: NSCoder) {
 // do not call super in this case
 coder.encode(self.lastName, forKey: "last")
 coder.encode(self.firstName, forKey: "first")
}

In init(coder:), we call a secure decode method for each property stored earlier,
restoring the state of our object. We must also call super, using either init(coder:)
if the superclass adopts NSCoding or the designated initializer if not:

required init(coder: NSCoder) {
 self.lastName = coder.decodeObject(
 of: NSString.self, forKey:"last")! as String
 self.firstName = coder.decodeObject(
 of: NSString.self, forKey:"first")! as String
 // do not call super init(coder:) in this case
 super.init()
}

We can test our code by creating, configuring, and saving a Person instance as a file:

let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let moi = Person(firstName: "Matt", lastName: "Neuburg")
let moidata = try NSKeyedArchiver.archivedData(
 withRootObject: moi, requiringSecureCoding: true)
let moifile = docsurl.appendingPathComponent("moi.txt")
try moidata.write(to: moifile, options: .atomic)

We can retrieve the saved Person at a later time:

let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let moifile = docsurl.appendingPathComponent("moi.txt")
let persondata = try Data(contentsOf: moifile)
let person = try NSKeyedUnarchiver.unarchivedObject(
 ofClass: Person.self, from: persondata)!
print(person) // "Matt Neuburg"

The Sandbox | 1011

Even though Person now adopts NSCoding, an NSArray containing a Person object
still cannot be written to a file using NSArray’s write(to:), because Person is still
not a property list type. But the array can be archived with NSKeyedArchiver and the
resulting Data object can be written to a file. That’s because NSArray conforms to
NSCoding and, if its elements are Person objects, all its elements conform to
NSCoding as well.

Codable
The Codable protocol was introduced in Swift 4; it is a combination of two other pro‐
tocols, Encodable and Decodable. An object can be serialized (archived) as long as it
conforms to Encodable, and can be restored from serial form (unarchived) as long as
it conforms to Decodable. When the goal is to save to disk, an object will usually con‐
form to both, and this will be expressed by having it adopt Codable. There are three
modes of serialization:

• Property list
▪ Use PropertyListEncoder encode(_:) to encode.
▪ Use PropertyListDecoder decode(_:from:) to decode.

• JSON
▪ Use JSONEncoder encode(_:) to encode.
▪ Use JSONDecoder decode(_:from:) to decode.

• NSCoder
▪ Use NSKeyedArchiver encodeEncodable(_:forKey:) to encode.
▪ Use NSKeyedUnarchiver decodeDecodable(_:forKey:) to decode.

You’ll probably prefer to use Swift Codable rather than Cocoa NSCoding wherever
possible. A class instance, a struct instance, or even a RawRepresentable enum
instance can be encoded, and most built-in Swift types are Codable right out of the
box. Moreover, in most cases, your object type will be Codable right out of the box!
There are encode(to:) and init(from:) methods, similar to NSCoding
encode(with:) and init(coder:), but you usually won’t need to implement them
because the default methods, inherited through a protocol extension, will suffice.

To illustrate, I’ll rewrite my Person class to adopt Codable instead of NSCoding:

class Person: NSObject, Codable {
 var firstName : String
 var lastName : String
 override var description : String {
 return self.firstName + " " + self.lastName
 }
 init(firstName:String, lastName:String) {
 self.firstName = firstName

1012 | Chapter 22: Persistent Storage

 self.lastName = lastName
 super.init()
 }
}

That’s all! Person conforms to Codable with no further effort on our part. The pri‐
mary reason is that our properties are Strings, and String is itself Codable. To save a
Person to a file, we just have to pick an encoding format. I recommend using a prop‐
erty list unless there is some reason not to; it is simplest, and is closest to what
NSKeyedArchiver does under the hood:

let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let moi = Person(firstName: "Matt", lastName: "Neuburg")
let moidata = try PropertyListEncoder().encode(moi)
let moifile = docsurl.appendingPathComponent("moi.txt")
try moidata.write(to: moifile, options: .atomic)

And here’s how to retrieve our saved Person later:

let fm = FileManager.default
let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
let moifile = docsurl.appendingPathComponent("moi.txt")
let persondata = try Data(contentsOf: moifile)
let person = try PropertyListDecoder().decode(Person.self, from: persondata)
print(person) // "Matt Neuburg"

To save an array of Codable Person objects, do exactly the same thing. Array con‐
forms to Codable, so use PropertyListEncoder to encode the array into a Data object
and call write(to:options:), precisely as we did for a single Person object. To
retrieve the array, read the data from the file as a Data object and use a PropertyList‐
Decoder to call decode([Person].self, from:data).

When your goal is to serialize your own object type to a file, there usually won’t be
any more to it than that. Your Codable implementation may be more elaborate when
the format of the encoded data is out of your hands, such as when you are communi‐
cating through a JSON API dictated by a server. I’ll illustrate later in this chapter.

The existence of Codable does not mean that you’ll never need to use NSCoding.
Cocoa is written in Objective-C; its encodable object types adopt NSCoding, not
Codable. And the vast majority of your objects will be Cocoa objects. If you want to
turn a UIColor into a Data object, you’ll use an NSKeyedArchiver, not a PropertyList‐
Encoder; UIColor adopts NSCoding, not Codable. You can combine Swift Codable
with Cocoa NSCoding, thanks to the NSCoder subclass methods encode-

Encodable(_:forKey:) and decodeDecodable(_:forKey:).

The Sandbox | 1013

File Coordinators
In spite of sandboxing, a file can be exposed to more than one app. For example, you
might permit the Files app to see into your Documents directory, as I’ll explain later
in this chapter. This raises the danger of simultaneous access. The low-level way to
deal with that danger is to read and write through an NSFileCoordinator. Instantiate
NSFileCoordinator along with an NSFileAccessIntent appropriate for reading or
writing, to which you have handed the URL of your target file. Then call a
coordinate method.

I’ll demonstrate the use of coordinate(with:queue:byAccessor:). The accessor: is
a function where you do your actual reading or writing in the normal way, except
that the URL for reading or writing now comes from the NSFileAccessIntent object.
Here, I write a Person out to a file under the auspices of an NSFileCoordinator:

let fc = NSFileCoordinator()
let intent = NSFileAccessIntent.writingIntent(with:moifile)
fc.coordinate(with:[intent], queue: .main) { err in
 do {
 try moidata.write(to: intent.url, options: .atomic)
 } catch {
 print(error)
 }
}

And later I’ll read that Person back from the same file:

let fc = NSFileCoordinator()
let intent = NSFileAccessIntent.readingIntent(with: moifile)
fc.coordinate(with: [intent], queue: .main) { err in
 do {
 let persondata = try Data(contentsOf: intent.url)
 // do something with data
 } catch {
 print(error)
 }
}

File Wrappers
A file needn’t be a simple block of data. It can be a file wrapper, essentially a folder
disguised as a file. On the desktop, a TextEdit .rtfd file, used when a styled TextEdit
file contains images, is a file wrapper.

A file wrapper will usually contain multiple files along with some sort of file manifest
reporting what the files are. The format of the manifest is up to you; it’s a note to
yourself that you configure when you save into the file wrapper, so that you can
retrieve files from the file wrapper later.

1014 | Chapter 22: Persistent Storage

In this simple example, I’ll save the data for three UIImages into a file wrapper (at the
file URL fwurl). The manifest will be a simple property list representation of an array
of the names of the image files:

let d = FileWrapper(directoryWithFileWrappers: [:])
let imnames = ["manny.jpg", "moe.jpg", "jack.jpg"]
for imname in imnames {
 d.addRegularFile(
 withContents:
 UIImage(named:imname)!.jpegData(compressionQuality: 1)!,
 preferredFilename: imname)
}
let list = try PropertyListEncoder().encode(imnames)
d.addRegularFile(withContents: list, preferredFilename: "list")
try d.write(to: fwurl, originalContentsURL: nil)

The resulting file wrapper now contains four file wrappers, which can be accessed by
name through its fileWrappers property. So here’s how to extract the images later:

let d = try FileWrapper(url: fwurl)
if let list = d.fileWrappers?["list"]?.regularFileContents {
 let imnames = try PropertyListDecoder().decode([String].self, from:list)
 for imname in imnames {
 if let imdata = d.fileWrappers?[imname]?.regularFileContents {
 // do something with the image data
 }
 }
}

User Defaults
The UserDefaults class acts a gateway to persistent storage of the user’s preferences.
User defaults are little more, really, than a special case of an NSDictionary property
list file. You talk to the UserDefaults standard object much as if it were a dictionary;
it has keys and values, and you set and fetch values by their keys. The dictionary is
saved for you automatically as a property list file; you don’t know where or when, and
you don’t care.

Actual saving of the dictionary to disk might not take place until several seconds
after you make a change. When testing, be sure to allow sufficient time to elapse
between runs of your app.

Because user defaults is actually a property list file, the only legal values that can be
stored in it are property list values. Therefore, everything I said in the preceding sec‐
tion about saving objects applies. If an object type is not a property list type, you’ll
have to archive it to a Data object if you want to store it in user defaults. If the object
type is a class that belongs to Cocoa and adopts NSCoding, you’ll archive it through

User Defaults | 1015

an NSKeyedArchiver. If the object type belongs to you, you might prefer to make it
adopt Codable and archive it through a PropertyListEncoder.

To provide the value for a key before the user has had a chance to do so — the default
default, as it were — call register(defaults:). What you’re supplying here is a
transient dictionary whose key–value pairs will be held in memory but not saved; a
pair will be used only if there is no pair with the same key already stored in the user
defaults dictionary. Here’s an example from one of my apps:

UserDefaults.standard.register(defaults: [
 Default.hazyStripy : HazyStripy.hazy.rawValue,
 Default.cardMatrixRows : 4,
 Default.cardMatrixColumns : 3,
 Default.color1 : try! NSKeyedArchiver.archivedData(
 withRootObject: UIColor.blue, requiringSecureCoding:true),
 Default.color2 : try! NSKeyedArchiver.archivedData(
 withRootObject: UIColor.red, requiringSecureCoding:true),
 Default.color3 : try! NSKeyedArchiver.archivedData(
 withRootObject: UIColor.green, requiringSecureCoding:true),
])

The idea is that we call register(defaults:) extremely early as the app launches.
Either the app has run at some time previously and the user has set these preferences,
in which case this call has no effect and does no harm, or not, in which case we now
have initial values for these preferences with which to get started. In the game app
from which that code comes, we start out with a hazy fill, a 4×3 game layout, and the
three card colors blue, red, and green; but the user can change this at any time.

You will probably want to offer your user a way to interact explicitly with the
defaults. One possibility is that your app provides some kind of interface. The game
app from which the previous code comes has a tab bar interface; in the second tab,
the user explicitly sets the preferences whose default values are configured in that
code (Figure 22-3).

Alternatively, you can provide a settings bundle, consisting mostly of one or more
property list files describing an interface and the corresponding user defaults keys
and their initial values; the Settings app is then responsible for translating your
instructions into an actual interface, and for presenting it to the user. Writing a set‐
tings bundle is described in Apple’s Preferences and Settings Programming Guide in
the documentation archive.

Using a settings bundle means that the user has to leave your app to access preferen‐
ces, and you don’t get the kind of control over the interface that you have within your
own app. Also, the user can set your preferences while your app is backgrounded or
not running; you’ll need to register for UserDefaults.didChangeNotification in
order to hear about this.

1016 | Chapter 22: Persistent Storage

Figure 22-3. An app’s preferences interface

Still, a settings bundle has some clear advantages. Keeping the preferences interface
out of your app can make your app’s own interface cleaner and simpler. You don’t
have to write any of the “glue” code that coordinates the preferences interface with
the user defaults values. And it may be appropriate for the user to be able to set at
least some preferences for your app when your app isn’t running.

Moreover, you can transport your user directly from your app to your app’s preferen‐
ces in the Settings app (and a Back button then appears in the status bar, making it
easy for the user to return from Settings to your app):

let url = URL(string:UIApplication.openSettingsURLString)!
UIApplication.shared.open(url)

Every method in your app can access the UserDefaults standard object, so it often
serves as a global “drop” where one instance can deposit a piece of information for
another instance to pick up later, when those two instances might not have ready
communication with one another or might not even exist simultaneously. (New in
iOS 13, the scene session’s userInfo might be a more appropriate choice.)

UserDefaults is also often used for general data storage. My Zotz! app (Figure 22-3),
in addition to using the user defaults to store the user’s explicit preferences, also
records the state of the game board and the card deck into user defaults every time
these change, so that if the app is terminated and then launched again later, we can
restore the game as it was when the user left off. One might argue that the contents of
the card deck are not a user preference, so I am misusing the user defaults to store
state data. However, while purists may grumble, it’s a very small amount of data and I
don’t think the distinction is terribly significant in this case.

User Defaults | 1017

Yet another use of UserDefaults is to communicate data between your app and an
extension provided by your app. Let’s say you’ve written a today extension (Chap‐
ter 13) whose interface details depend upon some data belonging to your app. After
configuring your extension and your app to constitute an app group, both the exten‐
sion and the app can access the UserDefaults associated with the app group (call
init(suiteName:) instead of standard). For more information, see the “Handling
Common Scenarios” chapter of Apple’s App Extension Programming Guide.

Simple Sharing and Previewing of Files
iOS provides basic passageways by which a file can pass safely in and out of your
sandbox. File sharing lets the user manipulate the contents of your app’s Documents
directory. UIDocumentInteractionController allows the user to tell another app to
hand a copy of a document to your app, or to tell your app to hand a copy of a docu‐
ment to another app; it also permits previewing a document, provided it is compati‐
ble with Quick Look.

File Sharing
File sharing means that an app’s Documents directory becomes accessible to the user.
The user connects the device to a computer and opens iTunes (or, in macOS Cata‐
lina, a Finder window) to see a list of apps on the device that support file sharing. The
user can copy files and folders between the app’s Documents directory and the com‐
puter, and can delete items from the app’s Documents directory.

It could be appropriate for your app to support file sharing if it works with common
types of file that the user might obtain elsewhere, such as PDFs or JPEGs. To support
file sharing, set the Info.plist key “Application supports iTunes file sharing” (UIFile-
SharingEnabled) to YES.

Once your entire Documents directory is exposed to the user this way, you are
unlikely to use the Documents directory to store private files. As I mentioned earlier,
I like to use the Application Support directory instead.

Your app doesn’t get any automatic notification when the user has altered the con‐
tents of the Documents directory. Noticing that the situation has changed and
responding appropriately is entirely up to you; Apple’s DocInteraction sample code
demonstrates an approach using the kernel-level kqueue mechanism.

Document Types and Receiving a Document
Your app can declare itself willing to open documents of a certain type. In this way, if
another app obtains a document of this type, it can propose to hand a copy of the
document over to your app. The user might download the document with Mobile

1018 | Chapter 22: Persistent Storage

Figure 22-4. Creating a document type

Safari, or receive it in a mail message with the Mail app; now we need a way to get it
from Safari or Mail to you.

To let the system know that your app is a candidate for receiving a certain kind of
document, you will configure the “Document types” (CFBundleDocumentTypes) key
in your Info.plist. This is an array, where each entry will be a dictionary specifying a
document type by using keys such as “Document Content Type UTIs” (LSItem-
ContentTypes), “Document Type Name” (CFBundleTypeName), CFBundleTypeIcon-
Files, and LSHandlerRank.

The simplest way to configure the Info.plist is through the interface available in the
Info tab when you edit the target. Suppose I want to declare that my app opens PDFs
and text files. In my target’s Info tab in Xcode, I would edit the Document Types
section to look like Figure 22-4.

(The values in the Types fields in Figure 22-4 are UTIs — uniform type identifiers.
PDFs and text files are common types, so they have standard UTIs. To find out the
standard UTI for a common file type, look in Apple’s Uniform Type Identifiers Refer‐
ence in the documentation archive.)

Now suppose the user receives a PDF in an email message. The Mail app can display
this PDF, but the user can also tap Share to bring up an activity view offering, among
other things, to copy the file to some other app. The interface will resemble
Figure 22-5; various apps that can deal with a PDF are listed here, and my app
(MyCoolApp) is among them.

Simple Sharing and Previewing of Files | 1019

Figure 22-5. The Mail app offers to hand off a PDF

So far, so good. But what if the user actually taps our icon to send the PDF over to my
app? Then my app delegate’s application(_:open:options:) is called. New in iOS
13, with window scene support, this would be the scene delegate’s scene(_:open-
URLContexts:) instead (see Chapter 13). When that happens, our job is to open the
document whose URL has arrived in the second parameter. The system has already
copied the document into an Inbox folder which it has created in my Documents
directory for exactly this purpose.

If your app implements file sharing, the user can see the Inbox folder; you may
wish to delete the Inbox folder when you’re done retrieving files from it.

In this simple example, my app has just one view controller, which has an outlet to a
web view where we will display any PDFs that arrive in this fashion. So my scene
delegate contains this code:

func scene(_ scene: UIScene,
 openURLContexts URLContexts: Set<UIOpenURLContext>) {
 if let vc = self.window?.rootViewController as? ViewController,
 let url = URLContexts.first?.url {
 vc.displayDoc(url: url)
 }
}

And my view controller contains this code (self.wv is the web view):

func displayDoc (url:URL) {
 let req = URLRequest(url: url)
 self.wv.loadRequest(req)
}

In real life, things might be more complicated. We might check to see whether this
really is a PDF. Also, our app might be in the middle of something else, possibly dis‐
playing a completely different view controller’s view; we may have to be prepared to
drop whatever we were doing and display the incoming document instead.

What happens if our app is launched from scratch by the arrival of this URL? In iOS
12 and before, the app delegate’s application(_:open:options:) is still called. But

1020 | Chapter 22: Persistent Storage

Figure 22-6. The document Open In activity view

in iOS 13 with window scenes, that won’t happen, and scene(_:openURLContexts:)
won’t be called either. Instead, you need to implement scene(_:willConnect-
To:options:) to check the options: parameter for its urlContexts property. If this
isn’t empty, you’ve got an incoming URL to deal with. This may call for some dupli‐
cation of code:

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 let cons = connectionOptions.urlContexts
 if let vc = self.window?.rootViewController as? ViewController,
 let url = cons.first?.url {
 vc.loadViewIfNeeded()
 vc.displayDoc(url: url)
 }
}

The example I’ve been discussing assumes that the UTI for the document type is
standard and well-known. It is also possible that your app will operate on a new
document type, that is, a type of document that the app itself defines. In that case,
you’ll also want to add this UTI to your app’s list of exported UTIs in the Info.plist.
I’ll give an example later in this chapter.

Handing Over a Document
The converse of the situation in the previous section is that your app has somehow
acquired a document and wants to let the user hand over a copy of it to some other
app. This is done through the UIDocumentInteractionController class.

Assuming we have a file URL url pointing to a stored document file, presenting the
interface for handing the document over to some other application could be as sim‐
ple as this (sender is a button that the user has just tapped):

let dic = UIDocumentInteractionController(url: url)
let v = sender as! UIView
dic.presentOpenInMenu(from:v.bounds, in: v, animated: true)

Simple Sharing and Previewing of Files | 1021

The interface is an activity view (Figure 22-6; see Chapter 13). There are actually two
activity views available, each of which is summoned by either of two methods (the
first method of each pair expects a CGRect and a UIView, while the second expects a
UIBarButtonItem):

presentOpenInMenu(from:in:animated:)

presentOpenInMenu(from:animated:)

Presents an activity view listing apps to which the document can be copied.

presentOptionsMenu(from:in:animated:)

presentOptionsMenu(from:animated:)

Presents an activity view listing apps to which the document can be copied, along
with other possible actions, such as Message, Mail, Copy, and Print.

Previewing a Document
A UIDocumentInteractionController can be used for an entirely different purpose: it
can present a preview of the document, if the document is of a type for which preview
is enabled, by calling presentPreview(animated:). You must give the UIDocument‐
InteractionController a delegate (UIDocumentInteractionControllerDelegate), and
the delegate must implement documentInteractionControllerViewControllerFor-
Preview(_:), returning an existing view controller that will contain the preview’s
view controller. So, here we ask for the preview:

let dic = UIDocumentInteractionController(url: url)
dic.delegate = self
dic.presentPreview(animated:true)

In the delegate, we supply the view controller; it happens that, in my code, this dele‐
gate is a view controller, so it simply returns self:

func documentInteractionControllerViewControllerForPreview(
 _ controller: UIDocumentInteractionController) -> UIViewController {
 return self
}

If the view controller returned were a UINavigationController, the preview’s view
controller would be pushed onto it; in this case it isn’t, so the preview’s view control‐
ler is a presented view controller with a Done button. The preview interface also con‐
tains a Share button that lets the user summon the Options activity view.

There is another way for the user to reach this interface. If you call presentOptions-
Menu on your UIDocumentInteractionController, and if its delegate implements
documentInteractionControllerViewControllerForPreview(_:), then the activity
view will contain a Quick Look icon that the user can tap to summon the preview
interface.

1022 | Chapter 22: Persistent Storage

Additional delegate methods allow you to track what’s happening in the interface
presented by the UIDocumentInteractionController. Probably most important are
those that inform you that key stages of the interaction are ending:

• documentInteractionControllerDidDismissOptionsMenu(_:)

• documentInteractionControllerDidDismissOpenInMenu(_:)

• documentInteractionControllerDidEndPreview(_:)

• documentInteractionController(_:didEndSendingToApplication:)

Quick Look Previews
Previews are actually provided through the Quick Look framework. You can skip the
UIDocumentInteractionController and present the preview yourself through a
QLPreviewController; you’ll need to import QuickLook. It’s a view controller, so to
display the preview you show it as a presented view controller or push it onto a navi‐
gation controller’s stack, just as UIDocumentInteractionController would have done.

A nice feature of QLPreviewController is that you can give it more than one docu‐
ment to preview; the user can move between these, within the preview, by paging
sideways or using a table of contents summoned by a button at the bottom of
the interface. Apart from this, the interface looks like the interface presented by the
UIDocumentInteractionController.

In this example, I may have somewhere in my Documents directory one or more
PDF or text documents. I acquire a list of their URLs and present a preview for them
(self.exts has been initialized to a set consisting of ["pdf", "txt"]):

self.docs = [URL]()
do {
 let fm = FileManager.default
 let docsurl = try fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: false)
 let dir = fm.enumerator(at: docsurl, includingPropertiesForKeys: nil)!
 for case let f as URL in dir {
 if self.exts.contains(f.pathExtension) {
 if QLPreviewController.canPreview(f as QLPreviewItem) {
 self.docs.append(f)
 }
 }
 }
 guard self.docs.count > 0 else { return }
 let preview = QLPreviewController()
 preview.dataSource = self
 preview.currentPreviewItemIndex = 0
 self.present(preview, animated: true)
} catch {
 print(error)
}

Simple Sharing and Previewing of Files | 1023

You’ll notice that I haven’t told the QLPreviewController what documents to pre‐
view. That is the job of QLPreviewController’s data source. In my code, I (self) am
also the data source. I simply fetch the requested information from the list of URLs,
which I previously saved into self.docs:

func numberOfPreviewItems(in controller: QLPreviewController) -> Int {
 return self.docs.count
}
func previewController(_ controller: QLPreviewController,
 previewItemAt index: Int) -> QLPreviewItem {
 return self.docs[index] as QLPreviewItem
}

The second data source method requires us to return an object that adopts the
QLPreviewItem protocol. By a wildly improbable coincidence, URL does adopt this
protocol, so the example works.

By giving your QLPreviewController a delegate (QLPreviewControllerDelegate),
you can cause a presented QLPreviewController to appear by zooming from a view in
your interface. You’ll implement these delegate methods:

• previewController(_:frameFor:inSourceView:)

• previewController(_:transitionImageFor:contentRect:)

• previewController(_:transitionViewFor:)

New in iOS 13, a QLPreviewController can permit the user to apply Markup to
images and PDFs, and to trim and rotate videos. Implement these delegate methods:

• previewController(_:editingModeFor:) (return .disabled, .updateContents,
or .createCopy)

• previewController(_:didUpdateContentsOf:)

• previewController(_:didSaveEditedCopyOf:at:)

For document types that you own, you can supply your own Quick Look preview. I’ll
discuss that later in this chapter.

Document Architecture
A document is a file of a specific type. If your app’s basic operation depends on open‐
ing, saving, maintaining, and possibly creating documents of a certain type, you may
want to take advantage of the document architecture. At its simplest, this architecture
revolves around the UIDocument class. Think of a UIDocument instance as manag‐
ing the relationship between your app’s internal model data and a document file that
stores that data.

1024 | Chapter 22: Persistent Storage

Interacting with a stored document file involves a number of pesky issues. The good
news is that UIDocument handles all of them seamlessly:

• Reading or writing your data might take some time, so UIDocument does those
things on a background thread.

• Your document data needs to be synchronized to the document file. UIDocu‐
ment provides autosaving behavior, so that your data is written out automatically
whenever it changes.

• A document owned by your app may be exposed to reading and writing by other
apps, so your app must read and write to that document coherently without
interference from other apps. The solution is to use an NSFileCoordinator.
UIDocument does that for you.

• Information about a document can become stale while the document is open. To
prevent this, the NSFilePresenter protocol notifies editors that a document has
changed. UIDocument participates in this system.

• Your app might be able to open a document stored in another app’s sandbox. To
do so, you need special permission, which you obtain by treating the document’s
URL as a security scoped URL. UIDocument does that automatically.

• With iCloud, your app’s documents on one of the user’s devices can automati‐
cally be mirrored onto another of the user’s devices. UIDocument can act as a
gateway for allowing your documents to participate in iCloud.

Getting started with UIDocument is not difficult. You’ll declare a UIDocument sub‐
class, and you’ll override two methods:

load(fromContents:ofType:)

Called when it’s time to open a document from its file. You are expected to con‐
vert the contents value into a model object that your app can use, and to store
that model object, probably in an instance property.

contents(forType:)

Called when it’s time to save a document to its file. You are expected to convert
the app’s model object into a Data instance (or, if your document is a package, a
FileWrapper) and return it.

To instantiate a UIDocument, call its designated initializer, init(fileURL:). This
sets the UIDocument’s fileURL property, and associates the UIDocument with the
file at this URL; typically, this association will remain constant for the rest of the
UIDocument’s lifetime. You will then probably store the UIDocument instance in an
instance property, and use it to create (if necessary), open, save, and close the docu‐
ment file:

Document Architecture | 1025

Make a new document
Having initialized the UIDocument with a file URL pointing to a nonexistent file,
send it save(to:for:completionHandler:); the first argument will be the docu‐
ment’s own fileURL, and the second argument (a UIDocument.SaveOperation)
will be .forCreating. This, in turn, causes contents(forType:) to be called, and
the contents of an empty document will be saved out to a file. Your UIDocument
subclass will need to supply some default value representing the model data
when there is no data.

Open an existing document
Send the UIDocument instance open(completionHandler:). This, in turn,
causes load(fromContents:ofType:) to be called.

Save an existing document
There are two approaches to saving an existing document:

Autosave
Usually, you’ll simply mark the document as “dirty” by calling updateChange-
Count(_:). From time to time, the UIDocument will notice this situation
and will save the document to its file for you, calling contents(forType:) as
it does so.

Manual save
On certain occasions, waiting for autosave won’t be appropriate. We’ve
already seen one such occasion — when the document file needs to be cre‐
ated on the spot. Another case is that the app is going into the background;
we will want to preserve our document there and then, in case the app is ter‐
minated. To force the document to be saved right now, call
save(to:for:completionHandler:); the second argument will be .for-
Overwriting. Alternatively, if you know you’re finished with the document
(perhaps the interface displaying the document is about to be torn down),
you can call close(completionHandler:).

The open, save, and close methods take a completionHandler: function. This is
UIDocument’s solution to the fact that reading and saving may take time. The file
operations take place on a background thread; your completion function is then
called on the main thread.

A Basic Document Example
We now know enough for an example! I’ll reuse my Person class from earlier in this
chapter. Imagine a document effectively consisting of multiple Person instances; I’ll
call each such document a people group. Our app, People Groups, will list all people
group documents in the user’s Documents folder; the user can then select any people

1026 | Chapter 22: Persistent Storage

Figure 22-7. The People Groups interface

group document and our app will open that document and display its contents,
allowing the user to create a new Person and to edit any existing Person’s firstName
or lastName (Figure 22-7).

My first step is to edit the app target and use the Info tab (Figure 22-8) to configure
the Info.plist. I define (export) a custom UTI, associating a file type
com.neuburg.pplgrp with a file extension "pplgrp". I also define a corresponding
document type, declaring that my app is the origin of this UTI (Owner) and that it is
able to open and save documents (Editor).

In Figure 22-8, when I export my UTI, the entries under “Conforms To” are of par‐
ticular importance:

Inheritance
I give this UTI a place in the UTI hierarchy. It inherits from no existing type, so
it conforms to public.content, the base type.

File type
I declare that this UTI represents a simple flat file (public.data) as opposed to a
package.

Now let’s write our UIDocument subclass, which I’ll call PeopleDocument. A docu‐
ment consists of multiple Persons, so a natural model implementation is a Person
array. PeopleDocument has a public people property, initialized to an empty Person
array; this will not only hold the model data when we have it, but will also give us
something to save into a new empty document. Since Person implements Codable, a
Person array can be archived directly into a Data object, and our implementation of
the loading and saving methods is straightforward:

Document Architecture | 1027

Figure 22-8. Defining a custom UTI

class PeopleDocument: UIDocument {
 var people = [Person]()
 override func load(fromContents contents: Any,
 ofType typeName: String?) throws {
 if let contents = contents as? Data {
 if let arr = try? PropertyListDecoder().decode(
 [Person].self, from: contents) {
 self.people = arr
 return
 }
 }
 // if we get here, there was some kind of problem
 throw NSError(domain: "NoDataDomain", code: -1, userInfo: nil)
 }
 override func contents(forType typeName: String) throws -> Any {
 if let data = try? PropertyListEncoder().encode(self.people) {
 return data
 }

1028 | Chapter 22: Persistent Storage

 // if we get here, there was some kind of problem
 throw NSError(domain: "NoDataDomain", code: -2, userInfo: nil)
 }
}

The first view controller, GroupLister, is a master table view (its view appears on the
left in Figure 22-7). It merely looks in the Documents directory for people group
documents and lists them by name; it also provides an interface for letting the user
create a new people group. None of that is challenging, so I won’t discuss it further.

The second view controller, PeopleLister, is the detail view; it too is a table view (its
view appears on the right in Figure 22-7). It displays the first and last names of the
people in the currently open people group document. This is the only place where we
actually work with PeopleDocument, so let’s focus our attention on that.

PeopleLister’s designated initializer demands a fileURL: parameter pointing to a
people group document, and uses it to set its own fileURL property. From this, it
instantiates a PeopleDocument, keeping a reference to it in its doc property. People‐
Lister also has a people property, acting as the data model for its table view; this is
nothing but a pointer to the PeopleDocument’s people property.

As PeopleLister comes into existence, the document file pointed to by self.fileURL
might not yet exist. If it doesn’t, we create it; if it does, we open it. In both cases, our
people data are now ready for display, so the completion function reloads the table
view:

let fileURL : URL
var doc : PeopleDocument!
var people : [Person] { // point to the document's model object
 get { return self.doc.people }
 set { self.doc.people = newValue }
}
init(fileURL:URL) {
 self.fileURL = fileURL
 super.init(nibName: "PeopleLister", bundle: nil)
}
required init(coder: NSCoder) {
 fatalError("NSCoding not supported")
}
override func viewDidLoad() {
 super.viewDidLoad()
 self.title =
 (self.fileURL.lastPathComponent as NSString).deletingPathExtension
 // ... interface configuration goes here ...
 let fm = FileManager.default
 self.doc = PeopleDocument(fileURL:self.fileURL)
 func listPeople(_ success:Bool) {
 if success {
 self.tableView.reloadData()
 }

Document Architecture | 1029

 }
 if let _ = try? self.fileURL.checkResourceIsReachable() {
 self.doc.open(completionHandler: listPeople)
 } else {
 self.doc.save(to:self.doc.fileURL,
 for: .forCreating, completionHandler: listPeople)
 }
}

Displaying people, creating a new person, and allowing the user to edit a person’s
first and last names, are all trivial uses of a table view (Chapter 8). Let’s proceed to the
only other aspect of PeopleLister that involves working with PeopleDocument,
namely saving.

When the user performs a significant editing maneuver, such as creating a person or
editing a person’s first or last name, PeopleLister updates the model (self.people)
and the table view, and then tells its PeopleDocument that the document is dirty,
allowing autosaving to take it from there:

self.doc.updateChangeCount(.done)

When the app is about to go into the background, or when PeopleLister’s own view is
disappearing, PeopleLister forces PeopleDocument to save immediately:

func forceSave(_: Any?) {
 self.tableView.endEditing(true)
 self.doc.save(to:self.doc.fileURL, for:.forOverwriting)
}

That’s all it takes! Adding UIDocument support to your app is easy, because UIDocu‐
ment is merely acting as a supplier and preserver of your app’s data model object.
The UIDocument class documentation may give the impression that this is a large
and complex class, but that’s chiefly because it is so heavily customizable both at high
and low levels; for the most part, you won’t need any customization. You might work
with your UIDocument’s undo manager to give it a more sophisticated understand‐
ing of what constitutes a significant change in your data; I’ll talk about undo manag‐
ers in Chapter 25. For further details, see Apple’s Document-based App Programming
Guide for iOS in the document archive.

If your app’s Info.plist key “Application supports iTunes file sharing” (UIFile-
SharingEnabled) is set to YES (because your app supports file sharing), and if the
Info.plist key “Supports opening documents in place” (LSSupportsOpeningDocuments-
InPlace) is also set to YES, then files in your app’s Documents directory will be visi‐
ble in the Files app, and the user can tap a people group file to call your app delegate’s
application(_:open:options:) or your scene delegate’s scene(_:open-

URLContexts:), as described earlier in this chapter. That’s safe only if your app
accesses files by way of NSFilePresenter and NSFileCoordinator — and because
you’re using UIDocument, it does.

1030 | Chapter 22: Persistent Storage

Figure 22-9. Turning on iCloud support

iCloud
Once your app is operating through UIDocument, basic iCloud compatibility effec‐
tively falls right into your lap. You have just two steps to perform:

Obtain iCloud entitlements
Edit the target and, in the Signing & Capabilities tab, add the iCloud capability
and check iCloud Documents (Figure 22-9). New in Xcode 11, you may also
need to create a ubiquity container; click the Plus button to make a container and
give it a name. Names should be of the form "iCloud.com.yourDomain.yourApp-
ID". Check the checkbox to make your container the default container.

Obtain an iCloud-compatible directory
Early in your app’s lifetime, call FileManager’s url(forUbiquityContainer-
Identifier:) (typically passing nil as the argument), on a background thread,
to obtain the URL of the cloud-shared directory. Any documents your app puts
here by way of your UIDocument subclass will be automatically shared into the
cloud.

So, with my entitlements file in hand, I can make my People Groups app iCloud-
compatible with just two code changes. In the app delegate, as my app launches, I
step out to a background thread (Chapter 24), obtain the cloud-shared directory’s
URL, and then step back to the main thread and retain the URL through a property,
self.ubiq:

DispatchQueue.global(qos:.default).async {
 let fm = FileManager.default
 let ubiq = fm.url(forUbiquityContainerIdentifier:nil)
 DispatchQueue.main.async {
 self.ubiq = ubiq
 }
}

When I determine where to seek and save people groups, I specify ubiq — unless it is
nil, implying that iCloud is not enabled, in which case I specify the user’s Docu‐
ments folder:

Document Architecture | 1031

var docsurl : URL {
 let del = UIApplication.shared.delegate
 if let ubiq = (del as! AppDelegate).ubiq {
 return ubiq
 } else {
 do {
 let fm = FileManager.default
 return try fm.url(for:.documentDirectory, in: .userDomainMask,
 appropriateFor: nil, create: false)
 } catch {
 print(error)
 }
 }
 return NSURL() as URL // shouldn't happen
}

To test, iCloud Drive must be turned on under iCloud in my device’s Settings. I run
the app and create a people group with some people in it. I then switch to a different
device and run the app there, and tap the Refresh button. This is a very crude imple‐
mentation, purely for testing purposes; we look through the docsurl directory for
pplgrp files and download any cloud-based files:

do {
 let fm = FileManager.default
 self.files = try fm.contentsOfDirectory(at: self.docsurl,
 includingPropertiesForKeys: nil).filter {
 if fm.isUbiquitousItem(at:$0) {
 try fm.startDownloadingUbiquitousItem(at:$0)
 }
 return $0.pathExtension == "pplgrp"
 }
 self.tableView.reloadData()
} catch {
 print(error)
}

Presto, the app on this device now displays my people group documents created on a
different device! It’s quite thrilling.

My Refresh button approach, although it works (possibly after a couple of tries), is
decidedly crude. My UIDocument works with iCloud, but my app is not a good
iCloud citizen. The truth is that I should not be using FileManager like this; instead, I
should be running an NSMetadataQuery. The usual strategy is:

1. Instantiate NSMetadataQuery and retain the instance.
2. Configure the search. This means giving the metadata query a search scope of

NSMetadataQueryUbiquitousDocumentsScope and supplying a serial queue for it
to run on (OperationQueue, see Chapter 24).

1032 | Chapter 22: Persistent Storage

3. Register for notifications such as .NSMetadataQueryDidFinishGathering

and .NSMetadataQueryDidUpdate.
4. Start the search by calling start. The NSMetadataQuery instance then remains

in place, with the search continuing to run more or less constantly, for the entire
lifetime of the app.

5. When a notification arrives, check the NSMetadataQuery’s results. These will
be NSMetadataItem objects, whose value(forAttribute:NSMetadataItem-

URLKey) is the document file URL.
Similarly, in my earlier code I called checkResourceIsReachable, but for a cloud
item I should be calling checkPromisedItemIsReachable instead.

Another problem with our app is that, by turning on iCloud support in this way, we
have turned off the ability of the Files app to see our files (because they are now
cloud-based and not in the Documents directory). I’ll give a solution in the next
section.

Further iCloud details are outside the scope of this discussion; see Apple’s iCloud
Design Guide in the documentation archive. Getting started is easy; making your app
a good iCloud citizen, capable of dealing with the complexities that iCloud may
entail, is not. What if the currently open document changes because someone edited
it on another device? What if that change is in conflict with changes I’ve made on this
device? What if the availability of iCloud changes while the app is open — for exam‐
ple, if the user switches iCloud itself on or off? Apple’s own sample code habitually
skirts these knotty issues.

Document Browser
The document browser (UIDocumentBrowserViewController), introduced in iOS
11, can improve a document-based app in two ways:

• An iOS device has no universal file browser parallel to the Mac desktop’s Finder.
So if your app maintains document files, it must also implement for itself the
nitty-gritty details of user file management, listing your documents and letting
the user delete them, rename them, move them, and so forth. That sounds daunt‐
ing! The document browser solves the problem; it injects into your app a
standard file management interface similar to the Files app.

• If your UIDocument-based app saves documents into iCloud, and if your app
uses the document browser, the Files app (and document browsers in other apps)
will be able to see your app’s files in the cloud. Moreover, we can ignore every‐
thing I said in the preceding section about how to make our app participate
in iCloud; with UIDocumentBrowserViewController, our app participates in
iCloud automatically, with no need for any entitlements or added cloud manage‐
ment code.

Document Architecture | 1033

Let’s convert our People Groups app to use the document browser. The easiest way to
get started is from the template provided by Apple; choose File → New → Project and
iOS → Application → Document Based App. The template provides three features:

Info.plist configuration
The template gives us a start on the configuration of our Info.plist. In particular,
it includes the “Supports Document Browser” key (UISupportsDocument-
Browser) with its value set to YES.

Classes and storyboard
The template provides a basic set of classes:

• A UIDocumentBrowserViewController subclass (DocumentBrowserView‐
Controller)

• A UIDocument subclass (Document)
• A view controller (DocumentViewController) intended for display of docu‐

ments of that class

The template puts instances of the two view controllers into the storyboard.

Structure
The template makes the UIDocumentBrowserViewController instance our app’s
root view controller. The remainder of our app’s interface, where the user views
the contents of a document, must be displayed through a fullscreen presented
view controller.

In adapting People Groups to this architecture, we can eliminate the GroupLister
view controller class that has been acting as a master view controller to list our docu‐
ments (left side in Figure 22-7), because the document browser will now fill that role;
Document and DocumentViewController, meanwhile, are parallel to, and can be
replaced by, our PeopleDocument and PeopleLister classes.

We begin by customizing DocumentBrowserViewController. The template gets us
started, setting this class as its own delegate (UIDocumentBrowserViewController‐
Delegate) and configuring the document browser’s capabilities:

override func viewDidLoad() {
 super.viewDidLoad()
 self.delegate = self
 self.allowsDocumentCreation = true
 self.allowsPickingMultipleItems = false
}

The template also implements delegate methods for when the user selects an existing
document or copies a document from elsewhere; both call a custom method, present-
Document(at:), for which the template provides a stub implementation:

1034 | Chapter 22: Persistent Storage

func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didPickDocumentURLs documentURLs: [URL]) {
 guard let sourceURL = documentURLs.first else { return }
 self.presentDocument(at: sourceURL)
}
func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didImportDocumentAt sourceURL: URL,
 toDestinationURL destinationURL: URL) {
 self.presentDocument(at: destinationURL)
}

Providing a real implementation of presentDocument(at:) is up to us. We are no
longer in a navigation interface, but PeopleLister expects one; so when I instantiate
PeopleLister, I wrap it in a navigation controller before presenting it:

func presentDocument(at documentURL: URL) {
 let lister = PeopleLister(fileURL: documentURL)
 let nav = UINavigationController(rootViewController: lister)
 nav.modalPresentationStyle = .fullScreen
 self.present(nav, animated: true)
}

Finally, we come to the really interesting case: the user asks the document browser to
create a People Groups document. This causes the delegate’s document-

Browser(_:didRequestDocumentCreationWithHandler:) to be called. Our job is to
provide the URL of an existing empty document file and call the handler: function
with that URL. But where are we going to get a document file? Well, we already know
how to create an empty document; we proved that in our earlier example. So I’ll cre‐
ate that document in the Temporary directory and feed its URL to the handler:
function. That is exactly the strategy advised by the documentation on this delegate
method, and my code is adapted directly from the example code there.

I’m a little uncertain, though, about what we’re intended to do about the name of the
new file. In the past, Apple’s advice was not to worry about this — any unique name
would do — but that was before the user could see file names in a standard interface.
My solution is to present a UIAlertController where the user can enter the new docu‐
ment’s name, creating the new document in the OK button’s action function.
Observe that I call the importHandler function under every circumstance:

func documentBrowser(_ controller: UIDocumentBrowserViewController,
 didRequestDocumentCreationWithHandler importHandler:
 @escaping (URL?, UIDocumentBrowserViewController.ImportMode) -> Void) {
 var docname = "People"
 let alert = UIAlertController(
 title: "Name for new people group:",
 message: nil, preferredStyle: .alert)
 alert.addTextField { tf in
 tf.autocapitalizationType = .words
 }
 alert.addAction(UIAlertAction(title: "Cancel", style: .cancel) {_ in

Document Architecture | 1035

 importHandler(nil, .none)
 })
 alert.addAction(UIAlertAction(title: "OK", style: .default) {_ in
 if let proposal = alert.textFields?[0].text {
 if !proposal.trimmingCharacters(in: .whitespaces).isEmpty {
 docname = proposal
 }
 }
 let fm = FileManager.default
 let temp = fm.temporaryDirectory
 let fileURL = temp.appendingPathComponent(docname + ".pplgrp2")
 let newdoc = PeopleDocument(fileURL: fileURL)
 newdoc.save(to: fileURL, for: .forOverwriting) { ok in
 guard ok else { importHandler(nil, .none); return }
 newdoc.close() { ok in
 guard ok else { importHandler(nil, .none); return }
 importHandler(fileURL, .move)
 }
 }
 })
 self.present(alert, animated: true)
}

If the user cancels or if something else goes wrong, I call importHandler with a nil
URL. Just one path of execution calls importHandler with an actual file URL. If that
happens, our delegate method documentBrowser(_:didImportDocumentAt:to-

DestinationURL:) is called — and so our PeopleLister view controller is presented,
displaying the new empty document.

Custom Thumbnails
Now that the user can see our document files represented in the file browser, we will
probably want to give some attention to their icons. A document icon is called its
thumbnail. A straightforward approach is to have our UIDocument subclass write a
thumbnail into the file when saving:

override func fileAttributesToWrite(to url: URL,
 for saveOperation: UIDocument.SaveOperation)
 throws -> [AnyHashable : Any] {
 let icon = UIImage(named:"smiley")!
 let sz = CGSize(1024,1024)
 let im = UIGraphicsImageRenderer(
 size:sz, format:icon.imageRendererFormat).image {_ in
 icon.draw(in: CGRect(origin:.zero, size:CGSize(1024,1024)))
 }
 var d = try super.fileAttributesToWrite(to: url, for: saveOperation)
 let key1 = URLResourceKey.thumbnailDictionaryKey
 let key2 = URLThumbnailDictionaryItem.NSThumbnail1024x1024SizeKey
 d[key1] = [key2:im]
 return d
}

1036 | Chapter 22: Persistent Storage

Figure 22-10. Defining a preview extension’s document type

An alternative approach, introduced in iOS 11, is to provide a thumbnail extension
that is consulted in real time whenever a document browser wants to portray one of
our documents. But I have not been able to get this to work in iOS 13, so I’m not
going to discuss it.

Custom Previews
There are lots of places in the interface where the user can be shown a Quick Look
preview of a file. I talked about UIDocumentInteractionController and QLPreview‐
Controller earlier in this chapter. In places such as the Files app or a mail message
with an attachment, the user can long press a file and ask for a Quick Look preview.
All of that works for a standard document type such as a PDF or text file, but not for
our custom People Group document type. Let’s fix that.

To do so, we can add a Quick Look preview extension to our People Groups app.
Quick Look preview extensions, introduced in iOS 11, allow your app to supply a
Quick Look preview for a custom document type that it exports.

Let’s try it! Add a target; choose iOS → Application Extension → Quick Look Preview
Extension. The template provides a view controller class, PreviewViewController,
and a storyboard containing a PreviewViewController instance and its main view.
When the user tries to preview a document of our custom type, this view controller
will be instantiated and its main view will be displayed in the Quick Look preview
interface.

For this to work, our extension’s Info.plist must declare, in the QLSupportedContent-
Types array, the UTI of the document type for which it provides a preview
(Figure 22-10). I’ve also turned off the QLSupportsSearchableItems setting (it’s for
Spotlight searches, with which we’re not concerned here).

We must now implement preparePreviewOfFile(at:completionHandler:) in our
PreviewViewController. We are handed a file URL pointing to a document file. Our
job is to examine that file, configure our view controller and its view, and call the
completionHandler: function with a parameter of nil (or with an Error object if
there was an error).

Document Architecture | 1037

I’ll configure PreviewViewController as a reduced version of PeopleLister. Similar to
the right side of Figure 22-7, it will be a UITableViewController whose table shows
the first and last names of the people in this group. However, the text fields will be
disabled — we don’t want the user trying to edit a preview! — and there is no need to
implement document saving, or even to maintain a reference to a PeopleDocument.
Instead, our PeopleDocument will serve only as a temporary conduit to construct the
people array from the document file; it stores the array in an instance property so
that our table view data source methods can access it:

func preparePreviewOfFile(at url: URL,
 completionHandler handler: @escaping (Error?) -> Void) {
 let doc = PeopleDocument(fileURL:url)
 doc.open { ok in
 if ok {
 self.people = doc.people
 self.tableView.register(
 UINib(nibName: "PersonCell", bundle: nil),
 forCellReuseIdentifier: "Person")
 self.tableView.reloadData()
 handler(nil)
 } else {
 handler(NSError(domain: "NoDataDomain",
 code: -1, userInfo: nil))
 }
 }
}

Document Picker
The document picker (UIDocumentPickerViewController) is a simple way to let the
user view a list of document files and choose one (or several). You can open the file
directly (probably in conjunction with UIDocument) or copy it into your app’s sand‐
box temporarily. The document picker can also be configured to let the user pick a
place to copy a document to.

The document picker can see into the same places as the document browser and the
Files app, and its interface looks a lot like theirs, but it’s a lightweight momentary dia‐
log. You can use it without declaring any document types, without making your app
participate in iCloud in any other way, and without changing your app’s architecture.
You just present the picker; the user chooses a file or cancels, and the picker is
dismissed automatically.

In this example, I’ll assume that the user has somehow saved an .mp3 file into iCloud
Drive. We’ll permit the user to locate and play this file. In response to a button tap,
we instantiate and configure the UIDocumentPickerViewController, providing the
UTIs of the types of file to be chosen and a mode in which the picker is to oper‐
ate; .import means that we want the file copied into our app’s sandbox (in the

1038 | Chapter 22: Persistent Storage

Temporary directory). We make ourselves the document picker’s delegate (UIDo‐
cumentPickerDelegate) and present the picker. If the user chooses an .mp3 file, the
delegate method is called, and we present an AVPlayerViewController to let the user
play it:

@IBAction func doButton(_ sender: Any) {
 let picker = UIDocumentPickerViewController(
 documentTypes: [kUTTypeMP3 as String], in: .import)
 picker.delegate = self
 self.present(picker, animated: true)
}
func documentPicker(_ controller: UIDocumentPickerViewController,
 didPickDocumentsAt urls: [URL]) {
 guard urls.count == 1 else {return}
 guard let vals =
 try? urls[0].resourceValues(forKeys: [.typeIdentifierKey]),
 vals.typeIdentifier == kUTTypeMP3 as String
 else {return}
 let vc = AVPlayerViewController()
 vc.player = AVPlayer(url: urls[0])
 self.present(vc, animated: true)
}

A document picker has a few properties for customizing it. Starting in iOS 11, allows-
MultipleSelection permits the user to choose more than one file. New in iOS 13,
directoryURL sets the folder whose contents the picker will initially display. Also
new, the document type can be kUTTypeFolder, allowing the user to choose an entire
folder of files; to deal with the files inside it, call startAccessingSecurityScoped-
Resource and use an NSFileCoordinator.

XML
XML is a flexible and widely used general-purpose text file format for storage and
retrieval of structured data. You might use it yourself to store data that you’ll need to
retrieve later, or you could encounter it when obtaining information from elsewhere,
such as the internet.

On macOS, Cocoa provides a set of classes (XMLDocument and so forth) for read‐
ing, parsing, maintaining, searching, and modifying XML data in a completely
general way; but iOS does not include these. I think the reason must be that their
tree-based approach is too memory-intensive. Instead, iOS provides XMLParser.

XMLParser is a relatively simple class that walks through an XML document, sending
delegate messages as it encounters elements. With it, you can parse an XML docu‐
ment once, but what you do with the pieces as you encounter them is up to you. The
general assumption here is that you know in advance the structure of the particular
XML data you intend to read, and that you have provided classes for representation

XML | 1039

of the same data in object form, with some way of transforming the XML pieces into
that representation.

To illustrate, let’s return once more to our Person class with a firstName and a last-
Name property. Imagine that, as our app starts up, we would like to populate it with
Person objects, and that we’ve stored the data describing these objects as an XML file
in our app bundle, like this:

<?xml version="1.0" encoding="utf-8"?>
<people>
 <person>
 <firstName>Matt</firstName>
 <lastName>Neuburg</lastName>
 </person>
 <person>
 <firstName>Snidely</firstName>
 <lastName>Whiplash</lastName>
 </person>
 <person>
 <firstName>Dudley</firstName>
 <lastName>Doright</lastName>
 </person>
</people>

This data could be mapped to an array of Person objects, each with its firstName and
lastName properties appropriately set. Let’s consider how we might do that. (This is a
deliberately easy example, of course; not all XML is so readily expressed as objects.)

Using XMLParser is not difficult in theory. You create the XMLParser, handing it the
URL of a local XML file (or a Data object, perhaps downloaded from the internet), set
its delegate, and tell it to parse. The delegate starts receiving delegate messages. For
simple XML like ours, there are only three delegate messages of interest:

parser(_:didStartElement:namespaceURI:qualifiedName:attributes:)

The parser has encountered an opening element tag. In our document this would
be <people>, <person>, <firstName>, or <lastName>.

parser(_:didEndElement:namespaceURI:qualifiedName:)

The parser has encountered the corresponding closing element tag. In our docu‐
ment this would be </people>, </person>, </firstName>, or </lastName>.

parser(_:foundCharacters:)

The parser has encountered some text between the starting and closing tags for
the current element. In our document this would be "Matt" or "Neuburg" and
so on.

In practice, responding to these delegate messages poses challenges of maintaining
state. If there is just one delegate, it will have to bear in mind at every moment what
element it is currently encountering; this could make for a lot of properties and a lot

1040 | Chapter 22: Persistent Storage

of if-statements in the implementation of the delegate methods. To aggravate the
issue, parser(_:foundCharacters:) can arrive multiple times for a single stretch of
text; that is, the text may arrive in pieces, which we must accumulate into a property.

An elegant way to meet these challenges is by resetting the XMLParser’s delegate to
different delegate objects at different stages of the parsing process. We make each del‐
egate responsible for parsing one type of element; when a child of that element is
encountered, the delegate object makes a new child element delegate object and
repoints the XMLParser’s delegate property at it. The child element delegate is then
responsible for making the parent the delegate once again when it finishes parsing its
own element. This is slightly counterintuitive because it means parser(_:didStart-
Element:...) and parser(_:didEndElement:...) for the same element are arriving
at two different objects.

To see what I mean, think about how we could implement this in our example. We
are going to need a PeopleParser that handles the <people> element, and a Person‐
Parser that handles the <person> elements. Now imagine how PeopleParser will
operate when it is the XMLParser’s delegate:

1. When parser(_:didStartElement:...) arrives, the PeopleParser looks to see if
this is a <person>. If so, it creates a PersonParser, handing to it (the Person‐
Parser) a parent reference to itself (the PeopleParser) — and makes the Person‐
Parser the XMLParser’s delegate.

2. Delegate messages now arrive at this newly created PersonParser. We can assume
that <firstName> and <lastName> are simple enough that the PersonParser can
maintain state as it encounters them; when text is encountered, parser(_:found-
Characters:) will be called, and the text must be accumulated into a corre‐
sponding property.

3. Eventually, parser(_:didEndElement:...) arrives. The PersonParser now uses
its parent reference to make the PeopleParser the XMLParser’s delegate once
again. The PeopleParser, having received from the PersonParser any data it may
have collected, is now ready in case another <person> element is encountered
(and the old PersonParser might now go quietly out of existence).

This approach may seem like a lot of work to configure, but in fact it is neatly object-
oriented, with parser delegate classes corresponding to the elements of the XML.
Moreover, those delegate classes have a great deal in common, which can readily be
factored out and encapsulated into a delegate superclass from which they all inherit.

JSON
JSON (http://www.json.org) is often used as a universal lightweight structured data
format for server communication. Typically, you’ll send an HTTP request to a server

JSON | 1041

http://www.json.org

using a URL constructed according to prescribed rules, and the reply will come back
as JSON that you’ll have to parse:

let sess : URLSession = {
 let config = URLSessionConfiguration.ephemeral
 let s = URLSession(configuration: config)
 return s
}()
@IBAction func doGo(_ sender: Any) {
 var comp = URLComponents()
 comp.scheme = "https"
 comp.host = "quotesondesign.com"
 comp.path = "/wp-json/wp/v2/posts"
 var qi = [URLQueryItem]()
 qi.append(URLQueryItem(name: "orderby", value: "rand"))
 qi.append(URLQueryItem(name: "per_page", value: "1"))
 comp.queryItems = qi
 if let url = comp.url {
 let d = self.sess.dataTask(with: url) { data,_,_ in
 if let data = data {
 DispatchQueue.main.async {
 self.parse(data) // now what?
 }
 }
 }
 d.resume()
 }
}

That’s a request to a server that dispenses quotations; the actual network communi‐
cation will be explained in Chapter 23. The request returns a Data object representing
a JSON string that looks something like this (I’ve edited and truncated the string for
clarity):

[{
 "id": 2237,
 "date": "2014-03-28T09:01:07",
 "title": {
 "rendered": "Wim Hovens"
 },
 "content": {
 "rendered":
 "<p>Good design is in all the things you notice.
 Great design is in all the things you don’t.<\/p>\n",
 "protected": false
 },
 // ...
}]

We are calling our parse method with that Data object, and we want to parse it.
How? Well, we know in advance the expected format of the JSON response, so we
have prepared by declaring a nest of structs matching that format and adopting the

1042 | Chapter 22: Persistent Storage

Decodable protocol (discussed earlier in this chapter). Now we can instantiate JSON‐
Decoder and call decode(_:from:). In this example, our goal is to extract just the
"title" and "content" entries, so those are the only properties our struct needs:

struct Item : Decodable {
 let rendered : String
}
struct Quote : Decodable {
 let title : Item
 let content : Item
}

Our Quote struct matches the JSON’s inner dictionary, but the JSON itself is an array
containing that dictionary as an element. Therefore, our call to decode the JSON
looks like this:

func parse(_ data:Data) {
 if let arr = try? JSONDecoder().decode([Quote].self, from: data) {
 let quote = arr.first!
 // ...
 }
}

The JSON is now parsed into a Quote instance, and we can refer to the author and
the quotation as quote.title.rendered and quote.content.rendered. Now we can
do whatever we like with those values, such as displaying them in our app’s interface.

The JSONDecoder class also comes with properties that allow you to specify the han‐
dling of certain specially formatted values, such as dates and floating-point numbers
(though we didn’t need to use any of those properties in our example).

Coding Keys
When we are receiving JSON structured data, the structure is defined by the server,
right down to the names of the keys. The JSON dictionary that we are receiving has
keys "title" and "content", so we are forced to name our Quote struct’s properties
title and content. This seems unfair. But there’s a workaround: declare a nested
enum called CodingKeys with a String raw value and conforming to the CodingKey
protocol. Now you can give your struct properties any names you like, using the
enum cases and their string raw values to map the JSON dictionary key names to the
struct property names:

struct Item : Decodable {
 let value : String
 enum CodingKeys : String, CodingKey {
 case value = "rendered"
 }
}
struct Quote : Decodable {
 let author : Item

JSON | 1043

 let quotation : Item
 enum CodingKeys : String, CodingKey {
 case author = "title"
 case quotation = "content"
 }
}

The outcome is that we can extract the author and quotation as quote.author.value
and quote.quotation.value, which reads more clearly than quote.title.rendered
and quote.content.rendered.

Custom Decoding
We have changed the names of our struct properties, but the overall structure of the
JSON is still defined by the server. For instance, in the JSON we’re receiving, a dictio‐
nary’s title value is itself a dictionary with a rendered key. I’m using two structs
with an extra level of nesting because the JSON has an extra level of nesting. My
Quote struct’s author and quotation properties are Item objects, and to fetch the
value I really want, I have to drop down an extra level: I’ve been saying
quote.author.value and quote.quotation.value even though the only thing I’m
ever going to be interested in is the value. I don’t want to have to talk like this. I want
my author and quotation properties to be strings, not Items. I don’t want them to
lead to the Item’s "rendered" value; I want them to be the Item’s "rendered" value.

The solution is to supply an implementation of init(from:). This initializer is
required by the Decodable protocol. But so far, instead of writing it, we have been
allowing it to be synthesized for us. Instead, we can write it ourselves — and then we
are free to parse the JSON into our object’s properties in any way we like.

When you write an implementation of init(from:), the parameter is a Decoder
object. Start by extracting an appropriate container. For a JSON dictionary, this will
be a KeyedDecodingContainer, obtained by calling container(keyedBy:); we still
need a CodingKey adopter to serve as the source of key names. You can then call
decode(_:forKey:) to get the value for a key. Now you are free to manipulate values
and assign the results to your properties in any way you like. The only requirement is
that, as with any initializer, you must initialize all your properties.

So here’s my rewrite of Quote, with author and quotation declared as String, and an
explicit init(from:) implementation. I have kept the Item struct purely as a way of
extracting the "rendered" value, but I’ve made it a private nested type that the caller
is unaware of:

struct Quote : Decodable {
 let author : String
 let quotation : String
 enum CodingKeys : String, CodingKey {
 case author = "title"

1044 | Chapter 22: Persistent Storage

 case quotation = "content"
 }
 private struct Item : Decodable {
 let value : String
 enum CodingKeys : String, CodingKey {
 case value = "rendered"
 }
 }
 init(from decoder: Decoder) throws {
 let con = try decoder.container(keyedBy: CodingKeys.self)
 let author = try con.decode(Item.self, forKey: .author)
 self.author = author.value
 let quotation = try con.decode(Item.self, forKey: .quotation)
 self.quotation = quotation.value
 }
}

Now my quote.author and quote.quotation are strings, and I can display them in
the interface directly.

Another common reason for writing a custom init(from:) implementation is that
there is something indeterminate about the structure of the JSON you’re receiving
from the server. A typical situation is that there are dictionary keys whose names you
don’t know in advance. To deal with this, you need a special “mop-up” CodingKey
adopter:

struct AnyCodingKey : CodingKey {
 var stringValue: String
 var intValue: Int?
 init(_ codingKey: CodingKey) {
 self.stringValue = codingKey.stringValue
 self.intValue = codingKey.intValue
 }
 init(stringValue: String) {
 self.stringValue = stringValue
 self.intValue = nil
 }
 init(intValue: Int) {
 self.stringValue = String(intValue)
 self.intValue = intValue
 }
}

(I owe that formulation to Hamish Knight.) When you call container(keyedBy: Any-
CodingKey.self), the resulting container can be sent the allKeys message to obtain
a list of all keys in this dictionary, and you can use any of those keys to fetch the cor‐
responding value.

Yet another common problem is that a value’s type may vary. A typical situation is
that the same key yields sometimes a String, sometimes an Int. The way to cope with
that is to declare a union — that is, a Decodable enum with two cases, one with an

JSON | 1045

associated String value, the other with an associated Int value. Your custom
init(from:) just tries each of them in turn. A widely used formulation runs some‐
thing like this:

enum IntOrString: Decodable {
 case int(Int)
 case string(String)
 init(from decoder: Decoder) throws {
 let container = try decoder.singleValueContainer()
 if let int = try? container.decode(Int.self) {
 self = .int(int)
 } else if let string = try? container.decode(String.self) {
 self = .string(string)
 } else {
 throw DecodingError.typeMismatch(
 IntOrString.self,
 DecodingError.Context(
 codingPath: decoder.codingPath,
 debugDescription: "Neither String nor Int"))
 }
 }
}

SQLite
SQLite (http://www.sqlite.org/docs.html) is a lightweight, full-featured relational data‐
base that you can talk to using SQL, the universal language of databases. This can be
an appropriate storage format when your data comes in rows and columns (records
and fields) and needs to be rapidly searchable. Also, the database as a whole is never
loaded into memory; the data is accessed only as needed. This is valuable in an
environment like an iOS device, where memory is at a premium.

To use SQLite, say import SQLite3. Talking to SQLite involves an elaborate C inter‐
face which may prove annoying; fortunately, there are a number of lightweight front
ends. In my example, I’ll use fmdb (https://github.com/ccgus/fmdb); it’s Swift-friendly,
but it’s written in Objective-C, so we’ll need a bridging header in which we #import
"FMDB.h".

To illustrate, I’ll create a database and add a people table consisting of lastname and
firstname columns:

let db = FMDatabase(path:self.dbpath)
db.open()
do {
 db.beginTransaction()
 try db.executeUpdate(
 "create table people (lastname text, firstname text)",
 values:nil)
 try db.executeUpdate(

1046 | Chapter 22: Persistent Storage

http://www.sqlite.org/docs.html
https://github.com/ccgus/fmdb

 "insert into people (firstname, lastname) values (?,?)",
 values:["Matt", "Neuburg"])
 try db.executeUpdate(
 "insert into people (firstname, lastname) values (?,?)",
 values:["Snidely", "Whiplash"])
 try db.executeUpdate(
 "insert into people (firstname, lastname) values (?,?)",
 values:["Dudley", "Doright"])
 db.commit()
} catch {
 db.rollback()
}

At some later time, I come along and read the data from that database:

let db = FMDatabase(path:self.dbpath)
db.open()
if let rs = try? db.executeQuery("select * from people", values:nil) {
 while rs.next() {
 if let firstname = rs["firstname"], let lastname = rs["lastname"] {
 print(firstname, lastname)
 }
 }
}
db.close()
/*
Matt Neuburg
Snidely Whiplash
Dudley Doright
*/

You can include a previously constructed SQLite file in your app bundle, but you
can’t write to it there; the solution is to copy it from your app bundle into another
location, such as the Documents directory, before you start working with it.

Core Data
The Core Data framework (import CoreData) provides a generalized way of express‐
ing objects and properties that form a relational graph; moreover, it has built-in
facilities for maintaining those objects in persistent storage — typically using SQLite
as a file format — and reading them from storage only when they are needed, making
efficient use of memory. A person might have not only multiple addresses but also
multiple friends who are also persons; expressing persons and addresses as explicit
object types, working out how to link them and how to translate between objects in
memory and data in storage, and tracking the effects of changes, such as when a
person is deleted, can be tedious. Core Data can help.

Core Data is not a beginner-level technology. It is difficult to use and extremely diffi‐
cult to debug. It expresses itself in a verbose, rigid, arcane way. It has its own peculiar

Core Data | 1047

way of doing things — everything you already know about how to create, access,
alter, or delete an object within an object collection becomes completely irrelevant! —
and trying to bend it to your particular needs can be tricky and can have unintended
side effects. Nor should Core Data be seen as a substitute for a true relational
database.

A full explanation of Core Data would require an entire book; indeed, such books
exist, and if Core Data interests you, you should read some of them. See also Apple’s
Core Data Programming Guide in the documentation archive, and the other resour‐
ces referred to there. Here, I’ll just illustrate what it’s like to work with Core Data.

I will rewrite the People Groups example from earlier in this chapter as a Core Data
app. This will still be a master–detail interface consisting of two table view control‐
lers, GroupLister and PeopleLister, just as in Figure 22-7. But we will no longer have
multiple documents, each representing a single group of people; instead, we will now
have a single document, maintained for us by Core Data, containing all of our groups
and all of their people.

To construct a Core Data project from scratch, it is simplest to specify the Master–
Detail App template (or the Single View App template) and check Use Core Data in
the second screen. Among other things, this gives you template code in the app dele‐
gate class for constructing the Core Data persistence stack, a set of objects that work
together to fetch and save your data; in most cases there will no reason to alter this
template code significantly.

The persistence stack consists of three objects:

• A managed object model (NSManagedObjectModel) describing the structure of
the data

• A managed object context (NSManagedObjectContext) for communicating with
the data

• A persistent store coordinator (NSPersistentStoreCoordinator) for dealing with
actual storage of the data as a file

Starting in iOS 10, the entire stack is created for us by an NSPersistentContainer
object. The template code provides a lazy initializer for this object, along these lines:

lazy var persistentContainer: NSPersistentContainer = {
 let con = NSPersistentContainer(name: "PeopleGroupsCoreData")
 con.loadPersistentStores { desc, err in
 if let err = err {
 fatalError("Unresolved error \(err)")
 }
 }
 return con
}()

1048 | Chapter 22: Persistent Storage

The managed object context is the persistent container’s viewContext. This will be
our point of contact with Core Data. The managed object context is the world in
which your data objects live and move and have their being: to obtain an object, you
fetch it from the managed object context; to create an object, you insert it into the
managed object context; to save your data, you save the managed object context. The
template provides a method for saving:

func saveContext() {
 let context = self.persistentContainer.viewContext
 if context.hasChanges {
 try? context.save()
 }
}

To provide the rest of the app with easy access to the managed object context, our
root view controller has a managedObjectContext property, and the app delegate’s
application(_:didFinishLaunchingWithOptions:) — or, if we’re using window
scenes, the scene delegate’s scene(_:willConnectTo:Options:) — configures it to
point back at the persistent container’s viewContext:

let nav = self.window!.rootViewController as! UINavigationController
let tvc = nav.topViewController as! GroupLister
let del = UIApplication.shared.delegate as! AppDelegate
tvc.managedObjectContext = del.persistentContainer.viewContext

To describe the structure and relationships of the objects constituting your data
model (the managed object model), you design an object graph in a data model docu‐
ment. Our object graph is very simple: a Group can have multiple Persons
(Figure 22-11). The attributes, analogous to object properties, are all strings, except
for the timestamps which are dates, and the Group UUID which is a UUID. (The
timestamps will be used for determining the sort order in which groups and people
will be displayed in the interface.)

Group and Person are not classes; they are entity names. And their attributes, such as
name and firstName, are not properties. All Core Data model objects are instances of
NSManagedObject, and make themselves dynamically KVC-compliant for attribute
names. Core Data knows, thanks to our object graph, that a Person entity is to have a
firstName attribute, so if an NSManagedObject represents a Person entity, you can
set its firstName attribute by calling setValue(_:forKey:) with a key "firstName",
and you can retrieve its firstName attribute by calling value(forKey:) with a key
"firstName".

If that sounds maddening, that’s because it is maddening. Fortunately, there’s a sim‐
ple solution: you configure your entities, in the Data Model inspector, to perform
code generation of class definitions (Figure 22-12). Code generation allows us to treat
entity types as classes, and managed objects as instances of those classes. When we
compile our project, class files will be created for our entities (here, Group and

Core Data | 1049

Figure 22-11. The Core Data model for the People Groups app

Figure 22-12. Configuring code generation

Person) as NSManagedObject subclasses endowed with properties corresponding to
the entity attributes. So now Person is a class, and it does have a firstName property.

Now let’s talk about the first view controller, GroupLister. Its job is to list groups and
to allow the user to create a new group (Figure 22-7, on the left). How will Group‐
Lister get a list of groups? The way you ask Core Data for a model object is with a
fetch request; and when Core Data model objects are the model data for a table view,
fetch requests are conveniently managed through an NSFetchedResultsController.

Once again, the template gives us an excellent head start. It provides a fetched results
controller stored in a property, ready to perform the fetch request and to supply our

1050 | Chapter 22: Persistent Storage

table view’s data source with the actual data. My code essentially copies the template
code; the first two lines demonstrate not only that Group is now a class with a fetch-
Request method, but also that both NSFetchedResultsController and NSFetch‐
Request are generics:

lazy var frc: NSFetchedResultsController<Group> = {
 let req: NSFetchRequest<Group> = Group.fetchRequest()
 req.fetchBatchSize = 20
 let sortDescriptor = NSSortDescriptor(key:"timestamp", ascending:true)
 req.sortDescriptors = [sortDescriptor]
 let frc = NSFetchedResultsController(
 fetchRequest:req,
 managedObjectContext:self.managedObjectContext,
 sectionNameKeyPath:nil, cacheName:nil)
 frc.delegate = self
 do {
 try frc.performFetch()
 } catch {
 fatalError("Aborting with unresolved error")
 }
 return frc
}()

Now we need to hook our table view’s data source to the NSFetchedResultsController
somehow. New in iOS 13, this is particularly easy, because the fetched results control‐
ler vends an NSDiffableDataSourceSnapshotReference wrapping a snapshot with
generic types String and NSManagedObjectID. So we’ll declare a diffable data source
with those types:

lazy var ds : UITableViewDiffableDataSource<String,NSManagedObjectID> = {
 UITableViewDiffableDataSource(tableView: self.tableView) { tv,ip,id in
 let cell = tv.dequeueReusableCell(
 withIdentifier: self.cellID, for: ip)
 cell.accessoryType = .disclosureIndicator
 let group = self.frc.object(at: ip)
 cell.textLabel!.text = group.name
 return cell
 }
}()

But we still have not configured a way of populating the diffable data source. The first
step is to “tickle” our lazy instance properties by referring to self.frc in our view-
DidLoad implementation:

override func viewDidLoad() {
 super.viewDidLoad()
 _ = self.frc // "tickle" the lazy vars
 // ...
}

Core Data | 1051

Next, acting as the fetched results controller’s delegate (NSFetchedResultsController‐
Delegate), we implement controller(_:didChangeContentWith:). This method,
new in iOS 13, provides our snapshot wrapped up in a snapshot reference (which is
just a sort of type eraser). We cast this down to its actual generic snapshot and apply
it to our diffable data source:

func controller(_ con: NSFetchedResultsController<NSFetchRequestResult>,
 didChangeContentWith snapshot: NSDiffableDataSourceSnapshotReference) {
 let snapshot =
 snapshot as NSDiffableDataSourceSnapshot<String,NSManagedObjectID>
 self.ds.apply(snapshot, animatingDifferences: false)
}

GroupLister’s table now automatically reflects the contents of the fetch results con‐
troller. However, it is initially empty because our app starts life with no data. When
the user asks to create a group, I put up an alert asking for the name of the new
group. In the handler: function for its OK button, I create a new Group object in the
managed object context and navigate to the detail view, PeopleLister:

let context = self.frc.managedObjectContext
let group = Group(context: context)
group.name = av.textFields![0].text!
group.uuid = UUID()
group.timestamp = Date()
let pl = PeopleLister(group: group)
self.navigationController!.pushViewController(pl, animated: true)

The detail view controller class is PeopleLister (Figure 22-7, on the right). It lists all
the people in a particular Group, so I don’t want PeopleLister to be instantiated
without a Group; therefore, its designated initializer is init(group:). As the preced‐
ing code shows, when I want to navigate from the GroupLister view to the People‐
Lister view, I instantiate PeopleLister and push it onto the navigation controller’s
stack. I do the same sort of thing when the user taps an existing Group name in the
GroupLister table view:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let pl = PeopleLister(group: self.frc.object(at:indexPath))
 self.navigationController!.pushViewController(pl, animated: true)
}

PeopleLister, too, has an frc property that’s an NSFetchedResultsController. How‐
ever, a PeopleLister instance should list only the People belonging to one particular
group, which has been stored as its group property. So PeopleLister’s implementation
of the frc initializer contains these lines (req is the fetch request we’re configuring):

let pred = NSPredicate(format:"group = %@", self.group)
req.predicate = pred

1052 | Chapter 22: Persistent Storage

The PeopleLister interface consists of a table of text fields. Populating the table is just
like what GroupLister did; I can use a Person’s firstName and lastName to set the
text of the text fields.

When the user edits a text field to change the first or last name of a Person, I hear
about it as the text field’s delegate and update the data model (the first part of this
code should be familiar from Chapter 8):

func textFieldDidEndEditing(_ textField: UITextField) {
 var v : UIView = textField
 repeat { v = v.superview! } while !(v is UITableViewCell)
 let cell = v as! UITableViewCell
 let ip = self.tableView.indexPath(for:cell)!
 let object = self.frc.object(at:ip)
 object.setValue(textField.text!, forKey: (
 (textField.tag == 1) ? "firstName" : "lastName"))
}

When the user asks to make a new Person, I create a new Person object in the man‐
aged object context and configure its attributes with an empty first name and last
name:

@objc func doAdd(_:AnyObject) {
 self.tableView.endEditing(true)
 let context = self.frc.managedObjectContext
 let person = Person(context:context)
 person.group = self.group
 person.lastName = ""
 person.firstName = ""
 person.timestamp = Date()
}

The result is that the delegate method controller(_:didChangeContentWith:) is
called, I obtain the snapshot and apply it to the diffable data source, and the new
empty person is displayed in the table view, waiting for the user to type into its text
fields.

It remains only to save the managed object context at key moments in the life of the
app, such as when a view controller disappears or the app goes into the background:

(UIApplication.shared.delegate as! AppDelegate).saveContext()

Core Data files are not suitable for use as iCloud documents. If you want to reflect
structured data into the cloud, a better alternative is the CloudKit framework. In
effect, this allows you to maintain a database online, and to synchronize changed data
up to and down from that database. You might use Core Data as a form of local stor‐
age, but you’d still use CloudKit as an intermediary, to communicate the data
between different devices. New in iOS 13, NSPersistentCloudKitContainer provides
automatic linkage between Core Data and CloudKit. See the Core Data framework
documentation for more information.

Core Data | 1053

PDFs
Up to this point, I have displayed the contents of a PDF file by means of a web view
or in a Quick Look preview. Starting in iOS 11, PDF Kit (import PDFKit), brought
over from macOS, provides a native UIView subclass, PDFView, whose job is to dis‐
play a PDF nicely.

Basic use of a PDFView is simple. Initialize a PDFDocument, either from data or
from a file URL, and assign it as the PDFView’s document:

let v = PDFView(frame:self.view.bounds)
self.view.addSubview(v)
let url = Bundle.main.url(forResource: "notes", withExtension: "pdf")!
let doc = PDFDocument(url: url)
v.document = doc

There are many other configurable aspects of a PDFView. A particularly nice touch is
that a PDFView can embed a UIPageViewController for layout and navigation of the
PDF’s individual pages:

v.usePageViewController(true)

A PDFDocument consists of pages, represented by PDFPage objects. You can manip‐
ulate those pages, adding and removing pages from the document. You can even
draw a PDFPage’s contents yourself, meaning that you can create a PDF document
from scratch.

As a demonstration, I’ll create a PDF document consisting of one page with the
words “Hello, world!” in the center. I start with a PDFPage subclass, MyPage, where I
override the draw(with:to:) method. The parameters are a PDFDisplayBox that tells
me the page size, along with a CGContext to draw into. There’s just one thing to
watch out for: a PDF graphics context is flipped with respect to the normal iOS coor‐
dinate system. So I apply a transform to the context before I draw into it:

override func draw(with box: PDFDisplayBox, to context: CGContext) {
 UIGraphicsPushContext(context)
 context.saveGState()
 let r = self.bounds(for: box)
 let s = NSAttributedString(string: "Hello, world!", attributes: [
 .font : UIFont(name: "Georgia", size: 80)!
])
 let sz = s.boundingRect(with: CGSize(10000,10000),
 options: .usesLineFragmentOrigin, context: nil)
 context.translateBy(x: 0, y: r.height)
 context.scaleBy(x: 1, y: -1)
 s.draw(at: CGPoint(
 (r.maxX - r.minX) / 2 - sz.width / 2,
 (r.maxY - r.minY) / 2 - sz.height / 2

1054 | Chapter 22: Persistent Storage

))
 context.restoreGState()
 UIGraphicsPopContext()
}

To create and display my PDFPage in a PDFView (v) is simple:

let doc = PDFDocument()
v.document = doc
doc.insert(MyPage(), at: 0)

If my document consisted of more than one MyPage, they would now all draw the
same thing. If that’s not what I want, my draw(with:to:) code can ask what page of
the document this is:

let pagenum = self.document?.index(for: self)

In addition, a host of ancillary PDF Kit classes allow you to manipulate page thumb‐
nails, selection, annotations, and more.

Image Files
The Image I/O framework provides a way to open image files, to save image files, to
convert between image file formats, and to read metadata from standard image file
formats, including EXIF and GPS information from a digital camera. You’ll need to
import ImageIO. The Image I/O API is written in C, not Objective-C, and it uses
CFTypeRefs, not objects. Unlike Core Graphics, there is no Swift “renamification”
overlay that represents the API as object-oriented; you have to call the framework’s
global C functions directly, casting between the CFTypeRefs and their Foundation
counterparts. But that’s not hard to do.

Use of the Image I/O framework starts with the notion of an image source (CGImage‐
Source). This can be created from the URL of a file (actually CFURL, to which URL is
toll-free bridged) or from a Data object (actually CFData, to which Data is toll-free
bridged).

Here we obtain the metadata from a photo file in our app bundle:

let url = Bundle.main.url(forResource:"colson", withExtension: "jpg")!
let opts : [AnyHashable:Any] = [kCGImageSourceShouldCache : false]
let src = CGImageSourceCreateWithURL(url as CFURL, opts as CFDictionary)!
let d = CGImageSourceCopyPropertiesAtIndex(src, 0, opts as CFDictionary)
 as! [AnyHashable:Any]

Without having opened the image file as an image, we now have a dictionary full of
information about it, including its pixel dimensions (keys kCGImagePropertyPixel-
Width and kCGImagePropertyPixelHeight), its resolution, color model, color depth,
and orientation — plus, because this picture comes originally from a digital camera,

Image Files | 1055

the EXIF data such as the aperture and exposure at which it was taken, and the make
and model of the camera.

To obtain the image as a CGImage, we can call CGImageSourceCreateImageAtIndex.
Alternatively, we can request a thumbnail of the image. This is a very useful thing to
do, and the name “thumbnail” doesn’t really do justice to its importance. If your pur‐
pose is to display this image in your interface, you don’t care about the original image
data; a thumbnail is precisely what you want, especially because you can specify any
size for this “thumbnail” all the way up to the original size of the image! This is splen‐
did, because to assign a large image to a small image view wastes all the memory
reflected by the size difference.

To generate a thumbnail at a given size, you start with a dictionary specifying the size
along with other instructions, and pass that, together with the image source, to
CGImageSourceCreateThumbnailAtIndex. The only pitfall is that, because we are
working with a CGImage and specifying actual pixels, we must remember to take
account of the scale of our device’s screen. Let’s say we want to scale our image so
that its largest dimension is no larger than the width of the UIImageView (self.iv)
into which we intend to place it:

let url = Bundle.main.url(forResource:"colson", withExtension: "jpg")!
var opts : [AnyHashable:Any] = [kCGImageSourceShouldCache : false]
let src = CGImageSourceCreateWithURL(url as CFURL, opts as CFDictionary)!
let scale = UIScreen.main.scale
let w = self.iv.bounds.width * scale
opts = [
 kCGImageSourceShouldAllowFloat : true,
 kCGImageSourceCreateThumbnailWithTransform : true,
 kCGImageSourceCreateThumbnailFromImageAlways : true,
 kCGImageSourceShouldCacheImmediately : true,
 kCGImageSourceThumbnailMaxPixelSize : w
]
let imref =
 CGImageSourceCreateThumbnailAtIndex(src, 0, opts as CFDictionary)!
let im = UIImage(cgImage: imref, scale: scale, orientation: .up)
self.iv.image = im

To save an image using a specified file format, we need an image destination. I’ll show
how to save our image as a TIFF. We never open the image as an image! We save
directly from the image source to the image destination:

let url = Bundle.main.url(forResource:"colson", withExtension: "jpg")!
let opts : [AnyHashable:Any] = [kCGImageSourceShouldCache : false]
let src = CGImageSourceCreateWithURL(url as CFURL, opts as CFDictionary)!
let fm = FileManager.default
let suppurl = try! fm.url(for:.applicationSupportDirectory,
 in: .userDomainMask, appropriateFor: nil, create: true)
let tiff = suppurl.appendingPathComponent("mytiff.tiff")

1056 | Chapter 22: Persistent Storage

let dest =
 CGImageDestinationCreateWithURL(tiff as CFURL, kUTTypeTIFF, 1, nil)!
CGImageDestinationAddImageFromSource(dest, src, 0, nil)
let ok = CGImageDestinationFinalize(dest)

Image Files | 1057

CHAPTER 23

Basic Networking

Networking is difficult and complicated, not least because it’s ultimately out of your
control. You can ask for a resource from across the network, but at that point any‐
thing can happen. The resource might not be found; it might take a while to arrive; it
might never arrive. The server or the network might be unavailable, or even worse,
might vanish after the resource has partially arrived. There are numerous technicali‐
ties to deal with, not to mention the need for extensive background threading so that
nothing interferes with the operation of your app’s interface. Fortunately, iOS
handles all of that behind the scenes, and makes basic networking easy.

Earlier chapters have described interface and frameworks that network for you auto‐
matically. Put a web view in your interface (Chapter 11) and poof, you’re networking;
the web view does all the grunt work, and it does it a lot better than you’d be likely to
do it from scratch. The same is true of AVPlayer (Chapter 15), MKMapView (Chap‐
ter 20), and so on. Think of that as implicit networking. This chapter discusses
explicit networking.

A device used for development has a Network Link Conditioner switch in Set‐
tings (under Developer). Use it to simulate different networking situations to
stress-test your networking code.

HTTP Requests
An HTTP request is made through a URLSession object. A URLSession is a kind of
grand overarching environment in which network-related tasks are to take place.

Obtaining a Session
There are three chief ways to obtain a URLSession:

1059

The shared session
The URLSession class vends a singleton shared session object through its shared
class property. This object is supplied and configured by the runtime; it is good
for very simple, occasional use, where you don’t need configuration, authentica‐
tion, dedicated cookie storage, and so forth. You can’t interact with the session
while it’s performing a networking task for you, because you have no delegate.
All you can do is order some task to be performed and then stand back and wait
for it to finish.

Session configured without a delegate
You create the URLSession by calling init(configuration:). This means that
the session is yours, not shared. You’ll hand the session a URLSessionConfigura‐
tion object describing the desired environment. This means that you can config‐
ure the URLSession. But you still can’t interact with the session while it’s
performing a networking task for you, because you still have no delegate.

Session configured with a delegate
You create the URLSession by calling init(configuration:delegate:delegate-
Queue:). Like the preceding initializer, you’ll hand the session a URLSession‐
Configuration object. Now the session is yours and you can configure it — and
you also have a delegate that can receive various callbacks during the course of a
networking task (and you even get to say whether those callbacks should occur
on the main thread or in the background). Clearly this is the most powerful
approach; it is also more complicated than the others, but that complexity can be
worthwhile.

The shared session is owned by the runtime, so there’s no need to retain it; you sim‐
ply access it and tell it what you want it to do. But if you create a URLSession with a
configuration, you’ll probably want it to persist. Your app will typically need to create
only one URLSession object; it is reasonable to store it in a global variable, or in an
instance property of some object that will persist throughout your app’s lifetime, such
as the app delegate or the root view controller.

Session Configuration
To initialize a URLSession, you’ll start by creating a URLSessionConfiguration and
setting its properties. The configuration object dictates various options to be applied
to the session. (A legitimate reason for creating multiple URLSession objects might
be that you need them to have different configurations.)

There are three URLSessionConfiguration class members that you can use to obtain a
URLSessionConfiguration instance:

1060 | Chapter 23: Basic Networking

App Transport Security
Since iOS 9, App Transport Security has been enforced, meaning that HTTP requests
must be HTTPS requests and that the server must be using TLS 1.2 or higher. To
tweak the behavior of App Transport Security, you must make an entry in your app’s
Info.plist, in the “App Transport Security Settings” dictionary (NSAppTransport-
Security). To allow HTTP requests in general, the dictionary’s “Allow Arbitrary
Loads” key (NSAllowsArbitraryLoads) must be YES. See the “App Transport Secu‐
rity” section in Apple’s Information Property List Key Reference in the documentation
archive.

default

A basic vanilla URLSessionConfiguration. This is what you’ll use most of the
time.

ephemeral

Configures a URLSession whose cookies and caches are maintained in memory
only; they are never saved. You can actually configure a default URLSession‐
Configuration to give the same behavior, so this is purely a convenience.

background(withIdentifier:)

Configures a URLSession that will proceed with its networking tasks independ‐
ently of your app at some future time. I’ll discuss background sessions later.

Here are some of the basic URLSessionConfiguration properties:

allowsExpensiveNetworkAccess

New in iOS 13. Effectively supersedes allowsCellularAccess. The notion
“expensive” currently embraces both cellular and device hotspots. If you set this
property to false and the network is “expensive,” attempting to network will get
you a URLError whose networkUnavailableReason is .expensive.

allowsConstrainedNetworkAccess

New in iOS 13. The notion of “constrained” network access corresponds to Low
Data Mode in Settings (under Cellular and WiFi). The idea is that the user can
mark a route as low-bandwidth; the system will respond by turning off back‐
ground app refresh and so forth, and your app should respond by reducing its
network activity and not fetching large resources if a smaller resource (or no
resource) will do. If you set this property to false and the network is “con‐
strained,” attempting to network will get you a URLError whose network-
UnavailableReason is .constrained.

HTTP Requests | 1061

waitsForConnectivity

If true, the session will try again later if the network is unavailable initially.
Apple says that it is better to use this property, and let the URLSession do the
work, than to try to determine reachability for yourself (by using SCNetwork‐
Reachability or similar).

httpMaximumConnectionsPerHost

The maximum number of simultaneous connections to the remote server.

Timeout values
There are two of them:

timeoutIntervalForRequest

The maximum time you’re willing to wait between pieces of data. The timer
starts when the connection succeeds, and then starts over each time a piece
of data is received. A timeout means that things have stalled in the middle. If
this is not a background session, the timeout will trigger failure of the down‐
load. The default is one minute.

timeoutIntervalForResource

The maximum time for the entire download to arrive. The timer starts when
the networking task is told to start, and just keeps ticking until completion.
This is appropriate for limiting the request’s overall time-to-live. Failure to
complete in the required time will always trigger failure of the download.
The default is seven days.

There are also numerous cookie, caching, credential, proxy, and protocol properties.

Session Tasks
To use a URLSession to perform a networking task, you need a URLSessionTask
object, representing a single communication exchange. You do not instantiate a task
yourself; rather, you ask the URLSession for a task of the desired type, which will be
an appropriate subclass:

URLSessionDataTask
A URLSessionTask subclass. You ask for a resource and the data is provided
incrementally to your app as it arrives across the network. You should not use a
data task for a large hunk of data, because the data is accumulating in memory
throughout the download.

URLSessionDownloadTask
A URLSessionTask subclass. You ask for a resource, but the data never passes
through your app’s memory; instead, it is accumulated into a file, and the saved
file URL is handed to you at the end of the process. The file is outside your sand‐
box and will be destroyed, so preserving it (or its contents) is up to you.

1062 | Chapter 23: Basic Networking

URLSessionUploadTask
A URLSessionDataTask subclass. You can provide a file to be uploaded and
stand back, though you can also hear about the upload progress if you wish.

URLSessionStreamTask
A URLSessionTask subclass. This type of task makes it possible to deal conven‐
iently with streams.

URLSessionWebSocketTask
New in iOS 13. A web socket is a persistent two-way connection between client
and server (a “bidirectional stream”).

URLSessionTask itself is an abstract superclass, embodying various properties com‐
mon to all types of task, such as:

• A taskDescription and taskIdentifier; the former is up to you, while the lat‐
ter is a unique identifier within the URLSession.

• The originalRequest and currentRequest (the request can change because
there might be a redirect).

• The priority; a Float between 0 and 1, used as a hint to help rank the relative
importance of your tasks. For convenience, URLSessionTask vends three
constants:
▪ URLSessionTask.lowPriority (0.25)
▪ URLSessionTask.defaultPriority (0.5)
▪ URLSessionTask.highPriority (0.75)

• An initial response from the server.
• Various countOfBytes... properties allowing you to track progress.
• A progress property that vends a Progress object; this is probably a better way to

track progress than the countOfBytes... properties.
• A state, which might be:

▪ .running

▪ .suspended

▪ .canceling

▪ .completed

• An error if the task failed.
You can tell a task to resume, suspend, or cancel. A task is born suspended; it does
not start until it is told to resume for the first time. Typically you’ll obtain the task,
configure it, and then tell it to resume to start it. The Progress object vended by a

HTTP Requests | 1063

task’s progress property is a second gateway to these methods; telling the Progress
object to resume, pause, or cancel is the same as telling the task to resume, suspend,
or cancel respectively.

Once you’ve obtained a new session task from the URLSession, the session retains it;
you can keep a reference to the task if you wish, but you don’t have to. The session
will provide you with a list of its tasks in progress; call getAllTasks(completion-
Handler:) to receive the existing tasks in the completion function. The session relea‐
ses a task after the task is cancelled or completed; a URLSession with no running or
suspended tasks has no tasks at all.

There are two ways to ask your URLSession for a new session task. Which one you
use depends on how you obtained the URLSession; in turn, they entail two different
ways of working with the task:

With a completion function
Take this approach if you are using the shared session or a session configured
without a delegate. You’ll call a convenience method that takes a completion-
Handler: parameter, such as downloadTask(with:completionHandler:). You
supply a completion function, typically an anonymous function, to be called
when the task ends.

Without a completion function
Take this approach if you gave the URLSession a delegate when you created it.
You’ll call a method without a completionHandler: parameter, such as download-
Task(with:). The delegate is called back at various stages of the task’s progress.

For a data task or a download task, the with: parameter can be either a URL or a
URLRequest. A URL is simpler, but a URLRequest allows you more power to per‐
form additional configurations.

Apple says that it is reasonable to call resume on a background queue. By specify‐
ing the queue’s quality of service (qos), you can rank the priority of this task. See
Chapter 24.

Session Delegate
If you create a session by calling init(configuration:delegate:delegateQueue:),
you’ll specify a delegate, along with the queue (roughly, the thread — see Chapter 24)
on which the delegate methods are to be called. For each type of session task, there’s a
delegate protocol, which may inherit from other protocols:

Data delegate
For a data task, we would want a data delegate — an object conforming to the
URLSessionDataDelegate protocol, which itself conforms to the URLSessionTask‐

1064 | Chapter 23: Basic Networking

Delegate protocol, which in turn conforms to the URLSessionDelegate protocol,
resulting in about a dozen delegate methods we could implement, though only a
few are crucial:

URLSession(_:dataTask:didReceive:)

Some data has arrived, as a Data object (the third parameter). The data will
arrive piecemeal, so this method may be called many times during the down‐
load process, supplying new data each time. Our job is to accumulate all
those chunks of data; this involves maintaining state between calls.

URLSession(_:task:didCompleteWithError:)

If there is an error, we’ll find out about it here. If there’s no error, this is our
signal that the download is over; we can now do something with the accu‐
mulated data.

Download delegate
For a download task, we would want a download delegate, conforming to the
URLSessionDownloadDelegate protocol, which conforms to the URLSession‐
TaskDelegate protocol, which conforms to the URLSessionDelegate protocol.
Here are some useful download delegate methods:

URLSession(_:downloadTask:didResumeAtOffset:expectedTotalBytes:)

This method is of interest only in the case of a resumable download that has
been paused and resumed.

URLSession(_:downloadTask:didWriteData:totalBytesWritten:totalBytes-

ExpectedToWrite:)

Called periodically, to keep us apprised of the download’s progress. It might
be more convenient to keep a reference to the task’s Progress object.

URLSession(_:downloadTask:didFinishDownloadingTo:)

Called at the end of the process. The last parameter is a file URL; we must
grab the downloaded file immediately from there, as it will be destroyed.

URLSession(_:task:didCompleteWithError:)

Unlike with a data task, this delegate method is not crucial for a download
task. Still, if there was a communication problem, this is where you’d hear
about it.

Some delegate methods provide a completionHandler: parameter. These are dele‐
gate methods that require a response from you. In the case of a data task,
URLSession(_:dataTask:didReceive:completionHandler:) arrives when we first
connect to the server. The third parameter is the response (URLResponse), and we
could now check its status code. We must also return a response of our own, saying
whether or not to proceed (or whether to convert the data task to a download task,

HTTP Requests | 1065

which could certainly come in handy). But because of the multithreaded, asynchro‐
nous nature of networking (see Appendix C), we do this, not by returning a value
directly, but by calling the completion function and passing our response into it.

The various delegate protocols also inherit this method from the URLSessionTask‐
Delegate protocol:

urlSession(_:taskIsWaitingForConnectivity:)

Called only if the session configuration has its waitsForConnectivity set to
true. The task has tried to start and has failed; instead of giving up with an error
(as it would have done if waitsForConnectivity were false), it will wait and try
again later. You might respond by updating your interface somehow.

HTTP Request with Task Completion Function
At long last, we are ready for some examples! I’ll start by illustrating the utmost in
simplicity. This is the absolute minimum approach to downloading a file:

• We use the shared URLSession, which takes no configuration.
• We obtain a download task, handing it a remote URL and a completion function.

When the download is complete, the completion function will be called with a
file URL; we retrieve the data from that URL and do something with it.

Having obtained the session and the task, don’t forget to call resume to start the
download! Our overall code looks like this:

let s = "https://www.someserver.com/somefolder/someimage.jpg"
let url = URL(string:s)!
let session = URLSession.shared
let task = session.downloadTask(with:url) { loc, resp, err in
 // ... completion function body goes here ...
}
task.resume()

All that remains is to write the body of the completion function. The downloaded
data (here, an image file) is stored temporarily; if we want to do something with it, we
must retrieve it right now. We must make no assumptions about what thread the
completion function will be called on; indeed, unless we take steps to the contrary, it
will be a background thread. In this particular example, the URL points to an image
that I intend to display in my interface; therefore, I step out to the main thread
(Chapter 24) in order to talk to the interface:

let task = session.downloadTask(with:url) { fileURL, resp, err in
 if let url = fileURL, let d = try? Data(contentsOf:url) {
 let im = UIImage(data:d)
 DispatchQueue.main.async {

1066 | Chapter 23: Basic Networking

 self.iv.image = im
 }
 }
}

That’s all there is to it! If there’s an error or a negative response from the server (such
as “File not found”), url will be nil and we’ll do nothing. Optionally, you might like
to have the completion function report those conditions:

guard err == nil else { print(err); return }
let status = (resp as! HTTPURLResponse).statusCode
guard status == 200 else { print(status); return }

A data task is similar, except that the data itself arrives as the first parameter of the
completion function:

let task = session.dataTask(with:url) { data, resp, err in
 if let d = data {
 let im = UIImage(data:d) // ... and so on

A session task vends a Progress object (starting in iOS 11). This means that we can
track the progress of our task even without a session delegate. If we have a
UIProgressView (self.prog) in our interface, displaying the task’s progress to the
user could be as simple as this:

self.prog.observedProgress = task.progress

Recall, too, that one Progress object can act as the parent of other Progress objects
(Chapter 12). If we are going to perform multiple tasks simultaneously, our
UIProgressView’s observedProgress can be configured to show the overall progress
of those tasks.

New in iOS 13, the Combine framework endows a URLSession with a data task
publisher. To obtain it, call dataTaskPublisher(for:) with a URL or URLRequest.
This provides a publish-and-subscribe alternative to a completion function, and you
can encapsulate analysis and processing of the response within the pipeline:

let _ = session.dataTaskPublisher(for: url)
 .tryMap { data, response -> UIImage? in
 if (response as? HTTPURLResponse)?.statusCode != 200 {
 throw NSError(domain: "wrong status", code: 0)
 }
 return UIImage(data:data)
 }.receive(on: DispatchQueue.main)
 .sink(receiveCompletion: { comp in
 if case let .failure(err) = comp {
 print(err)
 }
 }) { im in
 self.iv.image = im
 }

HTTP Requests | 1067

HTTP Request with Session Delegate
Now let’s go to the other extreme and be very formal and complete:

• We’ll start by creating and configuring a URLSessionConfiguration object.
• We’ll create and retain our own URLSession.
• We’ll give the session a delegate, implementing delegate methods to deal with the

session task as it proceeds.
• When we request our session task, instead of a mere URL, we’ll start with a URL‐

Request.
We are now creating our own URLSession, rather than borrowing the system’s
shared session. Since one URLSession can perform multiple tasks, there will typically
be just one URLSession; so I’ll make a lazy initializer that creates and configures it,
supplying a URLSessionConfiguration and setting the delegate:

lazy var session : URLSession = {
 let config = URLSessionConfiguration.ephemeral
 config.allowsExpensiveNetworkAccess = false
 let session = URLSession(configuration: config, delegate: self,
 delegateQueue: .main)
 return session
}()

I’ve specified, for purposes of the example, that no caching is to take place and that
data downloading via cell is forbidden; you could configure things much more heav‐
ily and meaningfully, of course. I have specified self as the delegate, and I have
requested delegate callbacks on the main thread.

When I ask for the session task, I’ll supply a URLRequest instead of a URL:

let url = URL(string:s)!
let req = URLRequest(url:url)
// ask for the task

In my examples in this chapter, there is very little merit in using a URLRequest
instead of a URL to form our task. Still, a URLRequest can come in handy, and an
upload task requires one; this is where you configure such things as the HTTP
request method, body, and header fields.

Do not use the URLRequest to configure properties of the request that are con‐
figurable through the URLSessionConfiguration. There is no point setting the
URLRequest’s timeoutInterval, for instance, as it is the URLSessionConfigura‐
tion’s timeout properties that are significant.

1068 | Chapter 23: Basic Networking

Download task
I’ll recast the image file download task from the previous example. I blank out the
image view, to make the progress of the task more obvious for test purposes, and I
create and start the download task:

self.iv.image = nil
let s = "https://www.someserver.com/somefolder/someimage.jpg"
let url = URL(string:s)!
let req = URLRequest(url:url)
let task = self.session.downloadTask(with:req)
task.resume()

Here are some delegate methods for responding to the download:

func urlSession(_ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didWriteData bytesWritten: Int64,
 totalBytesWritten writ: Int64,
 totalBytesExpectedToWrite exp: Int64) {
 print("downloaded \(100*writ/exp)%")
}
func urlSession(_ session: URLSession,
 task: URLSessionTask,
 didCompleteWithError error: Error?) {
 print("completed: error: \(error)")
}
func urlSession(_ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didFinishDownloadingTo fileURL: URL) {
 if let d = try? Data(contentsOf:fileURL) {
 let im = UIImage(data:d)
 DispatchQueue.main.async {
 self.iv.image = im
 }
 }
}
/*
downloaded 23%
downloaded 47%
downloaded 71%
downloaded 100%
completed: error: nil
*/

Instead of implementing URLSession(_:downloadTask:didWriteData:totalBytes-
Written:totalBytesExpectedToWrite:) to track the progress of the download, we
could use the task’s progress object. We would configure that when we obtain the
download task:

self.ob = task.progress.observe(\.fractionCompleted) { prog, change in
 print("downloaded \(Int(100*prog.fractionCompleted))%")
}

HTTP Requests | 1069

Data task
A data task leaves it up to you to accumulate the data as it arrives in chunks. You’ll
want to keep a mutable Data object on hand; I’ll use an instance property:

var data = Data()

To get started, I prepare self.data by giving it a zero count, and then I create and
start the data task:

self.iv.image = nil
self.data.count = 0 // *
let s = "https://www.someserver.com/somefolder/someimage.jpg"
let url = URL(string:s)!
let req = URLRequest(url:url)
let task = self.session.dataTask(with:req) // *
task.resume()

As the chunks of data arrive, I keep appending them to self.data. When all the data
has arrived, it is ready for use:

func urlSession(_ session: URLSession,
 dataTask: URLSessionDataTask,
 didReceive data: Data) {
 self.data.append(data)
}
func urlSession(_ session: URLSession,
 task: URLSessionTask,
 didCompleteWithError error: Error?) {
 if error == nil {
 DispatchQueue.main.async {
 self.iv.image = UIImage(data:self.data)
 }
 }
}

One Session, One Delegate
The URLSession delegate architecture dictates that the delegate belongs to the session
as a whole, not to each task individually. Because of this architecture, the preceding
data task code is broken. To see why, ask yourself: What happens if our session is
asked to perform another data task while this data task is still in progress? Our one
session delegate is accumulating the chunks of data into a single Data property,
self.data, without regard to what data task this chunk of data comes from. Clearly
this is a potential train wreck: we’re going to interleave the data from two different
tasks, ending up with nonsense.

Let’s revise the data task code to fix the problem. We need a way to separate the data
streams belonging to the different tasks. Fortunately, a session task has a unique
identifier — its taskIdentifier, which is an Int. So instead of a single Data property,

1070 | Chapter 23: Basic Networking

we can maintain a dictionary keyed by each data task’s taskIdentifier, where the
corresponding value is a Data object:

var data = [Int:Data]()

Our code for obtaining and starting a new data task now adds an entry to the data
dictionary, like this:

let task = self.session.dataTask(with:req)
self.data[task.taskIdentifier] = Data() // *
task.resume()

As a chunk of data arrives, we append it to the correct entry in the dictionary:

func urlSession(_ session: URLSession,
 dataTask: URLSessionDataTask,
 didReceive data: Data) {
 self.data[dataTask.taskIdentifier]!.append(data)
}

When a task’s data has fully arrived, we pluck it out of the dictionary and remove that
dictionary entry (so that data from stale tasks doesn’t accumulate), and proceed to
use the data:

func urlSession(_ session: URLSession,
 task: URLSessionTask,
 didCompleteWithError error: Error?) {
 let d = self.data[task.taskIdentifier]!
 self.data[task.taskIdentifier] = nil
 if error == nil {
 DispatchQueue.main.async {
 self.iv.image = UIImage(data:d)
 }
 }
}

Delegate Memory Management
A URLSession does an unusual thing: it retains its delegate. This is understandable, as
it would be disastrous if the delegate could simply vanish in the middle of an
asynchronous time-consuming process; but it means that all the preceding delegate
examples are broken in yet another way. We have a retain cycle! Our view controllers
are leaking. That’s because the view controller has a URLSession instance property
self.session, but the URLSession is retaining the view controller (self) as its
delegate.

The way to break the cycle is to invalidate the URLSession at some appropriate
moment. There are two ways to do this:

HTTP Requests | 1071

finishTasksAndInvalidate

Allows any existing tasks to run to completion. Afterward, the URLSession relea‐
ses the delegate and cannot be used for anything further.

invalidateAndCancel

Interrupts any existing tasks immediately. The URLSession releases the delegate
and cannot be used for anything further.

If the delegate caught in this retain cycle is a view controller, then viewWill-
Disappear(_:) could be a good place to invalidate the URLSession; we cannot use
deinit, because deinit won’t be called unless we have already invalidated the URL‐
Session (that’s what it means to have a retain cycle):

override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(animated)
 self.session.finishTasksAndInvalidate()
}

Session and Delegate Encapsulation
The solution in the preceding section works, but it is not very satisfying. We are still
creating a retain cycle between the session and its delegate, the view controller; to
break it, we must remember to invalidate the session. It is not easy to find a place to
do that; viewWillDisappear can be called many times in the life of a view controller,
and invalidating the session there might not be appropriate. It would be much better
if we could invalidate the session automatically when the view controller goes out of
existence. And it would be even better if there were never any retain cycle to start
with!

We can achieve that goal by encapsulating the session and its delegate:

• Start with an instance of some separate class whose job is to hold the URLSession
in a property.

• Make the URLSession’s delegate an instance of yet another class — an instance
that is not retained by any object other than the URLSession.

Now our memory management problems are over. The URLSession retains its dele‐
gate, so there is no need for any other object to retain it. The delegate does not retain
the session or the instance that holds the session, so there is no retain cycle. And
there is no entanglement with the memory management of a view controller. Our
URLSession-holding instance can live anywhere — and if it is being retained by a
view controller, then it will go out of existence in good order when the view control‐
ler goes out of existence.

To illustrate, I’ll design a Downloader class that holds a URLSession and creates its
delegate. I imagine that our view controller will create and maintain an instance of
Downloader early in its lifetime, as an instance property:

1072 | Chapter 23: Basic Networking

let downloader : Downloader = {
 // ...
 return Downloader(/* ... */)
}()

In that code, I omitted the initialization of Downloader. How should this work? The
Downloader object will create its own URLSession, but I think the client should be
allowed to configure the session. So let’s posit that Downloader’s initializer takes a
URLSessionConfiguration parameter:

let downloader : Downloader = {
 let config = URLSessionConfiguration.ephemeral
 config.allowsExpensiveNetworkAccess = false
 return Downloader(configuration:config)
}()

Now let’s design Downloader itself. It creates and retains the URLSession, and makes
its delegate an instance of a private class, DownloaderDelegate — an instance that
only the URLSession itself will retain. Since there is no retain cycle, Downloader can
cancel its own session automatically when it goes out of existence:

class Downloader: NSObject {
 let config : URLSessionConfiguration
 lazy var session : URLSession = {
 return URLSession(configuration:self.config,
 delegate:DownloaderDelegate(), delegateQueue:.main)
 }()
 init(configuration config:URLSessionConfiguration) {
 self.config = config
 super.init()
 }
 // ...
 deinit {
 self.session.invalidateAndCancel()
 }
}

Suppose the client is a view controller with a downloader property, as I suggested ear‐
lier. There is no retain cycle, so the view controller can go out of existence in good
order when the view controller hierarchy is through with it. And when that happens,
its downloader will go out of existence too, taking the URLSession and its delegate
with it.

Next, let’s decide how a client will communicate with a Downloader object. The cli‐
ent will hand a URL to the Downloader instance; the Downloader will obtain the
URLSessionDownloadTask and start it. The DownloaderDelegate will be told when
the download is over. At that point, the DownloaderDelegate has a file URL for the
downloaded object, which it needs to hand back to the client immediately.

HTTP Requests | 1073

One way to arrange this is that the client, when it hands the Downloader a URL to
initiate a download, should also supply a completion function (see Appendix C) to be
called when the download is over. In that way, we deal with the asynchronous nature
of networking, as well as keeping Downloader independent and agnostic about who
the caller is. To return the file URL at the end of a download, the DownloaderDele‐
gate calls the completion function, passing it the file URL as a parameter. I can even
define a type alias naming my completion function type:

typealias DownloaderCH = (URL?) -> ()

From the client’s point of view, then, the process will look something like this:

let s = "https://www.someserver.com/somefolder/someimage.jpg"
let url = URL(string:s)!
self.downloader.download(url:url) { url in
 if let url = url, let d = try? Data(contentsOf: url) {
 let im = UIImage(data:d)
 self.iv.image = im // assume we're called back on main thread
 }
}

Now let’s implement this architecture within Downloader. We have posited a method
download(url:completionHandler:). When that method is called, Downloader
stores the completion function; it then asks for a new download task and sets it going:

@discardableResult
func download(url:URL,
 completionHandler ch : @escaping DownloaderCH) -> URLSessionTask {
 let task = self.session.downloadTask(with:url)
 // ... store the completion function somehow ...
 task.resume()
 return task
}

(We’re returning a reference to the task, so that the client can subsequently cancel the
task if need be.)

When the download finishes, the DownloaderDelegate calls the completion function:

func urlSession(_ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didFinishDownloadingTo url: URL) {
 let ch = // ... retrieve the completion function somehow ...
 ch(url)
}

In my carefree speculative coding design, I have left a blank — the storage and
retrieval of the completion function corresponding to each download task. Let’s use
the same technique I used earlier for accumulating the data of multiple data tasks,
namely a dictionary keyed by the task’s taskIdentifier. This will be a private prop‐
erty of DownloaderDelegate, along with a public method:

1074 | Chapter 23: Basic Networking

private var handlers = [Int:DownloaderCH]()
func appendHandler(_ ch:@escaping DownloaderCH, task:URLSessionTask {
 self.handlers[task.taskIdentifier] = ch
}

We are now ready to fill in the blank in Downloader’s download(url:completion-
Handler:) method. By the time this method is called by the client, the delegate has
already been created and handed to the session, and only the session has a reference
to it; so we obtain the delegate from the session and call the append-

Handler(_:task:) method that we gave it for this purpose:

func download(url:URL,
 completionHandler ch : @escaping DownloaderCH) -> URLSessionTask {
 let task = self.session.downloadTask(with:url)
 let del = self.session.delegate as! DownloaderDelegate
 del.appendHandler(ch, task: task)
 task.resume()
 return task
}

All that remains is to write the delegate methods for DownloaderDelegate. There are
two of them that we need to implement. When the download arrives, we find the
completion function corresponding to this download task and call it, handing it the
file URL where the downloaded data has been stored:

func urlSession(_ session: URLSession,
 downloadTask: URLSessionDownloadTask,
 didFinishDownloadingTo url: URL) {
 let ch = self.handlers[downloadTask.taskIdentifier]
 ch?(url)
}

When the task completes, we purge the completion function from the dictionary —
and, if there was an error, we pass nil to the completion function, guaranteeing that
the completion function will be called under all circumstances:

func urlSession(_ session: URLSession,
 task: URLSessionTask,
 didCompleteWithError error: Error?) {
 let ch = self.handlers[task.taskIdentifier]
 self.handlers[task.taskIdentifier] = nil
 if let error = error {
 ch?(nil)
 }
}

As written, DownloaderDelegate’s delegate methods are being called on the main
thread. That’s not necessarily a bad thing, but it may be preferable to run that code
on a background thread. I’ll describe in Chapter 24 how to do that.

HTTP Requests | 1075

Downloading Table View Data
To exercise Downloader, I’ll tackle a pesky problem that arises quite often in real life:
we have a UITableView where each cell displays text and an image, and the image
needs to be downloaded from the internet.

What will our implementation of tableView(_:cellForRowAt:) do? It must not try
to network synchronously — that is, it mustn’t wait around for the image to arrive
before returning the cell. We must not gum up the works; this method needs to
return a cell immediately. The correct strategy, if we don’t have the image yet, is to
put a placeholder (or no image at all) in the cell, return the cell, and then see about
downloading the image. When we have the image, then we can insert it into the cell.

The model object for a table row will be an instance of a dedicated Model class, which
is nothing but a bundle of properties:

class Model {
 init(text: String, picurl: URL) {
 self.text = text
 self.picurl = picurl
 }
 var text : String // text for the cell's text label
 var picurl : URL // url for downloading the image
 var im : UIImage? // image for the cell's image view; initially nil
 var task : URLSessionTask? // current download task, if any
}

Presume, for simplicity, that we have only one section, and our table view model is an
array of Model. When the table turns to the data source for a cell in table-
View(_:cellForRowAt:), the data source will turn to the model and consult the
Model object corresponding to the requested row, asking for its im property, which is
supposed to be its image. Initially, this will be nil. In that case, the data source will
display no image in this cell, and will immediately return a cell without an image.

We also want to request that the image be downloaded from this Model object’s
picurl. Later, when the image arrives and this Model object’s im is no longer nil, we
can reload the row, and this time tableView(_:cellForRowAt:) will find that image
and display it in the cell.

This is an opportunity to exercise a feature of UITableView (and UICollectionView)
that I didn’t mention in Chapter 8 — prefetching. We assign to our table view’s
prefetchDataSource property some object adopting the UITableViewDataSource‐
Prefetching protocol. The runtime will then call that object’s delegate method table-
View(_:prefetchRowsAt:) before calling tableView(_:cellForRowAt:) — not only
when the user is scrolling a cell onto the screen, but also when the user might scroll a
cell onto the screen.

1076 | Chapter 23: Basic Networking

This architecture allows us to separate provision of the data from provision of the
cell. Let’s say that initially the first 12 rows of the table are displayed. Then the run‐
time will call tableView(_:prefetchRowsAt:) for the next 12 rows — because if the
user scrolls at all, those are the rows that will come into view.

Presume, then, that we (self, the view controller) adopt UITableViewDataSource‐
Prefetching, and that we have configured the table view accordingly in our viewDid-
Load:

override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.prefetchDataSource = self // turn on prefetching
}

Our implementation of tableView(_:cellForRowAt:) is trivial, just as it should be;
everything we need to know is right there in the Model object for this row. The image
displayed in the image view will be a downloaded UIImage or nil, depending on
whether the Model has acquired the image for this row:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: self.cellID, for: indexPath)
 let m = self.model[indexPath.row]
 cell.textLabel?.text = m.text
 cell.imageView?.image = m.im // image or nil
 return cell
}

Meanwhile, the runtime is busy calling tableView(_:prefetchRowsAt:) for us. Here
we deal directly with the model data. We examine the Model for the given row; if it
already has an image, obviously the image was already downloaded, so there’s noth‐
ing more to do. We also examine the Model’s task; if it is not nil, that’s a marker
that this image is currently being downloaded, so there’s nothing more to do. Other‐
wise, we start the download, storing a reference to the download task in the Model’s
task as a sign that the download for this row has been requested:

func tableView(_ tableView: UITableView,
 prefetchRowsAt indexPaths: [IndexPath]) {
 for ip in indexPaths {
 let m = self.model[ip.row]
 guard m.im == nil else { continue } // we have an image already
 guard m.task == nil else { continue } // already downloading
 m.task = self.downloader.download(url:m.picurl) { url in
 // ... this is the completion function! ...
 }
 }
}

HTTP Requests | 1077

When the download finishes, our completion function is called. In my usual specula‐
tive coding style, I left it empty; now I’ll fill it in. We reset the Model’s task to nil,
because we are no longer downloading. If the image data has been successfully down‐
loaded, we store it in the Model. Now we call reloadRows for this row. There’s no
telling when this will happen; remember, the completion function is being called
asynchronously. But that doesn’t matter. If the row is visible on the screen, table-
View(_:cellForRowAt:) will be called for this row, and the image will be displayed
now; if the row is no longer visible on the screen, there are no ill effects, and the
image is still stored, ready for the next time the row becomes visible:

m.task = self.downloader.download(url:url) { url in
 m.task = nil
 if let url = url, let data = try? Data(contentsOf: url) {
 m.im = UIImage(data:data)
 tableView.reloadRows(at:[ip], with: .none)
 }
}

That completes our implementation of tableView(_:prefetchRowsAt:).

But there’s still a problem: when the table view initially appears, the images are all
missing from the visible rows. That’s because the runtime calls table-

View(_:prefetchRowsAt:) for future table rows, but not for the rows that are initially
visible! (I regard that as a bug in the table view architecture.) However, it’s easy to
deal with that; at the end of tableView(_:cellForRowAt:), I can call table-
View(_:prefetchRowsAt:) myself:

// ... same as before ...
cell.imageView!.image = m.im // image or nil
if m.task == nil && m.im == nil {
 self.tableView(tableView, prefetchRowsAt:[indexPath])
}
return cell

Our table view is now working perfectly!

Further details are merely a matter of progressive refinement. If these are large
images, we could end up retaining many large images in the model array, which
might cause us to run out of memory. There are lots of ways to deal with that. We
might start by reducing each image, as it arrives, to the size needed for display (pref‐
erably on a serial background thread). If that’s still too much memory, we can imple‐
ment tableView(_:didEndDisplaying:forRowAt:) to expunge each image from its
Model (by setting the Model object’s im to nil) when the cell scrolls out of sight; if
the cell comes back into view, we would then automatically download the image
again. Or, as we expunge the image from the Model, we might save it to disk and
substitute the file URL as its picurl (with appropriate adjustments in the rest of the
code).

1078 | Chapter 23: Basic Networking

Background Session
If your app goes into the background while in the middle of a big networking task,
the task might not be completed. You can ask for extra time to complete an operation
in case the app goes into the background (and I’ll talk in Chapter 24 about how to do
that); but if it isn’t crucial to perform this task right now, it might be nice to defer it
so that it can be performed at a better time. The way to do that is to make the URL‐
Session a background session by assigning it a URLSessionConfiguration created with
the class method background(withIdentifier:). The task should be an upload or
download task.

A background session hands the work of uploading or downloading over to the sys‐
tem. Your app can be suspended or terminated and the download will still be taken
care of. As with location monitoring (Chapter 21), your app does not formally run in
the background just because you have a background session with tasks, so you do not
have to set the UIBackgroundModes of your Info.plist. But the session still serves as a
gateway for putting your app in touch with the networking task as it proceeds; in par‐
ticular, you need to provide the URLSession with a delegate so that you can receive
messages informing you of how things are going.

The argument that you pass to background(withIdentifier:) is an arbitrary string
identifier intended to distinguish your background session. It should be unique
within your app, and a good approach is to use your app’s bundle ID as its basis.

For large data, you may want to set the URLSessionConfiguration’s isDiscretionary
to true. This will permit the system to postpone network communications to some
moment that will conserve bandwidth and battery — when WiFi is available and the
device is plugged into a power socket. Of course, that might be days from now! But
this is part of the beauty of background downloads.

There is no need to set a background session’s waitsForConnectivity; it is true
automatically, and cannot be changed. Similarly, a task does not fail if a background
session’s timeoutIntervalForRequest arrives; the background session will simply try
again. However, a task is abandoned if the timeoutIntervalForResource arrives.

You can also set your URLSessionTask’s earliestBeginDate. This is a date in the
future; the start of the networking task is delayed until after that date. In addition,
you might implement this delegate method:

urlSession(_:task:willBeginDelayedRequest:completionHandler:)

Called only if your URLSessionTask’s earliestBeginDate was set. The begin
date has arrived, and the system is thinking of starting the networking task. Your
app can now change its mind about this task, possibly canceling it or even substi‐
tuting a different request. The completion function takes two parameters; your

HTTP Requests | 1079

job is to call it, passing as its first argument a URLSession.DelayedRequest‐
Disposition stating your decision:

• .cancel

• .continueLoading

• .useNewRequest

The second completion function argument will be nil, unless the first argument
is .useNewRequest, which case it will be the new URLRequest.

Once the background session is configured and the task is told to resume, the system
will need to get back in touch with your code when it has a delegate message to send
you. How it does this depends on what state your app is in at that moment:

Your app is frontmost and still running
Your app may have gone into the background one or more times, but it was
never terminated, and it is frontmost now. In that case, your background URL‐
Session still exists and is still hooked to its delegate, and the delegate messages
are simply sent as usual.

Your app is not frontmost or was terminated
Your app is in the background or not running, or it is frontmost but it was termi‐
nated since the time you told your task to resume. Now the system needs to per‐
form a handshake with your URLSession in order to get in touch with it. To
make that handshake possible, you must implement these two methods:

application(_:handleEventsForBackgroundURLSession:completion-

Handler:)

This message is sent to the app delegate. The session: parameter is the
string identifier you handed earlier to the configuration object; you might
use this to identify the session, or to create and configure the session if you
haven’t done so already. You do not call the completion function now!
Instead, you must store it, because it will be needed later.

urlSessionDidFinishEvents(forBackgroundURLSession:)

This message is sent to the session delegate. This is the moment when you
must call the previously stored completion function.

When the system wants to send you a delegate message, if your app is not frontmost,
it is awakened in the background. If it is not running, it is launched in the back‐
ground. In the latter case, you should immediately create a URLSession, giving it a
URLSessionConfiguration initialized by calling background(withIdentifier:) with
the same identifier as before, and assign a session delegate, which will then be able to
receive delegate messages.

1080 | Chapter 23: Basic Networking

This is all much easier if the app delegate and the session delegate are one and the
same object. In this example, the app delegate holds the URLSession property, which
is created lazily; it also provides storage for the completion function:

lazy var session : URLSession = {
 let id = "com.neuburg.matt.backgroundDownload"
 let config = URLSessionConfiguration.background(withIdentifier: id)
 config.allowsExpensiveNetworkAccess = false
 // could set config.isDiscretionary here
 let sess = URLSession(
 configuration: config, delegate: self, delegateQueue: .main)
 return sess
}()
var ch : (() -> ())!

The URLSessionDownloadDelegate methods are as before, plus we have the two
required handshake methods in case the system needs to get back in touch with us:

func application(_ application: UIApplication,
 handleEventsForBackgroundURLSession identifier: String,
 completionHandler: @escaping () -> ()) {
 self.ch = completionHandler
 _ = self.session // *
}
func urlSessionDidFinishEvents(forBackgroundURLSession session: URLSession) {
 self.ch?()
}

The starred line will “tickle” the session lazy initializer and bring the background
session to life if needed.

If the user kills your app in the background by way of the app switcher interface,
pending background downloads will not be completed. The system assumes that
the user doesn’t want your app coming magically back to life in the background.

On-Demand Resources
Your app can store resources, such as images and sound files, on Apple’s server
instead of including them in the app bundle that the user initially installs on the
device. Your app can then download those resources as needed when the app runs.
Such resources are on-demand resources.

To mark something as an on-demand resource in Xcode, you assign it one or more
tags (arbitrary strings); you can do this in many places in the Xcode interface. A tag
may be assigned to an individual resource or to a folder. Any resources to which you
have assigned tags are not copied into the app when you build it; they will have to be
downloaded to the user’s device as on-demand resources.

On-Demand Resources | 1081

Figure 23-1. An on-demand resource

Your on-demand resource configuration is summarized and managed in the
Resource Tags tab of the target editor. Figure 23-1 shows the Resource Tags tab dis‐
playing the "pix" tag, which has been attached to a folder called images in my app
bundle.

How do you obtain an on-demand resource? In your code, you instantiate an
NSBundleResourceRequest, handing it the tags of the resources you want to use. Let’s
call this the request object. You will likely want to retain the request object, typically
in an instance property (I’ll talk more about that in a moment). You then toggle
access to the resources associated with those tags by sending the request object these
messages:

beginAccessingResources(completionHandler:)

Your completion function is called when the resources are available (which could
be immediately if they have already been downloaded). Do not assume that the
completion function runs on the main thread. The parameter is an Optional
Error. If it is nil, you can now use the resources.

endAccessingResources

Lets the runtime know that you are no longer actively using these resources.
After this call, you can no longer access the resources; that doesn’t mean they will
be deleted, but they might be. You should now abandon use of this NSBundle‐
ResourceRequest instance! Its life cycle is finished. If you need to access the same
resources again, start over by creating a new NSBundleResourceRequest and call‐
ing beginAccessingResources again.

If your app is terminated before you call endAccessingResources, then on relaunch
you obviously have no NSBundleResourceRequest instance. But that doesn’t matter,
because you just keep following the same rules about how to access the resources.
When you need access to them, you create an NSBundleResourceRequest and call
beginAccessingResources; your resources might still be present, in which case you
will get access immediately.

1082 | Chapter 23: Basic Networking

If your call to beginAccessingResources causes the resources to start downloading,
you can track the download progress using the NSBundleResourceRequest’s
progress property, which is a Progress object. This might be desirable if the down‐
load causes a perceptible delay in your app’s action and you need to let the user know
what’s happening. Optimally, you might use a more proactive strategy to prefetch the
resources so that they are present by the time the user needs them. The
progress.fractionCompleted of an NSBundleResourceRequest that is not actively
downloading may be either 0 or 1. It can be 0 after completion because you said
beginAccessing at a time when the resource was already present.

I mentioned earlier that you’ll want your request object to persist, most likely as an
instance property of a view controller. That’s because if a resource request object goes
out of existence, the runtime will assume that you no longer need those resources.
Because an individual NSBundleResourceRequest instance is tied to a specific set of
tags, and hence to a specific bunch of resources, you might need to keep multiple
request objects stored simultaneously. One reasonable strategy might be to declare
each instance property as an Optional of type NSBundleResourceRequest?. That way,
you can set the property to nil when you’re done with that request instance, so that
you won’t accidentally use it again. A more sophisticated approach might be to main‐
tain a single mutable dictionary of type [Set<String>:NSBundleResourceRequest],
keyed by the request object’s tags.

Your code that actually accesses on-demand resources does so in the normal way. If
the resource is an image, you can access it using UIImage’s init(named:). If it’s a
data set in the asset catalog, you can access it using NSDataAsset’s init(name:). If it
is a resource at the top level of the main bundle, you can get its URL by calling
url(forResource:withExtension:) on the bundle. And so forth. An attempt to
access an on-demand resource in this way will fail in good order — you’ll get nil —
until you have successfully called beginAccessingResources. After a call to begin-
AccessingResources and a signal of success in its completion function, the resources
spring to life and you can access them. After calling endAccessingResources, any
attempt to access the resources will yield nil again (even if they have not actually
been deleted).

How on earth does this architecture work? Is it a violation of the rule that your app
bundle can’t be modified? No; it’s all an ingenious illusion. Your on-demand resour‐
ces are stored outside the app bundle, in your app’s OnDemandResources directory,
but the methods that access resources are rejiggered so as to point to them, or to
return nil, as appropriate.

There are two special categories of on-demand resource tags (visible in Figure 23-1)
— initial install tags and prefetch tags:

On-Demand Resources | 1083

Initial install tags
Resources with initial install tags are downloaded at the same time the app is
installed; in effect, they appear to be part of the app.

Prefetch tags
Resources with prefetch tags are downloaded automatically by the system after
the app is installed.

Neither of these special categories relieves you of the responsibility to call begin-
Accessing before you actually use a tagged resource, nor does it prevent the resour‐
ces from being deleted if you are not accessing them. The difference is that the
desired resources will probably be already present when you call beginAccessing
early in the lifetime of the app.

Amazingly, you can test on-demand resources directly by running your app
from Xcode. Also, you can check the status of your on-demand resources in the
Disk gauge of the Debug navigator.

In-App Purchases
An in-app purchase is a specialized form of network communication: your app com‐
municates with the App Store to permit the user to buy something there, or to con‐
firm that something has already been bought there. This is a way to make your app
itself inexpensive or free to download, while providing an optional increased price in
exchange for increased functionality later. In-app purchases are made possible
through the Store Kit framework; you’ll need to import StoreKit.

There are various kinds of in-app purchase — consumables, nonconsumables, and
subscriptions. You’ll want to examine Apple’s In-App Purchase Programming Guide
in the documentation archive and the “Offer In-App Purchases” section of the App
Store Connect Help.

To configure an in-app purchase, you need first to use App Store Connect to create,
in connection with your app, something that the user can purchase; this is easiest to
do if your app is already available through the App Store. For a simple nonconsuma‐
ble purchase, you are associating your app’s bundle ID with a name and arbitrary
product ID representing your in-app purchase, along with a price.

Here’s an example from an actual game app of mine, which offers a single noncon‐
sumable purchase: it unlocks functionality allowing users to involve their own photos
in the game. When the user taps the Choose button, if the in-app purchase has not
been made, a pair of dialogs will appear, offering and describing the purchase
(Figure 23-2); if the in-app purchase has been made, a UIImagePickerController is
presented instead (Chapter 17).

1084 | Chapter 23: Basic Networking

https://help.apple.com/app-store-connect/
https://help.apple.com/app-store-connect/

Figure 23-2. Interface for an in-app purchase

For a nonconsumable in-app purchase, the app must provide the following interface
(all of which is visible in Figure 23-2):

• The description of the in-app purchase. You do not hard-code this description
into your app; rather, it is downloaded in real time from the App Store, using the
Display Name and Description (and price) that you entered at App Store
Connect.

• A button that launches the purchase process.
• A button that restores an existing purchase. The idea here is that the user has per‐

formed the purchase, but is now on a different device or has deleted and reinstal‐
led your app, so that the persistent flag signaling that the purchase has been
performed is missing. The user needs to be able to contact the App Store to get
your app to recognize that the purchase has been performed and turn on the
purchased functionality.

In my app, the purchase process proceeds in two stages. In my first view controller, if
the user taps the Learn More button (on the left in Figure 23-2), I first confirm that
the user has not been restricted from making purchases; then I create an SKProducts‐
Request, which will attempt to download an SKProductsResponse object embodying
the details about the in-app purchase corresponding to my single product ID:

if !SKPaymentQueue.canMakePayments() {
 // ... put up alert saying we can't do it ...
 return
}
let req = SKProductsRequest(productIdentifiers: ["DiabelliChoose"])
req.delegate = self
req.start()

This kicks off some network activity, and eventually the delegate of this SKProducts‐
Request, namely self (conforming to SKProductsRequestDelegate), is called back
with one of two delegate messages. If we get request(_:didFailWithError:), I put
up an apologetic alert (unless the error code is .paymentCancelled), and that’s the

In-App Purchases | 1085

end. But if we get productsRequest(_:didReceive:), the request has succeeded, and
we can proceed to the second stage.

In productsRequest(_:didReceive:), the response from the App Store arrives as
the second parameter. It is an SKProductsResponse object containing an SKProduct
representing the proposed purchase. I get on to the main thread (Chapter 24), create
my second view controller, give it a reference to the SKProduct, and present it (on the
right in Figure 23-2):

func productsRequest(_ request: SKProductsRequest,
 didReceive response: SKProductsResponse) {
 let p = response.products[0]
 DispatchQueue.main.async {
 let s = StoreViewController2(product:p)
 if let presenter = self.presentingViewController {
 self.dismiss(animated: true} {
 presenter.present(s, animated: true)
 }
 }
 }
}

My second view controller has a product property that was set in its initializer. In its
viewDidLoad, it populates its interface based on the information that the product
contains (for my lend utility, see Appendix B):

self.titleLabel.text = self.product.localizedTitle
self.descriptionLabel.text = self.product.localizedDescription
self.priceLabel.text = lend { (nf : NumberFormatter) in
 nf.formatterBehavior = .behavior10_4
 nf.numberStyle = .currency
 nf.locale = self.product.priceLocale
}.string(from: self.product.price)

If the user taps the Purchase button, I dismiss the presented view controller, load the
SKProduct into the default SKPaymentQueue, and stand back:

self.dismiss(animated: true) {
 let p = SKPayment(product:self.product)
 let q = SKPaymentQueue.default()
 q.add(p)
}

The system is now in charge of presenting a sequence of dialogs, confirming the pur‐
chase, asking for the user’s App Store credentials, and so forth. My app knows noth‐
ing about that. If the user performs the purchase, the runtime will call
paymentQueue(_:updatedTransactions:) on my transaction observer. This is an
object adopting the SKPaymentTransactionObserver protocol, whose job it will be to
receive messages from the payment queue. But how does the runtime know what
object that is? When my app launches, it must register the transaction observer:

1086 | Chapter 23: Basic Networking

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplication.LaunchOptionsKey : Any]?) -> Bool {
 SKPaymentQueue.default().add(
 self.window!.rootViewController
 as! SKPaymentTransactionObserver)
 return true
}

As you can see, I’ve made my root view controller the transaction observer. It adopts
the SKPaymentTransactionObserver protocol. There is only one required method —
paymentQueue(_:updatedTransactions:). It is called with a reference to the pay‐
ment queue and an array of SKPaymentTransaction objects. My job is to cycle
through these transactions and, for each one, do whatever it requires, and then, if
there was an actual transaction (or an error), send finishTransaction(_:) to the
payment queue, to clear the queue.

My implementation is extremely simple, because I have only one purchasable prod‐
uct, and because I’m not maintaining any separate record of receipts. For each trans‐
action, I check its transactionState (SKPaymentTransactionState). If its state
is .purchased, I pull out its payment, confirm that the payment’s productIdentifier
is my product identifier (it had darned well better be, since I have only the one prod‐
uct), and, if so, I get onto the main thread and set the UserDefaults flag that indicates
to my app that the user has performed the purchase:

func paymentQueue(_ queue: SKPaymentQueue,
 updatedTransactions transactions: [SKPaymentTransaction]) {
 for t in transactions {
 switch t.transactionState {
 case .purchasing, .deferred: break // do nothing
 case .purchased, .restored:
 let p = t.payment
 if p.productIdentifier == "DiabelliChoose" {
 DispatchQueue.main.async {
 UserDefaults.standard.set(true, forKey: self.CHOOSE)
 // ... put up an alert thanking the user ...
 }
 }
 queue.finishTransaction(t)
 case .failed:
 queue.finishTransaction(t)
 }
 }
}

Finally, let’s talk about what to do when the user taps the Restore button (on the left
in Figure 23-2). It’s very simple; I just tell the default SKPaymentQueue to restore any
existing purchases:

In-App Purchases | 1087

self.dismiss(animated: true) {
 SKPaymentQueue.default().restoreCompletedTransactions()
}

Again, what happens now in the interface is out of my hands; the system will present
the necessary dialogs. If the purchase is restored, my transaction observer will be sent
paymentQueue(_:updatedTransactions:) with a transactionState of .restored.
We pass through exactly the same case in my switch as if the user had freshly pur‐
chased the app; as before, I set the UserDefaults flag indicating that the user has per‐
formed the purchase.

There remains one piece of the puzzle: what if the user taps the Restore button and
the purchase is not restored? This might happen because the user is lying or mistaken
about having previously made this purchase. In that case, paymentQueue(_:updated-
Transactions:) is not called. (I regard this as a bug in the store architecture; in my
opinion, we should be called with a .failed transaction state.)

As a workaround, we can implement the SKPaymentTransactionObserver method
paymentQueueRestoreCompletedTransactionsFinished(_:). It is called after any
restoration attempt where communication with the store was successful. This
method still gives us no way to learn definitively what happened; but if payment-
Queue(_:updatedTransactions:) is called, it is called first, so if we find in payment-
QueueRestoreCompletedTransactionsFinished(_:) that the UserDefaults flag has
not been set, we can guess that restoration failed because the user has never made the
purchase in the first place.

Before releasing your app to the general public, you’ll want to test your app’s in-app
purchase interface and functionality. One way to do that is to create a special Apple
ID, called a sandbox ID, for testing purposes. Sandbox IDs are created and managed
in the Users and Roles section of App Store Connect. When you build your app onto
your device and run it, if you make an in-app purchase, your sandbox ID is used and
you are not charged for the purchase. A downside of this approach is that you have to
remember your sandbox account password. A simpler approach is to upload your
app to App Store Connect and make it available through TestFlight. When a Test‐
Flight tester uses your app’s in-app purchase feature, the tester’s normal account and
password are used, but no actual charge is made. Unfortunately, in neither scenario
are the alerts that the system displays identical to those that a real user would see
while making the in-app purchase. As a result, testing in-app purchase functionality
is always something of a gamble.

1088 | Chapter 23: Basic Networking

CHAPTER 24

Threads

A thread is a subprocess of your app that can execute even while other subprocesses
are also executing. Such simultaneous execution is called concurrency. The iOS
frameworks use threads all the time; if they didn’t, your app would be less responsive
to the user — perhaps completely unresponsive. For the most part, the iOS frame‐
works use threads behind the scenes on your behalf; you don’t have to worry about
threads because the frameworks are worrying about them for you.

Suppose your app is downloading something from the network (Chapter 23). This
download doesn’t happen all by itself; somewhere, someone is running code that
interacts with the network and obtains data. Yet none of that interferes with your
code, or prevents the user from tapping and swiping things in your interface. The
networking code runs “in the background.” That’s concurrency in action.

This chapter discusses concurrency that involves your code in the use of background
threads. It would have been nice to dispense with this topic altogether. Background
threads can be tricky and are always potentially dangerous, and should be avoided if
possible. But sometimes you can’t avoid them. So this chapter introduces threads. But
beware: background threads entail complications and subtle pitfalls, and can make
your code hard to debug. There is much more to threads, and especially to making
your threaded code safe, than this chapter can possibly touch on. For detailed infor‐
mation about the topics introduced in this chapter, read Apple’s Concurrency Pro‐
gramming Guide and Threading Programming Guide in the documentation archive.

Main Thread
Distinguish between the main thread and all other threads. There is only one main
thread; other threads are background threads.

1089

Figure 24-1. The Main Thread Checker is watching you

All your code must run on some thread, but you are not usually conscious of this fact,
because that thread is usually the main thread. Why? Well, the only reason your code
ever runs is that Cocoa calls it — and Cocoa usually calls your code from the main
thread.

The main thread is the interface thread. This means that the main thread is the
meeting-place between you and your user. When the user interacts with the interface,
those interactions are reported as events on the main thread. When your code inter‐
acts with the interface, it must do so on the main thread. Of course that will usually
happen automatically, because your code normally runs on the main thread. But
when you are involved with background threads, you must be careful.

So pretend now that I’m banging the table and shouting: If your code touches the
interface, it must do so on the main thread. Don’t fetch any interface-related values on
a background thread. Don’t set any interface-related values on a background thread.
Whenever you use background threads, there is a chance you might touch the inter‐
face on a background thread. Don’t!

Touching the interface on a background thread is a very common beginner mistake.
A typical sign of trouble is an unaccountable delay of several seconds. In some cases,
the console may help with a warning. Also, Xcode’s Main Thread Checker will auto‐
matically report runtime violations; it’s a diagnostic in your scheme’s Run and Test
actions (Figure 24-1), and is turned on by default.

Since you and the user are both using the main thread, the main thread is a very busy
place. Imagine how things proceed in your app:

1. An event arrives — on the main thread. If the user has tapped a button, this is
reported to your app as a UIEvent, which passes to the button through the touch
delivery mechanism (Chapter 5) — on the main thread.

2. The button emits a control event (Chapter 12) that causes your code (the but‐
ton’s action method) to be called — on the main thread. Your code now runs —
on the main thread. While your code runs, nothing else can happen on the main
thread. Your code might perform some changes in the interface; this is safe,
because your code is running — where? — on the main thread.

1090 | Chapter 24: Threads

3. Your code finishes. The main thread’s run loop is now free to report more
events, and the user is free to interact with the interface once again.

The bottleneck here is the running of your code. Your code runs on the main thread.
That means the main thread can’t do anything else while your code is running. No
events can arrive while your code is running. The user can’t interact with the inter‐
face while your code is running. Two things can’t happen on the main thread at the
same time, so main thread code blocks the main thread and therefore blocks the inter‐
face. But this is usually no problem, because:

Your code is fast
Your code executes really fast. It’s true that the user can’t interact with the inter‐
face while your code runs, but this is such a tiny interval of time that the user will
probably never notice.

Blocking briefly is good
Your code, as it runs, blocks the user from interacting with the interface. As long
as your code finishes quickly, that’s actually a good thing! Your code, in response
to what the user does, might update the interface; it would be insane if the user
could do something else in the interface while you’re in the middle of updating it.

Background Threads
The iOS frameworks frequently operate on background threads. This usually doesn’t
affect you, because the frameworks usually talk to your code on the main thread:

• During an animation (Chapter 4), the interface remains responsive to the user,
and it is possible for your code to run. The Core Animation framework is run‐
ning the animation and updating the presentation layer on a background thread.
But your delegate methods and completion functions are called on the main
thread.

• A web view’s fetching and loading of its content is asynchronous (Chapter 11);
that means the work is done in a background thread. But your delegate methods
are called on the main thread.

• Sounds are played asynchronously (Chapters 14 and 16). Loading, preparation,
and playing of movies happens asynchronously (Chapter 15). But your delegate
methods are called on the main thread.

• Saving a movie file takes time (Chapters 15 and 17). So the saving takes place on
a background thread. UIDocument saves and reads on a background thread
(Chapter 22). But your delegate methods and completion functions are called on
the main thread.

Background Threads | 1091

You can (and should) usually ignore the existence of background threads and just
keep plugging away on the main thread. Nevertheless, there are two kinds of situation
in which your code will need to be explicitly aware of background threads:

Your code is called back, but not on the main thread
Some frameworks explicitly inform you in their documentation that callbacks are
not guaranteed to take place on the main thread. The documentation on
CATiledLayer (Chapter 7) warns that draw(_:in:) is called on a background
thread. By implication, our draw(_:) code, triggered by CATiledLayer to update
tiles, is running on a background thread. (Fortunately, drawing into the current
graphics context is thread-safe.)

Similarly, the documentation on AV Foundation (Chapters 15 and 17) warns
that its completion functions and notifications can arrive on a background
thread. So if you intend to update the user interface, or use a value that might
also be used by your main thread code, you’ll need to switch explicitly to the
main thread.

Your code takes significant time
If your code takes significant time to run, you might need to run that code on a
background thread, rather than letting it block the main thread and prevent any‐
thing else from happening there:

During launch and other app state transitions
In Chapter 22, we called URL(forUbiquityContainerIdentifier:) during
app launch. The documentation told us to call this method on a background
thread, because it can take some time to return; we don’t want to block the
main thread waiting for it, because the app is trying to launch on the main
thread, and the user won’t see our interface until the launch process is over.

Similarly, when the app is in the process of being suspended into the back‐
ground, or resumed from the background, our code should not occupy the
main thread; it must act quickly and get out of the way.

When the user can see or interact with the app
In Chapter 19, we called enumerateEvents(matching:using:) on a back‐
ground thread, because it can take some time to run. If we were to call this
method on the main thread, then when the user taps the button that triggers
this call, the button might stay highlighted for a significant amount of time,
during which the interface would be completely frozen. We would be per‐
ceptibly blocking the main thread.

Similarly, in a table view data source (Chapter 8), tableView(_:cellForRow-
At:) needs to be fast. Otherwise, the user won’t be able to scroll the table
view; we’ll be freezing the interface because we are blocking the main thread.

1092 | Chapter 24: Threads

Moving time-consuming code off the main thread, so that the main thread is not
blocked, isn’t just a matter of aesthetics or politeness: the system “watchdog” will
summarily kill the app if it discovers that the main thread is blocked for too long.

Why Threading Is Hard
The one certain thing about computer code is that it just clunks along the path of
execution, one statement at a time. Successive lines of code are performed in the
order in which they appear, and nothing else happens between them. With threading,
that certainty goes right out the window.

If you have code that can be performed on a background thread, then you don’t know
when your code will be performed. Your code is now concurrent. This means that any
line of your background-thread code could be interleaved between any two lines of
your main-thread code. Indeed, under certain circumstances, your background-
thread code can be called multiple times on multiple background threads, meaning
that any line of your background-thread code could be interleaved between any two
lines of itself.

The reason this can be problematic is because of shared data. There are variables in
your app, such as instance properties, that persist and can be accessed from multiple
places. Background threads mean that such variables can be accessed at unexpected
moments. That is a really scary thought. Suppose, while one thread is in the middle of
using a variable, another thread changes it. Who knows what horrors might result?

You can’t work around this issue by mere logic. Suppose you try to make access to a
variable safe with a condition, as in this pseudocode:

if no other thread is touching this variable {
 ... do something to the variable ...
}

Such logic is specious. Suppose the condition succeeds: no other thread is touching
this variable. But between the time when that condition is evaluated and the time
when the next line executes and you start to do something to the variable, another
thread can still come along and start touching the variable!

It is possible to request assistance at a deeper level to ensure that a section of code is
not run by two threads simultaneously. For example, you can implement a lock
around a section of code. But locks generate an entirely new level of potential pitfalls.
In general, a lock is an invitation to forget to use the lock, or to forget to remove the
lock after you’ve set it. And threads can end up contending for a lock in a way that
permits neither thread to proceed.

Another problem has to do with thread lifetimes. The lifetime of a thread is inde‐
pendent of the lifetimes of other objects in your app. When an object is about to go

Why Threading Is Hard | 1093

out of existence and its deinit has been called and executed, you are supposed to be
guaranteed that none of your code in that object will ever run again. But a thread
might still be running, and might try to talk to your object, even after your object has
supposedly gone out of existence. This can result in a crash, if you’re lucky; if you’re
not lucky, your object might become a kind of zombie.

Not only is threaded code hard to get right; it’s also hard to test and hard to debug. It
introduces indeterminacy, so you can easily make a mistake that never appears in
your testing, but that does appear for some user. The real danger is that the user’s
experience will consist only of distant consequences of your mistake, long after the
point where you made it, making the true cause of the problem extraordinarily diffi‐
cult to track down.

Perhaps you think I’m trying to scare you away from using threads. You’re right! For
an excellent (and suitably frightening) account of some of the dangers and considera‐
tions that threading involves, see Apple’s technical note “Simple and Reliable Thread‐
ing with NSOperation” in the documentation archive. If terms like race condition and
deadlock don’t strike fear into your veins, look them up on Wikipedia.

Naturally, Xcode provides lots of aids to assist you in studying your app’s use of
threads:

• The Debug navigator distinguishes threads; you can even see pending calls and
learn when a call was enqueued.

• When you call NSLog or os_log, the output in the console displays a number
identifying the thread on which it was called.

• In Instruments, the Time Profiler records activity on different threads.
• The Thread Sanitizer (visible in Figure 24-1) can help catch possible race condi‐

tions and other issues (look up “Thread Sanitizer” in the documentation).

Blocking the Main Thread
To illustrate making your code multithreaded, I need some code that is worth making
multithreaded. I’ll use as my example a simple app that draws the Mandelbrot set in
black and white. (This code is adapted from a small open source project found on the
internet.) That’s a sufficiently elaborate calculation to introduce a significant delay,
depending on the speed of the device and the number of iterations. The idea is to see
how we can safely get that delay off the main thread.

The app contains a UIView subclass, MyMandelbrotView, which has one property, a
CGContext called bitmapContext. Here’s MyMandelbrotView:

1094 | Chapter 24: Threads

let MANDELBROT_STEPS = 100 // determines how long the calculation takes
var bitmapContext: CGContext!
// jumping-off point: draw the Mandelbrot set
func drawThatPuppy () {
 self.makeBitmapContext(size: self.bounds.size)
 let center = self.bounds.center
 self.draw(center: center, bounds: self.bounds, zoom: 1)
 self.setNeedsDisplay()
}
// create bitmap context
func makeBitmapContext(size:CGSize) {
 var bitmapBytesPerRow = Int(size.width * 4)
 bitmapBytesPerRow += (16 - (bitmapBytesPerRow % 16)) % 16
 let colorSpace = CGColorSpaceCreateDeviceRGB()
 let prem = CGImageAlphaInfo.premultipliedLast.rawValue
 let context = CGContext(data: nil,
 width: Int(size.width), height: Int(size.height),
 bitsPerComponent: 8, bytesPerRow: bitmapBytesPerRow,
 space: colorSpace, bitmapInfo: prem)
 self.bitmapContext = context
}
// draw pixels of bitmap context
func draw(center:CGPoint, bounds:CGRect, zoom:CGFloat) {
 func isInMandelbrotSet(_ re:Float, _ im:Float) -> Bool {
 var fl = true
 var (x, y, nx, ny) : (Float, Float, Float, Float) = (0,0,0,0)
 for _ in 0 ..< MANDELBROT_STEPS {
 nx = x*x - y*y + re
 ny = 2*x*y + im
 if nx*nx + ny*ny > 4 {
 fl = false
 break
 }
 x = nx
 y = ny
 }
 return fl
 }
 self.bitmapContext.setAllowsAntialiasing(false)
 self.bitmapContext.setFillColor(red: 0, green: 0, blue: 0, alpha: 1)
 var re : CGFloat
 var im : CGFloat
 let maxi = Int(bounds.size.width)
 let maxj = Int(bounds.size.height)
 for i in 0 ..< maxi {
 for j in 0 ..< maxj {
 re = (CGFloat(i) - 1.33 * center.x) / 160
 im = (CGFloat(j) - 1.0 * center.y) / 160
 re /= zoom
 im /= zoom
 if (isInMandelbrotSet(Float(re), Float(im))) {
 self.bitmapContext.fill(

Blocking the Main Thread | 1095

 CGRect(CGFloat(i), CGFloat(j), 1.0, 1.0))
 }
 }
 }
}
// turn pixels of bitmap context into CGImage, draw into ourselves
override func draw(_ rect: CGRect) {
 if self.bitmapContext != nil {
 let context = UIGraphicsGetCurrentContext()!
 let im = self.bitmapContext.makeImage()
 context.draw(im!, in: self.bounds)
 }
}

The draw(center:bounds:zoom:) method, which calculates the pixels of
self.bitmapContext, is time-consuming, and we can see this by running the app on
a device. If the entire process is kicked off by tapping a button whose action method
calls drawThatPuppy, there is a significant delay before the Mandelbrot graphic
appears in the interface, during which time the button remains highlighted and the
interface is frozen. This is a sure sign that we are blocking the main thread.

We need to move the calculation-intensive part of this code onto a background
thread, so that the main thread is not blocked by the calculation. In doing so, we have
two chief concerns:

Synchronization of threads
The button is tapped, and drawThatPuppy is called, on the main thread. And set-
NeedsDisplay, and therefore draw(_:), are also called on the main thread —
rightly, since they affect the interface. In between, the calculation-intensive
draw(center:bounds:zoom:) is to be called on a background thread. Yet these
methods must still run in order: drawThatPuppy on the main thread, then
draw(center:bounds:zoom:) on a background thread, then setNeedsDisplay
and draw(_:) on the main thread. But background threads are concurrent, so
how will we ensure this?

Shared data
The property self.bitmapContext is referred to in three different methods — in
makeBitmapContext(size:), and in draw(center:bounds:zoom:), and in
draw(_:). But we have just said that those three methods involve two different
threads; they must not be permitted to touch the same property in a way that
might conflict or clash. Indeed, because draw(center:bounds:zoom:) runs on a
background thread, it might run on multiple background threads simultane‐
ously; the access to self.bitmapContext by draw(center:bounds:zoom:) must
not be permitted to conflict or clash with itself. How will we ensure this?

1096 | Chapter 24: Threads

Manual Threading
A naïve way of dealing with our time-consuming code would involve spawning off a
background thread as we reach the calculation-intensive part of the procedure, by
calling performSelector(inBackground:with:). This is a very bad idea, and you
should not imitate the code in this section. I’m showing it to you only to demonstrate
how horrible it is.

Adapting your code to use performSelector(inBackground:with:) is not at all sim‐
ple. There is additional work to do:

Pack the arguments
The method designated by the selector in performSelector(in-

Background:with:) can take only one parameter, whose value you supply as the
second argument. So if you want to pass more than one piece of information into
the thread, you’ll need to pack it into a single object. Typically, this will be a
dictionary.

Set up an autorelease pool
Background threads don’t participate in the global autorelease pool. So the first
thing you must do in your threaded code is to wrap everything in an autorelease
pool. Otherwise, you’ll probably leak memory as autoreleased objects are created
behind the scenes and are never released.

We’ll rewrite MyMandelbrotView to use manual threading. Because our
draw(center:bounds:zoom:) method takes three parameters, the argument that we
pass into the thread will have to pack that information into a dictionary. Once inside
the thread, we’ll set up our autorelease pool and unpack the dictionary. This will all
be much easier if we interpose a trampoline method between drawThatPuppy and
draw(center:bounds:zoom:). So our implementation now starts like this:

func drawThatPuppy () {
 self.makeBitmapContext(size:self.bounds.size)
 let center = self.bounds.center
 let d : [AnyHashable:Any] =
 ["center":center, "bounds":self.bounds, "zoom":CGFloat(1)]
 self.performSelector(inBackground: #selector(reallyDraw), with: d)
}
// trampoline, background thread entry point
@objc func reallyDraw(_ d: [AnyHashable:Any]) {
 autoreleasepool {
 self.draw(center: d["center"] as! CGPoint,
 bounds: d["bounds"] as! CGRect,
 zoom: d["zoom"] as! CGFloat)
 // ...
 }
}

Manual Threading | 1097

In the trampoline method reallyDraw(_:), the comment with the ellipsis indicates a
missing piece of functionality: we have yet to call setNeedsDisplay, which will cause
the actual drawing to take place. This call used to be in drawThatPuppy, but that is
now too soon; the call to performSelector(inBackground:with:) launches the
thread and returns immediately, so our bitmapContext property isn’t ready yet.
Clearly, we need to call setNeedsDisplay after draw(center:bounds:zoom:) has
finished generating the pixels of the graphics context.

But reallyDraw(_:) runs in a background thread. Because setNeedsDisplay is a
form of communication with the interface, we should call it on the main thread, with
performSelector(onMainThread:with:waitUntilDone:). It will probably be best to
implement a second trampoline method:

// trampoline, background thread entry point
func reallyDraw(_ d: [AnyHashable:Any]) {
 autoreleasepool {
 self.draw(center: d["center"] as! CGPoint,
 bounds: d["bounds"] as! CGRect,
 zoom: d["zoom"] as! CGFloat)
 self.performSelector(onMainThread: #selector(allDone), with: nil,
 waitUntilDone: false)
 }
}
// called on main thread! background thread exit point
@objc func allDone() {
 self.setNeedsDisplay()
}

This works, in the sense that when we tap the button, it is highlighted momentarily
and then immediately unhighlighted; the time-consuming calculation is taking place
on a background thread. But the seeds of nightmare are already sown:

• We now have a single object, MyMandelbrotView, some of whose methods are to
be called on the main thread and some on a background thread; this invites us to
become confused at some later time.

• The main thread and the background thread are constantly sharing a piece of
data, the instance property self.bitmapContext; this is messy and fragile. And
what’s to stop some other code from coming along and triggering draw(_:)
while draw(center:bounds:zoom:) is in the middle of manipulating the bitmap
context that draw(_:) draws?

To solve these problems, we might need to use locks, and we would probably have to
manage the thread more explicitly. Such code can become quite elaborate and diffi‐
cult to understand; guaranteeing its integrity is even more difficult. There are much
better ways, and I will now demonstrate two of them.

1098 | Chapter 24: Threads

Operation
An excellent strategy is to turn to the Operation and OperationQueue classes. The
essence of Operation is that it encapsulates a task, not a thread. You don’t concern
yourself with threads directly; the threading is determined for you by an Operation‐
Queue. You describe the task as an Operation, and you add that Operation to an
OperationQueue to set it going. You can arrange to be notified when the task ends,
typically by the Operation posting a notification. (You can also safely query both the
queue and its operations from outside with regard to their state.)

We’ll rewrite MyMandelbrotView to use Operation and OperationQueue. We need
an OperationQueue object. I’ll make this an instance property (self.queue), and I’ll
create the queue and configure it in the property’s initializer:

let queue : OperationQueue = {
 let q = OperationQueue()
 // ... further configurations can go here ...
 return q
}()

We also have a new class, MyMandelbrotOperation, an Operation subclass. (It is pos‐
sible to take advantage of a built-in Operation subclass such as BlockOperation, but
I’m deliberately illustrating the more general case by subclassing Operation itself.)
Our implementation of drawThatPuppy creates an instance of MyMandelbrot‐
Operation, configures it, registers for its notification, and adds it to the queue:

func drawThatPuppy () {
 let center = self.bounds.center
 let op = MyMandelbrotOperation(
 center: center, bounds: self.bounds, zoom: 1)
 NotificationCenter.default.addObserver(self,
 selector: #selector(operationFinished),
 name: MyMandelbrotOperation.mandelOpFinished, object: op)
 self.queue.addOperation(op)
}

Our time-consuming calculations will be performed by MyMandelbrotOperation. An
Operation subclass, such as MyMandelbrotOperation, will typically have at least two
methods:

A designated initializer
The Operation may need some configuration data. Once the Operation is added
to a queue, it’s too late to talk to it, so you’ll usually hand it this configuration
data as you create it, in its designated initializer.

A main method
This method will be called automatically by the OperationQueue when it’s time
for the Operation to start.

Operation | 1099

MyMandelbrotOperation has three private properties center, bounds, and zoom, to
be set in its initializer; it must be told MyMandelbrotView’s geometry explicitly
because it is completely separate from MyMandelbrotView. MyMandelbrot‐
Operation also has its own CGContext property, bitmapContext; it must be publicly
gettable so that MyMandelbrotView can retrieve the finished graphics context. Note
that this is different from MyMandelbrotView’s bitmapContext, helping to solve the
problem of sharing data promiscuously between threads:

static let mandelOpFinished = Notification.Name("mandelOpFinished")
private let center : CGPoint
private let bounds : CGRect
private let zoom : CGFloat
private(set) var bitmapContext : CGContext! = nil
init(center c:CGPoint, bounds b:CGRect, zoom z:CGFloat) {
 self.center = c
 self.bounds = b
 self.zoom = z
 super.init()
}

makeBitmapContext(size:) and draw(center:bounds:zoom:), the methods that
perform the time-consuming calculation, can be transferred from MyMandelbrot‐
View to MyMandelbrotOperation unchanged; the only difference is that when these
methods refer to self.bitmapContext, that now means MyMandelbrotOperation’s
bitmapContext property:

let MANDELBROT_STEPS = 100
func makeBitmapContext(size:CGSize) {
 // ... same as before
}
func draw(center:CGPoint, bounds:CGRect, zoom:CGFloat) {
 // ... same as before
}

Finally we come to MyMandelbrotOperation’s main method. First we check the
Operation isCancelled property to make sure we haven’t been cancelled while sit‐
ting in the queue; this is good practice. Then we do exactly what drawThatPuppy used
to do, initializing our graphics context and drawing into its pixels. At that point, the
calculation is over and it’s time for MyMandelbrotView to come and fetch our data.
There are two ways in which MyMandelbrotView can learn this; either main can post
a notification through the NotificationCenter, or MyMandelbrotView can use key–
value observing to be notified when our isFinished property changes. We’ve chosen
the former approach; observe that we check one more time to make sure we haven’t
been cancelled:

override func main() {
 guard !self.isCancelled else {return}
 self.makeBitmapContext(size: self.bounds.size)
 self.draw(center: self.center, bounds: self.bounds, zoom: self.zoom)

1100 | Chapter 24: Threads

 if !self.isCancelled {
 NotificationCenter.default.post(
 name: MyMandelbrotOperation.mandelOpFinished, object: self)
 }
}

Now we are back in MyMandelbrotView, hearing through the notification that
MyMandelbrotOperation has finished. We must immediately pick up any required
data, because the OperationQueue is about to release this Operation. However, we
must be careful: the notification may have been posted on a background thread, in
which case our method for responding to it will also be called on a background
thread. We are about to set our own graphics context and tell ourselves to redraw;
those are things we want to do on the main thread. So we immediately step out to the
main thread (using Grand Central Dispatch, described more fully in the next sec‐
tion). We remove ourselves as notification observer for this operation instance, copy
the operation’s bitmapContext into our own bitmapContext, and we’re ready to
redraw:

// warning! called on background thread
@objc func operationFinished(_ n:Notification) {
 if let op = n.object as? MyMandelbrotOperation {
 DispatchQueue.main.async {
 NotificationCenter.default.removeObserver(self,
 name: MyMandelbrotOperation.mandelOpFinished, object: op)
 self.bitmapContext = op.bitmapContext
 self.setNeedsDisplay()
 }
 }
}

Adapting our code to use Operation has involved some work, but the result has many
advantages that help to ensure that our use of multiple threads is coherent and safe:

The background task is encapsulated
Because MyMandelbrotOperation is an object, we’ve been able to move all the
code having to do with drawing the pixels of the Mandelbrot set into it. The only
MyMandelbrotView method that can be called in the background is operation-
Finished(_:), and that’s a method we’d never call explicitly ourselves, so we
won’t misuse it accidentally — and it immediately steps out to the main thread in
any case.

The data sharing is rationalized
Because MyMandelbrotOperation is an object, it has its own bitmapContext
property. The only moment of data sharing comes in operationFinished(_:),
when we must set MyMandelbrotView’s bitmapContext to MyMandelbrot‐
Operation’s bitmapContext — and that happens on the main thread, so there’s
no danger. Even if multiple MyMandelbrotOperation objects are added to the

Operation | 1101

queue, they are separate objects with separate bitmapContext properties, which
MyMandelbrotView retrieves only on the main thread, so there is no conflict.

The threads are synchronized
The calculation-intensive MyMandelbrotOperation doesn’t start until
MyMandelbrotView calls self.queue.addOperation(op) to enqueue it. After
that, MyMandelbrotView takes its hands off the steering wheel and makes no
attempt to draw itself. If draw(_:) is unexpectedly called by the runtime,
self.bitmapContext will be nil or will contain the results of an earlier calcula‐
tion operation, and no harm done. Nothing else happens until the operation
ends and the notification arrives (operationFinished(_:)); then and only then
does MyMandelbrotView update the interface — on the main thread.

If we are concerned with the possibility that more than one instance of
MyMandelbrotOperation might be added to the queue and executed concurrently,
we have a further line of defense — we can set the OperationQueue’s maximum con‐
currency level to 1:

let q = OperationQueue()
q.maxConcurrentOperationCount = 1

This turns the OperationQueue into a serial queue: every operation on the queue
must be completely executed before the next can begin. This might cause an opera‐
tion added to the queue to take longer to execute, if it must wait for another
operation to finish before it can even get started; however, this delay might not be
important. What is important is that by executing the operations on this queue sepa‐
rately from one another, we guarantee that only one operation at a time can do any
data sharing. A serial queue is therefore implicitly a safe and reliable form of data
locking.

Because MyMandelbrotView can be destroyed (if its view controller is destroyed),
there is a risk that it will create an operation that will outlive it. So a MyMandelbrot‐
Operation might try to access a MyMandelbrotView that no longer exists. We can
reduce that risk by canceling all operations in our queue as MyMandelbrotView goes
out of existence:

deinit {
 self.queue.cancelAllOperations()
}

There is more to know about Operation; it’s a powerful tool. One Operation can have
another Operation as a dependency, meaning that the former cannot start until the
latter has finished, even if they are in different OperationQueues. Moreover, the
behavior of an Operation can be customized; for instance, an Operation subclass can
redefine what isReady means and so can control when it is capable of execution.
Using these features, operations can be combined to express your app’s logic,

1102 | Chapter 24: Threads

guaranteeing the order in which things happen (cogently argued in a brilliant
WWDC 2015 video).

Grand Central Dispatch
Grand Central Dispatch, or GCD, is a sort of low-level analogue to Operation and
OperationQueue; in fact, OperationQueue uses GCD under the hood. When I say
GCD is low-level, I’m not kidding; it is effectively baked into the operating system
kernel. It can be used by any code whatsoever and is tremendously efficient.

GCD is like OperationQueue in that it uses queues: you express a task and add it to a
queue, and the task is executed on a thread as needed. A GCD queue is represented
by a dispatch queue (DispatchQueue), a lightweight opaque pseudo-object consisting
essentially of a list of functions to be executed. You can use a built-in system queue or
you can make your own; if you make your own, your queue by default is a serial
queue, with each task on that queue finishing before the next is started — which, as
I’ve already said, is a form of data locking.

We’ll rewrite MyMandelbrotView to use GCD. We start by creating a queue; I’ll store
it in an instance property:

let MANDELBROT_STEPS = 100
var bitmapContext: CGContext!
let draw_queue = DispatchQueue(label: "com.neuburg.mandeldraw")

Our goal is to eliminate data sharing, so our makeBitmapContext(size:) method
now returns a graphics context rather than setting a property directly:

func makeBitmapContext(size:CGSize) -> CGContext {
 // ... as before ...
 let context = CGContext(data: nil,
 width: Int(size.width), height: Int(size.height),
 bitsPerComponent: 8, bytesPerRow: bitmapBytesPerRow,
 space: colorSpace, bitmapInfo: prem)
 return context!
}

For the same reason, our draw(center:bounds:zoom:) method now takes an addi‐
tional context: parameter — the graphics context to draw into — and operates on
that context without ever referring to self.bitmapContext:

func draw(center:CGPoint, bounds:CGRect, zoom:CGFloat, context:CGContext) {
 // ... as before, but we refer to local context, not self.bitmapContext
}

Now for the implementation of drawThatPuppy. This is where all the action is:

Grand Central Dispatch | 1103

func drawThatPuppy () {
 let center = self.bounds.center
 let bounds = self.bounds
 self.draw_queue.async {
 let bitmap = self.makeBitmapContext(size: bounds.size)
 self.draw(center: center, bounds: bounds, zoom: 1, context: bitmap)
 DispatchQueue.main.async {
 self.bitmapContext = bitmap
 self.setNeedsDisplay()
 }
 }
}

That’s all there is to it: all our app’s multithreading is concentrated in those few lines!
There are no notifications; there is no sharing of data between threads; and the
synchronization of our threads is expressed directly through the sequential order of
the code.

Our code makes two calls to the DispatchQueue async method, which takes as its
parameter a function — usually, an anonymous function — expressing what we want
done asynchronously on this queue. This is the GCD method you’ll use most, because
asynchronous execution will be your primary reason for using GCD in the first place.

Our two calls to async are nested — the first call takes an anonymous function, which
contains the second call, which takes another anonymous function. This nesting is
crucial, because trailing anonymous functions are closures that can see the higher
surrounding scope. As a result, we don’t need to pass any parameters from an outer
scope to an inner scope. The local variables center and bounds simply “fall” into the
anonymous function of the first call to async, and the local variable bitmap simply
“falls” into the anonymous function of the second call to async. There is no data
sharing, because values cascade sequentially from one scope into the next.

Here’s how drawThatPuppy works:

We begin by calculating our center and bounds (on the main thread). These
local variables will be visible within the subsequent anonymous functions,
because a function body’s code can see its surrounding context and capture it.

Now comes the task to be performed in a separate background thread on our
queue, self.draw_queue. We specify this task with the async method. We
describe what we want to do on the background thread in an anonymous
function.

In the anonymous function, we begin by declaring bitmap as a local variable.
This is our graphics context. We call makeBitmapContext(size:) to create it,
and then call draw(center:bounds:zoom:context:) to set its pixels. Those calls

1104 | Chapter 24: Threads

are made on a background thread, because self.draw_queue is a background
queue.

Now we need to step back out to the main thread. How do we do that? With the
async method again! This time, we specify the main queue (which is effectively
the main thread), whose name is DispatchQueue.main. We describe what we
want to do on the main queue in another anonymous function.

Here we are in the second anonymous function. Because the first function is part
of the second function’s surrounding context, the second function can see the
first function’s local bitmap variable. Using it, we set our bitmapContext prop‐
erty and call setNeedsDisplay — on the main thread! — and we’re done.

The benefits of GCD as a form of concurrency management are stunning:

No data sharing
The only time we ever refer to a property of self is at the start (self.bounds)
and at the end (self.bitmapContext), when we are on the main thread. The bit‐
map context where all the drawing action takes place is a local variable, bitmap,
confined to each individual call to drawThatPuppy. Moreover, that drawing
action is performed on a serial queue, so no two drawing actions can ever
overlap.

Transparent synchronization of threads
The threads are correctly synchronized, and this is obvious, because the nested
anonymous functions are executed in succession, so any instance of bitmap must
be completely filled with pixels before being used to set the bitmapContext
property.

Maintainability and readability
Our code is easy to maintain, because the entire task on all threads is expressed
within the single drawThatPuppy method; indeed, the code is modified only very
slightly from the original nonthreaded version. The code is also easy to read and
understand, because the path of execution passes sequentially from the first line
of drawThatPuppy to the last line — the very thing we were worried might not
happen when we adopted background threading in the first place.

You might object that we still have the methods makeBitmapContext(size:) and
draw(center:bounds:zoom:context:) hanging around MyMandelbrotView, and
that we must therefore still be careful not to call them on the main thread, or indeed
from anywhere except from within drawThatPuppy. If that were true, we could at this
point destroy both methods and move their functionality completely into drawThat-
Puppy. But we don’t have to, because these methods are now thread-safe: they are self-
contained utilities that touch no properties or persistent objects, so it doesn’t matter

Grand Central Dispatch | 1105

what thread they are called on. Still, I’ll demonstrate later how we can intercept an
accidental attempt to call a method on the wrong thread.

Commonly Used GCD Methods
The most important DispatchQueue methods are:

async(execute:)

Pushes a function onto the end of a queue for later execution; the queue will
determine when the function will execute, and meanwhile we proceed immedi‐
ately with the next line of our own code without waiting for that to happen (see
Appendix C). Commonly, there is no next line of our own code; an async call is
usually the last statement in its scope. Use this method to execute code in a back‐
ground thread, or from within a background thread to step back onto the main
thread.

asyncAfter(deadline:execute:)

Similar to async, but the enqueued function runs only after a certain amount of
time has been permitted to elapse following the call (delayed performance). Many
examples in this book have made use of this method (through my delay utility
function; see Appendix B).

sync(execute:)

Pushes a function onto the end of a queue for later execution, and waits until the
function has executed before proceeding with our own code. You should use this
method only in special circumstances, typically where you need the queue as a
lock (mediating access to a shared resource) but you also need to use a result that
the function is to provide.

Synchronous Execution
The use of sync(execute:) is sufficiently unusual that it deserves an example. Let’s
say we’d like to revise the Downloader class from Chapter 23 so that the delegate
methods are run on a background thread, taking some strain off the main thread
(and hence the user interface) while these messages are flying around behind the
scenes. This is reasonable and safe, because the URLSession and its delegate are pack‐
aged inside the Downloader object, isolated from our view controller.

To begin with, we’ll need our own background OperationQueue, which we can main‐
tain as an instance property of Downloader:

let queue = OperationQueue()

Our session is now configured and created using this background queue:

1106 | Chapter 24: Threads

lazy var session : URLSession = {
 return URLSession(configuration:self.config,
 delegate:DownloaderDelegate(), delegateQueue:self.queue)
}()

This means that urlSession(_:downloadTask:didFinishDownloadingTo:) will be
called on our background queue. So what will happen when we call back into the cli‐
ent through the completion function that the client handed us at the outset? To avoid
involving the client in threading issues, we’ll step out to the main thread as we call the
completion function. But we cannot do this by calling async:

let ch = self.handlers[downloadTask.taskIdentifier]
DispatchQueue.main.async { // bad idea!
 ch?(url)
}

The reason is that the downloaded file is slated to be destroyed as soon as we return
from urlSession(_:downloadTask:didFinishDownloadingTo:) — and if we call
async, we will return immediately, the downloaded file will be destroyed, and url will
end up pointing at nothing by the time the client receives it! The solution is to use
sync instead:

let ch = self.handlers[downloadTask.taskIdentifier]
DispatchQueue.main.sync {
 ch?(url)
}

That code steps out to the main thread and also postpones returning from url-
Session(_:downloadTask:didFinishDownloadingTo:) until the client has had an
opportunity to do something with the file pointed to by url. In this way we lock
down the shared data (the downloaded file). We are blocking our background Opera‐
tionQueue, but this is legal, and in any case we’re blocking very briefly and in a
coherent manner.

Do not call DispatchQueue.main.sync if you are already on the main queue!
That’s an instant deadlock and your code will grind to a complete halt.

Dispatch Groups
A dispatch group effectively combines independent tasks into a single task; we pro‐
ceed only when all of them have completed. Its usage is structured as in
Example 24-1.

Grand Central Dispatch | 1107

Example 24-1. Dispatch group usage

let group = DispatchGroup()
// here we go...
group.enter()
queue1.async {
 // ... do task here ...
 group.leave()
}
group.enter()
queue2.async {
 // ... do task here ...
 group.leave()
}
group.enter()
queue3.async {
 // ... do task here ...
 group.leave()
}
// ... more as needed ...
group.notify(queue: DispatchQueue.main) {
 // finished!
}

In Example 24-1, each task to be performed asynchronously is preceded by a call to
our dispatch group’s enter and is followed by a call to our dispatch group’s leave.
The queues on which the tasks are performed do not have to be different queues; the
point is that it doesn’t matter if they are. Only when every enter has been balanced
by a leave will the completion function in our dispatch group’s notify be called.
This is effectively a way of waiting until all the tasks have completed independently,
before proceeding with whatever the notify completion function says to do.

One-Time Execution
Sometimes you need a thread-safe way of ensuring that code is run only once; this is
often used to help vend a singleton. In Objective-C, you’d use dispatch_once, which
is part of GCD; in Swift, however, dispatch_once is unavailable (because it can’t be
implemented in a thread-safe way). The Swift workaround is not to use GCD, but
rather to take advantage of the built-in lazy initialization feature of global and static
variables.

In this example, my view controller has a constant property oncer whose value is an
instance of a struct Oncer that has a doThisOnce method; the actual functionality of
that method is embedded in the initializer of a private static property once. The result
is that, no matter how many times we call self.oncer.doThisOnce() in the course of
this view controller’s lifetime, that functionality will be performed only once:

1108 | Chapter 24: Threads

class ViewController: UIViewController {
 struct Oncer {
 private static var once : Void = {
 print("I did it!")
 }()
 func doThisOnce() {
 _ = Oncer.once
 }
 }
 let oncer = Oncer()
 override func viewDidLoad() {
 super.viewDidLoad()
 self.oncer.doThisOnce() // I did it!
 self.oncer.doThisOnce() // nothing
 }
}

To change the temporal scope of the “onceness,” change the semantic scope of oncer.
If oncer is defined at the top level of a file, its once functionality can be performed
only once in the entire lifetime of the app.

Concurrent Queues
Besides serial dispatch queues, there are also concurrent dispatch queues. A concur‐
rent queue’s functions are started in the order in which they were submitted to the
queue, but a function is allowed to start while another function is still executing.
Obviously, you wouldn’t want to submit to a concurrent queue a task that touches a
shared resource! The advantage of concurrent queues is a possible speed boost when
you don’t care about the order in which multiple tasks are finished, as when you want
to do something with regard to every element of an array.

The built-in global queues, available by calling DispatchQueue.global(qos:), are
concurrent. You specify which built-in global queue you want by means of the qos:
argument, which can be (DispatchQoS.QoSClass):

• .userInteractive

• .userInitiated

• .default

• .utility

• .background

(“QoS” is an acronym for “quality of service.”)

You can also create a concurrent queue yourself by calling the DispatchQueue initial‐
izer init(label:attributes:) with a .concurrent attribute.

Grand Central Dispatch | 1109

Checking the Queue
A question that sometimes arises is how to make certain that a method is called only
on the correct queue. Recall that in our Mandelbrot drawing example, we may be
concerned that a method such as makeBitmapContext(size:) might be called on
some other queue than the background queue that we created for this purpose. This
sort of problem can be solved quite elegantly by calling the dispatch-

Precondition(condition:) global function. It takes a DispatchPredicate enum,
whose cases are:

• .onQueue

• .onQueueAsBarrier

• .notOnQueue

These cases each take an associated value which is a DispatchQueue. (I told you it
was elegant!) To assert that we are on our draw_queue queue, we would say:

dispatchPrecondition(condition: .onQueue(self.draw_queue))

The outcome is similar to Swift’s native precondition function: if our assertion is
false, we’ll crash.

App Backgrounding
A problem arises if your app is backgrounded and suspended (Appendix A) while
your code is running. The system doesn’t want to stop your code while it’s executing;
on the other hand, some other app may need to be given the bulk of the device’s
resources now. So as your app goes into the background, the system waits a very
short time (less than 5 seconds) for your app to finish doing whatever it may be
doing, and it then suspends your app.

This shouldn’t be a problem from your main thread’s point of view, because your app
shouldn’t have any time-consuming code on the main thread in the first place; you
now know that you can avoid this by using a background thread. On the other hand,
it could be a problem for lengthy background tasks, including asynchronous tasks
performed by the frameworks.

What we’d like to do in this situation is protect a lengthy background task against
interruption, requesting extra time for completion just in case the app is backgroun‐
ded. There’s a way to do that:

1. You call UIApplication’s beginBackgroundTask(expirationHandler:) to
announce that a lengthy task is beginning; it returns an identification number.
This tells the system that if your app is backgrounded, you’d like to be granted
some extra time to complete this task. (My experience is that the time granted is
usually about 30 seconds.)

1110 | Chapter 24: Threads

2. At the end of your lengthy task, you call UIApplication’s endBackground-
Task(_:), passing in the same identification number that you got from your call
to beginBackgroundTask(expirationHandler:). This tells the system that your
lengthy task is over and that there is no need to grant you any more background
time.

The function that you pass as the argument to beginBackgroundTask(expiration-
Handler:) is the expiration function. It does not express the lengthy task! It expresses
what you will do if your extra time expires before you finish your lengthy task. This is
a chance for you to clean up. At the very least, your expiration function must call end-
BackgroundTask(_:)! Otherwise, the runtime won’t know that you’ve run your
expiration function, and your app may be killed as a punishment for trying to use too
much background time. If your expiration function is called, you should make no
assumptions about what thread it is running on.

There are two routes by which endBackgroundTask(_:) might be called: either our
lengthy operation was cancelled because we ran out of time, or it ran to completion.
So we end up with a pattern like this:

var bti : UIBackgroundTaskIdentifier = .invalid
bti = UIApplication.shared.beginBackgroundTask {
 // ... we didn't finish! do any cleanup ...
 UIApplication.shared.endBackgroundTask(bti) // cancellation
}
// ... do lengthy operation ...
UIApplication.shared.endBackgroundTask(bti) // completion

That pattern is so common in my code that it makes sense to encapsulate it. To do so,
I’ve created an Operation subclass, which I call BackgroundTaskOperation:

class BackgroundTaskOperation: Operation {
 var whatToDo : (() -> ())?
 var cleanup : (() -> ())?
 override func main() {
 guard !self.isCancelled else { return }
 var bti : UIBackgroundTaskIdentifier = .invalid
 bti = UIApplication.shared.beginBackgroundTask {
 self.cleanup?()
 self.cancel()
 UIApplication.shared.endBackgroundTask(bti) // cancellation
 }
 guard bti != .invalid else { return }
 whatToDo?()
 guard !self.isCancelled else { return }
 UIApplication.shared.endBackgroundTask(bti) // completion
 }
}

Let’s use MyMandelbrotView as an example. Let’s say that if drawThatPuppy is
started, we’d like it to be allowed to finish, even if the app is suspended in the middle

App Backgrounding | 1111

of it, so that our bitmapContext property is updated as requested. We have created a
global serial background operation queue:

let backgroundTaskQueue : OperationQueue = {
 let q = OperationQueue()
 q.maxConcurrentOperationCount = 1
 return q
}()

When we call our lengthy self.draw(center:bounds:zoom:context:), we embed it
in a BackgroundTaskOperation:

let center = self.bounds.center
let bounds = self.bounds
let bitmap = self.makeBitmapContext(size: bounds.size)
let task = BackgroundTaskOperation()
task.whatToDo = {
 self.draw(center: center, bounds: bounds, zoom: 1, context: bitmap)
 DispatchQueue.main.async {
 self.bitmapContext = bitmap
 self.setNeedsDisplay()
 }
}
backgroundTaskQueue.addOperation(task)

There are three possibilities here:

The app doesn’t go into the background
If the app doesn’t go into the background while the lengthy background task is
running, then our use of beginBackgroundTask and endBackgroundTask makes
no difference. These calls are asking for extra time if we go into the background.
We didn’t. self.draw(center:bounds:zoom:context:) is performed on a back‐
ground queue because backgroundTaskQueue is a background queue, and all is as
it was before.

We finish in the background
If the app goes into the background and we finish the lengthy background task
before time runs out, the whole operation is performed in good order. If the user
subsequently brings the app back to the foreground (and assuming that the app
has not been terminated in the background), there’s MyMandelbrotView dis‐
playing the result.

We run out of time
If the app goes into the background and we don’t finish the lengthy background
task before time runs out, we call endBackgroundTask and the app is suspended
in good order. If the user subsequently brings the app back to the foreground
(and assuming that the app has not been terminated in the background), our
code resumes and finishes the drawing.

1112 | Chapter 24: Threads

If the app is terminated in the background, our code has been interrupted in the
middle and will never complete. This is a tricky situation. Since we don’t know,
when we run out of time, whether we will ever be able to continue, it is best to
assume that the operation might never finish and clean up immediately. In the
whatToDo function, I usually get a weak reference to task and use it to check
task.isCancelled often so that I can stop quickly at a good spot if we run out of
time.

Background Processing
New in iOS 13, instead of continuing a current task a bit longer in case the app goes
into the background, you can request that a task be performed only while the app is
in the background. The idea is that this would be some lengthy calculation or opera‐
tion that isn’t crucial to perform while the user is looking at the app, but would be
nice to do at some future time when the device is more or less idle. This is called
background processing:

• Background processing is a background mode, so you’ll need to add the Back‐
ground Modes capability in the Signing & Capabilities tab of the target editor
and check “Background processing.”

• Background processing uses the Background Tasks framework, so in your code,
you’ll need to import BackgroundTasks.

• In the Info.plist, you must add entries under the “Permitted background task
schedule identifiers” key (BTTaskSchedulerPermittedIdentifiers); these are
arbitrary strings (typically using reverse domain notation) identifying your tasks.

There are two classes involved:

BGProcessingTaskRequest
A value class describing your background task. You initialize it with an
identifier, which must match one of your Info.plist background task schedule
identifiers; you can also set three properties:

requiresExternalPower

The task should be performed when the device is being charged. The default
is false.

requiresNetworkConnectivity

The task should be performed when networking is available. The default is
false.

earliestBeginDate

A date in the future. Apple recommends a time somewhere between fifteen
minutes from now and a week from now. The default is nil.

Background Processing | 1113

BGTaskScheduler
Your gateway for communicating with the runtime about background processing
tasks. You’ll talk to the shared instance. In your app delegate’s
application(_:didFinishLaunchingWithOptions:), you must call this method:

register(forTaskWithIdentifier:using:launchHandler:)

The identifier: parameter must match one of your Info.plist background
task schedule identifiers. The using: parameter is a dispatch queue. The last
parameter is a function that will be called on that queue. This function is the
task! It takes one parameter, a BGTask object. In the function, you have two
responsibilities with regard to this object:

• You must immediately set the BGTask’s expirationHandler to a func‐
tion that will be called if your background time expires.

• You must call setTaskCompleted with a Bool parameter indicating
whether your task finished. At a minimum, in your expirationHandler
function you’ll call setTaskCompleted(false), and at the end of your
task function you’ll call setTaskCompleted(true). This should remind
you of how we implemented beginBackgroundTask and endBackground-
Task in the previous section.

When you go into the background and you want to ask for your task to be per‐
formed, you’ll talk to the shared BGTaskScheduler again: you’ll call submit(_:) with
a BGProcessingTaskRequest.

Here’s an artificial example, using MyMandelbrotView to provide us with a lengthy
task:

let taskid = "com.neuburg.matt.lengthy"
func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplication.LaunchOptionsKey : Any]?) -> Bool {
 let v = MyMandelbrotView(frame:CGRect(0,0,500,500))
 let ok = BGTaskScheduler.shared.register(
 forTaskWithIdentifier: taskid,
 using: DispatchQueue.global(qos: .background)) { task in
 task.expirationHandler = {
 task.setTaskCompleted(success: false)
 }
 let context = v.makeBitmapContext(size: CGSize(500,500))
 v.draw(center: CGPoint(250,250),
 bounds: CGRect(0,0,500,500),
 zoom: 1, context: context)
 task.setTaskCompleted(success: true)
 }
 // might check `ok` here
 return true
}

1114 | Chapter 24: Threads

func applicationDidEnterBackground(_ application: UIApplication) {
 // might check to see whether it's time to submit this request
 let req = BGProcessingTaskRequest(identifier: self.taskid)
 try? BGTaskScheduler.shared.submit(req)
}

To help you test, there’s a secret dance that lets you trigger your background task
artificially. Here’s how I would do the dance for my test app:

1. Pepper the registered task function with print statements or breakpoints.
2. Run the app on a device from Xcode.
3. On the device, send the app into the background; then bring it back to the fore‐

ground.
4. In Xcode, pause the running app.
5. In the console, give the following mysterious command (all on one line, using

your actual task identifier):

(lldb) e -l objc -- (void)[[BGTaskScheduler sharedScheduler]
 _simulateLaunchForTaskWithIdentifier:@"com.neuburg.matt.lengthy"]

The console replies: “Simulating launch for task with identifier…”
6. Still in the console, say continue. The task function runs, printing its print

statements and pausing at its breakpoints.
7. When we get to task.setTaskCompleted(success: true), the console reports

“Marking simulated task complete,” and the experiment is over.
You can also test whether your expiration function is called in good order. To do
that, perform the first six steps and pause again inside the task function at a point
after the expiration handler has been set. Now say this in the console:

(lldb) e -l objc -- (void)[[BGTaskScheduler sharedScheduler]
 _simulateExpirationForTaskWithIdentifier:@"com.neuburg.matt.lengthy"]

Then say continue, and if all goes well, the console will reply “Expiring simulated
task” and then “Marking simulated task complete.”

A second type of background task request, BGAppRefreshTaskRequest, super‐
sedes the use of methods like application(_:performFetchWithCompletion-
Handler:) to implement background app refresh. I don’t discuss background
app refresh in this book, but if you’ve been using it, you should switch to the
Background Tasks framework.

Background Processing | 1115

CHAPTER 25

Undo

The idea of undo is that the user can reverse a recently performed action. Behind the
scenes, the app maintains an internal stack of undoable actions; undoing reverses the
action at the top of the stack, and also makes that action available for redo through a
secondary stack.

A pervasive undo capability is characteristic primarily of desktop macOS applica‐
tions, but some iOS apps may also benefit from a limited undo facility, and certain
built-in views — in particular, those that involve text entry (Chapter 10) — imple‐
ment it already. UIDocument (see Chapter 22) integrates with your undo facility to
update the document’s “dirty” state automatically.

Undo operates through an undo manager — an instance of UndoManager. Every
time the user performs an action that is to be undoable, you register that action with
the undo manager. When the user asks to undo, you send undo to the undo manager;
when the user asks to redo, you send redo to the undo manager. In both cases, the
undo manager performs the registered action and adjusts its internal undo and redo
stacks appropriately.

I’ll introduce the UndoManager class with a simple example; for more information,
read Apple’s Undo Architecture in the documentation archive, along with the class
documentation.

Target–Action Undo
I’ll illustrate an UndoManager for a simple app that has just one kind of undoable
action. In my example, the user can drag a small square around the screen. Our goal
is to make the drag undoable.

1117

We’ll start with an instance of a UIView subclass, MyView, to which has been
attached a UIPanGestureRecognizer to make it draggable; the gesture recognizer’s
action target is the MyView instance itself, which implements the typical drag action
function described in Chapter 5:

@objc func dragging (_ p : UIPanGestureRecognizer) {
 switch p.state {
 case .began, .changed:
 let delta = p.translation(in:self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.center = c
 p.setTranslation(.zero, in: self.superview!)
 default:break
 }
}

We will need an UndoManager instance. Let’s store it in a property of MyView itself,
self.undoer:

let undoer = UndoManager()

To test my app’s undo capability, the interface also contains two buttons: an Undo
button that sends undo to the view’s undo manager, and a Redo button that sends
redo to the view’s undo manager.

We need to tell the undo manager to register the drag action as undoable. There are
two main ways of doing that. One way is to call this UndoManager method:

• registerUndo(withTarget:selector:object:)

This method uses a target–action architecture: you provide a target, a selector for an
action method that takes one parameter, and a value that will be that parameter.
Later, if the UndoManager is sent the undo or redo message, it calls the action
method on that target with the object as argument. The job of the action method is
to undo whatever it is that needs undoing.

Let’s use registerUndo(withTarget:selector:object:) to configure undo in our
app. How? Well, what we want to undo here is the setting of our center property:

var c = self.center
c.x += delta.x; c.y += delta.y
self.center = c // *

We need to express this as a method taking one parameter, so that the undo manager
can call it as the selector: action method. So, in our dragging(_:) method, instead
of setting self.center to c directly, we now call a secondary method:

var c = self.center
c.x += delta.x; c.y += delta.y
self.setCenterUndoably(c) // *

1118 | Chapter 25: Undo

We have posited a method setCenterUndoably(_:) that doesn’t exist. Let’s write it.
What should it do? At a minimum, it should do the job that setting self.center
used to do! At the same time, we want the undo manager to be able to call this
method. The undo manager doesn’t know the type of the parameter that it will be
passing to us, so its object: parameter is typed as Any. Therefore, the parameter of
this method also needs to be typed as Any:

func setCenterUndoably (_ newCenter:Any) {
 self.center = newCenter as! CGPoint
}

This works, in the sense that the view is draggable exactly as before; but we have not
yet made this action undoable — because we have not called registerUndo(with-
Target:selector:object:). To do so, we must ask ourselves what message the
UndoManager would need to send in order to undo the action we are about to per‐
form. Clearly, we would want the UndoManager to set self.center back to the value
it has now. And what method would the UndoManager call in order to do that? It
would call setCenterUndoably(_:), the very method we are implementing! So now
we have this:

@objc func setCenterUndoably (_ newCenter:Any) {
 self.undoer.registerUndo(withTarget: self,
 selector: #selector(setCenterUndoably),
 object: self.center)
 self.center = newCenter as! CGPoint
}

That code works; it makes our action undoable!

Not only is our action now undoable; it is also redoable as well. How can this be?
Well, it turns out that UndoManager has an internal state, and responds differently
to registerUndo(withTarget:selector:object:) depending on that state. If the
UndoManager is sent registerUndo(withTarget:selector:object:) while it is
undoing, it puts the target–action information on the redo stack instead of the undo
stack (because redo is the undo of an undo, if you see what I mean).

Confused? Here’s how our code works to undo and then redo an action:

1. We set self.center by way of setCenterUndoably(_:), which calls register-
Undo(withTarget:selector:object:) with the old value of self.center. The
UndoManager adds this to its undo stack.

2. Now suppose we want to undo that action. We send undo to the UndoManager.
3. The UndoManager calls setCenterUndoably(_:) with the old value that we

passed it in step 1. So we are going to set the center back to that old value. But
before we do that, we send registerUndo(withTarget:selector:object:) to
the UndoManager with the current value of self.center. The UndoManager

Target–Action Undo | 1119

knows that it is currently undoing, so it understands this registration as some‐
thing to be added to its redo stack.

4. Now suppose we want to redo that undo. We send redo to the UndoManager,
and sure enough, the UndoManager calls setCenterUndoably(_:) with the value
that we previously undid! And, once again, we call registerUndo(with-
Target:selector:object:) with an action that goes onto the UndoManager’s
undo stack — and we’re back to step 1.

Undo Grouping
So far, so good. But our implementation of undo is very annoying, because we are
adding a new object to the undo stack every time dragging(_:) is called — and it is
called many times during the course of a single drag! This means that undoing once
merely undoes the tiny increment corresponding to one individual dragging(_:)
call. What we’d like is for undoing to undo an entire dragging gesture. We can imple‐
ment this through undo grouping. As the gesture begins, we start a group; when the
gesture ends, we end the group:

func dragging (_ p : UIPanGestureRecognizer) {
 switch p.state {
 case .began:
 self.undoer.beginUndoGrouping() // *
 fallthrough
 case .changed:
 let delta = p.translation(in:self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.setCenterUndoably(c)
 p.setTranslation(.zero, in: self.superview!)
 case .ended, .cancelled:
 self.undoer.endUndoGrouping() // *
 default:break
 }
}

This works: each complete drag gesture, from the time the user’s finger first touches
the view and drags it to the time the user’s finger is lifted, is now undoable (and redo‐
able) as a single unit.

A further refinement would be to animate the “drag” that the UndoManager per‐
forms when it undoes or redoes a user drag gesture. To do so, we take advantage of
the fact that we can examine the UndoManager’s state by way of its isUndoing and
isRedoing properties; we animate the center change when the UndoManager is
“dragging,” but not when the user is dragging:

1120 | Chapter 25: Undo

@objc func setCenterUndoably (_ newCenter:Any) {
 self.undoer.registerUndo(withTarget: self,
 selector: #selector(setCenterUndoably),
 object: self.center)
 if self.undoer.isUndoing || self.undoer.isRedoing {
 UIView.animate(withDuration:0.4, delay: 0.1, animations: {
 self.center = newCenter as! CGPoint
 })
 } else { // just do it
 self.center = newCenter as! CGPoint
 }
}

Functional Undo
I said earlier that there are two main ways of registering an action as undoable with
the undo manager. The second way is to call this UndoManager method:

• registerUndo(withTarget:handler:)

The handler: is a function that will be called when we call undo or redo. It must take
one parameter, which will be whatever you pass here as the target: argument. This
is a more modern idiom than the target–action architecture for expressing the regis‐
tration of an action. If we adopt this approach, then our setCenterUndoably(_:) no
longer needs to take an Any as its parameter; it can take a CGPoint:

func setCenterUndoably (_ newCenter:CGPoint) {
 self.undoer.registerUndo(withTarget: self) {
 [oldCenter = self.center] myself in
 myself.setCenterUndoably(oldCenter)
 }
 if self.undoer.isUndoing || self.undoer.isRedoing {
 UIView.animate(withDuration:0.4, delay: 0.1, animations: {
 self.center = newCenter
 })
 } else { // just do it
 self.center = newCenter
 }
}

Let’s look more closely at my call to registerUndo(withTarget:handler:) and the
anonymous handler: function that accompanies it:

self.undoer.registerUndo(withTarget: self) {
 [oldCenter = self.center] myself in
 myself.setCenterUndoably(oldCenter)
}

The example shows what the target: parameter is for — it’s to avoid retain cycles.
By passing self as the target: argument, I can retrieve it as the parameter in the

Functional Undo | 1121

handler: function (I’ve called the parameter myself). In the body of the handler:
function, I never have to refer to self and there is no retain cycle.

I’ve also taken advantage of a little-known feature of Swift anonymous function cap‐
ture lists, allowing me to get the value of self.center as it is now and capture it in a
local reference (oldCenter) inside the anonymous function. The reason is that if the
anonymous function were to call setCenterUndoably(myself.center), we’d be
using the value that myself.center will have at undo time, and would be pointlessly
setting the center to itself.

Our code works perfectly, but we can go further. We are failing to take full advantage
of the fact that we now have the ability to register with the undo manager a full-
fledged function body rather than a mere function call. That fact means that the
handler: function can contain everything that should happen when undoing, includ‐
ing the animation:

self.undoer.registerUndo(withTarget: self) {
 [oldCenter = self.center] myself in
 UIView.animate(withDuration:0.4, delay: 0.1, animations: {
 myself.center = oldCenter
 })
 myself.setCenterUndoably(oldCenter)
}

But we can go further still. Let’s ask ourselves: Why are we setting self.center here
at all? We can do it back in the gesture recognizer’s dragging(_:) action method,
just as we were doing before we added undo to this app. And in that case, we no
longer need a separate setCenterUndoably method! True, we still need some func‐
tion that calls registerUndo with a call to itself, because that’s how we get redo regis‐
tration during undo; but this can be a local function inside the dragging(_:)
method. Our dragging(_:) method can provide a complete undo implementation
internally, resulting in a far more legible and encapsulated architecture:

@objc func dragging (_ p : UIPanGestureRecognizer) {
 switch p.state {
 case .began:
 self.undoer.beginUndoGrouping()
 fallthrough
 case .began, .changed:
 let delta = p.translation(in:self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 func registerForUndo() {
 self.undoer.registerUndo(withTarget: self) {
 [oldCenter = self.center] myself in
 UIView.animate(withDuration:0.4, delay: 0.1, animations: {
 myself.center = oldCenter
 })
 registerForUndo()

1122 | Chapter 25: Undo

 }
 }
 registerForUndo() // *
 self.center = c // *
 p.setTranslation(.zero, in: self.superview!)
 case .ended, .cancelled:
 self.undoer.endUndoGrouping()
 default: break
 }
}

Undo Interface
We must also decide how to let the user request undo and redo. While I was develop‐
ing the code from the preceding section, I used an Undo button and a Redo button.
This can be a perfectly reasonable interface, but let’s talk about some others.

Shake-To-Edit
By default, your app supports shake-to-edit. This means that the user can shake the
device to bring up an undo/redo interface. We discussed this briefly in Chapter 21. If
you don’t turn off this feature by setting the shared UIApplication’s application-
SupportsShakeToEdit property to false, and if the user doesn’t turn it off in Set‐
tings, then when the user shakes the device, the runtime walks up the responder
chain, starting with the first responder, looking for a responder whose inherited undo-
Manager property returns an actual UndoManager instance. If it finds one, it puts up
an alert with an Undo button, a Redo button, or both; if the user taps a button, the
runtime communicates directly with that UndoManager, calling its undo or redo
method for us.

You will recall what it takes for a UIResponder to be first responder in this sense: it
must return true from canBecomeFirstResponder, and it must actually be made first
responder through a call to becomeFirstResponder. Let’s have MyView satisfy those
requirements. We might call becomeFirstResponder at the end of dragging(_:), like
this:

override var canBecomeFirstResponder : Bool {
 return true
}
@objc func dragging (_ p : UIPanGestureRecognizer) {
 switch p.state {
 // ... the rest as before ...
 case .ended, .cancelled:
 self.undoer.endUndoGrouping()
 self.becomeFirstResponder()
 default: break
 }
}

Undo Interface | 1123

Figure 25-1. The shake-to-edit undo/redo alert

Then, to implement undo through shake-to-edit, we have only to provide a getter for
the undoManager property that returns our undo manager, self.undoer:

let undoer = UndoManager()
override var undoManager : UndoManager? {
 return self.undoer
}

This works: shaking the device now brings up the undo/redo alert, and its buttons
work correctly. However, I don’t like the way the buttons are labeled; they just say
Undo and Redo. To make this interface more expressive, we should provide the undo
manager with a string describing each undoable action. We do that by calling set-
ActionName(_:); we can call it at the same time that we register our undo action:

self.undoer.setActionName("Move")

Now the undo/redo alert has more informative labels, as shown in Figure 25-1.

Built-In Gestures
New in iOS 13, three gestures are interpreted as asking for undo and redo:

• Double tap with three fingers means undo.
• Swipe left with three fingers means undo.
• Swift right with three fingers means redo.

The idea is probably to make shake-to-edit obsolete, as it is rather violent and some‐
what unreliable.

The response when the user makes one of these gestures is comparable to shake-to-
edit: the runtime walks up the responder chain looking for a responder with an
UndoManager in its undoManager property. Unlike shake-to-edit, when it finds this
responder it doesn’t put up an alert; it simply sends the undo manager undo or redo
directly. It also puts up a little caption at the top of the screen explaining what’s hap‐
pening (Figure 25-2).

1124 | Chapter 25: Undo

Figure 25-2. The Undo caption

Figure 25-3. The shared menu as an undo/redo interface

The caption is not a button, nor is the user offered a choice; the gesture is obeyed,
and when the caption appears, the undo or redo has already been performed. The
caption text does not consult the undo manager’s action name; it merely reads Undo
or Redo. I regard this as unfortunate.

Undo Menu
Another possible undo/redo interface is through a menu (Figure 25-3). This is the
same menu used by a UITextField or UITextView for displaying menu items such as
Select, Select All, Copy, and Paste (“Text Field Menu” on page 658). The require‐
ments for summoning this menu are effectively the same as those for shake-to-edit:
we need a responder chain with a first responder at the bottom of it. So the code
we’ve just supplied for making MyView first responder remains applicable.

Let’s cause the menu to appear in response to a long press on our MyView instance.
We’ll attach another gesture recognizer to MyView. This will be a UILongPress‐
GestureRecognizer, whose action method is called longPress(_:).

To configure the menu, we get the singleton global UIMenuController object and
specify an array of custom UIMenuItems as its menuItems property. To make the
menu appear, we send the UIMenuController the showMenu(from:rect:) message.
(This method is new in iOS 13, superseding setMenuVisible(_:animated:), which is
deprecated.)

Undo Interface | 1125

A particular menu item will actually appear in the menu only if we also return true
from canPerformAction(_:withSender:) for that menu item’s action. Delightfully,
the UndoManager’s canUndo and canRedo properties tell us what value canPerform-
Action(_:withSender:) should return. We can also get the titles for our custom
menu items from the UndoManager itself, through its undoMenuItemTitle and redo-
MenuItemTitle properties:

@objc func longPress (_ g : UIGestureRecognizer) {
 if g.state == .began {
 let m = UIMenuController.shared
 let mi1 = UIMenuItem(title: self.undoer.undoMenuItemTitle,
 action: #selector(undo))
 let mi2 = UIMenuItem(title: self.undoer.redoMenuItemTitle,
 action: #selector(redo))
 m.menuItems = [mi1, mi2]
 m.showMenu(from: self, rect: self.bounds)
 }
}
override func canPerformAction(_ action: Selector,
 withSender sender: Any?) -> Bool {
 if action == #selector(undo) {
 return self.undoer.canUndo
 }
 if action == #selector(redo) {
 return self.undoer.canRedo
 }
 return super.canPerformAction(action, withSender: sender)
}
@objc func undo(_: Any?) {
 self.undoer.undo()
}
@objc func redo(_: Any?) {
 self.undoer.redo()
}

1126 | Chapter 25: Undo

APPENDIX A

Lifetime Events

The fundamental events that notify you of stages in the lifetime of your app as a
whole, giving your code an opportunity to run in response, are extraordinarily
important. This appendix is devoted to a survey of them, along with some typical
scenarios in which they will arrive.

Application States
In the very early days of iOS — before iOS 4 — the lifetime of an app was extremely
simple: either it was running or it wasn’t. The user tapped your app’s icon in the
home screen, and your app was launched and began to run. The user used your app
for a while. Eventually, the user clicked the Home button and your app was termi‐
nated — it was no longer running. The user had quit your app. Launch, run, quit:
that was the entire life cycle of an app. If the user decided to use your app again, the
whole cycle started over.

The reason for this simplicity was that an iOS device, with its slow processor and its
almost brutal paucity of memory and other resources, compensated for its own short‐
comings by a simple rule: it could run only one app at a time. While your app was
running, it occupied not only the entire screen but the vast majority of the device’s
resources, leaving room only for the system and some hidden built-in processes; it
had, in effect, sole and complete control of the device.

Starting in iOS 4, that changed. Apple devised an ingenious architecture whereby,
despite the device’s limited resources, more than one app could run simultaneously
— sort of. The Home button changed its meaning and its effect upon your app. In
iOS 4 and later, when the user clicks the Home button to leave your app, your app
does not die; technically, the Home button does not terminate your app. Instead,

1127

when your app occupies the screen, it is in the foreground (or frontmost); then, when
some other app occupies the screen, your app is backgrounded and suspended.

Suspension means that your app is essentially freeze-dried; its process still exists, but
it isn’t actively running, and it isn’t getting any events — though notifications can be
stored by the system for later delivery in case your app comes to the front once again.
And because it isn’t running, it isn’t using so much of the device’s precious resources.
In particular, it’s not using the CPU, and some memory may be freed up by clearing
the backing store of layers. Later, when the user returns to your app after having left
it to use some other app for a while, your app is found in the very same state as when
the user left it. The app was not terminated; it simply stopped and froze, and waited
in suspended animation. Returning to your app no longer means that your app is
launched, but merely that it is resumed.

All of this is not to say, however, that your app can’t be terminated. It can be —
though not by the user clicking the Home button. The user might switch off the
device; that will certainly terminate your app. And a savvy user might force-terminate
your app from the app switcher. The most common scenario, however, is that the
system quietly kills your app while it is suspended. This undermines the app’s ability
to resume; when the user returns to your app, it will have to launch from scratch, just
as in the pre–iOS 4 days. The death of your app under these circumstances is rather
like that of the scientists killed by HAL 9000 in 2001: A Space Odyssey — they went to
sleep expecting to wake up later, but instead their life-support systems were turned
off while they slept. The iOS system’s reasons for killing your app are not quite as
paranoid as HAL’s, but they do have a certain Darwinian ruthlessness: your app,
while suspended, continues to occupy a chunk of the device’s memory, and the
system needs to reclaim that memory so some other app can use it.

Over time, successive iOS systems have complicated the picture:

• Some apps can be backgrounded without being suspended. This is a special privi‐
lege, accorded in order that your app may perform a limited range of highly
focused activities. An app that is playing music or tracking the device’s location
when it goes into the background may be permitted to continue doing so in the
background. (See Chapters 14 and 21.)

• An app that has been suspended can be woken briefly, remaining in the back‐
ground, in order to receive and respond to a message — in order to be told, for
instance, that the user has crossed a geofence, or that a background download
has completed. (See Chapters 21 and 23.)

• There is also an intermediate state in which your app can find itself, where it is
neither frontmost nor backgrounded. This happens, for instance, when the user
summons the control center or notification center in front of your app. In such
situations, your app may be inactive without actually being backgrounded.

1128 | Appendix A: Lifetime Events

• A modern iPad that does iPad multitasking (Chapter 9) is capable of running
two apps at once: they are both active (in the foreground) at the same time.

So your app’s code can be running even though the app is not frontmost. If your code
needs to know the app’s state in this regard, it can ask the shared UIApplication
object for its applicationState (UIApplication.State), which will be one of these:

• .active

• .inactive

• .background

In iOS 13 with scene support, things are more complicated if your app supports mul‐
tiple windows on the iPad. One window can go into the background while another
window remains active in the foreground. To describe these possibilities, UIScene has
an activationState (UIScene.ActivationState), which will be one of these:

• .unattached

• .foregroundActive

• .foregroundInactive

• .background

The app’s own state is then considered to be the highest state of any of its scenes. If
any of its scenes is in the .foregroundActive state, the app is in the .active state. If
all of its scenes are in the .background state, the app is in the .background state. Just
as an app can be killed in the background to save memory, a window scene can be
disconnected and disposed of in the background to save memory, leaving only its
session as a placeholder (see Chapter 9).

Delegate Events
When your app launches, the UIApplicationMain function creates its one and only
UIApplication instance as the shared application object, along with the app delegate,
which adopts the UIApplicationDelegate protocol. In iOS 13, with the addition of
scene support, UIApplicationMain also creates a scene and a scene delegate, which
adopts the UIWindowSceneDelegate protocol. (See “How an App Launches” on page
4.) The runtime then proceeds to report lifetime events to these delegates through
calls to the methods declared in those protocols. Other objects can also register to
receive some of these events as notifications.

If your app has scene support, some of the app delegate lifetime events, such as
applicationDidBecomeActive(_:) and applicationDidEnterBackground(_:), are
suppressed. Corresponding messages are sent to the scene delegate instead. In this
discussion, I’ll assume that you’ve compiled your app against iOS 13 and that it does

Lifetime Events | 1129

have scene support. If you want to know what the app delegate messages are when
there is no scene support, consult an earlier edition of this book.

App delegate methods start with the word application; scene delegate methods
start with the word scene.

The suite of basic lifetime events that may be sent to your app delegate and scene
delegate is surprisingly limited and considerably less informative than one might
have hoped:

application(_:didFinishLaunchingWithOptions:)

The app has started up from scratch. You’ll typically perform initializations here.
But in iOS 13 in an app with scene support, these initializations should not
involve views or view controllers; that’s the job of the scene delegate.

scene(_:willConnectTo:options:)

The scene is being created or reconnected. Perhaps the app has started up from
scratch; perhaps a new window has been created in a multiple window app; per‐
haps this scene was disconnected from its session and is being connected again.
Regardless, this is the place to prepare your window’s root view controller if
needed. If an app doesn’t have a main storyboard, or is ignoring the main story‐
board at launch time, this is the place to ensure that the scene has a window, to
set the window’s root view controller, and to show the window (“App Without a
Storyboard” on page 6). If the app is launching because of an incoming quick
action or URL, this is your chance to respond to it (Chapters 13 and 22).

sceneWillEnterForeground(_:)

The scene is coming to the front. This message is sent both when the scene was
previously in the background and when the app is launched from scratch. That’s
interesting, because in an app without scene support, applicationWillEnter-
Foreground(_:) is not sent on launch to the app delegate. Always followed by
sceneDidBecomeActive(_:).

sceneDidBecomeActive(_:)

The scene is now well and truly frontmost. Received after sceneWillEnter-
Foreground(_:). Also received after the end of any situation that caused the
scene delegate to receive sceneWillResignActive(_:).

sceneWillResignActive(_:)

The scene is entering a situation where it is neither frontmost nor backgrounded;
it will be inactive. Perhaps something has blocked the interface — the user has
summoned the notification center, or a local notification alert has appeared, or
there’s an incoming phone call. Whatever the cause, the scene delegate will
receive sceneDidBecomeActive(_:) when this situation ends.

1130 | Appendix A: Lifetime Events

Alternatively, the scene may be about to go into the background (and will then
probably be suspended); in that case, this event was purely transient, and scene-
DidEnterBackground(_:) will follow almost immediately.

sceneDidEnterBackground(_:)

The scene has been backgrounded. Always preceded by sceneWillResign-
Active(_:). Your app itself may now be backgrounded, in which case it will
probably be suspended; before that happens, you have a little time to finish up
last-minute tasks, such as relinquishing unneeded memory (see Chapter 6), and
if you need more time for a lengthy task, you can ask for it (see Chapter 24).

applicationWillTerminate(_:)

The application is about to be killed dead. Surprisingly, even though every run‐
ning app will eventually be terminated, it is quite unlikely that your app will ever
receive this event! The reason is that, by the time your app is terminated by the
system, it is usually already suspended and incapable of receiving events. (I men‐
tioned an exceptional case in Chapter 14, and I’ll mention some more in the next
section.)

Lifetime Scenarios
A glance at some typical scenarios will demonstrate the chief ways in which your del‐
egates will receive lifetime events. I find it helpful to group these scenarios according
to the general behavior of the events.

Major State Changes
During very significant state changes, such as launching, being backgrounded, or
coming back to the front, the app and scene delegates receive a sequence of events:

The app launches from scratch
Your delegates receive these messages:

• application(_:didFinishLaunchingWithOptions:)

• scene(_:willConnectTo:options:)

• sceneWillEnterForeground(_:)

• sceneDidBecomeActive(_:)

The user clicks the Home button
If your scene was frontmost, the scene delegate receives these messages:

• sceneWillResignActive(_:)

• sceneDidEnterBackground(_:)

Lifetime Events | 1131

The user summons your backgrounded scene to the front
The scene delegate receives these messages:

• sceneWillEnterForeground(_:)

• sceneDidBecomeActive(_:)

The screen is locked
If your scene is frontmost, the scene delegate receives these messages:

• sceneWillResignActive(_:)

• sceneDidEnterBackground(_:)

The screen is unlocked
If your scene was frontmost, the scene delegate receives these messages:

• sceneWillEnterForeground(_:)

• sceneDidBecomeActive(_:)

Paused Inactivity
Certain user actions effectively pause the foreground-to-background sequence in the
middle, leaving the scene inactive and capable of being either backgrounded or fore‐
grounded, depending on what the user does next. When the scene becomes active
again, it might or might not be coming from a backgrounded state:

The user enters the app switcher
If your scene is frontmost, the scene delegate receives this message:

• sceneWillResignActive(_:)

The user, in the app switcher, chooses another app
If your scene was frontmost, the scene delegate receives this message:

• sceneDidEnterBackground(_:)

The user, in the app switcher, chooses your scene
If this scene was frontmost, then it was never backgrounded, so the scene dele‐
gate receives just this message:

• sceneDidBecomeActive(_:)

The user summons the control center or notification center
If your scene is frontmost, the scene delegate receives this message:

• sceneWillResignActive(_:)

1132 | Appendix A: Lifetime Events

Actually, we get willResignActive as the user starts to pull down the notifica‐
tion center, and then if the user pulls it all the way down, we get didBecome-
Active and willResignActive in quick succession. I regard this as unfortunate.

The user dismisses the control center or notification center
If your scene was frontmost, the scene delegate receives this message:

• sceneDidBecomeActive(_:)

But if the user has summoned the notification center, there’s another possibility:
the user might tap a notification alert to switch to that app. In that case, the scene
will continue on to the background, and the scene delegate will receive this
message:

• sceneDidEnterBackground(_:)

The user holds down the screen-lock button
The device offers to shut itself off. If your scene is frontmost, the scene delegate
receives this message:

• sceneWillResignActive(_:)

The user, as the device offers to shut itself off, cancels
If your scene was frontmost, the scene delegate receives this message:

• sceneDidBecomeActive(_:)

The user, as the device offers to shut itself off, accepts
If your scene was frontmost, the app delegate receives this message:

• applicationWillTerminate(_:)

Transient Inactivity on the iPad
There are certain circumstances where your scene may become inactive and then
active again in quick succession. These have mostly to do with multitasking on the
iPad. If this happens, the scene delegate may receive these messages:

• sceneWillResignActive(_:)

• sceneDidBecomeActive(_:)

The chief case in point is when the user toggles between split sizes. When the scene is
resized, it undergoes transient inactivity. If your view controller is notified of a
change of size and possibly trait collection, this will happen during the period of tran‐
sient inactivity, while the scene’s activation state is .foregroundInactive (and the
app’s application state will probably be .inactive as well).

Lifetime Events | 1133

Multiple Windows
Here are some special cases that arise in a multiple window app on iPad, when your
app manipulates the windows directly:

Your app creates a window
If your app creates a window by calling requestSceneSessionActivation, your
scene delegate receives these messages:

• scene(_:willConnectTo:options:)

• sceneWillEnterForeground(_:)

• sceneDidBecomeActive(_:)

Your app closes a window
If your app closes a window by calling requestSceneSessionDestruction, then
assuming this is not the last window, your delegates receive these messages:

• sceneDidEnterBackground(_:)

• sceneDidDisconnect(_:)

• application(_:didDiscardSceneSessions:)

Scene Death in the App Switcher
The case where the user enters the app switcher and swipes your scene up to remove
it is extraordinarily confusing. What happens seems to depend on the device type and
the app architecture:

On an iPhone
If the scene was frontmost, you get these delegate messages:

• sceneDidEnterBackground

• applicationWillTerminate(_:)

On an iPad, if the app does not support multiple windows
If the scene was frontmost, you get these delegate messages:

• sceneDidDisconnect(_:)

• application(_:didDiscardSceneSessions:)

• applicationWillTerminate(_:)

(The lack of a sceneDidEnterBackground call here is surprising.)

On an iPad, if the app does support multiple windows
If the scene was frontmost, you get these delegate messages:

1134 | Appendix A: Lifetime Events

• sceneDidEnterBackground

• applicationWillTerminate(_:)

But if there’s another window still in existence, then the app might not terminate
and you won’t get applicationWillTerminate(_:). In that case, you might get
sceneDidDisconnect(_:) and possibly application(_:didDiscardScene-

Sessions:) later.

If the scene that the user swipes up was not frontmost, you’ll get nothing; this scene
already received sceneDidEnterBackground, and you won’t get applicationWill-
Terminate(_:) now because the app isn’t running.

Lifetime Event Timing
The delegate lifetime messages may be interwoven with the lifetime events received
by other objects. View controllers (“View Controller Lifetime Events” on page 401)
are the primary case in point. There are circumstances where the root view controller
may receive its initial lifetime events, such as viewDidLoad and viewWillAppear(_:),
before application(_:didFinishLaunchingWithOptions:) (or, with scene support,
scene(_:willConnectTo:options:)) has even finished running. That may come as a
surprise.

Different systems can also introduce changes in timing. When I started programming
iOS, back in the days of iOS 3.2, I noted the opening sequence of events involving the
app delegate and the root view controller; they arrived in this order:

1. application(_:didFinishLaunchingWithOptions:)

2. viewDidLoad

3. viewWillAppear(_:)

4. applicationDidBecomeActive(_:)

5. viewDidAppear(_:)

Relying on that order, I typically used the root view controller’s viewDidAppear(_:)
to register for UIApplication.didBecomeActiveNotification in order to be notified
of subsequent activations of the app.

That worked fine for some years. But iOS 8 brought with it a momentous change: the
app delegate now received applicationDidBecomeActive(_:) after the root view
controller received viewDidAppear(_:), like this:

1. application(_:didFinishLaunchingWithOptions:)

2. viewDidLoad

3. viewWillAppear(_:)

Lifetime Events | 1135

4. viewDidAppear(_:)

5. applicationDidBecomeActive(_:)

This was a disaster for many of my apps, because the notification I had just registered
for in viewDidAppear(_:) arrived immediately.

Then, in iOS 9, the order returned to what it was in iOS 7 and before — knocking my
apps into confusion once again. Then, in iOS 11, the order reverted back to what it
was in iOS 8!

In iOS 13 with window scene support, the sequence is like this:

1. application(_:didFinishLaunchingWithOptions:)

2. scene(_:willConnectTo:options:)

3. sceneWillEnterForeground(_:)

4. viewDidLoad

5. viewWillAppear(_:)

6. sceneDidBecomeActive(_:)

7. viewDidAppear(_:)

Such changes from one system version to the next are likely to pose challenges for the
longevity and backward compatibility of your app. The moral is that you should not,
as I did, rely upon the timing relationship between lifetime events of different objects.

1136 | Appendix A: Lifetime Events

APPENDIX B

Some Useful Utility Functions

As you work with iOS and Swift, you’ll develop a personal library of frequently used
convenience functions. Here are some of mine. Each of them has come in handy in
my own life; I keep them available in Xcode’s Snippets library, so that I can use them
in any project. Many of them have been mentioned earlier in this book.

Core Graphics Initializers
The Core Graphics CGRectMake function needs no argument labels when you call it.
But Swift cuts off access to this function! Instead, you’re forced to use various
CGRect initializers that do need argument labels. Calls with labels take far longer to
enter into your code, and the labels are superfluous because we know what each argu‐
ment signifies. My solution is a CGRect initializer without labels (Chapter 1):

extension CGRect {
 init(_ x:CGFloat, _ y:CGFloat, _ w:CGFloat, _ h:CGFloat) {
 self.init(x:x, y:y, width:w, height:h)
 }
}

As long as we’re doing that, we may as well supply label-free initializers for the other
common Core Graphics structs:

extension CGSize {
 init(_ width:CGFloat, _ height:CGFloat) {
 self.init(width:width, height:height)
 }
}
extension CGPoint {
 init(_ x:CGFloat, _ y:CGFloat) {
 self.init(x:x, y:y)
 }
}

1137

extension CGVector {
 init (_ dx:CGFloat, _ dy:CGFloat) {
 self.init(dx:dx, dy:dy)
 }
}

The examples throughout this book, including the rest of this appendix, rely on those
extensions.

Center of a CGRect
One frequently wants the center point of a CGRect; even the shorthand
CGPoint(rect.midX, rect.midY) becomes tedious. You can extend CGRect to do
the work for you:

extension CGRect {
 var center : CGPoint {
 return CGPoint(self.midX, self.midY)
 }
}

A related value that I often need is a CGRect centered at the center point of my
CGRect:

extension CGRect {
 func centeredRectOfSize(_ sz:CGSize) -> CGRect {
 let c = self.center
 let x = c.x - sz.width/2.0
 let y = c.y - sz.height/2.0
 return CGRect(x, y, sz.width, sz.height)
 }
}

Adjust a CGSize
There’s a CGRect method insetBy(dx:dy:), but there’s no comparable method for
changing an existing CGSize by a width delta and a height delta. Let’s make one:

extension CGSize {
 func withDelta(dw:CGFloat, dh:CGFloat) -> CGSize {
 return CGSize(self.width + dw, self.height + dh)
 }
}

Delayed Performance
Delayed performance is of paramount importance in iOS programming, where we
often need to finish the current run loop and commit the current CATransaction,
allowing the interface to settle down, before we proceed to the next command. It isn’t

1138 | Appendix B: Some Useful Utility Functions

difficult to call asyncAfter (Chapter 24), but we can simplify even more with a utility
function:

func delay(_ delay:Double, closure: @escaping ()->()) {
 let when = DispatchTime.now() + delay
 DispatchQueue.main.asyncAfter(deadline: when, execute: closure)
}

Call it like this:

delay(0.4) {
 // do something here
}

Dictionary of Views
When you generate constraints from a visual format string by calling NSLayout‐
Constraint’s constraints(withVisualFormat:options:metrics:views:), you need
a dictionary of string names and view references as the last argument (Chapter 1).
Forming this dictionary is tedious. Let’s make it easier.

There are no Swift macros (because there’s no Swift preprocessor), so you can’t write
the equivalent of Objective-C’s NSDictionaryOfVariableBindings, which forms the
dictionary from a literal list of view names. You can, however, generate a dictionary
with fixed string names, like this:

extension Array where Element:UIView {
 func dictionaryOfNames() -> [String:UIView] {
 var d = [String:UIView]()
 for (ix,v) in self.enumerated() {
 d["v\(ix+1)"] = v
 }
 return d
 }
}

That method starts with a list of views and simply makes up string names for them, of
the form "v1", "v2", and so on, in order. Knowing the rule by which the string names
are generated, you then use those string names in your visual format strings. If you
generate the dictionary by calling [mainview, myLabel].dictionaryOfNames(),
then in any visual format string that uses this dictionary as its views: dictionary, you
will refer to mainview by the name v1 and to myLabel by the name v2.

Constraint Issues
These are UIView methods aimed at helping to detect and analyze constraint issues
(referred to in Chapter 1):

Some Useful Utility Functions | 1139

extension UIView {
 func reportAmbiguity(filtering:Bool = false) {
 let has = self.hasAmbiguousLayout
 if has || !filtering {
 print(self, has)
 }
 for sub in self.subviews {
 sub.reportAmbiguity(filtering:filtering)
 }
 }
 func listConstraints(recursing:Bool = true,
 up:Bool = false, filtering:Bool = false) {
 let arr1 = self.constraintsAffectingLayout(for:.horizontal)
 let arr2 = self.constraintsAffectingLayout(for:.vertical)
 var arr = arr1 + arr2
 if filtering {
 arr = arr.filter {
 $0.firstItem as? UIView == self ||
 $0.secondItem as? UIView == self }
 }
 if !arr.isEmpty {
 print(self); arr.forEach { print($0) }; print()
 }
 guard recursing else { return }
 if !up { // down
 for sub in self.subviews {
 sub.listConstraints(up:up)
 }
 } else { // up
 self.superview?.listConstraints(up:up)
 }
 }
}

You can call those methods in your code, though you should remove those calls
before shipping the app. Another possibility is to call them while paused in the
debugger, like this:

(lldb) e self.view.reportAmbiguity(filtering:true)

Named Views
Giving a view a string identifier helps with debugging and can even come in handy in
code. I feel so strongly about this that I inject a name property into all views. That’s
easy to do because every view has a layer, and CALayer has a name property that gen‐
erally isn’t used for anything. While we’re up, we may as well make this property set‐
table from the nib editor:

1140 | Appendix B: Some Useful Utility Functions

extension UIView {
 @IBInspectable var name : String? {
 get { return self.layer.name }
 set { self.layer.name = newValue }
 }
}

Subviews of Given Class
One often needs to find all subviews that belong to a certain class. For example, I
might need to find all the UIButtons within my view. Here’s a utility function that
gives that information:

extension UIView {
 func subviews<T:UIView>(ofType WhatType:T.Type,
 recursing:Bool = true) -> [T] {
 var result = self.subviews.compactMap {$0 as? T}
 guard recursing else { return result }
 for sub in self.subviews {
 result.append(contentsOf: sub.subviews(ofType:WhatType))
 }
 return result
 }
}

Configure a Value Class at the Point of Use
A recurring pattern in Cocoa is that a value class instance is created and configured
beforehand for one-time use:

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
para.tailIndent = -10
para.lineBreakMode = .byWordWrapping
para.alignment = .center
para.paragraphSpacing = 15
content.addAttribute(
 .paragraphStyle,
 value: para,
 range: NSMakeRange(0,1))

First we create the NSMutableParagraphStyle; then we set its properties; then we use
it once; then we throw it away. That feels clunky, procedural, and wasteful.

It would be clearer and more functional, as well as reflecting the natural order of
thought, if the creation and configuration of para could happen at the actual moment
when we need this object, namely when we supply the value: argument. Here’s a
generic function that permits us to do that:

Some Useful Utility Functions | 1141

func lend<T> (_ closure: (T)->()) -> T where T:NSObject {
 let orig = T()
 closure(orig)
 return orig
}

Now we can express ourselves like this:

content.addAttribute(
 .paragraphStyle,
 value: lend { (para:NSMutableParagraphStyle) in
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 para.tailIndent = -10
 para.lineBreakMode = .byWordWrapping
 para.alignment = .center
 para.paragraphSpacing = 15
 },
 range: NSMakeRange(0,1))

Downsize a UIImage
A frequent need in iOS programming is to downscale a UIImage so as not to waste
memory by handing a UIImageView an image larger than actually needed for display
(Chapter 2). Here’s a general utility that does that:

extension UIImage {
 func scaledDown(into size:CGSize) -> UIImage {
 var (targetWidth, targetHeight) = (self.size.width, self.size.height)
 var (scaleW, scaleH) = (1 as CGFloat, 1 as CGFloat)
 if targetWidth > size.width {
 scaleW = size.width/targetWidth
 }
 if targetHeight > size.height {
 scaleH = size.height/targetHeight
 }
 let scale = min(scaleW,scaleH)
 targetWidth *= scale; targetHeight *= scale
 let sz = CGSize(targetWidth, targetHeight)
 return UIGraphicsImageRenderer(size:sz).image { _ in
 self.draw(in:CGRect(origin:.zero, size:sz))
 }
 }
}

1142 | Appendix B: Some Useful Utility Functions

APPENDIX C

How Asynchronous Works

Beginners sometimes don’t quite understand what it means for their code to run
asynchronously. Asynchronous code runs at an indefinite time. More important, it
runs after the surrounding code. This means that the order in which the code appears
is not the order in which it will run.

Consider the following (and see Chapter 23):

func doSomeNetworking() {
 // ... prepare url ...
 let session = URLSession.shared
 let task = session.downloadTask(with:url) { loc, resp, err in
 // ... completion function body goes here ...
 }
 task.resume()
}

The method downloadTask(with:completionHandler:) calls its completion func‐
tion asynchronously. It calls it when the networking finishes — and networking takes
time. The order in which the chunks of code run is the numerical order of the num‐
bered lines:

The code before the call.

The call itself.

The code after the call, including the return from the surrounding function
doSomeNetworking. Your code has now come to a complete stop!

The code inside the completion function. This is the asynchronous code. It runs
later — possibly much later, and certainly after the surrounding function doSome-
Networking has returned.

1143

So asynchronous means that your code runs out of order. And that, in turn, means
that the surrounding function cannot return a value from the asynchronous code.

Beginners sometimes try to write this sort thing:

func doSomeNetworking() -> UIImage? { // vain attempt to return an image
 // ... prepare url ...
 var image : UIImage? = nil
 let session = URLSession.shared
 let task = session.downloadTask(with:url) { loc, resp, err in
 if let loc = loc, let d = try? Data(contentsOf:loc) {
 let im = UIImage(data:d)
 image = im // too late!
 }
 }
 task.resume()
 return image // can only be nil!
}

The author of that code hopes that the image will be downloaded and returned from
the surrounding function doSomeNetworking. But that can never work, because the
last line, return image, will execute well before the line image = im even has a
chance to execute! Therefore, the returned UIImage will always be nil.

Beginners might then think: So maybe I can wait until my asynchronous code has
finished. That is wrong! Asynchronous means you don’t wait. (If you wait, you block
your thread, turning asynchronous into synchronous and defeating the whole pur‐
pose of being asynchronous.) When you obtain a value in some asynchronous code
and you want to do something with that value, do it in the asynchronous code.

Suppose our goal is to update the interface with the downloaded image. Then we
update the interface in the asynchronous code, after the image has been downloaded:

func doSomeNetworking() {
 // ... prepare url ...
 let session = URLSession.shared
 let task = session.downloadTask(with:url) { loc, resp, err in
 if let loc = loc, let d = try? Data(contentsOf:loc) {
 let im = UIImage(data:d)
 DispatchQueue.main.async {
 self.iv.image = im // update the interface _here_
 }
 }
 }
 task.resume()
}

That’s an excellent solution. But let’s go further. Let’s say you really do want to hand
back a value from the asynchronous code somehow to whoever called the surround‐
ing function in the first place, leaving it up to the caller what to do with it.

1144 | Appendix C: How Asynchronous Works

We’ve already established that you can’t return the value. But you can call back to
whoever called the surrounding function in order to hand them the value. A typical
architecture is that you allow the caller to hand you a completion function as one of
the parameters of your method (usually the last parameter). Inside your asynchro‐
nous code, you then call the caller’s completion function, like this:

func doSomeNetworking(callBackWithImage: @escaping (UIImage?) -> ()) {
 let s = "https://www.apeth.net/matt/images/phoenixnewest.jpg"
 let url = URL(string:s)!
 let session = URLSession.shared
 let task = session.downloadTask(with:url) { loc, resp, err in
 if let loc = loc, let d = try? Data(contentsOf:loc) {
 let im = UIImage(data:d)
 callBackWithImage(im) // call the caller's completion function
 }
 }
 task.resume()
}

Let’s look at that example from the caller’s point of view. The caller of doSome-
Networking(callBackWithImage:) passes in a completion function that does what‐
ever the caller ultimately wants done. Here, once again, our goal is to update the
interface with the downloaded image:

doSomeNetworking { im in
 // this is the completion function!
 DispatchQueue.main.async {
 self.iv.image = im
 }
}

That works perfectly. But there is one further thing to be aware of. That completion
function, too, is asynchronous! The caller here doesn’t know when or whether this
completion function will be called back, and perhaps not even what thread it will be
called on. The caller knows only this: when and if the completion function is called
back, the image will arrive as its parameter — and now the caller can dispose of it as
desired.

Use of a completion handler, then, propagates asynchronousness. That is the pattern
used throughout Cocoa. You should understand this pattern, become comfortable
with it, and implement it in your own code.

How Asynchronous Works | 1145

Index

A
accelerometer, 987
accessory views, 453, 488
accordion cell, 513
action

control, 717
extension, 798
instantiation, 394
mechanism (implicit animation), 211-218
nil-targeted, 659
quick, 764
sheet, 761

activity
custom, 795
indicator, 703
motion, 997
views, 791-804

adaptive
popover, 566
presentation, 332
split view controller, 569

address
coordinates, 963
formatting, 914
search, 964

alerts, 758
custom, 763
local notification, 768

altimeter, 998
anchors, 43

(see also constraints)
animation, 159-242

action mechanism, 211
additive, 170, 170

animations function, 164, 168, 171
annotation, 951
begin-and-commit, 164
block, 164
blur, 164
canceling, 180, 209
collision, 236
completion function, 172
constraints, 241, 321
controller, 351
Core Image, 224
delay, 173
delegate, 195
drag and drop, 599
duration, 173
emitter layers, 219
field, 233
freezing, 183, 206
GIF, 881
gravity, 233
grouped, 203
hit-testing, 274
image, 163
image view, 162
interruptible, 275, 361
keyframe, 185, 200
layer

adding, 209
explicit, 194
implicit, 190

layout, 240
list, 209
motion effects, 239
“movie”, 160

1147

physics, 226
presentation layer, 180
preventing, 169, 192, 213
property animator, 165
property, custom, 184, 202, 216
push, 236
redrawing, 188, 207
repeating, 174
replicator layer, 704
reversing, 174, 181
rotation of interface, 321
shapes, 207
spring, 178, 199, 237
stuttering, 156
subviews, 189, 217
timing curves, 173, 176, 193
touches, 274
transactions, 191
transitions, 188, 207
UIKit dynamics, 226, 555
video, 852

synchronized, 849
view, 164

removal, 169, 218
view controller

interactive, 356
interruptible, 361
presentation, 325, 362
transition, 350

when actually happens, 193
annotation (see map view)
API, xxi
app

bundle resources, 83
delegate, 5, 1127
launch, 4
lifetime events, 1127
rotation, 26, 314
state, 1129
switcher, 1132

App Transport Security, 1061
appearance proxy, 754
Application Scene Manifest, 5, 608
Application Support folder, 1006
archiving, 1010
asset catalog

colors, 13
data, 697, 1083
folders, 87

images, 82
slicing, 92

trait collections, 85
Assets Library (see Photos framework)
asynchronous, 687, 1143

(see also threads)
attitude of device, 991
attributed strings, 631-643

creating, 634
nib editor, 640

custom attributes, 641
drawing, 642
importing and exporting, 640
inline images, 638
measuring, 643
modifying, 640
tab stops, 637

audio, 807-834
background, 821
ducking, 811
effects, 826
interruption, 812
MIDI, 829
mixable, 810
mixing, 826
music library, 867
playing, 816, 835
recording, 822
remote control, 818
routing, 814
screen locking, 810
secondary, 813
session, 809

activation, 810
category, 809

volume, 871
Audio Toolbox framework, 807
authorization, 861

calendars, 924
camera, 900
contacts, 909
Core Motion, 999
local notifications, 771
location services, 969, 979
microphone, 822, 900
music library, 859
photo library, 883
reminders, 924
speech recognition, 830

1148 | Index

user location, 959
autolayout, 33, 35-56

(see also constraints)
animation, 241
button, 734
image view, 89
label, 645
progress view, 706
scroll view, 413
segmented control, 729
self-sizing views, 55
simulating, 56
slider, 727
stack view, 57
tweaking, 79

autorelease pool, 1097
autoresizing, 33

constraints, 38
autosaving, 1026
AV Foundation, 809, 835-855, 872-873

audio
ducking, 848
mixing, 823
playing, 815
queueing, 872

camera, 903
classes, 842
key–value observing, 844
property loading, 844
time measurement, 846
video

editing, 847
playing, 836

AVAudioEngine, 823-828
AVAudioPlayer, 815
AVAudioSession, 809
AVCapturePhoto, 906
AVCaptureSession, 904
AVKit framework, 835
AVPlayer, 836, 842
AVPlayerLayer, 852
AVPlayerLooper, 839, 882
AVPlayerViewController, 836
AVQueuePlayer, 872
AVSpeechSynthesizer, 829
AVSynchronizedLayer, 849

B
back

button, 343, 747
indicator, 747
item, 339

background, 1128
app refresh, 1115
audio, 821
black, 114, 128
downloading, 1079
location, 977
memory management, 410
processing, 1113
tasks, 1110

Background Tasks framework, 1113
banner, 768
bar button item, 341, 743, 748

appearance, 745
image, 744
title, 744

bars, 738-752
appearance, 741, 745
color, 742
height, 739
image, 742
metrics, 740
navigation bar, 746

back button, 343, 747
back indicator, 747

position, 739
shadow, 742
tab bar, 749

More item, 752
toolbar, 748
transparent, 742
underlapping, 422, 739

beep, 807
begin-and-commit animation, 164
BGProcessingTaskRequest, 1113
BGTask, 1114
BGTaskScheduler, 1114
big iPhones, 30, 575
black background, 143
block-based animation, 164
blocking the main thread, 1091
blurred views, 111

animating blur, 164
borders, 154
bottom and top reversed, 144, 208
bounds, 16
browser

Index | 1149

document, 1033
web, 687

buttons, 731
in alert, 759
in local notification, 776, 787

C
CA prefix, 131
CAAction, 211
CAAnimation, 194
CAAnimationGroup, 203
CABasicAnimation, 194
caching

data, 408, 1006
drawing, 132
images, 82

CADisplayLink, 224
CAEmitterCell, 219
CAEmitterLayer, 219
CAGradientLayer, 146
CAKeyframeAnimation, 200
CALayer, 131

(see also layers)
calendar, 923

alarms, 927
location-based, 931

authorization, 924
calendars, 924
changes, 925
creating, 926
events, 925

creating, 926
fetching, 931

interface, 932
recurrence rules, 928
reminders, 929

fetching, 932
Calendar app, 923
CAMediaTimingFunction, 193
camera, 900-907
Camera app, 902
CAPropertyAnimation, 195
CAReplicatorLayer, 704
carousel, 548
CAScrollLayer, 138
CAShapeLayer, 146

animating, 207
category

audio session, 809

local notification, 775
CATextLayer, 146, 647
CATiledLayer, 429, 433
CATransaction, 191
CATransform3D, 24
CATransformLayer, 150
CATransition, 207
cells, 449-466

(see also table views)
accessing, 493
accessory views, 453, 488
background, 454
collapsing, 513
collection views, 528
configuration, 453
content, 460-466
deleting, 500
editable, 511
height, 455, 478
labels, 452
layout, 461
nib-loaded, 462
prototype, 464
rearranging, 510
registration

class, 456
nib, 463

reusing, 449, 469
selected, 485
storyboard-loaded, 464
styles, 450, 458
swiping, 514

center of CGRect, 19, 1138
CGAffineTransform, 20, 125, 147
CGColor, 122

not dynamic, 29
CGContext, 97
CGGradient, 121
CGImage, 103
CGPath, 117
CGPattern, 123
CGPoint initializer, 15, 1137
CGRect center, 19, 1138
CGRect initializer, 15, 1137
CGSize initializer, 15, 1137
CGSize inset, 1138
CGVector initializer, 15, 1137
child view controller, 287
CIFilter, 106

1150 | Index

animation, 224
video, 849

CIImage, 106
clear, 128, 143
CLGeocoder, 963
clipboard, 660
clipping, 11, 120
cloud-based

calendars, 924
files, 1031
music, 874
photos, 889

CloudKit framework, 1053
CLPlacemark, 963
CLRegion, 981
CMAltimeter, 998
CMAttitude, 992
CMDeviceMotion, 992
CMMotionActivityManager, 997
CMMotionManager, 986
CMPedometer, 997
CMSensorRecorder, 998
CMTime, 846
CNContactPickerViewController, 917
CNContactViewController, 919
CNLabeledValue, 913
CNPostalAddress, 913
Codable, 1012, 1043
CodingKey, 1043
collection views, 524

animation, 555
carousel, 548
cells, 528

deleting, 545
rearranging, 546

decoration views, 553
diffable data source, 541
drag and drop, 601
headers and footers (see supplementary

views)
layout, 525, 528

changing, 554
compositional, 532
custom, 548
flow, 529
manual, 539

menus, 546
nested groups, 539
nested scrolling, 540

sections with differing layout, 537
selection, 544
supplementary views, 528, 536, 541

color, 12
background, 12
dynamic, 13, 29, 87, 122
named, 13, 29
pattern, 123

columns of text, 682
Combine framework, 1067
compass, 983
completion function, 172, 172, 182, 889, 962,

1064, 1145
component, picker view, 709
compound paths, 116
concurrency, 1089
concurrent queues, 1109
constraints, 33, 35, 36-71

(see also autolayout)
activating and deactivating, 38
adding and removing, 37
alignment rects, 53
ambiguous, 61
anchors, 42
animation, 241, 321
autoresizing, 38
changing, 45
compression, 54
conflicting, 60
creating in code, 40
debugging, 62, 74, 1139
distribution, equal, 51, 57
hugging, 54
implicit, 38
inside out, 55
intrinsic content size, 54
layout guides, 51
margins, 50
nib editor

creating, 65
editing, 66
problems, 68

priority, 37
safe area, 48
self-sizing views, 55
stack views, 57
visual format, 44, 1139

contacts, 909
authorization, 909

Index | 1151

containers, 916
fetching, 909
formatters, 913
groups, 916
interface, 916
sorting, 916
sources, 916
storing, 915

Contacts app, 909
Contacts framework, 909-922
Contacts UI framework, 909, 916-922
container view (transition context), 353
container view controller, 375-382

child
adding and removing, 376
replacing, 378
view size, 381

events, 405
nib editor, 395
status bar, 380
trait collection, 380

content size (scroll view), 412
content view (scroll view), 416
context (see graphics context)
context menus, 382

(see also menus)
collection views, 546
preview, 383
table views, 516
web views, 699

control center, 818, 1132
controls, 715-738

action, 717
button, 731
custom, 736
date picker, 723
events, 715
page, 722
refresh, 494
segmented, 728
slider, 725
state, 719
stepper, 720
switch, 719
target, 717
text field, 657
touches, 716, 736

coordinates
address, 964

converting, 19, 138
coordinate space, 26
layer, 138
map, 938
polar, 737
screen, 26
systems, 15
view, 17
window, 26, 588

Core Animation, 194
Core Data framework, 1047
Core Image framework, 106
Core Location framework, 931, 937, 968-984

(see also location)
Core Media framework, 846
Core Motion framework, 986-1001
Core Text framework, 620, 629
creating a file, 1008
creating a folder, 1007
creating a view controller, 296-307
cropping an image, 102
CTFont, 620
CTFontDescriptor, 620, 627
CTM, 125
current graphics context, 97

D
dark mode (see mode, light or dark)
data

caching, 408, 1006
detectors, 669
downloading, 1067, 1070
lazy loading, 407
memory-mapped, 409
persistent, 1005
shared, 1093
table view, 466

date
calculation, 929
constructing, 927
picker, 723

DateComponents, 724, 927, 929
Debug menu of Simulator, 156, 443
debugger, view, 62, 74
Decodable (see Codable)
decoding, 1012
delay, 1139
delayed performance, 1106
delegation, 330

1152 | Index

detail (see master–detail interface)
detail view controller, 569
device

attitude, 991
heading, 983, 993
location, 959, 973
motion, 987
shake to undo, 986, 1123
user acceleration, 990

dialogs, modal (see modal dialogs)
dictionaryOfNames, 1139
diffable data source, 502, 541

changing, 508
Core Data, 1051
populating, 504
pros and cons, 509
snapshot, 504
subclassing, 507

dimming background views, 366
dimming tint color, 753
directions, 965
directories (see folders)
dismissing a view controller, 322

dragging, 326
popover, 565

dispatch table, 254, 717
DispatchGroup, 1107
DispatchQueue, 1103
documents (see files)
Documents folder, 1006
double tap vs. single tap, 251, 260
downloading, 1064, 1066

background, 1079
drag and drop, 588-607

animation, 599
flocking, 600
iPhone, 607
item provider, 593
local, 607
preview, 598
spring loading, 606
table views, 601
text field, 660
window creation, 616

drag to dismiss, 326
drawing, 81-130

caching, 132
efficiently, 14, 156, 443
hit-testing, 273

image, 96, 100
path, 117
PDF, 1054
rotated, 126
text, 642

Text Kit, 682
view, 98, 112
when actually happens, 160, 193

dynamic, 217
color, 13, 29, 87, 122
type, 621

dynamics, UIKit, 226, 555

E
EKAlarm, 927
EKCalendarChooser, 934
EKEventEditViewController, 934
EKEventViewController, 933
EKRecurrenceRule, 928
EKReminder, 929
ellipsis, 645, 647
embed segue, 395
emitter layers, 219
encoding, 1012
entity

calendar, 924
Core Data, 1049
photo library, 882

eponymous nib, 303
errors (see warnings)
Euler angles, 993
EventKit framework, 923-932
EventKit UI framework, 932-935
events

control, 715
layout, 78
remote, 818
shake, 985
touch, 244

EXIF data, 1056
extensions

action extension, 798
communicating with app, 789, 1018
debugging, 799
notification content extension, 785
photo editing extension, 898
Quick Look preview extension, 1037
share extension, 801
thumbnail extension, 1037

Index | 1153

today extension, 788

F
FileManager, 1007
files, 1005-1056

cloud-based, 1031
coordinators, 1014
creating, 1008
database, 1046
document

architecture, 1024
browser, 1033
picker, 1038
receiving, 1020
sending, 1021
types, 1019

downloading, 1066, 1069
image, 82, 1055

namespacing, 87
interface for choosing, 1038
interface for managing, 1033
PDF, 1054
previewing, 1022
reading, 1008
sandbox, 1005
saving, 1008, 1026
sharing, 1006, 1018
temporary, 1006
thumbnail, 1036
where to save, 1006
wrappers, 1014

Files app, 1030, 1033
first responder, 650, 985, 1123
flipping, 104, 1054
floating views, 239
flocking, 600
fmdb, 1046
folders

creating, 1007
image files, 87
listing contents, 1008
standard, 1006

fonts, 620-627
app bundle, 629
converting between, 625
downloadable, 629
dynamic type, 621
families, 620
font descriptors, 625

installed, 630
interface for choosing, 628
providing, 630
system, 621

designs, 625
variants, 625

typographical, 626
footer, 456, 472
foreground, 1128
frame, 15, 138
frontmost, 1128
function, animations, 164, 168, 171

G
GCD, 1103

(see also threads)
geocoding, 963
geofencing, 931, 981
gesture recognizers, 253-281

(see also touches)
action, 254
conflicting, 259
delegate, 261
exclusive touches, 278
nib object, 266
scroll view, 441
state, 256
subclassing, 263
swarm, 259
target, 254
touch delivery, 277

gestures
distinguishing, 250
force touch, 266

GIF, animated, 881
gimbal lock, 995
glyph, 678
GPS, 967
gradients, 121, 146
Grand Central Dispatch, 1103

(see also threads)
graphics context, 96-129

clipping region, 120
current, 97
drawing into, 96, 114
opaque, 128
size, 121
state, 115

gravity, 987

1154 | Index

GUI (see interface)
gyroscope, 991

H
header, 456, 472
heading, 983, 993
hierarchy

layer, 133
view, 9
view controller, 290

high-resolution
image files, 83
layers, 142
screen, 83, 104, 142

highlighted table view cells, 485
hit-testing

animation, 274
drawings, 273
layers, 272
munging, 271
views, 269

hole, punching, 156
Home button, 1127
HTML files, 687
HTTP requests, 1061, 1066
HUD, 65

I
IBDesignable, 75
IBInspectable, 77
IBSegueAction, 394
iCloud, 1031
image context, 96
Image I/O framework, 1055
image views, 88

animated, 162
images, 81

(see also photos)
animated, 162
asset catalog, 84
caching, 82
converting format, 1056
cropping, 102
device-dependent, 84
drawing, 96, 100
files, 82, 1055
image views, 88
inline in text, 638
literal, 82

map, 941
metadata, 1055
mode, light or dark, 85
PDF, 84
photo library, 889
resizable, 90
resizing, 101, 1056, 1142
resolution, 83
reversing, 95
symbol, 84, 624
template, 93
tint color, 95
vector, 84

implicit constraints, 38
in-app purchase, 1084
Inbox folder, 1020
initial view controller, 306
instantiation action, 394
instantiation, nib-based, 305
Instruments, 156, 443
interactive view controller transitions, 356
interface

conditional, 71
differing on iPad, 332, 569
for calendar, 932
for choosing files, 1038
for choosing fonts, 628
for contacts, 916
for managing files, 1033
for map, 937
for music library, 874
for photos, 878
for playing video or audio, 836
for searching, 517
for taking pictures, 900
for trimming video, 855
for undoing, 1123
layout, 313
orientation, 317
resizing, 312, 587
reversing, 60, 95
rotating, 26, 312, 314, 334
threads, 1090

Interface Builder (see nib editor)
internet, displaying resources from, 687
interruptible

animations, 275
view controller transitions, 361

intrinsic content size, 54

Index | 1155

iPad
interface that differs on, 332, 569
multiple windows, 608, 1134
multitasking, 316, 586, 840, 1129, 1133
presented view controllers on, 326
resources that differ on, 84

iPhones, big, 30, 575
item provider, 593

J
JavaScript, 694, 702
JSON, 1041
JSONDecoder, 1043

K
keyboard, 650-655, 660-667

accessory view, 661
covering text field, 652
customizing, 660
dismissing, 651, 657, 661, 671
language, 667
replacing, 662
scrolling, 652
shortcuts bar, 666
table views, 653
text view, 671

key–value coding, xxii
layers, 157
managed objects, 1049

key–value observing, xxii
AV Foundation, 844, 872
Operation, 1100
Progress, 708
WKWebView, 691

KVC (see key–value coding)
KVO (see key–value observing)

L
labels, 452, 643-647

line breaking, 645
number of lines, 644
sizing to fit content, 645
text and font, 452
wrapping and truncation, 644

landscape orientation at launch, 317
launch, app, 4
layers, 131-242

adding and removing, 136

animation, 190, 194
adding, 209
explicit, 194
implicit, 190
preventing, 192, 213

animations list, 209
black background, 143
borders, 154
contents, 140

positioning, 143
coordinates, 138
depth, 136, 149
emitter layers, 219
frame, 138
gradient, 146
hierarchy, 133
hit-testing, 272
key–value coding, 157
layout, 139
mask, 154
opaque, 143
position, 137
presentation, 161
redisplaying, 140, 142
resolution, 142
scrolling, 138
shadows, 153
shape, 146
text, 146, 647
transform, 146
transparency, 127, 143
underlying view, 132
video, 850

layout, 32
(see also autolayout)
animation, 240
bar, 65
cells, 461
collection views, 525
events, 78, 313
guides, 48
layers, 139
margins, 50
views, 32, 318

leak, 228, 696, 698, 797, 1071, 1097, 1122
lend, 1141
line fragment, 678
literal, image, 82
loading a nib, 305

1156 | Index

loading a view controller’s view, 297
local notifications, 768-788

actions, 776, 787
authorization, 771
buttons, 776, 787
categories, 775
content extensions, 785

interactive, 788
dismissing, 777
displaying, 768
groups, 783
location-based, 981
managing, 784
payload, 778
placeholder text, 777
quiet delivery, 769
responding to, 780
scheduling, 778
secondary interface, 769
triggers, 779
user settings, 774, 782

location, 968
authorization, 959, 969, 979
background updates, 977
device, 973
heading, 983
manager, 968
mapping, 959
monitoring, 978
region, 981
services, 968
significant, 979
visit, 980

lock screen, 1132
audio, 810, 818
video, 839

login screen, 7

M
magnetometer, 983
main

storyboard, 306
launch without, 7

thread, 1089
view, 4, 286

main storyboard, 4
Map Kit framework, 937-966
map view, 937

annotations, 942

animation, 951
callout, 952
clustering, 949
custom, 943, 948
dragging, 952
hiding, 949
view, 945

directions, 965
overlays, 952
points of interest, 941
region, 938
snapshot, 941
tiles, 958
user location, 959

Maps app, 937, 961
margins, 50
mask, 154
master view controller, 569
Master–Detail App template, 350, 570
master–detail interface, 340, 445, 487, 569
materials, 111
Media Player framework, 818, 859
media services daemon, 809
media timing functions, 193
memory

leak, 228, 696, 698, 797, 1071, 1097, 1122
reducing, 406, 429, 889, 1046, 1078

memory-mapped data, 409
menus, 658, 1125

collection views, 546
context menus, 382
preview, 383
table views, 516
web views, 699

message percolation, 583
metadata

image file, 1055
photo, 882, 902
video, 839

MIDI, 829
misaligned views, 20
misplaced views, 69
MKAnnotation, 942
MKAnnotationView, 942
MKDirections, 965
MKLocalSearch, 964
MKMapItem, 961
MKMapRect, 939
MKMapView, 937

Index | 1157

MKMarkerAnnotationView, 943
MKOverlay, 952
MKOverlayRenderer, 952
MKPlacemark, 963
Mobile Core Services framework, 596, 877
modal, 288

dialogs, 757
action sheet, 761
activity view, 791
alert, 758
alternatives, 763
quick actions, 764

popovers, 564
presentation context, 328
presentation style, 325
transition style, 325
view, 321

in popover, 568
mode, light or dark

bar background, 742
blur, 111
colors, 12, 29, 87, 122
images, 85
maps, 942
nib editor, 75
overriding, 31
scroll indicators, 426
status bar, 309
testing, 13
text, 13, 634
trait collection, 29

moments, 878
More item, 338, 752
motion

activity, 997
device, 987
effects, 239
manager, 986

movies (see video)
MPMediaCollection, 861
MPMediaEntity, 861
MPMediaItem, 861
MPMediaLibrary, 866
MPMediaPickerController, 874
MPMediaQuery, 862
MPMusicPlayerController, 866

(see also music player)
MPNowPlayingInfoCenter, 820
MPRemoteCommandCenter, 818

MPVolumeView, 871
multiple selection, 498, 545
multitasking, iPad, 316, 586, 840, 1129, 1133
multitouch sequence, 244
munging, hit-test, 271
Music app, 818, 859, 867
music library, 859-875

accessing, 861
authorization, 859
interface, 874
persistence and change, 866
playing, 867, 872

music player, 866
queue

modifying, 869
setting, 867

state, 870
types, 867

N
namespacing resources, 87
Natural Language framework, 680
navigation bar, 339, 746

back button, 343, 747
back indicator, 747
contents, 343
hiding, 349
large title, 344
search bar, 521
title attributes, 748
transparent, 424, 742
underlapped by view, 308

navigation controller, 339-350
bar button items, 341
configuring, 346
gestures, 348, 349
master–detail interface, 340
navigation bar, 340, 343, 349
nib editor, 350
push and pop, 347
rotation, 346
status bar, 347
toolbar, 340

hiding, 349
toolbar items, 345

navigation interface, 339, 487
navigation item, 339, 343, 746
network activity in status bar, 704
nib editor

1158 | Index

attributed strings, 640
autoresizing, 64
conditional interface, 71
constraints, 63-73
container view controller, 395
dark mode, 75
designable views, 75
dynamic type, 623
gesture recognizers, 266
image views, 88
inspectable properties, 77
navigation controller, 350
popovers, 568
presented view controller, 329
previews, 75
refresh control, 494
scroll views, 419, 420
tab bar controller, 339
table views, 455

cells, 462
section header, 474

View As button, 71
view controllers, 305

size, 308
web views, 689

nib, eponymous, 303
nib-based instantiation, 305
nib-loaded cells, 462
NLTokenizer, 680
notification center, 768, 1132

(see also user notification center)
notification content extensions, 785
notifications, local (see local notifications)
NSAttributedString, 631

(see also attributed strings)
NSCache, 408
NSCoding, 1010
NSCollectionLayoutDimension, 533
NSCollectionLayoutEnvironment, 538
NSCollectionLayoutGroup, 533
NSCollectionLayoutItem, 532
NSCollectionLayoutSection, 533
NSCollectionLayoutSize, 533
NSCollectionLayoutSpacing, 534
NSDataAsset, 697, 1083
NSDiffableDataSourceSnapshot, 503
NSFileCoordinator, 1025
NSItemProvider, 593
NSKeyedArchiver, 1010

NSKeyedUnarchiver, 1010
NSLayoutAnchor, 43
NSLayoutConstraint, 36

(see also constraints)
NSLayoutEdgeSpacing, 534
NSLayoutManager, 672
NSManaged attribute, 217
NSParagraphStyle, 633
NSPurgeableData, 409
NSShadow, 633
NSStringDrawingContext, 643
NSTextAttachment, 638
NSTextContainer, 672
NSTextStorage, 672
NSTextTab, 637
NSUserActivity, 611

O
on-demand resources, 1081
once, running code, 1108
opaque

graphics context, 128
layers, 143
views, 14

Operation, 1099
OperationQueue, 1099
orientation, 314

(see also rotation)
device, 314
interface, 317
resources that depend on, 85

original presenter, 322
overlay (see map view)

P
page control, 373, 722
page view controller, 368-375

configuration, 369
gestures, 373
navigation, 371
page indicator, 373
storyboard, 375

page, scroll view, 427
parallax, 239
parent view controller, 287, 375

(see also container view controller)
passthrough views, 564
password field, 661
pasteboard, 660

Index | 1159

paths, 117
patterns, 123
payload, local notification, 778
PDF, 620, 1054

document, 1054
drawing, 1054
image, 84
page, 1054
previewing, 1023
view, 1054

PDF Kit framework, 1054
pedometer, 997
peek and pop (see context menus)
percolation, message, 583
persistent data, 1005
PHAdjustmentData, 894
phases of a touch, 244
PHAsset, 883
PHAssetCollection, 883
PHChange, 888
PHCollection, 883
PHCollectionList, 883
PHFetchOptions, 884
PHFetchResult, 884
PHLivePhotoView, 882
PHObjectPlaceholder, 886
photo editing extension, 898
photos, 877

interface for choosing, 878
library, 882

authorization, 883
changes, 888
editing images, 893
fetching images, 889
fetching videos, 892
modifying, 885
querying, 884

live, 878
metadata, 882, 902
taking, 900

Photos app, 877
Photos framework, 877, 882-899
Photos UI framework, 882
PHPhotoLibrary, 882
picker view, 709
picture-in-picture, 840, 854
pixels

transparent, 273
vs. points, 129

points of interest, 941, 964
polar coordinates, 737
pool, autorelease, 1097
popovers, 557-569

action sheet, 762
arrow source, 560
customizing appearance, 561
dismissing, 564
modal, 564
passthrough views, 564
presented view controller in, 568
presenting, 565
size, 560
storyboard, 567

popping
navigation item, 339
view controller, 347

preferences, user (see UserDefaults)
preferred content size, 381
prefetching, 1077
presentation

adaptive, 332
popover, 566

context, 328
controller, 333, 362, 364
customizing, 364
layer, 161, 180
style, 325

presented view controller, 287, 321
animation, 325
in popover, 568
rotation, 334

presenting view controller, 287, 322
previews

context menus, 382
document, 1022
local notification, 777

primary view controller, 569
Progress, 708
progress view, 705

circular, 707
properties

animatable, 190
custom, 184, 202, 216

inspectable, 77
property animator, 165

(see also animation)
animations functions, 168
completion functions, 172, 172, 182

1160 | Index

custom transition animation, 352
initializers, 176
retained, 167
states, 167
timing curves, 176

property lists, 1009
prototype cells, 464
provisional authorization, 771
proximity alarms, 931
purchase, in-app, 1084
pushing

navigation item, 339
view controller, 347

Q
QLPreviewController, 1023
questions, three big (see table views)
queues (see threads)
quick actions, 764
Quick Look framework, 1023
Quick Look preview extension, 1037

R
reachability, 1062
reading a file, 1008
rectangle, rounded, 154
redraw moment, 160, 193
redrawing with animation, 188
reference, storyboard, 396
refresh control, 494
relationship (see segue)
reminders (see calendar)
Reminders app, 923
resizable image, 90
resizing an image, 101
resizing events, 312
resizing interface, responding to, 587
resolution, 83, 104, 142
resources

app bundle, 83
depending on trait collection, 85
differing on iPad, 84
namespacing, 87
network-based, 687, 1059
on-demand, 1081

responder chain, xxii
gesture recognizers, 254
nil-targeted actions, 659
shake events, 985

undo, 1123
view controllers, 286, 295
views, 3
walking, 761

retain cycle, xxii, 228, 404, 696, 698, 797, 1071,
1122

Retina display (see screen, high-resolution)
root

item, 339
view, 4
view controller, 4, 286

navigation controller, 346
rotation, 26, 314, 317

(see also orientation)
bar height, 740
compensatory, 314
drawing, 126
forced, 314, 334
interface, 314-320, 334
layer, 25
navigation controller, 346
presented view controllers, 334
responding to, 312, 319
tab bar controller, 338
view, 21

rounded rectangle, 154
route, 965
row, table, 449
RTF files, 640, 687

S
Safari view controller, 700
safe area, 48, 309, 423
sandbox, 1005
saving data (see files)
saving state, 612, 1017
scaling an image, 101
scenes, 5

configuration, 609
creation, 609
data sharing, 616
delegate, 6, 609, 1127
destruction, 612
drag and drop, 616
lifetime events, 610, 1127
saving and restoration, 612
session, 608
state, 1129
storyboard, 305, 386

Index | 1161

launch without, 7
window, 311, 317, 608

screen
coordinates, 26
high-resolution, 83, 104, 142
user locks or unlocks, 1132

scroll indicators, 426
scroll views, 411-443

autolayout, 413
content inset, 422
content layout guide, 415
content size, 412
content view, 416
delegate, 436
floating subviews, 442
gesture recognizers, 441
inset, 423
keyboard dismissal, 651
nib-instantiated, 419
paging, 427
scrolling, 424
stuttering, 443
tiling, 429
touches, 438
underlapping bars, 423
zooming, 431

scrolling in response to keyboard, 652
search bar, 711

navigation bar, 521
scope buttons, 714
search tokens, 715
table view, 520
text field, 712

search field (see search bar)
searching, interface for, 517
secondary view controller, 569
section data model, 471
segmented control, 728
segue, 306, 388-401

action, 388, 392
custom, 391
cycle, 397
embed, 395
instantiation action, 394
manual, 388, 392
modal, 387
popover, 567
present modally, 387
push, 387

relationship, 306, 387
reversing, 397
show, 387
show detail, 580
triggered, 306, 387-395
triggering, 392
unwind, 397

serial queues, 1102
serializing objects, 1010
session task, 1062
Settings app, 1016
settings bundle, 1016
SF Symbols, 84
SFSafariViewController, 700
SFSpeechRecognizer, 831
shadows, 127, 153, 742
shaking the device, 985, 1123
shape layers, 146
shapes

animating, 207
hit-testing, 273

share extension, 801
sheet, 325

(see also presentation style)
adaptation, 332
drag to dismiss, 326

Simulator, Debug menu, 156, 443
single tap vs. double tap, 251, 260
size classes, 30

bar height, 740
conditional interface, 71
overriding, 380, 582
resources that depend on, 85

sizeByDelta, 1138
slicing in asset catalog, 92
slideover, 586
slider, 725
small caps, 626
snapshot

diffable data source, 504
map view, 941
view, 105

sound (see audio)
speech

recognition, 830
synthesis, 829

Speech framework, 830
split views, 569-586

adaptive, 569

1162 | Index

collapsed, 573
customizing, 577
expanded, 570
expanding, 575
forcing to collapse or expand, 582
storyboard, 580

splitscreen, 586
spring loading, 606
SQLite, 1046
stack

navigation bar, 339, 746
navigation controller, 339
views, 57

state
application, 1129
button, 731
control, 719
gesture recognizer, 256
graphics context, 115
property animator, 165
saving and restoration, 612
saving into UserDefaults, 1017
scene, 1129

static tables, 491
status bar

color, 309, 335, 347, 380
container view controller, 380
navigation controller, 347
network activity, 704
state, 311
tab bar controller, 338
transparent, 308
underlapped

by top bar, 739
by view, 308

visibility, 309, 335, 380
step counting, 997
stepper, 720
Store Kit framework, 1084
storyboards, 4, 386-401

(see also nib editor)
container view controllers, 395
Exit proxy object, 398
main, 4, 306

launch without, 7
popovers, 567
prototype cells, 464
reference, 396
relationships, 387

scenes, 305, 386
split views, 580
static tables, 491
view controllers, 305, 306, 386

stretching a resizable image, 91
stuttering

animation, 156
scroll views, 443

styled text, 631
(see also attributed strings)

subclassing
CIFilter, 110
collection view layout, 548
NSLayoutManager, 680
NSTextContainer, 675
Operation, 1099
UIDocument, 1024
UIDynamicBehavior, 230
UIGestureRecognizer, 263
UIPresentationController, 364
UIStoryboardSegue, 391
UITableViewDiffableDataSource, 507
UIViewController, 285

sublayer, 133
subviews, 3

animating, 189, 217
removing all, 12

subviews(ofType:), 1141
superlayer, 133
superview, 3
suspended, 1110, 1128
Swift, xxi
SwiftUI, xxv, 7
switch, 719
symbol images, 84, 624

bar button items, 744
buttons, 731
configuration, 85, 624
image views, 88
text attachments, 639
text, matching, 624

sync, 1106
system colors, 13
system materials, 111
System Sound Services, 807

T
tab bar, 335, 749

hiding, 349

Index | 1163

interface, 335
item, 335, 749

creating, 336
images, 336

More item, 338, 752
underlapped by view, 308

tab bar controller, 335-339
configuring, 337
More item, 338
nib editor, 339
rotation, 338
status bar, 338
tab bar items, 336
tab bar, hiding, 349

tab stops, 637
Tabbed App template, 339
table view controller, 448
table views, 445-523

(see also cells)
data source, 451, 459, 466-478

diffable, 502
data, downloading, 1076, 1106
drag and drop, 601
editing, 495
grouped, 448
height of row, 455, 478
keyboard, 653
layout, 489
menus, 516
navigation interface, 487
prefetching, 1077
refresh control, 494
refreshing, 489
restructuring, 498
rows, 449
scrolling, 489
searching, 517-523
sections, 471

data model, 471
header and footer, 472
height, 475, 483
index, 478

selection, 485
editing, 498
multiple, 498

separators, 455
static, 491

tap, single vs. double, 251, 260
target–action, 254, 717, 1118

template images, 93
termination of app, 1128
text, 619-685

alignment, 633
columns, 682
drawing, 642, 682
styled, 631

(see also attributed strings)
truncation, 633, 644
wrapping, 633, 644

text fields, 647-660
alert, 760
control events, 657
delegate, 655
drag and drop, 660
insertion, 656
keyboard, 650

customizing, 660
menus, 658
search bar, 712, 715
selection, 659
table view cells, 511

Text Kit, 620, 672-685
layout manager, 678

multiple, 677
subclassing, 680

multicolumn text, 682
tap, 684
text container, 673

exclusion paths, 674
multiple, 676
subclassing, 675

text layers, 146, 647
text views, 667-672

delegate, 668
keyboard, 671
links, 669
selection, 668
self-sizing, 671
tap, 669
text container, 674

threads, 1089-1115
deinit, 1094
dispatch groups, 1107
GCD, 1103
interface, 1090
locks, 1093
main, 1089

blocking, 1094

1164 | Index

manual, 1097
multiple execution, 1093
Operation, 1099
queues

dispatch, 1103
global, 1109
locks, 1102
operation, 1099
serial, 1102

shared data, 1093
waiting, 1108, 1144

thumbnail extension, 1037
thumbnail image, 1056
TIFF, converting to, 1056
tiling

map view, 959
resizable image, 90
scroll view, 429

tint color, 94, 752
dimming, 753
image, 95

today extension, 788
tokens, search, 715
toolbar, 340, 748

items, 345, 748
underlapped by view, 308

top and bottom reversed, 144, 208
top item, 339
top-level view controller, 286, 334
touches, 243-281

(see also gesture recognizers)
animation, 274
coalesced, 247
control, 716, 736
delivery, 268
pencil, 247
phases, 244
predicted, 247
restricting, 248, 278
touch methods, 246
view unresponsive to, 248

trait collections, 28
(see also size classes)
asset catalog, 86
current, 29
overriding, 31, 380, 582
resizing of interface, 312, 587
rotation of interface, 312
user interface level, 30

user interface style, 29
transactions, 191
transform, 20, 125, 146

depth, 150
transform3D, 24
transition animation

layer, 207
view, 188
view controller, 350-368

interactive, 356
interruptible, 361

transition context, 353
transition coordinator, 313, 366, 367
transitions, Core Image, 224
translates mask, 38, 40, 64
transparency

layer, 127
mask, 93

transparent
navigation bar, 424, 742
pixels, 273
status bar, 308

transport, 807, 835
trigger, local notification, 779
triggered segue, 390
type, dynamic, 621

U
UIAction, 384
UIActivity, 795
UIActivityIndicatorView, 703
UIActivityViewController, 791
UIAlertAction, 758
UIAlertController, 757
UIApplicationMain, 4, 306
UIApplicationShortcutItem, 764
UIBarAppearance, 740
UIBarButtonItem, 341, 743, 748
UIBarButtonItemGroup, 666
UIBarButtonItemStateAppearance, 745
UIBarItem, 336, 341
UIBezierPath, 119
UIButton, 731
UICollectionView, 524

(see also collection views)
UICollectionViewCell, 528
UICollectionViewCompositionalLayout, 532
UICollectionViewController, 527
UICollectionViewDiffableDataSource, 541

Index | 1165

UICollectionViewFlowLayout, 529
UICollectionViewLayout, 525
UICollectionViewLayoutAttributes, 528
UIColor, 12
UIContentContainer, 312, 381
UIContextMenuConfiguration, 382
UIContextualAction, 514
UIControl, 715

(see also controls)
UICoordinateSpace, 26
UIDataDetectorTypes, 669
UIDatePicker, 723
UIDocument, 1024
UIDocumentBrowserViewController, 1033
UIDocumentInteractionController, 1021
UIDocumentPickerViewController, 1038
UIDynamicAnimator, 227, 555
UIDynamicBehavior, 227
UIDynamicItem, 227, 555
UIDynamicItemGroup, 227
UIEdgeInsets, 48
UIEvent, 243
UIFont, 620
UIFontDescriptor, 625
UIFontMetrics, 623
UIFontPickerViewController, 628
UIGestureRecognizer, 253

(see also gesture recognizers)
UIImage, 81, 96

(see also images)
UIImageAsset, 86
UIImagePickerController, 878
UIImageView, 88
UIKit dynamics, 226-239, 555
UILabel, 452, 643-647

(see also labels)
UILayoutGuide, 48
UILayoutPriority, 37
UIMenu, 384
UIMenuController, 658, 1125
UIMenuItem, 1125
UIMotionEffect, 240
UINavigationBar, 339, 746
UINavigationBarAppearance, 747
UINavigationController, 339
UINavigationItem, 339, 342, 746
UIPageControl, 722
UIPageViewController, 368
UIPickerView, 709

UIPopoverPresentationController, 559
UIPresentationController, 333
UIPreviewInteraction, 266
UIProgressView, 705
UIRectEdge, 255
UIRefreshControl, 494
UISceneSession, 6, 608
UIScreen, 26
UIScrollView, 411

(see also scroll views)
UISearchBar, 517, 711

(see also search bar)
UISearchController, 517-523
UISearchToken, 715
UISegmentedControl, 728
UISlider, 725
UISplitViewController, 569

(see also split views)
UIStackView, 57
UIStepper, 720
UIStoryboardSegue, 390
UISwipeActionsConfiguration, 514
UISwitch, 719
UITabBar, 335, 749
UITabBarAppearance, 749
UITabBarController, 335
UITabBarItem, 335, 749
UITableView, 445

(see also table views)
UITableViewCell, 445

(see also cells)
UITableViewController, 448
UITableViewDiffableDataSource), 503
UITableViewHeaderFooterView, 472
UITextField, 647

(see also text fields)
UITextView, 667

(see also text views)
UIToolbar, 340, 748
UITouch, 243, 246

(see also touches)
UITraitCollection, 28

(see also trait collections)
UITraitEnvironment, 312, 380
UIVideoEditorController, 855
UIView, 3

(see also views)
UIViewController, 285

(see also view controllers)

1166 | Index

UIViewPropertyAnimator, 165
(see also property animator)

UIVisualEffectView, 111
UIWindow, 4

(see also window)
UIWindowScene, 6, 608
unarchiving, 1010
underlying layer of view, 132

animating, 190, 194
undo, 1117-1126

alert button titles, 1124
groups, 1120
interface for, 1123
manager, 1117
shake to, 986, 1123
target–action, 1118

UndoManager, 1117
UNNotification, 780
UNNotificationAction, 776
UNNotificationAttachment, 778
UNNotificationCategory, 775
UNNotificationResponse, 781
UNNotificationTrigger, 779
UNUserNotificationCenter, 771
unwind segue, 397
URLRequest, 1068
URLSession, 1059

background, 1079
configuring, 1060
delegate, 1064, 1071
invalidating, 1071
memory management, 1071
obtaining, 1059
task, 1062

URLSessionTask, 1062
URLSessionTaskDelegate, 1065
Use Safe Area Layout Guides, 64
Use Trait Variations, 64
user

activity, 997
altitude, 998
calendar, 923
contacts, 909
defaults, 1015
interaction, preventing, 248
interface style (see mode, light or dark)
location, 959, 973
music library, 859
notification center, 771

photo library, 877
reminders, 923
steps, 997

User Notifications framework, 771
UserDefaults, 1015
UTI, 594, 1019, 1027

V
Vary for Traits button, 72
vector images, 84

(see also symbol images)
vibrancy views, 111
video, 835-857

(see also photos)
animation, 852

synchronized, 849
editing, 847
filters, 849
layers, 850
photo library, 892
picture-in-picture, 840
recording, 900
remote, 846
size, 844
time, 846
trimming interface, 855

view controller
for calendar, 932
for contacts, 916
for files, 1033, 1038
for fonts, 628
for music library, 874
for photos, 878
for taking pictures, 900
for trimming video, 855
for web browsing, 700

view controllers, 285
adaptive presentation, 332

popover, 566
animation

custom transition, 350
interactive, 356
interruptible, 361

appearing and disappearing, 402
bottom bar, 349
child, 287

adding and removing, 376
communication between, 330, 348, 393
contained, 287

Index | 1167

container, 375
creating, 296-307, 394
detail, 569
dismiss by dragging, 326
hierarchy, 290
initial, 306
keyboard, 662
layout, 318
layout events, 313
lifetime events, 401

app, relation to, 1135
forwarding to child, 405

main view, 286
appearing and disappearing, 402
created in code, 299
loading, 297-307
nib editor size, 308
nib-loaded, 301
populating, 301
preferred size, 381
resizing, 307
storyboard-loaded, 305
view hierarchy, 290, 376

master, 569
memory management, 406
message percolation, 583
modal, 287, 321
navigation bar, 349
navigation item, 343
nib name matching, 303
original presenter, 322
parent, 287, 375
popping, 347
preferred content size, 381
presentation animation, 362
presentation controller, 327, 333
presentation, custom, 364
presented, 287, 321

drag to dismiss, 326
presenting, 287, 322
previewing, 382
primary, 569
pushing, 347
resizing interface, 312, 587
retaining, 296
root, 286
rotating interface, 312, 319, 334
safe area, 309
secondary, 569

storyboard-instantiated, 305, 306, 386
subclassing, 285
toolbar items, 345
top-level, 286, 334
view property, 286

view debugger, 62, 74
view property animator, 165
viewport, 702
views, 3-281

adding, 11
alignment rects, 53
animation, 164
appearance proxy, 754
autolayout, 35-56
autoresizing, 33
black background, 114, 128
blurred, 111
bounds, 16
centering, 19
constraints, 35

(see also autolayout)
content mode, 129
coordinates, 17
debugging, 62, 74
designable, 75
distributing evenly, 51, 59
drag and drop, 589
dragging, 249, 326
drawing, 98, 112
floating, 239
frame, 15
hidden, 14
hierarchy, 9
hit-testing, 269
initialization, 15
input, 662

(see also keyboard)
intrinsic content size, 54
layer, 132
layering order, 10
layout, 32, 318
layout guides, 51
margins, 50
misalignment, 20
misplaced, 69
name, 1140
opaque, 14, 114
overlapping, 9
position, 15

1168 | Index

previewing, 75
removing, 11
resizing, 32
root view, 4
safe area, 48, 309
self-sizing, 55
snapshot, 105
spring loaded, 606
subviews of given class, 1141
tag, 11
tint color, 94, 752

dimming, 753
touch delivery, 277
transform, 20
transform3D, 24
transparency, 14, 114, 128
vibrancy, 111

visit, 980
visual format strings, 44
volume, audio, 871

W
waiting, 1108, 1144
warnings

illegal property type, 756
invalid nib registered for identifier, 463
scrollable content size ambiguity, 420
unable to satisfy constraints, 40, 61

watchdog, 1093
Web Inspector, 702
web views, 620, 687-702

configuring, 688

content, 689, 702
debugging, 702
delegate, 692
desktop mode, 693
JavaScript, 694
menus, 699
navigation, 692
observing changes, 691
schemes, custom, 697
viewport, 702

WebKit framework, 688
windows, 4

coordinates, 26, 588
multiple, 608

creation and closing, 611, 1134
referring to, 8
root view, 4
scene, 5

(see also scenes)
WKWebView, 688

(see also web views)

X
Xcode, xxii

(see also nib editor)
XML, 1039
XMLParser, 1039

Z
zooming a scroll view, 431

Index | 1169

About the Author
Matt Neuburg started programming computers in 1968, when he was 14 years old, as
a member of a literally underground high school club, which met once a week to do
timesharing on a bank of PDP-10s by way of primitive teletype machines. He also
occasionally used Princeton University’s IBM-360/67, but gave it up in frustration
when one day he dropped his punch cards. He majored in Greek at Swarthmore Col‐
lege, and received his PhD from Cornell University in 1981, writing his doctoral dis‐
sertation (about Aeschylus) on a mainframe. He proceeded to teach Classical
languages, literature, and culture at many well-known institutions of higher learning,
most of which now disavow knowledge of his existence, and to publish numerous
scholarly articles unlikely to interest anyone. Meanwhile he obtained an Apple IIc
and became hopelessly hooked on computers again, migrating to a Macintosh in
1990. He wrote some educational and utility freeware, became an early regular con‐
tributor to the online journal TidBITS, and in 1995 left academe to edit MacTech
magazine. In August 1996 he became a freelancer, which means he has been looking
for work ever since. He is the author of Frontier: The Definitive Guide, REALbasic:
The Definitive Guide, and AppleScript: The Definitive Guide.

Colophon
The animal on the cover of Programming iOS 13 is a kingbird, one of the 13 species of
North American songbirds making up the genus Tyrannus. A group of kingbirds is
called a “coronation,” a “court,” or a “tyranny.”

Kingbirds eat insects, which they often catch in flight, swooping from a perch to grab
the insect midair. They may also supplement their diets with berries and fruits. They
have long, pointed wings, and males perform elaborate aerial courtship displays.

Both the genus name (meaning “tyrant” or “despot”) and the common name (“king‐
bird”) refer to these birds’ aggressive defense of their territories, breeding areas, and
mates. They have been documented attacking red-tailed hawks (which are more than
twenty times their size), knocking bluejays out of trees, and driving away crows and
ravens. (For its habit of standing up to much larger birds, the gray kingbird has been
adopted as a Puerto Rican nationalist symbol.)

“Kingbird” most often refers to the Eastern kingbird (T. tyrannus), an average-size
kingbird (7.5–9 inches long, wingspan 13–15 inches) found all across North America.
This common and widespread bird has a dark head and back, with a white throat,
chest, and belly. Its red crown patch is rarely seen. Its high-pitched, buzzing, stutter‐
ing sounds have been described as resembling “sparks jumping between wires” or an
electric fence.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on a black and white engrav‐
ing from Cassell’s Natural History. The cover fonts are Gilroy Semibold and Guard‐
ian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

http://www.oreilly.com/online-learning

	Cover
	Copyright
	Table of Contents
	Preface
	The Scope of This Book
	What’s Not in This Book
	From the Programming iOS 4 Preface
	Versions
	Acknowledgments
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us

	Part I. Views
	Chapter 1. Views
	Window and Root View
	How an App Launches
	App Without a Storyboard
	Referring to the Window

	Experimenting with Views
	Subview and Superview
	Color
	Visibility and Opacity
	Frame
	Bounds and Center
	Transform
	Transform3D
	Window Coordinates and Screen Coordinates
	Trait Collections
	Interface Style
	Size Classes
	Overriding Trait Collections

	Layout
	Autoresizing
	Autolayout and Constraints
	Implicit Autoresizing Constraints
	Creating Constraints in Code
	Constraints as Objects
	Margins and Guides
	Intrinsic Content Size
	Self-Sizing Views
	Stack Views
	Internationalization
	Mistakes with Constraints

	Configuring Layout in the Nib
	Autoresizing in the Nib
	Creating a Constraint
	Viewing and Editing Constraints
	Problems with Nib Constraints
	Varying the Screen Size
	Conditional Interface Design

	Xcode View Features
	View Debugger
	Previewing Your Interface
	Designable Views and Inspectable Properties

	Layout Events

	Chapter 2. Drawing
	Images and Image Views
	Image Files
	Image Views
	Resizable Images
	Transparency Masks
	Reversible Images

	Graphics Contexts
	Drawing on Demand
	Drawing a UIImage

	UIImage Drawing
	CGImage Drawing
	Snapshots
	CIFilter and CIImage
	Blur and Vibrancy Views
	Drawing a UIView
	Graphics Context Commands
	Graphics Context Settings
	Paths and Shapes
	Clipping
	Gradients
	Colors and Patterns
	Graphics Context Transforms
	Shadows
	Erasing

	Points and Pixels
	Content Mode

	Chapter 3. Layers
	View and Layer
	Layers and Sublayers
	Manipulating the Layer Hierarchy
	Positioning a Sublayer
	CAScrollLayer

	Layer and Delegate
	Layout of Layers
	Drawing in a Layer
	Drawing-Related Layer Properties
	Content Resizing and Positioning
	Layers that Draw Themselves

	Transforms
	Affine Transforms
	3D Transforms
	Depth

	Further Layer Features
	Shadows
	Borders and Rounded Corners
	Masks

	Layer Efficiency
	Layers and Key–Value Coding

	Chapter 4. Animation
	Drawing, Animation, and Threading
	Image View and Image Animation
	View Animation
	A Brief History of View Animation
	Property Animator Basics
	View Animation Basics
	View Animation Configuration
	Timing Curves
	Canceling a View Animation
	Frozen View Animation
	Custom Animatable View Properties
	Keyframe View Animation
	Transitions

	Implicit Layer Animation
	Animatable Layer Properties
	Animation Transactions
	Media Timing Functions

	Core Animation
	CABasicAnimation and Its Inheritance
	Using a CABasicAnimation
	Springing Animation
	Keyframe Animation
	Making a Property Animatable
	Grouped Animations
	Freezing an Animation
	Transitions
	Animations List

	Actions
	What an Action Is
	Action Search
	Hooking Into the Action Search
	Making a Custom Property Implicitly Animatable
	Nonproperty Actions

	Emitter Layers
	CIFilter Transitions
	UIKit Dynamics
	The Dynamics Stack
	Custom Behaviors
	Animator and Behaviors

	Motion Effects
	Animation and Layout

	Chapter 5. Touches
	Touch Events and Views
	Receiving Touches
	Restricting Touches
	Interpreting Touches
	Gesture Recognizers
	Gesture Recognizer Classes
	Gesture Recognizer Conflicts
	Gesture Recognizer Delegate
	Subclassing Gesture Recognizers
	Gesture Recognizers in the Nib

	3D Touch Press Gesture
	Touch Delivery
	Hit-Testing
	Performing Hit-Testing
	Hit-Test Munging
	Hit-Testing for Layers
	Hit-Testing for Drawings
	Hit-Testing During Animation

	Initial Touch Event Delivery
	Gesture Recognizer and View
	Touch Exclusion Logic
	Gesture Recognition Logic

	Part II. Interface
	Chapter 6. View Controllers
	View Controller Responsibilities
	View Controller Hierarchy
	Automatic Child View Placement
	Manual Child View Placement
	Presented View Placement
	Ensuring a Coherent Hierarchy

	View Controller Creation
	How a View Controller Obtains Its View
	Manual View
	Generic Automatic View
	View in a Separate Nib
	Summary

	How Storyboards Work
	How a Storyboard View Controller Nib is Loaded
	How a Storyboard View Nib is Loaded

	View Resizing
	View Size in the Nib Editor
	Bars and Underlapping
	Resizing and Layout Events

	Rotation
	Uses of Rotation
	Permitting Compensatory Rotation
	Initial Orientation
	Detecting Rotation

	View Controller Manual Layout
	Initial Manual Layout
	Manual Layout During Rotation

	Presented View Controller
	Presentation and Dismissal
	Configuring a Presentation
	Communication with a Presented View Controller
	Adaptive Presentation
	Presentation, Rotation, and the Status Bar

	Tab Bar Controller
	Tab Bar Items
	Configuring a Tab Bar Controller

	Navigation Controller
	Bar Button Items
	Navigation Items and Toolbar Items
	Configuring a Navigation Controller

	Custom Transition
	Noninteractive Custom Transition Animation
	Interactive Custom Transition Animation
	Custom Presented View Controller Transition
	Transition Coordinator

	Page View Controller
	Preparing a Page View Controller
	Page View Controller Navigation
	Other Page View Controller Configurations

	Container View Controllers
	Adding and Removing Children
	Status Bar, Traits, and Resizing

	Previews and Context Menus
	Storyboards
	Triggered Segues
	Container Views and Embed Segues
	Storyboard References
	Unwind Segues

	View Controller Lifetime Events
	Order of Events
	Appear and Disappear Events
	Event Forwarding to a Child View Controller

	View Controller Memory Management
	Lazy Loading
	NSCache, NSPurgeableData, and Memory-Mapping
	Background Memory Usage

	Chapter 7. Scroll Views
	Content Size
	Creating a Scroll View in Code
	Manual Content Size
	Automatic Content Size with Autolayout

	Scroll View Layout Guides
	Using a Content View
	Scroll View in a Nib
	Content Inset
	Scrolling
	Scrolling in Code
	Paging
	Tiling

	Zooming
	Zooming Programmatically
	Zooming with Detail

	Scroll View Delegate
	Scroll View Touches
	Floating Scroll View Subviews
	Scroll View Performance

	Chapter 8. Table Views and Collection Views
	Table View Controller
	Table View Cells
	Built-In Cell Styles
	Registering a Cell Class
	Custom Cells

	Table View Data
	The Three Big Questions
	Reusing Cells

	Table View Sections
	Section Headers and Footers
	Table View Section Example
	Section Index

	Variable Row Heights
	Manual Row Height Measurement
	Measurement and Layout with Constraints
	Estimated Height
	Automatic Row Height

	Table View Selection
	Managing Cell Selection
	Responding to Cell Selection
	Navigation from a Table View

	Table View Scrolling and Layout
	Refreshing a Table View
	Cell Choice and Static Tables
	Direct Access to Cells
	Refresh Control

	Editing a Table View
	Toggling a Table View’s Edit Mode
	Edit Mode and Selection
	Changing a Table View’s Structure
	Deleting a Cell
	Deleting Multiple Cells

	Table View Diffable Data Source
	Populating a Diffable Data Source
	Subclassing a Diffable Data Source
	Changing a Diffable Data Source
	Pros and Cons of the Diffable Data Source

	More Table View Editing
	Rearranging Cells
	Editable Content in Cells
	Expandable Cell

	Table View Swipe Action Buttons
	Table View Menus
	Table View Searching
	Configuring a Search Controller
	Using a Search Controller

	Collection Views
	Collection View Classes
	Flow Layout
	Compositional Layout
	Size, Count, Spacing, and Insets
	Supplementary Items
	Multiple Section Layouts
	Other Compositional Layout Features

	Collection View Diffable Data Source
	Basic Cell Manipulation
	Selecting Cells
	Deleting Cells
	Menu Handling
	Rearranging Cells

	Custom Collection View Layouts
	Tweaking a Layout
	Collection View Layout Subclass
	Decoration Views

	Switching Layouts
	Collection Views and UIKit Dynamics

	Chapter 9. iPad Interface
	Popovers
	Arrow Source and Direction
	Popover Size
	Popover Appearance
	Passthrough Views
	Popover Presentation, Dismissal, and Delegate
	Adaptive Popovers
	Popover Segues
	Popover Presenting a View Controller

	Split Views
	Expanded Split View Controller (iPad)
	Collapsed Split View Controller (iPhone)
	Expanding Split View Controller (Big iPhone)
	Customizing a Split View Controller
	Split View Controller in a Storyboard
	Setting the Collapsed State
	View Controller Message Percolation

	iPad Multitasking
	Drag and Drop
	Drag and Drop Architecture
	Basic Drag and Drop
	Item Providers
	Slow Data Delivery
	Additional Delegate Methods
	Table Views and Collection Views
	Spring Loading
	iPhone and Local Drag and Drop

	Multiple Windows
	The Window Architecture
	Scene Creation
	Window Creation and Closing
	State Saving and Restoration
	Further Multiple Window Considerations

	Chapter 10. Text
	Fonts and Font Descriptors
	Fonts
	Symbol Images and Text
	Font Descriptors
	Choosing a Font
	Adding Fonts

	Attributed Strings
	Attributed String Attributes
	Making an Attributed String
	Modifying and Querying an Attributed String
	Custom Attributes
	Drawing and Measuring an Attributed String

	Labels
	Number of Lines
	Wrapping and Truncation
	Fitting Label and Text
	Customized Label Drawing

	Text Fields
	Summoning and Dismissing the Keyboard
	Keyboard Covers Text Field
	Text Field Delegate and Control Event Messages
	Text Field Menu
	Drag and Drop
	Keyboard and Input Configuration

	Text Views
	Links, Text Attachments, and Data
	Self-Sizing Text View
	Text View and Keyboard

	Text Kit
	Text View and Text Kit
	Text Container
	Alternative Text Kit Stack Architectures
	Layout Manager
	Text Kit Without a Text View

	Chapter 11. Web Views
	WKWebView
	Web View Content
	Tracking Changes in a Web View
	Web View Navigation
	Communicating with a Web Page
	Custom Schemes
	Web View Previews and Context Menus

	Safari View Controller
	Developing Web View Content

	Chapter 12. Controls and Other Views
	UIActivityIndicatorView
	UIProgressView
	Progress View Alternatives
	The Progress Class

	UIPickerView
	UISearchBar
	UIControl
	UISwitch
	UIStepper
	UIPageControl
	UIDatePicker
	UISlider
	UISegmentedControl
	UIButton
	Custom Controls

	Bars
	Bar Position
	Bar Metrics
	Bar and Item Appearance
	Bar Background and Shadow
	Bar Button Items
	Navigation Bar
	Toolbar
	Tab Bar

	Tint Color
	Appearance Proxy

	Chapter 13. Modal Dialogs
	Alerts and Action Sheets
	Alerts
	Action Sheets
	Alert Alternatives

	Quick Actions
	Local Notifications
	Authorization for Local Notifications
	Notification Categories
	Scheduling a Local Notification
	Hearing About a Local Notification
	Grouped Notifications
	Managing Notifications
	Notification Content Extensions

	Today Extensions
	Activity Views
	Presenting an Activity View
	Custom Activities
	Action Extensions
	Share Extensions

	Part III. Some Frameworks
	Chapter 14. Audio
	System Sounds
	Audio Session
	Category
	Activation and Deactivation
	Ducking
	Interruptions
	Secondary Audio
	Routing Changes

	Audio Player
	Remote Control of Your Sound
	Playing Sound in the Background
	AVAudioRecorder
	AVAudioEngine
	MIDI Playback
	Text to Speech
	Speech to Text
	Further Topics in Sound

	Chapter 15. Video
	AVPlayerViewController
	Other AVPlayerViewController Properties
	Picture-in-Picture

	Introducing AV Foundation
	Some AV Foundation Classes
	Things Take Time
	Time Is Measured Oddly
	Constructing Media
	AVPlayerLayer
	Further Exploration of AV Foundation

	UIVideoEditorController

	Chapter 16. Music Library
	Music Library Authorization
	Exploring the Music Library
	Querying the Music Library
	Persistence and Change in the Music Library

	Music Player
	Setting the Queue
	Modifying the Queue
	Player State

	MPVolumeView
	Playing Songs with AV Foundation
	Media Picker

	Chapter 17. Photo Library and Camera
	Browsing with UIImagePickerController
	Image Picker Controller Presentation
	Image Picker Controller Delegate
	Dealing with Image Picker Controller Results

	Photos Framework
	Querying the Photo Library
	Modifying the Library
	Being Notified of Changes
	Fetching Images
	Editing Images
	Photo Editing Extension

	Using the Camera
	Capture with UIImagePickerController
	Capture with AV Foundation

	Chapter 18. Contacts
	Contact Classes
	Fetching Contact Information
	Fetching a Contact
	Repopulating a Contact
	Labeled Values
	Contact Formatters

	Saving Contact Information
	Contact Sorting, Groups, and Containers
	Contacts Interface
	CNContactPickerViewController
	CNContactViewController

	Chapter 19. Calendar
	Calendar Database Contents
	Calendars
	Calendar Items
	Calendar Database Changes

	Creating Calendars, Events, and Reminders
	Events
	Alarms
	Recurrence
	Reminders
	Proximity Alarms

	Fetching Events and Reminders
	Calendar Interface
	EKEventViewController
	EKEventEditViewController
	EKCalendarChooser

	Chapter 20. Maps
	Map Views
	Displaying a Region
	Scrolling and Zooming
	Other Map View Customizations
	Map Images

	Annotations
	Customizing an MKMarkerAnnotationView
	Changing the Annotation View Class
	Custom Annotation View Class
	Custom Annotation Class
	Annotation View Hiding and Clustering
	Other Annotation Features

	Overlays
	Custom Overlay Class
	Custom Overlay Renderer
	Other Overlay Features

	Map Kit and Current Location
	Communicating with the Maps App
	Geocoding, Searching, and Directions
	Geocoding
	Searching
	Directions

	Chapter 21. Sensors
	Core Location
	Location Manager and Delegate
	Location Services Authorization
	Location Tracking
	Where Am I?
	Continuous Background Location
	Location Monitoring
	Heading

	Acceleration, Attitude, and Activity
	Shake Events
	Using Core Motion
	Raw Acceleration
	Gyroscope
	Other Core Motion Data

	Part IV. Final Topics
	Chapter 22. Persistent Storage
	The Sandbox
	Standard Directories
	Inspecting the Sandbox
	Basic File Operations
	Saving and Reading Files
	File Coordinators
	File Wrappers

	User Defaults
	Simple Sharing and Previewing of Files
	File Sharing
	Document Types and Receiving a Document
	Handing Over a Document
	Previewing a Document
	Quick Look Previews

	Document Architecture
	A Basic Document Example
	iCloud
	Document Browser
	Custom Thumbnails
	Custom Previews
	Document Picker

	XML
	JSON
	Coding Keys
	Custom Decoding

	SQLite
	Core Data
	PDFs
	Image Files

	Chapter 23. Basic Networking
	HTTP Requests
	Obtaining a Session
	Session Configuration
	Session Tasks
	Session Delegate
	HTTP Request with Task Completion Function
	HTTP Request with Session Delegate
	One Session, One Delegate
	Delegate Memory Management
	Session and Delegate Encapsulation
	Downloading Table View Data
	Background Session

	On-Demand Resources
	In-App Purchases

	Chapter 24. Threads
	Main Thread
	Background Threads
	Why Threading Is Hard
	Blocking the Main Thread
	Manual Threading
	Operation
	Grand Central Dispatch
	Commonly Used GCD Methods
	Synchronous Execution
	Dispatch Groups
	One-Time Execution
	Concurrent Queues
	Checking the Queue

	App Backgrounding
	Background Processing

	Chapter 25. Undo
	Target–Action Undo
	Undo Grouping
	Functional Undo
	Undo Interface
	Shake-To-Edit
	Built-In Gestures
	Undo Menu

	Appendix A. Lifetime Events
	Application States
	Delegate Events
	Lifetime Scenarios
	Major State Changes
	Paused Inactivity
	Transient Inactivity on the iPad
	Multiple Windows
	Scene Death in the App Switcher

	Lifetime Event Timing

	Appendix B. Some Useful Utility Functions
	Core Graphics Initializers
	Center of a CGRect
	Adjust a CGSize
	Delayed Performance
	Dictionary of Views
	Constraint Issues
	Named Views
	Subviews of Given Class
	Configure a Value Class at the Point of Use
	Downsize a UIImage

	Appendix C. How Asynchronous Works

	Index
	About the Author

