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Preface

C# has now existed for around two decades. It has grown steadily in both power and
size, but Microsoft has always kept the essential characteristics intact. Each new capa‐
bility is designed to integrate cleanly with the rest, enhancing the language without
turning it into an incoherent bag of miscellaneous features.

Even though C# continues to be a fairly straightforward language at its heart, there is
a great deal more to say about it now than in its first incarnation. Because there is so
much ground to cover, this book expects a certain level of technical ability from its
readers.

Who This Book Is For
I have written this book for experienced developers—I’ve been programming for
years, and I set out to make this the book I would want to read if that experience had
been in other languages, and I were learning C# today. Whereas earlier editions
explained some basic concepts such as classes, polymorphism, and collections, I am
assuming that readers will already know what these are. The early chapters still
describe how C# presents these common ideas, but the focus is on the details specific
to C#, rather than the broad concepts.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.
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Constant width bold

Shows commands or other text that should be typed literally by the user. In
examples, highlights code of particular interest.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://oreil.ly/Programming_Csharp.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.
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We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: Programming C# 8.0 by
Ian Griffiths (O’Reilly). Copyright 2020 by Ian Griffiths, 978-1-492-05681-2.

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly has provided technology and
business training, knowledge, and insight to help companies
succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/Programming_C_sharp.

Emails us with comments or technical questions at bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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1 This was true of Microsoft’s previous cross-platform .NET offering. In 2008, Microsoft shipped Silverlight
2.0, which enabled C# to run inside browsers on Windows and macOS. Silverlight fought a losing battle
against the improving capabilities and universal reach of HTML5 and JavaScript, but its closed source nature
may not have helped its cause.

CHAPTER 1

Introducing C#

The C# programming language (pronounced “see sharp”) is used for many kinds of
applications, including websites, cloud-based systems, IoT devices, machine learning,
desktop applications, embedded controllers, mobile apps, games, and command-line
utilities. C#, along with the supporting runtime, libraries, and tools known collec‐
tively as .NET, has been center stage for Windows developers for almost two decades,
but in recent years, it has also made inroads into other platforms. In June 2016,
Microsoft released version 1.0 of .NET Core, a cross-platform version of .NET, ena‐
bling web apps, microservices, and console applications written in C# to run on
macOS and Linux, as well as on Windows.

This push into other platforms has gone hand in hand with Microsoft’s embrace of
open source development. In C#’s early history, Microsoft guarded all of its source
code closely,1 but today, pretty much everything surrounding C# is developed in the
open, with code contributions from outside of Microsoft being welcome. New lan‐
guage feature proposals are published on GitHub, enabling community involvement
from the earliest stages. In 2014, the .NET Foundation (https://dotnetfoundation.org/)
was created to foster the development of open source projects in the .NET world, and
many of Microsoft’s most important C# and .NET projects are now under the foun‐
dation’s governance (in addition to many non-Microsoft projects). This includes
Microsoft’s C# compiler, which is at https://github.com/dotnet/roslyn, and also .NET
Core, which can be found at https://github.com/dotnet/core, comprising the runtime,
class library, and tools for creating .NET projects.
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Why C#?
Although there are many ways you can use C#, other languages are always an option.
Why might you choose C# over them? It will depend on what you need to do, and
what you like and dislike in a programming language. I find that C# provides consid‐
erable power, flexibility, and performance, and works at a high enough level of
abstraction that I don’t expend vast amounts of effort on little details not directly
related to the problems my programs are trying to solve.

Much of C#’s power comes from the range of programming techniques it supports.
For example, it offers object-oriented features, generics, and functional program‐
ming. It supports both dynamic and static typing. It provides powerful list- and set-
oriented features, thanks to Language Integrated Query (LINQ). It has intrinsic
support for asynchronous programming.

More recently, C# has gained flexibility around memory management. The runtime
has always provided a garbage collector (GC) that frees developers from much of the
work associated with recovering memory that the program is no longer using. A GC
is a common feature in modern programming languages, and while it is a boon for
most programs, there are some specialized scenarios where its performance implica‐
tions are problematic, so C# 7.2 (released in 2017) added various features that enable
more explicit memory management, giving you the option to trade ease of develop‐
ment for runtime performance, but all without the loss of type safety. This enables C#
to move into certain performance-critical applications that for years were the pre‐
serve of less safe languages such as C and C++.

Of course, languages do not exist in a vacuum—high-quality libraries with a broad
range of features are essential. Some elegant and academically beautiful languages are
glorious right up until you want to do something prosaic, such as talking to a data‐
base or determining where to store user settings. No matter how powerful a set of
programming idioms a language offers, it also needs to provide full and convenient
access to the underlying platform’s services. C# is on very strong ground here, thanks
to its runtime, the class library, and extensive third-party library support.

.NET encompasses both the runtime and the main class library that C# programs use. 
The runtime part is called the Common Language Runtime (usually abbreviated to
CLR) because it supports not just C#, but any .NET language. Microsoft also offers
Visual Basic, F#, and .NET extensions for C++, for example. The CLR has a Common
Type System (CTS) that enables code from multiple languages to interoperate freely,
which means that .NET libraries can normally be used from any .NET language—F#
can consume libraries written in C#, C# can use Visual Basic libraries, and so on.

In addition to the runtime, there is an extensive class library. This library provides
wrappers for many features of the underlying operating system (OS), but it also

2 | Chapter 1: Introducing C#



2 Microsoft’s first set of .NET extensions for C++ resembled ordinary C++ more closely. It turned out to be
confusing to use the existing syntax for something quite different from ordinary C++, so Microsoft depre‐
cated the first system (Managed C++) in favor of the newer, more distinctive syntax, which is called C++/CLI.

provides a considerable amount of functionality of its own, such as collection classes
or JSON processing.

The class library built into .NET is not the whole story—many other systems provide
their own .NET libraries. For example, there are extensive libraries that enable C#
programs to use popular cloud services. As you’d expect, Microsoft provides compre‐
hensive .NET libraries for working with services in its Azure cloud platform. Like‐
wise, Amazon provides a fully featured SDK for using Amazon Web Services (AWS)
from C# and other .NET languages. And libraries do not have to be associated with
frameworks. There’s a large ecosystem of .NET libraries, some commercial and some
free and open source, including mathematical utilities, parsing libraries, and user
interface (UI) components, to name just a few. Even if you get unlucky and need to
use an OS feature that doesn’t have any .NET library wrappers, C# offers various
mechanisms for working with other kinds of APIs, such as the C-style APIs available
in Win32, macOS, and Linux, or APIs based on the Component Object Model
(COM) in Windows.

Finally, with .NET having been around for about two decades, many organizations
have invested extensively in technology built on this platform. So C# is often the nat‐
ural choice for reaping the rewards of these investments.

In summary, with C# we get a strong set of abstractions built into the language, a
powerful runtime, and easy access to an enormous amount of library and platform
functionality.

C#’s Defining Features
Although C#’s most superficially obvious feature is its C-family syntax, perhaps its
most distinctive feature is that it was the first language designed to be a native in the
world of the CLR. As the name suggests, the CLR is flexible enough to support many
languages, but there’s an important difference between a language that has been
extended to support the CLR, and one that puts it at the center of its design.
The .NET extensions in Microsoft’s C++ compiler illustrate this—the syntax for
using those features is visibly different from standard C++, making a clear distinction
between the native world of C++ and the outside world of the CLR. But even without
different syntax,2 there would still be friction when two worlds have different ways of
working. For example, if you need a dynamically resizable collection of numbers,
should you use a standard C++ collection class such as vector<int>, or one
from .NET such as List<int>? Whichever you choose, it will be the wrong type some

C#’s Defining Features | 3



of the time: C++ libraries won’t know what to do with a .NET collection, while .NET
APIs won’t be able to use the C++ type.

C# embraces .NET, both the runtime and the class library, so these dilemmas do not
arise. In the scenario just discussed, List<int> has no rival. There is no friction when
using .NET’s class library because it is built for the same world as C#.

The first version of C# presented a programming model that was very closely related
to the underlying CLR’s model. C# has gradually added its own abstractions over the
years, but these have been designed to fit well with the CLR. This gives C# a distinc‐
tive feel. It also means that if you want to understand C#, you need to understand the
CLR and the way in which it runs code.

Managed Code and the CLR
For years, the most common way for a compiler to work was to process source code,
and to produce output in a form that could be executed directly by the computer’s
CPU. Compilers would produce machine code—a series of instructions in whatever
binary format was required by the kind of CPU the computer had. Many compilers
still work this way, but the C# compiler does not. Instead, it uses a model called man‐
aged code.

With managed code, the compiler does not generate the machine code that the CPU
executes. Instead, the compiler produces a form of binary code called the intermedi‐
ate language (IL). The executable binary is produced later, usually, although not
always, at runtime. The use of IL enables features that are hard or even impossible to
provide under the more traditional model.

Perhaps the most visible benefit of the managed model is that the compiler’s output is
not tied to a single CPU architecture. You can write a .NET component that can run
on the 32-bit x86 architecture that PCs have used for decades, but that will also work
well in the newer 64-bit update to that design (x64), and even on completely different
architectures such as ARM. (For example, .NET Core introduced the ability to run on
ARM-based devices such as the Raspberry Pi.) With a language that compiles directly
to machine code, you’d need to build different binaries for each of these. But
with .NET, you can compile a single component that can run on any of them, and it
would even be able to run on platforms that weren’t supported at the time you com‐
piled the code if a suitable runtime became available in the future. More generally,
any kind of improvement to the CLR’s code generation—whether that’s support for
new CPU architectures, or just performance improvements for existing ones—is
instantly of benefit to all .NET languages. For example, older versions of the CLR did
not take advantage of the vector processing extensions available on modern x86 and
x64 processors, but the current versions will now often exploit these when generating
code for loops. All code running on current versions of .NET Core benefits from this,
including code that was written years before this enhancement was added.
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3 .NET Native is an exception: it does not support runtime JIT, so it does not offer tiered compilation.

The exact moment at which the CLR generates executable machine code can vary. 
Typically, it uses an approach called just-in-time (JIT) compilation, in which each
individual function is compiled the first time it runs. However, it doesn’t have to
work this way. There are various ways in which .NET code can be compiled ahead of
time (AoT). There’s a tool called NGen which can do this as a post-installation step. 
Windows Store Apps built for the Universal Windows Platform (UWP) use the .NET
Native build tools, which do this earlier, as part of the build. .NET Core 3.0 adds a
new tool called crossgen, which enables any .NET Core application (not just UWP
apps) to use build-time native code generation. However, generation of executable
code can still happen at runtime even when you use these tools3—the runtime’s tiered
compilation feature may choose to recompile a method dynamically to optimize it
better for the ways it is being used at runtime. (It can do this whether you’re using JIT
or AoT.) The virtualized nature of managed execution is designed to make such
things possible in a way that’s invisible to your code, although it can occasionally
make its presence felt through more than just performance. For example, virtualized
execution leaves some latitude for when and how the runtime performs certain initi‐
alization work, and you can sometimes see the results of its optimizations causing
things to happen in a surprising order.

Managed code has ubiquitous type information. The file formats dictated by the CLI
require this to be present, because it enables certain runtime features. For exam‐
ple, .NET offers various automatic serialization services, in which objects can be con‐
verted into binary or textual representations of their state, and those representations
can later be turned back into objects, perhaps on a different machine. This sort of ser‐
vice relies on a complete and accurate description of an object’s structure, something
that’s guaranteed to be present in managed code. Type information can be used in
other ways. For example, unit test frameworks can use it to inspect code in a test
project and discover all of the unit tests you have written. This relies on the CLR’s
reflection services, which are the topic of Chapter 13.

Although C#’s close connection with the runtime is one of its main defining features,
it’s not the only one. There’s a certain philosophy underpinning C#’s design.

Prefer Generality to Specialization
C# favors general-purpose language features over specialized ones. Over the years,
Microsoft has expanded C# several times, and the language’s designers always have
specific scenarios in mind for new features. However, they have always tried hard to
ensure that each new element they add is useful beyond these primary scenarios.
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For example, a few years ago Microsoft decided to add features to C# to make data‐
base access feel well integrated with the language. The resulting technology, Language
Integrated Query (LINQ, described in Chapter 10), certainly supports that goal, but
Microsoft achieved this without adding any direct support for data access to the lan‐
guage. Instead, Microsoft introduced a series of quite diverse-seeming capabilities.
These included better support for functional programming idioms, the ability to add
new methods to existing types without resorting to inheritance, support for anony‐
mous types, the ability to obtain an object model representing the structure of an
expression, and the introduction of query syntax. The last of these has an obvious
connection to data access, but the rest are harder to relate to the task at hand. None‐
theless, these can be used collectively in a way that makes certain data access tasks
significantly simpler. But the features are all useful in their own right, so as well as
supporting data access, they enable a much wider range of scenarios. For example,
these additions (which arrived in C# 3.0) made it very much easier to process lists,
sets, and other groups of objects, because the new features work for collections of
things from any origin, not just databases.

One illustration of this philosophy of generality was a language feature that was pro‐
totyped for C#, but which its designers ultimately chose not to go ahead with. The
feature would have enabled you to write XML directly in your source code, embed‐
ding expressions to calculate values for certain bits of content at runtime. The proto‐
type compiled this into code that generated the completed XML at runtime. 
Microsoft Research demonstrated this publicly, but this feature didn’t ultimately
make it into C#, although it did later ship in another of Microsoft’s .NET languages,
Visual Basic, which also got some specialized query features for extracting informa‐
tion from XML documents. Embedded XML expressions are a relatively narrow
facility, only useful when you’re creating XML documents. As for querying XML
documents, C# supports this functionality through its general-purpose LINQ fea‐
tures, without needing any XML-specific language features. XML’s star has waned
since this language concept was mooted, having been usurped in many cases by JSON
(which will doubtless be eclipsed by something else in years to come). Had embedded
XML made it into C#, it would by now feel like a slightly anachronistic curiosity.

The new features added in subsequent versions of C# continue in the same vein. For
example, the deconstruction and pattern matching features added in C# versions 7
and 8 are aimed at making life easier in subtle but useful ways, and are not limited to
any particular application area.

C# Standards and Implementations
Before we can get going with some actual code, we need to know which implementa‐
tion of C# and the runtime we are targeting. There are specifications that define lan‐
guage and runtime behavior for all C# implementations, as the next sidebar, “C#, the
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CLR, and Standards”, describes. This has made it possible for multiple implementa‐
tions of C# and the runtime to emerge. At the time of writing, there are three in wide‐
spread use: .NET Framework, .NET Core, and Mono. Somewhat confusingly,
Microsoft is behind all three of these, although it didn’t start out that way.

C#, the CLR, and Standards
The standards body ECMA has published two OS-independent specifications that
effectively define the C# language and runtime: ECMA-334 is the C# Language Speci‐
fication, and ECMA-335 defines the Common Language Infrastructure (CLI), the vir‐
tual environment in which programs written in C# (and other .NET languages) run.
Versions of these documents have also been published by the International Standards
Organization as ISO/IEC 23270:2018 and ISO/IEC 23271:2012, respectively. The
“2018” suggests that the C# specification is more up to date than it really is: the
ECMA and ISO language standards both correspond to version 5.0 of C#. At the time
of writing, ECMA is working on an updated language specification, but be aware that
these particular standards are typically several years behind the state of the art. While
the IEC CLI standard has an even older date, 2012 (as does ECMA-335), the runtime
specifications change less often than the language, so the CLI spec is much closer to
current implementations, despite the names suggesting the opposite.

ECMA-335 defines the CLI, which includes all the behavior required from the run‐
time (such as .NET’s CLR, or the Mono runtime), and more besides. It defines not
just the runtime behavior (which it calls the Virtual Execution System, or VES), but
also the file format for executable and library files, and the Common Type System.
Additionally, it defines a subset of the CTS that languages are expected to be able to
support to guarantee interoperability between languages, called the Common Lan‐
guage Specification (CLS).

So you could say that Microsoft’s CLI implementation is all of .NET rather than just
the CLR, although .NET includes a lot of additional features not in the CLI specifica‐
tion. (For example, the class library that the CLI demands makes up only a small sub‐
set of .NET’s much larger library.) The CLR is effectively .NET’s VES, but you hardly
ever see the term VES used outside of the specification, which is why I mostly talk
about the CLR (or just the runtime) in this book. However, the terms CTS and CLS
are more widely used, and I’ll refer to them again in this book.

The Mono project was launched in 2001, and did not originate from Microsoft. (This
is why it doesn’t have .NET in its name—it can use the name C# because that’s what
the standards call the language, but .NET is a Microsoft brand name.) Mono started
out with the goal of enabling Linux desktop application development in C#, but it
went on to add support for iOS and Android. That crucial move helped Mono find its
niche, because it is now mainly used to create cross-platform mobile device applica‐
tions in C#. It was open source from the start, and has been supported by a variety of
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companies over its existence. At the time of writing this, Mono is under the steward‐
ship of a company called Xamarin, and has been since 2011. Microsoft acquired
Xamarin in 2016, and for now retains it as a distinct brand, positioning its Mono
runtime as the way to run C# code on mobile devices.

So what about the other two implementations, both of which seem to be called .NET?

Many Microsoft .NETs (Temporarily)
For about seven years, there was only one current version of .NET at any given time,
but since 2008 the picture has been less clear. This was due at first to specialized var‐
iants of .NET associated with various UI platforms coming and going, including Sil‐
verlight, several Windows Phone variants, and Windows 8’s introduction of Store
Applications. Though some of these are still supported, they’re all dead ends except
for Store Applications, which turned into Universal Windows Platform (UWP) apps.
UWP has moved on to .NET Core, so these other .NET lineages are obsolete.

But even ignoring those effectively defunct forks of .NET, as I write this Microsoft
still ships two current versions of .NET: the .NET Framework (Windows only,
closed-source) and .NET Core (cross-platform, open source). In May of 2019, Micro‐
soft announced that it intends to revert to a single current version in November 2020.
In the long run this will reduce confusion, but in the near term it complicates matters
further by introducing yet another version to be aware of.

One slightly baffling aspect of this is the minor variations in naming across the differ‐
ent .NETs. For the first 15 years or so, .NET Framework meant the combination of
two things: a runtime and the class library. Its runtime was called the CLR. The class
library went by various names including Base Class Library (BCL; a confusing name,
because the ECMA specifications define the term “BCL” as something much nar‐
rower), or the Framework Class Library.

Today, we also have .NET Core. Its runtime is called the .NET Core Common Lan‐
guage Runtime (or just CoreCLR), which is a straightforward enough name: we can
talk about the .NET Core CLR or the .NET Framework CLR, and it’s obvious which
one we mean. And throughout this book, when I talk about the CLR or the runtime
without any particular qualification, it’s because I’m saying something that applies to
both implementations. Unfortunately, .NET Core calls its class library the .NET Core
Framework (or CoreFX). This is unhelpful, because before .NET Core, the Frame‐
work was the combination of the CLR and the library. And just to muddy the waters
further, many people at Microsoft now refer to the .NET Framework as the “desktop”
framework to make it clear that they’re not talking about .NET Core. (This was
always confusing because plenty of people use this “desktop” version for server appli‐
cations. Moreover, the first ever release of .NET Core was for the UWP, supporting
only Windows applications. A year went by before Microsoft released a supported

8 | Chapter 1: Introducing C#



4 Strangely, this first, UWP-supporting release in 2015 apparently never received an official version number.
The .NET Core 1.0 release is dated June 2016, about a year later.

version that could do anything else.4 And now that .NET Core 3.0 has added support
on Windows for the two .NET desktop UI frameworks—Windows Presentation
Foundation (WPF) and Windows Forms—most new desktop applications will tar‐
get .NET Core, not the so-called .NET “desktop”.) Just in case that’s not all crystal
clear, Table 1-1 summarizes the current situation.

Table 1-1. The names of .NET’s component parts

Platform Runtime Class library
.NET Framework (aka .NET desktop) .NET CLR .NET Framework Class Library

.NET Core .NET Core CLR .NET Core Framework

In 2020, assuming Microsoft sticks to its plan, the names will all adjust again, with
both .NET Core and .NET Framework being superseded by plain “.NET”. Microsoft
has not settled on definitive names for the corresponding runtime and library parts at
the time of writing.

But until that time, we have two “current” versions. Each can do things the other can‐
not, which is why both ship concurrently. .NET Framework only runs on Windows,
whereas .NET Core supports Windows, macOS, and Linux. Although this makes
the .NET Framework less widely usable, it means it can support some Windows-
specific features. For example, there is a section of the .NET Framework Class Library
dedicated to working with Windows speech synthesis and recognition services. This
isn’t possible on .NET Core because it might be running on Linux, where equivalent
features either don’t exist or are too different to be presented through the same .NET
API.

The .NET due to ship in 2020 is essentially the next version of .NET Core, just with a
snappier name. .NET Core is where most of the new development of .NET has occur‐
red for the last few years. .NET Framework is still fully supported, but is already fall‐
ing behind. For example, version 3.0 of Microsoft’s web application framework,
ASP.NET Core, will only run on .NET Core, and not .NET Framework. So .NET
Framework’s retirement, and .NET Core’s promotion to the one true .NET, is the
inevitable conclusion of a process that has been underway for a few years.

Targeting Multiple .NET Versions with .NET Standard
The multiplicity of runtimes, each with their own different versions of the class libra‐
ries, presents a challenge for anyone who wants to make their code available to other
developers. There’s a package repository for .NET components at http://nuget.org,
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which is where Microsoft publishes all of the .NET libraries it produces that are not
built into .NET itself, and it is also where most .NET developers publish libraries
they’d like to share. But which version should you build for? This is a two-
dimensional question: there is the specific implementation (.NET Core, .NET Frame‐
work, Mono), and also the version (e.g., .NET Core 2.2 or 3.0, .NET Framework 4.7.2
or 4.8). And there are the older .NET variants, such as Windows Phone or Silverlight
—Microsoft still supports many of these, which includes ongoing support through
various libraries on NuGet. Many authors of popular open source packages dis‐
tributed through NuGet also support a plethora of older framework types and
versions.

Initially, people dealt with multiple versions by building multiple variants of their
libraries. When you distribute .NET libraries via NuGet, you can embed multiple sets
of binaries in the package targeting different flavors of .NET. However, one major
problem with this is that as new forms of .NET have appeared over the years, existing
libraries wouldn’t run on all newer runtimes. A component written for .NET Frame‐
work 4.0 would work on all subsequent versions of .NET Framework, but not
on .NET Core. Even if the component’s source code was entirely compatible
with .NET Core, you would need a separate version compiled to target that platform.
And if the author of a library that you use hadn’t provided explicit support for .NET
Core, that would stop you from using it. This was bad for everyone. Component
authors found themselves on a treadmill of having to churn out new variants of their
component, and since that relies on those authors having the inclination and time to
do this work, component consumers might find that not all of the components they
want to use are available on the platform they want to use.

To avoid this, Microsoft introduced .NET Standard, which defines common subsets
of the .NET class library’s API surface area. If a NuGet package targets, say, .NET
Standard 1.0, this guarantees that it will be able to to run on .NET Framework ver‐
sions 4.5 or later, .NET Core 1.0 or later, or Mono 4.6 or later. And critically, if yet
another variant of .NET emerges, then as long as it too supports .NET Standard 1.0,
existing components will be able to run without modification, even though that new
platform didn’t even exist when they were written.

.NET libraries published on NuGet will target the lowest version of .NET Standard
that they can if they want to ensure the broadest reach. Versions 1.1 through 1.6
gradually added more functionality in exchange for supporting a smaller range of tar‐
gets. (E.g., if you want to use a .NET Standard 1.3 component on .NET Framework, it
needs to be .NET Framework 4.6 or later.) .NET Standard 2.0 was a larger leap for‐
ward, and marks an important point in .NET Standard’s evolution: according to
Microsoft’s current plans, this will be the highest version number able to run
on .NET Framework. Versions of .NET Framework from 4.7.2 onward fully support
it, but .NET Standard 2.1 will not run on any version of .NET Framework now or in
the future. It will run on .NET Core 3.0 and .NET (i.e., future versions of .NET Core).
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Future versions of Xamarin’s Mono runtime are also likely to support it, but this is
the end of the road for the classic .NET Framework.

What does this all mean for C# developers? If you are writing code that will never be
used outside of a particular project, you will normally just target the latest version
of .NET Core or, if you need some Windows-specific feature it doesn’t offer, you
might target .NET Framework, and you will be able to use any NuGet package that
targets .NET Standard, up to and including v2.0 (which means the overwhelming
majority of what’s on NuGet will be available to you). If you are writing libraries that
you intend to share, you should target .NET Standard instead. Microsoft’s develop‐
ment tools choose .NET Standard 2.0 by default for new class libraries, which is a rea‐
sonable choice—you could open your library up to a wider audience by dropping to a
lower version, but today, the versions of .NET that support .NET Standard 2.0 are
widely available, so you would only contemplate targeting older versions if you want
to support developers still using older .NET Frameworks. (Microsoft does this in
most of its NuGet libraries, but you don’t necessarily have to tie yourself to the same
regime of support for older versions.) If you want to use certain newer features (such
as the memory-efficient types described in Chapter 18), you may need to target a
more recent version of .NET Standard. In any case, the development tools will ensure
that you only use APIs available in whichever version of .NET Standard you declare
support for.

Microsoft provides more than just a language and the various runtimes with its asso‐
ciated class libraries. There are also development environments that can help you
write, test, debug, and maintain your code.

Visual Studio and Visual Studio Code
Microsoft offers three desktop development environments: Visual Studio, Visual Stu‐
dio for Mac, and Visual Studio Code. All three provide the basic features—such as a
text editor, build tools, and a debugger—but Visual Studio provides the most exten‐
sive support for developing C# applications, whether those applications will run on
Windows or other platforms. It has been around the longest—for as long as C#—so it
comes from the pre-open source days, and has not moved over to open source devel‐
opment. The various editions available range from free to eye-wateringly expensive.

Visual Studio is an Integrated Development Environment (IDE), so it takes an
“everything included” approach. In addition to a fully featured text editor, it offers
visual editing tools for UIs. There is deep integration with source control systems
such as git, and with online systems providing source repositories, issue tracking, and
other Application Lifecycle Management (ALM) features such as GitHub and Micro‐
soft’s Azure DevOps system. Visual Studio offers built-in performance monitoring
and diagnostic tools. It has various features for working with applications developed
for and deployed to Microsoft’s Azure cloud platform. Its Live Share feature offers a
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convenient way for remote developers to work together to aid pairing or code review.
It has the most extensive set of refactoring features out of the three environments
described here.

In 2017 Microsoft released Visual Studio for Mac. This is not a port of the Windows
version. It grew out of a product called Xamarin, a Mac-based development environ‐
ment specializing in building mobile apps in C# that run on the Mono runtime.
Xamarin was originally an independent product, but when, as discussed earlier,
Microsoft acquired the company that wrote it, Microsoft integrated various features
from the Windows version of Visual Studio when it moved the product under the
Visual Studio brand.

Visual Studio Code (often shortened to VS Code) was first released in 2015. It is open
source and cross platform, supporting Linux as well as Windows and Mac. It is based
on the Electron platform and is written predominantly in TypeScript. (This means it
really is the same program on all operating systems.) VS Code is a more lightweight
product than Visual Studio: a basic installation of VS Code has little more than text
editing support. However, as you open up files, it will discover downloadable exten‐
sions that, if you choose to install them, can add support for C#, F#, TypeScript, Pow‐
erShell, Python, and a wide range of other languages. (The extension mechanism is
open, so anyone who wants to can publish an extension.) So although in its initial
form it is less of an Integrated Development Environment (IDE) and more like a sim‐
ple text editor, its extensibility model makes it pretty powerful. The wide range of
extensions has led to VS Code becoming remarkably popular outside of the world of
Microsoft languages, and this in turn has encouraged a virtuous cycle of even greater
growth in the range of extensions.

Visual Studio offers the most straightforward path to getting started in C#—you
don’t need to install any extensions or modify any configuration to get up and run‐
ning. So I’ll start with a quick introduction to working in Visual Studio.

You can download the free version of Visual Studio, called Visual
Studio Community, from https://www.visualstudio.com/.

Any nontrivial C# project will have multiple source code files, and in Visual Studio,
these will belong to a project. Each project builds a single output, or target. The build
target might be as simple as a single file—a C# project could produce an executable
file or a library, for example—but some projects produce more complicated outputs.
For instance, some project types build websites. A website will normally contain mul‐
tiple files, but collectively, these files represent a single entity: one website. Each
project’s output will be deployed as a unit, even if it consists of multiple files.
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Executables typically have an .exe file extension in Windows, while
libraries use .dll (historically short for dynamic link library). .NET
Core, however, puts all generated code in .dll files. Starting
with .NET Core 3.0, it can generate a bootstrapping executable
(with an .exe extension on Windows), but this just starts the run‐
time and then loads the .dll containing the main compiled out‐
put. .NET Framework compiles the application directly into a self-
bootstrapping .exe (with no separate .dll). In either case, the only
difference between the main compiled output of an application and
a library is that the former specifies an application entry point.
Both file types can export features to be consumed by other com‐
ponents. These are both examples of assemblies, the subject of
Chapter 12.

Project files usually have extensions ending in proj. For example, most C# projects
have a .csproj extension, while C++ projects use .vcxproj. If you examine these files
with a text editor, you’ll find that they usually contain XML. (That’s not always true.
Visual Studio is extensible, and each type of project is defined by a project system that
can use whatever format it likes, but the built-in languages use XML.) These files
describe the contents of the project and configure how it should be built. The XML
format that Visual Studio uses for C# project files can also be processed by the
msbuild tool, and also by the dotnet command-line tool if you’ve installed the .NET
Core SDK, which enables you to build projects from the command line. VS Code can
also work with these files.

You will often want to work with groups of projects. For example, it is good practice
to write tests for your code, but most test code does not need to be deployed as part
of the application, so you would typically put automated tests into separate projects.
And you may want to split up your code for other reasons. Perhaps the system you’re
building has a desktop application and a website, and you have common code you’d
like to use in both applications. In this case, you’d need one project that builds a
library containing the common code, another producing the desktop application exe‐
cutable, another to build the website, and three more projects containing the unit
tests for each of the main projects.

Visual Studio helps you work with multiple related projects through what it calls a
solution. A solution is simply a collection of projects, and while they are usually
related, they don’t have to be—a solution is really just a container. You can see the
currently loaded solution and all of its projects in Visual Studio’s Solution Explorer.
Figure 1-1 shows a solution with two projects. (I’m using Visual Studio 2019 here,
which is the latest version at the time of writing.) Solution Explorer shows a tree
view, in which you can expand each project to see its constituent files. This panel is
normally open at the top right of Visual Studio, but it can be hidden or closed. You
can reopen it with the View→Solution Explorer menu item.
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Figure 1-1. Solution Explorer

Visual Studio can load a project only if it is part of a solution. When you create a
brand-new project, you can add it to an existing solution, but if you don’t, Visual Stu‐
dio will create one for you. If you try to open an existing project file, Visual Studio
will look for an associated solution, and if it can’t find one, it will create one. That’s
because lots of operations in Visual Studio are scoped to the currently loaded solu‐
tion. When you build your code, it’s normally the solution that you build. Configura‐
tion settings, such as a choice between Debug and Release builds, are controlled at the
solution level. Global text searches can search all the files in the solution.

A solution is just another text file, with an .sln extension. Curiously, it’s not an XML
file—solution files use their own text-based format, although it’s one that msbuild
understands, as does VS Code. If you look at the folder containing your solution, you
might also notice a .vs folder. (Visual Studio marks this as hidden, but if you have
configured Windows File Explorer to show hidden files, as developers often do, you’ll
see it.) This contains user-specific settings, such as a record of which files you have
open, and which project or projects to launch when starting debug sessions. That
ensures that when you open a project, everything is more or less where you left it
when you last worked on the project. Because these are per-user settings, you do not
normally put .vs folders into source control.

A project can belong to more than one solution. In a large codebase, it’s common to
have multiple .sln files with different combinations of projects. You would typically
have a master solution that contains every single project, but not all developers will
want to work with all the code all of the time. Someone working on the desktop
application in our hypothetical example will also want the shared library, but proba‐
bly has no interest in loading the web project.

I’ll show how to create a new project and solution, and I’ll then walk through the var‐
ious features Visual Studio adds to a new C# project as an introduction to the lan‐
guage. I’ll also show how to add a unit test project to the solution.
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This next section is intended for developers who are new to Visual
Studio. This book is aimed at experienced developers, but does not
assume any prior experience in C# or Visual Studio, so if you are
already familiar with Visual Studio’s basic operation, you might
want to skim through this next section quickly.

Anatomy of a Simple Program
If you’re using Visual Studio 2019, the simplest way to create a new project is through
the “Get started” window that opens when you run it, as shown in Figure 1-2.

Figure 1-2. The Get started window

If you click the “Create a new project” button at the bottom right, it will open the new
project dialog. Alternatively, if Visual Studio is already running (or if you’re using an
older version that doesn’t show this “Get started” window), you can use Visual Stu‐
dio’s File→New→Project menu item, or if you prefer keyboard shortcuts, type Ctrl-
Shift-N. Any of these actions opens the “Create a new project” dialog, shown in
Figure 1-3.
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Figure 1-3. The Create a new project dialog

This window offers a list of application types. The exact set will depend on what edi‐
tion of Visual Studio you have installed, and also which development workloads you
chose during installation. As long as you have installed at least one of the workloads
that includes C#, you should see the option to create a Console App (.NET Core). If
you select this and click Next, you will see the “Configure your new project” dialog,
shown in Figure 1-4.

This lets you choose a name for your new project, and also for its containing solution
(which defaults to the same name). You can also choose the location on disk for the
project. The Project name field affects three things. It controls the name of the .csproj
file on disk. It also determines the filename of the compiled output. Finally, it sets the
default namespace for newly created code, which I’ll explain when I show the code.
(You can change any of these later if you wish.)
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Figure 1-4. The Configure your new project dialog

Visual Studio offers a “Place solution and project in the same directory” checkbox
that lets you decide how the associated solution is created. If you check it, the project
and solution will have the same name and will live in the same folder on disk. But if
you plan to add multiple projects to your new solution, you will typically want the
solution to be in its own folder, with each project stored in a subfolder. If you leave
this checkbox unchecked, Visual Studio will set things up that way, and also enable
the “Solution name” text box so you can give the solution a different name from the
first project, if necessary. I’m intending to add a unit test project to the solution as
well as the program, so I’ve left the checkbox unchecked. I’ve set the project name to
HelloWorld, and Visual Studio has set the solution name to match, which I’m happy
with here. Clicking Create creates my new C# project. So I currently have a solution
with a single project in it.

Adding a Project to an Existing Solution
To add a unit test project to the solution, I can go to the Solution Explorer panel,
right-click on the solution node (the one at the very top), and choose Add→New
Project. This opens a dialog almost identical to the one in Figure 1-3, but with the
title showing “Add a new project” instead. I want to add a test project. I could scroll
through the list of project types, but there are faster ways. I could type “Test” into the
search box at the top of the dialog. Or, I could click on the “Project type” button at
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the top right, and select Test from its drop-down. Either approach will show several
different test project types. If you see ones for languages other than C#, click the Lan‐
guage button next to the search box to filter down to just C#. Even then you’ll see a
few project types, because Visual Studio supports several different test frameworks.
I’ll choose MSTest Test Project (.NET Core).

Clicking Next opens the “Configure your new project” dialog again. This new project
will contain tests for my HelloWorld project, so I’ll call it HelloWorld.Tests. (Noth‐
ing demands that naming convention, by the way—I could have called it anything.)
When I click OK, Visual Studio creates a second project, and both are now listed in
Solution Explorer, which will look similar to Figure 1-1.

The purpose of this test project will be to ensure that the main project does what it’s
supposed to. I happen to prefer the style of development where you write your tests
before you write the code being tested, so we’ll start with the test project. To be able
to do its job, my test project will need access to the code in the HelloWorld project.
Visual Studio does not attempt to guess which projects in a solution may depend on
which other projects. While there are only two here, even if it were capable of guess‐
ing, it would most likely guess wrong, because HelloWorld will produce an exe‐
cutable program, while unit test projects happen to produce a library. The most
obvious guess would be that the program would depend on the library, but here we
have the somewhat unusual requirement that our library (which is actually a test
project) needs access to the code in our application.

Referencing One Project from Another
To tell Visual Studio about the relationship between these two projects, I right-click
on the HelloWorld.Test project’s Dependencies node in Solution Explorer and select
the Add Reference menu item. This opens the Reference Manager dialog, which you
can see in Figure 1-5. On the left, you choose the sort of reference you want—in this
case, I’m setting up a reference to another project in the same solution, so I have
expanded the Projects section and selected Solution. This lists all the other projects in
the middle, and there is just one in this case, so I check the HelloWorld item and
click OK.
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Figure 1-5. The Reference Manager dialog

Referencing External Libraries
Extensive though the .NET class library may be, it does not cover all eventualities.
There are thousands of useful libraries available for .NET, many of them free. Micro‐
soft is shipping more and more libraries separately from the main .NET class library. 
Visual Studio supports adding references using the NuGet system mentioned earlier.
In fact, the example is already using it—although we chose Microsoft’s own “MSTest”
test framework that’s not built into .NET. (You generally don’t need unit testing serv‐
ices at runtime, so there’s no need to build them into the class library that ships with
the platform.) If you expand the Dependencies node for the HelloWorld.Tests project
in Solution Explorer, and then expand the NuGet child node, you’ll see various
NuGet packages, as Figure 1-6 shows. (You might see higher version numbers if you
try this, as these libraries are under constant development.)

You can see four test-related packages, all added for us as part of Visual Studio’s test
project template. NuGet is a package-based system, so rather than adding a reference
to a single DLL, you add a reference to a package that may contain multiple DLLs,
and any other files that may be needed to use the library.
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Figure 1-6. NuGet references

The public repository of packages that Microsoft runs on the http://nuget.org website
hosts copies of all of the libraries that Microsoft does not include directly in the .NET
class library, but which it nonetheless fully supports. (The testing framework used
here is one example. The ASP.NET Core web framework is another.) This central
NuGet repository is not just for Microsoft. Anyone can make packages available on
this site, so this is where you will find the vast majority of free .NET libraries.

Visual Studio can search in the main NuGet repository. If you right-click on a
project, or on its Dependencies node, and select Manage NuGet Packages, it will open
the NuGet Package Manager window, shown in Figure 1-7. On the left is a list of
packages from the NuGet repository. If you select Installed at the top, it will show just
the packages you are already using. If you click Browse, it shows popular available
packages by default, but it also provides a text box with which you can search for spe‐
cific libraries.
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Figure 1-7. NuGet Package Manager

It is also possible to host your own NuGet repositories. For example, many compa‐
nies run repositories behind their firewalls to make internally developed packages
available to other employees, without having to make them publicly available. The
https://myget.org site specializes in online hosting, and private package hosting is a
feature of Microsoft’s Azure DevOps and also GitHub. Or you can just host a reposi‐
tory on a locally accessible filesystem. You can configure NuGet to search any num‐
ber of repositories in addition to the main public one.

One very important feature of NuGet packages is that they can specify dependencies
on other packages. For example, if you look at the Microsoft.NET.Test.Sdk package
in Figure 1-6, you can see from the little triangle next to it that its treeview node is
expandable. Expanding it reveals that it depends on some other packages, including
Microsoft.CodeCoverage. Because packages describe their dependencies, Visual Stu‐
dio can automatically fetch all of the packages you require.

Writing a Unit Test
Now I need to write a test. Visual Studio has provided me with a test class to get me
started, in a file called UnitTest1.cs. I want to pick a more informative name. There
are various schools of thought as to how you should structure your unit tests. Some
developers advocate one test class for each class you wish to test, but I like the style
where you write a class for each scenario in which you want to test a particular class,
with one method for each of the things that should be true about your code in that
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scenario. As you’ve probably guessed from the project names I’ve chosen, my pro‐
gram will only have one behavior: it will display a “Hello, world!” message when it
runs. So I’ll rename the UnitTest1.cs source file to WhenProgramRuns.cs. This test
should verify that the program shows the required message when it runs. The test
itself is very simple, but unfortunately, getting to the point where we can run this par‐
ticular test is a bit more involved. Example 1-1 shows the whole source file; the test is
near the end, in bold.

Example 1-1. A unit test class for our first program

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace HelloWorld.Tests
{
    [TestClass]
    public class WhenProgramRuns
    {
        private string _consoleOutput;

        [TestInitialize]
        public void Initialize()
        {
            var w = new System.IO.StringWriter();
            Console.SetOut(w);

            Program.Main(new string[0]);

            _consoleOutput = w.GetStringBuilder().ToString().Trim();
        }

        [TestMethod]
        public void SaysHelloWorld()
        {
            Assert.AreEqual("Hello, world!", _consoleOutput);
        }
    }
}

I will explain each of the features in this file once I’ve shown the program itself. For
now, the most interesting part of this example is the SaysHelloWorld method, which
defines some behavior we want our program to have. The test states that the pro‐
gram’s output should be the “Hello, world!” message. If it’s not, this test will report a
failure. The test itself is pleasingly simple, but the code that sets things up for the test
is a little awkward. The problem here is that the obligatory first example that all pro‐
gramming books are required by law to show isn’t very amenable to unit testing of
individual classes or methods, because you can’t really test anything less than the
whole program. We want to verify that the program writes a particular message to
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the console. In a real application, you might devise some sort of abstraction for out‐
put, and your unit tests would provide a fake version of that abstraction for test pur‐
poses. But I want my application (which Example 1-1 merely tests) to keep to the
spirit of the standard “Hello, world!” example. To avoid overcomplicating the main
program, I’ve made my test intercept console output so that I can check that the pro‐
gram displayed what was intended. (Chapter 15 will describe the features I’m using
from the System.IO namespace to achieve this.)

There’s a second challenge. Normally, a unit test will, by definition, test some isolated
and usually small part of the program. But in this case, the program is so simple that
there is only one feature of interest, and that feature executes when we run the pro‐
gram. This means my test will need to invoke the program’s entry point. I could have
done that by launching my HelloWorld program in a whole new process, but captur‐
ing its output would have been rather more complex than the in-process interception
done by Example 1-1. Instead, I’m just invoking the program’s entry point directly.
In a C# application, the entry point is usually a method called Main defined in a class
called Program. Example 1-2 shows the relevant line from Example 1-1, passing an
empty array to simulate running the program with no command-line arguments.

Example 1-2. Calling a method

Program.Main(new string[0]);

Unfortunately, there’s a problem with that. A program’s entry point is typically only
accessible to the runtime—it’s an implementation detail of your program, and there’s
not normally any reason to make it publicly accessible. However, I’ll make an excep‐
tion here, because that’s where the only code in this example will live. So to get the
code to compile, we’ll need to make a change to our main program. Example 1-3
shows the relevant code from the Program.cs file in the HelloWorld project. (I’ll show
the whole thing shortly.)

Example 1-3. Making the program entry point accessible

public class Program
{
    public static void Main(string[] args)
    {
...

I’ve added the public keyword to the start of two lines to make the code accessible to
the test, enabling Example 1-1 to compile. There are other ways I could have achieved
this. I could have left the class as it is, made the method internal, and then applied
the InternalsVisibleToAttribute to my program to grant access just to the test
suite. But internal protection and assembly-level attributes are topics for later chap‐

Anatomy of a Simple Program | 23



ters (Chapters 3 and 14, respectively), so I decided to keep it simple for this first
example. I’ll show the alternative approach in Chapter 14.

I’m now ready to run my test. To do this, I open Visual Studio’s Unit Test Explorer
panel with the Test→Windows→Test Explorer menu item. Next, I build the project
with the Build→Build Solution menu. Once I’ve done that, the Unit Test Explorer
shows a list of all the unit tests defined in the solution. It finds my SaysHelloWorld
test, as you can see in Figure 1-8. Clicking on the Run All button (the double arrow at
the top left) runs the test, which fails because we’ve only written the test so far—we’ve
not done anything to our main program. You can see the error at the bottom of
Figure 1-8. It says it was expecting a “Hello, world!” message, but the actual console
output was different. (Not by much, admittedly—Visual Studio did in fact add code
to my console application that shows a message. But it does not have the comma my
test requires, and the w has the wrong case.)

Figure 1-8. Unit Test Explorer

So it’s time to look at our HelloWorld program and correct the code. When I created
the project, Visual Studio generated various files, including Program.cs, which con‐
tains the program’s entry point. Example 1-4 shows this file, including the modifica‐
tions I made in Example 1-3. I will explain each element in turn, as it provides a
useful introduction to some important elements of C# syntax and structure.

Example 1-4. Program.cs

using System;

namespace HelloWorld
{
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    public class Program
    {
        public static void Main(string[] args)
        {
            Console.WriteLine("Hello World!");
        }
    }
}

The file begins with a using directive. This is optional, but almost all source files con‐
tain one or more, and they tell the compiler which namespaces we’d like to use, rais‐
ing the obvious question: what’s a namespace?

Namespaces
Namespaces bring order and structure to what would otherwise be a horrible mess.
The .NET class library contains a large number of classes, and there are many more
classes out there in third-party libraries, not to mention the classes you will write
yourself. There are two problems that can occur when dealing with this many named
entities. First, it becomes hard to guarantee uniqueness unless either everything has a
very long name, or the names include sections of random gibberish. Second, it can
become challenging to discover the API you need; unless you know or can guess the
right name, it’s difficult to find what you need from an unstructured list of many
thousands of things. Namespaces solve both of these problems.

Most .NET types are defined in a namespace. Microsoft-supplied types have distinc‐
tive namespaces. When the types are part of .NET, the containing namespaces start
with System, and when they’re part of some Microsoft technology that is not a core
part of .NET, they usually begin with Microsoft. Libraries from other vendors tend
to start with the company name, while open source libraries often use their project
name. You are not forced to put your own types into namespaces, but it’s recom‐
mended that you do. C# does not treat System as a special namespace, so nothing’s
stopping you from using that for your own types, but unless you’re writing a contri‐
bution to the .NET class library that you will be submitting as a pull request to
https://github.com/dotnet/corefx, then it’s a bad idea because it will tend to confuse
other developers. You should pick something more distinctive for your own code,
such as your company or project name.

The namespace usually gives a clue as to the purpose of the type. For example, all the
types that relate to file handling can be found in the System.IO namespace, while
those concerned with networking are under System.Net. Namespaces can form a
hierarchy. So the framework’s System namespace doesn’t just contain types. It also
holds other namespaces, such as System.Net, and these often contain yet more
namespaces, such as System.Net.Sockets and System.Net.Mail. These examples
show that namespaces act as a sort of description, which can help you navigate the
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library. If you were looking for regular expression handling, for example, you might
look through the available namespaces, and notice the System.Text namespace.
Looking in there, you’d find a System.Text.RegularExpressions namespace, at
which point you’d be pretty confident that you were looking in the right place.

Namespaces also provide a way to ensure uniqueness. The namespace in which a type
is defined is part of that type’s full name. This lets libraries use short, simple names
for things. For example, the regular expression API includes a Capture class that rep‐
resents the results from a regular expression capture. If you are working on software
that deals with images, the term capture is more commonly used to mean the acquisi‐
tion of some image data, and you might feel that Capture is the most descriptive
name for a class in your own code. It would be annoying to have to pick a different
name just because the best one is already taken, particularly if your image acquisition
code has no use for regular expressions, meaning that you weren’t even planning to
use the existing Capture type.

But in fact, it’s fine. Both types can be called Capture, and they will still have different
names. The full name of the regular expression Capture class is effectively Sys
tem.Text.RegularExpressions.Capture, and likewise, your class’s full name would
include its containing namespace (e.g., SpiffingSoftworks.Imaging.Capture).

If you really want to, you can write the fully qualified name of a type every time you
use it, but most developers don’t want to do anything quite so tedious, which is where
the using directive at the start of Example 1-4 comes in. While this simple example
has just one, it’s common to see a list of directives here. These state the namespaces of
the types a source file intends to use. You will normally edit this list to match your
file’s requirements. In this example, Visual Studio added using System; when I cre‐
ated the project. It chooses different sets in different contexts. If you add a class rep‐
resenting a UI element, for example, Visual Studio would include various UI-related
namespaces in the list.

With using declarations like these in place, you can just use the short, unqualified
name for a class. The line of code that enables my HelloWorld example to do its job
uses the System.Console class, but because of the first using directive, I can refer to
it as just Console. In fact, that’s the only class I’ll be using, so there’s no need to add
any other using directives in my main program.
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Earlier, you saw that a project’s References describe which libraries
it uses. You might think that References are redundant—can’t the
compiler work out which external libraries we are using from the
namespaces? It could if there was a direct correspondence between
namespaces and either libraries or packages, but there isn’t. There
is sometimes an apparent connection—the popular Newton

soft.Json NuGet package contains a Newtonsoft.Json.dll file that
contains classes in the Newtonsoft.Json namespace, for example.
But often there’s no such connection—the .NET Framework’s ver‐
sion of the class library includes a System.Core.dll file, but there is
no System.Core namespace. So it is necessary to tell the compiler
which libraries your project depends on, as well as saying which
namespaces any particular source file uses. We will look at the
nature and structure of library files in more detail in Chapter 12.

Even with namespaces, there’s potential for ambiguity. You might use two namespa‐
ces that both happen to define a class of the same name. If you want to use that class,
then you will need to be explicit, referring to it by its full name. If you need to use
such classes a lot in the file, you can still save yourself some typing: you only need to
use the full name once because you can define an alias. Example 1-5 uses aliases to
resolve a clash that I’ve run into a few times: .NET’s UI framework, the Windows
Presentation Foundation (WPF), defines a Path class for working with Bézier curves,
polygons, and other shapes, but there’s also a Path class for working with filesystem
paths, and you might want to use both types together to produce a graphical repre‐
sentation of the contents of a file. Just adding using directives for both namespaces
would make the simple name Path ambiguous if unqualified. But as Example 1-5
shows, you can define distinctive aliases for each.

Example 1-5. Resolving ambiguity with aliases

using System.IO;
using System.Windows.Shapes;
using IoPath = System.IO.Path;
using WpfPath = System.Windows.Shapes.Path;

With these aliases in place, you can use IoPath as a synonym for the file-related Path
class, and WpfPath for the graphical one.

Going back to our HelloWorld example, directly after the using directives comes a
namespace declaration. Whereas using directives declare which namespaces our code
will consume, a namespace declaration states the namespace in which our own code
lives. Example 1-6 shows the relevant code from Example 1-4. This is followed by an
opening brace ({). Everything between this and the closing brace at the end of the file
will be in the HelloWorld namespace. By the way, you can refer to types in your own
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namespace without qualification, without needing a using directive. That’s why the
test code in Example 1-1 doesn’t have a using HelloWorld; directive—it implicitly
has access to that namespace because its code is inside a namespace Hello

World.Tests declaration.

Example 1-6. Namespace declaration

namespace HelloWorld
{

Visual Studio generates a namespace declaration with the same name as your project
in the source files it adds when you create a new project. You’re not required to keep
this—a project can contain any mixture of namespaces, and you are free to edit the
namespace declaration. But if you do want to use something other than the project
name consistently throughout your project, you should tell Visual Studio, because it’s
not just the first file, Program.cs, that gets this generated declaration. By default, Vis‐
ual Studio adds a namespace declaration based on your project name every time you
add a new file. You can tell it to use a different namespace for new files by editing the
project’s properties. If you right-click on the project node in Solution Explorer and
select Properties, this opens the properties for the project, and if you go to the Appli‐
cation tab, there’s a “Default namespace” text box. It will use whatever you put in
there for namespace declarations of any new files. (It won’t change the existing files,
though.) This adds a <RootNamespace> property to the .csproj file.

Nested namespaces
As you’ve already seen, the .NET class library nests its namespaces, and sometimes
quite extensively. Unless you’re creating a trivial example, you will typically nest your
own namespaces. There are two ways you can do this. You can nest namespace decla‐
rations, as Example 1-7 shows.

Example 1-7. Nesting namespace declarations

namespace MyApp
{
    namespace Storage
    {
        ...
    }
}

Alternatively, you can just specify the full namespace in a single declaration, as
Example 1-8 shows. This is the more commonly used style.
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Example 1-8. Nested namespace with a single declaration

namespace MyApp.Storage
{
    ...
}

Any code you write in a nested namespace will be able to use types not just from that
namespace, but also from its containing namespaces without qualification. Code in
Examples 1-7 or 1-8 would not need explicit qualification or using directives to use
types either in the MyApp.Storage namespace or the MyApp namespace.

When you define nested namespaces, the convention is to create a matching folder
hierarchy. If you create a project called MyApp, as you’ve seen, by default Visual Stu‐
dio will put new classes in the MyApp namespace when you add them to the project.
But if you create a new folder in the project (which you can do in Solution Explorer)
called, say, Storage, Visual Studio will put any new classes you create in that folder
into the MyApp.Storage namespace. Again, you’re not required to keep this—Visual
Studio just adds a namespace declaration when creating the file, and you’re free to
change it. The compiler does not need the namespace to match your folder hierarchy.
But since the convention is supported by Visual Studio, life will be easier if you follow
it.

Classes
Inside the namespace declaration, my Program.cs file defines a class. Example 1-9
shows this part of the file (which includes the public keywords I added earlier). The
class keyword is followed by the name, and of course the full name of the type is
effectively HelloWorld.Program, because this code is inside the namespace declara‐
tion. As you can see, C# uses braces ({}) to delimit all sorts of things—we already saw
this for namespaces, and here you can see the same thing with the class, as well as the
method it contains.

Example 1-9. A class with a method

public class Program
{
    public static void Main(string[] args)
    {
        Console.WriteLine("Hello World!");
    }
}

Classes are C#’s mechanism for defining entities that combine state and behavior, a
common object-oriented idiom. But this class contains nothing more than a single
method. C# does not support global methods—all code has to be written as a member
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of some type. So this particular class isn’t very interesting—its only job is to act as the
container for the program’s entry point. We’ll see some more interesting uses for
classes in Chapter 3.

Program Entry Point
By default, the C# compiler will look for a method called Main and use that as the
entry point automatically. If you really want to, you can tell the compiler to use a dif‐
ferent method, but most programs stick with the convention. Whether you designate
the entry point by configuration or convention, the method has to meet certain
requirements, all of which are evident in Example 1-9.

The program entry point must be a static method, meaning that it is not necessary to
create an instance of the containing type (Program, in this case) in order to invoke the
method. It is not required to return anything, as signified by the void keyword here,
although if you wish you can return int instead, which allows the program to return
an exit code that the operating system will report when the program terminates. (It
can also return either Task or Task<int>, enabling you to make it an async method,
as described in Chapter 17.) And the method must either take no arguments at all
(which would be denoted by an empty pair of parentheses after the method name) or,
as in Example 1-9, it can accept a single argument: an array of text strings containing
the command-line arguments.

Some C-family languages include the filename of the program itself
as the first argument, on the grounds that it’s part of what the user
typed at the command prompt. C# does not follow this convention.
If the program is launched without arguments, the array’s length
will be 0.

The method declaration is followed by the method body, which in this case contains
code that is very nearly what we want. We’ve now looked at everything that Visual
Studio generated for us in this file, so all that remains is to modify the code inside the
braces delimiting the method body. Remember, our test is failing because our pro‐
gram fails to meet its one requirement: to write out a certain message to the console.
This requires the single line of code shown in Example 1-10, inside the method body.
This is almost exactly what’s already there, it just features an extra comma and a low‐
ercase w.

Example 1-10. Displaying a message

Console.WriteLine("Hello, world!");
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With this in place, if I run the tests again, the Unit Test Explorer shows a checkmark
by my test and reports that all tests have passed. So apparently the code is working.
And we can verify that informally by running the program. You can do that from
Visual Studio’s Debug menu. The Start Debugging option runs the program in the
debugger. If you run the program this way (which you can also do with the F5 key‐
board shortcut), a console window will open, and you’ll see it display the traditional
message.

Unit Tests
Now that the program is working, I want to return to the first code I wrote, the test,
because that file illustrates some C# features that the main program does not. If you
go back to Example 1-1, it starts in a pretty similar way to the main program: we have
some using directives and then a namespace declaration, the namespace being Hello
World.Tests this time, matching the test project name. But the class looks different.
Example 1-11 shows the relevant part of Example 1-1.

Example 1-11. Test class with attribute

[TestClass]
public class WhenProgramRuns
{

Immediately before the class declaration is the text [TestClass]. This is an attribute.
Attributes are annotations you can apply to classes, methods, and other features of
the code. Most of them do nothing on their own—the compiler records the fact that
the attribute is present in the compiled output, but that is all. Attributes are useful
only when something goes looking for them, so they tend to be used by frameworks.
In this case, I’m using Microsoft’s unit testing framework, and it goes looking for
classes annotated with this TestClass attribute. It will ignore classes that do not have
this annotation. Attributes are typically specific to a particular framework, and you
can define your own, as we’ll see in Chapter 14.

The two methods in the class are also annotated with attributes. Example 1-12 shows
the relevant excerpts from Example 1-1. The test runner will execute any methods
marked with [TestInitialize] once for every test the class contains, and will do so
before running the actual test method itself. And, as you have no doubt guessed, the
[TestMethod] attribute tells the test runner which methods represent tests.

Example 1-12. Annotated methods

[TestInitialize]
public void Initialize()
...
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[TestMethod]
public void SaysHelloWorld()
...

There’s one more feature in Example 1-1: the class contents begin with a field, shown
again in Example 1-13. Fields hold data. In this case, the Initialize method stores
the console output that it captures while the program runs in this _consoleOutput
field, where it is available for test methods to inspect. This particular field has been
marked as private, indicating that it is for its containing class’s own use. The C#
compiler will permit only code that lives in the same class to access this data.

Example 1-13. A field

private string _consoleOutput;

And with that, we’ve examined every element of a program and the test project that
verifies that it works as intended.

Summary
You’ve now seen the basic structure of C# programs. I created a solution containing
two projects, one for tests and one for the program itself. This was a simple example,
so each project had only one source file of interest. Both were of similar structure.
Each began with using directives indicating which types the file uses. A namespace
declaration stated the namespace that the file populates, and this contained a class
containing one or more methods or other members, such as fields.

We will look at types and their members in much more detail in Chapter 3, but first,
Chapter 2 will deal with the code that lives inside methods, where we express what we
want our programs to do.
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CHAPTER 2

Basic Coding in C#

All programming languages have to provide certain capabilities. It must be possible
to express the calculations and operations that our code should perform. Programs
need to be able to make decisions based on their input. Sometimes we will need to
perform tasks repeatedly. These fundamental features are the very stuff of program‐
ming, and this chapter will show how these things work in C#.

Depending on your background, some of this chapter’s content may seem very famil‐
iar. C# is said to be from the “C family” of languages. C is a hugely influential pro‐
gramming language, and numerous languages have borrowed much of its syntax.
There are direct descendants, such as C++ and Objective-C. There are also more dis‐
tantly related languages, including Java, JavaScript, and C# itself, that have no com‐
patibility with C, but which still ape many aspects of its syntax. If you are familiar
with any of these languages, you will recognize many of the language features we are
about to explore.

We saw the basic elements of a program in Chapter 1. In this chapter, we will be
looking just at code inside methods. As you’ve seen, C# requires a certain amount of
structure: code is made up of statements that live inside a method, which belongs to a
type, which is typically inside a namespace, all inside a file that is part of a project,
typically contained by a solution. For clarity, most of the examples in this chapter will
show the code of interest in isolation, as in Example 2-1.

Example 2-1. The code and nothing but the code

Console.WriteLine("Hello, world!");

Unless I say otherwise, this kind of extract is shorthand for showing the code in con‐
text inside a suitable program. So Example 2-1 is short for Example 2-2.
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1 C# does in fact offer dynamic typing as an option with its dynamic keyword, but it takes the slightly unusual
step of fitting that into a statically typed point of view: dynamic variables have a static type of dynamic.

Example 2-2. The whole code

using System;

namespace Hello
{
    class Program
    {
        static void Main()
        {
            Console.WriteLine("Hello, world!");
        }
    }
}

Although I’ll be introducing fundamental elements of the language in this section,
this book is for people who are already familiar with at least one programming lan‐
guage, so I’ll be relatively brief with the most ordinary features of the language and
will go into more detail on those aspects that are particular to C#.

Local Variables
The inevitable “Hello, world!” example is missing a vital element: it doesn’t really
deal with information. Useful programs normally fetch, process, and produce infor‐
mation, so the ability to define and identify information is one of the most important
features of a language. Like most languages, C# lets you define local variables, which
are named elements inside a method that each hold a piece of information.

In the C# specification, the term variable can refer to local vari‐
ables, but also to fields in objects and array elements. This section
is concerned entirely with local variables, but it gets tiring to keep
reading the local prefix. So, from now on in this section, variable
means a local variable.

C# is a statically typed language, which is to say that any element of code that repre‐
sents or produces information, such as a variable or an expression, has a data type
determined at compile time. This is different than dynamically typed languages, such
as JavaScript, in which types are determined at runtime.1

The easiest way to see C#’s static typing in action is with simple variable declarations,
such as the ones in Example 2-3. Each of these starts with the data type—the first two
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variables are of type string, followed by two int variables. These types represent text
strings and 32-bit signed integers, respectively.

Example 2-3. Variable declarations

string part1 = "the ultimate question";
string part2 = "of something";
int theAnswer = 42;
int andAnotherThing;

The data type is followed immediately by the variable’s name. The name must begin
with either a letter or an underscore, which can be followed by any combination of
letters, decimal digits, and underscores. (At least, those are the options if you stick to
ASCII. C# supports Unicode, so if you save your file in UTF-8 or UTF-16 format,
anything after the first character in an identifier can be any of the characters
described in the “Identifier and Pattern Syntax” annex of the Unicode specification.
This includes various accents, diacritics, and numerous somewhat obscure punctua‐
tion marks, but only characters intended for use within words—characters that Uni‐
code identifies as being intended for separating words cannot be used.) These same
rules determine what constitutes a legal identifier for any user-defined entity in C#,
such as a class or a method.

Example 2-3 shows that there are a couple of forms of variable declarations. The first
three variables include an initializer, which provides the variable’s initial value, but as
the final variable shows, this is optional. That’s because you can assign new values
into variables at any point. Example 2-4 continues on from Example 2-3 and shows
that you can assign a new value into a variable regardless of whether it had an initial
value.

Example 2-4. Assigning values to previously declared variables

part2 = " of life, the universe, and everything";
andAnotherThing = 123;

Because variables have a static type, the compiler will reject attempts to assign the
wrong kind of data. So if we were to follow on from Example 2-3 with the code in
Example 2-5, the compiler would complain. It knows that the variable called the
Answer has a type of int, which is a numeric type, so it will report an error if we
attempt to assign a text string into it.

Example 2-5. An error: the wrong type

theAnswer = "The compiler will reject this";
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You’d be allowed to do this in dynamic languages such as JavaScript, because in those
languages, a variable doesn’t have its own type—all that matters is the type of the
value it contains, and that can change as the code runs. It’s possible to do something
similar in C# by declaring a variable with type dynamic or object (which I’ll describe
later in “Dynamic” on page 79 and “Object” on page 80). However, the most common
practice in C# is for variables to have a more specific type.

The static type doesn’t always provide a complete picture, thanks
to inheritance. I’ll be discussing this in Chapter 6, but for now, it’s
enough to know that some types are open to extension through
inheritance, and if a variable uses such a type, then it’s possible for
it to refer to some object of a type derived from the variable’s static
type. Interfaces, described in Chapter 3, provide a similar kind of
flexibility. However, the static type always determines what opera‐
tions you are allowed to perform on the variable. If you want to use
additional members specific to some derived type, you won’t be
able to do so through a variable of the base type.

You don’t have to state the variable type explicitly. You can let the compiler work it
out for you by using the keyword var in place of the data type. Example 2-6 shows
the first three variable declarations from Example 2-3, but using var instead of
explicit data types.

Example 2-6. Implicit variable types with the var keyword

var part1 = "the ultimate question";
var part2 = "of something";
var theAnswer = 40 + 2;

This code often misleads people who know some JavaScript, because that also has a
var keyword that you can use in a similar-looking way. But var does not work the
same way in C# as in JavaScript: these variables are still all statically typed. All that’s
changed is that we haven’t said what the type is—we’re letting the compiler deduce it
for us. It looks at the initializers and can see that the first two variables are strings
while the third is an integer. (That’s why I left out the fourth variable from
Example 2-3, andAnotherThing. That doesn’t have an initializer, so the compiler
would have no way of inferring its type. If you try to use the var keyword without an
initializer, you’ll get a compiler error.)

You can demonstrate that variables declared with var are statically typed by attempt‐
ing to assign something of a different type into them. We could repeat the same thing
we tried in Example 2-5, but this time with a var-style variable. Example 2-7 does
this, and it will produce exactly the same compiler error, because it’s the same mis‐
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take—we’re trying to assign a text string into a variable of an incompatible type. That
variable, theAnswer, has a type of int here, even though we didn’t say so explicitly.

Example 2-7. An error: the wrong type (again)

var theAnswer = 42;
theAnswer = "The compiler will reject this";

Opinion is divided on how and when to use the var keyword, as the following sidebar
“To var, or Not to var?” describes.

To var, or Not to var?
A variable declared with var behaves in exactly the same way as the equivalent explic‐
itly typed declaration, which raises a question: which should you use? In a sense, it
doesn’t matter, because they are equivalent. However, if you like your code to be con‐
sistent, you’ll want to pick one style and stick to it. Not everyone agrees on which is
the “best” style.

Some developers see the extra text required for explicit variable types as unproductive
“ceremony,” preferring the more succinct var keyword. Let the compiler deduce the
type for you, instead of doing the work yourself, or so the argument goes. It also
reduces visual clutter in the code.

I take a different view, because I spend more time reading code than writing it—
debugging, code review, refactoring, and enhancements seem to dominate. Anything
that makes those activities easier is worth the frankly minimal time it takes to write
the type names explicitly. Code that uses var everywhere slows you down, because
you have to work out what the type really is in order to understand the code.
Although var saved you some work when you wrote the code, that gain is quickly
wiped out by the additional thought required every time you go back and look at the
code. So unless you’re the sort of developer who only ever writes new code, leaving
others to clean up after you, the only benefit the “var everywhere” philosophy really
offers is that it can look neater.

You can even use explicit types and still get the compiler to do the work: in Visual
Studio, you can write the keystroke-friendly var, then press Ctrl+. to open the Quick
Actions menu. This offers to replace it with the explicit type for you. (Visual Studio
uses the C# compiler’s API to discover the variable’s type.)

That said, there are some situations in which I will use var. One is to avoid writing
the name of the type twice, as in this example:

List<int> numbers = new List<int>();

We can drop the first List<int> without making this harder to read, because the
name is still right there in the initializer. There are similar examples involving casts
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and generic methods. As long as the type name appears explicitly in the variable dec‐
laration, there is no downside to using var to avoid writing the type twice.

I also use var where it is necessary. As we will see in later chapters, C# supports
anonymous types, and as the name suggests, it’s not possible to write the name of such
a type. In these situations, you may be compelled to use var. (In fact, the var keyword
was introduced to C# only when anonymous types were added.)

One last thing worth knowing about declarations is that you can declare and option‐
ally initialize multiple variables in a single line. If you want multiple variables of the
same type, this may reduce clutter in your code. Example 2-8 declares three variables
of the same type in a single declaration.

Example 2-8. Multiple variables in a single declaration

double a = 1, b = 2.5, c = -3;

Regardless of how you declare it, a variable holds some piece of information of a par‐
ticular type, and the compiler prevents us from putting data of an incompatible type
into that variable. Variables are useful only because we can refer back to them later in
our code. Example 2-9 starts with the variable declarations we saw in earlier exam‐
ples, then goes on to use the values of those variables to initialize some more vari‐
ables, and then displays the results.

Example 2-9. Using variables

string part1 = "the ultimate question";
string part2 = "of something";
int theAnswer = 42;

part2 = "of life, the universe, and everything";

string questionText = "What is the answer to " + part1 + ", " + part2 + "?";
string answerText = "The answer to " + part1 + ", " +
                       part2 + ", is: " + theAnswer;

Console.WriteLine(questionText);
Console.WriteLine(answerText);

By the way, this code relies on the fact that C# defines a couple of meanings for the +
operator when it’s used with strings. First, when you “add” two strings together, it
concatenates them. Second, when you “add” something other than a string to the end
of a string (as the initializer for answerText does—it adds theAnswer, which is a
number), C# generates code that converts the value to a string before appending it.
So Example 2-9 produces this output:
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2 See Alan Turing’s seminal work on computation for details. Charles Petzold’s The Annotated Turing (John
Wiley & Sons) is an excellent guide to the relevant paper.

What is the answer to the ultimate question, of life, the universe, and everythi
ng?
The answer to the ultimate question, of life, the universe, and everything, is:
42

In this book, text longer than 80 characters is wrapped across mul‐
tiple lines to fit the page. If you try these examples, they will look
different if your console windows are configured for a different
width.

When you use a variable, its value is whatever you last assigned to it. If you attempt
to use a variable before you have assigned a value, as Example 2-10 does, the C# com‐
piler will report an error.

Example 2-10. Error: using an unassigned variable

int willNotWork;
Console.WriteLine(willNotWork);

Compiling that produces this error for the second line:

error CS0165: Use of unassigned local variable 'willNotWork'

The compiler uses a slightly pessimistic system (which it calls the definite assignment
rules) for determining whether a variable has a value yet. It’s not possible to create an
algorithm that can determine such things for certain in every possible situation.2

Since the compiler has to err on the side of caution, there are some situations in
which the variable will have a value by the time the offending code runs, and yet the
compiler still complains. The solution is to write an initializer, so that the variable
always contains something, perhaps using 0 for numeric values and false for
Boolean variables. In Chapter 3, I’ll introduce reference types, and as the name sug‐
gests, a variable of such a type can hold a reference to an instance of the type. If you
need to initialize such a variable before you’ve got something for it to refer to, you
can use the keyword null, a special value signifying a reference to nothing.

The definite assignment rules determine the parts of your code in which the compiler
considers a variable to contain a valid value and will therefore let you read from it.
Writing into a variable is less restricted, but as you might expect, any given variable is
accessible only from certain parts of the code. Let’s look at the rules that govern this.
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Scope
A variable’s scope is the range of code in which you can refer to that variable by its
name. Variables are not the only things with scope. Methods, properties, types, and,
in fact, anything with a name all have scope. These require broadening the definition
of scope: it’s the parts of your code where you can refer to the entity by its name
without needing additional qualification. When I write Console.WriteLine, I am
referring to the method by its name (WriteLine), but I need to qualify it with a class
name (Console), because the method is not in scope. But with a local variable, scope
is absolute: either it’s accessible without qualification, or it’s not accessible at all.

Broadly speaking, a variable’s scope starts at its declaration and finishes at the end of
its containing block. (The loop constructs we’ll get to later cause a couple of excep‐
tions to this rule.) A block is a region of code delimited by a pair of braces ({}). A
method body is a block, so a variable defined in one method is not visible in a sepa‐
rate method, because it is out of scope. If you attempt to compile Example 2-11,
you’ll get an error complaining that The name 'thisWillNotWork' does not exist
in the current context.

Example 2-11. Error: out of scope

static void SomeMethod()
{
    int thisWillNotWork = 42;
}

static void AnUncompilableMethod()
{
    Console.WriteLine(thisWillNotWork);
}

Methods often contain nested blocks, particularly when you work with the loop and
flow control constructs we’ll be looking at later in this chapter. At the point where a
nested block starts, everything that is in scope in the outer block continues to be in
scope inside that nested block. Example 2-12 declares a variable called someValue and
then introduces a nested block as part of an if statement. The code inside this block
is able to access that variable declared in the containing block.

Example 2-12. Variable declared outside block, used within block

int someValue = GetValue();
if (someValue > 100)
{
    Console.WriteLine(someValue);
}
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The converse is not true. If you declare a variable in a nested block, its scope does not
extend outside of that block. So Example 2-13 will fail to compile, because the will
NotWork variable is only in scope within the nested block. The final line of code will
produce a compiler error because it tries to use that variable outside of that block.

Example 2-13. Error: trying to use a variable not in scope

int someValue = GetValue();
if (someValue > 100)
{
    int willNotWork = someValue - 100;
}
Console.WriteLine(willNotWork);

This probably all seems fairly straightforward, but things get a bit more complex
when it comes to potential naming collisions. C# sometimes catches people by sur‐
prise here.

Variable name ambiguity

Consider the code in Example 2-14. This declares a variable called anotherValue
inside a nested block. As you know, that variable is only in scope to the end of that
nested block. After that block ends, we try to declare another variable with the same
name.

Example 2-14. Error: surprising name collision

int someValue = GetValue();
if (someValue > 100)
{
    int anotherValue = someValue - 100;  // Compiler error
    Console.WriteLine(anotherValue);
}

int anotherValue = 123;

This causes a compiler error on the first of the lines to declare anotherValue:

error CS0136: A local or parameter named 'anotherValue' cannot be declared in
 this scope because that name is used in an enclosing local scope to define a
 local or parameter

This seems odd. At the final line, the supposedly conflicting earlier declaration is not
in scope, because we’re outside of the nested block in which it was declared. Further‐
more, the second declaration is not in scope within that nested block, because the
declaration comes after the block. The scopes do not overlap, but despite this, we’ve
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3 If you’re new to C-family languages, the += operator may be unfamiliar. It is a compound assignment operator,
described later in this chapter. I’m using it here to increase errorCount by one.

fallen foul of C#’s rules for avoiding name conflicts. To see why this example fails, we
first need to look at a less surprising example.

C# tries to prevent ambiguity by disallowing code where one name might refer to
more than one thing. Example 2-15 shows the sort of problem it aims to avoid. Here
we’ve got a variable called errorCount, and the code starts to modify this as it pro‐
gresses,3 but partway through, it introduces a new variable in a nested block, also
called errorCount. It is possible to imagine a language that allowed this—you could
have a rule that says that when multiple items of the same name are in scope, you just
pick the one whose declaration happened last.

Example 2-15. Error: hiding a variable

int errorCount = 0;
if (problem1)
{
    errorCount += 1;

    if (problem2)
    {
        errorCount += 1;
    }

    // Imagine that in a real program there was a big
    // chunk of code here before the following lines.

    int errorCount = GetErrors();  // Compiler error
    if (problem3)
    {
        errorCount += 1;
    }
}

C# chooses not to allow this, because code that did this would be easy to misunder‐
stand. This is an artificially short method because it’s a contrived example in a book,
making it easy to see the duplicate names, but if the code were a bit longer, it would
be very easy to miss the nested variable declaration. Then, we might not realize that
errorCount refers to something different at the end of the method than it did earlier
on. C# simply disallows this to avoid misunderstanding.

But why does Example 2-14 fail? The scopes of the two variables don’t overlap. Well,
it turns out that the rule that outlaws Example 2-15 is not based on scopes. It is based
on a subtly different concept called a declaration space. A declaration space is a
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region of code in which a single name must not refer to two different entities. Each
method introduces a declaration space for variables. Nested blocks also introduce
declaration spaces, and it is illegal for a nested declaration space to declare a variable
with the same name as one in its parent’s declaration space. And that’s the rule we’ve
fallen foul of here—the outermost declaration space in Example 2-15 contains a vari‐
able named errorCount, and a nested block’s declaration space tries to introduce
another variable of the same name.

If that all seems a bit dry or arbitrary, it may be helpful to know why there’s a whole
separate set of rules for name collisions instead of basing it on scopes. The intent of
the declaration space rules is that it mostly shouldn’t matter where you put the decla‐
ration. If you were to move all of the variable declarations in a block to the start of
that block—and some organizations have coding standards that mandate this sort of
layout—the idea of these rules is that this shouldn’t change what the code means.
Clearly this wouldn’t be possible if Example 2-15 were legal. And this explains why
Example 2-14 is illegal. Although the scopes don’t overlap, they would if you moved
all variable declarations to the top of their containing blocks.

Local variable instances
Variables are features of the source code, so each particular variable has a distinct
identity: it is declared in exactly one place in the source code and goes out of scope at
exactly one well-defined place. However, that doesn’t mean that it corresponds to a
single storage location in memory. It is possible for multiple invocations of a single
method to be in progress simultaneously, through recursion, multithreading, or
asynchronous execution.

Each time a method runs, it gets a distinct set of storage locations to hold the local
variables’ values. This enables multiple threads to execute the same method simulta‐
neously without problems, because each has its own set of local variables. Likewise, in
recursive code, each nested call gets its own set of locals that will not interfere with
any of its callers. The same goes for multiple concurrent invocations of a method. To
be strictly accurate, each execution of a particular scope gets its own set of variables.
This distinction matters when you use anonymous functions, described in Chapter 9.
As an optimization, C# reuses storage locations when it can, so it will only allocate
new memory for each scope’s execution when it really has to (e.g., it won’t allocate
new memory for variables declared in the body of a loop for each iteration unless you
put it into a situation where it has no choice), but the effect is as though it allocated
new space each time.

Be aware that the C# compiler does not make any particular guarantee about where
variables live (except in exceptional cases, as we’ll see in Chapter 18). They might well
live on the stack, but sometimes they don’t. When we look at anonymous functions
in later chapters, you’ll see that variables sometimes need to outlive the method that
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declares them, because they remain in scope for nested methods that will run as call‐
backs after the containing method has returned.

By the way, before we move on, be aware that just as variables are not the only things
to have scope, they are also not the only things to which declaration space rules
apply. Other language features that we’ll be looking at later, including classes, meth‐
ods, and properties, also have scoping and name uniqueness rules.

Statements and Expressions
Variables give us somewhere to put the information that our code works with, but to
do anything with those variables, we will need to write some code. This will mean
writing statements and expressions.

Statements
When we write a C# method, we are writing a sequence of statements. Informally, the
statements in a method describe the actions we want the method to perform. Each
line in Example 2-16 is a statement. It might be tempting to think of a statement as an
instruction to do one thing (e.g., initialize a variable or invoke a method). Or you
might take a more lexical view, where anything ending in a semicolon is a statement.
(And it’s the semicolons that are significant here, not the line breaks, by the way. We
could have written this as one long line of code and it would have exactly the same
meaning.) However, both descriptions are simplistic, even though they happen to be
true for this particular example.

Example 2-16. Some statements

int a = 19;
int b = 23;
int c;
c = a + b;
Console.WriteLine(c);

C# recognizes many different kinds of statements. The first three lines of
Example 2-16 are declaration statements, statements that declare and optionally initi‐
alize a variable. The fourth and fifth lines are expression statements. But some state‐
ments have more structure than the ones in this example.

When you write a loop, that’s an iteration statement. When you use the if or switch
mechanisms described later in this chapter to choose between various possible
actions, those are selection statements. In fact, the C# specification distinguishes
between 13 categories of statements. Most fit broadly into the scheme of describing
either what the code should do next, or, for features such as loops or conditional
statements, describing how it should decide what to do next. Statements of the sec‐
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ond kind usually contain one or more embedded statements describing the action to
perform in a loop, or the action to perform when an if statement’s condition is met.

There’s one special case, though. A block is a kind of statement. This makes state‐
ments such as loops more useful than they would otherwise be, because a loop iter‐
ates over just a single embedded statement. That statement can be a block, and since
a block itself is a sequence of statements (delimited by braces), this enables loops to
contain more than one statement.

This illustrates why the two simplistic points of view stated earlier—“statements are
actions” and “statements are things that end in semicolons”—are wrong. Compare
Example 2-16 with 2-17. Both do the same thing, because the various actions we’ve
said we want to perform remain exactly the same, and both contain five semicolons.
However, Example 2-17 contains one extra statement. The first two statements are
the same, but they are followed by a third statement, a block, which contains the final
three statements from Example 2-16. The extra statement, the block, doesn’t end in a
semicolon, nor does it perform any action. In this particular example it’s pointless,
but it can sometimes be useful to introduce a nested block like this to avoid name
ambiguity errors. So statements can be structural, rather than causing anything to
happen at runtime.

Example 2-17. A block

int a = 19;
int b = 23;
{
    int c;
    c = a + b;
    Console.WriteLine(c);
}

While your code will contain a mixture of statement types, it will inevitably end up
containing at least a few expression statements. These are, quite simply, statements
that consist of a suitable expression, followed by a semicolon. What’s a suitable
expression? What’s an expression, for that matter? I’d better answer that second
question before coming back to what constitutes a valid expression for a statement.

Expressions
The official definition of a C# expression is rather dry: “a sequence of operators and
operands.” Admittedly, language specifications tend to be like that, but in addition to
this sort of formal prose, the C# specification contains some very readable informal
explanations of the more formally expressed ideas. (For example, it describes state‐
ments as the means by which “the actions of a program are expressed” before going
on to pin that down with less approachable but more technically precise language.)
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The quote at the start of this paragraph is from the formal definition of an expres‐
sion, so we might hope that the informal explanation in the introduction will be more
helpful. No such luck: it says that expressions “are constructed from operands and
operators.” That’s certainly less precise than the other definition, but it’s no easier to
understand. The problem is that there are several kinds of expressions and they do
different jobs, so there isn’t a single, general, informal description.

It’s tempting to describe an expression as some code that produces a value. That’s not
true for all expressions, but the majority of expressions you’ll write will fit this
description, so I’ll focus on this for now, and I’ll come to the exceptions later.

The simplest expressions are literals, where we just write the value we want, such as
"Hello, world!" or 42. You can also use the name of a variable as an expression. 
Expressions can involve operators, which describe calculations or other computa‐
tions to be performed. Operators have some fixed number of inputs, called operands.
Some take a single operand. For example, you can negate a number by putting a
minus sign in front of it. Some take two: the + operator lets you form an expression
that adds together the results of the two operands on either side of the + symbol.

Some symbols have different roles depending on the context. The
minus sign is not just used for negation. It acts as a two-operand
subtraction operator if it appears between two expressions.

In general, operands are also expressions. So, when we write 2 + 2, that’s an expres‐
sion that contains two more expressions—the pair of ‘2’ literals on either side of the +
symbol. This means that we can write arbitrarily complicated expressions by nesting
expressions within expressions within expressions. Example 2-18 exploits this to
evaluate the quadratic formula (the standard technique for solving quadratic
equations).

Example 2-18. Expressions within expressions

double a = 1, b = 2.5, c = -3;
double x = (-b + Math.Sqrt(b * b - 4 * a * c)) / (2 * a);
Console.WriteLine(x);

Look at the declaration statement on the second line. The overall structure of its ini‐
tializer expression is a division operation. But that division operator’s two operands
are also expressions. Its lefthand operand is a parenthesized expression, which tells the
compiler that I want that whole expression (-b + Math.Sqrt(b * b - 4 * a * c))
to be the first operand of the division. This subexpression contains an addition,
whose lefthand operand is a negation expression whose single operand is the variable
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b. The addition’s righthand side takes the square root of another, more complex
expression. And the division’s righthand operand is another parenthesized expres‐
sion, containing a multiplication. Figure 2-1 illustrates the full structure of the
expression.

Figure 2-1. The structure of an expression

One important detail of this last example is that method invocations are a kind of
expression. The Math.Sqrt method used in Example 2-18 is a .NET class library
function that calculates the square root of its input and returns the result. What’s per‐
haps more surprising is that invocations of methods that don’t return a value, such as
Console.WriteLine, are also, technically, expressions. And there are a few other con‐
structs that don’t produce values but are still considered to be expressions, including
a reference to a type (e.g., the Console in Console.WriteLine) or to a namespace.
These sorts of constructs take advantage of a set of common rules (e.g., scoping, how
to resolve what a name refers to, etc.) by virtue of being expressions. However, all the
non-value-producing expressions can be used only in certain specific circumstances.
(You can’t use one as an operand in another expression, for example.) So although
it’s not technically correct to define an expression as a piece of code that produces a
value, the ones that do are the ones we use when describing the calculations we want
our code to perform.
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We can now return to the question: what can we put in an expression statement?
Roughly speaking, the expression has to do something; it cannot just calculate a
value. So although 2 + 2 is a valid expression, you’ll get an error if you try to turn it
into an expression statement by sticking a semicolon on the end. That expression cal‐
culates something but doesn’t do anything with the result. To be more precise, you
can use the following kinds of expressions as statements: method invocation, assign‐
ment, increment, decrement, and new object creation. We’ll be looking at increment
and decrement later in this chapter and we’ll be looking at objects in later chapters, so
that leaves invocation and assignment.

So a method invocation is allowed to be an expression statement. This can involve
nested expressions of other kinds, but the whole thing must be a method call.
Example 2-19 shows some valid examples. Notice that the C# compiler doesn’t check
whether the method call really has any lasting effect—the Math.Sqrt function is a
pure function, in the sense that it does nothing other than returning a value deter‐
mined entirely by its inputs. So invoking it and then doing nothing with the result
doesn’t really do anything at all—it’s no more of an action than the expression 2 + 2.
But as far as the C# compiler is concerned, any method call is allowed as an expres‐
sion statement.

Example 2-19. Method invocation expressions as statements

Console.WriteLine("Hello, world!");
Console.WriteLine(12 + 30);
Console.ReadKey();
Math.Sqrt(4);

It seems inconsistent that C# forbids us from using an addition expression as a state‐
ment while allowing Math.Sqrt. Both perform a calculation that produces a result, so
it makes no sense to use either in this way. Wouldn’t it be more consistent if C#
allowed only calls to methods that return nothing to be used for expression state‐
ments? That would rule out the final line of Example 2-19, which would seem like a
good idea because that code does nothing useful. It would also be consistent with the
fact that 2 + 2 also cannot form an expression statement. Unfortunately, sometimes
you want to ignore the return value. Example 2-19 calls Console.ReadKey(), which
waits for a keypress and returns a value indicating which key was pressed. If my pro‐
gram’s behavior depends on which particular key the user pressed, I’ll need to inspect
the method’s return value, but if I just want to wait for any key at all, it’s OK to ignore
the return value. If C# didn’t allow methods with return values to be used as expres‐
sion statements, I wouldn’t be able to do this. The compiler has no way to distinguish
between methods that make for pointless statements because they have no side effects
(such as Math.Sqrt) and those that might be good candidates (such as Console.Read
Key), so it allows any method.
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For an expression to be a valid expression statement, it is not enough merely to con‐
tain a method invocation. Example 2-20 shows some expressions that call methods
and then go on to use those as part of addition expressions. Although these are valid
expressions, they’re not valid expression statements, so these will cause compiler
errors. What matters is the outermost expression. In both lines here, that’s an addi‐
tion expression, which is why these are not allowed.

Example 2-20. Errors: some expressions that don’t work as statements

Console.ReadKey().KeyChar + "!";
Math.Sqrt(4) + 1;

Earlier I said that one kind of expression we’re allowed to use as a statement is an
assignment. It’s not obvious that assignments should be expressions, but they are,
and they do produce a value: the result of an assignment expression is the value being
assigned to the variable. This means it’s legal to write code like that in Example 2-21.
The second line here uses an assignment expression as an argument for a method
invocation, which shows the value of that expression. The first two WriteLine calls
both display 123.

Example 2-21. Assignments are expressions

int number;
Console.WriteLine(number = 123);
Console.WriteLine(number);

int x, y;
x = y = 0;
Console.WriteLine(x);
Console.WriteLine(y);

The second part of this example assigns one value into two variables in a single step
by exploiting the fact that assignments are expressions—it assigns the value of the y =
0 expression (which evaluates to 0) into x.

This shows that evaluating an expression can do more than just produce a value.
Some expressions have side effects. We’ve just seen that an assignment is an expres‐
sion, and of course it has the effect of changing what’s in a variable. Method calls are
expressions too, and although you can write pure functions that do nothing besides
calculating their result from their input, like Math.Sqrt, many methods do something
with lasting effects, such as writing data to the screen, updating a database, or launch‐
ing a missile. This means that we might care about the order in which the operands of
an expression get evaluated.

An expression’s structure imposes some constraints on the order in which operators
do their work. For example, I can use parentheses to enforce ordering. The expres‐
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4 In the absence of parentheses, C# has rules of precedence that determine the order in which operators are
evaluated. For the full (and not very interesting) details, consult the documentation, but in this example,
because division has higher precedence than addition, without parentheses the expression would evaluate to
14.

sion 10 + (8 / 2) has the value 14, while the expression (10 + 8) / 2 has the value
9, even though both have exactly the same literal operands and arithmetic operators.
The parentheses here determine whether the division is performed before or after the
subtraction.4

However, while the structure of an expression imposes some ordering constraints, it
still leaves some latitude: although both the operands of an addition need to be evalu‐
ated before they can be added, the addition operator doesn’t care which operand we
evaluate first. But if the operands are expressions with side effects, the order could be
important. For these simple expressions, it doesn’t matter because I’ve used literals,
so we can’t really tell when they get evaluated. But what about an expression in which
operands call some method? Example 2-22 contains code of this kind.

Example 2-22. Operand evaluation order

class Program
{
    static int X(string label, int i)
    {
        Console.Write(label);
        return i;
    }

    static void Main(string[] args)
    {
        Console.WriteLine(X("a", 1) + X("b", 1) + X("c", 1) + X("d", 1));
    }
}

This defines a method, X, which takes two arguments. It displays the first and just
returns the second. I’ve then used this a few times in an expression so that we can see
exactly when the operands that call X are evaluated. Some languages choose not to
define this order, making the behavior of such a program unpredictable, but C# does
specify an order here. The rule is that within any expression, the operands are evalu‐
ated in the order in which they occur in the source. So, when the Console.WriteLine
in Example 2-22, runs, it makes multiple calls to X, which calls Console.Write each
time, so we see this output: abcd4.

However, this glosses over an important subtlety: what do we mean by the order of
expressions when nesting occurs? The entire argument to that Console.WriteLine is
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one big add expression, where the first operand is X("a", 1) and the second is
another add expression, which in turn has a first operand of X("b", 1) and a second
operand, which is yet another add expression, whose operands are X("c", 1) and
X("d", 1). Taking the first of those add expressions, which constitutes the entire
argument to Console.WriteLine, does it even make sense to ask whether it comes
before or after its first operand? Lexically, the outermost add expression starts at
exactly the same point that its first operand starts and ends at the point where its sec‐
ond operand ends (which also happens to be at the exact same point that the final
X("d", 1) ends). In this particular case, it doesn’t really matter because the only
observable effect of the order of evaluation is the output the X method produces when
invoked. None of the expressions that invoke X are nested within one another, so we
can meaningfully say what order those expressions are in, and the output we see
matches that order. However, in some cases, such as Example 2-23, the overlapping
of nested expressions can have a visible impact.

Example 2-23. Operand evaluation order with nested expressions

Console.WriteLine(
    X("a", 1) +
    X("b", (X("c", 1) + X("d", 1) + X("e", 1))) +
    X("f", 1));

Here, Console.WriteLine’s argument adds the results of three calls to X; however, the
second of those calls to X (first argument "b") takes as its second argument an expres‐
sion that adds the results of three more calls to X (with arguments of "c", "d", and
"e"). With the final call to X (passing "f") we have a total of six expressions invoking
X in that statement. C#’s rule of evaluating expressions in the order in which they
appear applies as always, but because there is overlap, the results are initially surpris‐
ing. Although the letters appear in the source in alphabetical order, the output is
"acdebf5". If you’re wondering how on earth that can be consistent with expressions
being evaluated in order, consider that this code starts the evaluation of each expres‐
sion in the order in which the expressions start, and finishes the evaluation in the
order in which the expressions finish, but that those are two different orderings. In
particular, the expression that invokes X with "b" begins its evaluation before those
that invoke it with "c", "d", and "e", but it finishes its evaluation after them. And it’s
that after ordering that we see in the output. If you find each closing parenthesis that
corresponds to a call to X in this example, you’ll find that the order of calls exactly
matches what’s displayed.
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Comments and Whitespace
Most programming languages allow source files to contain text that is ignored by the
compiler, and C# is no exception. As with most C-family languages, it supports two
styles of comments for this purpose. There are single-line comments, as shown in
Example 2-24, in which you write two / characters in a row, and everything from
there to the end of the line will be ignored by the compiler.

Example 2-24. Single-line comments

Console.WriteLine("Say");        // This text will be ignored but the code on
Console.WriteLine("Anything");   // the left is still compiled as usual.

C# also supports delimited comments. You start a comment of this kind with /*, and
the compiler will ignore everything that follows until it encounters the first */ char‐
acter sequence. This can be useful if you don’t want the comment to go all the way to
the end of the line, as the first line of Example 2-25 illustrates. This example also
shows that delimited comments can span multiple lines.

Example 2-25. Delimited comments

Console.WriteLine(/* Has side effects */ GetLog());

/* Some developers like to use delimited comments for big blocks of text,
 * where they need to explain something particularly complex or odd in the
 * code. The column of asterisks on the left is for decoration - asterisks
 * are necessary only at the start and end of the comment.
 */

There’s a minor snag you can run into with delimited comments; it can happen even
when the comment is within a single line, but it more often occurs with multiline
comments. Example 2-26 shows the problem with a comment that begins in the mid‐
dle of the first line and ends at the end of the fourth.

Example 2-26. Multiline comments

Console.WriteLine("This will run");   /* This comment includes not just the
Console.WriteLine("This won't");       * text on the right, but also the text
Console.WriteLine("Nor will this");   /* on the left except the first and last
Console.WriteLine("Nor this");         * lines. */
Console.WriteLine("This will also run");

Notice that the /* character sequence appears twice in this example. When this
sequence appears in the middle of a comment, it does nothing special—comments
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don’t nest. Even though we’ve seen two /* sequences, the first */ is enough to end the
comment. This is occasionally frustrating, but it’s the norm for C-family languages.

It’s sometimes useful to take a chunk of code out of action temporarily, in a way
that’s easy to put back. Turning the code into a comment is a common way to do this,
and although a delimited comment might seem like the obvious thing to use, it
becomes awkward if the region you commented out happens to include another
delimited comment. Since there’s no support for nesting, you would need to add a /*
after the inner comment’s closing */ to ensure that you’ve commented out the whole
range. So it is common to use single-line comments for this purpose. (You can also
use the #if directive described in the next section.)

Visual Studio can comment out regions of code for you. If you
select several lines of text and type Ctrl-K followed immediately by
Ctrl-C, it will add // to the start of every line in the selection. And
you can uncomment a region with Ctrl-K, Ctrl-U. If you chose
something other than C# as your preferred language when you first
ran Visual Studio, these actions may be bound to different key
sequences, but they are also available on the Edit→Advanced
menu, as well as on the Text Editor toolbar, one of the standard
toolbars that Visual Studio shows by default.

Speaking of ignored text, C# ignores extra whitespace for the most part. Not all
whitespace is insignificant, because you need at least some space to separate tokens
that consist entirely of alphanumeric symbols. For example, you can’t write stati
cvoid as the start of a method declaration—you’d need at least one space (or tab,
newline, or other space-like character) between static and void. But with nonalpha‐
numeric tokens, spaces are optional, and in most cases, a single space is equivalent to
any amount of whitespace and new lines. This means that the three statements in
Example 2-27 are all equivalent.

Example 2-27. Insignificant whitespace

Console.WriteLine("Testing");
Console . WriteLine(   "Testing");
Console.
    WriteLine ("Testing" )
  ;

There are a couple of cases where C# is more sensitive to whitespace. Inside a string
literal, space is significant, because whatever spaces you write will be present in the
string value. Also, while C# mostly doesn’t care whether you put each element on its
own line, or put all your code in one massive line, or (as seems more likely)
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something in between, there is an exception: preprocessing directives are required to
appear on their own lines.

Preprocessing Directives
If you’re familiar with the C language or its direct descendants, you may have been
wondering if C# has a preprocessor. It doesn’t have a separate preprocessing stage,
and it does not offer macros. However, it does have a handful of directives similar to
those offered by the C preprocessor, although it is only a very limited selection. Even
though C# doesn’t have a full preprocessing stage like C, these are known as prepro‐
cessing directives nonetheless.

Compilation Symbols
C# offers a #define directive that lets you define a compilation symbol. These sym‐
bols are commonly used in conjunction with the #if directive to compile code in dif‐
ferent ways for different situations. For example, you might want some code to be
present only in Debug builds, or perhaps you need to use different code on different
platforms to achieve a particular effect. Often, you won’t use the #define directive,
though—it’s more common to define compilation symbols through the compiler
build settings. Visual Studio lets you configure different symbol values for each build
configuration. To control this, right-click the project’s node in Solution Explorer,
select Properties, and in the property page that this opens, go to the Build tab. Or you
can just open up the .csproj file and define the values you want in a <DefineConst
ants> element of any <PropertyGroup>.

The .NET SDK defines certain symbols by default. It supports two
configurations, Debug and Release. It defines a DEBUG compilation
symbol in the Debug configuration, whereas Release will define
RELEASE instead. It defines a symbol called TRACE in both configu‐
rations. Certain project types get additional symbols. A library tar‐
geting .NET Standard 2.0 will have both NETSTANDARD and
NETSTANDARD2_0 defined, for example.

Compilation symbols are typically used in conjunction with the #if, #else, #elif,
and #endif directives. (#elif is short for else if.) Example 2-28 uses some of these
directives to ensure that certain lines of code get compiled only in Debug builds.
(You can also write #if false to prevent sections of code from being compiled at all.
This is typically done only as a temporary measure, and is an alternative to comment‐
ing out that sidesteps some of the lexical pitfalls of attempting to nest comments.)

54 | Chapter 2: Basic Coding in C#



Example 2-28. Conditional compilation

#if DEBUG
    Console.WriteLine("Starting work");
#endif
    DoWork();
#if DEBUG
    Console.WriteLine("Finished work");
#endif

C# provides a more subtle mechanism to support this sort of thing, called a condi‐
tional method. The compiler recognizes an attribute defined by the .NET class libra‐
ries, called ConditionalAttribute, for which it provides special compile-time
behavior. You can annotate any method with this attribute. Example 2-29 uses it to
indicate that the annotated method should be used only when the DEBUG compilation
symbol is defined.

Example 2-29. Conditional method

[System.Diagnostics.Conditional("DEBUG")]
static void ShowDebugInfo(object o)
{
    Console.WriteLine(o);
}

If you write code that calls a method that has been annotated in this way, the C#
compiler will omit that call in builds that do not define the relevant symbol. So if you
write code that calls this ShowDebugInfo method, the compiler strips out all those
calls in non-Debug builds. This means you can get the same effect as Example 2-28,
but without cluttering up your code with directives.

The .NET class library’s Debug and Trace classes in the System.Diagnostics name‐
space use this feature. The Debug class offers various methods that are conditional on
the DEBUG compilation symbol, while the Trace class has methods conditional on
TRACE. If you leave the default settings for a new C# project in place, any diagnostic
output produced through the Trace class will be available in both Debug and Release
builds, but any code that calls a method on the Debug class will not get compiled into
Release builds.
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The Debug class’s Assert method is conditional on DEBUG, which
sometimes catches developers out. Assert lets you specify a condi‐
tion that must be true at runtime, and it throws an exception if the
condition is false. There are two things developers new to C# often
mistakenly put in a Debug.Assert: checks that should in fact occur
in all builds, and expressions with side effects that the rest of the
code depends on. This leads to bugs, because the compiler will strip
this code out in non-Debug builds.

#error and #warning
C# lets you choose to generate compiler errors or warnings with the #error and
#warning directives. These are typically used inside conditional regions, as
Example 2-30 shows, although an unconditional #warning could be useful as a way to
remind yourself that you’ve not written some particularly important bit of the code
yet.

Example 2-30. Generating a compiler error

#if NETSTANDARD
  #error .NET Standard is not a supported target for this source file
#endif

#line
The #line directive is useful in generated code. When the compiler produces an
error or a warning, it normally states where the problem occurred, providing the file‐
name, a line number, and an offset within that line. But if the code in question was
generated automatically using some other file as input and if that other file contains
the root cause of the problem, it may be more useful to report an error in the input
file, rather than the generated file. A #line directive can instruct the C# compiler to
act as though the error occurred at the line number specified and, optionally, as if the
error were in an entirely different file. Example 2-31 shows how to use it. The error
after the directive will be reported as though it came from line 123 of a file called
Foo.cs.

Example 2-31. The #line directive and a deliberate mistake

#line 123 "Foo.cs"
    intt x;

The filename part is optional, enabling you to fake just line numbers. You can tell the
compiler to revert to reporting warnings and errors without fakery by writing #line
default.
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This directive also affects debugging. When the compiler emits debug information, it
takes #line directives into account. This means that when stepping through code in
the debugger, you’ll see the location that #line refers to.

There’s another use for this directive. Instead of a line number (and optional file‐
name) you can write just #line hidden. This affects only the debugger behavior:
when single stepping, Visual Studio will run straight through all the code after such a
directive without stopping until it encounters a non-hidden #line directive (typi‐
cally #line default).

#pragma
The #pragma directive provides two features: it can be used to disable selected com‐
piler warnings, and it can also be used to override the checksum values the compiler
puts into the .pdb file it generates containing debug information. Both of these are
designed primarily for code generation scenarios, although they can occasionally be
useful to disable warnings in ordinary code. Example 2-32 shows how to use a
#pragma to prevent the compiler from issuing the warning that would normally occur
if you declare a variable that you do not then go on to use.

Example 2-32. Disabling a compiler warning

#pragma warning disable CS0168
    int a;

You should generally avoid disabling warnings. This feature is useful in generated
code because code generation can often end up creating items that are not always
used, and pragmas may offer the only way to get a clean compilation. But when
you’re writing code by hand, it should usually be possible to avoid warnings in the
first place.

Some components on NuGet supply code analyzers, components that get connected
up to the C# compiler API, and which are given the opportunity to inspect the code
and generate their own diagnostic messages. (This happens at build time, and in Vis‐
ual Studio, it also happens during editing, providing live diagnostics as you type.
They also work live in Visual Studio Code if you enable the OmniSharp C# exten‐
sion.) For example, the StyleCop.Analyzers NuGet package supplies an analyzer
that will warn you if any of your types’ public members do not conform to Micro‐
soft’s class library design guidelines. You can use #pragma warning directives to con‐
trol warnings from code analyzers, not just ones from the C# compiler. Analyzers
generally prefix their warning numbers with some letters to enable you to distinguish
between them—compiler warnings all start with CS and StyleCop warnings with SA,
for example.

Preprocessing Directives | 57



Pragmas offer special handling for the warnings you get from the nullable references
feature added in C# 8.0. Instead of specifying a compiler- or code-analyzer-generated
warning number, you can write nullable (e.g., #pragma warning disable nulla
ble). See Chapter 3 for more details.

It’s possible that future versions of C# may add other features based on #pragma.
When the compiler encounters a pragma it does not understand, it generates a warn‐
ing, not an error, on the grounds that an unrecognized pragma might be valid for
some future compiler version or some other vendor’s compiler.

#nullable
C# 8.0 adds a new directive, #nullable, which allows fine-grained control of the nul‐
lable annotation context. This is part of the nullable references feature described in
Chapter 3. (This doesn’t overlap with the nullable warning control described in the
preceding section, because we get to control whether nullability annotations are
enabled independently of whether warnings associated with those annotations are
enabled.)

#region and #endregion
Finally, we have two preprocessing directives that do nothing. If you write #region
directives, the only thing the compiler does is ensure that they have corresponding
#endregion directives. Mismatches cause compiler errors, but the compiler ignores
correctly paired #region and #endregion directives. Regions can be nested.

These directives exist entirely for the benefit of text editors that choose to recognize
them. Visual Studio uses them to provide the ability to collapse sections of the code
down to a single line on screen. The C# editor automatically allows certain features to
be expanded and collapsed, such as class definitions, methods, and code blocks (a fea‐
ture it calls outlining). If you define regions with these two directives, it will also allow
those to be expanded and collapsed. This allows for outlining at both finer-grained
(e.g., within a single block) and coarser-grained (e.g., multiple related methods)
scales than the editor offers automatically.

If you hover the mouse over a collapsed region, Visual Studio displays a tool tip
showing the region’s contents. You can put text after the #region token. When Vis‐
ual Studio displays a collapsed region, it shows this text on the single line that
remains. Although you’re allowed to omit this, it’s usually a good idea to include
some descriptive text so that people can have a rough idea of what they’ll see if they
expand it.

Some people like to put the entire contents of a class into various regions, because by
collapsing all regions, you can see a file’s structure at a glance. It might even all fit on
the screen at once, thanks to the regions being reduced to a single line. On the other

58 | Chapter 2: Basic Coding in C#



5 Strictly speaking, this is guaranteed only for correctly aligned 32-bit types. However, C# aligns them correctly
by default and you’d normally encounter misaligned data only if your code needs to call out into unmanaged
code.

hand, some people hate collapsed regions, because they present speed bumps on the
way to being able to look at the code and can also encourage people to put too much
source code into one file.

Fundamental Data Types
.NET defines thousands of types in its class library, and you can write your own, so
C# can work with an unlimited number of data types. However, a handful of types
get special handling from the compiler. You saw earlier in Example 2-9 that if you
have a string, and you try to add a number to it, the resulting code converts the num‐
ber to a string and appends that to the first string. In fact, the behavior is more gen‐
eral than that—it’s not limited to numbers. The compiled code works by calling the
String.Concat method, and if you pass to that any nonstring arguments, it will call
their ToString methods before performing the append. All types offer a ToString
method, so this means you can append values of any type to a string.

That’s handy, but it only works because the C# compiler knows about strings and
provides special services for them. (There’s a part of the C# specification that defines
the unique string handling for the + operator.) C# provides various special services
not just for strings, but also certain numeric data types, Booleans, a family of types
called tuples, and two specific types called dynamic and object. Most of these are
special not just to C# but also to the runtime—almost all of the numeric types (all
except BigInteger) get direct support in intermediate language (IL), and the bool,
string, and object types are also intrinsically understood by the runtime.

Numeric Types
C# supports integer and floating-point arithmetic. There are signed and unsigned
integer types and they come in various sizes, as Table 2-1 shows. The most com‐
monly used integer type is int, not least because it is large enough to represent a use‐
fully wide range of values, without being too large to work efficiently on all CPUs that
support .NET. (Larger data types might not be handled natively by the CPU and can
also have undesirable characteristics in multithreaded code: reads and writes are
atomic for 32-bit types,5 but may not be for larger ones.)
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Table 2-1. Integer types

C# type CLR name Signed Size in bits Inclusive range

byte System.Byte No 8 0 to 255

sbyte System.SByte Yes 8 −128 to 127

ushort System.UInt16 No 16 0 to 65,535

short System.Int16 Yes 16 −32,768 to 32,767

uint System.UInt32 No 32 0 to 4,294,967,295

int System.Int32 Yes 32 −2,147,483,648 to 2,147,483,647

ulong System.UInt64 No 64 0 to 18,446,744,073,709,551,615

long System.Int64 Yes 64 −9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

The second column in Table 2-1 shows the name of the type in the CLR. Different
languages have different naming conventions and C# uses names from its C-family
roots for numeric types, but those don’t fit with the naming conventions that .NET
has for its data types. As far as the runtime is concerned, the names in the second
column are the real names—there are various APIs that can report information about
types at runtime, and they report these CLR names, not the C# ones. The names are
synonymous in C# source code, so you’re free to use the runtime names if you want
to, but the C# names are a better stylistic fit—keywords in C-family languages are all
lowercase. Since the compiler handles these types differently than the rest, it’s argua‐
bly good to have them stand out.

Not all .NET languages support unsigned numbers, so the .NET
class library tends to avoid them. A runtime that supports multiple
languages (such as the CLR) faces a trade-off between offering a
type system rich enough to cover most languages’ needs, and forc‐
ing an overcomplicated type system on simple languages. To
resolve this, .NET’s type system, the CTS, is reasonably compre‐
hensive, but languages don’t have to support all of it. The CLS
identifies a relatively small subset of the CTS that all languages
should support. Signed integers are in the CLS, but unsigned ones
are not. This is why you will sometimes see surprising-looking type
choices, such as the Length property of an array being int (rather
than uint) despite the fact that it will never return a negative value.

C# also supports floating-point numbers. There are two types: float and double,
which are 32-bit and 64-bit numbers in the standard IEEE 754 formats, and as the
CLR names in Table 2-2 suggest, these correspond to what are commonly called 
single-precision and double-precision numbers. Floating-point values do not work in
the same way as integers, so this table is a little different than the integer types table.
Floating point numbers store a value and an exponent (similar in concept to scientific
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notation, but working in binary instead of decimal). The precision column shows
how many bits are available for the value part, and then the range is expressed as the
smallest nonzero value and the largest value that can be represented. (These can be
either positive or negative.)

Table 2-2. Floating-point types

C# type CLR name Size in bits Precision Range (magnitude)

float System.Single 32 23 bits (~7 decimal digits) 1.5×10−45 to 3.4×1038

double System.Double 64 52 bits (~15 decimal digits) 5.0×10−324 to 1.7×10308

C# recognizes a third numeric representation called decimal (or System.Decimal in
the CLR). This is a 128-bit value, so it can offer greater precision than the other for‐
mats, but it is not just a bigger version of double. It is designed for calculations that
require predictable handling of decimal fractions, something neither float nor dou
ble can offer. If you write code that initializes a variable of type float to 0 and then
adds 0.1 to it nine times in a row, you might expect to get a value of 0.9, but in fact
you’ll get approximately 0.9000001. That’s because IEEE 754 stores numbers in
binary, which cannot represent all decimal fractions. It can handle some, such as the
decimal 0.5; written in base 2, that’s 0.1. But the decimal 0.1 turns into a recurring
number in binary. (Specifically, it’s 0.0 followed by the recurring sequence 0011.)
This means float and double can represent only an approximation of the decimal
value 0.1, and more generally, only a small subset of decimals can be represented
completely accurately. This isn’t always instantly obvious, because when floating-
point numbers are converted to text, they are rounded to a decimal approximation
that can mask the discrepancy. But over multiple calculations, the inaccuracies tend
to add up and eventually produce surprising-looking results.

For some kinds of calculations, this doesn’t really matter; in simulations or signal
processing, for example, some noise and error is expected. But accountants and
financial regulators tend to be less forgiving—little discrepancies like this can make it
look like money has magically vanished or appeared. We need calculations that
involve money to be absolutely accurate, which makes floating point a terrible choice
for such work. This is why C# offers the decimal type, which provides a well-defined
level of decimal precision.

Most of the integer types can be handled natively by the CPU. (All
of them can when running in a 64-bit process.) Likewise, many
CPUs can work directly with float and double representations.
However, none has intrinsic support for decimal, meaning that
even simple operations, such as addition, require multiple CPU
instructions. This means that arithmetic is significantly slower with
decimal than with the other numeric types shown so far.
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6 A decimal, therefore, doesn’t use all of its 128 bits. Making it smaller would cause alignment difficulties, and
using the additional bits for extra precision would have a significant performance impact, because integers
whose length is a multiple of 32 bits are easier for most CPUs to deal with than the alternatives.

A decimal stores numbers as a sign bit (positive or negative) and a pair of integers.
There’s a 96-bit integer, and the value of the decimal is this first integer (negated if
the sign bit says so) multiplied by 10 raised to the power of the second integer, which
is a number in the range of 0 to 28.6 96 bits is enough to represent any 28-digit deci‐
mal integer (and some, but not all, 29-digit ones), so the second integer—the one rep‐
resenting the power of 10 by which the first is multiplied—effectively says where the
decimal point goes. This format makes it possible to represent any decimal with 28 or
fewer digits accurately.

When you write a literal numeric value, you can choose the type, or you can let the
compiler pick a suitable type for you. If you write a plain integer, such as 123, its type
will be int, uint, long, or ulong—the compiler picks the first type from that list with
a range that contains the value. (So 123 would be an int, 3000000000 would be a
uint, 5000000000 would be a long, etc.) If you write a number with a decimal point,
such as 1.23, its type is double.

If you’re dealing with large numbers, it’s very easy to get the number of zeros wrong.
This is usually bad and possibly very expensive or dangerous, depending on your
application area. C# provides some mitigation by allowing you to add underscores
anywhere in numeric literals, to break the numbers up however you please. This is
analogous to the common practice in most English-speaking countries of using a
comma to separate zeros into groups of 3. For example, instead of writing
5000000000, most native English speakers would write 5,000,000,000, instantly mak‐
ing it much easier to see that this is 5 billion and not, say, 50 billion, or 500 million.
(What many native English speakers don’t know is that several countries around the
world use a period for this, and would write 5.000.000.000 instead, using the comma
where most native English speakers would put a decimal point. Interpreting a value
such as €100.000 requires you to know which country’s conventions are in use if you
don’t want to make a disastrous financial miscalculation. But I digress.) In C# we can
do something similar by writing the numeric literal as 5_000_000_000.

You can tell the compiler that you want a specific type by adding a suffix. So 123U is a
uint, 123L is a long, and 123UL is a ulong. Suffix letters are case- and order-
independent, so instead of 123UL, you could write 123Lu, 123uL, or any other permu‐
tation. For double, float, and decimal, use the D, F, and M suffixes, respectively.

These last three types all support a decimal exponential literal format for large num‐
bers, where you put the letter E in the constant followed by the power. For example,
the literal value 1.5E-20 is the value 1.5 multiplied by 10−20. (This happens to be of
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type double, because that’s the default for a number with a decimal point, regardless
of whether it’s in exponential format. You could write 1.5E-20F and 1.5E-20M for
float and decimal constants with equivalent values.)

It’s often useful to be able to write integer literals in hexadecimal, because the digits
map better onto the binary representation used at runtime. This is particularly
important when different bit ranges of a number represent different things. For
example, you may need to deal with a numeric error code that originated from a
Windows system call—these occasionally crop up in exceptions. In some cases, these
codes use the topmost bit to indicate success or failure, the next few bits to indicate
the origin of the error, and the remaining bits to identify the specific error. For exam‐
ple, the COM error code E_ACCESSDENIED has the value −2,147,024,891. It’s hard
to see the structure in decimal, but in hexadecimal, it’s easier: 80070005. The 8 indi‐
cates that this is an error, and the 007 that follows indicates that this was originally a
plain Win32 error that has been translated into a COM error. The remaining bits
indicate that the Win32 error code was 5 (ERROR_ACCESS_DENIED). C# lets you
write integer literals in hexadecimal for scenarios like these, where the hex represen‐
tation is more readable. You just prefix the number with 0x, so in this case, you
would write 0x80070005.

You can also write binary literals by using the 0b prefix. Digit separators can be used
in hex and binary just as they can in decimals, although it’s more common to group
the digits by fours in these cases, e.g., 0b_0010_1010. Obviously this makes any binary
structure in a number even more evident than hexadecimal does, but 32-bit binary
literals are inconveniently long, which is why we often use hexadecimal instead.

Numeric conversions
Each of the built-in numeric types uses a different representation for storing numbers
in memory. Converting from one form to another requires some work—even the
number 1 looks quite different if you inspect its binary representations as a float, an
int, and a decimal. However, C# is able to generate code that converts between for‐
mats and it will often do so automatically. Example 2-33 shows some cases in which
this will happen.

Example 2-33. Implicit conversions

int i = 42;
double di = i;
Console.WriteLine(i / 5);
Console.WriteLine(di / 5);
Console.WriteLine(i / 5.0);

The second line assigns the value of an int variable into a double variable. The C#
compiler generates the necessary code to convert the integer value into its equivalent

Fundamental Data Types | 63



7 Promotions are not in fact a feature of C#. There is a more general mechanism: conversion operators. C#
defines intrinsic implicit conversion operators for the built-in data types. The promotions discussed here
occur as a result of the compiler following its usual rules for conversions.

floating-point value. More subtly, the last two lines will perform similar conversions,
as we can see from the output of that code:

8
8.4
8.4

This shows that the first division produced an integer result—dividing the integer
variable i by the integer literal 5 caused the compiler to generate code that performs
integer division, so the result is 8. But the other two divisions produced a floating-
point result. In the second case, we’ve divided the double variable di by an integer
literal 5. C# converts that 5 to floating point before performing the division. And in
the final line, we’re dividing an integer variable by a floating-point literal. This time,
it’s the variable’s value that gets turned from an integer into a floating-point value
before the division takes place.

In general, when you perform arithmetic calculations that involve a mixture of
numeric types, C# will pick the type with the largest range and promote values of
types with a narrower range into that larger one before performing the calculations.
(Arithmetic operators generally require all their operands to have the same type, so if
you supply operands with different types, one type has to “win” for any particular
operator.) For example, double can represent any value that int can, and many that
it cannot, so double is the more expressive type.7

C# will perform numeric conversions implicitly whenever the conversion is a promo‐
tion (i.e., the target type has a wider range than the source), because there is no possi‐
bility of the conversion failing. However, it will not implicitly convert in the other
direction. The second and third lines of Example 2-34 will fail to compile, because
they attempt to assign expressions of type double into an int, which is a narrowing
conversion, meaning that the source might contain values that are out of the target’s
range.

Example 2-34. Errors: implicit conversions not available

int i = 42;
int willFail = 42.0;
int willAlsoFail = i / 1.0;

It is possible to convert in this direction, just not implicitly. You can use a cast, where
you specify the name of the type to which you’d like to convert in parentheses.
Example 2-35 shows a modified version of Example 2-34, where we state explicitly
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that we want a conversion to int, and we either don’t mind that this conversion
might not work correctly, or we have reason to believe that, in this specific case, the
value will be in range. Note that on the final line I’ve put parentheses around the
expression after the cast. That makes the cast apply to the whole expression; other‐
wise, C#’s rules of precedence mean it would apply just to the i variable, and since
that’s already an int, it would have no effect.

Example 2-35. Explicit conversions with casts

int i = 42;
int i2 = (int) 42.0;
int i3 = (int) (i / 1.0);

So narrowing conversions require explicit casts, and conversions that cannot lose
information occur implicitly. However, with some combinations of types, neither is
strictly more expressive than the other. What should happen if you try to add an int
to a uint? Or an int to a float? These types are all 32 bits in size, so none of them
can possibly offer more than 232 distinct values, but they have different ranges, which
means that each has values it can represent that the other types cannot. For example,
you can represent the value 3,000,000,001 in a uint, but it’s too large for an int and
can only be approximated in a float. As floating-point numbers get larger, the values
that can be represented get farther apart—a float can represent 3,000,000,000 and
also 3,000,001,024, but nothing in between. So for the value 3,000,000,001, uint
seems better than float. But what about −1? That’s a negative number, so uint can’t
cope with that. Then there are very large numbers that float can represent that are
out of range for both int and uint. Each of these types has its strengths and weak‐
nesses, and it makes no sense to say that one of them is generally better than the rest.

Surprisingly, C# allows some implicit conversions even in these potentially lossy sce‐
narios. The rules consider only range, not precision: implicit conversions are allowed
if the target type’s range completely contains the source type’s range. So you can con‐
vert from either int or uint to float, because although float is unable to represent
some values exactly, there are no int or uint values that it cannot at least approxi‐
mate. But implicit conversions are not allowed in the other direction, because there
are some float values that are simply too big—unlike float, the integer types can’t
offer approximations for bigger numbers.

You might be wondering what happens if you force a narrowing conversion to int
with a cast, as Example 2-35 does, in situations where the number is out of range. The
answer depends on the type from which you are casting. Conversion from one inte‐
ger type to another works differently than conversion from floating point to integer.
In fact, the C# specification does not define how floating-point numbers that are too
big should be converted to an integer type—the result could be anything. But when
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8 A property is a member of a type that represents a value that can be read or modified or both; Chapter 3
describes properties in detail.

casting between integer types, the outcome is well defined. If the two types are of dif‐
ferent sizes, the binary will be either truncated or padded with zeros (or ones, if the
source type is signed and the value is negative) to make it the right size for the target
type, and then the bits are just treated as if they are of the target type. This is occa‐
sionally useful, but can more often produce surprising results, so you can choose an
alternative behavior for any out-of-range cast by making it a checked conversion.

Checked contexts

C# defines the checked keyword, which you can put in front of either a block state‐
ment or an expression, making it a checked context. This means that certain arith‐
metic operations, including casts, are checked for range overflow at runtime. If you
cast a value to an integer type in a checked context and the value is too high or low to
fit, an error will occur—the code will throw a System.OverflowException.

As well as checking casts, a checked context will detect range overflows in ordinary
arithmetic. Addition, subtraction, and other operations can take a value beyond the
range of its data type. For integers, this causes the value to “roll over” when
unchecked, so adding 1 to the maximum value produces the minimum value, and
vice versa for subtraction. Occasionally, this wrapping can be useful. For example, if
you want to determine how much time has elapsed between two points in the code,
one way to do this is to use the Environment.TickCount property.8 (This is more reli‐
able than using the current date and time, because that can change as a result of the
clock being adjusted, or when moving between time zones. The tick count just keeps
increasing at a steady rate. That said, in real code you’d probably use the class
library’s Stopwatch class.) Example 2-36 shows one way to do this.

Example 2-36. Exploiting unchecked integer overflow

int start = Environment.TickCount;
DoSomeWork();
int end = Environment.TickCount;

int totalTicks = end - start;
Console.WriteLine(totalTicks);

The tricky thing about Environment.TickCount is that it occasionally “wraps
around.” It counts the number of milliseconds since the system last rebooted, and
since its type is int, it will eventually run out of range. A span of 25 days is 2.16 bil‐
lion milliseconds—too large a number to fit in an int. (.NET Core 3.0 solves this by
adding a TickCount64 property, which is good for almost 300 million years. But this
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is unavailable in older versions, or any .NET Standard version available at the time I
write this.) Imagine the tick count is 2,147,483,637, which is 10 short of the maxi‐
mum value for int. What would you expect it to be 100 ms later? It can’t be 100
higher (2,147,483,727), because that’s too big a value for an int. We’d expect it to get
to the highest possible value after 10 ms, so after 11 ms, it’ll roll round to the mini‐
mum value; thus, after 100 ms, we’d expect the tick count to be 89 above the mini‐
mum value (which would be −2,147,483,559).

The tick count is not necessarily precise to the nearest millisecond
in practice. It often stands still for milliseconds at a time before
leaping forward in increments of 10 ms, 15 ms, or even more.
However, the value still rolls over—you just might not be able to
observe every possible tick value as it does so.

Interestingly, Example 2-36 handles this perfectly. If the tick count in start was
obtained just before the count wrapped, and the one in end was obtained just after,
end will contain a much lower value than start, which seems upside down, and the
difference between them will be large—larger than the range of an int. However,
when we subtract start from end, the overflow rolls over in a way that exactly
matches the way the tick count rolls over, meaning we end up getting the correct
result regardless. For example, if the start contains a tick count from 10 ms before
rollover, and end is from 90 ms afterward, subtracting the relevant tick counts (i.e.,
subtracting −2,147,483,558 from 2,147,483,627) seems like it should produce a result
of 4,294,967,185. But because of the way the subtraction overflows, we actually get a
result of 100, which corresponds to the elapsed time of 100 ms.

But in most cases, this sort of integer overflow is undesirable. It means that when
dealing with large numbers, you can get results that are completely incorrect. A lot of
the time, this is not a big risk, because you will be dealing with fairly small numbers,
but if there is any possibility that your calculations might encounter overflow, you
might want to use a checked context. Any arithmetic performed in a checked context
will throw an exception when overflow occurs. You can request this in an expression
with the checked operator, as Example 2-37 shows. Everything inside the parentheses
will be evaluated in a checked context, so you’ll see an OverflowException if the
addition of a and b overflows. The checked keyword does not apply to the whole
statement here, so if an overflow happens as a result of adding c, that will not cause
an exception.

Example 2-37. Checked expression

int result = checked(a + b) + c;
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You can also turn on checking for an entire block of code with a checked statement,
which is a block preceded by the checked keyword, as Example 2-38 shows. Checked
statements always involve a block—you cannot just add the checked keyword in front
of the int keyword in Example 2-37 to turn that into a checked statement. You’d also
need to wrap the code in braces.

Example 2-38. Checked statement

checked
{
    int r1 = a + b;
    int r2 = r1 - (int) c;
}

A checked block only affects the lines of code inside the block. If
the code invokes any methods, those will be unaffected by the pres‐
ence of the checked keyword—there isn’t some checked bit in the
CPU that gets enabled on the current thread inside a checked
block. (In other words, this keyword’s scope is lexical, not
dynamic.)

C# also has an unchecked keyword. You can use this inside a checked block to indi‐
cate that a particular expression or nested block should not be a checked context.
This makes life easier if you want everything except for one particular expression to
be checked—rather than having to label everything except the chosen part as
checked, you can put all the code into a checked block and then exclude the one piece
that wants to allow overflow without errors.

You can configure the C# compiler to put everything into a checked context by
default, so that only explicitly unchecked expressions and statements will be able to
overflow silently. In Visual Studio, you can configure this by opening the project
properties, going to the Build tab, and clicking the Advanced button. Or you can edit
the .csproj file, adding <CheckForOverflowUnderflow>true</CheckForOverflowUn
derflow> inside a <PropertyGroup>. Be aware that there’s a significant cost—check‐
ing can make individual integer operations several times slower. The impact on your
application as a whole will be smaller, because programs don’t spend their whole time
performing arithmetic, but the cost may still be nontrivial. Of course, as with any
performance matter, you should measure the practical impact. You may find that the
performance cost is an acceptable price to pay for the guarantee that you will find out
about unexpected overflows.
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BigInteger

There’s one last numeric type worth being aware of: BigInteger. It’s part of the .NET
class library and gets no special recognition from the C# compiler so it doesn’t strictly
belong in this section of the book. However, it defines arithmetic operators and con‐
versions, meaning that you can use it just like the built-in data types. It will compile
to slightly less compact code—the compiled format for .NET programs can represent
integers and floating-point values natively, but BigInteger has to rely on the more
general-purpose mechanisms used by ordinary class library types. In theory it is likely
to be significantly slower too, although in an awful lot of code, the speed at which you
can perform basic arithmetic on small integers is not a limiting factor, so it’s quite
possible that you won’t notice. And as far as the programming model goes, it looks
and feels like a normal numeric type in your code.

As the name suggests, a BigInteger represents an integer. Its unique selling point is
that it will grow as large as is necessary to accommodate values. So unlike the built-in
numeric types, it has no theoretical limit on its range. Example 2-39 uses it to calcu‐
late values in the Fibonacci sequence, showing every 100,000th value. This quickly
produces numbers far too large to fit into any of the other integer types. I’ve shown
the full source of this example, including using directives, to illustrate that this type is
defined in the System.Numerics namespace.

Example 2-39. Using BigInteger

using System;
using System.Numerics;

class Program
{
    static void Main(string[] args)
    {
        BigInteger i1 = 1;
        BigInteger i2 = 1;
        Console.WriteLine(i1);
        int count = 0;
        while (true)
        {
            if (count++ % 100000 == 0)
            {
                Console.WriteLine(i2);
            }
            BigInteger next = i1 + i2;
            i1 = i2;
            i2 = next;
        }
    }
}
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Although BigInteger imposes no fixed limit, there are practical limits. You might
produce a number that’s too big to fit in the available memory, for example. Or more
likely, the numbers may grow large enough that the amount of CPU time required to
perform even basic arithmetic becomes prohibitive. But until you run out of either
memory or patience, BigInteger will grow to accommodate numbers as large as you
like.

Booleans
C# defines a type called bool, or as the runtime calls it, System.Boolean. This offers
only two values: true and false. Whereas some C-family languages allow numeric
types to stand in for Boolean values, with conventions such as 0 meaning false and
anything else meaning true, C# will not accept a number. It demands that values
indicating truth or falsehood be represented by a bool, and none of the numeric types
is convertible to bool. For example, in an if statement, you cannot write if (some
Number) to get some code to run only when someNumber is nonzero. If that’s what you
want, you need to say so explicitly by writing if (someNumber != 0).

Strings and Characters
The string type (synonymous with the CLR System.String type) represents text. A
string is a sequence of values of type char (or System.Char, as the CLR calls it), and
each char is a 16-bit value representing a single UTF-16 code unit.

A common mistake is to think that each char represents a character. (The type’s
name has to share some of the blame for this.) It’s often true, but not always. There
are two factors to bear in mind: first, something that we might think of as a single
character can be made up from multiple Unicode code points. (The code point is Uni‐
code’s central concept and in English at least, each character is represented by a sin‐
gle code point, but some languages are more complex.) Example 2-40 uses Unicode’s
0301 “COMBINING ACUTE ACCENT” to add an accent to a letter to form the text
cafés.

Example 2-40. Characters versus char

char[] chars = { 'c', 'a', 'f', 'e', (char) 0x301, 's' };
string text = new string(chars);

So this string is a sequence of six char values, but it represents text that seems to con‐
tain just five characters. There are other ways to achieve this—I could have used code
point 00E9 “LATIN SMALL LETTER E WITH ACUTE” to represent that accented
character as a single code point. But either approach is valid, and there are plenty of
scenarios in which the only way to create the exact character required is to use this
combining character mechanism. This means that certain operations on the char val‐
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ues in a string can have surprising results—if you were to reverse the order of the val‐
ues, the resulting string would not look like a reversed version of the text—the acute
accent would now apply to the s, resulting in śefac! (If I had used 00E9 instead of
combining e with 0301, reversing the characters would have resulted in the less sur‐
prising séfac.)

Unicode’s combining marks notwithstanding, there is a second factor to consider.
The Unicode standard defines more code points than can be represented in a single
16-bit value. (We passed that point back in 2001, when Unicode 3.1 defined 94,205
code points.) UTF-16 represents any code point with a value higher than 65,535 as a
pair of UTF-16 code units, referred to as a surrogate pair. The Unicode standard
defines rules for mapping code points to surrogate pairs in a way that the resulting
code units have values in the range 0xD800 to 0xDFFF, a reserved range for which no
code points will ever be defined. (E.g., code point 10C48, “OLD TURKIC LETTER
ORKHON BASH”, which looks like , would become 0xD803, followed by
0xDC48.)

The .NET class library provides a StringInfo class that can help
you deal with combining characters. .NET Core 3.0 introduces a
new type Rune in the System namespace that provides various
helper methods that can simplify working with multicode-unit
sequences.

In summary, items that users perceive as single characters might be represented with
multiple Unicode code points, and some single code points might be represented as
multiple code units. Manipulating the individual char values that make up a string
is therefore a job you should approach with caution.

Immutability of strings
.NET strings are immutable. There are many operations that sound as though they
will modify a string, such as concatenation, or the ToUpper and ToLower methods
offered by instances of the string type, but each of these generates a new string, leav‐
ing the original one unmodified. This means that if you pass strings as arguments,
even to code you didn’t write, you can be certain that it cannot change your strings.

The downside of immutability is that string processing can be inefficient. If you need
to do work that performs a series of modifications to a string, such as building it up
character by character, you will end up allocating a lot of memory, because you’ll get
a separate string for each modification. This creates a lot of extra work for .NET’s
garbage collector, causing your program to use more CPU time than necessary. In
these situations, you can use a type called StringBuilder. (This type gets no special
recognition from the C# compiler, unlike string.) This is conceptually similar to a
string—it is a sequence of char values and offers various useful string manipulation
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methods—but it is modifiable. Alternatively, in extremely performance-sensitive sce‐
narios, you might use the techniques shown in Chapter 18.

Formatting data in strings
C# provides a syntax that makes it easy to produce strings that contain a mixture of
fixed text and information determined at runtime. (The official name for this feature
is string interpolation.) For example, if you have local variables called name and age,
you could use them in a string, as Example 2-41 shows.

Example 2-41. Expressions in strings

string message = $"{name} is {age} years old";

When you put a $ symbol in front of a string constant, the C# compiler looks for
embedded expressions delimited by braces, and produces code that will insert a tex‐
tual representation of the expression at that point in the string. (So if name and age
were Ian and 46, respectively, the string’s value would be "Ian is 46 years old".)
Embedded expressions can be more complex than just variable names, as
Example 2-42 shows.

Example 2-42. More complex expressions in strings

double width = 3, height = 4;
string info = $"Hypotenuse: {Math.Sqrt(width * width + height * height)}";

Interpolated strings compile into code that uses the string class’s Format method
(which is how this sort of data formatting was usually done in older versions of C#—
string interpolation was introduced in C# 6). Example 2-43 shows code that is
roughly equivalent to what the compiler will produce for Examples 2-41 and 2-42.

Example 2-43. The effect of string interpolation

string message = string.Format("{0} is {1} years old", name, age);
string info = string.Format(
    "Hypotenuse: {0}",
    Math.Sqrt(width * width + height * height));

Why not just use the underlying string.Format mechanism directly? String interpo‐
lation is much less error prone—string.Format uses position-based placeholders
and it’s all too easy to put an expression in the wrong place. It’s also tedious for any‐
one reading the code to try and work out how the numbered placeholders relate to
the arguments that follow, particularly as the number of expressions increases. Inter‐
polated strings are usually much easier to read.
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With some data types, there are choices to be made about their textual representa‐
tion. For example, with floating-point numbers, you might want to limit the number
of decimal places, or force the use of exponential notation (e.g., 1e6 instead of
1000000). In .NET, we control this with a format specifier, which is a string describing
how to convert some data to a string. Some data types have only one reasonable
string representation, so they do not support this, but with types that do, you can
pass the format specifier as an argument to the ToString method. For example, Sys
tem.Math.PI.ToString("f4") formats the PI constant (which is of type double) to
four decimal places ("3.1416"). There are nine built-in formats for numbers, and if
none of those suits your requirements, there’s also a minilanguage for defining cus‐
tom formats. Moreover, different types use different format strings—as you’d expect,
dates work quite differently from numbers—so the full range of available formats is
too large to list here. Microsoft supplies extensive documentation of the details.

When using string.Format, you can include a format specifier in the placeholder;
e.g., {0:f3} indicates that the first expression is to be formatted with three digits after
the decimal point. You can include a format specifier in a similar way with string
interpolation. Example 2-44 shows the age with one digit after the decimal point.

Example 2-44. Format specifiers

string message = $"{name} is {age:f1} years old";

There’s one wrinkle with this: with many data types, the process of converting to a
string is culture-specific. For example, as mentioned earlier, in the US and the UK,
decimals are typically written with a period between the whole number part and the
fractional part and you might use commas to group digits for readability, but some
European countries invert this: they use periods to group digits, while the comma
denotes the start of the fractional part. So what might be written as 1,000.2 in one
country could be written as 1.000,2 in another.

As far as numeric literals in source code are concerned, this is a nonissue: C# uses
underscores for digit grouping and always uses a period as the decimal point. But
what about formatting numbers at runtime? By default, you will get conventions
determined by the current thread’s culture, and unless you’ve changed that, it will use
the regional settings of the computer. Sometimes this is useful—it can mean that
numbers, dates, and so on are correctly formatted for whatever locale a program runs
in. However, it can be problematic: if your code relies on strings being formatted in a
particular way (e.g., to serialize data that will be transmitted over a network), you
may need to force a particular set of conventions. For this reason, you can pass the
string.Format method a format provider, an object that controls formatting conven‐
tions. Likewise, data types with culture-dependent representations accept an optional
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9 IFormattable is an interface. Chapter 3 describes interfaces.

format provider argument in their ToString methods. But how do you control this
when using string interpolation? There’s nowhere to put the format provider.

You can solve this by assigning an interpolated string into a variable of type Formatta
bleString or IFormattable,9 or you can pass it to a method that requires an argu‐
ment of either of these types. When you do this, the C# compiler generates different
code: instead of creating a string directly, it produces an object that enables you to
take control of culture-dependent formatting. Example 2-45 illustrates this technique
with the same string as Example 2-44.

Example 2-45. Format specifiers with invariant culture

string message = FormattableString.Invariant($"{name} is {age:f1} years old");

The FormattableString type defines two static methods, Invariant and CurrentCul
ture, that each take an argument of type FormattableString, so by passing our
interpolated string to one of these, we cause the compiler to generate code that wraps
the string in a FormattableString.

FormattableString implements IFormattable, and that defines an extra ToString
method that takes a format provider that it uses to format each of the placeholders in
the interpolated string. The Invariant method that Example 2-45 uses calls that
method, passing in the format provider for the invariant culture. This provider
(which you can also obtain from the CultureInfo.InvariantCulture property)
guarantees consistent formatting regardless of the locale in which the code runs. If
you call FormattableString.CurrentCulture, it formats the string with the thread’s
current culture instead.

Verbatim string literals
C# supports one more way of expressing a string value: you can prefix a string literal
with the @ symbol; e.g., @"Hello". Strings of this form are called verbatim string liter‐
als. They are useful for two reasons: they can improve the readability of strings con‐
taining backslashes and they make it possible to write multiline string literals.

You can use @ in front of an interpolated string. This combines the
benefits of verbatim literals—straightforward use of backslashes
and newlines—with support for embedded expressions.
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In a normal string literal, the compiler treats a backslash as an escape character, ena‐
bling various special values to be included. For example, in the literal "Hello
\tworld" the \t denotes a single tab character (code point 9). This is a common way
to express control characters in C family languages. You can also use the backslash to
include a double quote in a string—the backslash prevents the compiler from inter‐
preting the character as the end of the string. Useful though this is, it makes including
a backslash in a string a bit awkward: you have to write two of them. Since Windows
uses backslashes in paths, this can get ugly, e.g., "C:\\Windows\\System32\\". A ver‐
batim string literal can be useful here, because it treats backslashes literally, enabling
you to write just @"C:\Windows\System32". (You can still include double quotes in a
verbatim literal: just write two double quotes in a row: e.g., @"Hello ""world""" pro‐
duces the string value Hello "World".)

Verbatim string literals also allow values to span multiple lines. With a normal string
literal, the compiler will report an error if the closing double quote is not on the same
line as the opening one. But with a verbatim string literal, the string can cover as
many lines of source as you like.

The resulting string will use whichever line-ending convention your source code
uses. Just in case you’ve not encountered this, one of the unfortunate accidents of
computing history is that different systems use different character sequences to
denote line endings. The predominant system in internet protocols is to use a pair of
control codes for each line end: in either Unicode or ASCII we use code points 13
and 10, denoting a carriage return and a line feed respectively, often abbreviated to
CR LF. This is an archaic hangover from the days before computers had screens, and
starting a new line meant moving the teletype’s print head back to its start position
(carriage return) and then moving the paper up by one line (line feed). Anachronisti‐
cally, the HTTP specification requires this representation, as do the various popular
email standards, SMTP, POP3, and IMAP. It is also the standard convention on Win‐
dows. Unfortunately, the Unix operating system does things differently, as do most of
its derivatives and lookalikes such as macOS and Linux—the convention on these
systems is to use just a single line feed character. The C# compiler accepts either, and
will not complain even if a single source file contains a mixture of both conventions.
This introduces a potential problem for multiline string literals if you are using a
source control system that converts line endings for you. For example, git is a very
popular source control system, and thanks to its origins (it was created by Linus Tor‐
valds, who also created Linux) there is a widespread convention of using Unix-style
line endings in its repositories. However, on Windows it can be configured to convert
working copies of files to a CR LF representation, automatically converting them
back to LF when committing changes. This means that files will appear to use differ‐
ent line ending conventions depending on whether you’re looking at them on a Win‐
dows system or a Unix one. (And it might even vary from one Windows system to
another, because the default line handling ending is configurable. Individual users
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can configure the machine-wide default setting and can also set the configuration for
their local clone of any repository if the repository does not specify the setting itself.)
This in turn means compiling a file containing a multiline verbatim string literal on a
Windows system could produce subtly different behavior than you’d see with the
exact same file on a Unix system, if automatic line end conversion is enabled (which
it is by default on most Windows installations of git). That might be fine—you typi‐
cally want CR LF when running on Windows and LF on Unix—but it could cause
surprises if you deploy code to a machine running a different OS than the one you
built it on. So it’s important to provide a .gitattributes file in your repositories so
that they can specify the required behavior, instead of relying on changeable local set‐
tings. If you need to rely on a particular line ending in a string literal, it’s best to make
your .gitattributes disable line end conversions.

Tuples
C# 7.0 introduced a new language feature: support for tuples. These let you combine
multiple values into a single value. The name tuple (which C# shares with many other
programming languages that provide a similar feature) is meant to be a generalized
version of words like double, triple, quadruple, and so on, but we generally call them
tuples even in cases where we don’t need the generality—e.g., even if we’re talking
about a tuple with two items in it, we still call it a tuple, not a double. Example 2-46
creates a tuple containing two int values and then displays them.

Example 2-46. Creating and using a tuple

(int X, int Y) point = (10, 5);
Console.WriteLine($"X: {point.X}, Y: {point.Y}");

That first line is a variable declaration with an initializer. It’s worth breaking this
down, because the syntax for tuples makes for a slightly more complex-looking decla‐
ration than we’ve seen so far. Remember, the general pattern for statements of this
form is:

type identifier = initial-value;

That means that in Example 2-46, the type is (int X, int Y). So we’re saying that
our variable, point, is a tuple containing two values, both of type int, and we want to
refer to those as X and Y. The initializer here is (10, 5). So when we run the example,
it produces this output:

X: 10, Y: 5

If you’re a fan of var, you’ll be pleased to know that you can specify the names in the
initializer using the syntax shown in Example 2-47, enabling you to use var instead of
the explicit type. This is equivalent to Example 2-46.
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Example 2-47. Naming tuple members in the initializer

var point = (X: 10, Y: 5);
Console.WriteLine($"X: {point.X}, Y: {point.Y}");

If you initialize a tuple from existing variables and you do not specify names, the
compiler will presume that you want to use the names of those variables, as
Example 2-48 shows.

Example 2-48. Inferring tuple member names from variables

int x = 10, y = 5;
var point = (x, y);
Console.WriteLine($"X: {point.x}, Y: {point.y}");

This raises a stylistic question: should tuple member names start with lowercase or
uppercase letters? The members are similar in nature to properties, which we’ll be
discussing in Chapter 3, and conventionally those start with an uppercase letter. For
this reason, many people believe that tuple member names should also be uppercase.
To a seasoned .NET developer, that point.x in Example 2-48 just looks weird. How‐
ever, another .NET convention is that local variables usually start with a lowercase
name. If you stick to both of these conventions, tuple name inference doesn’t look
very useful. Many developers choose to accept lowercase tuple member names for
tuples used purely in local variables, because it enables the use of the convenient
name inference feature, using Pascal casing only for tuples that are exposed outside of
a method.

Arguably it doesn’t matter much, because tuple member names turn out to exist only
in the eye of the beholder. Firstly, they’re optional. As Example 2-49 shows, it’s per‐
fectly legal to omit them. The names just default to Item1, Item2, etc.

Example 2-49. Default tuple member names

(int, int) point = (10, 5);
Console.WriteLine($"X: {point.Item1}, Y: {point.Item2}");

Secondly, the names are purely for the convenience of the code using the tuples and
are not visible to the runtime. You’ll have noticed that I’ve used the same initializer
expression, (10, 5), as I did in Example 2-46. Because it doesn’t specify names, the
expression’s type is (int, int) which matches the type in Example 2-49, but I was
also able to assign it straight into an (int X, int Y) in Example 2-46. That’s because
the names are essentially irrelevant—these are all the same thing under the covers.
(As we’ll see in Chapter 4, at runtime these are all represented as instances of a type
called ValueTuple<int, int>.) The C# compiler keeps track of the names we’ve
chosen to use, but as far as the CLR is concerned, all these tuples just have members
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called Item1 and Item2. An upshot of this is that we can assign any tuple into any
variable with the same shape, as Example 2-50 shows.

Example 2-50. Structural equivalence of tuples

(int X, int Y) point = (46, 3);
(int Width, int Height) dimensions = point;
(int Age, int NumberOfChildren) person = point;

This flexibility is a double-edged sword. The assignments in Example 2-50 seem
rather sketchy. It might conceivably be OK to assign something that represents a
location into something that represents a size—there are some situations in which
that would be valid. But to assign that same value into something apparently repre‐
senting someone’s age and the number of children they have looks likely to be wrong.
The compiler won’t stop us though, because it considers all tuples comprising a pair
of int values to have the same type. (It’s not really any different from the fact that the
compiler won’t stop you assigning an int variable named age into an int variable
named height. They’re both of type int.)

If you want to enforce a semantic distinction, you would be better off defining cus‐
tom types as described in Chapter 3. Tuples are really designed as a convenient way
to package together a few values in cases where defining a whole new type wouldn’t
really be justified.

Of course, C# does require tuples to have an appropriate shape. You cannot assign an
(int, int) into a (int, string), nor into an (int, int, int). However, all of the
implicit conversions in “Numeric conversions” on page 63 work, so you can assign
anything with an (int, int) shape into an (int, double), or a (double, long). So
a tuple is really just like having a handful of variables neatly contained inside another
variable.

Tuples support comparison, so you can use the == and != relational operators
described later in this chapter. To be considered equal, two tuples must have the
same shape and each value in the first tuple must be equal to its counterpart in the
second tuple.

Deconstruction
Sometimes you will want to split a tuple back into its component parts. Obviously
you can just access each item in turn by its name (or as Item1, Item2, etc., if you
didn’t specify names), but C# provides another mechanism, called deconstruction.
Example 2-51 declares and initializes two tuples and then shows two different ways to
deconstruct them.
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Example 2-51. Constructing then deconstructing tuples

(int X, int Y) point1 = (40, 6);
(int X, int Y) point2 = (12, 34);

(int x, int y) = point1;
Console.WriteLine($"1: {x}, {y}");
(x, y) = point2;
Console.WriteLine($"2: {x}, {y}");

Having defined point1 and point2, this deconstructs point1 into two variables, x
and y. This particular form of deconstruction also declares the variables into which
the tuple is being deconstructed. The alternative form is shown when we deconstruct
point2—here, we’re deconstructing it into two variables that already exist, so there’s
no need to declare them.

Until you become accustomed to this syntax, the first deconstruction example can
seem confusingly similar to the first couple of lines, in which we declare and initialize
new tuples. In those first couple of lines, the (int X, int Y) text signifies a tuple
type with two int values named X and Y, but in the deconstruction line when we
write (int x, int y) we’re actually declaring two variables, each of type int. The
only significant difference is that in the lines where we’re constructing new tuples,
there’s a variable name before the = sign. (Also, we’re using uppercase names there,
but that’s just a matter of convention. It would be entirely legal to write (int x, int
y) point3 = point1;. That would declare a new tuple with two int values named x
and y, stored in a variable named point3, initialized with the same values as are in
point1. Equally, we could write (int X, int Y) = point1;. That would decon‐
struct point into two local variables called X and Y.)

Dynamic
C# defines a type called dynamic. This doesn’t directly correspond to any CLR type—
when we use dynamic in C#, the compiler presents it to the runtime as object, which
is described in the next section. However, from the perspective of C# code, dynamic is
a distinct type and it enables some special behavior.

With dynamic, the compiler makes no attempt at compile time to check whether
operations performed by code are likely to succeed. In other words, it effectively disa‐
bles the statically typed behavior that we normally get with C#. You are free to
attempt almost any operation on a dynamic variable—you can use arithmetic opera‐
tors, you can attempt to invoke methods on it, you can try to assign it into variables
of some other type, and you can try to get or set properties on it. When you do this,
the compiler generates code that attempts to make sense of what you’ve asked it to do
at runtime.
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10 There are some specialized exceptions, such as pointer types.

If you have come to C# from a language in which this sort of behavior is the norm
(e.g., JavaScript), you might be tempted to use dynamic for everything because it
works in a way you are used to. However, you should be aware that there are a couple
of issues with it. First, it was designed with a particular scenario in mind: interopera‐
bility with certain pre-.NET Windows components. The Component Object Model
(COM) in Windows is the basis for automatability of the Microsoft Office Suite, and
many other applications, and the scripting language built into Office is dynamic in
nature. An upshot of this is that a lot of Office’s automation APIs used to be hard
work to use from C#. One of the big drivers behind adding dynamic to the language
was a desire to improve this. As with all C# features, it was designed with broader
applicability in mind and not simply as an Office interop feature. But since that was
the most important scenario for this feature, you may find that its ability to support
idioms you are familiar with from dynamic languages is disappointing. And the sec‐
ond issue to be aware of is that it is not an area of the language that is getting a lot of
new work. When it was introduced, Microsoft went to considerable lengths to ensure
that all dynamic behavior was as consistent as possible with the behavior you would
have seen if the compiler had known at compile time what types you were going to be
using. This means that the infrastructure supporting dynamic (which is called the
Dynamic Language Runtime, or DLR) has to replicate significant portions of C#
behavior. However, the DLR has not been updated much since dynamic was added in
C# 4.0 back in 2010, even though the language has seen many new features since
then. Of course, dynamic still works, but its capabilities represent how the language
looked around a decade ago.

Even when it first appeared, it had some limitations. There are some aspects of C#
that depend on the availability of static type information, meaning that dynamic has
always had some problems working with delegates and also with LINQ. So even from
the start, it was at something of a disadvantage compared to using C# as intended,
i.e., as a statically typed language.

Object
The last data type to get special recognition from the C# compiler is object (or Sys
tem.Object, as the CLR calls it). This is the base class of almost10 all C# types. A vari‐
able of type object is able to refer to a value of any type that derives from object.
This includes all numeric types, the bool and string types, and any custom types you
can define using the keywords we’ll look at in the next chapter, such as class and
struct. And it also includes all the types defined by the .NET class library, with the
exception of certain types that can only be stored on the stack, and which are
described in Chapter 18.
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So object is the ultimate general-purpose container. You can refer to almost any‐
thing with an object variable. We will return to this in Chapter 6 when we look at
inheritance.

Operators
Earlier you saw that expressions are sequences of operators and operands. I’ve shown
some of the types that can be used as operands, so now it’s time to see what operators
C# offers. Table 2-3 shows the operators that support common arithmetic operations.

Table 2-3. Basic arithmetic operators

Name Example
Unary plus (does nothing) +x

Negation (unary minus) -x

Postincrement x++

Postdecrement x--

Preincrement ++x

Predecrement --x

Addition x + y

Subtraction x - y

Multiplication x * y

Division x / y

Remainder x % y

If you’re familiar with any other C-family language, all of these should seem familiar.
If you are not, the most peculiar ones will probably be the increment and decrement
operators. These have side effects: they add or subtract one from the variable to
which they are applied (meaning they can be applied only to variables). With the
postincrement and postdecrement, although the variable gets modified, the contain‐
ing expression ends up getting the original value. So if x is a variable containing the
value 5, the value of x++ is also 5, even though the x variable will have a value of 6
after evaluating the x++ expression. The pre- forms evaluate to the modified value, so
if x is initially 5, ++x evaluates to 6, which is also the value of x after evaluating the
expression.

Although the operators in Table 2-3 are used in arithmetic, some are available on cer‐
tain nonnumeric types. As you saw earlier, the + symbol represents concatenation
when working with strings, and as you’ll see in Chapter 9, the addition and subtrac‐
tion operators are also used for combining and removing delegates.
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C# also offers some operators that perform certain binary operations on the bits that
make up a value, shown in Table 2-4. These are not available on floating-point types.

Table 2-4. Binary integer operators

Name Example
Bitwise negation ~x

Bitwise AND x & y

Bitwise OR x | y

Bitwise XOR x ^ y

Shift left x << y

Shift right x >> y

The bitwise negation operator inverts all bits in an integer—any binary digit with a
value of 1 becomes 0, and vice versa. The shift operators move all the binary digits left
or right by the number of columns specified by the second operand. A left shift sets
the bottom digits to 0. Right shifts of unsigned integers fill the top digits with 0, and
right shifts of signed integers leave the top digit as it is (i.e., negative numbers remain
negative because they keep their top bit set, while positive numbers keep their top bit
as 0, thus remaining positive).

The bitwise AND, OR, and XOR (exclusive OR) operators perform Boolean logic
operations on each bit of the two operands when applied to integers. These three
operators are also available when the operands are of type bool. (In effect, these oper‐
ators treat a bool as a one-digit binary number.) There are some additional operators
available for bool values, shown in Table 2-5. The ! operator does to a bool what the
~ operator does to each bit in an integer.

Table 2-5. Operators for bool

Name Example
Logical negation (also known as NOT) !x

Conditional AND x && y

Conditional OR x || y

If you have not used other C-family languages, the conditional versions of the AND
and OR operators may be new to you. These evaluate their second operand only if
necessary. For example, when evaluating (a && b), if the expression a is false, the
code generated by the compiler will not even attempt to evaluate b, because the result
will be false no matter what value b has. Conversely, the conditional OR operator
does not bother to evaluate its second operand if the first is true, because the result
will be true regardless of the second operand’s value. This is significant if the second
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operand’s expression either has side effects (e.g., it includes a method invocation) or
might produce an error. For example, you often see code like that shown in
Example 2-52.

Example 2-52. The conditional AND operator

if (s != null && s.Length > 10)
...

This checks to see if the variable s contains the special value null, meaning that it
doesn’t currently refer to any value. The use of the && operator here is important,
because if s is null, evaluating the expression s.Length would cause a runtime error.
If we had used the & operator, the compiler would have generated code that always
evaluates both operands, meaning that we would see a NullReferenceException at
runtime if s is null; however, by using the conditional AND operator, we avoid that,
because the second operand, s.Length > 10, will be evaluated only if s is not null.

Although code of the kind shown in Example 2-52 was once com‐
mon, it has gradually become much rarer thanks to a feature intro‐
duced back in C# 6.0, null-conditional operators. If you write
s?.Length instead of just s.Length, the compiler generates code
that checks s for null first, avoiding the NullReferenceException.
This means the check can become just if (s?.Length > 10). Fur‐
thermore, C# 8.0 introduces a new feature in which you can indi‐
cate that certain values should never be null, which can help
reduce the need for these kinds of tests for null. This is discussed
in Chapter 3.

Example 2-52 tests to see if a property is greater than 10 by using the > operator. This
is one of several relational operators, which allow us to compare values. They all take
two operands and produce a bool result. Table 2-6 shows these, and they are sup‐
ported for all numeric types. Some operators are available on some other types too. 
For example, you can compare string values with the == and != operators. (There is
no built-in meaning for the other relational operators with string because different
countries have different ideas about the order in which to sort strings. If you want
ordered string comparison, .NET offers the StringComparer class, which requires
you to select the rules by which you’d like your strings ordered.)
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11 Language pedants will note that it will also be meaningful in certain situations where custom implicit conver‐
sions to bool are available. We’ll be getting to custom conversions in Chapter 3.

Table 2-6. Relational operators

Name Example
Less than x < y

Greater than x > y

Less than or equal x <= y

Greater than or equal x >= y

Equal x == y

Not equal x != y

As is usual with C-family languages, the equality operator is a pair of equals signs.
This is because a single equals sign means something else: it’s an assignment, and
assignments are expressions too. This can lead to an unfortunate problem: in some
C-family languages it’s all too easy to write if (x = y) when you meant if (x ==
y). Fortunately, this will usually produce a compiler error in C#, because C# has a
special type to represent Boolean values. In languages that allow numbers to stand in
for Booleans, both pieces of code are legal even if x and y are numbers. (The first
means to assign the value of y into x, and then to execute the body of the if state‐
ment if that value is nonzero. That’s very different than the second one, which
doesn’t change the value of anything, and executes the body of the if statement only
if x and y are equal.) But in C#, the first example would be meaningful only if x and y
were both of type bool.11

Another feature that’s common to the C family is the conditional operator. (This is
sometimes also called the ternary operator, because it’s the only operator in the lan‐
guage that takes three operands.) It chooses between two expressions. More precisely,
it evaluates its first operand, which must be a Boolean expression, and then returns
the value of either the second or third operand, depending on whether the value of
the first was true or false, respectively. Example 2-53 uses this to pick the larger of
two values. (This is just for illustration. In practice, you’d normally use .NET’s
Math.Max method, which has the same effect but is rather more readable. Math.Max
also has the benefit that if you use expressions with side effects, it will only evaluate
each one once, something you can’t do with the approach shown in Example 2-53,
because we’ve ended up writing each expression twice.)

Example 2-53. The conditional operator

int max = (x > y) ? x : y;
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This illustrates why C and its successors have a reputation for terse syntax. If you are
familiar with any language from this family, Example 2-53 will be easy to read, but if
you’re not, its meaning might not be instantly clear. This will evaluate the expression
before the ? symbol, which is (x > y) in this case, and that’s required to be an
expression that produces a bool. (The parentheses are optional. I put them in to
make the code easier to read.) If that is true, the expression between the ? and :
symbols is used (x, in this case); otherwise, the expression after the : symbol (y here)
is used.

The conditional operator is similar to the conditional AND and OR operators in that
it will evaluate only the operands it has to. It always evaluates its first operand, but it
will never evaluate both the second and third operands. That means you can handle
null values by writing something like Example 2-54. This does not risk causing a
NullReferenceException, because it will evaluate the third operand only if s is not
null.

Example 2-54. Exploiting conditional evaluation

int characterCount = s == null ? 0 : s.Length;

However, in some cases, there are simpler ways of dealing with null values. Suppose
you have a string variable, and if it’s null, you’d like to use the empty string instead.
You could write (s == null ? "" : s). But you could just use the null coalescing
operator instead, because it’s designed for precisely this job. This operator, shown in
Example 2-55 (it’s the ?? symbol), evaluates its first operand, and if that’s non-null,
that’s the result of the expression. If the first operand is null, it evaluates its second
operand and uses that instead.

Example 2-55. The null coalescing operator

string neverNull = s ?? "";

We could combine a null-conditional operator with the null coalescing operator to
provide a more succinct alternative to Example 2-54, shown in Example 2-56.

Example 2-56. Null-conditional and null coalescing operators

int characterCount = s?.Length ?? 0;

One of the main benefits offered by the conditional, null-conditional, and null coa‐
lescing operators is that they often allow you to write a single expression in cases
where you would otherwise have needed to write considerably more code. This can
be particularly useful if you’re using the expression as an argument to a method, as in
Example 2-57.
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Example 2-57. Conditional expression as method argument

FadeVolume(gateOpen ? MaxVolume : 0.0, FadeDuration, FadeCurve.Linear);

Compare this with what you’d need to write if the conditional operator did not exist.
You would need an if statement. (I’ll get to if statements in the next section, but
since this book is not for novices, I’m assuming you’re familiar with the rough idea.)
And you’d either need to introduce a local variable, as Example 2-58 does, or you’d
need to duplicate the method call in the two branches of the if/else, changing just
the first argument. So, terse though the conditional and null coalescing operators are,
they can remove a lot of clutter from your code.

Example 2-58. Life without the conditional operator

double targetVolume;
if (gateOpen)
{
    targetVolume = MaxVolume;
}
else
{
    targetVolume = 0.0;
}
FadeVolume(targetVolume, FadeDuration, FadeCurve.Linear);

There is one last set of operators to look at: the compound assignment operators.
These combine assignment with some other operation and are available for the +, -,
*, /, %, <<, >>, &, ^, |, and ?? operators. They enable you not to have to write the sort
of code shown in Example 2-59.

Example 2-59. Assignment and addition

x = x + 1;

We can write this assignment statement more compactly as the code in
Example 2-60. All the compound assignment operators take this form—you just stick
an = on the end of the original operator.

Example 2-60. Compound assignment (addition)

x += 1;

This is a distinctive syntax that makes it very clear that we are modifying the value of
a variable in some particular way. So, although those two snippets perform identical
work, many developers find the second idiomatically preferable.
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That’s not quite a comprehensive list of operators. There are a few more specialized
ones that I’ll get to once we’ve looked at the areas of the language for which they were
defined. (Some relate to classes and other types, some to inheritance, some to collec‐
tions, and some to delegates. There are chapters coming up on all of these.) By the
way, although I’ve been describing which operators are available on which types (e.g.,
numeric versus Boolean), it’s possible to write a custom type that defines its own
meanings for most of these. That’s how .NET’s BigInteger type can support the
same arithmetic operations as the built-in numeric types. I’ll show how this can be
done in Chapter 3.

Flow Control
Most of the code we have examined so far executes statements in the order they are
written and stops when it reaches the end. If that were the only possible way in which
execution could flow through our code, C# would not be very useful. So, as you’d
expect, it has a variety of constructs for writing loops and for deciding which code to
execute based on inputs.

Boolean Decisions with if Statements
An if statement decides whether or not to run some particular statement depending
on the value of a bool expression. For example, the if statement in Example 2-61 will
execute the block statement that shows a message only if the age variable’s value is
less than 18.

Example 2-61. Simple if statement

if (age < 18)
{
    Console.WriteLine("You are too young to buy alcohol in a bar in the UK.");
}

You don’t have to use a block statement with an if statement. You can use any state‐
ment type as the body. A block is necessary only if you want the if statement to gov‐
ern the execution of multiple statements. However, some coding style guidelines
recommend using a block in all cases. This is partly for consistency, but also because
it avoids a possible error when modifying the code at a later date: if you have a non‐
block statement as the body of an if, and then you add another statement after that,
intending it to be part of the same body, it can be easy to forget to add a block around
the two statements, leading to code like that in Example 2-62. The indentation sug‐
gests that the developer meant for the final statement to be part of the if statement’s
body, but C# ignores indentation, so that final statement will always run. If you are in
the habit of always using a block, you won’t make this mistake.
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Example 2-62. Probably not what was intended

if (launchCodesCorrect)
    TurnOnMissileLaunchedIndicator();
    LaunchMissiles();

An if statement can optionally include an else part, which is followed by another
statement that runs only if the if statement’s expression evaluates to false. So
Example 2-63 will write either the first or the second message, depending on whether
the optimistic variable is true or false.

Example 2-63. If and else

if (optimistic)
{
    Console.WriteLine("Glass half full");
}
else
{
    Console.WriteLine("Glass half empty");
}

The else keyword can be followed by any statement, and again, this is typically a
block. However, there’s one scenario in which most developers do not use a block for
the body of the else part, and that’s when they use another if statement.
Example 2-64 shows this—its first if statement has an else part, which has another
if statement as its body.

Example 2-64. Picking one of several possibilities

if (temperatureInCelsius < 52)
{
    Console.WriteLine("Too cold");
}
else if (temperatureInCelsius > 58)
{
    Console.WriteLine("Too hot");
}
else
{
    Console.WriteLine("Just right");
}

This code still looks like it uses a block for that first else, but that block is actually
the statement that forms the body of a second if statement. It’s that second if state‐
ment that is the body of the else. If we were to stick rigidly to the rule of giving each
if and else body its own block, we’d rewrite Example 2-64 as Example 2-65. This
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seems unnecessarily fussy, because the main risk that we’re trying to avert by using
blocks doesn’t really apply in Example 2-64.

Example 2-65. Overdoing the blocks

if (temperatureInCelsius < 52)
{
    Console.WriteLine("Too cold");
}
else
{
    if (temperatureInCelsius > 58)
    {
        Console.WriteLine("Too hot");
    }
    else
    {
        Console.WriteLine("Just right");
    }
}

Although we can chain if statements together as shown in Example 2-64, C# offers a
more specialized statement that can sometimes be easier to read.

Multiple Choice with switch Statements
A switch statement defines multiple groups of statements and either runs one group
or does nothing at all, depending on the value of an input expression. As
Example 2-66 shows, you put the expression inside parentheses after the switch key‐
word, and after that, there’s a region delimited by braces containing a series of case
sections, defining the behavior for each anticipated value for the expression.

Example 2-66. A switch statement with strings

switch (workStatus)
{
case "ManagerInRoom":
    WorkDiligently();
    break;

case "HaveNonUrgentDeadline":
case "HaveImminentDeadline":
    CheckTwitter();
    CheckEmail();
    CheckTwitter();
    ContemplateGettingOnWithSomeWork();
    CheckTwitter();
    CheckTwitter();

Flow Control | 89



    break;

case "DeadlineOvershot":
    WorkFuriously();
    break;

default:
    CheckTwitter();
    CheckEmail();
    break;
}

As you can see, a single section can serve multiple possibilities—you can put several
different case labels at the start of a section, and the statements in that section will
run if any of those cases apply. You can also write a default section, which will run if
none of the cases apply. By the way, you’re not required to provide a default section.
A switch statement does not have to be comprehensive, so if there is no case that
matches the expression’s value and there is no default section, the switch statement
simply does nothing.

Unlike if statements, which take exactly one statement for the body, a case may be
followed by multiple statements without needing to wrap them in a block. The sec‐
tions in Example 2-66 are delimited by break statements, which causes execution to
jump to the end of the switch statement. This is not the only way to finish a section
—strictly speaking, the rule imposed by the C# compiler is that the end point of the
statement list for each case must not be reachable, so anything that causes execution
to leave the switch statement is acceptable. You could use a return statement
instead, or throw an exception, or you could even use a goto statement.

Some C-family languages (C, for example) allow fall-through, meaning that if execu‐
tion is allowed to reach the end of the statements in a case section, it will continue
with the next one. Example 2-67 shows this style, and it is not allowed in C# because
of the rule that requires the end of a case statement list not to be reachable.

Example 2-67. C-style fall-through, illegal in C#

switch (x)
{
case "One":
    Console.WriteLine("One");
case "Two":  // This line will not compile
    Console.WriteLine("One or two");
    break;
}

C# outlaws this, because the vast majority of case sections do not fall through, and
when they do in languages that allow it, it’s often a mistake caused by the developer
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forgetting to write a break statement (or some other statement to break out of the
switch). Accidental fall-through is likely to produce unwanted behavior, so C#
requires more than the mere omission of a break: if you want fall-through, you must
ask for it explicitly. As Example 2-68 shows, we use the unloved goto keyword to
express that we really do want one case to fall through into the next one.

Example 2-68. Fall-through in C#

switch (x)
{
case "One":
    Console.WriteLine("One");
    goto case "Two";
case "Two":
    Console.WriteLine("One or two");
    break;
}

This is not technically a goto statement. It is a goto case statement, and can be used
only to jump within a switch block. C# does also support more general goto state‐
ments—you can add labels to your code and jump around within your methods.
However, goto is heavily frowned upon, so the fall-through form offered by goto
case statements seems to be the only use for this keyword that is considered respecta‐
ble in modern society.

These examples have all used strings. You can also use switch with integer types,
char, and any enum (a kind of type discussed in the next chapter). For many years,
these were the only possibilities, because case labels had to be constants. But C# 7
augmented switch statements to support patterns in case labels. Patterns are dis‐
cussed later in this chapter.

Loops: while and do
C# supports the usual C-family loop mechanisms. Example 2-69 shows a while loop.
This takes a bool expression. It evaluates that expression, and if the result is true, it
will execute the statement that follows. So far, this is just like an if statement, but the
difference is that once the loop’s embedded statement is complete, it then evaluates
the expression again, and if it’s true again, it will execute the embedded statement a
second time. It will keep doing this until the expression evaluates to false. As with
if statements, the body of the loop does not need to be a block, but it usually is.
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Example 2-69. A while loop

while (!reader.EndOfStream)
{
    Console.WriteLine(reader.ReadLine());
}

The body of the loop may decide to finish the loop early with a break statement. It
does not matter whether the while expression is true or false—executing a break
statement will always terminate the loop.

C# also offers the continue statement. Like a break statement, this terminates the
current iteration, but unlike break, it will then reevaluate the while expression, so
iteration may continue. Both continue and break jump straight to the end of the
loop, but you could think of continue as jumping directly to the point just before the
loop’s closing }, while break jumps to the point just after. By the way, continue and
break are also available for all of the other loop styles I’m about to show.

Because a while statement evaluates its expression before each iteration, it’s possible
for a while loop not to run its body at all. Sometimes, you may want to write a loop
that runs at least once, only evaluating the bool expression after the first iteration.
This is the purpose of a do loop, as shown in Example 2-70.

Example 2-70. A do loop

char k;
do
{
    Console.WriteLine("Press x to exit");
    k = Console.ReadKey().KeyChar;
}
while (k != 'x');

Notice that Example 2-70 ends in a semicolon, denoting the end of the statement.
Compare this with the line containing the while keyword in Example 2-69, which
does not, despite otherwise looking very similar. That may look inconsistent, but it’s
not a typo. Putting a semicolon at the end of the line with the while keyword in
Example 2-69 would be legal, but it would change the meaning—it would indicate
that we want the body of the while loop to be an empty statement. The block that
followed would then be treated as a brand-new statement to execute after the loop
completes. The code would get stuck in an infinite loop unless the reader were
already at the end of the stream. (The compiler will issue a warning about a “Possible
mistaken empty statement” if you do that, by the way.)
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C-Style for Loops
Another style of loop that C# inherits from C is the for loop. This is similar to while,
but it adds two features to that loop’s bool expression: it provides a place to declare
and/or initialize one or more variables that will remain in scope for as long as the
loop runs, and it provides a place to perform some operation each time around the
loop (in addition to the statement that forms the body of the loop). So the structure
of a for loop looks like this:

for (initializer; condition; iterator) body

A very common application of this is to do something to all the elements in an array.
Example 2-71 shows a for loop that multiplies every element in an array by 2. The
condition part works in exactly the same way as in a while loop—it determines
whether the embedded statement forming the loop’s body runs, and it will be evalu‐
ated before each iteration. Again, the body doesn’t strictly have to be a block, but usu‐
ally is.

Example 2-71. Modifying array elements with a for loop

for (int i = 0; i < myArray.Length; i++)
{
    myArray[i] *= 2;
}

The initializer in this example declares a variable called i and initializes it to 0. This
initialization happens just once, of course—this wouldn’t be very useful if it reset the
variable to 0 every time around the loop, because the loop would never end. This
variable’s lifetime effectively begins just before the loop starts and finishes when the
loop finishes. The initializer does not need to be a variable declaration—you can use
any expression statement.

The iterator in Example 2-71 just adds 1 to the loop counter. It runs at the end of
each loop iteration, after the body runs, and before the condition is reevaluated. (So if
the condition is initially false, not only does the body not run, the iterator will never
be evaluated.) C# does nothing with the result of the iterator expression—it is useful
only for its side effects. So it doesn’t matter whether you write i++, ++i, i += 1, or
even i = i + 1.

A for loop doesn’t let you do anything that you couldn’t have achieved by writing a
while loop and putting the initialization code before the loop and the iterator at the
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12 A continue statement complicates matters, because it provides a way to move to the next iteration without
getting all the way to the end of the loop body. Even so, you could still reproduce the effect of the iterator
when using continue statements—it would just require more work.

end of the loop body instead.12 However, there may be readability benefits. A for
statement puts the code that defines how we loop in one place, separate from the
code that defines what we do each time around the loop, which might help those
reading the code to understand what it does. They don’t have to scan down to the end
of a long loop to find the iterator statement (although a long loop body that trails
over pages of code is generally considered to be bad practice, so this last benefit is a
little dubious).

Both the initializer and the iterator can contain lists, as Example 2-72 shows,
although in this particular case it isn’t terribly useful—since all the iterators run every
time around, i and j will have the same value as each other throughout.

Example 2-72. Multiple initializers and iterators

for (int i = 0, j = 0; i < myArray.Length; i++, j++)
...

You can’t write a single for loop that performs a multidimensional iteration. If you
want that, you would nest one loop inside another, as Example 2-73 illustrates.

Example 2-73. Nested for loops

for (int j = 0; j < height; ++j)
{
    for (int i = 0; i < width; ++i)
    {
        ...
    }
}

Although Example 2-71 shows a common enough idiom for iterating through arrays,
you will often use a different, more specialized construct.

Collection Iteration with foreach Loops
C# offers a style of loop that is not universal in C-family languages. The foreach loop
is designed for iterating through collections. A foreach loop fits this pattern:

foreach (item-type iteration-variable in collection) body

The collection is an expression whose type must match a particular pattern recog‐
nized by the compiler. The .NET class library’s IEnumerable<T> interface, which we’ll

94 | Chapter 2: Basic Coding in C#



be looking at in Chapter 5, matches this pattern, although the compiler doesn’t
actually require an implementation of that interface—it just requires the collection to
have a GetEnumerator method that resembles the one defined by that interface.
Example 2-74 uses foreach to show all the strings in an array. (All arrays provide the
method that foreach requires.)

Example 2-74. Iterating over a collection with foreach

string[] messages = GetMessagesFromSomewhere();
foreach (string message in messages)
{
    Console.WriteLine(message);
}

This loop will run the body once for each item in the array. The iteration variable
(message, in this example) is different each time around the loop and will refer to the
item for the current iteration.

In one way, this is less flexible than the for-based loop shown in Example 2-71: a
foreach loop cannot modify the collection it iterates over. That’s because not all col‐
lections support modification. IEnumerable<T> demands very little of its collections
—it does not require modifiability, random access, or even the ability to know up
front how many items the collection provides. (In fact, IEnumerable<T> is able to
support never-ending collections. For example, it is perfectly legal to write an imple‐
mentation that will return random numbers for as long as you care to keep fetching
values.)

But foreach offers two advantages over for. One advantage is subjective and there‐
fore debatable: it’s a bit more readable. But significantly, it’s also more general. If
you’re writing methods that do things to collections, those methods will be more
broadly applicable if they use foreach rather than for, because you’ll be able to
accept an IEnumerable<T>. Example 2-75 can work with any collection that contains
strings, rather than being limited to arrays.

Example 2-75. General-purpose collection iteration

public static void ShowMessages(IEnumerable<string> messages)
{
    foreach (string message in messages)
    {
        Console.WriteLine(message);
    }
}

This code can work with collection types that do not support random access, such as
the LinkedList<T> class described in Chapter 5. It can also process lazy collections
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that decide what items to produce on demand, including those produced by iterator
functions, also shown in Chapter 5, and by certain LINQ queries, as described in
Chapter 10.

Patterns
There’s one last essential mechanism to look at in C#: patterns. A pattern describes
one or more criteria that a value can be tested against. You’ve already seen some sim‐
ple patterns in action: each case in a switch specifies a pattern. But as we’ll now see,
there are many kinds of patterns, and they aren’t just for switch statements.

Most of the pattern functionality was added to C# relatively
recently. Support first appeared in C# 7.0, and most of the pattern
types now available were added in C# 8.0.

The switch examples earlier, such as Example 2-66, all used one of the simplest pat‐
tern types: the constant pattern. With this pattern, you specify just a constant value,
and an expression matches this pattern if it has that value. In a similar vein,
Example 2-76 shows tuple patterns, which match tuples with specific values. These
are conceptually very similar to constant patterns—the values for the individual tuple
elements are all constants here. (The distinction between constant patterns and tuple
patterns is largely a matter of history: before patterns were introduced, case labels
only supported the limited set of types for which the CLR offers intrinsic support for
constant values, and that list does not include tuples.)

Example 2-76. Tuple patterns

switch (p)
{
case (0, 0):
    Console.WriteLine("How original");
    break;

case (0, 1):
case (1, 0):
    Console.WriteLine("What an absolute unit");
    break;

case (1, 1):
    Console.WriteLine("Be there and be square");
    break;
}
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Example 2-77 shows a more interesting kind of pattern: it uses type patterns. An
expression matches a type pattern if it has the specified type. As you saw earlier in
“Object” on page 80, some variables are capable of holding a variety of different
types. Variables of type object are an extreme case of this, since they can hold more
or less anything. Language features such as interfaces (discussed in Chapter 3), gener‐
ics (Chapter 4), and inheritance (Chapter 6) can lead to scenarios where the static
type of a variable provides more information than the anything-goes object type, but
with some latitude for a range of possible types at runtime. Type patterns can be use‐
ful in these cases.

Example 2-77. Type patterns

switch (o)
{
case string s:
    Console.WriteLine($"A piece of string is {s.Length} long");
    break;

case int i:
    Console.WriteLine($"That's numberwang! {i}");
    break;
}

Type patterns have an interesting characteristic that constant ones do not: as well as
the Boolean match/no-match common to all patterns, a type pattern produces an
additional output. Each case in Example 2-77 introduces a variable, which the code
for that case then goes on to use. This output is just the input, but copied into a vari‐
able with the specified static type. So that first case will match if o turns out to be a
string, in which case we can access it through the s variable (which is why that
s.Length expression compiles correctly; o.Length would not if o is of type object).

Sometimes, you won’t actually need a type pattern’s output—it
might be enough just to know that the input matched a pattern. In
these cases you can use a discard: if you put an underscore (_) in
the place where the output variable name would normally go, that
tells the C# compiler that you are only interested in whether the
value matches the type.

Some patterns do a little more work to produce their output. For example,
Example 2-78 shows a positional pattern that matches any tuple containing a pair of
int values and extracts those values into two variables, x and y.
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Example 2-78. Positional pattern

case (int x, int y):
    Console.WriteLine($"I know where it's at: {x}, {y}");
    break;

Positional patterns are an example of a recursive pattern: they are patterns that con‐
tain patterns. In this case, this positional pattern contains a type pattern as each of its
children. But we can mix things up, because positional patterns can contain any pat‐
tern type (including another recursive pattern, if that’s what you need). In fact, that’s
exactly what was going on in Example 2-76—a tuple pattern is really just a special
case of a positional pattern, where the children are all constant patterns.
Example 2-79 shows a positional pattern with a constant pattern in the first position
and a type pattern in the second.

Example 2-79. Positional pattern with constant and type patterns

case (0, int y):
    Console.WriteLine($"This is on the X axis, at height {y}");
    break;

If you are a fan of var you might be wondering if you can write something like
Example 2-80. This will work, and the static types of the x and y variables here will
depend on the type of the pattern’s input expression. If the compiler can determine
how the expression deconstructs (e.g., if the switch statement input’s static type is an
(int, int) tuple), then it will use this information to determine the output variables’
static types. In cases where this is unknown, but it’s still conceivable that this pattern
could match (e.g., the input is object), then x and y here will also have type object.

Example 2-80. Positional pattern with var

case (var x, var y):
    Console.WriteLine($"I know where it's at: {x}, {y}");
    break;

The compiler will reject patterns in cases where it can determine
that a match is impossible. For example, if it knows the input type
is a (string, int, bool) tuple, it cannot possibly match a posi‐
tional pattern with only two child patterns, so C# won’t let you try.

Example 2-80 shows an unusual case where using var instead of an explicit type can
introduce a significant change of behavior. These var patterns differ in one important
respect from the type patterns in Example 2-78: a var pattern always matches its
input, whereas a type pattern inspects its input’s type to determine at runtime
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whether it matches. This check might be optimized away in practice—there are cases
where a type pattern will always match because its input type is known at compile
time. But the only way to express in your code that you definitely don’t want the child
patterns in a positional pattern to perform a runtime check is to use var. So although
a positional pattern containing type patterns strongly resembles the deconstruction
syntax shown in Example 2-51, the behavior is quite different. Example 2-78 is in
effect performing three runtime tests: is the value a 2-tuple, is the first value an int,
and is the second value an int? (So it would work for tuples with a static type of
(object, object), as long as each value is an int at runtime.) This shouldn’t really
be surprising: the point of patterns is to test at runtime whether a value has certain
characteristics. However, with some recursive patterns you may find yourself wanting
to express a mixture of runtime matching (e.g., is this thing a string?) combined
with statically typed deconstruction (e.g., if this is a string, I’d like to extract its
Length property which I believe to be of type int, and I want a compiler error if that
belief turns out to be wrong). Patterns are not designed to do this, so it’s best not to
try to use them that way.

What if we don’t need to use all of the items in the tuple? You already know one way
to handle that. Since we can use any pattern in each position, we could use a type
pattern with a discard in, say, the second position: (int x, int _). However,
Example 2-81 shows a shorter alternative: instead of a discarding type pattern, we can
use just a lone underscore. This is a discard pattern. You can use it in a recursive pat‐
tern any place a pattern is required, but where you want to indicate that anything will
do in that particular position, and that you don’t need to know what it was.

Example 2-81. Positional pattern with discard pattern

case (int x, _):
    Console.WriteLine($"At X: {x}. As for Y, who knows?");
    break;

This has subtly different semantics though: a type pattern with a discard will check at
runtime that the value to be discarded has the specified type, and the pattern will only
match if this check succeeds. But a discard pattern always matches, so this would
match (10, 20), (10, "Foo"), and (10, (20, 30)), for example.

Positional patterns are not the only recursive ones: you can also write a property pat‐
tern. We’ll look at properties in detail in the next chapter, but for now it’s enough to
know that they are members of a type that provide some sort of information, such as
the string type’s Length property, which provides an int telling you how many code
units the string contains. Example 2-82 shows a property pattern that inspects this
Length property.
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Example 2-82. Property pattern

case string { Length: 0 }:
    Console.WriteLine("How long is a piece of string? Not very!");
    break;

This property pattern starts with a type name, so it effectively incorporates the behav‐
ior of a type pattern in addition to its property-based tests. (You can omit this in
cases where the type of the pattern’s input is sufficiently specific to identify the prop‐
erty. E.g., if the input in this case already had a static of type string, we could omit
this.) This is then followed by a section in braces listing each of the properties that the
pattern wants to inspect and the pattern to apply for that property. (These child pat‐
terns are what make this another recursive pattern.) So this example first checks to
see if the input is a string. If it is, it then applies a constant pattern to the string’s
Length, so this pattern matches only if the input is a string with Length of 0.

Property patterns can optionally specify an output. Example 2-82 doesn’t do this.
Example 2-83 shows the syntax, although in this particular case it’s not terribly useful
because this pattern will ensure that s only ever refers to an empty string.

Example 2-83. Property pattern with output

case string { Length: 0 } s:
    Console.WriteLine($"How long is a piece of string? This long: {s.Length}");
    break;

Since each property in a property pattern contains a nested pattern, those too can
produce outputs, as Example 2-84 shows.

Example 2-84. Property pattern with nested pattern with output

case string { Length: int length }:
    Console.WriteLine($"How long is a piece of string? This long: {length}");
    break;

Getting More Specific with when
Sometimes, the built-in pattern types won’t provide the level of precision you need.
For example, with positional patterns, we’ve seen how to write patterns that match,
say, any pair of values, or any pair of numbers, or a pair of numbers where one has a
particular value. But what if you want to match a pair of numbers where the first is
higher than the second? This isn’t a big conceptual leap, but there’s no built-in sup‐
port for this. We could detect the condition with an if statement of course, but it
would seem a shame to have to restructure our code from a switch to a series of if
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and else statements just to make this small step forward. Fortunately we don’t have
to.

Any pattern in a case label can be qualified by adding a when clause. It allows a
boolean expression to be included. This will be evaluated if the value matches the
main part of the pattern, and the value will match the pattern as a whole only if the
when clause is true. Example 2-85 shows a positional pattern with a when clause that
matches pairs of numbers in which the first number is larger than the second.

Example 2-85. Pattern with when clause

case (int w, int h) when w > h:
    Console.WriteLine("Landscape");
    break;

Patterns in Expressions
All of the patterns I’ve shown so far appear in case labels as part of a switch state‐
ment. This is not the only way to use patterns. They can also appear inside expres‐
sions. To see how this can be useful, look first at the switch statement in
Example 2-86. The intent here is to return a single value determined by the input, but
it’s a little clumsy: I’ve had to write four separate return statements to express that.

Example 2-86. Patterns, but not in expressions

switch (shape)
{
    case (int w, int h) when w < h: return "Portrait";
    case (int w, int h) when w > h: return "Landscape";
    case (int _, int _): return "Square";
    default: return "Unknown";
}

Example 2-87 shows code that performs the same job, but rewritten to use a switch
expression. As with a switch statement, a switch expression contains a list of pat‐
terns. The difference is that whereas labels in a switch statement are followed by a list
of statements, in a switch expression each pattern is followed by a single expression.
The value of a switch expression is the result of evaluating the expression associated
with the first pattern that matches.

Example 2-87. A switch expression

return shape switch
{
    (int w, int h) when w < h => "Portrait",
    (int w, int h) when w > h => "Landscape",
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    (int _, int _) => "Square",
    _ => "Unknown"
};

switch expressions look quite different than switch statements, because they don’t
use the case keyword. Instead, they just dive straight in with the pattern, and then
use => between the pattern and its corresponding expression. There are a few reasons
for this. First, it makes switch expressions a bit more compact. Expressions are gen‐
erally used inside other things—in this case, the switch expression is the value of a
return statement, but you might also use these as a method argument or anywhere
else an expression is allowed—so we generally want them to be succinct. Secondly,
using case here could have led to confusion because the rules for what follows each
case would be different for switch statements and switch expressions: in a switch
statement each case label is followed by one or more statements, but in a switch
expression each pattern needs to be followed by a single expression. Finally, although
switch expressions were only added to version 8.0 of C#, this sort of construct has
been around in other languages for many years. C#’s version of it more closely resem‐
bles equivalents from other languages than it would have done if the expression form
used the case keyword.

Notice that the final pattern in Example 2-87 is a discard pattern. This will match
anything, and it’s there to ensure that the pattern is exhaustive; i.e., that it covers all
possible cases. (It has a similar effect to a default section in a switch statement.)
Unlike a switch statement, where it’s OK for there to be no matches, a switch
expression has to produce a result, so the compiler will warn you if your patterns
don’t handle all possible cases for the input type. It would complain in this situation
if we were to remove that final case, assuming the shape input is of type object.
(Conversely, if shape were of type (int, int) we would have to remove that final
case, because the first three cases in fact cover all possible values for that type and the
compiler will produce an error telling us that the final pattern will never apply.) If
you ignore this warning, and then at runtime you evaluate a switch expression with
an unmatchable value, it will throw a SwitchExpressionException. Exceptions are
described in Chapter 8.

There’s one more way to use a pattern in an expression, and that’s with the is key‐
word. It turns any pattern into a boolean expression. Example 2-88 shows a simple
example that determines whether a value is a tuple containing two integers.

Example 2-88. An is expression

bool isPoint = value is (int x, int y);
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As with patterns in switch statements or expressions, the pattern in an is expression
can extract values from its source. Example 2-89 uses the same expression as the pre‐
ceding example, but goes on to use the two values from the tuple.

Example 2-89. Using the values from an is expression’s pattern

if (value is (int x, int y))
{
    Console.WriteLine($"X: {x}, Y: {y}");
}

New variables introduced in this way by an is expression remain in scope after their
containing statement. So in both these examples, x and y would continue to be in
scope until the end of the containing block. Since the pattern in Example 2-89 is in
the if statement’s condition expression, that means these variables remain in scope
after the body block. However, if you try to use them outside of the body you’ll find
that the compiler’s definite assignment rules will tell you that they are uninitialized. It
allows Example 2-89 because it knows that the body of the if statement will run only
if the pattern matches, so in that case x and y will have been initialized and are safe to
use.

Patterns in is expressions cannot include a when clause. It would be redundant: the
result is a boolean expression, so you can just add on any qualification you require
using the normal boolean operators, as Example 2-90 shows.

Example 2-90. No need for when in an is expression’s pattern

if (value is (int w, int h) && w < h)
{
    Console.WriteLine($"(Portrait) Width: {w}, Height: {h}");
}

Summary
In this chapter, I showed the nuts and bolts of C# code—variables, statements,
expressions, basic data types, operators, flow control, and patterns. Now it’s time to
take a look at the broader structure of a program. All code in C# programs must
belong to a type, and types are the topic of the next chapter.
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CHAPTER 3

Types

C# does not limit us to the built-in data types shown in Chapter 2. You can define
your own types. In fact, you have no choice: if you want to write code at all, C#
requires you to define a type to contain that code. Everything we write, and any func‐
tionality we consume from the .NET class library (or any other .NET library), will
belong to a type.

C# recognizes multiple kinds of types. I’ll begin with the most important.

Classes
Most of the types you work with in C# will be classes. A class can contain both code
and data, and it can choose to make some of its features publicly available, while
keeping others accessible only to code within the class. So classes offer a mechanism
for encapsulation—they can define a clear public programming interface for other
people to use, while keeping internal implementation details inaccessible.

If you’re familiar with object-oriented languages, this will all seem very ordinary. If
you’re not, then you might want to read a more introductory-level book first, because
this book is not meant to teach programming. I’ll just describe the details specific to
C# classes.

I’ve already shown examples of classes in earlier chapters, but let’s look at the struc‐
ture in more detail. Example 3-1 shows a simple class. (See the sidebar “Naming Con‐
ventions” on page 107 for information about names for types and their members.)

Example 3-1. A simple class

public class Counter
{
    private int _count;
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    public int GetNextValue()
    {
        _count += 1;
        return _count;
    }
}

Class definitions always contain the class keyword followed by the name of the class.
C# does not require the name to match the containing file, nor does it limit you to
having one class in a file. That said, most C# projects make the class and filenames
match by convention. In any case, class names must follow the basic rules described
in Chapter 2 for identifiers such as variables; e.g., they cannot start with a number.

The first line of Example 3-1 contains an additional keyword: public. Class defini‐
tions can optionally specify accessibility, which determines what other code is allowed
to use the class. Ordinary classes have just two choices here: public and internal,
with the latter being the default. (As I’ll show later, you can nest classes inside other
types, and nested classes have a slightly wider range of accessibility options.) An
internal class is available for use only within the component that defines it. So if you
are writing a class library, you are free to define classes that exist purely as part of
your library’s implementation: by marking them as internal, you prevent the rest of
the world from using them.

You can choose to make your internal types visible to selected
external components. Microsoft sometimes does this with its libra‐
ries. The .NET class library is spread across numerous DLLs, each
of which defines many internal types, but some internal features
are used by other DLLs in the library. This is made possible by
annotating a component with the [assembly: InternalsVisi

bleTo("name")] attribute, specifying the name of the component
with which you wish to share. (Chapter 14 describes this in more
detail.) For example, you might want to make every class in your
application visible to a project so that you can write unit tests for
code that you don’t intend to make publicly available.

The Counter class in Example 3-1 has chosen to be public, but that doesn’t mean it
has to make everything accessible. It defines two members—a field called _count that
holds an int, and a method called GetNextValue that operates on the information in
that field. (The CLR will automatically initialize this field to 0 when a Counter is cre‐
ated.) As you can see, both of these members have accessibility qualifiers too. As is
very common with object-oriented programming, this class has chosen to make the
data member private, exposing public functionality through a method.
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Accessibility modifiers are optional for members, just as they are for classes, and
again, they default to the most restrictive option available: private, in this case. So I
could have left off the private keyword in Example 3-1 without changing the mean‐
ing, but I prefer to be explicit. (If you leave it unspecified, people reading your code
may wonder whether the omission was deliberate or accidental.)

Naming Conventions
Microsoft defines a set of conventions for publicly visible identifiers, which it
(mostly) conforms to in its class libraries, and I usually follow them in my examples. 
Microsoft provides a free analyzer, FxCop, which can help enforce these conventions.
You can enable this for any project by adding a reference to the Microsoft.CodeAnal
ysis.FxCopAnalyzers NuGet package. If you just want to read a description of the
rules, they’re part of the design guidelines for .NET class libraries at https://docs.micro
soft.com/dotnet/standard/design-guidelines/index.

In these conventions, the first letter of a class name is capitalized, and if the name
contains multiple words, each new word also starts with a capital letter. (For histori‐
cal reasons, this convention is called Pascal casing, or sometimes PascalCasing as a
self-referential example.) Although it’s legal in C# for identifiers to contain under‐
scores, the conventions don’t allow them in class names. Methods also use Pascal cas‐
ing, as do properties. Fields are rarely public, but when they are, they use the same
casing.

Method parameters use a different convention known as camelCasing, in which
uppercase letters are used at the start of all but the first word. The name refers to the
way this convention produces one or more humps in the middle of the word.

The class library design guidelines remain silent regarding implementation details.
(The original purpose of these rules, and the FxCop tool, was to ensure a consistent
feel across the whole public API of the .NET Framework class library. The “Fx” is
short for Framework.) So these rules say nothing about how private fields are named.
I’ve used an underscore prefix in Example 3-1 because I like fields to look different
from local variables. This makes it easy to see what sort of data my code is working
with, and it can also help to avoid situations where method parameter names clash
with field names. (Microsoft uses this same convention for instance fields in .NET
Core, along with s_ and t_ prefixes for static and thread-local fields.) Some people
find this convention ugly and prefer not to distinguish fields visibly, but might choose
always to access members through the this reference (described later) so that the dis‐
tinction between variable and field access is still clear.

Fields hold data. They are a kind of variable, but unlike a local variable, whose scope
and lifetime is determined by its containing method, a field is tied to its containing
type. Example 3-1 is able to refer to the _count field by its unqualified name because
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fields are in scope within their defining class. But what about the lifetime? We know
that each invocation of a method gets its own set of local variables. How many sets of
a class’s fields are there? There are a couple of possibilities, depending on how you
define the field, but in this case, it’s one per instance. Example 3-2 uses the Counter
class from Example 3-1 to illustrate this. I’ve written this code in a separate class, to
demonstrate that we can use the Counter class’s public method from other classes.

Example 3-2. Using a custom class

class Program
{
    static void Main(string[] args)
    {
        var c1 = new Counter();
        var c2 = new Counter();
        Console.WriteLine("c1: " + c1.GetNextValue());
        Console.WriteLine("c1: " + c1.GetNextValue());
        Console.WriteLine("c1: " + c1.GetNextValue());

        Console.WriteLine("c2: " + c2.GetNextValue());

        Console.WriteLine("c1: " + c1.GetNextValue());
    }
}

This uses the new operator to create new instances of my class. Since I use new twice, I
get two Counter objects, and each has its own _count field. So we get two independ‐
ent counts, as the program’s output shows:

c1: 1
c1: 2
c1: 3
c2: 1
c1: 4

As you’d expect, it begins counting up, and then a new sequence starts at 1 when we
switch to the second counter. But when we go back to the first counter, it carries on
from where it left off. This demonstrates that each instance has its own _count. But
what if we don’t want that? Sometimes you will want to keep track of information
that doesn’t relate to any single object.

Static Members
The static keyword lets us declare that a member is not associated with any particu‐
lar instance of the class. Example 3-3 shows a modified version of the Counter class
from Example 3-1. I’ve added two new members, both static, for tracking and report‐
ing counts across all instances.
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Example 3-3. Class with static members

public class Counter
{
    private int _count;
    private static int _totalCount;

    public int GetNextValue()
    {
        _count += 1;
        _totalCount += 1;
        return _count;
    }

    public static int TotalCount => _totalCount;
}

TotalCount reports the count, but it doesn’t do any work—it just returns a value that
the class keeps up to date, and as I’ll explain in “Properties” on page 165, this makes it
an ideal candidate for being a property rather than a method. The static field _total
Count keeps track of the total number of calls to GetNextValue, unlike the nonstatic
_count, which just tracks calls to the current instance. Notice that I’m free to use that
static field inside GetNextValue in exactly the same way as I use the nonstatic _count.
The difference in behavior is clear if I add the line of code shown in Example 3-4 to
the end of the Main method in Example 3-2.

Example 3-4. Using a static property

Console.WriteLine(Counter.TotalCount);

This line displays 5, the sum of the two counts. To access a static member, I just write
ClassName.MemberName. In fact, Example 3-4 uses two static members—as well as my
class’s TotalCount property, it uses the Console class’s static WriteLine method.

Because I’ve declared TotalCount as a static property, the code it contains has access
only to other static members. If it tried to use the nonstatic _count field or call the
nonstatic GetNextValue method, the compiler would complain. Replacing _total
Count with _count in the TotalCount property results in this error:

error CS0120: An object reference is required for the non-static field, method,
 or property Counter._count'

Since nonstatic fields are associated with a particular instance of a class, C# needs to
know which instance to use. With a nonstatic method or property, that’ll be
whichever instance the method or property itself was invoked on. So in Example 3-2,
I wrote either c1.GetNextValue() or c2.GetNextValue() to choose which of my two
objects to use. C# passed the reference stored in either c1 or c2, respectively, as an
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implicit hidden first argument. You can get hold of that reference from code inside a
class by using the this keyword. Example 3-5 shows an alternative way we could
have written the first line of GetNextValue from Example 3-3, indicating explicitly
that we believe _count is a member of the instance on which the GetNextValue
method was invoked.

Example 3-5. The this keyword

this._count += 1;

Explicit member access through this is sometimes necessary due to name collisions.
Although all the members of a class are in scope for any code in the same class, the
code in a method does not share a declaration space with the class. Remember from
Chapter 2 that a declaration space is a region of code in which a single name must
not refer to two different entities, and since methods do not share theirs with the
containing class, you are allowed to declare local variables and method parameters
that have the same name as class members. This can easily happen if you don’t use a
convention such as an underscore prefix for field names. You don’t get an error in
this case—locals and parameters just hide the class members. But you can still get at
the class members by qualifying access with this.

Static methods don’t get to use the this keyword, because they are not associated
with any particular instance.

Static Classes
Some classes only provide static members. There are several examples in the Sys
tem.Threading namespace, which provides various classes that offer multithreading
utilities. For example, the Interlocked class provides atomic, lock-free, read-modify-
write operations; the LazyInitializer class provides helper methods for performing
deferred initialization in a way that guarantees to avoid double initialization in multi‐
threaded environments. These classes provide services only through static methods.
It makes no sense to create instances of these types, because there’s no useful per-
instance information they could hold.

You can declare that your class is intended to be used this way by putting the static
keyword in front of the class keyword. This compiles the class in a way that prevents
instances of it from being constructed. Anyone attempting to construct instances of a
class designed to be used this way clearly doesn’t understand what it does, so the
compiler error will be a useful prod in the direction of the documentation.

You can declare that you want to be able to invoke static methods on certain classes
without naming the class every time. This can be useful if you are writing code that
makes heavy use of the static methods supplied by a particular type. (This isn’t limi‐
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ted to static classes by the way. You can use this technique with any class that has
static members, but it is likely to be most useful with classes whose members are all
static.) Example 3-6 uses a static method (Sin) and a static property (PI) of the Math
class (in the System namespace). It also uses the Console class’s static WriteLine
method. (I’m showing the entire source file in this and the next example because the
using directives are particularly important.)

Example 3-6. Using static members normally

using System;

class Program
{
    static void Main(string[] args)
    {
        Console.WriteLine(Math.Sin(Math.PI / 4));
    }
}

Example 3-7 is exactly equivalent, but it does not qualify any of the three static mem‐
bers with their defining class’s name.

Example 3-7. Using static members without explicit qualification

using static System.Console;
using static System.Math;

class Program
{
    static void Main(string[] args)
    {
        WriteLine(Sin(PI / 4));
    }
}

To utilize this less verbose alternative, you must declare which classes you want to use
in this way with using static directives. Whereas using directives normally specify
a namespace, enabling types in that namespace to be used without qualification,
using static directives specify a class, enabling its static members to be used
without qualification.

Reference Types
Any type defined with the class keyword will be a reference type, meaning that a
variable of that type will not contain the data that makes up an instance of the type;
instead, it can contain a reference to an instance of the type. Consequently, assign‐
ments don’t copy the object, they just copy the reference. Example 3-8 contains
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almost the same code as Example 3-2, except instead of using the new keyword to ini‐
tialize the c2 variable, it initializes it with a copy of c1.

Example 3-8. Copying references

Counter c1 = new Counter();
var c2 = c1;
Console.WriteLine("c1: " + c1.GetNextValue());
Console.WriteLine("c1: " + c1.GetNextValue());
Console.WriteLine("c1: " + c1.GetNextValue());

Console.WriteLine("c2: " + c2.GetNextValue());

Console.WriteLine("c1: " + c1.GetNextValue());

Because this example uses new just once, there is only one Counter instance, and the
two variables both refer to this same instance. So we get different output:

c1: 1
c1: 2
c1: 3
c2: 4
c1: 5

It’s not just locals that do this—if you use a reference type for any other kind of vari‐
able, such as a field or property, assignment works the same way, copying the refer‐
ence and not the whole object. This is the defining characteristic of a reference type,
and it is different from the behavior we saw with the built-in numeric types in Chap‐
ter 2. With those, each variable contains a value, not a reference to a value, so assign‐
ment necessarily involves copying the value. (This value copying behavior is not
available for most reference types—see the next sidebar, “Copying Instances”.)

Copying Instances
Some C-family languages define a standard way to make a copy of an object. For
example, in C++ you can write a copy constructor, and you can overload the assign‐
ment operator; the language has rules for how these are applied when duplicating an
object. In C#, some types can be copied, and it’s not just the built-in numeric types. 
Later in this chapter you’ll see how to define a struct, which is a custom value type.
Structs can always be copied, and there is no way to customize this process: assign‐
ment just copies all the fields, and if any fields are of reference type, this just copies
the reference. This is sometimes called a “shallow” copy, because it copies only the
contents of the struct; it does not make copies of any of the things the struct refers to.

There is no intrinsic mechanism for making a copy of a class instance. The .NET class
library defines ICloneable, an interface for duplicating objects, but this is not very
widely supported. It’s a problematic API, because it doesn’t specify how to handle
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objects with references to other objects. Should a clone also duplicate the objects to
which it refers (a deep copy) or just copy the references (a shallow copy)? In practice,
types that wish to allow themselves to be copied often just provide an ad hoc method
for the job, rather than conforming to any pattern.

We can write code that detects whether two references refer to the same thing.
Example 3-9 arranges for three variables to refer to two counters with the same
count, and then compares their identities. By default, the == operator does exactly
this sort of object identity comparison when its operands are reference types. How‐
ever, types are allowed to redefine the == operator. The string type changes == to
perform value comparisons, so if you pass two distinct string objects as the operands
of ==, the result will be true if they contain identical text. If you want to force com‐
parison of object identity, you can use the static object.ReferenceEquals method.

Example 3-9. Comparing references

var c1 = new Counter();
c1.GetNextValue();
Counter c2 = c1;
var c3 = new Counter();
c3.GetNextValue();

Console.WriteLine(c1.Count);
Console.WriteLine(c2.Count);
Console.WriteLine(c3.Count);
Console.WriteLine(c1 == c2);
Console.WriteLine(c1 == c3);
Console.WriteLine(c2 == c3);
Console.WriteLine(object.ReferenceEquals(c1, c2));
Console.WriteLine(object.ReferenceEquals(c1, c3));
Console.WriteLine(object.ReferenceEquals(c2, c3));

The first three lines of output confirm that all three variables refer to counters with
the same count:

1
1
1
True
False
False
True
False
False

It also illustrates that while they all have the same count, only c1 and c2 are consid‐
ered to be the same thing. That’s because we assigned c1 into c2, meaning that c1 and
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c2 will both refer to the same object, which is why the first comparison succeeds. But
c3 refers to a different object entirely (even though it happens to have the same
value), which is why the second comparison fails. (I’ve used both the == and
object.ReferenceEquals comparisons here to illustrate that they do the same thing
in this case, because Counter has not defined a custom meaning for ==.)

We could try the same thing with int instead of a Counter, as Example 3-10 shows.
(This initializes the variables in a slightly idiosyncratic way in order to resemble
Example 3-9 as closely as possible.)

Example 3-10. Comparing values

int c1 = new int();
c1++;
int c2 = c1;
int c3 = new int();
c3++;

Console.WriteLine(c1);
Console.WriteLine(c2);
Console.WriteLine(c3);
Console.WriteLine(c1 == c2);
Console.WriteLine(c1 == c3);
Console.WriteLine(c2 == c3);
Console.WriteLine(object.ReferenceEquals(c1, c2));
Console.WriteLine(object.ReferenceEquals(c1, c3));
Console.WriteLine(object.ReferenceEquals(c2, c3));
Console.WriteLine(object.ReferenceEquals(c1, c1));

As before, we can see that all three variables have the same value:

1
1
1
True
True
True
False
False
False
False

This also illustrates that the int type does define a special meaning for ==. With int,
this operator compares the values, so those three comparisons succeed. But
object.ReferenceEquals never succeeds for value types—in fact, I’ve added an
extra, fourth comparison here, where I compare c1 with itself, and even that fails!
That surprising result occurs because it’s not meaningful to perform a reference com‐
parison with int—it’s not a reference type. The compiler has to perform implicit
conversions from int to object for the last four lines of Example 3-10: it has wrap‐
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ped each argument to object.ReferenceEquals in something called a box, which
we’ll be looking at in Chapter 7. Each argument gets a distinct box, which is why even
the final comparison fails.

There’s another difference between reference types and types like int. By default, any
reference type variable can contain a special value, null, meaning that the variable
does not refer to any object at all. You cannot assign this value into any of the built-in
numeric types (although see the next sidebar, “Nullable<T>”).

Nullable<T>
.NET defines a wrapper type called Nullable<T>, which adds nullability to value
types. Although an int variable cannot hold null, a Nullable<int> can. The angle
brackets after the type name indicate that this is a generic type—you can plug various
different types into that T placeholder—and I’ll talk about those more in Chapter 4.

The compiler provides special handling for Nullable<T>. It lets you use a more com‐
pact syntax, so you can write int? instead. When nullable numerics appear inside
arithmetic expressions, the compiler treats them differently than normal values. For
example, if you write a + b, where a and b are both int?, the result is an int? that
will be null if either operand was null, and will otherwise contain the sum of the
values. This also works if only one of the operands is an int? and the other is an ordi‐
nary int.

While you can set an int? to null, it’s not a reference type. It’s more like a combina‐
tion of an int and a bool. (Although, as I’ll describe in Chapter 7, the CLR performs
some tricks with Nullable<T> that sometimes makes it look more like a reference
type than a value type.)

If you use the null-conditional operators described in Chapter 2 (.? and ?[index]) to
access members with a value type, the resulting expression will be of the nullable ver‐
sion of that type. For example, if str is a variable of type string, the expression
str.?Length has type Nullable<int> (or if you prefer, int?) because Length is of
type int, but the use of a null-conditional operator means the expression could evalu‐
ate to null.

Banishing null with non-nullable references
The widespread availability of null references in programming languages dates back
to 1965, when computer scientist Tony Hoare added them to the highly influential
ALGOL language. He has since apologized for this invention, which he described as
“my billion-dollar mistake.” The possibility that a reference type variable might con‐
tain null makes it hard to know whether it’s safe to attempt to perform an action
with that variable. (C# programs will throw a NullReferenceException if you
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attempt this, which will typically crash your program. Chapter 8 discusses excep‐
tions.) Some modern programming languages avoid the practice of allowing refer‐
ences to be nullable by default, offering instead some system for optional values
through an explicit opt-in mechanism in the type system. In fact, as you’ve seen with
Nullable<T> this is already the case for built-in numeric types (and also, as we’ll see,
any custom value types that you define), but until recently, nullability has not been
optional for all reference type variables.

C# 8.0 introduces a significant new feature to the language that extends the type sys‐
tem to make a distinction between references that may be null, and ones that must
not be. The feature’s name is nullable references, which seems odd, because references
have always been able to contain null since C# 1.0. However, the feature’s name
refers to the fact that in sections of code that enable this feature, nullability becomes
an opt-in feature: a reference will never contain null unless it is explicitly defined as a
nullable reference. At least, that’s the theory.

Enabling the type system to distinguish between nullable and non-
nullable references was always going to be a tricky thing to retrofit
to a language almost two decades into its life. So the reality is that
C# cannot always guarantee that a non-nullable reference will
never contain a null. However, it can make the guarantee if certain
constraints hold, and more generally it will significantly reduce the
chances of encountering a NullReferenceException even in cases
where it cannot absolutely rule this out.

Making non-nullability the default is a radical change, so this feature is switched off
unless you enable it explicitly. And since switching it on can have a dramatic impact
on existing code, it is possible to control the feature at a fine-grained level.

C# provides two dimensions of control, which it calls the nullable annotation context
and the nullable warning context. Each line of code in a C# program is associated
with one of each kind of context. The default is that all your code is in a disabled
nullable annotation context and a disabled nullable warning context. You can change
these defaults at a project level. You can also use the #nullable directive to change
the nullable annotation context at a more fine-grained level—a different one every
line if you want—and you can control the nullable warning context at an equally pre‐
cise level with a #pragma warning directive. So how do these two contexts work?

The nullable annotation context determines whether we get to declare the nullability
of a particular use of a reference type (e.g., a field, variable, or argument). In a dis‐
abled annotation context (the default) we cannot express this, and all references are
implicitly nullable. The official categorization describes these as oblivious to nullabil‐
ity, distinguishing them from references you have deliberately annotated as being
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nullable. However, in an enabled annotation context, we get to choose. Example 3-11
shows how.

Example 3-11. Specifying nullability

string cannotBeNull = "Text";
string? mayBeNull = null;

This should look familiar because it mirrors the syntax for nullability of built-in
numeric types and custom value types. If you just write the type name, that denotes
something non-nullable. If you want it to be nullable, you append a ?.

The most important point to notice here is that in an enabled nullable annotation
context, the old syntax gets the new behavior, and if you want the old behavior, you
need to use the new syntax. This means that if you take existing code originally writ‐
ten without any awareness of nullability, and you put it into an enabled annotation
context, all reference type variables are now effectively annotated as being non-
nullable, the opposite of how the compiler treated the exact same code before.

The most direct way to put code into an enabled nullable annotation context is with a
#nullable enable directive. You can put this at the top of a source file to enable it
for the whole file, or you can use it more locally, followed by a #nullable restore to
put back the project-wide default. On its own this will produce no visible change. The
compiler won’t act on these annotations if the nullable warning context is disabled,
and it is disabled by default. You can enable it locally with #pragma warning enable
nullable (and #pragma warning restore nullable reverts to the project-wide
default). You can control the project-wide defaults in the .csproj file by adding a <Nul
lable> property. Example 3-12 sets the defaults to an enabled nullable warning con‐
text and a disabled nullable annotation context.

Example 3-12. Specifying an enabled nullable warning context as the project-wide
default

<PropertyGroup>
  <Nullable>warnings</Nullable>
</PropertyGroup>

This means that any files that do not explicitly opt into an enabled nullable annota‐
tion context will be in a disabled nullable annotation context, but that all code will be
in an enabled nullable warning context unless it explicitly opts out. Other project-
wide settings are disable (the default), enable (uses enabled warning and annotation
contexts), and annotations (enables annotations, but not warnings).

If you’ve specified an enabled annotation context at the project level, you can use
#nullable disable to opt out in individual files. Likewise, if you’ve specified either
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form of enabled warning context at the project level, you can opt out with #pragma
warning disable nullable.

We have all this fine-grained control to make it easier to enable non-nullability for
existing code. If you just fully enable the feature for an entire project in one step,
you’re likely to encounter a lot of warnings. In practice, it may make more sense to
put all code in the project in an enabled warning context, but not to enable annota‐
tions anywhere to begin with. Since all of your references will be deemed oblivious to
nullability checking, you won’t yet see any warnings. You can then start to move code
into an enabled annotation context one file at a time (or in even smaller chunks if
you prefer), making any necessary changes.

Over time, the goal would be to get all the code to the point where you can fully
enable non-nullable support at the project level.

What does the compiler do for us in code where we’ve fully enabled non-nullability
support? We get two main things. First, the compiler uses rules similar to the definite
assignment rules to ensure that we don’t attempt to dereference a method without
first checking to see whether it’s null. Example 3-13 shows some cases the compiler
will accept, and some that would cause warnings in an enabled nullable warning con‐
text, assuming that mayBeNull was declared in an enabled nullable annotation con‐
text as being nullable.

Example 3-13. Dereferencing a nullable reference

if (mayBeNull != null)
{
    // Allowed because we can only get here if mayBeNull is not null
    Console.WriteLine(mayBeNull.Length);
}

// Allowed because it checks for null and handles it
Console.WriteLine(mayBeNull?.Length ?? 0);

// The compiler will warn about this in an enabled nullable warning context
Console.WriteLine(mayBeNull.Length);

Second, in addition to checking whether dereferencing (use of . to access a member)
is safe, the compiler will also warn you when you’ve attempted to assign a reference
that might be null into something that requires a non-nullable reference, or if you
pass one as an argument to a method when the corresponding parameter is declared
as non-nullable.

Sometimes, you’ll run into a roadblock on the path to moving all your code into fully
enabled nullability contexts. Perhaps you depend on some component that is unlikely
to be upgraded with nullability annotations in the foreseeable future, or perhaps
there’s a scenario in which C#’s conservative safety rules incorrectly decide that some
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code is not safe. What can you do in these cases? You wouldn’t want to disable warn‐
ings for the entire project, and it would be irritating to have to leave the code pep‐
pered with #pragma directives. There is an alternative: you can tell the C# compiler
that you know something it doesn’t. If you have a reference that the compiler pre‐
sumes could be null (perhaps because it came from a component that does not sup‐
port non-nullability) but which you have good reason to believe will never be null,
you can tell the compiler this by using the null forgiving operator, which you can see
near the end of the second line of Example 3-14. It is sometimes known informally as
the dammit operator, because being an exclamation mark makes it look like a slightly
exasperated kind of assertion.

Example 3-14. The null forgiving operator

string? referenceFromLegacyComponent = legacy.GetReferenceWeKnowWontBeNull();
string nonNullableReferenceFromLegacyComponent = referenceFromLegacyComponent!;

You can use the null forgiving operator in any enabled nullable annotation context. It
has the effect of converting a nullable reference to a non-nullable reference. You can
then go on to dereference that non-nullable reference or otherwise use it in places
where a nullable reference would not be allowed without causing any compiler
warnings.

The null forgiving operator does not check its input. If you apply
this in a scenario where the value turns out to be null at runtime, it
will not detect this. Instead, you will get a runtime error at the
point where you try to use the reference.

While the null forgiving operator can be useful at the boundary between nullable-
aware code and old code that you don’t control, there’s another way to let the com‐
piler know when an apparently nullable expression will not in fact be null: nullable
attributes. .NET defines several attributes that you can use to annotate code to
describe when it will or won’t return null values. Consider the code in Example 3-15.
If you do not enable the nullable reference type features, this works fine, but if you
turn them on, you will get a warning. (This uses a dictionary, a collection type that is
described in detail in Chapter 5.)

Example 3-15. Nullability and the Try pattern—before nullable reference types

public static string Get(IDictionary<int, string> d)
{
    if (d.TryGetValue(42, out string s))
    {
        return s;
    }
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    return "Not found";
}

With nullability warnings enabled, the compiler will complain at the out string s.
It will tell you, correctly, that TryGetValue might pass a null through that out argu‐
ment. (This kind of argument is discussed later; it provides a way to return additional
values besides the function’s main return value.) This function checks whether the
dictionary contains an entry with the specified key. If it does, it will return true, and
put the relevant value into the out argument, but if not, it returns false, and sets that
out argument to the null. We can modify our code to reflect this fact by putting a ?
after the out string. Example 3-16 shows this modification.

Example 3-16. Nullable-aware use of the Try pattern

public static string Get(IDictionary<int, string> d)
{
    if (d.TryGetValue(42, out string? s))
    {
        return s;
    }

    return "Not found";
}

You might expect this to cause a new problem. Our Get method returns a string, not
a string?, so how can that return s be correct? We just modified our code to indi‐
cate that s might be null, so won’t the compiler complain when we try to return this
possibly null value from a method that declares that it won’t return null? But in fact
this compiles. The compiler accepts this because it knows that TryGetValue will only
set that out argument to null if it returns false. That means that the compiler
knows that although the s variable’s type is string?, it will not be null inside the
body of the if statement. It knows this thanks to a nullable attribute applied to the
TryGetValue method’s definition. (Attributes are described in Chapter 14.)
Example 3-17 shows the attribute in the method’s declaration. (This method is part
of a generic type, which is why we see TKey and TValue here and not the int and
string types I used in my examples. Chapter 4 discusses this kind of method in
detail. In the examples at hand, TKey and TValue are, in effect, int and string.)

Example 3-17. A nullable attribute

public bool TryGetValue(TKey key, [MaybeNullWhen(false)] out TValue value)
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This annotation is how C# knows that the value might be null if TryGetValue
returns false. Without this attribute, Example 3-15 would have compiled success‐
fully even with nullable warnings enabled, because by writing IDictionary<int,
string> (and not IDictionary<int, string?>) I am indicating that my dictionary
does not permit null values. So normally, C# will assume that when a method returns
a value from the dictionary, it will also produce a string. But TryGetValue some‐
times has no value to return, which is why it needs this annotation. Table 3-1
describes the various attributes you can apply to give the C# compiler more informa‐
tion about what may or may not be null.

Table 3-1. Nullable attributes

Type Usage

AllowNull Code is allowed to supply null even when the type is non-nullable

DisallowNull Code must not supply null even when the type is nullable

MaybeNull Code should be prepared for this to return the null value even when the type is non-nullable

MaybeNullWhen Used only with out or ref parameters; the output may be null if the method returns the
specified bool value

NotNullWhen Used only with out or ref parameters; the output may not be null if the method returns the
specified bool value

NotNullIfNotNull If you pass a non-null value as the argument for the parameter that this attribute names, the
value returned by this attribute’s target will not be null

These attributes have been applied to the most widely used parts of the .NET class
libraries in .NET Core 3.0 to reduce the friction involved in adopting nullable refer‐
ences.

Moving code into enabled nullable warning and annotation contexts can provide a
significant boost to code quality. Many developers who migrate existing codebases
often uncover some latent bugs in the process, thanks to the additional checks the
compiler performs. However, it is not perfect. There are two holes worth being aware
of, caused by the fact that nullability was not baked into the type system from the
start. The first is that legacy code introduces blind spots—even if all your code is in
an enabled nullable annotation context, if it uses APIs that are not, references it
obtains from those will be oblivious to nullability. If you need to use the null forgiv‐
ing operator to keep the compiler happy, there’s always the possibility that you are
mistaken, at which point you’ll end up with a null in what is supposed to be a non-
nullable variable. The second is a bit more vexing in that you can hit it in brand-new
code, even if you fully enabled this feature from the start: certain storage locations
in .NET have their memory filled with zero values when they are initialized. If these
locations are of a reference type, they will end up starting out with a null value, and
there’s currently no way that the C# compiler can enforce their non-nullability.
Arrays have this issue. Look at Example 3-18.
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Example 3-18. Arrays and nullability

var nullableStrings = new string?[10];
var nonNullableStrings = new string[10];

This code declares two arrays of strings. The first uses string?, so it allows nullable
references. The second does not. However, in .NET you have to create arrays before
you can put anything in them, and a newly created array’s memory is always zero-
initialized. This means that our nonNullableStrings array will start life full of nulls.
There is no way to avoid this because of how arrays work in .NET. One way to miti‐
gate this problem is to avoid using arrays directly. If you use List<string> instead
(see Chapter 5), it will contain only items that you have added—unlike an array, a
List<T> does not provide a way to initialize it with empty slots. But this will not
always be possible. Sometimes you will simply need to take care that you initialize all
the elements in an array.

A similar problem exists with fields in value types, which are described in the follow‐
ing section. If they have reference type fields, there are situations in which you cannot
prevent them from being initialized to null. So the nullable references feature is not
perfect. It is nonetheless very useful. Teams that have made the necessary changes to
existing projects to use it have reported that this process tends to uncover many pre‐
viously undiscovered bugs. It is an important tool for improving the quality of your
code.

Although non-nullable references diminish one of the distinctions between reference
types and built-in numeric types, important differences remain. A variable of type
int is not a reference to an int. It contains the value of the int—there is no indirec‐
tion. In some languages, this choice between reference-like and value-like behavior is
determined by the way in which you use a type, but in C#, it is a fixed feature of the
type. Any particular type is either a reference type or a value type. The built-in
numeric types are all value types, as is bool, whereas a class is always a reference
type. But this is not a distinction between built-in and custom types. You can write
custom value types.

Structs
Sometimes it will be appropriate for a custom type to get the same value-like behav‐
ior as the built-in value types. The most obvious example would be a custom numeric
type. Although the CLR offers various intrinsic numeric types, some kinds of calcula‐
tions require a bit more structure than these provide. For example, many scientific
and engineering calculations work with complex numbers. The runtime does not
define an intrinsic representation for these, but the class library supports them with
the Complex type. It would be unhelpful if a numeric type such as this behaved signif‐
icantly differently from the built-in types. Fortunately, it doesn’t, because it is a value
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type. The way to write a custom value type is to use the struct keyword instead of
class.

A struct can have most of the same features as a class; it can contain methods, fields,
properties, constructors, and any of the other member types supported by classes,
and we can use the same accessibility keywords, such as public and internal. There
are a few restrictions, but with the simple Counter type I wrote earlier, I could just
replace the class keyword with struct. However, this would not be a useful trans‐
formation. Remember, one of the main distinctions between reference types (classes)
and value types is that the former have identity: it might be useful for me to create
multiple Counter objects so that I can count different kinds of things. But with value
types (either the built-in ones or custom structs), the assumption is that they can be
copied freely. If I have an instance of the int type (e.g., 4) and I store that in several
fields, there’s no expectation that this value has a life of its own: one instance of the
number 4 is indistinguishable from another. The variables that hold values have their
own identities and lifetimes, but the values that they hold do not. This is different
from how reference types work: not only do the variables that refer to them have
identities and lifetimes, the objects they refer to have their own identities and life‐
times independent of any particular variable.

If I add one to the int value 4, the result is a completely different int value. If I call
GetNextValue() on a Counter, its count goes up by one but it remains the same
Counter instance. So although replacing class with struct in Example 3-3 would
compile, we really don’t want our Counter type to become a struct. Example 3-19
shows a better candidate.

Example 3-19. A simple struct

public struct Point
{
    private double _x;
    private double _y;
    public Point(double x, double y)
    {
        _x = x;
        _y = y;
    }

    public double X => _x;
    public double Y => _y;
}

This represents a point in two-dimensional space. And while it’s certainly possible to
imagine wanting the ability to represent particular points with their own identity (in
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which case we’d want a class), it’s perfectly reasonable to want to have a value-like
type representing a point’s location.

Although Example 3-19 is OK as far as it goes, it’s common for values to support
comparison. As mentioned earlier, C# defines a default meaning for the == operator
for reference types: it is equivalent to object.ReferenceEquals, which compares
identities. That’s not meaningful for value types, so C# does not automatically sup‐
port == for a struct. You are not strictly required to provide a definition, but the
built-in value types all do, so if we’re trying to make a type with similar characteristics
to those, we should do this. If you add an == operator on its own, the compiler will
inform you that you are required to define a matching != operator. You might think
C# would define != as the inverse of ==, since they appear to mean the opposite.
However, some types will return false for both operators for certain pairs of
operands, so C# requires us to define both independently. As Example 3-20 shows, to
define a custom meaning for an operator, we use the operator keyword followed by
the operator we’d like to customize. This example defines the behavior for == and !=,
which are very straightforward for our simple type.

Example 3-20. Support custom comparison

public static bool operator ==(Point p1, Point p2)
{
    return p1.X == p2.X && p1.Y == p2.Y;
}

public static bool operator !=(Point p1, Point p2)
{
    return p1.X != p2.X || p1.Y != p2.Y;
}

public override bool Equals(object obj)
{
    return obj is Point p2 && this.X == p2.X && this.Y == p2.Y;
}

public override int GetHashCode()
{
    return (X, Y).GetHashCode();
}

If you just add the == and != operators, you’ll find that the compiler generates warn‐
ings recommending that you define two methods called Equals and GetHashCode.
Equals is a standard method available on all .NET types, and if you have defined a
custom meaning for ==, you should ensure that Equals does the same thing.
Example 3-20 does this, and as you can see, it contains the same logic as the == opera‐
tor, but it has to do some extra work. The Equals method permits comparison with
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any type, so we first check to see if our Point is being compared with another Point.
I’ve used a type pattern to perform this check, and also to get the incoming obj argu‐
ment into a variable of type Point in the case where the pattern matches. Finally,
Example 3-20 implements GetHashCode, which we’re required to do if we implement
Equals. See the next sidebar, “GetHashCode”, for details.

GetHashCode
All .NET types have a GetHashCode method. It returns an int that in some sense rep‐
resents the value of your object. Some data structures and algorithms are designed to
work with this sort of simplified, reduced version of an object’s value. A hash table,
for example, can find a particular entry in a very large table very efficiently, as long as
the type of value you’re searching for offers a good hash code implementation. Some
of the collection classes described in Chapter 5 rely on this. The details of this sort of
algorithm are beyond the scope of this book, but if you search the web for “hash
table” you’ll find plenty of information.

A correct implementation of GetHashCode must meet two requirements. The first is
that whatever number an instance returns as its hash code, that instance must con‐
tinue to return the same code as long as its own value does not change. The second
requirement is that two instances that have equal values according to their Equals
methods must return the same hash code. Any type that fails to meet either of these
requirements might cause code that uses its GetHashCode method to malfunction.
The default implementation of GetHashCode for reference types meets the first
requirement but makes no attempt to meet the second—pick any two objects that use
the default implementation, and most of the time they’ll have different hash codes.
That’s fine because the default reference type Equals implementation only ever
returns true if you compare an object with itself, but this is why you need to override
GetHashCode if you override Equals. Value types get default implementations of
GetHashCode and Equals that meet both requirements. However, these use reflection
(see Chapter 13), which is slow, so you should normally write your own.

Ideally, objects that have different values should have different hash codes, but that’s
not always possible—GetHashCode returns an int, which has a finite number of pos‐
sible values. (4,294,967,296, to be precise.) If your data type offers more distinct val‐
ues, then it’s clearly not possible for every conceivable value to produce a different
hash code. For example, the 64-bit integer type, long, obviously supports more dis‐
tinct values than int. If you call GetHashCode on a long with a value of 0, on .NET 4.0
it returns 0, and you’ll get the same hash code for a long with a value of
4,294,967,297. Duplicates like these are called hash collisions, and they are an
unavoidable fact of life. Code that depends on hash codes just has to be able to deal
with these.

The rules do not require the mapping from values to hash codes to be fixed forever—
they only need to be consistent for the lifetime of the process. In fact, there are good
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reasons to be inconsistent. Criminals who attack online computer systems sometimes
try to cause hash collisions. Collisions decrease the efficiency of hash-based algo‐
rithms, so an attack that attempts to overwhelm a server’s CPU will be more effective
if it can induce collisions for values that it knows the server will use in hash-based
lookups. Some types in the .NET class library deliberately change the way they pro‐
duce hashes each time you restart a program to avoid this problem.

Because hash collisions are unavoidable, the rules cannot forbid them, which means
you could return the same value (e.g., 0) from GetHashCode every time, regardless of
the instance’s actual value. Although not technically against the rules, it tends to pro‐
duce lousy performance from hash tables and the like. Ideally, you will want to mini‐
mize hash collisions. That said, if you don’t expect anything to depend on your type’s
hash code, there’s not much point in spending time carefully devising a hash function
that produces well-distributed values. Sometimes a lazy approach, such as deferring
to a single field, is OK. Or you could defer to a tuple like Example 3-20 does, because
tuples do a reasonably good job of producing a hash over all their properties. Or if
you can target .NET Core 3.0 or .NET Standard 2.1 or later, you can use the Hash
Code.Combine method.

With the code in Example 3-20 added to the struct in Example 3-19, we can run a few
tests. Example 3-21 works similarly to Examples 3-9 and 3-10.

Example 3-21. Comparing struct instances

var p1 = new Point(40, 2);
Point p2 = p1;
var p3 = new Point(40, 2);

Console.WriteLine($"{p1.X}, {p1.Y}");
Console.WriteLine($"{p2.X}, {p2.Y}");
Console.WriteLine($"{p3.X}, {p3.Y}");
Console.WriteLine(p1 == p2);
Console.WriteLine(p1 == p3);
Console.WriteLine(p2 == p3);
Console.WriteLine(object.ReferenceEquals(p1, p2));
Console.WriteLine(object.ReferenceEquals(p1, p3));
Console.WriteLine(object.ReferenceEquals(p2, p3));
Console.WriteLine(object.ReferenceEquals(p1, p1));

Running that code produces this output:

40, 2
40, 2
40, 2
True
True
True
False
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False
False
False

All three instances have the same value. With p2 that’s because I initialized it by
assigning p1 into it, and with p3 I constructed it from scratch but with the same argu‐
ments. Then we have the first three comparisons, which, remember, use ==. Since
Example 3-20 defines a custom implementation that compares values, all the com‐
parisons succeed. And all the object.ReferenceEquals values fail, because this is a
value type, just like int. In fact, this is the same behavior we saw with Example 3-10,
which used int instead of Counter. (Again, the compiler has generated implicit con‐
versions here that produce boxes, which we will look at in Chapter 7.) So we have
achieved our goal of defining a type with similar behavior to built-in value types such
as int.

When to Write a Value Type
I’ve shown some of the differences in observable behavior between a class and a
struct, but although I argued why Counter was a poor candidate for being a struct,
I’ve not fully explained what makes a good one. The short answer is that there are
only two circumstances in which you should write a value type. First, if you need to
represent something value-like, such as a number, a struct is likely to be ideal. Sec‐
ond, if you have determined that a struct has usefully better performance characteris‐
tics for the scenario in which you will use the type, a struct may not be ideal but
might still be a good choice. But it’s worth understanding the pros and cons in more
detail. And I will also address a surprisingly persistent myth about value types.

With reference types, an object is distinct from a variable that refers to it. This can be
very useful, because we often use objects as models for real things with identities of
their own. But this has some performance implications. An object’s lifetime is not
necessarily directly related to the lifetime of a variable that refers to it. You can create
a new object, store a reference to it in a local variable, and then later copy that refer‐
ence to a static field. The method that originally created the object might then return,
so the local variable that first referred to the object no longer exists, but the object
needs to stay alive because it’s still possible to reach it by other means.

The CLR goes to considerable lengths to ensure that the memory an object occupies
is not reclaimed prematurely, but is eventually freed once the object is no longer in
use. This is a fairly complex process (described in detail in Chapter 7), and .NET
applications can end up causing the CLR to consume a considerable amount of CPU
time just tracking objects in order to work out when they fall out of use. Creating lots
of objects increases this overhead. Adding complexity in certain ways can also
increase the costs of object tracking—if a particular object remains alive only because
it is reachable through some very convoluted path, the CLR may need to follow that
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path each time it tries to work out what memory is still in use. Each level of indirec‐
tion you add generates extra work. A reference is by definition indirect, so every ref‐
erence type variable creates work for the CLR.

Value types can often be handled in a much simpler way. For example, consider
arrays. If you declare an array of some reference type, you end up with an array of
references. This is very flexible—elements can be null if you want, and you’re also
free to have multiple different elements all referring to the same item. But if what you
actually need is a simple sequential collection of items, that flexibility is just over‐
head. A collection of 1,000 reference type instances requires 1,001 blocks of memory:
one block to hold an array of references, and then 1,000 objects for those references
to refer to. But with value types, a single block can hold all the values. This simplifies
things for memory management purposes—either the array is still in use or it’s not,
and there’s no need for the CLR to check the 1,000 individual elements separately.

It’s not just arrays that can benefit from this sort of efficiency. There’s also an advan‐
tage for fields. Consider a class that contains 10 fields, all of type int. The 40 bytes
required to hold those fields’ values can live directly inside the memory allocated for
an instance of the containing class. Compare that with 10 fields of some reference
type. Although those references can be stored inside the object instance’s memory,
the objects they refer to will be separate entities, so if the fields are all non-null and all
refer to different objects, you’ll now have 11 blocks of memory—one for the instance
that contains all the fields, and then one for each object those fields refer to.
Figure 3-1 illustrates these differences between references and values for both arrays
and objects (with smaller examples, because the same principle applies even with a
handful of instances).

Value types can also sometimes simplify lifetime handling. Often, the memory alloca‐
ted for local variables can be freed as soon as a method returns (although, as we’ll see
in Chapter 9, anonymous functions mean that it’s not always that simple). This
means the memory for local variables can often live on the stack, which typically has
much lower overheads than the heap. For reference types, the memory for a variable
is only part of the story—the object it refers to cannot be handled so easily, because
that object may continue to be reachable by other paths after the method exits.
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1 There are certain exceptions, described in Chapter 18.

Figure 3-1. References versus values

In fact, the memory for a value may be reclaimed even before a method returns. New
value instances often overwrite older instances. For example, C# can normally just
use a single piece of memory to represent a variable, no matter how many different
values you put in there. Creating a new instance of a value type doesn’t necessarily
mean allocating more memory, whereas with reference types, a new instance means a
new heap block. This is why it’s OK for each operation we perform with a value type
—every integer addition or subtraction, for example—to produce a new instance.

One of the most persistent myths about value types says that values are allocated on
the stack, unlike objects. It’s true that objects always live on the heap, but value types
don’t always live on the stack,1 and even in the situations where they do, that’s an
implementation detail, not a fundamental feature of C#. Figure 3-1 shows two coun‐
terexamples. An int value inside an array of type int[] does not live on the stack; it
lives inside the array’s heap block. Likewise, if a class declares a nonstatic int field,
the value of that int lives inside the heap block for its containing object instance.
And even local variables of value types don’t necessarily end up on the stack. For
example, optimizations may make it possible for the value of a local variable to live
entirely inside the CPU’s registers, rather than needing to go on the stack. And as
you’ll see in Chapters 9 and 17, locals can sometimes live on the heap.

You might be tempted to summarize the preceding few paragraphs as “there are
some complex details, but in essence, value types are more efficient.” But that would
be a mistake. There are some situations in which value types are significantly more
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expensive. Remember that a defining feature of a value type is that values get copied
on assignment. If the value type is big, that will be relatively expensive. For example,
the .NET class library defines the Guid type to represent the 16-byte globally unique
identifiers that crop up in lots of bits of Windows. This is a struct, so any assignment
statement involving a Guid is asking to make a copy of a 16-byte data structure. This
is likely to be more expensive than making a copy of a reference, because the CLR
uses a pointer-based implementation for references; a pointer typically takes 4 or 8
bytes, but more importantly, it’ll be something that fits naturally into a single CPU
register.

It’s not just assignment that causes values to be copied. Passing a value type argument
to a method may require a copy. As it happens, with method invocation, it is actually
possible to pass a reference to a value, although as we’ll see later, it’s a slightly limited
kind of reference, and the restrictions it imposes are sometimes undesirable, so you
may end up deciding that the cost of the copy is preferable. This is why Microsoft’s
design guidelines suggest that you should not make a type a struct unless it “has an
instance size under 16 bytes” (a guideline that the Guid type technically violates,
being exactly 16 bytes in size). But this is not a hard and fast rule—it really depends
on how you will be using it, and since more recent versions of C# provide more flexi‐
bility for using values types indirectly, it is increasingly common for performance-
sensitive code to ignore this restriction, and instead to take care to minimize copying.

Value types are not automatically going to be more efficient than reference types, so
in most cases, your choice should be driven by the behavior you require. The most
important question is this: does the identity of an instance matter to you? In other
words, is the distinction between one object and another object important? For our
Counter example, the answer is yes: if we want something to keep count for us, it’s
simplest if that counter is a distinct thing with its own identity. (Otherwise, our
Counter type adds nothing beyond what int gives us.) But for our Point type, the
answer is no, so it’s a reasonable candidate for being a value type.

An important and related question is: does an instance of your type contain state that
changes over time? Modifiable value types tend to be problematic, because it’s all too
easy to end up working with some copy of a value, and not the instance you meant to.
(I’ll show an important example of this problem later, in “Properties and mutable
value types” on page 169, and another when I describe List<T> in Chapter 5.) So it’s
usually a good idea for value types to be immutable. This doesn’t mean that variables
of these types cannot be modified; it just means that to modify the variable, you must
replace its contents entirely with a different value. For something simple like an int,
this will seem like splitting hairs, but the distinction is important with structs that
contain multiple fields, such as .NET’s Complex type, which represents numbers that
combine a real and an imaginary component. You cannot change the Real or Imagi
nary property of an existing Complex instance, because the type is immutable. And
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2 You wouldn’t want it to be a value type, because strings can be large, so passing them by value would be
expensive. In any case, it cannot be a struct, because strings vary in length. However, that’s not a factor you
need to consider, because you can’t write your own variable-length data types in C#. Only strings and array
types have variable size.

the Point type shown earlier works the same way. If the value you’ve got isn’t the
value you want, immutability just means you need to create a new value, because you
can’t tweak the existing instance.

Immutability does not necessarily mean you should write a struct—the built-in
string type is immutable, and that’s a class.2 However, because C# often does not
need to allocate new memory to hold new instances of a value type, value types are
able to support immutability more efficiently than classes in scenarios where you’re
creating lots of new values (e.g., in a loop). Immutability is not an absolute require‐
ment for structs—there are some unfortunate exceptions in .NET’s class library. But
value types should normally be immutable, so a requirement for mutability is usually
a good sign that you want a class rather than a struct.

A type should only be a struct if it represents something that is very clearly similar in
nature to other things that are value types. (In most cases it should also be fairly
small, because passing large types by value is expensive.) For example, in the .NET
class library, Complex is a struct, which is unsurprising because it’s a numeric type,
and all of the built-in numeric types are value types. TimeSpan is also a value type,
which makes sense because it’s effectively just a number that happens to represent a
length of time. In the UI framework WPF, types used for simple geometric data such
as Point and Rect are structs. But if in doubt, write a class.

Guaranteeing Immutability
Since C# 7.2, it has been possible to declare your intention to make a struct read-only
by adding the readonly keyword in front of struct, as Example 3-22 shows. This is
similar to the Point type shown in Example 3-19, but I’ve made a couple of other
alterations. In addition to adding the readonly qualifier, I’ve also used read-only auto
properties to reduce the clutter. I’ve also added a member function for reasons that
will soon become clear. For a read-only type to be useful, it needs to have a construc‐
tor, a special member that initializes the fields and properties. I’ll describe these in
more detail later.

Example 3-22. A read-only struct

public readonly struct Point
{
    public Point(double x, double y)
    {
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        X = x;
        Y = y;
    }

    public double X { get; }
    public double Y { get; }
    public double DistanceFromOrigin()
    {
        return Math.Sqrt(X * X + Y * Y);
    }
}

Applying the readonly keyword to a struct has two effects. First, the C# compiler
will keep you honest, preventing modification either from outside or from within. If
you declare any fields, the compiler will generate an error unless these are also
marked readonly. Similarly, if you try to define a settable auto property (described
later in this chapter), the compiler will produce an error.

Second, read-only structs enjoy certain optimizations. If in some other type you
declare a readonly field (either directly, or indirectly with a read-only auto property),
whose type is a readonly struct, the compiler may be able to avoid making a copy
of the data when something uses that field. Consider the class in Example 3-23.

Example 3-23. A read-only struct in a read-only property

public class LocationRecord
{
    public LocationRecord(string label, Point location)
    {
        Label = label;
        Location = location;
    }

    public string Label { get; }
    public Point Location { get; }
}

Suppose you had a variable r containing a reference to a LocationRecord. What
would happen if you wrote the expression r.Location.DistanceFromOrigin()? Log‐
ically, we’re asking r.Location to retrieve the Point, and since Point is a value type,
that would entail making a copy of the value. Normally, C# will generate code that
really does make a copy because it cannot in general know whether invoking some
member of a struct will modify it. These are known as defensive copies, and they
ensure that expressions like this can’t cause a nasty surprise such as changing the
value of a property or field that appears to be read-only. However, since Point is a
readonly struct, the compiler can know that it does not need to create a defensive
copy here. In this case, it would be safe for either the C# compiler or the JIT compiler
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(or AoT code generator) to optimize this code by invoking DistanceFromOrigin
directly on the value stored inside the LocationRecord without first making a copy.

You are allowed to use a readonly struct in writable fields and
properties if you want to. The readonly keyword guarantees only
that any particular value of this type will not change. If you want to
overwrite an existing value with a completely different value, that’s
up to you.

Members
Whether you’re writing a class or a struct, there are several different kinds of mem‐
bers you can put in a custom type. We’ve seen examples of some already, but let’s
take a closer and more comprehensive look.

With one exception (static constructors), you can specify the accessibility for all class
and struct members. Just as a type can be public or internal, so can each member.
Members may also be declared as private, making them accessible only to code
inside the type, and this is the default accessibility. And, as we’ll see in Chapter 6,
inheritance adds three more accessibility levels for members: protected, protected
internal, and protected private.

Fields
You’ve already seen that fields are named storage locations that hold either values or
references depending on their type. By default, each instance of a type gets its own set
of fields, but if you want a field to be singular, rather than having one per instance,
you can use the static keyword. You can also apply the readonly keyword to a field,
which states that it can be set only during construction, and cannot change thereafter.

The readonly keyword does not make any absolute guarantees.
There are mechanisms by which it is possible to contrive a change
in the value of a readonly field. The reflection mechanisms dis‐
cussed in Chapter 13 provide one way, and unsafe code, which lets
you work directly with raw pointers, provides another. The com‐
piler will prevent you from modifying a field accidentally, but with
sufficient determination, you can bypass this protection. And even
without such subterfuge, a readonly field is free to change during
construction.

C# offers a keyword that seems, superficially, to be similar: you can define a const
field. However, this is designed for a somewhat different purpose. A readonly field is
initialized and then never changed, whereas a const field defines a value that is
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invariably the same. A readonly field is much more flexible: it can be of any type, and
its value can be calculated at runtime, which means you can define either per-
instance or static fields as readonly. A const field’s value is determined at compile
time, which means it is defined at the class level (because there’s no way for individ‐
ual instances to have different values). This also limits the available types. For most
reference types, the only supported const value is null, so in practice, it’s normally
only useful to use const with types intrinsically supported by the compiler. (Specifi‐
cally, if you want to use values other than null, a const’s type must be either one of
the built-in numeric types, bool, string, or an enumeration type, as described later
in this chapter.)

This makes a const field rather more limited than a readonly one, so you could rea‐
sonably ask: what’s the point? Well, although a const field is inflexible, it makes a
strong statement about the unchanging nature of the value. For example, .NET’s Math
class defines a const field of type double called PI that contains as close an approxi‐
mation to the mathematical constant π as a double can represent. That’s a value
that’s fixed forever—thus it is a constant in a very strong sense.

When it comes to less inherently constant values, you need to be a bit careful about
const fields; the C# specification allows the compiler to assume that the value really
will never change. Code that reads the value of a readonly field will fetch the value
from the memory containing the field at runtime. But when you use a const field, the
compiler can read the value at compile time and copy it into the IL as though it were
a literal. So if you write a library component that declares a const field and you later
change its value, this change will not necessarily be picked up by code using your
library unless that code gets recompiled.

One of the benefits of a const field is that it is eligible for use in certain contexts in
which a readonly field is not. For example, if you want to use a constant pattern
(Chapter 2 introduced patterns), perhaps in the label for a case in a switch state‐
ment, for example, the value you specify has to be fixed at compile time. So a con‐
stant pattern cannot refer to a readonly field, but you can use a suitably typed const
field. You can also use const fields in the expression defining the value of another
const field (as long as you don’t introduce any circular references).

A const field is required to contain an expression defining its value, such as the one
shown in Example 3-24.

Example 3-24. A const field

const double kilometersPerMile = 1.609344;
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3 If you omit the initializer for a readonly field, you should set it in the constructor instead; otherwise it’s not
very useful.

While mandatory for a const, this initializer expression is optional for a class’s ordi‐
nary and readonly3 fields. If you omit the initializing expression, the field will auto‐
matically be initialized to a default value. (That’s 0 for numeric values, and the
equivalents for other types—false, null, etc.) Structs are a bit more limited because
when they are initialized implicitly, their instance fields are set to 0, so you are not
allowed to write initializers for them. Structs do support initializers for noninstance
fields, though (i.e., const and static fields).

If you do supply an initializer expression for a non-const field, it does not need to be
evaluable at compile time, so it can do runtime work such as calling methods or read‐
ing properties. Of course, this sort of code can have side effects, so it’s important to
be aware of the order in which initializers run.

Nonstatic field initializers run for each instance you create, and they execute in the
order in which they appear in the file, immediately before the constructor runs. Static
field initializers execute no more than once, no matter how many instances of the
type you create. They also execute in the order in which they are declared, but it’s
harder to pin down exactly when they will run. If your class has no static constructor,
C# guarantees to run field initializers before the first time a field in the class is
accessed, but it doesn’t necessarily wait until the last minute—it retains the right to
run field initializers as early as it likes. (The exact moment at which this happens has
varied across releases of .NET.) But if a static constructor does exist, then things are
slightly clearer: static field initializers run immediately before the static constructor
runs, but that merely raises the questions: what’s a static constructor, and when does
it run? So we had better take a look at constructors.

Constructors
A newly created object may require some information to do its job. For example, the
Uri class in the System namespace represents a uniform resource identifier (URI) such
as a URL. Since its entire purpose is to contain and provide information about a URI,
there wouldn’t be much point in having a Uri object that didn’t know what its URI
was. So it’s not actually possible to create one without providing a URI. If you try the
code in Example 3-25, you’ll get a compiler error.

Example 3-25. Error: failing to provide a Uri with its URI

Uri oops = new Uri();  // Will not compile
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4 There’s an exception. If a class supports a CLR feature called serialization, objects of that type can be deserial‐
ized directly from a data stream, bypassing constructors. But even here, you can dictate what data is required.

The Uri class defines several constructors, members that contain code that initializes a
new instance of a type. If a particular class requires certain information to work, you
can enforce this requirement through constructors. Creating an instance of a class
almost always involves using a constructor at some point,4 so if the constructors you
define all demand certain information, developers will have to provide that informa‐
tion if they want to use your class. So all of the Uri class’s constructors need to be
given the URI in one form or another.

To define a constructor, you first specify the accessibility (public, private, inter
nal, etc.) and then the name of the containing type. This is followed by a list of
parameters in parentheses (which can be empty). Example 3-26 shows a class that
defines a single constructor that requires two arguments: one of type decimal, and
one of type string. The argument list is followed by a block containing code. So con‐
structors look a lot like methods, but with the containing type name in place of the
usual return type and method name.

Example 3-26. A class with one constructor

public class Item
{
    public Item(decimal price, string name)
    {
        _price = price;
        _name = name;
    }
    private readonly decimal _price;
    private readonly string _name;
}

This constructor is pretty simple: it just copies its arguments to fields. A lot of con‐
structors do no more than that. You’re free to put as much code in there as you like,
but by convention, developers usually expect the constructor to do very little—its
main job is to ensure that the object is in a valid initial state. That might involve
checking the arguments and throwing an exception if there’s a problem, but not
much else. You are likely to surprise developers who use your class if you write a con‐
structor that does something nontrivial, such as adding data to a database or sending
a message over the network.

Example 3-27 shows how to use a constructor that takes arguments. We just use the
new operator, passing in suitably typed values as arguments.
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Example 3-27. Using a constructor

var item1 = new Item(9.99M, "Hammer");

You can define multiple constructors, but it must be possible to distinguish between
them: you cannot define two constructors that both take the same number of argu‐
ments of the same types, because there would be no way for the new keyword to know
which one you meant.

Default constructors and zero-argument constructors
If you do not define any constructors at all, C# will provide a default constructor that
is equivalent to an empty constructor that takes no arguments. And if you’re writing
a struct, you’ll get that even if you do define other constructors.

Although the C# specification unambiguously defines a default
constructor as one generated for you by the compiler, be aware that
there’s another widely used meaning. You will often see the term
default constructor used to mean any public, parameterless con‐
structor, regardless of whether it was generated by the compiler.
There’s some logic to this—from the perspective of code using a
class, it’s not possible to tell the difference between a compiler-
generated constructor, and an explicit zero-argument constructor,
so if the term default constructor is to mean anything useful from
that perspective, it can mean only a public constructor that takes
no arguments. However, that’s not how the C# specification
defines the term.

The compiler-generated default constructor does nothing beyond the zero initializa‐
tion of fields, which is the starting point for all new objects. However, there are some
situations in which it is necessary to write your own parameterless constructor. You
might need the constructor to execute some code. Example 3-28 sets an _id field
based on a static field that it increments for each new object to give each instance a
distinct ID. This doesn’t require any arguments to be passed in, but it does involve
running some code.

Example 3-28. A nonempty zero-argument constructor

public class ItemWithId
{
    private static int _lastId;
    private int _id;

    public ItemWithId()
    {
        _id = ++_lastId;
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    }
}

There is another way to achieve the same effect as Example 3-28. I could have written
a static method called GetNextId, and then used that in the _id field initializer. Then
I wouldn’t have needed to write this constructor. However, there is one advantage to
putting code in the constructor: field initializers are not allowed to invoke the object’s
own nonstatic methods, but constructors are. That’s because the object is in an
incomplete state during field initialization, so it may be dangerous to call its nonstatic
methods—they may rely on fields having valid values. But an object is allowed to call
its own nonstatic methods inside a constructor, because although the object’s still not
fully built yet, it’s closer to completion, and so the dangers are reduced.

There are other reasons for writing your own zero-argument constructor. If you
define at least one constructor for a class, this will disable the default constructor gen‐
eration. If you need your class to provide parameterized construction, but you still
want to offer a no-arguments constructor, you’ll need to write one, even if it’s empty.
Alternatively, if you want to write a class whose only constructor is an empty, zero-
argument one, but with a protection level other than the default of public—you
might want to make it private, so that only your code can create instances, for exam‐
ple—you would need to write the constructor explicitly even if it is empty, so that you
have somewhere to specify the protection level.

Some frameworks can use only classes that provide a zero-
argument constructor. For example, if you build a UI with Win‐
dows Presentation Foundation (WPF), classes that can act as
custom UI elements usually need such a constructor.

With structs, zero-argument constructors work slightly differently, because value
types need to support implicit initialization. When a value type is used as a field of
some other type, or the element type of an array, the memory that holds the value is
part of the containing object, and when you create a new object or array, the CLR
always fills its memory with zeros. This means that it is always possible to initialize a
value without passing any constructor arguments. So whereas C# removes the default
constructor for a class when you add a constructor that takes arguments, it does not
do this for a struct—even if it did hide it, you’d still be able to invoke this implicit
initialization indirectly, e.g., by creating a one-element array of that type: MyStruct s
= (new MyStruct[1])[0];. Since implicit initialization is always available for a
struct, there would be no sense in the compiler hiding the corresponding constructor.
C# doesn’t let you write a zero-argument constructor for a struct because there are so
many scenarios in which that constructor would not run. The CLR’s zero initializa‐
tion is used in most cases.
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Chaining constructors
If you write a type that offers several constructors, you may find that they have a cer‐
tain amount in common—there are often initialization tasks that all constructors
have to perform. The class in Example 3-28 calculates a numeric identifier for each
object in its constructor, and if it were to provide multiple constructors, they might
all need to do that same work. Moving the work into a field initializer would be one
way to solve that, but what if only some constructors wanted to do it? You might
have work that was common to most constructors, but you might want to make an
exception by having one constructor that allows the ID to be specified rather than
calculated. The field initializer approach would no longer be appropriate, because
you’d want individual constructors to be able to opt in or out. Example 3-29 shows a
modified version of the code from Example 3-28, defining two extra constructors.

Example 3-29. Optional chaining of constructors

public class ItemWithId
{
    private static int _lastId;
    private int _id;
    private string _name;

    public ItemWithId()
    {
        _id = ++_lastId;
    }

    public ItemWithId(string name)
        : this()
    {
        _name = name;
    }
    public ItemWithId(string name, int id)
    {
        _name = name;
        _id = id;
    }
}

If you look at the second constructor in Example 3-29, its parameter list is followed
by a colon, and then this(), which invokes the first constructor. A constructor can
invoke any other constructor that way. Example 3-30 shows a different way to struc‐
ture all three constructors, illustrating how to pass arguments.
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Example 3-30. Chained constructor arguments

public ItemWithId()
    : this(null)
{
}

public ItemWithId(string name)
    : this(name, ++_lastId)
{
}

private ItemWithId(string name, int id)
{
    _name = name;
    _id = id;
}

The two-argument constructor here is now a sort of master constructor—it is the
only one that actually does any work. The other constructors just pick suitable argu‐
ments for that main constructor. This is arguably a cleaner solution than the previous
examples, because the work of initializing the fields is done in just one place, rather
than having different constructors each performing their own smattering of field
initialization.

Notice that I’ve made the two-argument constructor in Example 3-30 private. At
first glance, it can look a bit odd to define a way of building an instance of a class and
then make it inaccessible, but it makes perfect sense when chaining constructors.
And there are other scenarios in which a private constructor might be useful—we
might want to write a method that makes a clone of an existing ItemWithId, in which
case that constructor would be useful, but by keeping it private, we retain control of
exactly how new objects get created. It can sometimes even be useful to make all of a
type’s constructors private, forcing users of the type to go through what’s sometimes
called a factory method (a static method that creates an object) to get hold of an
instance. There are two common reasons for doing this. One is if full initialization of
the object requires additional work of a kind that is inadvisible in a constructor (e.g.,
if you need to do slow work that uses the asynchronous language features described
in Chapter 17, you cannot put that code inside a constructor). Another is if you want
to use inheritance (see Chapter 6) to provide multiple variations on a type, but you
want to be able to decide at runtime which particular type is returned.
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Static constructors
The constructors we’ve looked at so far run when a new instance of an object is cre‐
ated. Classes and structs can also define a static constructor. This runs at most once
in the lifetime of the application. You do not invoke it explicitly—C# ensures that it
runs automatically at some point before you first use the class. So, unlike an instance
constructor, there’s no opportunity to pass arguments. Since static constructors can‐
not take arguments, there can be only one per class. Also, because these are never
accessed explicitly, you do not declare any kind of accessibility for a static construc‐
tor. Example 3-31 shows a class with a static constructor.

Example 3-31. Class with static constructor

public class Bar
{
    private static DateTime _firstUsed;
    static Bar()
    {
        Console.WriteLine("Bar's static constructor");
        _firstUsed = DateTime.Now;
    }
}

Just as an instance constructor puts the instance into a useful initial state, the static
constructor provides an opportunity to initialize any static fields.

By the way, you’re not obliged to ensure that a constructor (static or instance) initial‐
izes every field. When a new instance of a class is created, the instance fields are ini‐
tially all set to 0 (or the equivalent, such as false or null). Likewise, a type’s static
fields are all zeroed out before the class is first used. Unlike with local variables, you
only need to initialize fields if you want to set them to something other than the
default zero-like value.

Even then, you may not need a constructor. A field initializer may be sufficient. How‐
ever, it’s useful to know exactly when constructors and field initializers run. I men‐
tioned earlier that the behavior varies according to whether constructors are present,
so now that we’ve looked at constructors in a bit more detail, I can finally show a
more complete picture of initialization. (There will still be more to come—as Chap‐
ter 6 describes, inheritance adds another dimension.)

At runtime, a type’s static fields will first be set to 0 (or equivalent values). Next, the
field initializers run in the order in which they are written in the source file. This
ordering matters if one field’s initializer refers to another. In Example 3-32, fields a
and c both have the same initializer expression, but they end up with different values
(1 and 42, respectively) due to the order in which initializers run.
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Example 3-32. Significant ordering of static fields

private static int a = b + 1;
private static int b = 41;
private static int c = b + 1;

The exact moment at which static field initializers run depends on whether there’s a
static constructor. As mentioned earlier, if there isn’t, then the timing is not defined
—C# guarantees to run them no later than the first access to one of the type’s fields,
but it reserves the right to run them arbitrarily early. The presence of a static con‐
structor changes matters: in that case, the static field initializers run immediately
before the constructor. So when does the constructor run? It will be triggered by one
of two events, whichever occurs first: creating an instance, or accessing any static
member of the class.

For nonstatic fields, the story is similar: the fields are first all initialized to 0 (or
equivalent values), and then field initializers run in the order in which they appear in
the source file, and this happens before the constructor runs. Of course, the differ‐
ence is that instance constructors are invoked explicitly, so it’s clear when this initiali‐
zation occurs.

I’ve written a class called InitializationTestClass designed to illustrate this con‐
struction behavior, shown in Example 3-33. The class has both static and nonstatic
fields, all of which call a method, GetValue, in their initializers. That method always
returns the same value, 1, but it prints out a message so we can see when it is called.
The class also defines a no-arguments instance constructor and a static constructor,
both of which print out messages.

Example 3-33. Initialization order

public class InitializationTestClass
{
    public InitializationTestClass()
    {
        Console.WriteLine("Constructor");
    }

    static InitializationTestClass()
    {
        Console.WriteLine("Static constructor");
    }

    public static int s1 = GetValue("Static field 1");
    public int ns1 = GetValue("Non-static field 1");
    public static int s2 = GetValue("Static field 2");
    public int ns2 = GetValue("Non-static field 2");

    private static int GetValue(string message)
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    {
        Console.WriteLine(message);
        return 1;
    }

    public static void Foo()
    {
        Console.WriteLine("Static method");
    }
}

class Program
{
    static void Main(string[] args)
    {
        Console.WriteLine("Main");
        InitializationTestClass.Foo();
        Console.WriteLine("Constructing 1");
        InitializationTestClass i = new InitializationTestClass();
        Console.WriteLine("Constructing 2");
        i = new InitializationTestClass();
    }
}

The Main method prints out a message, calls a static method defined by Initializa
tionTestClass, and then constructs a couple of instances. Running the program, I
see the following output:

Main
Static field 1
Static field 2
Static constructor
Static method
Constructing 1
Non-static field 1
Non-static field 2
Constructor
Constructing 2
Non-static field 1
Non-static field 2
Constructor

Notice that both static field initializers and the static constructor run before the call
to the static method (Foo) begins. The field initializers run before the static construc‐
tor, and as expected, they run in the order in which they appear in the source file.
Because this class includes a static constructor, we know when static initialization will
begin—it is triggered by the first use of that type, which in this example is when our
Main method calls InitializationTestClass.Foo. You can see that it happens
immediately before that point and no earlier, because our Main method manages to
print out its first message before the static initialization occurs. If this example did
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not have a static constructor, and had only static field initializers, there would be no
guarantee that static initialization would happen at the exact same point; the C# spec‐
ification allows the initialization to happen earlier.

You need to be careful about what you do in code that runs during static initializa‐
tion: it may run earlier than you expect. For example, suppose your program uses
some sort of diagnostic logging mechanism, and you need to configure this when the
program starts in order to enable logging of messages to the proper location. There’s
always a possibility that code that runs during static initialization could execute
before you’ve managed to do this, meaning that diagnostic logging will not yet be
working correctly. That might make problems in this code hard to debug. Even when
you narrow down C#’s options by supplying a static constructor, it’s relatively easy to
trigger that earlier than you intended. Use of any static member of a class will trigger
its initialization, and you can find yourself in a situation where your static construc‐
tor is kicked off by static field initializers in some other class that doesn’t have a static
constructor—this could happen before your Main method even starts.

You could try to fix this by initializing the logging code in its own static initialization.
Because C# guarantees to run initialization before the first use of a type, you might
think that this would ensure that the logging initialization would complete before the
static initialization of any code that uses the logging system. However, there’s a
potential problem: C# guarantees only when it will start static initialization for any
particular class. It doesn’t guarantee to wait for it to finish. It cannot make such a
guarantee, because if it did, code such as the peculiarly British Example 3-34 would
put it in an impossible situation.

Example 3-34. Circular static dependencies

public class AfterYou
{
    static AfterYou()
    {
        Console.WriteLine("AfterYou static constructor starting");
        Console.WriteLine("AfterYou: NoAfterYou.Value = " + NoAfterYou.Value);
        Value = 123;
        Console.WriteLine("AfterYou static constructor ending");
    }

    public static int Value = 42;
}

public class NoAfterYou
{
    static NoAfterYou()
    {
        Console.WriteLine("NoAfterYou static constructor starting");
        Console.WriteLine("NoAfterYou: AfterYou.Value: = " + AfterYou.Value);
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        Value = 456;
        Console.WriteLine("NoAfterYou static constructor ending");
    }

    public static int Value = 42;
}

There is a circular relationship between the two types in this example: both have
static constructors that attempt to use a static field defined by the other class. The
behavior will depend on which of these two classes the program tries to use first. In a
program that uses AfterYou first, I see the following output:

AfterYou static constructor starting
NoAfterYou static constructor starting
NoAfterYou: AfterYou.Value: = 42
NoAfterYou static constructor ending
AfterYou: NoAfterYou.Value = 456
AfterYou static constructor ending

As you’d expect, the static constructor for AfterYou runs first, because that’s the class
my program is trying to use. It prints out its first message, but then it tries to use the
NoAfterYou.Value field. That means the static initialization for NoAfterYou now has
to start, so we see the first message from its static constructor. It then goes on to
retrieve the AfterYou.Value field, even though the AfterYou static constructor hasn’t
finished yet. (It retrieved the value set by the field initializer, 42, and not the value set
by the static constructor, 123.) That’s allowed, because the ordering rules say only
when static initialization is triggered, and they do not guarantee when it will finish. If
they tried to guarantee complete initialization, this code would be unable to proceed
—the NoAfterYou static constructor could not move forward, because the AfterYou
static construction is not yet complete, but that couldn’t move forward, because it
would be waiting for the NoAfterYou static initialization to finish.

The moral of this story is that you should not get too ambitious about what you try to
achieve during static initialization. It can be hard to predict the exact order in which
things will happen.

The Microsoft.Extensions.Hosting NuGet package provides a
much better way to handle initialization problems with its Host
Builder class. It is beyond the scope of this chapter, but it is well
worth finding and exploring.

Deconstructors
In Chapter 2, we saw how to deconstruct a tuple into its component parts. But decon‐
struction is not just for tuples. You can enable deconstruction for any type you write
by adding a suitable Deconstruct member, as shown in Example 3-35.
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Example 3-35. Enabling deconstruction

public readonly struct Size
{
    public Size(double w, double h)
    {
        W = w;
        H = h;
    }

    public void Deconstruct(out double w, out double h)
    {
        w = W;
        h = H;
    }

    public double W { get; }
    public double H { get; }
}

C# recognizes this pattern of a method named Deconstruct with a list of out argu‐
ments (which the next section will describe in more detail) and enables you to use the
same deconstruction syntax as you can with tuples. Example 3-36 uses this to extract
the component values of a Size to enable it to express succinctly the calculation it
performs.

Example 3-36. Using a custom deconstructor

static double DiagonalLength(Size s)
{
    (double w, double h) = s;
    return Math.Sqrt(w * w + h * h);
}

Types with a deconstructor can also use positional pattern matching. Chapter 2
showed how you can use a syntax very similar to deconstruction in a pattern to
match tuples. Any type with a custom deconstructor can use this same syntax.
Example 3-37 uses the Size type’s custom deconstructor to define various patterns
for a Size in a switch expression.

Example 3-37. Positional pattern using a custom deconstructor

static string DescribeSize(Size s) => s switch
{
    (0, 0) => "Empty",
    (0, _) => "Extremely narrow",
    (double w, 0) => $"Extremely short, and this wide: {w}",

146 | Chapter 3: Types



    _ => "Normal"
};

Recall from Chapter 2 that positional patterns are recursive: each position within the
pattern contains a nested pattern. Since Size deconstructs into two elements, each
positional pattern has two positions in which to put child patterns. Example 3-37 var‐
iously uses constant patterns, a discard, and a type pattern.

To use a deconstructor in a pattern, C# needs to know the type to be deconstructed at
compile time. This works in Example 3-37 because the input to the switch expression
is of type Size. If a positional pattern’s input is of type object, the compiler will pre‐
sume that you’re trying to match a tuple instead, unless you explicitly name the type,
as Example 3-38 does.

Example 3-38. Positional pattern with explicit type

static string Describe(object o) => o switch
{
    Size (0, 0) => "Empty",
    Size (0, _) => "Extremely narrow",
    Size (double w, 0) => $"Extremely short, and this wide: {w}",
    Size _ => "Normal shape",
    _ => "Not a shape"
};

Although the compiler provides special handling for the Deconstruct member that
these examples rely on, from the runtime’s perspective, this is just an ordinary
method. So this would be a good time to look in more detail at methods.

Methods
Methods are named bits of code that can optionally return a result, and that may take
arguments. C# makes the fairly common distinction between parameters and argu‐
ments: a method defines a list of the inputs it expects—the parameters—and the code
inside the method refers to these parameters by name. The values seen by the code
could be different each time the method is invoked, and the term argument refers to
the specific value supplied for a parameter in a particular invocation.

As you’ve already seen, when an accessibility specifier, such as public or private, is
present, it appears at the start of the method declaration. The optional static key‐
word comes next, where present. After that, the method declaration states the return
type. As with many C-family languages, you can write methods that return nothing,
and you indicate this by putting the void keyword in place of the return type. Inside
the method, you use the return keyword followed by an expression to specify the
value for the method to return. In the case of a void method, you can use the return
keyword without an expression to terminate the method, although this is optional,
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because when execution reaches the end of a void method, it terminates automati‐
cally. You normally only use return in a void method if your code determines that it
needs to exit early.

Passing arguments by reference
Methods can return only one item directly in C#. If you want to return multiple val‐
ues, you can of course make that item a tuple. Alternatively, you can designate
parameters as being for output rather than input. Example 3-39 returns two values,
both produced by integer division. The main return value is the quotient, but it also
returns the remainder through its final parameter, which has been annotated with the
out keyword. Because tuples were only introduced in C# 7, whereas out parameters
have been around since the start, out crops up a lot. For example, you’ll see lots of
methods following a similar pattern to int.TryParse, in which the return type is a
bool indicating success or failure, with the actual result being passed through an out
parameter.

Example 3-39. Returning multiple values with out

public static int Divide(int x, int y, out int remainder)
{
    remainder = x % y;
    return x / y;
}

Example 3-40 shows one way to call a method with an out parameter. Instead of sup‐
plying an expression as we do with arguments for normal parameters, we’ve written
the out keyword followed by a variable declaration. This introduces a new variable
and initializes it with the value that the method returns through this out parameter.
So in this case, we end up with a new variable r initialized to 1.

Example 3-40. Putting an out parameter’s result into a new variable

int q = Divide(10, 3, out int r);

A variable declared in an out argument follows the usual scoping rules, so in
Example 3-40, r will remain in scope for as long as q. Less obviously, r is available in
the rest of the expression. Example 3-41 uses this to attempt to parse some text as an
integer, returning the parsed result if that succeeds, and a fallback value of 0 if pars‐
ing fails.

Example 3-41. Using out parameter’s result in the same expression

int value = int.TryParse(text, out int x) ? x : 0;
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5 The CLR calls this kind of reference a Managed Pointer, to distinguish it from the kind of reference that refers
to an object on the heap. Unfortunately, C#’s terminology is less clear: it calls both of these things references.

When you pass an out argument, this works by passing a reference to the local vari‐
able. When Example 3-40 calls Divide, and when that method assigns a value into
remainder, it’s really assigning it into the caller’s r variable. This is an int, which is a
value type, so it would not normally be passed by reference, and this kind of reference
is limited compared to what you can do with a reference type.5 For example, you can’t
declare a field in a class that can hold this kind of reference, because the local r vari‐
able will cease to exist when it goes out of scope, whereas an instance of a class can
live indefinitely in a heap block. C# has to ensure that you cannot put a reference to a
local variable in something that might outlive the variable it refers to.

Methods annotated with the async keyword (described in Chap‐
ter 17) cannot have any out arguments. This is because asynchro‐
nous methods may implicitly return to their caller before they
complete, continuing their execution some time later. This in turn
means that the caller may also have returned before the async runs
again, in which case the variables passed by reference might no
longer exist by the time the asynchronous code is ready to set
them. The same restriction applies to anonymous functions
(described in Chapter 9). Both kinds of methods are allowed to
pass out arguments into methods that they call, though.

You won’t always want to declare a new variable for each out argument. As
Example 3-42 shows, you can just write out followed by the name of an existing vari‐
able. (This was once the only way to use out arguments, so it’s common to see code
that declares a new variable in a separate statement immediately before using it as an
out argument, even though the form shown in Example 3-40 would be simpler.)

Example 3-42. Putting an out parameter’s result into an existing variable

int r, q;
q = Divide(10, 3, out r);
Console.WriteLine($"3: {q}, {r}");
q = Divide(10, 4, out r);
Console.WriteLine($"4: {q}, {r}");
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When invoking a method with an out parameter, we are required
to indicate explicitly that we are aware of how the method uses the
argument. Regardless of whether we use an existing variable or
declare a new one, we must use the out keyword at the call site as
well as in the declaration. (Some C-family languages do not make
any visual distinction between calls that pass values and ones that
pass references, but the semantics are very different, so C# makes it
explicit.)

Sometimes you will want to invoke a method that has an out argument that you have
no use for—maybe you only need the main return value. As Example 3-43 shows, you
can put just an underscore after the out keyword. This tells C# to discard the result.
(This is a relatively new feature, so in older codebases, it’s fairly common to see code
that introduces a variable whose only job is to have somewhere to put an unwanted
out result.)

Example 3-43. Discarding an out parameter’s result

int q = Divide(10, 3, out _);

You should avoid using _ (a single underscore) as the name of
something in C#, because it can prevent the compiler from inter‐
preting it as a discard. If a local variable of this name is in scope,
writing out _ has, since C# 1.0, indicated that you want to assign
an out result into that variable, so for backward compatibility, cur‐
rent versions of C# have to retain that behavior. You can only use
this form of discard if there is no symbol named _ in scope.

An out reference requires information to flow from the method back to the caller, so
if you try to write a method that returns without assigning something into all of its
out arguments, you’ll get a compiler error. C# uses the definite assignment rules men‐
tioned in Chapter 2 to check this. (This requirement does not apply if the method
throws an exception instead of returning.) There’s a related keyword, ref, that has
similar reference semantics, but allows information to flow bidirectionally. With a
ref argument, it’s as though the method has direct access to the variable the caller
passed in—we can read its current value, as well as modify it. (The caller is obliged to
ensure that variables passed with ref contain a value before making the call, so in this
case, the method is not required to set it before returning.) If you call a method with a
parameter annotated with ref instead of out, you have to make clear at the call site
that you meant to pass a reference to a variable as the argument, as Example 3-44
shows.
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Example 3-44. Calling a method with a ref argument

long x = 41;
Interlocked.Increment(ref x);

There’s a third way to add a level of indirection to an argument: you can apply the in
keyword. (This was new in C# 7.2.) Whereas out only enables information to flow
out of the method, in only allows it to flow in. It’s like a ref argument, but where the
called method is not allowed to modify the variable the argument refers to. This may
seem redundant: if there’s no way to pass information back through the argument,
why pass it by reference? An in int argument doesn’t sound usefully different than
an ordinary int argument. In fact, you wouldn’t use in with int. You only use it with
relatively large types. As you know, value types are normally passed by value, mean‐
ing a copy has to be made when passing a value as an argument. The in keyword ena‐
bles us to avoid this copy by passing a reference instead. In the past, people have
sometimes used the ref keyword to avoid making copies of data, but this creates a
risk that the method might modify the value when the caller might not want that.
With in, we get the same in-only semantics we get when passing values the normal
way, but with the potential efficiency gains of not having to pass the whole value.

You should only use in for types that are larger than a pointer. This is why in int is
not useful. An int is 32 bits long, so passing a reference to an int doesn’t save us
anything. In a 32-bit process, that reference will be a 32-bit pointer, so we have saved
nothing, and we end up with the slight extra inefficiency involved in using a value
indirectly through a reference. In a 64-bit process, the reference will be a 64-bit
pointer, so we’ve ended up having to pass more data into the method than we would
have done if we had just passed the int directly! (Sometimes the CLR can inline the
method and avoid the costs of creating the pointer, but this means that at best in int
would cost the same as an int. And since in is purely about performance, that’s why
in is not useful for small types such as int.)

Example 3-45 defines a fairly large value type. It contains four double values, each of
which is 8 bytes in size, so each instance of this type occupies 32 bytes. The .NET
design guidelines have always recommended avoiding making value types this large,
and the main reason for this is that passing them as arguments is inefficient. How‐
ever, the availability of the in keyword can reduce those costs, meaning that in some
cases, it might make sense to define a struct this large.

Example 3-45. A large value type

public readonly struct Rect
{
    public Rect(double x, double y, double width, double height)
    {

Members | 151



        X = x;
        Y = y;
        Width = width;
        Height = height;
    }

    public double X { get; }
    public double Y { get; }
    public double Width { get; }
    public double Height { get; }
}

Example 3-46 shows a method that calculates the area of a rectangle represented by
the Rect type defined in Example 3-45. We really wouldn’t want to have to copy all
32 bytes to call this very simple method, especially since it only uses half of the data in
the Rect. Since this method annotates its parameter with in, no such copying will
occur: the argument will be passed by reference, which in practice means that only a
pointer needs to be passed—either 4 or 8 bytes, depending on whether the code is
running in a 32-bit or a 64-bit process.

Example 3-46. A method with an in parameter

public static double GetArea(in Rect r) => r.Width * r.Height;

You might expect that calling a method with in parameters would require the call site
to indicate that it knows that the argument will be passed by reference by putting in
in front of the argument, just like we need to write out or ref at the call site for the
other two by-reference styles. And as Example 3-47 shows, you can do this, but it is
optional. If you want to be explicit about the by-reference invocation, you can be, but
unlike with ref and out, the compiler just passes the argument by reference anyway
if you don’t add in.

Example 3-47. A method with an in parameter

var r = new Rect(10, 20, 100, 100);
double area = GetArea(in r);
double area2 = GetArea(r);

The in keyword is optional at the call site because defining a parameter such as in is
only a performance optimization—unlike out and ref—which does not change the
behavior. Microsoft wanted to make it possible for developers to introduce a source-
level-compatible change in which an existing method is modified by adding in to a
parameter. This is a breaking change at the binary level, but in scenarios where you
can be sure people will in any case need to recompile (e.g., when all the code is under
your control), it might be useful to introduce such a change for performance reasons.
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Of course, as with all such enhancements you should measure performance before
and after the change to see if it has the intended effect.

Although the examples just shown work as intended, in sets a trap for the unwary. It
works only because I marked the struct in Example 3-45 as readonly. If instead of
defining my own Rect I had used the very similar-looking struct with the same
name from the System.Windows namespace (part of the WPF UI framework),
Example 3-47 would not avoid the copy. It would have compiled and produced the
correct results at runtime, but it would not offer any performance benefit. That’s
because System.Windows.Rect is not read-only. Earlier, I discussed the defensive
copies that C# makes when you use a readonly field containing a mutable value type.
The same principle applies here, because an in argument is in effect read-only: code
that passes arguments expects them not to be modified unless they are explicitly
marked as out or ref. So the compiler must ensure that in arguments are not modi‐
fied even though the method being called has a reference to the caller’s variable.
When the type in question is already read-only, the compiler doesn’t have to do any
extra work. But if it is a mutable value type, then if the method to which this argu‐
ment was passed in turn invokes a method on that value, the compiler generates code
that makes a copy and invokes the method on that, because it can’t know whether the
method might modify the value. You might think the compiler could enforce this by
preventing the method with the in parameter from doing anything that might mod‐
ify the value, but in practice that would mean stopping it from invoking any methods
on the value—the compiler cannot in general determine whether any particular
method call might modify the value. (And even if it doesn’t today, maybe it will in a
future version of the library that defines the type.) Since properties are methods in
disguise, this would make in arguments more or less unusable. This leads to a simple
rule:

You should use in only with readonly value types, because muta‐
ble value types can undo the performance benefits. (Mutable value
types are typically a bad idea in any case.)

C# 8.0 adds a feature that can loosen this constraint a little. It allows the readonly
keyword to be applied to members so that they can declare that they will not modify
the value of which they are a member. This makes it possible to avoid these defensive
copies on mutable values.

You can use the out and ref keywords with reference types too. That may sound
redundant, but it can be useful. It provides double indirection—the method receives
a reference to a variable that holds a reference. When you pass a reference type argu‐
ment to a method, that method gets access to whatever object you choose to pass it.
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While the method can use members of that object, it can’t normally replace it with a
different object. But if you mark a reference type argument with ref, the method has
access to your variable, so it could replace it with a reference to a completely different
object.

It’s technically possible for constructors to have out and ref parameters too,
although it’s unusual. Also, just to be clear, the out or ref qualifiers are part of the
method (or constructor) signature. A caller can pass an out (or ref) argument if and
only if the parameter was declared as out (or ref). Callers can’t decide unilaterally to
pass an argument by reference to a method that does not expect it.

Reference variables and return values
Now that you’ve seen various ways in which you can pass a method a reference to a
value (or a reference to a reference), you might be wondering whether you can get
hold of these references in other ways. You can, as Example 3-48 shows, but there are
some constraints.

Example 3-48. A local ref variable

string rose = null;
ref string rosaIndica = ref rose;
rosaIndica = "smell as sweet";
Console.WriteLine($"A rose by any other name would {rose}");

This example declares a variable called rose. It then declares a new variable of type
ref string. The ref here has exactly the same effect as it does on a method parame‐
ter: it indicates that this variable is a reference to some other variable. Since the code
initializes it with ref rose, the variable rosaIndica is a reference to that rose vari‐
able. So when the code assigns a value into rosaIndica, that value goes into the rose
variable that rosaIndica refers to. When the final line reads the value of the rose
variable, it will see the value that was written by the preceding line.

So what are the constraints? As you saw earlier with ref and out arguments, C# has
to ensure that you cannot put a reference to a local variable in something that might
outlive the variable it refers to. So you cannot use this keyword on a field. Static fields
live for as long as their defining type is loaded (typically until the process exits), and
member fields of classes live on the heap enabling them to outlive any particular
method call. (This is also true of most structs. It is not true of a ref struct, but even
those do not currently support the ref keyword on a field.) And even in cases where
you might think lifetime isn’t a problem (e.g., because the target of the reference is
itself a field in an object) it turns out that the runtime simply doesn’t support storing
this kind of reference in a field, or as an element type in an array. More subtly, this
also means you can’t use a ref local variable in a context where C# would store the
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variable in a class. That rules out their use in async methods and iterators, and also
prevents them being captured by anonymous functions (which are described in
Chapters 17, 5, and 9, respectively).

Although types cannot define fields with ref, they can define methods that return a
ref-style reference (and since properties are methods in disguise, a property getter
may also return a reference). As always, the C# compiler has to ensure that a refer‐
ence cannot outlive the thing it refers to, so it will prevent use of this feature in cases
where it cannot be certain that it can enforce this rule. Example 3-49 shows various
uses of ref return types, some of which the compiler accepts, and some it does not.

Example 3-49. Valid and invalid uses of ref returns

public class Referable
{
    private int i;
    private int[] items = new int[10];

    public ref int FieldRef => ref i;

    public ref int GetArrayElementRef(int index) => ref items[index];

    public ref int GetBackSameRef(ref int arg) => ref arg;

    public ref int WillNotCompile()
    {
        int v = 42;
        return ref v;
    }

    public ref int WillAlsoNotCompile()
    {
        int i = 42;
        return ref GetBackSameRef(ref i);
    }

    public ref int WillCompile(ref int i)
    {
        return ref GetBackSameRef(ref i);
    }
}

The methods that return a reference to an int that is a field, or an element in an
array, are allowed, because ref style references can always refer to items inside
objects on the heap. (They just can’t live in them.) Heap objects can exist for as long
as they are needed (and the garbage collector, discussed in Chapter 7, is aware of
these kinds of references, and will ensure that heap objects with references pointing
to their interiors are kept alive). And a method can return any of its ref arguments,
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because the caller was already required to ensure that they remain valid for the dura‐
tion of the call. However, a method cannot return a reference to one of its local vari‐
ables, because in cases where those variables end up living on the stack, the stack
frame will cease to exist when the method returns. It would be a problem if a method
could return a reference to a variable in a now-defunct stack frame.

The rules get a little more subtle when it comes to returning a reference that was
obtained from some other method. The final two methods in Example 3-49 both
attempt to return the reference returned by GetBackSameRef. One works, and the
other does not. The outcome makes sense: WillAlsoNotCompile needs to be rejected
for the same reason WillNotCompile was; both attempt to return a reference to a
local variable, WillAlsoNotCompile just trying to disguise this by going through
another method, GetBackSameRef. In cases like these, the C# compiler makes the
conservative assumption that any method that returns a ref and which also takes one
or more ref arguments might choose to return a reference to one of those argu‐
ments. So the compiler disallows the call to GetBackSameRef in WillAlsoNotCompile
on the grounds that it might return a reference to the same local variable that was
passed in by reference. (And it happens to be right in this case. But it would reject
any call of this form even if the method in question returned a reference to some‐
thing else entirely.) But it allows WillCompile to return the ref returned by GetBack
SameRef because in that case, the reference we pass in is one we would be allowed to
return directly.

As with in arguments, the main reason for using ref returns is that they can enable
greater runtime efficiency by avoiding copies. Instead of returning the entire value,
methods of this kind can just return a pointer to the existing value. It also has the
effect of enabling callers to modify whatever is referred to. For example, in
Example 3-49, I can assign a value into the FieldRef property, even though the prop‐
erty appears to be read-only. The absence of a setter doesn’t matter in this case
because its type is ref int, which is valid as the target of an assignment. So by writ‐
ing r.FieldRef = 42; (where r is of type Referable) I get to modify the i field.
Likewise, the reference returned by GetArrayElementRef can be used to modify the
relevant element in the array. If this is not your intention, you can make the return
type ref readonly instead of just ref. In this case the compiler will not allow the
resulting reference to be used as the target of an assignment.

You should only use ref readonly returns with a readonly
struct, because otherwise you will run into the same defensive
copy issues we saw earlier.
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Optional arguments

You can make non-out, non-ref arguments optional by defining default values. The
method in Example 3-50 specifies the values that the arguments should have if the
caller doesn’t supply them.

Example 3-50. A method with optional arguments

public static void Blame(string perpetrator = "the youth of today",
    string problem = "the downfall of society")
{
     Console.WriteLine($"I blame {perpetrator} for {problem}.");
}

This method can then be invoked with no arguments, one argument, or both argu‐
ments. Example 3-51 just supplies the first, taking the default for the problem
argument.

Example 3-51. Omitting one argument

Blame("mischievous gnomes");

Normally, when invoking a method you specify the arguments in order. However,
what if you want to call the method in Example 3-50, but you want to provide a value
only for the second argument, using the default value for the first? You can’t just
leave the first argument empty—if you tried to write Blame( , "everything"), you’d
get a compiler error. Instead, you can specify the name of the argument you’d like to
supply, using the syntax shown in Example 3-52. C# will fill in the arguments you
omit with the specified default values.

Example 3-52. Specifying an argument name

Blame(problem: "everything");

Obviously, you can omit arguments like this only when you’re invoking methods that
define default argument values. However, you are free to specify argument names
when invoking any method—sometimes it can be useful to do this even when you’re
not omitting any arguments, because it can make it easier to see what the arguments
are for when reading the code. This is particularly helpful if you’re faced with an API
that takes arguments of type bool, and it’s not immediately clear what they mean.
Example 3-53 constructs a StreamReader (described in Chapter 15), and this particu‐
lar constructor takes many arguments. It’s clear enough what the first two are, but the
remaining three are likely to be something of a mystery to anyone reading the code,
unless they happen to have committed all 11 StreamReader constructor overloads to
memory. (The using declaration syntax shown here is described in Chapter 7.)
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Example 3-53. Unclear arguments

using var r = new StreamReader(stream, Encoding.UTF8, true, 8192, false);

Argument names are not required here, but if we include them anyway, as
Example 3-54 does, it becomes much easier to understand what the code does.

Example 3-54. Improving clarity by naming arguments

using var r = new StreamReader(stream, Encoding.UTF8,
  detectEncodingFromByteOrderMarks: true, bufferSize: 8192, leaveOpen: false);

Prior to C# 7.2, once you started naming arguments, you couldn’t stop. You would
not have been allowed to write the code in Example 3-55. The rationale for this limi‐
tation was that because named arguments make it possible to supply arguments in a
different order than the parameters are declared, the compiler couldn’t presume
there was any association between argument positions and parameter positions.
However, that reasoning turned out to be suspect, because even when we supply all of
the arguments in order, we might still want to use argument names purely to
improve clarity. So it is now possible to do as Example 3-55 does, naming the second
argument to make its meaning evident, but to continue with unnamed arguments if
it’s clear enough what those do without naming them.

Example 3-55. Selective argument naming

using var w = new StreamWriter(filepath, append: true, Encoding.UTF8);

It’s important to understand how C# implements default argument values because it
has an impact on evolving library design. When you invoke a method without pro‐
viding all the arguments, as Example 3-52 does, the compiler generates code that
passes a full set of arguments as normal. It effectively rewrites your code, adding back
in the arguments you left out. The significance of this is that if you write a library that
defines default argument values like this, you will run into problems if you ever
change the defaults. Code that was compiled against the old version of the library will
have copied the old defaults into the call sites, and won’t pick up the new values
unless it is recompiled.

You will sometimes see an alternative mechanism used for allowing arguments to be
omitted, which avoids baking default values into call sites: overloading. This is a
slightly histrionic term for the rather mundane idea that a single name or symbol can
be given multiple meanings. In fact, we already saw this technique with constructors
—in Example 3-30, I defined one master constructor that did the real work, and then
two other constructors that called into that one. We can use the same trick with
methods, as Example 3-56 shows.
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Example 3-56. Overloaded method

public static void Blame(string perpetrator, string problem)
{
     Console.WriteLine($"I blame {perpetrator} for {problem}.");
}

public static void Blame(string perpetrator)
{
    Blame(perpetrator, "the downfall of society");
}

public static void Blame()
{
    Blame("the youth of today", "the downfall of society");
}

In one sense, this is slightly less flexible than default argument values, because code
calling the Blame method no longer has any way to specify a value for the problem
argument while picking up the default perpetrator (although it would be easy
enough to solve that by just adding a method with a different name). On the other
hand, method overloading offers two potential advantages: it allows you to decide on
the default values at runtime if necessary, and it also provides a way to make out and
ref arguments optional. Those require references to local variables, so there’s no way
to define a default value, but you can always provide overloads with and without
those arguments if you need to. And you can use a mixture of the two techniques—
you might rely mainly on optional arguments, using overloads only to enable out or
ref arguments to be omitted.

Variable argument count with the params keyword
Some methods need to be able to accept different amounts of data in different situa‐
tions. Take the mechanism that I’ve used many times in this book to display informa‐
tion. In most cases, I’ve passed a simple string to Console.WriteLine, but in some
cases I’ve wanted to format and display other pieces of information. As Example 3-57
shows, you can embed expressions in strings.

Example 3-57. String interpolation

Console.WriteLine($"PI: {Math.PI}. Square root of 2: {Math.Sqrt(2)}");
Console.WriteLine($"It is currently {DateTime.Now}");
var r = new Random();
Console.WriteLine(
    $"{r.Next(10)}, {r.Next(10)}, {r.Next(10)}, {r.Next(10)}");

As you may recall from Chapter 2, when you put a $ symbol in front of a string con‐
stant, the compiler transforms it into a call to the string.Format method (a feature
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known as string interpolation), and it replaces the nested expressions with placehold‐
ers such as {0} and {1}, which refer to the first and second arguments after the
string. It is as though we had written the code in Example 3-58.

Example 3-58. String formatting

Console.WriteLine(string.Format(
    "PI: {0}. Square root of 2: {1}", Math.PI, Math.Sqrt(2)));
Console.WriteLine(string.Format("It is currently {0}", DateTime.Now));
var r = new Random();
Console.WriteLine(string.Format(
    "{0}, {1}, {2}, {3}",
    r.Next(10), r.Next(10), r.Next(10), r.Next(10)));

If you look at the documentation for string.Format, you’ll see that it offers several
overloads taking various numbers of arguments. Obviously, it offers only a finite
number of overloads, but if you try it, you’ll find that this is nonetheless an open-
ended arrangement. You can pass as many arguments as you like after the string, and
the numbers in the placeholders can go as high as necessary to refer to these argu‐
ments. The final line of Example 3-58 passes four arguments after the string, and
even though the string class does not define an overload accepting that many argu‐
ments, it works.

One particular overload of the string.Format method takes over once you pass more
than a certain number of arguments after the string (more than three, as it happens).
This overload just takes two arguments: a string and an object[] array. The code
that the compiler creates to invoke the method builds an array to hold all the argu‐
ments after the string, and passes that. So the final line of Example 3-58 is effectively
equivalent to the code in Example 3-59. (Chapter 5 describes arrays.)

Example 3-59. Explicitly passing multiple arguments as an array

Console.WriteLine(string.Format(
    "{0}, {1}, {2}, {3}",
    new object[] { r.Next(10), r.Next(10), r.Next(10), r.Next(10) }));

The compiler will do this only with parameters that are annotated with the params
keyword. Example 3-60 shows how the relevant string.Format method’s declaration
looks.

Example 3-60. The params keyword

public static string Format(string format, params object[] args)
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The params keyword can appear only on a method’s final parameter, and that param‐
eter type must be an array. In this case it’s an object[], meaning that we can pass
objects of any type, but you can be more specific to limit what can be passed in.

When a method is overloaded, the C# compiler looks for the
method whose parameters best match the arguments supplied. It
will consider using a method with a params argument only if a
more specific match is not available.

You may be wondering why the string class bothers to offer overloads that accept
one, two, or three object arguments. The presence of this params version seems to
make those redundant—it lets you pass any number of arguments after the string, so
what’s the point of the ones that take a specific number of arguments? Those over‐
loads exist to make it possible to avoid allocating an array. That’s not to say that
arrays are particularly expensive; they cost no more than any other object of the same
size. However, allocating memory is not free. Every object you allocate will eventually
have to be freed by the garbage collector (except for objects that hang around for the
whole life of the program), so reducing the number of allocations is usually good for
performance. Because of this, most APIs in the .NET class library that accept a vari‐
able number of arguments through params also offer overloads that allow a small
number of arguments to be passed without needing to allocate an array to hold them.

Local functions
You can define methods inside other methods. These are called local functions, and
Example 3-61 defines two of them. (You can also put them inside other method-like
features, such as constructors or property accessors.)

Example 3-61. Local functions

static double GetAverageDistanceFrom(
    (double X, double Y) referencePoint,
    (double X, double Y)[] points)
{
    double total = 0;
    for (int i = 0; i < points.Length; ++i)
    {
        total += GetDistanceFromReference(points[i]);
    }
    return total / points.Length;

    double GetDistanceFromReference((double X, double Y) p)
    {
        return GetDistance(p, referencePoint);
    }
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    static double GetDistance((double X, double Y) p1, (double X, double Y) p2)
    {
        double dx = p1.X - p2.X;
        double dy = p1.Y - p2.Y;
        return Math.Sqrt(dx * dx + dy * dy);
    }
}

One reason for using local functions is that they can make the code easier to read by
moving steps into named methods—it’s easier to see what’s happening when there’s a
method call to GetDistance than it is if we just have the calculations inline. Be aware
that there can be overheads, although in this particular example when I run the
Release build of this particular code on .NET Core 3.0, the JIT compiler is smart
enough to inline both of the local calls here, so the two local functions vanish, and
GetAverageDistanceFrom ends up being just one method. So we’ve paid no penalty
here, but with more complex nested functions, the JIT compiler may decide not to
inline. And when that happens, it’s useful to know how the C# compiler enables this
code to work.

The GetDistanceFromReference method here takes a single tuple argument, but it
uses the referencePoint variable defined by its containing method. For this to work,
the C# compiler moves that variable into a generated struct, which it passes by ref‐
erence to the GetDistanceFromReference method as a hidden argument. This is how
a single local variable can be accessible to both methods. Since this generated struct
is passed by reference, the referencePoint variable can still remain on the stack in
this example. However, if you obtain a delegate referring to a local method, any vari‐
ables shared in this way have to move into a class that lives on the garbage-collected
heap, which will have higher overheads. (See Chapters 7 and 9 for more details.) If
you want to avoid any such overheads, you can always just not share any variables
between the inner and outer methods. Starting with C# 8.0, you can tell the compiler
that this is your intention by applying the static keyword to the local function, as
Example 3-61 does with GetDistance. This will cause the compiler to produce an
error if the method attempts to use a variable from its containing method.

Besides providing a way to split methods up for readability, local functions are some‐
times used to work around some limitations with iterators (see Chapter 5) and async
methods (Chapter 17). These are methods that might return partway through execu‐
tion and then continue later, which means the compiler needs to arrange to store all
of their local variables in an object living on the heap, so that those variables can sur‐
vive for as long as is required. This prevents these kinds of methods from using cer‐
tain types, such as Span<T>, described in Chapter 18. In cases where you need to use
both async and Span<T>, it is common to move code using the latter into a local,
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non-async function that lives inside the async function. This enables the local func‐
tion to use local variables with these constrained types.

Expression-bodied methods
If you write a method simple enough to consist of nothing more than a single return
statement, you can use a more concise syntax. Example 3-62 shows an alternative way
to write the GetDistanceFromReference method from “Local functions” on page 161.
(As you’ve probably noticed, I’ve already used this in a few other examples.)

Example 3-62. An expression-bodied method

double GetDistanceFromReference((double X, double Y) p)
    => GetDistance(p, referencePoint);

Instead of a method body, you write => followed by the expression that would other‐
wise have followed the return keyword. This => syntax is based on the lambda syntax
you can use for writing inline functions and building expression trees. These are dis‐
cussed in Chapter 9.

Extension methods
C# lets you write methods that appear to be new members of existing types. Extension
methods, as they are called, look like normal static methods, but with the this key‐
word added before the first parameter. You are allowed to define extension methods
only in a static class. Example 3-63 adds a not especially useful extension method to
the string, called Show.

Example 3-63. An extension method

namespace MyApplication
{
    public static class StringExtensions
    {
        public static void Show(this string s)
        {
            System.Console.WriteLine(s);
        }
    }
}

I’ve shown the namespace declaration in this example because namespaces are signif‐
icant: extension methods are available only if you’ve written a using directive for the
namespace in which the extension is defined, or if the code you’re writing is defined
in the same namespace. In code that does neither of these things, the string class will
look normal, and will not acquire the Show method defined by Example 3-63.
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However, code such as Example 3-64, which is defined in the same namespace as the
extension method, will find that the method is available.

Example 3-64. Extension method available due to namespace declaration

namespace MyApplication
{
    class Program
    {
        static void Main(string[] args)
        {
            "Hello".Show();
        }
    }
}

The code in Example 3-65 is in a different namespace, but it also has access to the
extension method, thanks to a using directive.

Example 3-65. Extension method available due to using directive

using MyApplication;

namespace Other
{
    class Program
    {
        static void Main(string[] args)
        {
            "Hello".Show();
        }
    }
}

Extension methods are not really members of the class for which they are defined—
the string class does not truly gain an extra method in these examples. It’s just an
illusion maintained by the C# compiler, one that it keeps up even in situations where
method invocation happens implicitly. This is particularly useful with C# features
that require certain methods to be available. In Chapter 2, you saw that foreach
loops depend on a GetEnumerator method. Many of the LINQ features we’ll look at
in Chapter 10 also depend on certain methods being present, as do the asynchronous
language features described in Chapter 17. In all cases, you can enable these language
features for types that do not support them directly by writing suitable extension
methods.
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Properties
Classes and structs can define properties, which are really just methods in disguise. To
access a property, you use a syntax that looks like field access but ends up invoking a
method. Properties can be useful for signaling intent. When something is exposed as
a property, the implication is that it represents information about the object, rather
than an operation the object performs, so reading a property is usually inexpensive
and should have no significant side effects. Methods, on the other hand, are more
likely to cause an object to do something.

Of course, since properties are just a kind of method, nothing enforces this. You are
free to write a property that takes hours to run and makes significant changes to your
application’s state whenever its value is read, but that would be a pretty lousy way to
design code.

Properties typically provide a pair of methods: one to get the value and one to set it.
Example 3-66 shows a very common pattern: a property with get and set methods
that provide access to a field. Why not just make the field public? That’s often
frowned upon, because it makes it possible for external code to change an object’s
state without the object knowing about it. It might be that in future revisions of the
code, the object needs to do something—perhaps update the UI—every time the
value changes. In any case, because properties contain code, they offer more flexibil‐
ity than public fields. For example, you might want to store the data in a different
format than is returned by the property, or you may even be able to implement a
property that calculates its value from other properties. Another reason for using
properties is simply that some systems require it—for example, some UI data binding
systems are only prepared to consume properties. Also, some types do not support
instance fields; later in this chapter, I’ll show how to define an abstract type using an
interface, and interfaces can contain properties, but not instance fields.

Example 3-66. Class with simple property

public class HasProperty
{
    private int _x;
    public int X
    {
        get
        {
            return _x;
        }
        set
        {
            _x = value;
        }
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    }
}

Inside a set accessor, value has a special meaning. It’s a contextual
keyword—text that the language treats as a keyword in certain con‐
texts. Outside of a property you can use value as an identifier, but
within a property it represents the value that the caller wants to
assign to the property.

In cases where the entire body of the get is just a return statement, or where the set
is a single expression statement, you can use the expression-bodied member syntax
shown in Example 3-67. (This is very similar to the method syntax shown in
Example 3-62.)

Example 3-67. Expression-bodied get and set

public class HasProperty
{
    private int _x;
    public int X
    {
        get => _x;
        set => _x = value;
    }
}

The pattern in Examples 3-66 and 3-67 is so common that C# can write most of it for
you. Example 3-68 is more or less equivalent—the compiler generates a field for us,
and produces get and set methods that retrieve and modify the value just like those
in Example 3-66. The only difference is that code elsewhere in the same class can’t get
directly at the field in Example 3-68, because the compiler hides it. The official name
in the language specification for this is an automatically implemented property, but
these are typically referred to as just auto-properties.

Example 3-68. An auto-property

public class HasProperty
{
    public int X { get; set; }
}

Whether you use explicit or automatic properties, this is just a fancy syntax for a pair
of methods. The get method returns a value of the property’s declared type—an int,
in this case—while the setter takes a single argument of that type through the implicit
value parameter. Example 3-66 makes use of that argument to update the field.
You’re not obliged to store the value in a field, of course. In fact, nothing even forces
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you to make the get and set methods related in any way—you could write a getter
that returns random values, and a setter that completely ignores the value you supply.
However, just because you can doesn’t mean you should. In practice, anyone using
your class will expect properties to remember the values they’ve been given, not least
because in use, properties look just like fields, as Example 3-69 shows.

Example 3-69. Using a property

var o = new HasProperty();
o.X = 123;
o.X += 432;
Console.WriteLine(o.X);

If you’re using the full syntax shown in Example 3-66 to implement a property, or the
expression-bodied form shown in Example 3-67, you can leave out either the set or
the get to make a read-only or write-only property. Read-only properties can be use‐
ful for aspects of an object that are fixed for its lifetime, such as an identifier, or
which are calculated from other properties. Write-only properties are less useful,
although they can crop up in dependency injection systems. You can’t make a write-
only property with the auto-property syntax shown in Example 3-68, because you
wouldn’t be able to do anything useful with the value being set.

There are two variations on read-only properties. Sometimes it is useful to have a
property that is publicly read-only, but which your class is free to change. You can
define a property where the getter is public but the setter is not (or vice versa for a
write-only property). You can do this with either the full or the automatic syntax.
Example 3-70 shows how this looks with the latter.

Example 3-70. Auto-property with private setter

public int X { get; private set; }

If you want your property to be read-only in the sense that its value never changes
after construction, you can leave out the setter entirely when using the auto-property
syntax, as Example 3-71 shows.

Example 3-71. Auto-property with no setter

public int X { get; }

With no setter and no directly accessible field, you may be wondering how you can
set the value of such a property. The answer is that inside your object’s constructor,
the property appears to be settable. (There isn’t really a setter if you omit the set—
the compiler generates code that just sets the backing field directly when you “set” the
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property in the constructor.) A get-only auto-property is effectively equivalent to a
readonly field wrapped with an ordinary get-only property. As with fields, you can
also write an initializer to provide an initial value. Example 3-72 uses both styles; if
you use the constructor that takes no arguments, the property’s value will be 42, and
if you use the other constructor, it will have whatever value you supply.

Example 3-72. Initializing an auto-property with no setter

public class WithAutos
{
    public int X { get; } = 42;

    public WithAutos()
    {
    }

    public WithAutos(int val)
    {
        X = val;
    }
}

Sometimes it is useful to write a read-only property with a value calculated entirely in
terms of other properties. For example, if you have written a type representing a vec‐
tor with properties called X and Y, you could add a property that returns the magni‐
tude of the vector, calculated from those other two properties, as Example 3-73
shows.

Example 3-73. A calculated property

public double Magnitude
{
    get
    {
        return Math.Sqrt(X * X + Y * Y);
    }
}

There is a more compact way of writing this. We could use the expression-bodied
syntax shown in Example 3-67, but for a read-only property we can go one step fur‐
ther: you can put the => and expression directly after the property name. (This ena‐
bles us to leave out the braces and the get keyword.) Example 3-74 is exactly
equivalent to Example 3-73.

Example 3-74. An expression-bodied read-only property

public double Magnitude => Math.Sqrt(X * X + Y * Y);
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Speaking of read-only properties, there’s an important issue to be aware of involving
properties, value types, and immutability.

Properties and mutable value types
As I mentioned earlier, value types tend to be more straightforward if they’re immut‐
able, but it’s not a requirement. One reason to avoid modifiable value types is that
you can end up accidentally modifying a copy of the value rather than the one you
meant, and this issue becomes apparent if you define a property that uses a mutable
value type. The Point struct in the System.Windows namespace is modifiable, so we
can use it to illustrate the problem. Example 3-75 defines a Location property of this
type.

Example 3-75. A property using a mutable value type

using System.Windows;

public class Item
{
    public Point Location { get; set; }
}

The Point type defines read/write properties called X and Y, so given a variable of
type Point, you can set these properties. However, if you try to set either of these
properties via another property, the code will not compile. Example 3-76 tries this—it
attempts to modify the X property of a Point retrieved from an Item object’s Loca
tion property.

Example 3-76. Error: cannot modify a property of a value type property

var item = new Item();
item.Location.X = 123;  // Will not compile

This example produces the following error:

error CS1612: Cannot modify the return value of 'Item.Location' because it is
not a variable

C# considers fields to be variables as well as local variables and method arguments, so
if we were to modify Example 3-75 so that Location was a public field rather than a
property, Example 3-76 would then compile, and would work as expected. But why
doesn’t it work with a property? Remember that properties are just methods, so
Example 3-75 is more or less equivalent to Example 3-77.
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Example 3-77. Replacing a property with methods

using System.Windows;

public class Item
{
    private Point _location;
    public Point get_Location()
    {
        return _location;
    }
    public void set_Location(Point value)
    {
        _location = value;
    }
}

Since Point is a value type, get_Location returns a copy. You might be wondering if
we could use the ref return feature described earlier. We certainly could with plain
methods, but there are a couple of constraints to doing this with properties. Firstly,
you cannot define an auto-property with a ref type. Secondly, you cannot define a
writeable property with a ref type. However, you can define a read-only ref property
as Example 3-78 shows.

Example 3-78. A property returning a reference

using System.Windows;

public class Item
{
    private Point _location;

    public ref Point Location => ref _location;
}

With this implementation of Item, the code in Example 3-76 now works fine. (Ironi‐
cally, to make the property modifiable, we had to turn it into a read-only property.)

Before ref returns were added to C# there was no way to make this work. All possible
implementations of the property would end up returning a copy of the property
value, so if the compiler did allow Example 3-76 to compile, we would be setting the X
property on the copy returned by the property, and not the actual value in the Item
object that the property represents. Example 3-79 makes this explicit, and it will in
fact compile—the compiler will let us shoot ourselves in the foot if we make it suffi‐
ciently clear that we really want to. And with this version of the code, it’s quite obvi‐
ous that this will not modify the value in the Item object.
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Example 3-79. Making the copy explicit

var item = new Item();
Point location = item.Location;
location.X = 123;

However, with the property implementation in Example 3-78, the code in
Example 3-76 does compile, and ends up behaving like the code shown in
Example 3-80. Here we can see that we’ve retrieved a reference to a Point, so when
we set its X property, we’re acting on whatever that refers to (the _location field in
the Item in this case), rather than a local copy.

Example 3-80. Making the reference explicit

var item = new Item();
ref Point location = ref item.Location;
location.X = 123;

So it’s possible to make it work, thanks to fairly recent additions to the language. But
it’s also easy to get it wrong. Fortunately, most value types are immutable, and this
problem arises only with mutable value types.

Immutability doesn’t exactly solve the problem—you still can’t
write the code you might want to, such as item.Location.X =
123. But at least immutable structs don’t mislead you by making it
look like you should be able to do that.

Since all properties are really just methods (typically in pairs), in theory they could
accept arguments beyond the implicit value argument used by set methods. The
CLR allows this, but C# does not support it except for one special kind of property:
an indexer.

Indexers
An indexer is a property that takes one or more arguments, and is accessed with the
same syntax as is used for arrays. This is useful when you’re writing a class that con‐
tains a collection of objects. Example 3-81 uses one of the collection classes provided
by the .NET class library, List<T>. It is essentially a variable-length array, and it feels
like a native array thanks to its indexer, used on the second and third lines. (I’ll
describe arrays and collection types in detail in Chapter 5. And I’ll describe generic
types, of which List<T> is an example, in Chapter 4.)
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6 Incidentally, the default property has a name, because all properties are required to. C# calls the indexer prop‐
erty Item, and automatically adds the annotation indicating that it’s the default property. You won’t normally
refer to an indexer by name, but the name is visible in some tools. The .NET class library documentation lists
indexers under Item, even though it’s rare to use that name in code.

Example 3-81. Using an indexer

var numbers = new List<int> { 1, 2, 1, 4 };
numbers[2] += numbers[1];
Console.WriteLine(numbers[0]);

From the CLR’s point of view, an indexer is a property much like any other, except
that it has been designated as the default property. This concept is something of a
holdover from the old COM-based versions of Visual Basic that got carried over
into .NET, and which C# mostly ignores. Indexers are the only C# feature that treats
default properties as being special. If a class designates a property as being the default
one, and if the property accepts at least one argument, C# will let you use that prop‐
erty through the indexer syntax.

The syntax for declaring indexers is somewhat idiosyncratic. Example 3-82 shows a
read-only indexer. You could add a set accessor to make it read/write, just like with
any other property.6

Example 3-82. Class with indexer

public class Indexed
{
    public string this[int index]
    {
        get => index < 5 ? "Foo" : "bar";
    }
}

C# supports multidimensional indexers. These are simply indexers with more than
one parameter—since properties are really just methods, you can define indexers
with any number of parameters. You are free to use any mixture of types for the
parameters.

As you may recall from Chapter 2, C# offers null-conditional operators. In that chap‐
ter, we saw this used to access properties and fields—e.g., myString?.Length will be
of type int?—and its value will be null if myString is null, and the value of the
Length property otherwise. There is one other form of null-conditional operator,
which can be used with an indexer, shown in Example 3-83.
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Example 3-83. Null conditional index access

string? s = objectWithIndexer?[2];

As with the null conditional field or property access, this generates code that checks
whether the lefthand part (objectWithIndexer in this case) is null. If it is, the whole
expression evaluates to null; it only invokes the indexer if the lefthand part of the
expression is not null. It is effectively equivalent to the code shown in Example 3-84.

Example 3-84. Code equivalent to null-conditional index access

string? s = objectWithIndexer == null ? null : objectWithIndexer[2];

This null-conditional index syntax also works with arrays.

Initializer Syntax
You will often want to set certain properties when you create an object, because it
might not be possible to supply all relevant information through constructor argu‐
ments. This is particularly common with objects that represent settings for control‐
ling some operation. For example, the ProcessStartInfo type enables you to
configure many different aspects of a newly created OS process. It has 16 properties,
but you would typically only need to set a few of these in any particular scenario.
Even if you assume that the name of the file to run should always be present, there
are still 32,768 possible combinations of properties. You wouldn’t want to have a
constructor for every one of those.

In practice, a class might offer constructors for a handful of particularly common
combinations, but for everything else, you just set the properties after construction.
C# offers a succinct way to create an object and set some of its properties in a single
expression. Example 3-85 uses this object initializer syntax. This also works with
fields, although it’s relatively unusual to have writable public fields.

Example 3-85. Using an object initializer

Process.Start(new ProcessStartInfo
{
    FileName = "cmd.exe",
    UseShellExecute = true,
    WindowStyle = ProcessWindowStyle.Maximized,
});

You can supply constructor arguments too. Example 3-86 has the same effect as
Example 3-85, but chooses to supply the filename as a constructor argument (because
this is one of the few properties ProcessStartInfo lets you supply that way).
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Example 3-86. Using a constructor and an object initializer

Process.Start(new ProcessStartInfo("cmd.exe")
{
    UseShellExecute = true,
    WindowStyle = ProcessWindowStyle.Maximized,
});

The object initializer syntax can remove the need for a separate variable to refer to
the object while you set the properties you need. As Examples 3-85 and 3-86 show,
you can pass an object initialized in this way directly as an argument to a method. An
important upshot of this is that this style of initialization can be contained entirely
within a single expression. This is important in scenarios that use expression trees,
which we’ll be looking at in Chapter 9.

There’s a variation on this syntax that enables you to supply values to an indexer in
an object initializer. Example 3-87 uses this to initialize a dictionary. (Chapter 5
describes dictionaries and other collection types in detail.)

Example 3-87. Using an indexer in an object initializer

var d = new Dictionary<string, int>
{
    ["One"] = 1,
    ["Two"] = 2,
    ["Three"] = 3
};

Operators
Classes and structs can define customized meanings for operators. I showed some
custom operators earlier: Example 3-20 supplied definitions for == and !=. A class or
struct can support almost all of the arithmetic, logical, and relational operators intro‐
duced in Chapter 2. Of the operators shown in Tables 2-3, 2-4, 2-5, and 2-6, you can
define custom meanings for all except the conditional AND (&&) and conditional OR
(||) operators. Those operators are evaluated in terms of other operators, however,
so by defining logical AND (&), logical OR (|), and also the logical true and false
operators (described shortly), you can control the way that && and || work for your
type, even though you cannot implement them directly.

All custom operator implementations follow a certain pattern. They look like static
methods, but in the place where you’d normally expect the method name, you
instead have the operator keyword followed by the operator for which you want to
define a custom meaning. After that comes a parameter list, where the number of
parameters is determined by the number of operands the operator requires.
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Example 3-88 shows how the binary + operator would look for the Counter class
defined earlier in this chapter.

Example 3-88. Implementing the + operator

public static Counter operator +(Counter x, Counter y)
{
    return new Counter { _count = x._count + y._count };
}

Although the argument count must match the number of operands the operator
requires, only one of the arguments has to be the same as the defining type.
Example 3-89 exploits this to allow the Counter class to be added to an int.

Example 3-89. Supporting other operand types

public static Counter operator +(Counter x, int y)
{
    return new Counter { _count = x._count + y };
}

public static Counter operator +(int x, Counter y)
{
    return new Counter { _count = x + y._count };
}

C# requires certain operators to be defined in pairs. We already saw this with the ==
and != operators—it is illegal to define one and not the other. Likewise, if you define
the > operator for your type, you must also define the < operator, and vice versa. The
same is true for >= and <=. (There’s one more pair, the true and false operators, but
they’re slightly different; I’ll get to those shortly.)

When you overload an operator for which a compound assignment operator exists,
you are in effect defining behavior for both. For example, if you define custom behav‐
ior for the + operator, the += operator will automatically work too.

The operator keyword can also define custom conversions—methods that convert
your type to or from some other type. For example, if we wanted to be able to convert
Counter objects to and from int, we could add the two methods in Example 3-90 to
the class.

Example 3-90. Conversion operators

public static explicit operator int(Counter value)
{
    return value._count;
}
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public static explicit operator Counter(int value)
{
    return new Counter { _count = value };
}

I’ve used the explicit keyword here, which means that these conversions are
accessed with the cast syntax, as Example 3-91 shows.

Example 3-91. Using explicit conversion operators

var c = (Counter) 123;
var v = (int) c;

If you use the implicit keyword instead of explicit, your conversion will be able to
happen without needing a cast. In Chapter 2 we saw that some conversions happen
implicitly: in certain situations, C# will automatically promote numeric types. For
example, you can use an int where a long is expected, perhaps as an argument for a
method or in an assignment. Conversion from int to long will always succeed and
can never lose information, so the compiler will automatically generate code to per‐
form the conversion without requiring an explicit cast. If you write implicit conver‐
sion operators, the C# compiler will silently use them in exactly the same way,
enabling your custom type to be used in places where some other type was expected.
(In fact, the C# specification defines numeric promotions such as conversion from
int to long as built-in implicit conversions.)

Implicit conversion operators are something you shouldn’t need to write very often.
You should do so only when you can meet the same standards as built-in promo‐
tions: the conversion must always be possible and should never throw an exception.
Moreover, the conversion should be unsurprising—implicit conversions are a little
sneaky in that they allow you to cause methods to be invoked in code that doesn’t
look like it’s calling a method. So unless you’re intending to confuse other developers,
you should write implicit conversions only where they seem to make unequivocal
sense.

C# recognizes two more operators: true and false. If you define either of these, you
are required to define both. These are a bit of an oddball pair, because although the
C# specification defines them as unary operator overloads, they don’t correspond
directly to any operator you can write in an expression. They come into play in two
scenarios.

If you have not defined an implicit conversion to bool, but you have defined the true
and false operators, C# will use the true operator if you use your type as the expres‐
sion for an if statement or a do or while loop, or as the condition expression in a for
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loop. However, the compiler prefers the implicit bool operator, so this is not the
main reason the true and false operators exist.

The main scenario for the true and false operators is to enable your custom type to
be used as an operand of a conditional Boolean operator (either && or ||). Remember
that these operators will evaluate their second operand only if the first outcome does
not fully determine the result. If you want customize the behavior of these operators,
you cannot implement them directly. Instead, you must define the nonconditional
versions of the operators (& and |), and you must also define the true and false
operators. When evaluating &&, C# will use your false operator on the first operand,
and if that indicates that the first operand is false, then it will not bother to evaluate
the second operand. If the first operand is not false, it will evaluate the second
operand and then pass both into your custom & operator. The || operator works in
much the same way, but with the true and | operators, respectively.

You may be wondering why we need special true and false operators—couldn’t we
just define an implicit conversion to the bool type? In fact we can, and if we do that
instead of providing &, |, true, and false, C# will use that to implement && and ||
for our type. However, some types may want to represent values that are neither true
nor false—there may be a third value representing an unknown state. The true oper‐
ator allows C# to ask the question “is this definitely true?” and for the object to be
able to answer “no” without implying that it’s definitely false. A conversion to bool
does not support that.

The true and false operators have been present since the first ver‐
sion of C#, and their main application was to enable the implemen‐
tation of types that support nullable Boolean values with similar
semantics to those offered by many databases. The nullable type
support added in C# 2.0 provides a better solution, so these opera‐
tors are no longer particularly useful, but there are still some old
parts of the .NET class library that depend on them.

No other operators can be overloaded. For example, you cannot define custom mean‐
ings for the . operator used to access members of a method, or the conditional (? :),
the null coalescing (??), or the new operators.

Events
Structs and classes can declare events. This kind of member enables a type to provide
notifications when interesting things happen, using a subscription-based model. For
example, a UI object representing a button might define a Click event, and you can
write code that subscribes to that event.
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Events depend on delegates, and since Chapter 9 is dedicated to these topics, I won’t
go into any detail here. I’m mentioning them only because this section on type mem‐
bers would otherwise be incomplete.

Nested Types
The final kind of member we can define in a class or a struct is a nested type. You can
define nested classes, structs, or any of the other types described later in this chapter.
A nested type can do anything its normal counterpart would do, but it gets a couple
of additional features.

When a type is nested, you have more choices for accessibility. A type defined at
global scope can be only public or internal—private would make no sense,
because that makes something accessible only from within its containing type, and
there is no containing type when you define something at global scope. But a nested
type does have a containing type, so if you define a nested type and make it private,
that type can be used only from inside the type within which it is nested.
Example 3-92 shows a private class.

Example 3-92. A private nested class

class Program
{
    private static void Main(string[] args)
    {
        // Ask the class library where the user's My Documents folder lives
        string path =
            Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
        string[] files = Directory.GetFiles(path);
        var comparer = new LengthComparer();
        Array.Sort(files, comparer);
        foreach (string file in files)
        {
            Console.WriteLine(file);
        }
    }

    private class LengthComparer : IComparer<string>
    {
        public int Compare(string x, string y)
        {
            int diff = x.Length - y.Length;
            return diff == 0 ? x.CompareTo(y) : diff;
        }
    }
}
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Private classes can be useful in scenarios like this where you are using an API that
requires an implementation of a particular interface. In this case, I’m calling
Array.Sort to sort a list of files by the lengths of their names. (This is not useful, but
it looks nice.) I’m providing the custom sort order in the form of an object that
implements the IComparer<string> interface. I’ll describe interfaces in detail in the
next section, but this interface is just a description of what the Array.Sort method
needs us to provide. I’ve written a custom class to implement this interface. This class
is just an implementation detail of the rest of my code, so I don’t want to make it
public. A nested private class is just what I need.

Code in a nested type is allowed to use nonpublic members of its containing type.
However, an instance of a nested type does not automatically get a reference to an
instance of its containing type. (If you’re familiar with Java, this may surprise you. C#
nested classes are equivalent to Java static nested classes, and there is no equivalent to
an inner class.) If you need nested instances to have a reference to their container,
you will need to declare a field to hold that, and arrange for it to be initialized; this
would work in exactly the same way as any object that wants to hold a reference to
another object. Obviously, it’s an option only if the outer type is a reference type.

So far, we’ve looked only at classes and structs, but there are some other ways to
define custom types in C#. Some of these are complicated enough to warrant getting
their own chapters, but there are a couple of simpler ones that I’ll discuss here.

Interfaces
An interface defines a programming interface. Interfaces are very often entirely
devoid of implementation, but C# 8.0 adds the ability to define default implementa‐
tions for some or all methods, and also to define nested types and static fields. (Inter‐
faces cannot define nonstatic fields, though.) Classes can choose to implement
interfaces. If you write code that works in terms of an interface, it will be able to work
with anything that implements that interface, instead of being limited to working
with one particular type.

For example, the .NET class library includes an interface called IEnumerable<T>,
which defines a minimal set of members for representing sequences of values. (It’s a
generic interface, so it can represent sequences of anything. An IEnumera

ble<string> is a sequence of strings, for example. Generic types are discussed in
Chapter 4.) If a method has a parameter of type IEnumerable<string>, you can pass
it a reference to an instance of any type that implements the interface, which means
that a single method can work with arrays, various collection classes provided by
the .NET class library, certain LINQ features, and many other things.

An interface declares methods, properties, and events, but it doesn’t have to define
their bodies, as Example 3-93 shows. Properties indicate whether getters and/or

Interfaces | 179



setters should be present, but we have semicolons in place of the bodies. An interface
is effectively a list of the members that a type will need to provide if it wants to imple‐
ment the interface. Prior to C# 8.0, these method-like members were the only kinds
of members interfaces could have. I’ll discuss the additional member types now avail‐
able shortly, but the majority of interfaces you are likely to come across today only
contain these kinds of members.

Example 3-93. An interface

public interface IDoStuff
{
    string this[int i] { get; set; }
    string Name { get; set; }
    int Id { get; }
    int SomeMethod(string arg);
    event EventHandler Click;
}

Individual method-like members are not allowed accessibility modifiers—their acces‐
sibility is controlled at the level of the interface itself. (Like classes, interfaces are
either public or internal, unless they are nested, in which case they can have any
accessibility.) Interfaces cannot declare constructors—an interface only gets to say
what services an object should supply once it has been constructed.

By the way, most interfaces in .NET follow the convention that their name starts with
an uppercase I followed by one or more words in PascalCasing.

A class declares the interfaces that it implements in a list after a colon following the
class name, as Example 3-94 shows. It should provide implementations of all the
members listed in the interface. You’ll get a compiler error if you leave any out.

Example 3-94. Implementing an interface

public class DoStuff : IDoStuff
{
    public string this[int i] { get { return i.ToString(); } set { } }
    public string Name { get; set; }
    ...etc
}

When we implement an interface in C#, we typically define each of that interface’s
methods as a public member of our class. However, sometimes you may want to
avoid this. Occasionally, some API may require you to implement an interface that
you feel pollutes the purity of your class’s API. Or, more prosaically, you may already
have defined a member with the same name and signature as a member required by
the interface, but that does something different from what the interface requires. Or
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worse, you may need to implement two different interfaces, both of which define
members that have the same name and signature but require different behavior. You
can solve any of these problems with a technique called explicit implementation to
define members that implement a member of a specific interface without being pub‐
lic. Example 3-95 shows the syntax for this, with an implementation of one of the
methods from the interface in Example 3-93. With explicit implementations, you do
not specify the accessibility, and you prefix the member name with the interface
name.

Example 3-95. Explicit implementation of an interface member

int IDoStuff.SomeMethod(string arg)
{
    ...
}

When a type uses explicit interface implementation, those members cannot be used
through a reference of the type itself. They become visible only when referring to an
object through an expression of the interface’s type.

When a class implements an interface, it becomes implicitly convertible to that inter‐
face type. So you can pass any expression of type DoStuff from Example 3-94 as a
method argument of type IDoStuff, for example.

Interfaces are reference types. Despite this, you can implement interfaces on both
classes and structs. However, you need to be careful when doing so with a struct,
because when you get hold of an interface-typed reference to a struct, it will be a ref‐
erence to a box, which is effectively an object that holds a copy of a struct in a way
that can be referred to via a reference. We’ll look at boxing in Chapter 7.

Default Interface Implementation
A new feature in C# 8.0 called default interface implementation allows you to include
some implementation details in an interface definition. This relies on runtime sup‐
port, so this is only available in code that targets .NET Core 3.0 or later, or .NET
Standard 2.1 or later. You can supply static fields, nested types, and bodies for meth‐
ods, property accessors, and the add and remove methods for events (which I will
describe in Chapter 9). Example 3-96 shows this in use to define a default implemen‐
tation of a property.

Example 3-96. An interface with a default property implementation

public interface INamed
{
    int Id { get; }
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    string Name => $"{this.GetType()}: {this.Id}";
}

If a class chooses to implement INamed, it will only be required to provide an imple‐
mentation for this interface’s Id property. It can also supply a Name property if it
wants to, but this is not required. If the class does not define its own Name, the defini‐
tion from the interface will be used instead.

Default interface implementations provide a partial solution to a long-standing limi‐
tation of interfaces: if you define an interface that you then make available for other
code to use (e.g., via a class library), adding new members to that interface could
cause problems for existing code that uses it. Code that invokes methods on the inter‐
face won’t have a problem because it will be blissfully unaware that new members
were added, but any class that implements your interface would, prior to C# 8.0, be
broken if you were to add new members. A concrete class is required to supply all the
members of an interface it implements, so if the interface gets new members, for‐
merly complete implementations will now be incomplete. Unless you have some way
of reaching out to everyone who has written types that implement your interface and
getting them to add the missing members, you will cause them problems if they
upgrade to the new version.

You might think that this would only be a problem if the authors of code that works
with an interface deliberately upgraded to the library containing the updated inter‐
face, at which point they’d have an opportunity to fix the problem. However, library
upgrades can sometimes be forced on code. If you write an application that uses mul‐
tiple libraries, each of which was built against different versions of some common
library, then at least one of those is going to end up getting a different version of that
common library at runtime than the version it was compiled against. (The poster
child for this is the Json.NET library for parsing JSON. It’s extremely widely used and
has had many versions released, so it’s common for a single application to use multi‐
ple libraries, each with a dependency on a different version of Json.NET. Only one
version is used at runtime, so they can’t all have their expectations met.) This means
that even if you use schemes such as semantic versioning, in which breaking changes
are always accompanied by a change to the component’s major version number, that
might not be enough to avoid trouble: you might find yourself needing to use two
components where one wants the v1.0 flavor of some interface, while another wants
the v2.0 edition.

The upshot of this was that interfaces were essentially frozen: you couldn’t add new
members over time or even across major version changes. But default interface
implementations loosen this restriction: you can add a new member to an existing
interface if you also provide a default implementation for it. That way, existing types
that implemented the older version were able to supply a complete implementation
of the updated definition, because they automatically pick up the default implemen‐
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7 In C# 8.0, you can nest class, struct, interface, and enum types in an interface. Nested delegate types are
not supported.

tation of the newly added member without needing to be modified in any way.
(There is a slight fly in the ointment, making it still sometimes preferable to use the
older solution to this problem, abstract base classes: Chapter 6 describes these issues.
So although default interface implementation can provide a useful escape hatch, you
should still avoid modifying published interfaces if at all possible.)

In addition to providing extra flexibility for backward compatibility, the default inter‐
face implementation feature adds three more capabilities: interfaces can now define
constants, static fields, and types.7 Example 3-97 shows an interface that contains a
nested constant and type.

Example 3-97. An interface with a const and a nested type

public interface IContainMultitudes
{
    public const string TheMagicWord = "Please";

    public enum Outcome
    {
        Yes,
        No
    }

    Outcome MayI(string request)
    {
        return request == TheMagicWord ? Outcome.Yes : Outcome.No;
    }
}

With non-method-like members such as these, we need to specify an accessibility,
because in some cases you may want to introduce these nested members purely for
the benefit of default method implementations, in which case you’d want them to be
private. In this case, I want the relevant members to be accessible to all, since they
form part of the API defined by this interface, so I have marked them as public. You
might be looking at that nested Outcome type and wondering what’s going on. Won‐
der no more.
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Enums
The enum keyword declares a very simple type that defines a set of named values.
Example 3-98 shows an enum that defines a set of mutually exclusive choices. You
could say that this enumerates the options, which is where the enum keyword gets its
name.

Example 3-98. An enum with mutually exclusive options

public enum PorridgeTemperature
{
    TooHot,
    TooCold,
    JustRight
}

An enum can be used in most places you might use any other type—it could be the
type of a local variable, a field, or a method parameter, for example. But one of the
most common ways to use an enum is in a switch statement, as Example 3-99 shows.

Example 3-99. Switching with an enum

switch (porridge.Temperature)
{
case PorridgeTemperature.TooHot:
    GoOutsideForABit();
    break;

case PorridgeTemperature.TooCold:
    MicrowaveMyBreakfast();
    break;

case PorridgeTemperature.JustRight:
    NomNomNom();
    break;
}

As this illustrates, to refer to enumeration members, you must qualify them with the
type name. In fact, an enum is really just a fancy way of defining a load of const fields.
The members are all just int values under the covers. You can even specify the values
explicitly, as Example 3-100 shows.

Example 3-100. Explicit enum values

[System.Flags]
public enum Ingredients
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{
    Eggs           =        0b1,
    Bacon          =       0b10,
    Sausages       =      0b100,
    Mushrooms      =     0b1000,
    Tomato         =   0b1_0000,
    BlackPudding   =  0b10_0000,
    BakedBeans     = 0b100_0000,
    TheFullEnglish = 0b111_1111
}

This example also shows an alternative way to use an enum. The options in
Example 3-100 are not mutually exclusive. I’ve used binary constants here, so you can
see that each value corresponds to a particular bit position being set to 1. This makes
it easy to combine them—Eggs and Bacon would be 3 (11 in binary), while Eggs,
Bacon, Sausages, BlackPudding, and BakedBeans (my preferred combination) would
be 103 (1100111 in binary, or 0x67 in hex).

When combining flag-based enumeration values, we normally use
the bitwise OR operator. For example, you could write Ingredi
ents.Eggs|Ingredients.Bacon. Not only is this significantly eas‐
ier to read than using the numeric values, but it also works well
with Visual Studio’s search tools—you can find all the places a par‐
ticular symbol is used by right-clicking on its definition and choos‐
ing Find All References from the context menu. You might come
across code that uses + instead of |. This works for some combina‐
tions, but Ingredients.TheFullEnglish + Ingredients.Eggs

would be a value of 128, which doesn’t correspond to anything, so
it’s safer to stick with |.

When you declare an enum that’s designed to be combined in this way, you’re sup‐
posed to annotate it with the Flags attribute, which is defined in the System name‐
space. (Chapter 14 will describe attributes in detail.) Example 3-100 does this,
although in practice, it doesn’t matter greatly if you forget, because the C# compiler
doesn’t care, and in fact, there are very few tools that pay any attention to it. The
main benefit is that if you call ToString on an enum value, it will notice when the
Flags attribute is present. For this Ingredients type, ToString would convert the
value of 3 to the string Eggs, Bacon, which is also how the debugger would show the
value, whereas without the Flags attribute, it would be treated as an unrecognized
value and you would just get a string containing the digit 3.

With this sort of flags-style enumeration, you can run out of bits fairly quickly. By
default, enum uses int to represent the value, and with a sequence of mutually exclu‐
sive values, that’s usually sufficient. It would be a fairly complicated scenario that
needed billions of different values in a single enumeration type. However, with 1 bit
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per flag, an int provides space for just 32 flags. Fortunately, you can get a little more
breathing room, because you can specify a different underlying type—you can use
any built-in integer type, meaning that you can go up to 64 bits. As Example 3-101
shows, you can specify the underlying type after a colon following the enum type
name.

Example 3-101. 64-bit enum

[System.Flags]
public enum TooManyChoices : long
{
    ...
}

All enum types are value types, incidentally, like the built-in numeric types or any
struct. But they are very limited. You cannot define any members other than the con‐
stant values—no methods or properties, for example.

Enumeration types can sometimes enhance the readability of code. A lot of APIs
accept a bool to control some aspect of their behavior, but might often have done
better to use an enum. Consider the code in Example 3-102. It constructs a Stream
Reader, a class for working with data streams that contain text. The second construc‐
tor argument is a bool.

Example 3-102. Unhelpful use of bool

using var rdr = new StreamReader(stream, true);

It’s not remotely obvious what that second argument does. If you happen to be famil‐
iar with StreamReader, you may know that this argument determines whether byte
ordering in a multibyte text encoding should be set explicitly from the code, or deter‐
mined from a preamble at the start of the stream. (Using the named argument syntax
would help here.) And if you’ve got a really good memory, you might even know
which of those choices true happens to select. But most mere mortal developers will
probably have to reach for IntelliSense or even the documentation to work out what
that argument does. Compare that experience with Example 3-103, which shows a
different type.

Example 3-103. Clarity with an enum

using var fs = new FileStream(path, FileMode.Append);
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This constructor’s second argument uses an enumeration type, which makes for
rather less opaque code. It doesn’t take an eidetic memory to work out that this code
intends to append data to an existing file.

As it happens, because this particular API has more than two options, it couldn’t use
a bool. So FileMode really had to be an enum. But these examples illustrate that even
in cases where you’re selecting between just two choices, it’s well worth considering
defining an enum for the job so that it’s completely obvious which choice is being
made when you look at the code.

Other Types
We’re almost done with our survey of types and what goes in them. There’s one kind
of type that I’ll not discuss until Chapter 9: delegates. We use delegates when we need
a reference to a function, but the details are somewhat involved.

I’ve also not mentioned pointers. C# supports pointers that work in a pretty similar
way to C-style pointers, complete with pointer arithmetic. (If you’re not familiar with
these, they provide a reference to a particular location in memory.) These are a little
weird, because they are slightly outside of the rest of the type system. For example, in
Chapter 2, I mentioned that a variable of type object can refer to “almost anything.”
The reason I had to qualify that is that pointers are one of the two exceptions—
object can work with any C# data type except a pointer, or a ref struct. (Chap‐
ter 18 discusses the latter.)

But now we really are done. Some types in C# are special, including the fundamental
types discussed in Chapter 2 and the structs, interfaces, enums, delegates, and point‐
ers just described, but everything else looks like a class. There are a few classes that
get special handling in certain circumstances—notably attribute classes (Chapter 14)
and exception classes (Chapter 8)—but except for certain special scenarios, even
those are otherwise completely normal classes. Even though we’ve seen all the kinds
of types that C# supports, there’s one way to define a class that I’ve not shown yet.

Anonymous Types
C# offers two mechanisms for grouping a handful of values together. You’ve already
seen tuples, which were described in Chapter 2. These were introduced in C# 7.0, but
there is an alternative that has been available since C# 3.0: Example 3-104 shows how
to create an instance of an anonymous type and how to use it.

Example 3-104. An anonymous type

var x = new { Title = "Lord", Surname = "Voldemort" };

Console.WriteLine($"Welcome, {x.Title} {x.Surname}");
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As you can see, we use the new keyword without specifying a type name. Instead, we
just use the object initializer syntax. The C# compiler will provide a type that has one
read-only property for each entry inside the initializer. So in Example 3-104, the vari‐
able x will refer to an object that has two properties, Title and Surname, both of type
string. (You do not state the property types explicitly in an anonymous type. The
compiler infers each property’s type from the initialization expression in the same
way as it does for the var keyword.) Since these are just normal properties, we can
access them with the usual syntax, as the final line of the example shows.

The compiler generates a fairly ordinary class definition for each anonymous type. It
is immutable, because all the properties are read-only. It overrides Equals so that you
can compare instances by value, and it also provides a matching GetHashCode imple‐
mentation. The only unusual thing about the generated class is that it’s not possible
to refer to the type by name in C#. Running Example 3-104 in the debugger, I find
that the compiler has chosen the name <>f__AnonymousType0'2. This is not a legal
identifier in C# because of those angle brackets (<>) at the start. C# uses names like
this whenever it wants to create something that is guaranteed not to collide with any
identifiers you might use in your own code, or that it wants to prevent you from
using directly. This sort of identifier is called, rather magnificently, an unspeakable
name.

Because you cannot write the name of an anonymous type, a method cannot declare
that it returns one, or that it requires one to be passed as an argument (unless you use
an anonymous type as an inferred generic type argument, something we’ll see in
Chapter 4). Of course, an expression of type object can refer to an instance of an
anonymous type, but only the method that defines the type can use its properties
(unless you use the dynamic type described in Chapter 2). So anonymous types are of
somewhat limited value. They were added to the language for LINQ’s benefit: they
enable a query to select specific columns or properties from some source collection,
and also to define custom grouping criteria, as you’ll see in Chapter 10.

These limitations provide a clue as to why Microsoft felt the need to add tuples in C#
7.0 when the language already had a pretty similar-looking feature. However, if the
inability to use anonymous types as parameters or return types was the only problem,
an obvious solution might have been to introduce a syntax enabling them to be iden‐
tified. The syntax for referring to tuples could arguably have worked—we can now
write (string Name, double Age) to refer to a tuple type, but why introduce a
whole new concept? Why not just use that syntax to name anonymous types? (Obvi‐
ously we’d no longer be able to call them anonymous types, but at least we wouldn’t
have ended up with two confusingly similar language features.) However, the lack of
names isn’t the only problem with anonymous types.

As C# has been used in increasingly diverse applications, and across a broader range
of hardware, efficiency has become more of a concern. In the database access
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scenarios for which anonymous types were originally introduced, the cost of object
allocations would have been a relatively small part of the picture, but the basic con‐
cept—a small bundle of values—is potentially useful in a much wider range of scenar‐
ios, some of which are more performance sensitive. However, anonymous types are
all reference types, and while in many cases that’s not a problem, it can rule them out
in some hyper-performance-sensitive scenarios. Tuples, on the other hand, are all
value types, making them viable even in code where you are attempting to minimize
the number of allocations. (See Chapter 7 for more detail on memory management
and garbage collection, and Chapter 18 for information about some of the newer lan‐
guage features aimed at enabling more efficient memory usage.) Also, since tuples are
all based on a set of generic types under the covers, they may end up reducing the
runtime overhead required to keep track of loaded types: with anonymous types, you
can end up with a lot more distinct types loaded. For related reasons, anonymous
types would have problems with compatibility across component boundaries.

Does this mean that anonymous types are no longer of any use? In fact, they still offer
some advantages. The most significant one is that you cannot use a tuple in a lambda
expression that will be converted into an expression tree. This issue is described in
detail in Chapter 9, but the practical upshot is that you cannot use tuples in the kinds
of LINQ queries mentioned earlier that anonymous types were added to support.

More subtle is the fact that with tuples, property names are a convenient fiction,
whereas with anonymous types, they are real. This has two upshots. One regards
equivalence: the tuples (X: 10, Y:20) and (W:10, H:20) are considered inter‐
changeable, where any variable capable of holding one is capable of holding the
other. That is not true for anonymous types: new { X = 10, Y = 20 } has a differ‐
ent type than new { W = 10, H = 20 }, and attempting to pass one to code that
expects the other will cause a compiler error. This difference can make tuples more
convenient, but it can also make them more error prone, because the compiler looks
only at the shape of the data when asking whether you’re using the right type. Anony‐
mous types can still enable errors: if you have two types with exactly the same prop‐
erty names and types but which are semantically different, there’s no way to express
that with anonymous types. (In practice you’d probably just define two normal types
to deal with this.) The second upshot of anonymous types offering genuine properties
is that you can pass them to code that inspects an object’s properties. Many
reflection-driven features such as certain serialization frameworks, or UI framework
data binding, depend on being able to discover properties at runtime through reflec‐
tion (see Chapter 13). Anonymous types may work better with these frameworks
than tuples, in which the properties’ real names are all things like Item1, Item2, etc.
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Partial Types and Methods
There’s one last topic I want to discuss relating to types. C# supports what it calls a
partial type declaration. This is a very simple concept: it means that the type declara‐
tion might span multiple files. If you add the partial keyword to a type declaration,
C# will not complain if another file defines the same type—it will simply act as
though all the members defined by the two files had appeared in a single declaration
in one file.

This feature exists to make it easier to write code generation tools. Various features in
Visual Studio can generate bits of your class for you. This is particularly common
with UIs. UI applications typically have markup that defines the layout and content
of each part of the UI, and you can choose for certain UI elements to be accessible in
your code. You usually achieve this by adding a field to a class associated with the
markup file. To keep things simple, all the parts of the class that Visual Studio gener‐
ates go in a separate file from the parts that you write. This means that the generated
parts can be remade from scratch whenever needed without any risk of overwriting
the code that you’ve written. Before partial types were introduced to C#, all the code
for a class had to go in one file, and from time to time, code generation tools would
get confused, leading to loss of code.

Partial classes are not limited to code generation scenarios, so you
can of course use this to split your own class definitions across
multiple files. However, if you’ve written a class so large and com‐
plex that you feel the need to split it into multiple source files just
to keep it manageable, that’s probably a sign that the class is too
complex. A better response to this problem might be to change
your design. However, it can be useful if you need to maintain code
that is built in different ways for different target platforms: you can
use partial classes to put target-specific parts in separate files.

Partial methods are also designed for code generation scenarios, but they are slightly
more complex. They allow one file, typically a generated file, to declare a method,
and for another file to implement the method. (Strictly speaking, the declaration and
implementation are allowed to be in the same file, but they usually won’t be.) This
may sound like the relationship between an interface and a class that implements that
interface, but it’s not quite the same. With partial methods, the declaration and
implementation are in the same class—they’re in different files only because the class
has been split across multiple files.

If you do not provide an implementation of a partial method, the compiler acts as
though the method isn’t there at all, and any code that invokes the method is simply
ignored at compile time. The main reason for this is to support code generation
mechanisms that are able to offer many kinds of notifications, but where you want
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zero runtime overhead for notifications that you don’t need. Partial methods enable
this by letting the code generator declare a partial method for each kind of notifica‐
tion it provides, and to generate code that invokes all of these partial methods where
necessary. All code relating to notifications for which you do not write a handler
method will be stripped out at compile time.

It’s an idiosyncratic mechanism, but it was driven by frameworks that provide
extremely fine-grained notifications and extension points. There are some more
obvious runtime techniques you could use instead, such as interfaces, or features that
I’ll cover in later chapters, such as callbacks or virtual methods. However, any of
these would impose a relatively high cost for unused features. Unused partial meth‐
ods get stripped out at compile time, reducing the cost of the bits you don’t use to
nothing, which is a considerable improvement.

Summary
You’ve now seen most of the kinds of types you can write in C#, and the sorts of
members they support. Classes are the most widely used, but structs are useful if you
need value-like semantics for assignment and arguments; both support the same
member types—namely, fields, constructors, methods, properties, indexers, events,
custom operators, and nested types. Interfaces are abstract, so at the instance level
they support only methods, properties, indexers, and events, but with C# 8.0’s new
default interface implementation feature, they can now provide static fields, nested
types, and default implementations for other members. And enums are very limited,
providing just a set of known values.

There’s another feature of the C# type system that makes it possible to write very flex‐
ible types, called generic types. We’ll look at these in the next chapter.
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1 When saying the names of generic types, the convention is to use the word “of” as in “List of T” or “List of
int.”

CHAPTER 4

Generics

In Chapter 3, I showed how to write types and described the various kinds of mem‐
bers they can contain. However, there’s an extra dimension to classes, structs, inter‐
faces, and methods that I did not show. They can define type parameters,
placeholders that let you plug in different types at compile time. This allows you to
write just one type and then produce multiple versions of it. A type that does this is
called a generic type. For example, the class library defines a generic class called
List<T> that acts as a variable-length array. T is a type parameter here, and you can
use almost any type as an argument, so List<int> is a list of integers, List<string>
is a list of strings, and so on. You can also write a generic method, which is a method
that has its own type arguments, independently of whether its containing type is
generic.

Generic types and methods are visually distinctive because they always have angle
brackets (< and >) after the name. These contain a comma-separated list of parame‐
ters or arguments. The same parameter/argument distinction applies here as with
methods: the declaration specifies a list of parameters, and then when you come to
use the method or type, you supply arguments for those parameters. So List<T>
defines a single type parameter, T, and List<int> supplies a type argument, int, for
that parameter.1

Type parameters can be called whatever you like, within the usual constraints for
identifiers in C#. There’s a common but not universal convention of using T when
there’s only one parameter. For multiparameter generics, you tend to see slightly
more descriptive names. For example, the class library defines the
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Dictionary<TKey, TValue> collection class. Sometimes you will see a descriptive
name like that even when there’s just one parameter, but in any case, you will tend to
see a T prefix, so that the type parameters stand out when you use them in your code.

Generic Types
Classes, structs, and interfaces can all be generic, as can delegates, which we’ll be
looking at in Chapter 9. Example 4-1 shows how to define a generic class. The syntax
for structs and interfaces is much the same: the type name is followed immediately by
a type parameter list.

Example 4-1. Defining a generic class

public class NamedContainer<T>
{
    public NamedContainer(T item, string name)
    {
        Item = item;
        Name = name;
    }

    public T Item { get; }
    public string Name { get; }
}

Inside the body of the class, I can use the type parameter T anywhere you would nor‐
mally see a type name. In this case, I’ve used it as the type of a constructor argument,
and also the Item property. I could define fields of type T too. (In fact I have, albeit
not explicitly. The automatic property syntax generates hidden fields, so my Item
property will have an associated hidden field of type T.) You can also define local
variables of type T. And you’re free to use type parameters as arguments for other
generic types. My NamedContainer<T> could declare a variable of type List<T>, for
example.

The class that Example 4-1 defines is, like any generic type, not a complete type. A
generic type declaration is unbound, meaning that there are type parameters that
must be filled in to produce a complete type. Basic questions, such as how much
memory a NamedContainer<T> instance will require, cannot be answered without
knowing what T is—the hidden field for the Item property would need 4 bytes if T
were an int, but 16 bytes if it were a decimal. The CLR cannot produce executable
code for a type if it does not know how the contents will be arranged in memory. So
to use this, or any other generic type, we must provide type arguments. Example 4-2
shows how. When type arguments are supplied, the result is sometimes called a con‐
structed type. (This has nothing to do with constructors, the special kind of member

194 | Chapter 4: Generics



we looked at in Chapter 3. In fact, Example 4-2 uses those too—it invokes the con‐
structors of a couple of constructed types.)

Example 4-2. Using a generic class

var a = new NamedContainer<int>(42, "The answer");
var b = new NamedContainer<int>(99, "Number of red balloons");
var c = new NamedContainer<string>("Programming C#", "Book title");

You can use a constructed generic type anywhere you would use a normal type. For
example, you can use them as the types for method parameters and return values,
properties, or fields. You can even use one as a type argument for another generic
type, as Example 4-3 shows.

Example 4-3. Constructed generic types as type arguments

// ...where a, and b come from Example 4-2.
var namedInts = new List<NamedContainer<int>>() { a, b };
var namedNamedItem = new NamedContainer<NamedContainer<int>>(a, "Wrapped");

Each different type I supply as an argument to NamedContainer<T> constructs a dis‐
tinct type. (And for generic types with multiple type arguments, each distinct combi‐
nation of type arguments would construct a distinct type.) This means that
NamedContainer<int> is a different type than NamedContainer<string>. That’s why
there’s no conflict in using NamedContainer<int> as the type argument for another
NamedContainer as the final line of Example 4-3 does—there’s no infinite recursion
here.

Because each different set of type arguments produces a distinct type, in most cases
there is no implied compatibility between different forms of the same generic type.
You cannot assign a NamedContainer<int> into a variable of type NamedCon
tainer<string> or vice versa. It makes sense that those two types are incompatible,
because int and string are quite different types. But what if we used object as a
type argument? As Chapter 2 described, you can put almost anything in an object
variable. If you write a method with a parameter of type object, it’s OK to pass a
string, so you might expect a method that takes a NamedContainer<object> to be
happy with a NamedContainer<string>. That won’t work, but some generic types
(specifically, interfaces and delegates) can declare that they want this kind of compat‐
ibility relationship. The mechanisms that support this (called covariance and contra‐
variance) are closely related to the type system’s inheritance mechanisms. Chapter 6
is all about inheritance and type compatibility, so I will discuss this aspect of generic
types there.
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The number of type parameters forms part of an unbound generic type’s identity.
This makes it possible to introduce multiple types with the same name as long as they
have different numbers of type parameters. (The technical term for number of type
parameters is arity.) So you could define a generic class called, say, Operation<T>,
and then another class, Operation<T1, T2>, and also Operation<T1, T2, T3>, and
so on, all in the same namespace, without introducing any ambiguity. When you are
using these types, it’s clear from the number of arguments which type was meant—
Operation<int> clearly uses the first, while Operation<string, double> uses the
second, for example. And for the same reason, a nongeneric Operation class would
be distinct from generic types of the same name.

My NamedContainer<T> example doesn’t do anything to instances of its type argu‐
ment, T—it never invokes any methods, or uses any properties or other members of
T. All it does is accept a T as a constructor argument, which it stores away for later
retrieval. This is also true of many generic types in the .NET class library—I’ve men‐
tioned some collection classes, which are all variations on the same theme of contain‐
ing data for later retrieval. There is a reason for this: a generic class can find itself
working with any type, so it can presume little about its type arguments. However, it
doesn’t have to be this way. You can specify constraints for your type arguments.

Constraints
C# allows you to state that a type argument must fulfill certain requirements. For
example, suppose you want to be able to create new instances of the type on demand.
Example 4-4 shows a simple class that provides deferred construction—it makes an
instance available through a static property, but does not attempt to construct that
instance until the first time you read the property.

Example 4-4. Creating a new instance of a parameterized type

// For illustration only. Consider using Lazy<T> in a real program.
public static class Deferred<T>
    where T : new()
{
    private static T _instance;

    public static T Instance
    {
        get
        {
            if (_instance == null)
            {
                _instance = new T();
            }
            return _instance;
        }

196 | Chapter 4: Generics



    }
}

You wouldn’t write a class like this in practice, because the class
library offers Lazy<T>, which does the same job but with more flex‐
ibility. Lazy<T> can work correctly in multithreaded code, which
Example 4-4 will not. Example 4-4 is just to illustrate how con‐
straints work. Don’t use it!

For this class to do its job, it needs to be able to construct an instance of whatever
type is supplied as the argument for T. The get accessor uses the new keyword, and
since it passes no arguments, it clearly requires T to provide a parameterless construc‐
tor. But not all types do, so what happens if we try to use a type without a suitable
constructor as the argument for Deferred<T>? The compiler will reject it, because it
violates a constraint that this generic type has declared for T. Constraints appear just
before the class’s opening brace, and they begin with the where keyword. The new()
constraint in Example 4-4 states that T is required to supply a zero-argument
constructor.

If that constraint had not been present, the class in Example 4-4 would not compile—
you would get an error on the line that attempts to construct a new T. A generic type
(or method) is allowed to use only features of its type parameters that it has specified
through constraints, or that are defined by the base object type. (The object type
defines a ToString method, for example, so you can invoke that on instances of any
type without needing to specify a constraint.)

C# offers only a very limited suite of constraints. You cannot demand a constructor
that takes arguments, for example. In fact, C# supports only six kinds of constraints
on a type argument: a type constraint, a reference type constraint, a value type con‐
straint, notnull, unmanaged, and the new() constraint. We just saw that last one, so
let’s look at the rest.

Type Constraints
You can constrain the argument for a type parameter to be compatible with a partic‐
ular type. For example, you could use this to demand that the argument type imple‐
ments a certain interface. Example 4-5 shows the syntax.

Example 4-5. Using a type constraint

using System;
using System.Collections.Generic;

public class GenericComparer<T> : IComparer<T>
    where T : IComparable<T>
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{
    public int Compare(T x, T y)
    {
        return x.CompareTo(y);
    }
}

I’ll just explain the purpose of this example before describing how it takes advantage
of a type constraint. This class provides a bridge between two styles of value compari‐
son that you’ll find in .NET. Some data types provide their own comparison logic, but
at times, it can be more useful for comparison to be a separate function implemented
in its own class. These two styles are represented by the IComparable<T> and
IComparer<T> interfaces, which are both part of the class library. (They are in the
System and System.Collections.Generics namespaces, respectively.) I showed
IComparer<T> in Chapter 3—an implementation of this interface can compare two
objects or values of type T. The interface defines a single Compare method that takes
two arguments and returns either a negative number, 0, or a positive number if the
first argument is respectively less than, equal to, or greater than the second. ICompara
ble<T> is very similar, but its CompareTo method takes just a single argument,
because with this interface, you are asking an instance to compare itself to some other
instance.

Some of the .NET class library’s collection classes require you to provide an
IComparer<T> to support ordering operations such as sorting. They use the model in
which a separate object performs the comparison, because this offers two advantages
over the IComparable<T> model. First, it enables you to use data types that don’t
implement IComparable<T>. Second, it allows you to plug in different sorting orders.
(For example, suppose you want to sort some strings with a case-insensitive order.
The string type implements IComparable<string>, but that provides a case-
sensitive, locale-specific order.) So IComparer<T> is the more flexible model. How‐
ever, what if you are using a data type that implements IComparable<T>, and you’re
perfectly happy with the order that provides? What would you do if you’re working
with an API that demands an IComparer<T>?

Actually, the answer is that you’d probably just use the .NET feature designed for this
very scenario: Comparer<T>.Default. If T implements IComparable<T>, that property
will return an IComparer<T> that does precisely what you want. So in practice you
wouldn’t need to write the code in Example 4-5, because Microsoft has already writ‐
ten it for you. However, it’s instructive to see how you’d write your own version,
because it illustrates how to use a type constraint.

The line starting with the where keyword states that this generic class requires the
argument for its type parameter T to implement IComparable<T>. Without this addi‐
tion, the Compare method would not compile—it invokes the CompareTo method on
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an argument of type T. That method is not present on all objects, and the C# compiler
allows this only because we’ve constrained T to be an implementation of an interface
that does offer such a method.

Interface constraints are somewhat unusual. If a method needs a particular argument
to implement a particular interface, you wouldn’t normally need a generic type con‐
straint. You can just use that interface as the argument’s type. However, Example 4-5
can’t do this. You can demonstrate this by trying Example 4-6. It won’t compile.

Example 4-6. Will not compile: interface not implemented

public class GenericComparer<T> : IComparer<T>
{
    public int Compare(IComparable<T> x, T y)
    {
        return x.CompareTo(y);
    }
}

The compiler will complain that I’ve not implemented the IComparer<T> interface’s
Compare method. Example 4-6 has a Compare method, but its signature is wrong—
that first argument should be a T. I could also try the correct signature without speci‐
fying the constraint, as Example 4-7 shows.

Example 4-7. Will not compile: missing constraint

public class GenericComparer<T> : IComparer<T>
{
    public int Compare(T x, T y)
    {
        return x.CompareTo(y);
    }
}

That will also fail to compile, because the compiler can’t find that CompareTo method
I’m trying to use. It’s the constraint for T in Example 4-5 that enables the compiler to
know what that method really is.

Type constraints don’t have to be interfaces, by the way. You can use any type. For
example, you can constrain a particular argument to always derive from a particular
base class. More subtly, you can also define one parameter’s constraint in terms of
another type parameter. Example 4-8 requires the first type argument to derive from
the second, for example.
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2 This is permitted even if you used the plain class constraint in an enabled nullable annotation context. The
nullable references feature does not provide watertight guarantees of non-null-ness, so it permits comparison
with null.

Example 4-8. Constraining one argument to derive from another

public class Foo<T1, T2>
    where T1 : T2
...

Type constraints are fairly specific—they require either a particular inheritance rela‐
tionship, or the implementation of certain interfaces. However, you can define
slightly less specific constraints.

Reference Type Constraints
You can constrain a type argument to be a reference type. As Example 4-9 shows, this
looks similar to a type constraint. You just put the keyword class instead of a type
name. If you are using C# 8.0, and are in an enabled nullable annotation context, the
meaning of this annotation changes: it requires the type argument to be a non-
nullable reference type. If you specify class?, that allows the type argument to be
either a nullable or a non-nullable reference type.

Example 4-9. Constraint requiring a reference type

public class Bar<T>
    where T : class
...

This constraint prevents the use of value types such as int, double, or any struct as
the type argument. Its presence enables your code to do three things that would not
otherwise be possible. First, it means that you can write code that tests whether vari‐
ables of the relevant type are null.2 If you’ve not constrained the type to be a refer‐
ence type, there’s always a possibility that it’s a value type, and those can’t have null
values. The second capability is that you can use it as the target type of the as opera‐
tor, which we’ll look at in Chapter 6. This is really just a variation on the first feature
—the as keyword requires a reference type because it can produce a null result.
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You cannot use a nullable type such as int? (or Nullable<int>, as
the CLR calls it) as the argument for a parameter with a class con‐
straint. Although you can test an int? for null and use it with the
as operator, the compiler generates quite different code for nulla‐
ble types for both operations than it does for a reference type. It
cannot compile a single method that can cope with both reference
types and nullable types if you use these features.

The third feature that a reference type constraint enables is the ability to use certain
other generic types. It’s often convenient for generic code to use one of its type argu‐
ments as an argument for another generic type, and if that other type specifies a con‐
straint, you’ll need to put the same constraint on your own type parameter. So if
some other type specifies a class constraint, this might require you to constrain one of
your own arguments in the same way.

Of course, this does raise the question of why the type you’re using needs the con‐
straint in the first place. It might be that it simply wants to test for null or use the as
operator, but there’s another reason for applying this constraint. Sometimes, you just
need a type argument to be a reference type—there are situations in which a generic
method might be able to compile without a class constraint, but it will not work cor‐
rectly if used with a value type. To illustrate this, I’ll describe a scenario in which I
sometimes find myself needing to use this kind of constraint.

I regularly write tests that create an instance of the class I’m testing, and that also
need one or more fake objects to stand in for real objects with which the object under
test wants to interact. Using these stand-ins reduces the amount of code any single
test has to exercise, and can make it easier to verify the behavior of the object being
tested. For example, my test might need to verify that my code sends messages to a
server at the right moment, but I don’t want to have to run a real server during a unit
test, so I provide an object that implements the same interface as the class that would
transmit the message, but which won’t really send the message. This combination of
an object under test plus a fake is such a common pattern that it might be useful to
put the code into a reusable base class. Using generics means that the class can work
for any combination of the type being tested and the type being faked. Example 4-10
shows a simplified version of a kind of helper class I sometimes write in these
situations.

Example 4-10. Constrained by another constraint

using Microsoft.VisualStudio.TestTools.UnitTesting;
using Moq;

public class TestBase<TSubject, TFake>
    where TSubject : new()
    where TFake : class
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3 Moq relies on the dynamic proxy feature from the Castle Project to generate this type. If you would like to use
something similar in your code, you can find this at http://castleproject.org/.

{
    public TSubject Subject { get; private set; }
    public Mock<TFake> Fake { get; private set; }

    [TestInitialize]
    public void Initialize()
    {
        Subject = new TSubject();
        Fake = new Mock<TFake>();
    }
}

There are various ways to build fake objects for test purposes. You could just write
new classes that implement the same interface as your real objects, but there are also
third-party libraries that can generate them. One such library is called Moq (an open
source project available for free from https://github.com/Moq/), and that’s where the
Mock<T> class in Example 4-10 comes from. It’s capable of generating a fake imple‐
mentation of any interface or of any nonsealed class. (Chapter 6 describes the sealed
keyword.) It will provide empty implementations of all members by default, and you
can configure more interesting behaviors if necessary. You can also verify whether
the code under test used the fake object in the way you expected.

How is that relevant to constraints? The Mock<T> class specifies a reference type con‐
straint on its own type argument, T. This is due to the way in which it creates
dynamic implementations of types at runtime; it’s a technique that can work only for
reference types. Moq generates a type at runtime, and if T is an interface, that gener‐
ated type will implement it, whereas if T is a class, the generated type will derive from
it.3 There’s nothing useful it can do if T is a struct, because you cannot derive from a
value type. That means that when I use Mock<T> in Example 4-10, I need to make sure
that whatever type argument I pass is not a struct (i.e., it must be a reference type).
But the type argument I’m using is one of my class’s type parameters: TFake. So I
don’t know what type that will be—that’ll be up to whoever is using my class.

For my class to compile without error, I have to ensure that I have met the con‐
straints of any generic types that I use. I have to guarantee that Mock<TFake> is valid,
and the only way to do that is to add a constraint on my own type that requires TFake
to be a reference type. And that’s what I’ve done on the third line of the class defini‐
tion in Example 4-10. Without that, the compiler would report errors on the two
lines that refer to Mock<TFake>.
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To put it more generally, if you want to use one of your own type parameters as the
type argument for a generic that specifies a constraint, you’ll need to specify the same
constraint on your own type parameter.

Value Type Constraints
Just as you can constrain a type argument to be a reference type, you can also con‐
strain it to be a value type. As shown in Example 4-11, the syntax is similar to that for
a reference type constraint, but with the struct keyword.

Example 4-11. Constraint requiring a value type

public class Quux<T>
    where T : struct
...

Before now, we’ve seen the struct keyword only in the context of custom value
types, but despite how it looks, this constraint permits any of the built-in numeric
types such as int, as well as custom structs.

.NET’s Nullable<T> type imposes this constraint. Recall from Chapter 3 that Nulla
ble<T> provides a wrapper for value types that allows a variable to hold either a
value, or no value. (We normally use the special syntax C# provides, so we’d write,
say, int? instead of Nullable<int>.) The only reason this type exists is to provide
nullability for types that would not otherwise be able to hold a null value. So it only
makes sense to use this with a value type—reference type variables can already be set
to null without needing this wrapper. The value type constraint prevents you from
using Nullable<T> with types for which it is unnecessary.

Value Types All the Way Down with Unmanaged Constraints
You can specify unmanaged as a constraint, which requires that the type argument be
a value type, but also that it contains no references. Not only does this mean that all
of the type’s fields must be value types, but the type of each field must in turn contain
only fields that are value types, and so on all the way down. In practice this means
that all the actual data needs to be either one of a fixed set of built-in types (essen‐
tially, all the numeric types, bool, or a pointer) or an enum type. This is mainly of
interest in interop scenarios, because types that match the unmanaged constraint can
be passed safely and efficiently to unmanaged code.
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Not Null Constraints
C# 8.0 introduces a new constraint type, notnull, which is available if you use the
new nullable references feature. If you specify this, then either value types or non-
nullable reference types are allowed.

Other Special Type Constraints
Chapter 3 described various special kinds of types, including enumeration types
(enum) and delegate types (covered in detail in Chapter 9). It is sometimes useful to
constrain type arguments to be one of these kinds of types. There’s no special trick to
this, though: you can just use type constraints. All delegate types derive from Sys
tem.Delegate, and all enumeration types derive from System.Enum. As Example 4-12
shows, you can just write a type constraint requiring a type argument to derive from
either of these.

Example 4-12. Constraints requiring delegate and enum types

public class RequireDelegate<T>
    where T : Delegate
{
}

public class RequireEnum<T>
    where T : Enum
{
}

This used not to work. For years, the C# compiler rather surprisingly went out of its
way to forbid the use of these two types in type constraints. It was only in C# 7.3 that
we have finally been able to write these kinds of constraints.

Multiple Constraints
If you’d like to impose multiple constraints for a single type argument, you can just
put them in a list, as Example 4-13 shows. There are a couple of ordering restrictions:
if you have a reference or value type constraint, the class or struct keyword must
come first in the list. If the new() constraint is present, it must be last.

Example 4-13. Multiple constraints

public class Spong<T>
    where T : IEnumerable<T>, IDisposable, new()
...
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When your type has multiple type parameters, you write one where clause for each
type parameter you wish to constrain. In fact, we saw this earlier—Example 4-10
defines constraints for both of its parameters.

Zero-Like Values
There are certain features that all types support, and which therefore do not require a
constraint. This includes the set of methods defined by the object base class, covered
in Chapters 3 and 6. But there’s a more basic feature that can sometimes be useful in
generic code.

Variables of any type can be initialized to a default value. As you have seen in the
preceding chapters, there are some situations in which the CLR does this for us. For
example, all the fields in a newly constructed object will have a known value even if
we don’t write field initializers and don’t supply values in the constructor. Likewise, a
new array of any type will have all of its elements initialized to a known value. The
CLR does this by filling the relevant memory with zeros. The exact meaning of this
depends on the data type. For any of the built-in numeric types, the value will quite
literally be the number 0, but for nonnumeric types, it’s something else. For bool, the
default is false, and for a reference type, it is null.

Sometimes, it can be useful for generic code to be able to set a variable to this initial
default zero-like value. But you cannot use a literal expression to do this in most sit‐
uations. You cannot assign null into a variable whose type is specified by a type
parameter unless that parameter has been constrained to be a reference type. And
you cannot assign the literal 0 into any such variable, because there is no way to con‐
strain a type argument to be a numeric type.

Instead, you can request the zero-like value for any type using the default keyword.
(This is the same keyword we saw inside a switch statement in Chapter 2, but used in
a completely different way. C# keeps up the C-family tradition of defining multiple,
unrelated meanings for each keyword.) If you write default(SomeType), where Some
Type is either a specific type or a type parameter, you will get the default initial value
for that type: 0 if it is a numeric type, and the equivalent for any other type. For
example, the expression default(int) has the value 0, default(bool) is false, and
default(string) is null. You can use this with a generic type parameter to get the
default value for the corresponding type argument, as Example 4-14 shows.

Example 4-14. Getting the default (zero-like) value of a type argument

static void ShowDefault<T>()
{
    Console.WriteLine(default(T));
}
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Inside a generic type or method that defines a type parameter T, the expression
default(T) will produce the default, zero-like value for T—whatever T may be—
without requiring constraints. So you could use the generic method in Example 4-14
to verify that the defaults for int, bool, and string are the values I stated.

In cases where the compiler is able to infer what type is required, you can use a sim‐
pler form. Instead of writing default(T) you can just write default. That wouldn’t
work in Example 4-14 because Console.WriteLine can accept pretty much anything,
so the compiler can’t narrow it down to one option, but it will work in Example 4-15
because the compiler can see that the generic method’s return type is T, so this must
need a default(T). Since it can infer that, it’s enough for us to write just default.

Example 4-15. Getting the default (zero-like) value of an inferred type

static T GetDefault<T>() => default;

And since I’ve just shown you an example of one, this seems like a good time to talk
about generic methods.

Generic Methods
As well as generic types, C# also supports generic methods. In this case, the generic
type parameter list follows the method name and precedes the method’s normal
parameter list. Example 4-16 shows a method with a single type parameter. It uses
that parameter as its return type, and also as the element type for an array to be
passed in as the method’s argument. This method returns the final element in the
array, and because it’s generic, it will work for any array element type.

Example 4-16. A generic method

public static T GetLast<T>(T[] items) => items[items.Length - 1];

You can define generic methods inside either generic types or non‐
generic types. If a generic method is a member of a generic type, all
of the type parameters from the containing type are in scope inside
the method, as well as the type parameters specific to the method.

Just as with a generic type, you can use a generic method by specifying its name along
with its type arguments, as Example 4-17 shows.
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Example 4-17. Invoking a generic method

int[] values = { 1, 2, 3 };
int last = GetLast<int>(values);

Generic methods work in a similar way to generic types, but with type parameters
that are only in scope within the method declaration and body. You can specify con‐
straints in much the same way as with generic types. The constraints appear after the
method’s parameter list and before its body, as Example 4-18 shows.

Example 4-18. A generic method with a constraint

public static T MakeFake<T>()
    where T : class
{
    return new Mock<T>().Object;
}

There’s one significant way in which generic methods differ from generic types,
though: you don’t always need to specify a generic method’s type arguments explic‐
itly.

Type Inference
The C# compiler is often able to infer the type arguments for a generic method. I can
modify Example 4-17 by removing the type argument list from the method invoca‐
tion, as Example 4-19 shows, and this doesn’t change the meaning of the code in any
way.

Example 4-19. Generic method type argument inference

int[] values = { 1, 2, 3 };
int last = GetLast(values);

When presented with this sort of ordinary-looking method call, if there’s no nonge‐
neric method of that name available, the compiler starts looking for suitable generic
methods. If the method in Example 4-16 is in scope, it will be a candidate, and the
compiler will attempt to deduce the type arguments. This is a pretty simple case. The
method expects an array of some type T, and we’ve passed an array with elements of
type int, so it’s not a massive stretch to work out that this code should be treated as a
call to GetLast<int>.

It gets more complex with more intricate cases. The C# specification has about six
pages dedicated to the type inference algorithm, but it’s all to support one goal: let‐
ting you leave out type arguments when they would be redundant. By the way, type
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inference is always performed at compile time, so it’s based on the static type of the
method arguments.

With APIs that make extensive use of generics (such as LINQ, the topic of Chap‐
ter 10), explicitly listing every type argument can make the code very hard to follow,
so it is common to rely on type inference. And if you use anonymous types, type
argument inference becomes essential because it is not possible to supply the type
arguments explicitly.

Generics and Tuples
C#’s lightweight tuples have a distinctive syntax, but as far as the runtime is con‐
cerned, there is nothing special about them. They are all just instances of a set of
generic types. Look at Example 4-20. This uses (int, int) as the type of a local vari‐
able to indicate that it is a tuple containing two int values.

Example 4-20. Declaring a tuple variable in the normal way

(int, int) p = (42, 99);

Now look at Example 4-21. This uses the ValueTuple<int, int> type in the System
namespace. But this is exactly equivalent to the declaration in Example 4-20. In Vis‐
ual Studio, if you hover the mouse over the p2 variable, it will report its type as (int,
int).

Example 4-21. Declaring a tuple variable with its underlying type

ValueTuple<int, int> p2 = (42, 99);

One thing that C#’s special syntax for tuples adds is the ability to name the tuple ele‐
ments. The ValueTuple family names its elements Item1, Item2, Item3, etc., but in
C# we can pick other names. When you declare a local variable with named tuple ele‐
ments, those names are entirely a fiction maintained by C#—there is no runtime rep‐
resentation of those at all. However, when a method returns a tuple, as in
Example 4-22, it’s different: the names need to be visible so that code consuming this
method can use the same names. Even if this method is in some library component
that my code has referenced, I want to be able to write Pos().X, instead of having to
use Pos().Item1.

Example 4-22. Returning a tuple

public (int X, int Y) Pos() => (10, 20);
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To make this work, the compiler applies an attribute named TupleElementNames to
the method’s return value, and this contains an array listing the property names to
use. (Chapter 14 describes attributes.) You can’t actually write code that does this
yourself: if you write a method that returns a ValueTuple<int, int> and you try to
apply the TupleElementNamesAttribute as a return attribute, the compiler will pro‐
duce an error telling you not to use this attribute directly, and to use the tuple syntax
instead. But that attribute is how the compiler reports the tuple element names.

Be aware that there’s another family of tuple types in the .NET class library,
Tuple<T>, Tuple<T1, T2>, and so on. These look almost identical to the ValueTuple
family. The difference is that the Tuple family of generic types are all classes, whereas
all the ValueTuple types are structs. The C# lightweight tuple syntax only uses the
ValueTuple family. The Tuple family has been around in the .NET class libraries for
much longer though, so you often see them used in older code that needed to bundle
a set of values together without defining a new type just for that job.

Inside Generics
If you are familiar with C++ templates, you will by now have noticed that C# generics
are quite different than templates. Superficially, they have some similarities, and can
be used in similar ways—both are suitable for implementing collection classes, for
example. However, there are some template-based techniques that simply won’t work
in C#, such as the code in Example 4-23.

Example 4-23. A template technique that doesn’t work in C# generics

public static T Add<T>(T x, T y)
{
    return x + y;  // Will not compile
}

You can do this sort of thing in a C++ template but not in C#, and you cannot fix it
completely with a constraint. You could add a type constraint requiring T to derive
from some type that defines a custom + operator, which would get this to compile,
but it would be pretty limited—it would work only for types derived from that base
type. In C++, you can write a template that will add together two items of any type
that supports addition, whether that is a built-in type or a custom one. Moreover,
C++ templates don’t need constraints; the compiler is able to work out for itself
whether a particular type will work as a template argument.

This issue is not specific to arithmetic. The fundamental problem is that because
generic code relies on constraints to know what operations are available on its type
parameters, it can use only features represented as members of interfaces or shared
base classes. If arithmetic in .NET were interface-based, it would be possible to define
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a constraint that requires it. But operators are all static methods, and although C# 8.0
has made it possible for interfaces to contain static members, there’s no way for indi‐
vidual types to supply their own implementation—the dynamic dispatch mechanism
that enables each type to supply its own interface implementation only works for
instance members. This new language feature makes it possible to imagine some
IArithmetic interface that defined the necessary static operator methods, and for
these all to defer to instance members of the interface that did the actual work, but no
such mechanism exists at the time of writing.

The limitations of C# generics are an upshot of how they are designed to work, so it’s
useful to understand the mechanism. (These limitations are not specific to Micro‐
soft’s CLR, by the way. They are an inevitable result of how generics fit into the
design of the CLI.)

Generic methods and types are compiled without knowing which types will be used
as arguments. This is the fundamental difference between C# generics and C++ tem‐
plates—in C++, the compiler gets to see every instantiation of a template. But with
C#, you can instantiate generic types without access to any of the relevant source
code, long after the code has been compiled. After all, Microsoft wrote the generic
List<T> class years ago, but you could write a brand-new class today and plug that in
as the type argument just fine. (You might point out that the C++ standard library’s
std::vector has been around even longer. However, the C++ compiler has access to
the source file that defines the class, which is not true of C# and List<T>. C# sees
only the compiled library.)

The upshot of this is that the C# compiler needs to have enough information to be
able to generate type-safe code at the point at which it compiles generic code. Take
Example 4-23. It cannot know what the + operator means here, because it would be
different for different types. With the built-in numeric types, that code would need to
compile to the specialized intermediate language (IL) instructions for performing
addition. If that code were in a checked context (i.e., using the checked keyword
shown in Chapter 2), we’d already have a problem, because the code for adding inte‐
gers with overflow checking uses different IL opcodes for signed and unsigned inte‐
gers. Furthermore, since this is a generic method, we may not be dealing with the
built-in numeric types at all—perhaps we are dealing with a type that defines a cus‐
tom + operator, in which case the compiler would need to generate a method call.
(Custom operators are just methods under the covers.) Or if the type in question
turns out not to support addition, the compiler should generate an error.

There are several possible outcomes for compiling a simple addition expression,
depending on the actual types involved. That is fine when the types are known to the
compiler, but it has to compile the code for generic types and methods without
knowing which types will be used as arguments.
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You might argue that perhaps Microsoft could have supported some sort of tentative
semicompiled format for generic code, and in a sense, it did. When introducing
generics, Microsoft modified the type system, file format, and IL instructions to allow
generic code to use placeholders representing type parameters to be filled in when the
type is fully constructed. So why not extend it to handle operators? Why not let the
compiler generate errors at the point at which you compile code that attempts to use
a generic type instead of insisting on generating errors when the generic code itself is
compiled? Well, it turns out that you can plug in new sets of type arguments at run‐
time—the reflection API that we’ll look at in Chapter 13 lets you construct generic
types. So there isn’t necessarily a compiler available at the point at which an error
would become apparent, because not all versions of .NET ship with a copy of the C#
compiler. And in any case, what should happen if a generic class was written in C#
but consumed by a completely different language, perhaps one that didn’t support
operator overloading? Which language’s rules should apply when it comes to work‐
ing out what to do with that + operator? Should it be the language in which the
generic code was written, or the language in which the type argument was written?
(What if there are multiple type parameters, and for each argument, you use a type
written in a different language?) Or perhaps the rules should come from the language
that decided to plug the type arguments into the generic type or method, but what
about cases where one piece of generic code passes its arguments through to some
other generic entity? Even if you could decide which of these approaches would be
best, it supposes that the rules used to determine what a line of code actually means
are available at runtime, a presumption that once again founders on the fact that the
relevant compilers will not necessarily be installed on the machine running the code.

.NET generics solve this problem by requiring the meaning of generic code to be fully
defined when the generic code is compiled, using the rules of the language in which
the generic code was written. If the generic code involves using methods or other
members, they must be resolved statically (i.e., the identity of those members must be
determined precisely at compile time). Critically, that means compile time for the
generic code itself, not for the code consuming the generic code. These requirements
explain why C# generics are not as flexible as the consumer-compile-time substitu‐
tion model that C++ uses. The payoff is that you can compile generics into libraries
in binary form, and they can be used by any .NET language that supports generics,
with completely predictable behavior.

Summary
Generics enable us to write types and methods with type arguments, which can be
filled in at compile time to produce different versions of the types or methods that
work with particular types. The most important use case for generics back when they
were first introduced was to make it possible to write type-safe collection
classes. .NET did not have generics at the beginning, so the collection classes available
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in version 1.0 used the general-purpose object type. This meant you had to cast
objects back to their real type every time you extracted one from a collection. It also
meant that value types were not handled efficiently in collections; as we’ll see in
Chapter 7, referring to values through an object requires the generation of boxes to
contain the values. Generics solve these problems well. They make it possible to write
collection classes such as List<T>, which can be used without casts. Moreover,
because the CLR is able to construct generic types at runtime, it can generate code
optimized for whatever type a collection contains. So collection classes can handle
value types such as int much more efficiently than before generics were introduced.
We’ll look at some of these collection types in the next chapter.
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CHAPTER 5

Collections

Most programs need to deal with multiple pieces of data. Your code might have to
iterate through some transactions to calculate the balance of an account, for example,
or display recent messages in a social media web application, or update the positions
of characters in a game. In most kinds of applications, the ability to work with collec‐
tions of information is likely to be important.

C# offers a simple kind of collection called an array. The CLR’s type system supports
arrays intrinsically, so they are efficient, but for some scenarios they can be too basic,
so the class library builds on the fundamental services provided by arrays to provide
more powerful and flexible collection types. I’ll start with arrays, because they are the
foundation of most of the collection classes.

Arrays
An array is an object that contains multiple elements of a particular type. Each ele‐
ment is a storage location similar to a field, but whereas with fields we give each stor‐
age slot a name, array elements are simply numbered. The number of elements is
fixed for the lifetime of the array, so you must specify the size when you create it.
Example 5-1 shows the syntax for creating new arrays.

Example 5-1. Creating arrays

int[] numbers = new int[10];
string[] strings = new string[numbers.Length];

As with all objects, we construct an array with the new keyword followed by a type
name, but instead of parentheses with constructor arguments, we put square brackets
containing the array size. As the example shows, the expression defining the size can
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be a constant, but it doesn’t have to be—the second array’s size will be determined by
evaluating numbers.Length at runtime. In this case the second array will have 10 ele‐
ments, because we’re using the first array’s Length property. All arrays have this read-
only property, and it returns the total number of elements in the array.

The Length property’s type is int, which means it can “only” cope with arrays of up
to about 2.1 billion elements. In a 32-bit process, that’s rarely a problem, because the
limiting factor on array size is likely to be available address space. In 64-bit processes,
larger arrays are possible, so there’s also a LongLength property of type long. How‐
ever, you don’t see that used much, because the runtime does not currently support
creation of arrays with more than 2,147,483,591 (0x7FEFFFFF) elements in any single
dimension. So only rectangular multidimensional arrays (described later in this chap‐
ter) can contain more elements than Length can report. And even those have an
upper limit of 4,294,967,295 (0xFFFFFFFF) elements on current versions of .NET.

If you’re using .NET Framework (and not .NET Core) you’ll run
into another limit first: a single array cannot normally take more
than 2 GB of memory. (This is an upper limit on the size of any
single object. In practice, only arrays usually run into this limit,
although you could conceivably hit it with a particularly long
string.) You can overcome this by adding a <gcAllowVeryLargeOb
jects enabled="true" /> element inside the <runtime> section
of a project’s App.config file. The limits in the preceding paragraph
still apply, but those are significantly less restrictive than a 2-GB
ceiling.

In Example 5-1, I’ve broken my normal rule of avoiding redundant type names in
variable declarations. The initializer expressions make it clear that the variables are
arrays of int and string, respectively, so I’d normally use var for this sort of code,
but I’ve made an exception here so that I can show how to write the name of an array
type. Array types are distinct types in their own right, and if we want to refer to the
type that is a single dimensional array of some particular element type, we put []
after the element type name.

All array types derive from a common base class called System.Array. This defines
the Length and LongLength properties, and various other members we’ll be looking
at in due course. You can use array types in all the usual places you can use other
types. So you could declare a field, or a method parameter of type string[]. You can
also use an array type as a generic type argument. For example, IEnumerable<int[]>
would be a sequence of arrays of integers (each of which could be a different size).

An array type is always a reference type, regardless of the element type. Nonetheless,
the choice between reference type and value type elements makes a significant differ‐
ence in an array’s behavior. As discussed in Chapter 3, when an object has a field with
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a value type, the value itself lives inside the memory allocated for the object. The
same is true for arrays—when the elements are value types, the value lives in the array
element itself, but with a reference type, elements contain only references. Each
instance of a reference type has its own identity, and since multiple variables may all
end up referring to that instance, the CLR needs to manage its lifetime independently
of any other object, so it will end up with its own distinct block of memory. So while
an array of 1,000 int values can all live in one contiguous memory block, with refer‐
ence types, the array just contains the references, not the actual instances. An array of
1,000 different strings would need 1,001 heap blocks—one for the array and one for
each string.

When using reference type elements, you’re not obliged to make
every element in an array of references refer to a distinct object.
You can leave as many elements as you like set to null, and you’re
also free to make multiple elements refer to the same object. This is
just another variation on the theme that references in array ele‐
ments work in much the same way as they do in local variables and
fields.

To access an element in an array, we use square brackets containing the index of the
element we’d like to use. The index is zero-based. Example 5-2 shows a few examples.

Example 5-2. Accessing array elements

// Continued from Example 5-1
numbers[0] = 42;
numbers[1] = numbers.Length;
numbers[2] = numbers[0] + numbers[1];
numbers[numbers.Length - 1] = 99;

As with the array’s size at construction, the array index can be a constant, but it can
also be a more complex expression, calculated at runtime. In fact, that’s also true of
the part that comes directly before the opening bracket. In Example 5-2, I’ve just used
a variable name to refer to an array, but you can use brackets after any array-typed
expression. Example 5-3 retrieves the first element of an array returned by a method
call. (The details of the example aren’t strictly relevant, but in case you’re wondering,
it finds the copyright message associated with the component that defines an object’s
type. For example, if you pass a string to the method, it will return “© Microsoft
Corporation. All rights reserved.” This uses the reflection API and custom attributes,
the topics of Chapters 13 and 14.)
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Example 5-3. Convoluted array access

public static string GetCopyrightForType(object o)
{
    Assembly asm = o.GetType().Assembly;
    var copyrightAttribute = (AssemblyCopyrightAttribute)
        asm.GetCustomAttributes(typeof(AssemblyCopyrightAttribute), true)[0];
    return copyrightAttribute.Copyright;
}

Expressions involving array element access are special, in that C# considers them to
be a kind of variable. This means that as with local variables and fields, you can use
them on the lefthand side of an assignment statement, whether they’re simple, like
the expressions in Example 5-2, or more complex, like those in Example 5-3. You can
also use them with the ref keyword (as described in Chapter 3) to pass a reference to
a particular element to a method, to store it in a ref local variable, or to return it
from a method with a ref return type.

The CLR always checks the index against the array size. If you try to use either a neg‐
ative index, or an index greater than or equal to the length of the array, the runtime
will throw an IndexOutOfRangeException.

Although the size of an array is invariably fixed, its contents are always modifiable—
there is no such thing as a read-only array. (As we’ll see in “ReadOnlyCollection<T>”
on page 245, .NET provides a class that can act as a read-only façade for an array.)
You can, of course, create an array with an immutable element type, and this will pre‐
vent you from modifying the element in place. So Example 5-4, which uses the
immutable Complex value type provided by .NET, will not compile.

Example 5-4. How not to modify an array with immutable elements

var values = new Complex[10];
// These lines both cause compiler errors:
values[0].Real = 10;
values[0].Imaginary = 1;

The compiler complains because the Real and Imaginary properties are read-only;
Complex does not provide any way to modify its values. Nevertheless, you can modify
the array: even if you can’t modify an existing element in place, you can always over‐
write it by supplying a different value, as Example 5-5 shows.

Example 5-5. Modifying an array with immutable elements

var values = new Complex[10];
values[0] = new Complex(10, 1);

216 | Chapter 5: Collections



Read-only arrays wouldn’t be much use in any case, because all arrays start out filled
with a default value that you don’t get to specify. The CLR fills the memory for a new
array with zeros, so you’ll see 0, null, or false, depending on the array’s element
type. For some applications, all-zero (or equivalent) content might be a useful initial
state for an array, but in some cases, you’ll want to set some other content before
starting to work.

Array Initialization
The most straightforward way to initialize an array is to assign values into each ele‐
ment in turn. Example 5-6 creates a string array, and since string is a reference
type, creating a five-element array doesn’t create five strings. Our array starts out
with five nulls. (This is true even if you’ve enabled C# 8.0’s nullable references fea‐
ture, as described in Chapter 3. Unfortunately, array initialization is one of the holes
that make it impossible for that feature to offer absolute guarantees of non-nullness.)
So the code goes on to populate each array element with a reference to a string.

Example 5-6. Laborious array initialization

var workingWeekDayNames = new string[5];
workingWeekDayNames[0] = "Monday";
workingWeekDayNames[1] = "Tuesday";
workingWeekDayNames[2] = "Wednesday";
workingWeekDayNames[3] = "Thursday";
workingWeekDayNames[4] = "Friday";

This works, but it is unnecessarily verbose. C# supports a shorter syntax that achieves
the same thing, shown in Example 5-7. The compiler turns this into code that works
like Example 5-6.

Example 5-7. Array initializer syntax

var workingWeekDayNames = new string[]
    { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" };

You can go further. Example 5-8 shows that if you specify the type explicitly in the
variable declaration, you can write just the initializer list, leaving out the new key‐
word. This works only in initializer expressions, by the way; you can’t use this syntax
to create an array in other expressions, such as assignments or method arguments.
(The more verbose initializer expression in Example 5-7 works in all those contexts.)
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Example 5-8. Shorter array initializer syntax

string[] workingWeekDayNames =
    { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" };

We can go further still: if all the expressions inside the array initializer list are of the
same type, the compiler can infer the array type, so we can write just new[] without
an explicit element type. Example 5-9 does this.

Example 5-9. Array initializer syntax with element type inference

var workingWeekDayNames = new[]
    { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" };

That was actually slightly longer than Example 5-8. However, as with Example 5-7,
this style is not limited to variable initialization. You can also use it when you need to
pass an array as an argument to a method, for example. If the array you are creating
will only be passed into a method and never referred to again, you may not want to
declare a variable to refer to it. It might be neater to write the array directly in the
argument list. Example 5-10 passes an array of strings to a method using this techni‐
que.

Example 5-10. Array as argument

SetHeaders(new[] { "Monday", "Tuesday", "Wednesday", "Thursday", "Friday" });

Searching and Sorting
Sometimes, you will not know the index of the array element you need. For example,
suppose you are writing an application that shows a list of recently used files. Each
time the user opens a file in your application, you would want to bring that file to the
top of the list, and you’d need to detect when the file was already in the list to avoid
having it appear multiple times. If the user happened to use your recent file list to
open the file, you would already know it’s in the list, and at what offset. But what if
the user opens the file some other way? In that case, you’ve got a filename and you
need to find out where that appears in your list, if it’s there at all.

Arrays can help you find the item you want in this kind of scenario. There are meth‐
ods that examine each element in turn, stopping at the first match, and there are also
methods that can work considerably faster if your array stores its elements in order.
To help with that, there are also methods for sorting the contents of an array into
whichever order you require.

The static Array.IndexOf method provides the most straightforward way to search
for an element. It does not need your array elements to be in any particular order:
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you just pass it the array in which to search and the value you’re looking for, and it
will walk through the elements until it finds a value equal to the one you want. It
returns the index at which it found the first matching element, or −1 if it reached the
end of the array without finding a match. Example 5-11 shows how you might use
this method as part of the logic for updating a list of recently opened files.

Example 5-11. Searching with IndexOf

int recentFileListIndex = Array.IndexOf(myRecentFiles, openedFile);
if (recentFileListIndex < 0)
{
    AddNewRecentEntry(openedFile);
}
else
{
    MoveExistingRecentEntryToTop(recentFileListIndex);
}

That example starts its search at the beginning of the array, but you have other
options. The IndexOf method is overloaded, and you can pass an index from which
to start searching, and optionally a second number indicating how many elements
you want it to look at before it gives up. There’s also a LastIndexOf method, which
works in reverse. If you do not specify an index, it starts from the end of the array
and works backward. As with IndexOf, you can provide one or two more arguments,
indicating the offset at which you’d like to start and the number of elements to check.

These methods are fine if you know precisely what value you’re looking for, but
often, you’ll need to be a bit more flexible: you may want to find the first (or last)
element that meets some particular criteria. For example, suppose you have an array
representing the bin values for a histogram. It might be useful to find out which is the
first nonempty bin. So rather than searching for a particular value, you’d want to find
the first element with any value other than zero. Example 5-12 shows how to use the
FindIndex method to locate the first such entry.

Example 5-12. Searching with FindIndex

public static int GetIndexOfFirstNonEmptyBin(int[] bins)
    => Array.FindIndex(bins, IsNonZero);

private static bool IsNonZero(int value) => value != 0;

My IsNonZero method contains the logic that decides whether any particular element
is a match, and I’ve passed that method as an argument to FindIndex. You can pass
any method with a suitable signature—FindIndex requires a method that takes an
instance of the array’s element type and returns a bool. (Strictly speaking, it takes a
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Predicate<T>, which is a kind of delegate, something I’ll discuss in Chapter 9.) Since
any method with a suitable signature will do, we can make our search criteria as sim‐
ple or as complex as we like.

By the way, the logic for this particular example is so simple that writing a separate
method for the condition is probably overkill. For simple cases such as these, you’d
almost certainly use the lambda syntax (using => to indicate that an expression repre‐
sents an inline function) instead. That’s also something I’ll be discussing in Chap‐
ter 9, so this is jumping ahead, but I’ll just show how it looks because it’s rather more
concise. Example 5-13 has exactly the same effect as Example 5-12, but doesn’t
require us to declare and write a whole extra method explicitly. (And at the time of
writing this, it’s also more efficient, because with a lambda, the compiler generates
code that reuses the Predicate<T> object that it creates, whereas Example 5-12 will
construct a new one each time.)

Example 5-13. Using a lambda with FindIndex

public static int GetIndexOfFirstNonEmptyBin(int[] bins)
    => Array.FindIndex(bins, value => value != 0);

As with IndexOf, FindIndex provides overloads that let you specify the offset at
which to start searching, and the number of elements to check before giving up. The
Array class also provides FindLastIndex, which works backward—it corresponds to
LastIndexOf, much as FindIndex corresponds to IndexOf.

When you’re searching for an array entry that meets some particular criteria, you
might not be all that interested in the index of the matching element—you might
need to know only the value of the first match. Obviously, it’s pretty easy to get that:
you can just use the value returned by FindIndex in conjunction with the array index
syntax. However, you don’t need to, because the Array class offers Find and Fin
dLast methods that search in precisely the same way as FindIndex and FindLastIn
dex, but return the first or last matching value instead of returning the index at which
that value was found.

An array could contain multiple items that meet your criteria, and you might want to
find all of them. You could write a loop that calls FindIndex, adding one to the index
of the previous match and using that as the starting point for the next search, repeat‐
ing until either reaching the end of the array, or getting a result of −1, indicating that
no more matches were found. And that would be the way to go if you needed to
know the index of each match. But if you are interested only in knowing all of the
matching values, and do not need to know exactly where those values were in the
array, you could use the FindAll method shown in Example 5-14 to do all the work
for you.
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Example 5-14. Finding multiple items with FindAll

public T[] GetNonNullItems<T>(T[] items) where T : class
    => Array.FindAll(items, value => value != null);

This takes any array with reference type elements, and returns an array that contains
only the non-null elements in that array.

All of the search methods I’ve shown so far run through an array’s elements in order,
testing each element in turn. This works well enough, but with large arrays it may be
unnecessarily expensive, particularly in cases where comparisons are relatively com‐
plex. Even for simple comparisons, if you need to deal with arrays with millions of
elements, this sort of search can take long enough to introduce visible delays. How‐
ever, we can do much better. For example, given an array of values sorted into
ascending order, a binary search can perform many orders of magnitude better.
Example 5-15 examines this.

Example 5-15. Search performance and BinarySearch

var sw = new Stopwatch();

int[] big = new int[100_000_000];
Console.WriteLine("Initializing");
sw.Start();
var r = new Random(0);
for (int i = 0; i < big.Length; ++i)
{
    big[i] = r.Next(big.Length);
}
sw.Stop();
Console.WriteLine(sw.Elapsed.ToString("s\\.f"));
Console.WriteLine();

Console.WriteLine("Searching");
for (int i = 0; i < 6; ++i)
{
    int searchFor = r.Next(big.Length);
    sw.Reset();
    sw.Start();
    int index = Array.IndexOf(big, searchFor);
    sw.Stop();
    Console.WriteLine($"Index: {index}");
    Console.WriteLine($"Time:  {sw.Elapsed:s\\.ffff}");
}
Console.WriteLine();

Console.WriteLine("Sorting");
sw.Reset();
sw.Start();
Array.Sort(big);
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1 I’ve limited the range of the random numbers to be the same as the size of the array, because with Random’s
full range, the majority of searches will fail.

sw.Stop();
Console.WriteLine(sw.Elapsed.ToString("s\\.ff"));
Console.WriteLine();

Console.WriteLine("Searching (binary)");
for (int i = 0; i < 6; ++i)
{
    int searchFor = r.Next() % big.Length;
    sw.Reset();
    sw.Start();
    int index = Array.BinarySearch(big, searchFor);
    sw.Stop();
    Console.WriteLine($"Index: {index}");
    Console.WriteLine($"Time:  {sw.Elapsed:s\\.fffffff}");
}

This example creates an int[] with 100,000,000 values. It fills it with random num‐
bers1 using the Random class, and then uses Array.IndexOf to search for some ran‐
domly selected values in the array. Next, it sorts the array into ascending order by
calling Array.Sort. This lets the code use the Array.BinarySearch method to search
for some more randomly selected values. It uses the Stopwatch class from the Sys
tem.Diagnostics namespace to measure how long this all takes. (The strange-
looking text in the final Console.WriteLine is a format specifier indicating how
many decimal places I require.) By measuring such tiny steps, we’re in the slightly
suspect territory known as microbenchmarking. Measuring a single operation out of
context can produce misleading results because in real systems, performance depends
on numerous factors that interact in complex and sometimes unpredictable ways, so
you need to take these figures with a pinch of salt. Even so, the scale of the difference
in this case is pretty revealing. Here’s the output from my system:

Initializing
1.07

Searching
Index: 55504605
Time:  0.0191
Index: 21891944
Time:  0.0063
Index: 56663763
Time:  0.0173
Index: 37441319
Time:  0.0111
Index: -1
Time:  0.0314
Index: 9344095
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Time:  0.0032

Sorting
7.3

Searching (binary)
Index: 8990721
Time:  0.0002616
Index: 4404823
Time:  0.0000205
Index: 52683151
Time:  0.0000019
Index: -37241611
Time:  0.0000018
Index: -49384544
Time:  0.0000019
Index: 88243160
Time:  0.000001

It takes 1.07 seconds just to populate the array with random numbers. (Most of that
time is spent generating the numbers. Filling the array with a constant value, or with
the loop count, takes more like 0.1 seconds.) The IndexOf searches take varying
lengths of time. The slowest was when the value being searched for was not present—
the search that failed returned an index of −1, and it took 0.0314 seconds here. That’s
because IndexOf had to look at every single element in the array. In the cases where it
found a match, it was faster, and the speed was determined by how early on it found
the match. The fastest in this particular run was when it found a match after just over
9 million entries—that took 0.0032 seconds, around 10 times faster than having to
look at all 100 million entries. Predictably enough, the time increases with the num‐
ber of elements it has to inspect.

On average, you’d expect successful searches to take about half as long as the worst
case (assuming evenly distributed random numbers), so you’d be looking at some‐
where around 0.016 seconds, and the overall average would depend on how often you
expect searches to fail. That’s not disastrous, but it’s definitely heading into problem‐
atic territory. For UI work, anything that takes longer than 0.1 seconds tends to
annoy the user, so although our average speed might be fast enough, our worst case is
close enough to the margin of acceptability for concern. (And, of course, you may see
much slower results on low-end hardware.) While this is looking only moderately
concerning for client-side scenarios, this sort of performance could be a serious prob‐
lem on a heavily loaded server. If you do this much work for every incoming request,
it will seriously limit the number of users each server can support.

Now look at the times for the binary search, a technique that does not look at every
element. It starts with the element in the middle of the array. If that happens to be the
value required, it can stop, but otherwise, depending on whether the value it found is
higher or lower than the value we want, it can know instantly which half of the array
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2 A more complex test setup reveals 261.1 µs to be an exceptional result: it appears that the first search a pro‐
cess performs is relatively slow. This may well be overhead unrelated to searching that affects only the first
piece of code to call BinarySearch, such as JIT compilation. When the intervals get this small, you’re at the
limits of what microbenchmarking can usefully tell you.

the value will be in (if it’s present at all). It then leaps to the middle of the remaining
half, and if that’s not the right value, again it can determine which quarter will con‐
tain the target. At each step, it narrows the search down by half, and after halving the
size a few times, it will be down to a single item. If that’s not the value it’s looking for,
the item it wants is missing.

This process explains the curious negative numbers that Binary
Search produces. When the value is not found, this binary chop
process will finish at the value nearest to the one we are looking
for, and that might be useful information. So a negative number
still tells us the search failed, but that number is the negation of the
index of the closest match.

Each iteration is more complex than in a simple linear search, but with large arrays it
pays off, because far fewer iterations are needed. In this example, it has to perform
only 27 steps instead of 100,000,000. Obviously, with smaller arrays, the improve‐
ment is reduced, and there will be some minimum size of array at which the relative
complexity of a binary search outweighs the benefit. If your array contains only 10
values, a linear search may well be faster. But a binary search is the clear winner with
100,000,000 elements.

By massively reducing the amount of work, BinarySearch runs a lot faster than
IndexOf. In this example, the worst case is 0.0002616 seconds (261.6 µs), which is
about 12 times faster than the best result we saw with the linear search. And that first
search was an unusually slow outlier;2 the second was an order of magnitude faster,
and the rest were all two orders of magnitude faster, fast enough that we’re near the
point where it’s difficult to make accurate measurements for individual operations.
So once this code is up and running, the search speeds are all under 2 µs. Perhaps
most interestingly, where it found no match (producing a negative result)
Array.IndexOf had its slowest result by far, but with BinarySearch, the no-match
cases look pretty quick: it determines that an element is missing over 15,000 times
faster than the linear search does.

Besides consuming far less CPU time for each search, this sort of search does less col‐
lateral damage. One of the more insidious kinds of performance problems that can
occur on modern computers is code that is not just slow in its own right, but that
causes everything else on the machine to slow down. The IndexOf search churns
through 400 MB of data for each failing search, and we can expect it to trawl through
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an average of 200 MB for successful searches. This will tend to have the effect of
flushing out the CPU’s cache memory, so code and data structures that might other‐
wise have remained in the fast cache memory need to be fetched from main memory
the next time they are required; code that uses IndexOf on such a large array will
need to reload its world back into the cache once the search completes. And if this
code shares the CPU with other code on a multithreaded server, it could also evict
other threads’ data from the cache, making them run slower too. BinarySearch needs
to look at only a handful of array elements, so it will have only a minimal impact on
the cache.

There’s just one tiny problem: even though the individual searches were much faster,
the binary search was, overall, a total performance disaster here. We have saved
almost a tenth of a second on the searches, but to be able to do that, we had to spend
7.3 seconds sorting the array. A binary search works only for data that is already
ordered, and the cost of getting your data into order could well outweigh the benefits.
This particular example would need to do about 500 searches before the cost of sort‐
ing was outweighed by the improved search speed, and, of course, that would work
only if nothing changed in the meantime that forced you to redo the sort. With per‐
formance tuning, it’s always important to look at the whole scenario, and not just the
microbenchmarks.

Incidentally, Array.BinarySearch offers overloads for searching within some subsec‐
tion of the array, similar to those we saw for the other search methods. It also lets you
customize the comparison logic. This works with the comparison interfaces I showed
in earlier chapters. By default, it will use the IComparable<T> implementation pro‐
vided by the array elements themselves, but you can provide a custom IComparer<T>
instead. The Array.Sort method I used to put the elements into order also supports
narrowing down the range and using custom comparison logic.

There are other searching and sorting methods besides the ones provided by the
Array class itself. All arrays implement IEnumerable<T> (where T is the array’s ele‐
ment type), which means you can also use any of the operations provided by .NET’s
LINQ to Objects functionality. This offers a much wider range of features for search‐
ing, sorting, grouping, filtering, and generally working with collections of objects;
Chapter 10 will describe these features. Arrays have been in .NET for longer than
LINQ, which is one reason for this overlap in functionality, but where arrays provide
their own equivalents of standard LINQ operators, the array versions can sometimes
be more efficient because LINQ is a more generalized solution.

Multidimensional Arrays
The arrays I’ve shown so far have all been one-dimensional, but C# supports two
multidimensional forms: jagged arrays and rectangular arrays.
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Jagged arrays
A jagged array is simply an array of arrays. The existence of this kind of array is a
natural upshot of the fact that arrays have types that are distinct from their element
type. Because int[] is a type, you can use that as the element type of another array.
Example 5-16 shows the syntax, which is very nearly unsurprising.

Example 5-16. Creating a jagged array

int[][] arrays = new int[5][]
{
    new[] { 1, 2 },
    new[] { 1, 2, 3, 4, 5, 6 },
    new[] { 1, 2, 4 },
    new[] { 1 },
    new[] { 1, 2, 3, 4, 5 }
};

Again, I’ve broken my usual rule for variable declarations—normally I’d use var on
the first line because the type is evident from the initializer, but I wanted to show the
syntax both for declaring the variable and for constructing the array. And there’s a
second redundancy in Example 5-16: when using the array initializer syntax, you
don’t have to specify the size explicitly, because the compiler will work it out for you.
I’ve exploited that for the nested arrays, but I’ve set the size (5) explicitly for the outer
array to show where the size appears, because it might not be where you would
expect.

The type name for a jagged array is simple enough. In general, array types have the
form ElementType[], so if the element type is int[], we’d expect the resulting array
type to be written as int[][], and that’s what we see. The constructor syntax is a bit
more peculiar. It declares an array of five arrays, and at a first glance, new int[5][]
seems like a perfectly reasonable way to express that. It is consistent with array index
syntax for jagged arrays; we can write arrays[1][3], which fetches the second of
those five arrays, and then retrieves the fourth element from that second array. (This
is not a specialized syntax, by the way—there is no need for special handling here,
because any expression that evaluates to an array can be followed by the index in
square brackets. The expression arrays[1] evaluates to an int[] array, and so we
can follow that with [3].)

However, the new keyword does treat jagged arrays specially. It makes them look con‐
sistent with array element access syntax, but it has to twist things a little to do that.
With a one-dimensional array, the pattern for constructing a new array is new Ele
mentType[length], so for creating an array of five things, you’d expect to write new
ElementType[5]. If the things you are creating are arrays of int, wouldn’t you expect
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to see int[] in place of ElementType? That would imply that the syntax should be
new int[][5].

That would be logical, but it looks like it’s the wrong way round, and that’s because
the array type syntax itself is effectively reversed. Arrays are constructed types, like
generics. With generics, the name of the generic type from which we construct the
actual type comes before the type argument (e.g., List<int> takes the generic
List<T> type and constructs it with a type argument of int). If arrays had generic-
like syntax, we might expect to see array<int> for a one-dimensional array,
array<array<int>> for two dimensions, and so on—the element type would come
after the part that signifies that we want an array. But array types do it the other way
around—the arrayness is signified by the [] characters, so the element type comes
first. This is why the hypothetical logically correct syntax for array construction looks
weird. C# avoids the weirdness by not getting overly stressed about logic here, and
just puts the size where most people expect it to go rather than where it arguably
should go.

C# does not define particular limits to the number of dimensions,
but there are some implementation-specific runtime limits.
(Microsoft’s compiler didn’t flinch when I asked for a 5,000-
dimensional jagged array, but the CLR refused to load the resulting
program. In fact, it wouldn’t load anything with more than 4,144
dimensions, and there were some performance issues with a mere
2,000.) The syntax extends in the obvious way—for example, int[]
[][] for the type and new int[5][][] for construction.

Example 5-16 initializes the array with five one-dimensional int[] arrays. The layout
of the code should make it fairly clear why this sort of array is referred to as jagged:
each row has a different length. With arrays of arrays, there is no requirement for a
rectangular layout. I could go further. Arrays are reference types, so I could have set
some rows to null. If I abandoned the array initializer syntax and initialized the array
elements individually, I could have decided to make some of the one-dimensional
int[] arrays appear in more than one row.

Because each row in this jagged array contains an array, I’ve ended up with six
objects here—the five int[] arrays, and then the int[][] array that contains refer‐
ences to them. If you introduce more dimensions, you’ll get yet more arrays. For cer‐
tain kinds of work, the nonrectangularity and the large numbers of objects can be
problematic, which is why C# supports another kind of multidimensional array.

Rectangular arrays
A rectangular array is a single array object that supports multidimensional indexing.
If C# didn’t offer multidimensional arrays, we could build something a bit like them
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by convention. If you want an array with 10 rows and 5 columns, you could construct
a one-dimensional array with 50 elements, and then use code like myArray[i + (5 *
j)] to access it, where i is the column index, and j is the row index. That would be
an array that you had chosen to think of as being two-dimensional, even though it’s
really just one big contiguous block. A rectangular array is essentially the same idea,
but where C# does the work for you. Example 5-17 shows how to declare and con‐
struct rectangular arrays.

Rectangular arrays are not just about convenience. There’s a type
safety aspect too: int[,] is a different type than int[] or int[,,],
so if you write a method that expects a two-dimensional rectangu‐
lar array, C# will not allow anything else to be passed.

Example 5-17. Rectangular arrays

int[,] grid = new int[5, 10];
var smallerGrid = new int[,]
{
    { 1, 2, 3, 4 },
    { 2, 3, 4, 5 },
    { 3, 4, 5, 6 },
};

As you can see, rectangular array type names use only a single pair of square brackets,
no matter how many dimensions they have. The number of commas inside the
brackets denotes the number of dimensions, so these examples with one comma are
two-dimensional.

The initializer syntax is very similar to that for multidimensional arrays (see
Example 5-16) except I do not start each row with new[], because this is one big
array, not an array of arrays. The numbers in Example 5-17 form a shape that is
clearly rectangular, and if you attempt to make things jagged (with different row
sizes) the compiler will report an error. This extends to higher dimensions. If you
wanted a three-dimensional “rectangular” array, it would need to be a cuboid.
Example 5-18 shows a cuboid array. You could think of the initializer as being a list
of two rectangular slices making up the cuboid. And you can go higher, with hypercu‐
boid arrays (although they are still known as rectangular arrays, regardless of how
many dimensions you use).

Example 5-18. A 2×3×5 cuboid “rectangular” array

var cuboid = new int[,,]
{
    {
        { 1, 2, 3, 4, 5 },
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        { 2, 3, 4, 5, 6 },
        { 3, 4, 5, 6, 7 }
    },
    {
        { 2, 3, 4, 5, 6 },
        { 3, 4, 5, 6, 7 },
        { 4, 5, 6, 7, 8 }
    },
};

The syntax for accessing rectangular arrays is predictable enough. If the second vari‐
able from Example 5-17 is in scope, we could write smallerGrid[2, 3] to access the
final item in the array; as with single-dimensional arrays, indices are zero-based, so
this refers to the third row’s fourth item.

Remember that an array’s Length property returns the total number of elements in
the array. Since rectangular arrays have all the elements in a single array (rather than
being arrays that refer to some other arrays), this will return the product of the sizes
of all the dimensions. A rectangular array with 5 rows and 10 columns would have a
Length of 50, for example. If you want to discover the size along a particular dimen‐
sion at runtime, use the GetLength method, which takes a single int argument indi‐
cating the dimension for which you’d like to know the size.

Copying and Resizing
Sometimes you will want to move chunks of data around in arrays. You might want
to insert an item in the middle of an array, moving the items that follow it up by one
position (and losing one element at the end, since array sizes are fixed). Or you might
want to move data from one array to another, perhaps one of a different size.

The static Array.Copy method takes references to two arrays, along with a number
indicating how many elements to copy. It offers overloads so that you can specify the
positions in the two arrays at which to start the copy. (The simpler overload starts at
the first element of each array.) You are allowed to pass the same array as the source
and destination, and it will handle overlap correctly: the copy acts as though the ele‐
ments were first all copied to a temporary location before starting to write them to
the target.
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As well as the static Copy method, the Array class defines a non‐
static CopyTo method, which copies the entire array into a target
array, starting at the specified offset. This method is present
because all arrays implement certain collection interfaces, includ‐
ing ICollection<T> (where T is the array’s element type), which
defines this CopyTo method. CopyTo does not guarantee to handle
overlap correctly when copying an array into itself, and the docu‐
mentation recommends using Array.Copy in scenarios where you
know you will be dealing with arrays—CopyTo is just for the benefit
of general-purpose code that can work with any implementation of
a collection interface.

Copying elements from one array to another can become necessary when you need to
deal with variable amounts of data. You would typically allocate an array larger than
initially necessary, and if this eventually fills up, you’ll need a new, larger array, and
you’d need to copy the contents of the old array into the new one. In fact, the Array
class can do this for you for one-dimensional arrays with its Resize method. The
method name is slightly misleading, because arrays cannot be resized, so it allocates a
new array and copies the data from the old one into it. Resize can build either a
larger or a smaller array, and if you ask it for a smaller one, it will just copy as many
elements as will fit.

While I’m talking about methods that copy the array’s data around, I should mention
Reverse, which simply reverses the order of the array’s elements. Also, while this isn’t
strictly about copying, the Array.Clear method is often useful in scenarios where
you’re juggling array sizes—it allows you to reset some range of the array to its initial
zero-like state.

These methods for moving data around within arrays are useful for building more
flexible data structures on top of the basic services offered by arrays. But you often
won’t need to use them yourself, because the class library provides several useful col‐
lection classes that do this for you.

List<T>
The List<T> class, defined in the System.Collections.Generic namespace, contains
a variable-length sequence of elements of type T. It provides an indexer that lets you
get and set elements by number, so a List<T> behaves like a resizable array. It’s not
completely interchangeable—you cannot pass a List<T> as the argument for a
parameter that expects a T[] array—but both arrays and List<T> implement various
common generic collection interfaces that we’ll be looking at later. For example, if
you write a method that accepts an IList<T>, it will be able to work with either an
array or a List<T>.
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Although code that uses an indexer resembles array element access,
it is not quite the same thing. An indexer is a kind of property, so it
has the same issues with mutable value types that I discussed in
Chapter 3. Given a variable pointList of type List<Point> (where
Point is the mutable value type in the System.Windows name‐
space), you cannot write pointList[2].X = 2, because point
List[2] returns a copy of the value, and this code is effectively
asking to modify that temporary copy. This would lose the update,
so C# forbids it. But this does work with arrays. If pointArray is of
type Point[], pointArray[2] does not get an element, it identifies
an element, making it possible to modify an array element’s value
in situ by writing pointArray[2].X = 2. (Since ref return values
were added in C# 7.0, it has become possible to write indexers that
work this way, but List<T> and IList<T> were created long before
that.) With immutable value types such as Complex, this distinction
is moot, because you cannot modify their values in place in any
case—you would have to overwrite an element with a new value
whether using an array or a list.

Unlike an array, a List<T> provides methods that change its size. The Add method
appends a new element to the end of the list, while AddRange can add several. Insert
and InsertRange add elements at any point in the list, shuffling all the elements after
the insertion point down to make space. These four methods all make the list longer,
but List<T> also provides Remove, which removes the first instance of the specified
value; RemoveAt, which removes an element at a particular index; and RemoveRange,
which removes multiple elements starting at a particular index. These all shuffle ele‐
ments back down, closing up the gap left by the removed element or elements, mak‐
ing the list shorter.

List<T> uses an array internally to store its elements. This means
all the elements live in a single block of memory, and it stores them
contiguously. This makes normal element access very efficient, but
it is also why insertion needs to shift elements up to make space for
the new element, and removal needs to shift them down to close up
the gap.

Example 5-19 shows how to create a List<T>. It’s just a class, so we use the normal
constructor syntax. It shows how to add and remove entries, and also how to access
elements using the array-like indexer syntax. This also shows that List<T> provides
its size through a Count property, a seemingly arbitrarily different name than the
Length provided by arrays. (In fact, arrays also offer Count, because they implement
ICollection and ICollection<T>. However, they use explicit interface implementa‐
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tion, meaning that you can see an array’s Count property only through a reference of
one of these interface types.)

Example 5-19. Using a List<T>

var numbers = new List<int>();
numbers.Add(123);
numbers.Add(99);
numbers.Add(42);
Console.WriteLine(numbers.Count);
Console.WriteLine($"{numbers[0]}, {numbers[1]}, {numbers[2]}");

numbers[1] += 1;
Console.WriteLine(numbers[1]);

numbers.RemoveAt(1);
Console.WriteLine(numbers.Count);
Console.WriteLine($"{numbers[0]}, { numbers[1]}");

Because a List<T> can grow and shrink as required, you don’t need to specify its size
at construction. However, if you want to, you can specify its capacity. A list’s capacity
is the amount of space it currently has available for storing elements, and this will
often be different than the number of elements it contains. To avoid allocating a new
internal array every time you add or remove an element, it keeps track of how many
elements are in use independently of the size of the array. When it needs more space,
it will overallocate, creating a new array that is larger than needed by a factor propor‐
tional to the size. This means that, if your program repeatedly adds items to a list, the
larger it gets, the less frequently it needs to allocate a new array, but the proportion of
spare capacity after each reallocation will remain about the same.

If you know up front that you will eventually store a specific number of elements in a
list, you can pass that number to the constructor, and it will allocate exactly that
much capacity, meaning that no further reallocation will be required. If you get this
wrong, it won’t cause an error—you’re just requesting an initial capacity, and it’s OK
to change your mind later.

If the idea of unused memory going to waste in a list offends you, but you don’t know
exactly how much space will be required before you start, you could call the TrimEx
cess method once you know the list is complete. This reallocates the internal storage
to be exactly large enough to hold the list’s current contents, eliminating waste. This
will not always be a win. To ensure that it is using exactly the right amount of space,
TrimExcess has to create a new array of the right size, leaving the old, oversized one
to be reclaimed by the garbage collector later on, and in some scenarios, the overhead
of forcing an extra allocation just to trim things down to size may be higher than the
overhead of having some unused capacity.

232 | Chapter 5: Collections



Lists have a third constructor. Besides the default constructor, and the one that takes
a capacity, you can also pass in a collection of data with which to initialize the list.
You can pass any IEnumerable<T>.

You can provide initial content for lists with syntax similar to an array initializer.
Example 5-20 loads the same three values into the new list as at the start of
Example 5-19. This is the only form; in contrast to arrays, you cannot omit the new
List<int> part when the variable declaration is explicit about the type (i.e., when you
don’t use var). Nor will the compiler infer the type argument, so whereas with an
array you can write just new[] followed by an initializer, you cannot write new
List<>.

Example 5-20. List initializer

var numbers = new List<int> { 123, 99, 42 };

This compiles into code that calls Add once for each item in the list. You can use this
syntax with any type that has a suitable Add method and implements the IEnumerable
interface. This works even if Add is an extension method. (So if some type implements
IEnumerable, but does not supply an Add method, you are free to use this initializer
syntax if you provide your own Add.)

List<T> provides IndexOf, LastIndexOf, Find, FindLast, FindAll, Sort, and Binary
Search methods for finding and sorting list elements. These provide the same serv‐
ices as their array namesakes, although List<T> chooses to provide these as instance
methods rather than statics.

We’ve now seen two ways to represent a list of values: arrays and lists. Fortunately,
interfaces make it possible to write code that can work with either, so you won’t need
to write two sets of functions if you want to support both lists and arrays.

List and Sequence Interfaces
The .NET class library defines several interfaces representing collections. Three of
these are relevant to simple linear sequences of the kind you can store in an array or a
list: IList<T>, ICollection<T>, and IEnumerable<T>, all in the System.Collec
tions.Generics namespace. There are three interfaces, because different code makes
different demands. Some methods need random access to any numbered element in a
collection, but not everything does, and not all collections can support that—some
sequences produce elements gradually, and there may be no way to leap straight to
the nth element. Consider a sequence representing keypresses, for example—each
item will emerge only as the user presses the next key. Your code can work with a
wider range of sources if you opt for less demanding interfaces.
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IEnumerable<T> is the most general of collection interfaces, because it demands the
least from its implementers. I’ve mentioned it a few times already because it’s an
important interface that crops up a lot, but I’ve not shown the definition until now.
As Example 5-21 shows, it declares just a single method.

Example 5-21. IEnumerable<T> and IEnumerable

public interface IEnumerable<out T> : IEnumerable
{
    IEnumerator<T> GetEnumerator();
}

public interface IEnumerable
{
    IEnumerator GetEnumerator();
}

Using inheritance, IEnumerable<T> requires its implementers also to implement IEnu
merable, which appears to be almost identical. It’s a nongeneric version of IEnumera
ble<T>, and its GetEnumerator method will typically do nothing more than invoke
the generic implementation. The reason we have both forms is that the nongeneric
IEnumerable has been around since .NET v1.0, which didn’t support generics. The
arrival of generics in .NET v2.0 made it possible to express the intent behind IEnumer
able more precisely, but the old interface had to remain for compatibility. So these
two interfaces effectively require the same thing: a method that returns an enumera‐
tor. What’s an enumerator? Example 5-22 shows both the generic and nongeneric
interfaces.

Example 5-22. IEnumerator<T> and IEnumerator

public interface IEnumerator<out T> : IDisposable, IEnumerator
{
    T Current { get; }
}

public interface IEnumerator
{
    bool MoveNext();
    object Current { get; }
    void Reset();
}

The usage model for an IEnumerable<T> (and also IEnumerable) is that you call GetE
numerator to obtain an enumerator, which can be used to iterate through all the
items in the collection. You call the enumerator’s MoveNext(); if it returns false, it
means the collection was empty. Otherwise, the Current property will now provide
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3 Surprisingly, foreach doesn’t require any particular interface; it will use anything with a GetEnumerator
method that returns an object providing a MoveNext method and a Current property. This is a historical quirk
—back before generics, this was the only way to enable iteration through collections of value-typed elements
without boxing. Chapter 7 describes boxing.

the first item from the collection. Then you call MoveNext() again to move to the next
item, and for as long as it keeps returning true, the next item will be available in
Current. (The Reset method is a historical artifact added to help compatibility with
COM, the Windows pre-.NET cross-language object model. The documentation
allows implementations to throw a NotSupportedException from Reset, so you will
not normally use this method.)

Notice that IEnumerator<T> implementations are required to
implement IDisposable. You must call Dispose on enumerators
once you’re finished with them, because many of them rely on this.

The foreach loop in C# does all of the work required to iterate through an enumera‐
ble collection for you,3 including generating code that calls Dispose even if the loop
terminates early due to a break statement, an error, or, perish the thought, a goto
statement. Chapter 7 will describe the uses of IDisposable in more detail.

IEnumerable<T> is at the heart of LINQ to Objects, which I’ll discuss in Chapter 10.
LINQ operators are available on any object that implements this interface.

.NET Core 3.0 and .NET Standard 2.1 add a new interface, IAsyncEnumerable<T>.
Conceptually, this is identical to IEnumerable<T>: it represents the ability to provide
a sequence of items. The difference is that it supports asynchronous operation. As
Example 5-23 shows, this interface and its counterpart, IAsyncEnumerator<T>,
resemble IEnumerable<T> and IEnumerator<T>. The main difference is the use of
asynchronous programming features ValueTask<T> and CancellationToken, which
Chapter 16 will describe. There are also some minor differences: there are no nonge‐
neric versions of these interfaces, and also, there’s no facility to reset an existing asyn‐
chronous enumerator (although as noted earlier, many synchronous enumerators
throw a NotSupportedException if you call Reset).

Example 5-23. IAsyncEnumerable<T> and IAsyncEnumerator<T>

public interface IAsyncEnumerable<out T>
{
    IAsyncEnumerator<T> GetAsyncEnumerator(
        CancellationToken cancellationToken = default);
}
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public interface IAsyncEnumerator<out T> : IAsyncDisposable
{
    T Current { get; }

    ValueTask<bool> MoveNextAsync();
}

You can consume an IAsyncEnumerable<T> with a specialized form of foreach loop,
in which you prefix it with the await keyword. This can only be used in a method
marked with the async keyword. Chapter 17 describes the async and await keywords
in detail, and also the use of await foreach.

Although IEnumerable<T> is important and widely used, it’s pretty restrictive. You
can ask it only for one item after another, and it will hand them out in whatever order
it sees fit. It does not provide a way to modify the collection, or even of finding out
how many items the collection contains without having to iterate through the whole
lot. For these jobs, we have ICollection<T>, which is shown in Example 5-24.

Example 5-24. ICollection<T>

public interface ICollection<T> : IEnumerable<T>, IEnumerable
{
    void Add(T item);
    void Clear();
    bool Contains(T item);
    void CopyTo(T[] array, int arrayIndex);
    bool Remove(T item);

    int Count { get; }
    bool IsReadOnly { get; }
}

This requires implementers also to provide IEnumerable<T>, but notice that this does
not inherit the nongeneric ICollection. There is such an interface, but it represents
a different abstraction: it’s missing all of the methods except CopyTo. When introduc‐
ing generics, Microsoft reviewed how the nongeneric collection types were used and
concluded that the one extra method that the old ICollection added didn’t make it
noticeably more useful than IEnumerable. Worse, it also included a property called
SyncRoot that was intended to help manage certain multithreaded scenarios, but
which turned out to be a poor solution to that problem in practice. So the abstraction
represented by ICollection did not get a generic equivalent, and has not been
greatly missed. During the review, Microsoft also found that the absence of a general-
purpose interface for modifiable collections was a problem, and so it made ICollec
tion<T> fit that bill. It was not entirely helpful to attach this old name to a different
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abstraction, but since almost nobody was using the old nongeneric ICollection, it
doesn’t seem to have caused much trouble.

The third interface for sequential collections is IList<T>, and all types that imple‐
ment this are required to implement ICollection<T>, and therefore also IEnumera
ble<T>. As you’d expect, List<T> implements IList<T>. Arrays implement it too,
using their element type as the argument for T. Example 5-25 shows how the interface
looks.

Example 5-25. IList<T>

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable
{
    int IndexOf(T item);
    void Insert(int index, T item);
    void RemoveAt(int index);

    T this[int index] { get; set; }
}

Again, although there is a nongeneric IList, this interface has no direct relationship
to it, even though they do represent similar concepts—the nongeneric IList has
equivalents to the IList<T> members, and it also includes equivalents to most of
ICollection<T>, including all the members missing from ICollection. So it would
have been possible to require IList<T> implementations to implement IList, but
that would have forced implementations to provide two versions of most members,
one working in terms of the type parameter T, and the other using object, because
that’s what the old nongeneric interfaces had to use. It would also force collections to
provide the nonuseful SyncRoot property. The benefits would not outweigh these
inconveniences, and so IList<T> implementations are not obliged to implement
IList. They can if they want to, and List<T> does, but it’s up to the individual collec‐
tion class to choose.

One unfortunate upshot of the way these three generic interfaces are related is that
they do not provide an abstraction representing indexed collections that are read-
only, or even ones that are fixed-size. While IEnumerable<T> is a read-only abstrac‐
tion, it’s an in-order one with no way to go directly to the nth value. Prior to .NET 4.5
(which introduced various new collection interfaces), the only option for indexed
access was IList<T>, but that also defines methods for insertion and indexed
removal, as well as mandating an implementation of ICollection<T> with its addi‐
tion and value-based removal methods. So you might be wondering how arrays can
implement these interfaces, given that all arrays are fixed-size.

Arrays mitigate this problem by using explicit interface implementation to hide the
IList<T> methods that can change a list’s length, discouraging you from trying to
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use them. (As you saw in Chapter 3, this technique enables you to provide a full
implementation of an interface but to be selective about which members are directly
visible.) However, you can store a reference to an array in a variable of type IList<T>,
making those methods visible—Example 5-26 uses this to call an array’s
IList<T>.Add method. However, this results in a runtime error.

Example 5-26. Trying (and failing) to enlarge an array

IList<int> array = new[] { 1, 2, 3 };
array.Add(4);  // Will throw an exception

The Add method throws a NotSupportedException, with an error message stating
that the collection has a fixed size. If you inspect the documentation for IList<T>
and ICollection<T>, you’ll see that all the members that would modify the collection
are allowed to throw this error. You can discover at runtime whether this will happen
for all modifications with the ICollection<T> interface’s IsReadOnly property.
However, that won’t help you discover up front when a collection allows only certain
changes. (For example, an array’s size is fixed, but you can still modify elements.)

This causes an irritating problem: if you’re writing code that does in fact require a
modifiable collection, there’s no way to advertise that fact. If a method takes an
IList<T>, it’s hard to know whether that method will attempt to resize that list or
not. Mismatches cause runtime exceptions, and those exceptions may well appear in
code that isn’t doing anything wrong, and where the mistake—passing the wrong sort
of collection—was made by the caller. These problems are not showstoppers; in
dynamically typed languages, this degree of compile-time uncertainty is in fact the
norm, and it doesn’t stop you from writing good code.

There is a ReadOnlyCollection<T> class, but as we’ll see later, that solves a different
problem—it’s a wrapper class, not an interface, so there are plenty of things that are
fixed-size collections that do not present a ReadOnlyCollection<T>. If you were to
write a method with a parameter of type ReadOnlyCollection<T>, it would not be
able to work directly with certain kinds of collections (including arrays). In any case,
it’s not even the same abstraction—read-only is a tighter restriction than fixed-size.

.NET defines IReadOnlyList<T>, an interface that provides a better solution for rep‐
resenting read-only indexed collections (although it still doesn’t help with modifiable
fixed-sized ones). Like IList<T>, it requires an implementation of IEnumerable<T>,
but it does not require ICollection<T>. It defines two members: Count, which
returns the size of the collection (just like ICollection<T>.Count), and a read-only
indexer. This solves most of the problems associated with using IList<T> for read-
only collections. One minor problem is that because it’s newer than most of the other
interfaces I’ve described here it is not universally supported. (It was introduced
in .NET 4.5 in 2012, seven years after IList<T>.) So if you come across an API that
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requires an IReadOnlyList<T>, you can be sure it will not attempt to modify the col‐
lection, but if an API requires IList<T>, it’s difficult to know whether that’s because
it intends to modify the collection, or merely because it was written before IReadOnly
List<T> was invented.

Collections do not need to be read-only to implement IReadOnly
List<T>—a modifiable list can easily present a read-only façade. So
this interface is implemented by all arrays and also List<T>.

The issues and interfaces I’ve just discussed raise a question: when writing code or
classes that work with collections, what type should you use? You will typically get
the most flexibility if your API demands the least specific type it can work with. For
example, if an IEnumerable<T> suits your needs, don’t demand an IList<T>. Like‐
wise, interfaces are usually better than concrete types, so you should prefer IList<T>
over either List<T> or T[]. Just occasionally, there may be performance arguments
for using a more specific type; if you have a tight loop critical to the overall perfor‐
mance of your application that works through the contents of a collection, you may
find such code runs faster if it works only with array types, because the CLR may be
able to perform better optimizations when it knows exactly what to expect. But in
many cases, the difference will be too small to measure and will not justify the incon‐
venience of being tied to a particular implementation, so you should never take such
a step without measuring the performance for the task at hand to see what the benefit
might be. (And if you’re considering such a performance-oriented change, you
should also look at the techniques described in Chapter 18.) If you find that there is a
possible performance win, but you’re writing a shared library in which you want to
provide both flexibility and the best possible performance, there are a couple of
options for having it both ways. You could offer overloads, so callers can pass in
either an interface or a specific type. Alternatively, you could write a single public
method that accepts the interface but which tests for known types and chooses
between different internal code paths based on what the caller passes.

The interfaces we’ve just examined are not the only generic collection interfaces,
because simple linear lists are not the only kind of collection. But before moving on
to the others, I want to show enumerables and lists from the flip side: how do we
implement these interfaces?

Implementing Lists and Sequences
It is often useful to provide information in the form of either an IEnumerable<T> or
an IList<T>. The former is particularly important because .NET provides a powerful
toolkit for working with sequences in the form of LINQ to Objects, which I’ll show in
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Chapter 10. LINQ to Objects provides various operators that all work in terms of
IEnumerable<T>. IList<T> is a useful abstraction anywhere that random access to
any element by index is required. Some frameworks expect an IList<T>. If you want
to bind a collection of objects to some kind of list control, for example, some UI
frameworks will expect either an IList or an IList<T>.

You could implement these interfaces by hand, as none of them is particularly com‐
plicated. However, C# and the .NET class library can help. There is direct language-
level support for implementing IEnumerable<T>, and there is class library support for
the generic and nongeneric list interfaces.

Implementing IEnumerable<T> with Iterators
C# supports a special form of method called an iterator. An iterator is a method that
produces enumerable sequences using a special keyword, yield. Example 5-27 shows
a simple iterator and some code that uses it. This will display numbers counting
down from 5 to 1.

Example 5-27. A simple iterator

public static IEnumerable<int> Countdown(int start, int end)
{
    for (int i = start; i >= end; --i)
    {
        yield return i;
    }
}

private static void Main(string[] args)
{
    foreach (int i in Countdown(5, 1))
    {
        Console.WriteLine(i);
    }
}

An iterator looks much like any normal method, but the way it returns values is dif‐
ferent. The iterator in Example 5-27 has a return type of IEnumerable<int>, and yet
it does not appear to return anything of that type. Instead of a normal return state‐
ment, it uses a yield return statement, and that returns a single int, not a collec‐
tion. Iterators produce values one at a time with yield return statements, and
unlike with a normal return, the method can continue to execute after returning a
value—it’s only when the method either runs to the end, or decides to stop early with
a yield break statement or by throwing an exception, that it is complete.
Example 5-28 shows this rather more starkly. Each yield return causes a value to be
emitted from the sequence, so this one will produce the numbers 1–3.
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Example 5-28. A very simple iterator

public static IEnumerable<int> ThreeNumbers()
{
    yield return 1;
    yield return 2;
    yield return 3;
}

Although this is fairly straightforward in concept, the way it works is somewhat
involved because code in iterators does not run in the same way as other code.
Remember, with IEnumerable<T>, the caller is in charge of when the next value is
retrieved; a foreach loop will get an enumerator and then repeatedly call MoveNext()
until that returns false, and expect the Current property to provide the current
value. So how do Examples 5-27 and 5-28 fit into that model? You might think that
perhaps C# stores all the values an iterator yields in a List<T>, returning that once
the iterator is complete, but it’s easy to demonstrate that that’s not true by writing an
iterator that never finishes, such as the one in Example 5-29.

Example 5-29. An infinite iterator

public static IEnumerable<BigInteger> Fibonacci()
{
    BigInteger v1 = 1;
    BigInteger v2 = 1;

    while (true)
    {
        yield return v1;
        var tmp = v2;
        v2 = v1 + v2;
        v1 = tmp;
    }
}

This iterator runs indefinitely; it has a while loop with a true condition, and it con‐
tains no break statement, so this will never voluntarily stop. If C# tried to run an iter‐
ator to completion before returning anything, it would get stuck here. (The numbers
grow, so if it ran for long enough, the method would eventually terminate by throw‐
ing an OutOfMemoryException, but it would never return anything useful.) But if you
try this, you’ll find it starts returning values from the Fibonacci series immediately,
and will continue to do so for as long as you continue to iterate through its output.
Clearly, C# is not simply running the whole method before returning.

C# performs some serious surgery on your code to make this work. If you examine
the compiler’s output for an iterator using a tool such as ILDASM (the disassembler
for .NET code, provided with the .NET SDK), you’ll find it generates a private nested
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class that acts as the implementation for both the IEnumerable<T> that the method
returns, and also the IEnumerator<T> that the IEnumerable<T>’s GetEnumerator
method returns. The code from your iterator method ends up inside this class’s Move
Next method, but it is barely recognizable, because the compiler splits it up in a way
that enables each yield return to return to the caller, but for execution to continue
from where it left off the next time MoveNext is called. Where necessary, it will store
local variables inside this generated class so that their values can be preserved across
multiple calls to MoveNext. Perhaps the easiest way to get a feel for what C# has to do
when compiling an iterator is to write the equivalent code by hand. Example 5-30
provides the same Fibonacci sequence as Example 5-29 without the aid of an iterator.
It’s not precisely what the compiler does, but it illustrates some of the challenges.

Example 5-30. Implementing IEnumerable<T> by hand

public class FibonacciEnumerable :
    IEnumerable<BigInteger>, IEnumerator<BigInteger>
{
    private BigInteger v1;
    private BigInteger v2;
    private bool first = true;

    public BigInteger Current => v1;

    public void Dispose() { }

    object IEnumerator.Current => Current;

    public bool MoveNext()
    {
        if (first)
        {
            v1 = 1;
            v2 = 1;
            first = false;
        }
        else
        {
            var tmp = v2;
            v2 = v1 + v2;
            v1 = tmp;
        }

        return true;
    }

    public void Reset()
    {
        first = true;
    }
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4 Some of this cleanup work happens in the call to Dispose. Remember, IEnumerator<T> implementations all
implement IDisposable. The foreach keyword calls Dispose after iterating through a collection (even if iter‐
ation was terminated by an error). If you’re not using foreach and are performing iteration by hand, it’s
vitally important to remember to call Dispose.

    public IEnumerator<BigInteger> GetEnumerator() =>
        new FibonacciEnumerable();

    IEnumerator IEnumerable.GetEnumerator() => GetEnumerator();
}

This is not a particularly complex example, because its enumerator is essentially in
either of two states—either it is running for the first time and therefore needs to run
the code that comes before the loop, or it is inside the loop. Even so, this code is
much harder to read than Example 5-29, because the mechanics of supporting enu‐
meration have obscured the essential logic.

The code would get even more convoluted if we needed to deal with exceptions. You
can write using blocks and finally blocks, which enable your code to behave cor‐
rectly in the face of errors, as I’ll show in Chapters 7 and 8, and the compiler can end
up doing a lot of work to preserve the correct semantics for these when the method’s
execution is split up over multiple iterations.4 You wouldn’t need to write too many
enumerations by hand this way before being grateful that C# can do it for you.

You don’t have to return an IEnumerable<T>, by the way. If you prefer, you can
return an IEnumerator<T> instead. And, as you saw earlier, objects that implement
either of these interfaces also always implement the nongeneric equivalents, so if you
need a plain IEnumerable or IEnumerator, you don’t need to do extra work—you can
pass an IEnumerable<T> to anything that was expecting a plain IEnumerable, and
likewise for enumerators. If for some reason you want to provide one of these nonge‐
neric interfaces and you don’t wish to provide the generic version, you are allowed to
write iterators that return the nongeneric forms directly.

One thing to be careful of with iterators is that they run very little code until the first
time the caller calls MoveNext. So if you were to single-step through code that calls the
Fibonacci method in Example 5-29, the method call would appear not to do any‐
thing at all. If you try to step into the method at the point at which it’s invoked, none
of the code in the method runs. It’s only when iteration begins that you’d see your
iterator’s body execute. This has a couple of consequences.

The first thing to bear in mind is that if your iterator method takes arguments, and
you want to validate those arguments, you may need to do some extra work. By
default, the validation won’t happen until iteration begins, so errors will occur later
than you might expect. If you want to validate arguments immediately, you will need
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to write a wrapper. Example 5-31 shows an example—it provides a normal method
called Fibonacci that doesn’t use yield return, and will therefore not get the special
compiler behavior for iterators. This normal method validates its argument before
going on to call a nested iterator method. (This also illustrates that local methods can
use yield return.)

Example 5-31. Iterator argument validation

public static IEnumerable<BigInteger> Fibonacci(int count)
{
    if (count < 0)
    {
        throw new ArgumentOutOfRangeException("count");
    }
    return Core(count);

    static IEnumerable<BigInteger> Core(int count)
    {
        BigInteger v1 = 1;
        BigInteger v2 = 1;

        for (int i = 0; i < count; ++i)
        {
            yield return v1;
            var tmp = v2;
            v2 = v1 + v2;
            v1 = tmp;
        }
    }
}

The second thing to remember is that iterators may execute several times. IEnumera
ble<T> provides a GetEnumerator that can be called many times over, and your itera‐
tor body will run from the start each time. So even though your iterator method may
only have been called once, it could run several times.

Collection<T>
If you look at types in the .NET class library, you’ll find that when they offer proper‐
ties that expose an implementation of IList<T>, they often do so indirectly. Instead
of an interface, properties often provide some concrete type, although it’s usually not
List<T> either. List<T> is designed to be used as an implementation detail of your
code, and if you expose it directly, you may be giving users of your class too much
control. Do you want them to be able to modify the list? And even if you do, mightn’t
your code need to know when that happens?
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The class library provides a Collection<T> class that is designed to be used as the
base class for collections that a type will make publicly available. It is similar to
List<T>, but there are two significant differences. First, it has a smaller API—it offers
IndexOf, but all the other searching and sorting methods available for List<T> are
missing, and it does not provide ways to discover or change its capacity independ‐
ently of its size. Second, it provides a way for derived classes to discover when items
have been added or removed. List<T> does not, on the grounds that it’s your list so
you presumably know when you add and remove items. Notification mechanisms are
not free, so List<T> avoids unnecessary overhead by not offering them. But Collec
tion<T> assumes that external code will have access to your collection, and that you
will therefore not be in control of every addition and removal, justifying the overhead
involved in providing a way for you to find out when the list is modified. (This is only
available to the code deriving from Collection<T>. If you want code using your col‐
lection to be able to detect changes, the ObservableCollection<T> type is designed
for that exact scenario.)

You typically derive a class from Collection<T>, and you can override the virtual
methods it defines to discover when the collection changes. (Chapter 6 will discuss
inheritance and overriding.) Collection<T> implements both IList and IList<T>,
so you could present a Collection<T>-based collection through an interface type
property, but it’s common to make a derived collection type public, and to use that
instead of an interface as the property type.

ReadOnlyCollection<T>
If you want to provide a nonmodifiable collection, then instead of using Collec
tion<T>, you can use ReadOnlyCollection<T>. This goes further than the restrictions
imposed by arrays, by the way: not only can you not add, remove, or insert items, but
you cannot even replace elements. This class implements IList<T>, which requires
an indexer with both a get and a set, but the set throws an exception. (Of course, it
also implements IReadOnlyCollection<T>.)

If your collection’s element type is a reference type, making the collection read-only
does not prevent the objects to which the elements refer from being modified. I can
retrieve, say, the twelfth element from a read-only collection, and it will hand me
back a reference. Fetching a reference counts as a read-only operation, but now that I
have got that reference, the collection object is out of the picture, and I am free to do
whatever I like with that reference. Since C# does not offer any concept of a read-only
reference (there’s nothing equivalent to C++ const references), the only way to
present a truly read-only collection is to use an immutable type in conjunction with
ReadOnlyCollection<T>.
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There are two ways to use ReadOnlyCollection<T>. You can use it directly as a wrap‐
per for an existing list—its constructor takes an IList<T>, and it will provide read-
only access to that. (List<T> provides a method called AsReadOnly that constructs a
read-only wrapper for you, by the way.) Alternatively, you could derive a class from
it. As with Collection<T>, some classes do this for collections they wish to expose via
properties, and it’s usually because they want to define additional methods specific to
the collection’s purpose. Even if you derive from this class, you will still be using it to
wrap an underlying list, because the only constructor it provides is the one that takes
a list.

ReadOnlyCollection<T> is typically not a good fit with scenarios
that automatically map between object models and an external rep‐
resentation. For example, it causes problems in types used as Data
Transfer Objects (DTOs) that get converted to and from JSON
messages sent over network connections, and also in object-
relational mapping systems that present the contents of a database
through an object model. Frameworks for these scenarios need to
be able to instantiate your types and populate them with data, so
although a read-only collection might be a good conceptual match
for what some part of your model represents, it might not fit in
with the way these mapping frameworks expect to initialize objects.

Addressing Elements with Index and Range Syntax
Whether using arrays, List<T>, IList<T>, or the various related types and interfaces
just discussed, we’ve identified elements using simple examples such as items[0],
and more generally, expressions of the form arrayOrListExpression[indexExpres
sion]. So far, all the examples have used an expression of type int for the index, but
that is not the only choice. Example 5-32 accesses the final element of an array using
an alternative syntax.

Example 5-32. Accessing the last element of an array with an end-relative index

char[] letters = { 'a', 'b', 'c', 'd' };
char lastLetter = letters[^1];

This demonstrates one of two new operators introduced in C# 8.0 for use in indexers:
the ^ operator and the range operator. The latter, shown in Example 5-33, is a pair of
periods (..), and it is used to identify subranges of arrays, strings, or any indexable
type that implements a certain pattern.
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Example 5-33. Getting a subrange of an array with the range operator

int[] numbers = { 1, 2, 3, 4, 5, 6, 7 };
// Gets 4th and 5th (but not, the 3rd, for reasons explained shortly)
int[] theFourthTheFifth = numbers[3..5];

Expressions using the ^ and .. operators are of type Index and Range, respectively.
These types are built into .NET Core 3.0 and .NET Standard 2.1. At the time of writ‐
ing, Microsoft has not produced a NuGet package defining versions of these types for
older targets, meaning that these new language features are only available on newer
runtimes. It’s possible that by the time you read this, there will be a NuGet package
that makes Index and Range more widely available, since most of what they do does
not depend on new underlying runtime capabilities. However, it is now Microsoft’s
policy that new C# language features are associated with new versions of .NET, so
even if packages do emerge, the level of support on older runtimes remains to be
seen.

System.Index
You can put the ^ operator in front of any int expression. It produces a Sys
tem.Index, a value type that represents a position. When you create an index with ^,
it is end-relative, but you can also create start-relative indexes. There’s no special
operator for that, but since Index offers an implicit conversion from int, you can just
assign int values directly into variables of type Index, as Example 5-34 shows. You
can also explicitly construct an index, as the line with var shows. The final bool argu‐
ment is optional—it defaults to false—but I’m showing it to illustrate how Index
knows which kind you want.

Example 5-34. Some start-relative and end-relative Index values

Index first = 0;
Index second = 1;
Index third = 2;
var fourth = new Index(3, fromEnd: false);

Index antePenultimate = ^3;
Index penultimate = ^2;
Index last = ^1;
Index directlyAfterTheLast = ^0;

As Example 5-34 shows, end-relative indexes exist independently of any particular
collection. (Internally, Index stores end-relative indexes as negative numbers. This
means that an Index is the same size as an int. It also means that negative end-
relative values are illegal—you’ll get an exception if you try to create one.) C# gener‐
ates code that determines the actual element position when you use an index. If
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5 Since end-relative indexes are stored as negative numbers, you might be wondering whether ^0 is even legal,
since the int type does not distinguish between positive and negative zero. It is allowed because, as you’ll
soon see, ^0 is useful when using ranges. To make this work, Index adjusts end-relative indexes by one as well
as negating them, so it stores ^0 as −1, ^1 as −2, etc.

small and big are arrays with 3 and 30 elements, respectively, small[last] would
return the third, and big[last] would return the thirtieth. C# will turn these into
small[last.GetOffset(small.Length)] and big[last.GetOffset(big.Length)],
respectively.

It has often been said that three of the hardest problems in computing are picking
names for things, and off-by-one errors. At first glance, Example 5-34 makes it look
like Index might be contributing to these problems. It may be vexing that the index
for the third item is two, not three, but that at least is consistent with how arrays have
always worked in C#, and is normal for any zero-based indexing system. But given
that zero-based convention, why on earth do the end-relative indexes appear to be
one-based? We denote the first element with 0 but the last element with ^1!

There are some good reasons for this. The fundamental insight is that in C#, indexes
have always specified distances. When programming language designers choose a
zero-based indexing system, this is not really a decision to call the first element 0: it is
a decision to interpret an index as a distance from the start of an array. An upshot of
this is that an index doesn’t really refer to an item. Figure 5-1 shows a collection with
four elements, and indicates where various index values would point in that collec‐
tion. Notice that the indexes all refer to the boundaries between the items. This may
seem like splitting hairs, but it’s the key to understanding all zero-based index sys‐
tems, and it is behind the apparent inconsistency in Example 5-34.

Figure 5-1. Where Index values point

When you access an element of a collection by index, you are asking for the element
that starts at the position indicated by the index. So array[0] retrieves the single ele‐
ment that starts at the beginning of the array, the element that fills the space between
indexes 0 and 1. Likewise, array[1] retrieves the element between indexes 1 and 2.
What would array[^0] mean?5 That would be an attempt to fetch the element that
starts at the very end of the array. Since elements all take up a certain amount of
space, an element that starts at the very end of the array would necessarily finish one
position after the end of the array. In this example, four-element array, array[^0] is
equivalent to array[4], so we’re asking for the element occupying the space that
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starts four elements from the start, and which ends five elements from the start. And
since this is a four-element array, that’s obviously not going to work.

The apparent discrepancy—the fact that array[0] gets the first, but we need to write
array[^1] to get the last—occurs because elements sit between two indexes, and
array indexers always retrieve the element between the index specified and the index
after that. The fact that they do this even when you’ve specified an end-relative index
is the reason those appear to be one-based. This language feature could have been
designed differently: you could imagine a rule in which end-relative indexes always
access the element that ends at the specified distance from the end, and which starts
one position earlier than that. There would have been a pleasing symmetry to this,
because it would have made array[^0] refer to the final element, but this would have
caused more problems than it solved.

It would be confusing to have indexers interpret an index in two different ways—it
would mean that two different indexes might refer to the same position and yet fetch
different elements. In any case, C# developers are already used to things working this
way. As Example 5-35 shows, the way to access the final element of an array prior to
C# 8.0 was to use an index calculated by subtracting one from the length. And if you
want the element before last, you subtract two from the length, and so on. As you can
see, the new end-relative syntax is entirely consistent with the long-established exist‐
ing practice.

Example 5-35. End-relative indexing, and pre-Index equivalents

int lastOld = numbers[numbers.Length - 1];
int lastNew = numbers[^1];

int penultimateOld = numbers[numbers.Length - 2];
int penultimateNew = numbers[^2];

One more way to think of this is to wonder what it might look like if we accessed
arrays by specifying ranges. The first element is in the range 0–1, and the last is in the
range ^1–^0. Expressed this way, there is clearly symmetry between the start-relative
and end-relative forms. And speaking of ranges…

System.Range
As I said earlier, C# 8.0 adds two new operators for working with arrays and other
indexable types. We’ve just looked at ^ and the corresponding Index type. The other
is called the range operator, and it has a corresponding type, Range, also in the System
namespace. A Range is just a pair of Index values, which it makes available through
Start and End properties. Range offers a constructor taking two Index values, but in
C# the idiomatic way to create one is with the range operator, as Example 5-36
shows.
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Example 5-36. Various ranges

Range everything = 0..^0;
Range alsoEverything = 0..;
Range everythingAgain = ..^0;
Range everythingOneMoreTime = ..;
var yetAnotherWayToSayEverything = Range.All;

Range firstThreeItems = 0..3;
Range alsoFirstThreeItems = ..3;

Range allButTheFirstThree = 3..^0;
Range alsoAllButTheFirstThree = 3..;

Range allButTheLastThree = 0..^3;
Range alsoAllButTheLastThree = ..^3;

Range lastThreeItems = ^3..^0;
Range alsoLastThreeItems = ^3..;

As you can see, if you do not put a start index before the .., it defaults to 0, and if you
omit the end it defaults to ^0 (i.e., the very start and end, respectively). The example
also shows that the start can be either start-relative or end-relative, as can the end.

The default value for Range—the one you’ll get in a field or array
element that you do not explicitly initialize—is 0..0. This denotes
an empty range. While this is a natural upshot of the fact that value
types are always initialized to zero-like values by default, it might
not be what you’d expect given that .. is equivalent to Range.All.

Since Range works in terms of Index, the start and end denote offsets, not elements.
For example, consider what the range 1..3 would mean for the elements shown in
Figure 5-1. In this case, both indexes are start-relative. The start index, 1, is the
boundary between the first and second elements (a and b), and the end index, 3, is
the boundary between the third and fourth elements (c and d). So this is a range that
starts at the beginning of b and ends at the end of c, as Figure 5-2 shows. So this iden‐
tifies a two-element range (b and c).

Figure 5-2. A range
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The interpretation of ranges sometimes surprises people when they first see it: some
expect 1..3 to represent the first, second, and third elements (or, if they take into
account C#’s zero-based indexing, perhaps the second, third, and fourth elements). It
can seem inconsistent at first that the start index appears to be inclusive while the end
index is exclusive. But once you remember that an index refers not to an item, but to
an offset, and therefore the boundary between two items, it all makes sense. If you
draw the positions represented by a range’s indexes as Figure 5-2 does, it becomes
perfectly obvious that the range identified by 1..3 covers just two elements.

So what can we do with a Range? As Example 5-33 showed, we can use one to get a
subrange of an array. That creates a new array of the relevant size and copies the val‐
ues from the range into it. This same syntax also works for getting substrings, as
Example 5-37 shows.

Example 5-37. Getting a substring with a range

string t1 = "dysfunctional";
string t2 = t1[3..6];
Console.WriteLine($"Putting the {t2} in {t1}");

You can also use Range with ArraySegment<T>, a value type that refers to a range of
elements within an array. Example 5-38 makes a slight modification to Example 5-33.
Instead of passing the range to the array’s indexer, this first creates an ArraySeg
ment<int> that represents the entire array, and then uses a range to get a second
ArraySegment<int> representing the fourth and fifth elements. The advantage of this
is that it does not need to allocate a new array—both ArraySegment<int> values refer
to the same underlying array, they just point to different sections of it, and since
ArraySegment<int> is a value type, this can avoid allocating new heap blocks. (Array
Segment<int> has no direct support for range, by the way. The compiler turns this
into a call to the segment’s Slice method.)

Example 5-38. Getting a subrange of an ArraySegment<T> with the range operator

int[] numbers = { 1, 2, 3, 4, 5, 6, 7 };
ArraySegment<int> wholeArrayAsSegment = numbers;
ArraySegment<int> theFourthTheFifth = wholeArrayAsSegment[3..5];

The ArraySegment<T> type has been around since .NET 2.0 (and has been in .NET
Standard since 1.0). It’s a useful way to avoid extra allocations, but it’s limited: it only
works with arrays. What about strings? .NET Core 2.1 introduced a more general
form of this concept, Span<T> (and this is also available for older versions of .NET,
thanks to the System.Memory NuGet package). Just like ArraySegment<T>, Span<T>
represents a subsequence of items inside something else, but it is much more flexible
about what that “something else” might be. It could be an array, but it can also be a
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6 In cases where you use ^ directly against an int inside an array indexer (e.g., a[^i] where i is an int), the
compiler generates marginally simpler code. Instead of converting i to an Index, then calling GetOffset, it
will generate code equivalent to a[a.Length - i].

string, memory in a stack frame, or memory allocated by some library or system call
entirely outside of .NET. The Span<T> type is discussed in more detail in Chapter 18,
but for now, Example 5-39 illustrates its basic use (and its read-only counterpart as
well).

Example 5-39. Getting a subrange of a Span<T> with the range operator

int[] numbers = { 1, 2, 3, 4, 5, 6, 7 };
Span<int> wholeArrayAsSpan = numbers;
Span<int> theFourthTheFifth = wholeArrayAsSpan[3..5];
ReadOnlySpan<char> textSpan = "dysfunctional".AsSpan();
ReadOnlySpan<char> such = textSpan[3..6];

These have much the same logical meaning as the preceding examples, but they avoid
making copies of the underlying data.

We’ve now seen that we can use ranges with several types: arrays, strings, ArraySeg
ment<T>, and Span<T>. This raises a question: does C# have a list of types that get spe‐
cial handling, or can we support indexers and ranges in our own types? The answers
are, respectively, yes and yes. C# has some baked-in handling for arrays and strings: it
knows to call specific .NET class library methods to produce subarrays and sub‐
strings. However, there is no special handling for array segments or spans: they work
because they conform to a pattern. There is also a pattern to enable use of Index. If
you support these same patterns, you can make Index and Range work with your own
types.

Supporting Index and Range in Your Own Types
The array type does not define an indexer that accepts an argument of type Index.
Nor do any of the generic array-like types shown earlier in this chapter—they all just
have ordinary int-based indexers, but you can use Index with them nonetheless. As I
explained earlier, code of the form col[index] will expand to col[index.GetOff
set(a.Length)].6 So all you need is an int-based indexer, and a property of type int
called either Length or Count. Example 5-40 shows about the least amount of work
you can possibly do to enable code to pass an Index to your type’s indexer. It’s not a
very useful implementation, but it’s enough to keep C# happy.
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Example 5-40. Minimally enabling Index

public class Indexable
{
    public char this[int index] => (char)('0' + index);

    public int Length => 10;
}

There’s an even simpler way: just define an indexer that takes an
argument of type Index. However, most indexable types supply an
int-based indexer, so in practice you’d be overloading your
indexer, offering both forms. That is not simpler, but it would
enable your code to distinguish between start- and end-relative
indexes. If we use either 1 or ^9 with Example 5-40, its indexer sees
1 in either case, because C# generates code that converts the Index
to a start-based int, but if you write an indexer with an Index
parameter, C# will pass the Index straight in. If you overload the
indexer so that both int and Index forms are available, it will never
generate code that calls the int index: the pattern only kicks in if
no Index-specific indexer is available.

IList<T> meets the pattern’s requirements (as do types that implement it, such as
List<T>), so you can pass an Index to the indexer of anything that implements this.
(It supplies a Count property instead of Length, but the pattern accepts either.) This is
a widely implemented interface, so in practice, many types that were defined long
before C# 8.0 now automatically get support for Index without needing modification.
This is an example of how the pattern-based support for Index means libraries that
target older .NET versions (such as .NET Standard 2.0) where Index is not available
can nonetheless define types that will work with Index when used with .NET Core 3.0
or later.

The pattern for supporting Range is different: if your type supplies an instance
method called Slice that takes two integer arguments, C# will allow code to supply a
Range as an indexer argument. Example 5-40 shows the least a type can do to enable
this, although it’s not a very useful implementation. (As with Index, you can alterna‐
tively just define an indexer overload that accepts a Range directly. But again, an
advantage to the pattern approach is that you can use it when targeting older versions
—such as .NET Standard 2.0 that do not offer the Range or Index types—while still
supporting ranges for code that targets newer versions.)
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Example 5-41. Minimally enabling Range

public class Rangeable
{
    public int Length => 10;

    public Rangeable Slice(int offset, int length) => this;
}

You might have noticed that this type doesn’t define an indexer. That’s because this
pattern-based support for expressions of the form x[1..^1] doesn’t need one. It may
look like we’re using an indexer, but this just calls the Slice method. (Likewise, the
earlier range examples with string and arrays compile into method calls.) You need
the Length property (or Count) because the compiler generates code that relies on
this to resolve the range’s indexes. Example 5-42 shows roughly how the compiler
uses types that support this pattern.

Example 5-42. How range indexing expands

Rangeable r1 = new Rangeable();
Range r = 2..^2;

Rangeable r2;

r2 = r1[r];
// is equivalent to
int startIndex = r.Start.GetOffset(r1.Length);
int endIndex = r.End.GetOffset(r1.Length);
r2 = r1.Slice(startIndex, endIndex - startIndex);

So far, all of the collections we’ve looked at have been linear: I’ve shown only simple
sequences of objects, some of which offer indexed access. However, .NET provides
other kinds of collections.

Dictionaries
One of the most useful kinds of collection is a dictionary. .NET offers the Dictio
nary<TKey, TValue> class, and there’s a corresponding interface called, predictably,
IDictionary<TKey, TValue>, and also a read-only version, IReadOnlyDiction
ary<TKey, TValue>. These represent collections of key/value pairs, and their most
useful capability is to look up a value based on its key, making dictionaries useful for
representing associations.

Suppose you are writing a UI for an application that supports online discussions.
When displaying a message, you might want to show certain things about the user
who sent it, such as their name and picture, and you’d probably want to avoid look‐
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ing up these details every time from wherever they’re stored; if the user is in conver‐
sation with a few friends, the same people will crop up repeatedly, so you’d want
some sort of cache to avoid duplicate lookups. You might use a dictionary as part of
this cache. Example 5-43 shows an outline of this approach. (It omits application-
specific details of how the data is actually fetched and when old data is removed from
memory.)

Example 5-43. Using a dictionary as part of a cache

public class UserCache
{
    private readonly Dictionary<string, UserInfo> _cachedUserInfo =
        new Dictionary<string, UserInfo>();

    public UserInfo GetInfo(string userHandle)
    {
        RemoveStaleCacheEntries();
        if (!_cachedUserInfo.TryGetValue(userHandle, out UserInfo info))
        {
            info = FetchUserInfo(userHandle);
            _cachedUserInfo.Add(userHandle, info);
        }
        return info;
    }

    private UserInfo FetchUserInfo(string userHandle)
    {
        // fetch info ...
    }

    private void RemoveStaleCacheEntries()
    {
        // application-specific logic deciding when to remove old entries ...
    }
}

public class UserInfo
{
    // application-specific user information ...
}

The first type argument, TKey, is used for lookups, and in this example, I’m using a
string that identifies the user in some way. The TValue argument is the type of value
associated with the key—information previously fetched for the user and cached
locally in a UserInfo instance, in this case. The GetInfo method uses TryGetValue to
look in the dictionary for the data associated with a user handle. There is a simpler
way to retrieve a value. As Example 5-44 shows, dictionaries provide an indexer.
However, that throws a KeyNotFoundException if there is no entry with the specified
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key. That would be fine if your code always expects to find what it’s looking for, but
in our case, the key will be missing for any user whose data is not already in the
cache. This will probably happen rather a lot, which is why I’m using TryGetValue.
As an alternative, we could have used the ContainsKey method to see if the entry
exists before retrieving it, but that’s inefficient if the value is present—the dictionary
would end up looking up the entry twice, once in the call to ContainsKey and then
again when we use the indexer. TryGetValue performs the test and the lookup as a
single operation.

Example 5-44. Dictionary lookup with indexer

UserInfo info = _cachedUserInfo[userHandle];

As you might expect, we can also use the indexer to set the value associated with a
key. I’ve not done that in Example 5-43. Instead, I’ve used the Add method, because it
has subtly different semantics: by calling Add, you are indicating that you do not
think any entry with the specified key already exists. Whereas the dictionary’s indexer
will silently overwrite an existing entry if there is one, Add will throw an exception if
you attempt to use a key for which an entry already exists. In situations where the
presence of an existing key would imply that something is wrong, it’s better to call
Add so that the problem doesn’t go undetected.

The IDictionary<TKey, TValue> interface requires its implementations also to pro‐
vide the ICollection<KeyValuePair<TKey, TValue>> interface, and therefore also
IEnumerable<KeyValuePair<TKey, TValue>>. The read-only counterpart requires
the latter, but not the former. These interfaces depend on a generic struct, KeyValue
Pair<TKey, TValue>, which is a simple container that wraps a key and a value in a
single instance. This means you can iterate through a dictionary using foreach, and
it will return each key/value pair in turn.

The presence of an IEnumerable<T> and an Add method also means that we can use
the collection initializer syntax. It’s not quite the same as with a simple list, because a
dictionary’s Add takes two arguments: the key and value. However, the collection ini‐
tializer syntax can cope with multiargument Add methods. You wrap each set of argu‐
ments in nested braces, as Example 5-45 shows.

Example 5-45. Collection initializer syntax with a dictionary

var textToNumber = new Dictionary<string, int>
{
    { "One", 1 },
    { "Two", 2 },
    { "Three", 3 },
};

256 | Chapter 5: Collections



As you saw in Chapter 3, there’s an alternative way to populate a dictionary: instead
of using a collection initializer, you can use the object initializer syntax. As you may
recall, this syntax lets you set properties on a newly created object. It is the only way
to initialize the properties of an anonymous type, but you can use it on any type.
Indexers are just a special kind of property, so it makes sense to be able to set them
with an object initializer. Although Chapter 3 showed this already, it’s worth compar‐
ing object initializers with collection initializers, so Example 5-46 shows the alterna‐
tive way to initialize a dictionary.

Example 5-46. Object initializer syntax with a dictionary

var textToNumber = new Dictionary<string, int>
{
    ["One"] = 1,
    ["Two"] = 2,
    ["Three"] = 3
};

Although the effect is the same here with Examples 5-45 and 5-46, the compiler gen‐
erates slightly different code for each. With Example 5-45, it populates the collection
by calling Add, whereas Example 5-46 uses the indexer. For Dictionary<TKey,
TValue>, the result is the same, so there’s no objective reason to choose one over the
other, but the difference could matter for some classes. For example, if you are using
a class that has an indexer but no Add method, only the index-based code would
work. Also, with the object initializer syntax, it would be possible to set both indexed
values and properties on types that support this (although you can’t do that with Dic
tionary<TKey, TValue> because it has no writable properties other than its indexer).

The Dictionary<TKey, TValue> collection class relies on hashes to offer fast lookup.
Chapter 3 described the GetHashCode method, and you should ensure that whatever
type you are using as a key provides a good hash implementation. The string class
works well. The default GetHashCode method is viable only if different instances of a
type are always considered to have different values, but types for which that is true
function well as keys. Alternatively, the dictionary class provides constructors that
accept an IEqualityComparer<TKey>, which allows you to provide an implementa‐
tion of GetHashCode and Equals to use instead of the one supplied by the key type
itself. Example 5-47 uses this to make a case-insensitive version of Example 5-45.

Example 5-47. A case-insensitive dictionary

var textToNumber =
    new Dictionary<string, int>(StringComparer.InvariantCultureIgnoreCase)
{
    { "One", 1 },
    { "Two", 2 },
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    { "Three", 3 },
};

This uses the StringComparer class, which provides various implementations of ICom
parer<string> and IEqualityComparer<string>, offering different comparison
rules. Here, I’ve chosen an ordering that ignores case, and also ignores the configured
locale, ensuring consistent behavior in different regions. If I were using strings to be
displayed, I’d probably use one of its culture-aware comparisons.

Sorted Dictionaries
Because Dictionary<TKey, TValue> uses hash-based lookup, the order in which it
returns elements when you iterate over its contents is hard to predict and not very
useful. It will generally bear no relation to the order in which the contents were
added, and no obvious relationship to the contents themselves. (The order typically
looks random, although it’s actually related to the hash code.)

Sometimes, it’s useful to be able to retrieve the contents of a dictionary in some
meaningful order. You could always get the contents into an array and then sort
them, but the System.Collections.Generic namespace contains two more imple‐
mentations of the IDictionary<TKey, TValue> interface, which keep their contents
permanently in order. There’s SortedDictionary<TKey, TValue>, and the more
confusingly titled SortedList<TKey, TValue>, which—despite the name—imple‐
ments the IDictionary<TKey, TValue> interface and does not directly implement
IList<T>.

These classes do not use hash codes. They still provide reasonably fast lookup by vir‐
tue of keeping their contents sorted. They maintain the order every time you add a
new entry, which makes addition rather slower for both these classes than with the
hash-based dictionary, but it means that when you iterate over the contents, they
come out in order. As with array and list sorting, you can specify custom comparison
logic, but if you don’t supply that, these dictionaries require the key type to imple‐
ment IComparable<T>.

The ordering maintained by a SortedDictionary<TKey, TValue> is apparent only
when you use its enumeration support (e.g., with foreach). SortedList<TKey,
TValue> also enumerates its contents in order, but it additionally provides numeri‐
cally indexed access to the keys and values. This does not work through the object’s
indexer—that expects to be passed a key just like any dictionary. Instead, the sorted
list dictionary defines two properties, Keys and Values, which provide all the keys
and values as IList<TKey> and IList<TValue>, respectively, sorted so that the keys
will be in ascending order.

Inserting and removing objects is relatively expensive for the sorted list because it has
to shuffle the key and value list contents up or down. (This means a single insertion
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7 The usual complexity analysis caveats apply—for small collections, the simpler data structure might well win,
its theoretical advantage only coming into effect with larger collections.

has O(n) complexity.) The sorted dictionary, on the other hand, uses a tree data
structure to keep its contents sorted. The exact details are not specified, but insertion
and removal performance are documented as having O(log n) complexity, which is
much better than for the sorted list.7 However, this more complex data structure
gives a sorted dictionary a significantly larger memory footprint. This means that nei‐
ther is definitively faster or better than the other—it all depends on the usage pattern,
which is why .NET supplies both.

In most cases, the hash-based Dictionary<TKey, Value> will provide better inser‐
tion, removal, and lookup performance than either of the sorted dictionaries, and
much lower memory consumption than a SortedDictionary<TKey, TValue>, so you
should use these sorted dictionary collections only if you need to access the dictio‐
nary’s contents in order.

Sets
The System.Collections.Generic namespace defines an ISet<T> interface. This
offers a simple model: a particular value is either a member of the set or not. You can
add or remove items, but a set does not keep track of how many times you’ve added
an item, nor does ISet<T> require items to be stored in any particular order.

All set types implement ICollection<T>, which provides the methods for adding and
removing items. In fact, it also defines the method for determining membership:
although I’ve not drawn attention to it before now, you can see in Example 5-24 that
ICollection<T> defines a Contains method. This takes a single value, and returns
true if that value is in the collection.

Given that ICollection<T> already provides the defining operations for a set, you
might wonder why we need ISet<T>. But it does add a few things. Although ICollec
tion<T> defines an Add method, ISet<T> defines its own subtly different version,
which returns a bool, so you can find out whether the item you just added was
already in the set. Example 5-48 uses this to detect duplicates in a method that dis‐
plays each string in its input once. (This illustrates the usage, but in practice it would
be simpler to use the Distinct LINQ operator described in Chapter 10.)

Example 5-48. Using a set to determine what’s new

public static void ShowEachDistinctString(IEnumerable<string> strings)
{
    var shown = new HashSet<string>();  // Implements ISet<T>
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    foreach (string s in strings)
    {
        if (shown.Add(s))
        {
            Console.WriteLine(s);
        }
    }
}

ISet<T> also defines some operations for combining sets. The UnionWith method
takes an IEnumerable<T> and adds to the set all the values from that sequence that
were not already in the set. The ExceptWith method removes from the set items that
are also in the sequence you pass. The IntersectWith method removes from the set
items that are not also in the sequence you pass. And SymmetricExceptWith also
takes a sequence, and removes from the set elements that are in the sequence, but also
adds to the set values in the sequence that were not previously in the set.

There are also some methods for comparing sets. Again, these all take an IEnumera
ble<T> argument representing the other set with which the comparison is to be per‐
formed. IsSubsetOf and IsProperSubsetOf both let you check whether the set on
which you invoke the method contains only elements that are also present in the
sequence, with the latter method additionally requiring the sequence to contain at
least one item not present in the set. IsSupersetOf and IsProperSupersetOf per‐
form the same tests in the opposite direction. The Overlaps method tells you
whether the two sets share at least one element in common.

Mathematical sets do not define an order for their contents, so it’s not meaningful to
refer to the 1st, 10th, or nth element of a set—you can ask only whether an element is
in the set or not. In keeping with this feature of mathematical sets, .NET sets do not
support indexed access, so ISet<T> does not demand support for IList<T>. Sets are
free to produce the members in whatever order they like in their IEnumerable<T>
implementation.

The .NET class library offers two classes that provide this interface, with different
implementation strategies: HashSet and SortedSet. As you may have guessed from
the names, one of the two built-in set implementations does in fact choose to keep its
elements in order; SortedSet keeps its contents sorted at all times, and presents items
in this order through its IEnumerable<T> implementation. The documentation does
not describe the exact strategy used to maintain the order, but it appears to use a bal‐
anced binary tree to support efficient insertion and removal, and to offer fast lookup
when trying to determine whether a particular value is already in the list.

The other implementation, HashSet, works more like Dictionary<TKey, TValue>. It
uses hash-based lookup, which can often be faster than the ordered approach, but if
you enumerate through the collection with foreach, the results will not be in any
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useful order. (So the relationship between HashSet and SortedSet is much like that
between the hash-based dictionary and the sorted dictionaries.)

Queues and Stacks
A queue is a list where you can only add items to the end of the list, and you can only
remove the first item (at which point the second item, if there was one, becomes the
new first item). This style of list is often called a first-in, first-out (FIFO) list. This
makes it less useful than a List<T>, because you can read, write, insert, or remove
items at any point in a List<T>. However, the constraints make it possible to imple‐
ment a queue with considerably better performance characteristics for insertion and
removal. When you remove an item from a List<T>, it has to shuffle all the items
after the one removed to close up the gap, and insertions require a similar shuffle.
Insertion and removal at the end of a List<T> is efficient, but if you need FIFO
semantics, you can’t work entirely at the end—you’ll need to do either insertions or
removals at the start, making List<T> a bad choice. Queue<T> can use a much more
efficient strategy because it needs only to support queue semantics. (It uses a circular
buffer internally, although that’s an undocumented implementation detail.)

To add a new item to the end of a queue, call the Enqueue method. To remove the
item at the head of the queue, call Dequeue, or use Peek if you want to look at the item
without removing it. Both operations will throw an InvalidOperationException if
the queue is empty. You can find out how many items are in the queue with the
Count property.

Although you cannot insert, remove, or change items in the middle of the list, you
can inspect the whole queue, because Queue<T> implements IEnumerable<T>, and
also provides a ToArray method that returns an array containing a copy of the cur‐
rent queue contents.

A stack is similar to a queue, except you retrieve items from the same end as you
insert them—so this is a last-in, first-out (LIFO) list. Stack<T> looks very similar to
Queue<T> except instead of Enqueue and Dequeue, the methods for adding and
removing items use the traditional names for stack operations: Push and Pop. (Other
methods—such as Peek, ToArray, and so on—remain the same.)

The class library does not offer a double-ended queue (so there is no equivalent to the
C++ deque class). However, linked lists can offer a superset of that functionality.

Linked Lists
The LinkedList<T> class provides an implementation of the classic doubly linked list
data structure, in which each item in the sequence is wrapped in an object (of type
LinkedListNode<T>) that provides a reference to its predecessor and its successor.
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8 There’s an exception to this rule: you can use a collection from multiple threads as long as none of the threads
attempts to modify it.

The advantage of a linked list is that insertion and removal is inexpensive—it does
not require elements to be moved around in arrays, and does not require binary trees
to be rebalanced. It just requires a few references to be swapped around. The down‐
sides are that linked lists have fairly high memory overheads, requiring an extra
object on the heap for every item in the collection, and it’s also relatively expensive
for the CPU to get to the nth item because you have to go to the start and then tra‐
verse n nodes.

The first and last nodes in a LinkedList<T> are available through the predictably
named First and Last properties. You can insert items at the start or end of the list
with AddFirst and AddLast, respectively. To add items in the middle of a list, call
either AddBefore or AddAfter, passing in the LinkedListNode<T> before or after
which you’d like to add the new item.

The list also provides RemoveFirst and RemoveLast methods, and two overloads of a
Remove method that allow you to remove either the first node that has a specified
value, or a particular LinkedListNode<T>.

The LinkedListNode<T> itself provides a Value property of type T containing the
actual item for this node’s point in the sequence. Its List property refers back to the
containing LinkedList<T>, and the Previous and Next properties allow you to find
the previous or next node.

To iterate through the contents of a linked list, you could, of course, retrieve the first
node from the First property and then follow each node’s Next property until you
get a null. However, LinkedList<T> implements IEnumerable<T>, so it’s easier just
to use a foreach loop. If you want to get the elements in reverse order, start with
Last and follow each node’s Previous. If the list is empty, First and Last will be
null.

Concurrent Collections
The collection classes described so far are designed for single-threaded usage. You are
free to use different instances on different threads simultaneously, but a particular
instance of any of these types must be used only from one thread at any one time.8

But some types are designed to be used by many threads simultaneously, without
needing to use the synchronization mechanisms discussed in Chapter 16. These are
in the System.Collections.Concurrent namespace.
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The concurrent collections do not offer equivalents for every nonconcurrent collec‐
tion type. Some classes are designed to solve specific concurrent programming prob‐
lems. Even with the ones that do have nonconcurrent counterparts, the need for
concurrent use without locking can mean that they present a somewhat different API
than any of the normal collection classes.

The ConcurrentQueue<T> and ConcurrentStack<T> classes are the ones that look
most like the nonconcurrent collections we’ve already seen, although they are not
identical. The queue’s Dequeue and Peek have been replaced with TryDequeue and
TryPeek, because in a concurrent world, there’s no reliable way to know in advance
whether attempting to get an item from the queue will succeed. (You could check the
queue’s Count, but even if that is nonzero, some other thread may get in there and
empty the queue between when you check the count and when you attempt to
retrieve an item.) So the operation to get an item has to be atomic with the check for
whether an item is available, hence the Try forms that can fail without throwing an
exception. Likewise, the concurrent stack provides TryPop and TryPeek.

ConcurrentDictionary<TKey, TValue> looks fairly similar to its nonconcurrent
cousin, but it adds some extra methods to provide the atomicity required in a concur‐
rent world: the TryAdd method combines the test for the presence of a key with the
addition of a new entry; GetOrAdd does the same thing but also returns the existing
value if there is one as part of the same atomic operation.

There is no concurrent list, because you tend to need more coarse-grained synchroni‐
zation to use ordered, indexed lists successfully in a concurrent world. But if you just
want a bunch of objects, there’s ConcurrentBag<T>, which does not maintain any
particular order.

There’s also BlockingCollection<T>, which acts like a queue but allows threads that
want to take items off the queue to choose to block until an item is available. You can
also set a limited capacity, and make threads that put items onto the queue block if
the queue is currently full, waiting until space becomes available.

Immutable Collections
Microsoft provides a set of collection classes that guarantee immutability, and yet
provide a lightweight way to produce a modified version of the collection without
having to make an entire new copy. Unlike the types discussed so far in this chapter,
these are not built into the part of the class library that ships with .NET, so they need
a reference to the System.Collections.Immutable NuGet package.

Immutability can be a very useful characteristic in multithreaded environments,
because if you know that the data you are working with cannot change, you don’t
need to take special precautions to synchronize your access to it. (This is a stronger
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guarantee than you get with IReadOnlyList<T>, which merely prevents you from
modifying the collection; it could just be a façade over a collection that some other
thread is able to modify.) But what do you do if your data needs to be updated occa‐
sionally? It seems a shame to give up on immutability and to take on the overhead of
traditional multithreaded synchronization in cases where you expect conflicts to be
rare.

A low-tech approach is to build a new copy of all of your data each time something
changes (e.g., when you want to add an item to a collection, create a whole new col‐
lection with a copy of all the old elements and also the new one, and use that new
collection from then on). This works, but can be extremely inefficient. However,
techniques exist that can effectively reuse parts of existing collections. The basic prin‐
ciple is that if you want to add an item to a collection, you build a new collection that
just points to the data that is already there, along with some extra information to say
what has changed. It is rather more complex in practice, but the key point is that
there are well-established ways in which to implement various kinds of collections so
that you can efficiently build what look like complete self-contained copies of the
original data with some small modification applied, without either having to modify
the original data, or having to build a complete new copy of the collection. The
immutable collections do all this for you, encapsulating the work behind some
straightforward interfaces.

This enables a model where you’re free to update your application’s model without
affecting code that was in the middle of using the current version of the data. Conse‐
quently, you don’t need to hold locks while reading data—you might need some syn‐
chronization when getting the latest version of the data, but thereafter, you can
process the data without any concurrency concerns. This can be especially useful
when writing multithreaded code. The .NET Compiler Platform (often known by its
codename, Roslyn) that is the basis of Microsoft’s C# compiler uses this technique to
enable compilation to exploit multiple CPU cores efficiently.

The System.Collections.Immutable namespace defines its own interfaces—IImmu

tableList<T>, IImmutableDictionary<TKey, TValue>, IImmutableQueue<T>, IImu
tableStack<T>, and IImutableSet<T>. This is necessary because all operations that
modify the collection in any way need to return a new collection. Example 5-49
shows what this means for adding entries to a dictionary.

Example 5-49. Creating immutable dictionaries

IImmutableDictionary<int, string> d = ImmutableDictionary.Create<int, string>();
d = d.Add(1, "One");
d = d.Add(2, "Two");
d = d.Add(3, "Three");
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The whole point of immutable types is that code using an existing object can be cer‐
tain that nothing will change, so additions, removals, or modifications necessarily
mean creating a new object that looks just like the old one but with the modification
applied. (The built-in string type works in exactly the same way because it is also
immutable—the methods that sound like they will change the value, such as Trim,
actually return a new string.) So in Example 5-49, the variable d refers successively to
four different immutable dictionaries: an empty one, one with one value, one with
two values, and finally one with all three values.

If you are adding a range of values like this, and you won’t be making intermediate
results available to other code, it is more efficient to add multiple values in a single
operation, because it doesn’t have to produce a separate IImmutableDiction
ary<TKey, TValue> for each entry you add. (You could think of immutable collec‐
tions as working a bit like a source control system, with each change corresponding
to a commit—for every commit you do, a version of the collection will exist that rep‐
resents its contents immediately after that change.) It’s more efficient to batch a
bunch of related changes into a single “version” so the collections all have AddRange
methods that let you add multiple items in one step.

When you’re building a new collection from scratch, the same principle applies: it
will be more efficient if you put all of the initial content into the first version of the
collection, instead of adding items one at a time. Each immutable collection type
offers a nested Builder class to make this easier, enabling you to add items one at a
time, but to defer the creation of the actual collection until you have finished.
Example 5-50 shows how this is done.

Example 5-50. Creating an immutable dictionary with a builder

ImmutableDictionary<int, string>.Builder b =
    ImmutableDictionary.CreateBuilder<int, string>();
b.Add(1, "One");
b.Add(2, "Two");
b.Add(3, "Three");
IImmutableDictionary<int, string> d = b.ToImmutable();

The builder object is not immutable. Much like StringBuilder, it is a mutable object
that provides an efficient way to build a description of an immutable object.

ImmutableArray<T>
In addition to the immutable list, dictionary, queue, stack, and set types, there’s one
more immutable collection class that is a bit different than the rest: ImmutableAr
ray<T>. This is essentially a wrapper providing an immutable façade around an array.
It implements IImmutableList<T>, meaning that it offers the same services as an
immutable list, but it has quite different performance characteristics.
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When you call Add on an immutable list, it will attempt to reuse most of the data that
is already there, so if you have a million items in your list, the “new” list returned by
Add won’t contain a new copy of those items—it will mostly reuse the data that was
already there. However, to achieve this, ImmutableList<T> uses a somewhat complex
tree data structure internally. The upshot is that looking up values by index in an
ImmutableList<T> is nothing like as efficient as using an array (or a List<T>). The
indexer for ImmutableList<T> has O(log n) complexity.

An ImmutableArray<T> is much more efficient for reads—being a wrapper around an
array, it has O(1) complexity, i.e., the time taken to fetch an entry is constant, regard‐
less of how large the collection may be. The tradeoff is that all of the IImmutableL
ist<T> methods for building a modified version of the list (Add, Remove, Insert,
SetItem, etc.) build a complete new array, including a new copy of any data that
needs to be carried over. (In other words, unlike all the other immutable collection
types, ImmutableArray<T> employs the low-tech approach to immutability that I
described earlier.) This makes modifications very much more expensive, but if you
have some data you expect to modify either rarely or not at all after the initial cre‐
ation of the array, this is an excellent tradeoff, because you will only ever build one
copy of the array.

Summary
In this chapter, we saw the intrinsic support for arrays offered by the runtime, and
also the various collection classes that .NET provides when you need more than a
fixed-size list of items. Next, we’ll look at a more advanced topic: inheritance.
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CHAPTER 6

Inheritance

C# classes support inheritance, a popular object-oriented code reuse mechanism.
When you write a class, you can optionally specify a base class. Your class will derive
from this, meaning that everything in the base class will be present in your class, as
well as any members you add.

Classes support only single inheritance (so you can only specify one base class). Inter‐
faces offer a form of multiple inheritance. Value types do not support inheritance at
all. One reason for this is that value types are not normally used by reference, which
removes one of the main benefits of inheritance: runtime polymorphism. Inheritance
is not necessarily incompatible with value-like behavior—some languages manage it
—but it often has problems. For example, assigning a value of some derived type into
a variable of its base type ends up losing all of the fields that the derived type added, a
problem known as slicing. C# sidesteps this by restricting inheritance to reference
types. When you assign a variable of some derived type into a variable of a base type,
you’re copying a reference, not the object itself, so the object remains intact. Slicing is
an issue only if the base class offers a method that clones the object, and doesn’t pro‐
vide a way for derived classes to extend that (or it does, but some derived class fails to
extend it).

Classes specify a base class using the syntax shown in Example 6-1—the base type
appears after a colon that follows the class name. This example assumes that a class
called SomeClass has been defined elsewhere in the project, or one of the libraries it
uses.

Example 6-1. Specifying a base class

public class Derived : SomeClass
{
}
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public class AlsoDerived : SomeClass, IDisposable
{
    public void Dispose() { }
}

As you saw in Chapter 3, if the class implements any interfaces, these are also listed
after the colon. If you want to derive from a class, and you want to implement inter‐
faces as well, the base class must appear first, as you can see illustrated in the second
class in Example 6-1.

You can derive from a class that in turn derives from another class. The MoreDerived
class in Example 6-2 derives from Derived, which in turn derives from Base.

Example 6-2. Inheritance chain

public class Base
{
}

public class Derived : Base
{
}

public class MoreDerived : Derived
{
}

This means that MoreDerived technically has multiple base classes: it derives from
both Derived (directly) and Base (indirectly, via Derived). This is not multiple inher‐
itance because there is only a single chain of inheritance—any single class derives
directly from at most one base class. (All classes derive either directly or indirectly
from object, which is the default base class if you do not specify one.)

Since a derived class inherits everything the base class has—all its fields, methods,
and other members, both public and private—an instance of the derived class can do
anything an instance of the base class could do. This is the classic is a relationship
that inheritance implies in many languages. Any instance of MoreDerived is a
Derived, and also a Base. C#’s type system recognizes this relationship.

Inheritance and Conversions
C# provides various built-in implicit conversions. In Chapter 2, we saw the conver‐
sions for numeric types, but there are also ones for reference types. If some type D
derives from B (either directly or indirectly), then a reference of type D can be con‐
verted implicitly to a reference of type B. This follows from the is a relationship I
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described in the preceding section—any instance of D is a B. This implicit conversion
enables polymorphism: code written to work in terms of B will be able to work with
type derived from B.

Reference conversions are special. Unlike other conversions, they
cannot change the value in any way. (The built-in implicit numeric
conversions all create a new value from their input, often involving
a change of representation. The binary representation of the inte‐
ger 1 looks different for the float and int types, for example.) In
effect, they convert the interpretation of the reference, rather than
converting the reference itself or the object it refers to. As you’ll see
later in this chapter, there are various places where the CLR will
take the availability of an implicit reference conversion into
account, but will not consider other forms of conversion.

Obviously, there is no implicit conversion in the opposite direction—although a vari‐
able of type B could refer to an object of type D, there’s no guarantee that it will. There
could be any number of types derived from B, and a B variable could refer to an
instance of any of them. Nevertheless, you will sometimes want to attempt to convert
a reference from a base type to a derived type, an operation sometimes referred to as
a downcast. Perhaps you know for a fact that a particular variable holds a reference of
a certain type. Or perhaps you’re not sure, and would like your code to provide addi‐
tional services for specific types. C# offers four ways to do this.

We can attempt a downcast using the cast syntax. This is the same syntax we use for
performing nonimplicit numeric conversions, as Example 6-3 shows.

Example 6-3. Feeling downcast

public static void UseAsDerived(Base baseArg)
{
    var d = (Derived) baseArg;

    // ... go on to do something with d
}

This conversion is not guaranteed to succeed—that’s why we can’t use an implicit
conversion. If you try this when the baseArg argument refers to something that’s nei‐
ther an instance of Derived, nor something derived from Derived, the conversion
will fail, throwing an InvalidCastException. (Exceptions are described in Chap‐
ter 8.)

A cast is therefore appropriate only if you’re confident that the object really is of the
type you expect, and you would consider it to be an error if it turned out not to be.
This is useful when an API accepts an object that it will later give back to you. Many
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asynchronous APIs do this, because in cases where you launch multiple operations
concurrently, you need some way of working out which particular one finished when
you get a completion notification (although, as we’ll see in later chapters, there are
various ways to tackle that problem). Since these APIs don’t know what sort of data
you’ll want to associate with an operation, they usually just take a reference of type
object, and you would typically use a cast to turn it back into a reference of the
required type when the reference is eventually handed back to you.

Sometimes, you will not know for certain whether an object has a particular type. In
this case, you can use the as operator instead, as shown in Example 6-4. This allows
you to attempt a conversion without risking an exception. If the conversion fails, this
operator just returns null.

Example 6-4. The as operator

public static void MightUseAsDerived(Base b)
{
    var d = b as Derived;

    if (d != null)
    {
        // ... go on to do something with d
    }
}

Although this technique is quite common in existing code, the introduction of pat‐
terns in C# 7.0 provided a more succinct alternative. Example 6-5 has the same effect
as Example 6-4: the body of the if runs only if b refers to an instance of Derived, in
which case it can be accessed through the variable d. The is keyword here indicates
that we want to test b against a pattern. In this case we’re using a type pattern, which
performs the same runtime type test as the as operator. An expression that applies a
pattern with is produces a bool indicating whether the pattern matches. We can use
this as the if statement’s condition expression, removing the need to compare with
null. And since type patterns incorporate variable declaration and initialization, the
work that needed two statements in Example 6-4 can all be rolled into the if state‐
ment in Example 6-5.

Example 6-5. Type pattern

public static void MightUseAsDerived(Base b)
{
    if (b is Derived d)
    {
        // ... go on to do something with d
    }
}
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1 This excludes custom implicit conversions.

In addition to being more compact, the is operator also has the benefit of working in
one scenario where as does not: you can test whether a reference of type object
refers to an instance of a value type such as an int. (This may seem like a contradic‐
tion—how could you have a reference to something that is not a reference type?
Chapter 7 will show how this is possible.) The as operator wouldn’t work because it
returns null when the instance is not of the specified type, but of course it cannot do
that for a value type—there’s no such thing as a null of type int. Since the type pat‐
tern eliminates the need to test for null—we just use the bool result that the is oper‐
ator produces—we are free to use value types.

Finally, it can occasionally be useful to know whether a reference refers to an object
of a particular type, without actually wanting to use members specific to that type.
For example, you might want to skip some particular piece of processing for a certain
derived class. We can use the is operator for this too. If you just put the name of a
type instead of a full pattern, as Example 6-6 does, it tests whether an object is of a
particular type, returning true if it is, and false otherwise.

Example 6-6. The is operator

if (!(b is WeirdType))
{
    // ... do the processing that everything except WeirdType requires
}

This form of the is operator is a historical oddity. It looks very similar to the pattern-
based usage, but this is not a pattern. (You can’t write just the type name in any of the
other places that patterns occur.) And it is redundant: we could achieve the same
effect with a type pattern that discards its output. (The pattern-based version would
be !(b is WeirdType _).) The only reason this nonpattern form exists is that it used
to be the only form. Patterns were only introduced in C# 7.0, whereas this usage of is
has been in the language from the start.

When converting with the techniques just described, you don’t necessarily need to
specify the exact type. These operations will succeed as long as an implicit reference
conversion exists from the object’s real type to the type you’re looking for.1 For exam‐
ple, given the Base, Derived, and MoreDerived types that Example 6-2 defines, sup‐
pose you have a variable of type Base that currently contains a reference to an
instance of MoreDerived. Obviously, you could cast the reference to MoreDerived
(and both as and is would also succeed for that type), but as you’d probably expect,
converting to Derived would work too.
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These four mechanisms also work for interfaces. When you try to convert a reference
to an interface type reference (or test for an interface type with is), it will succeed if
the object referred to implements the relevant interface.

Interface Inheritance
Interfaces support inheritance, but it’s not quite the same as class inheritance. The
syntax is similar, but as Example 6-7 shows, an interface can specify multiple base
interfaces. While .NET offers only single implementation inheritance, this limitation
does not apply to interfaces because most of the complications and potential ambigu‐
ities that can arise with multiple inheritance do not apply to purely abstract types.
Even the addition of default interface implementations in C# 8.0 didn’t change this
because those don’t get to add either fields or public members to the implementing
type. (When a class uses a default implementation for a member, that member is
accessible only through references of the interface’s type.)

Example 6-7. Interface inheritance

interface IBase1
{
    void Base1Method();
}

interface IBase2
{
    void Base2Method();
}

interface IBoth : IBase1, IBase2
{
    void Method3();
}

Although interface inheritance is the official name for this feature, it is a misnomer—
whereas derived classes inherit all members from their base, derived interfaces do
not. It may appear that they do—given a variable of type IBoth, you can invoke the
Base1Method and Base2Method methods defined by its bases. However, the true
meaning of interface inheritance is simply that type that implements an interface is
obliged to implement all inherited interfaces. So a class that implements IBoth must
also implement IBase1 and IBase2. It’s a subtle distinction, especially since C# does
not require you to list the base interfaces explicitly. The class in Example 6-8 only
declares that it implements IBoth. But if you were to use .NET’s reflection API to
inspect the type definition, you would find that the compiler has added IBase1 and
IBase2 to the list of interfaces the class implements as well as the explicitly declared
IBoth.
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Example 6-8. Implementing a derived interface

public class Impl : IBoth
{
    public void Base1Method()
    {
    }

    public void Base2Method()
    {
    }

    public void Method3()
    {
    }
}

Since implementations of a derived interface must implement all base interfaces, C#
lets you access bases’ members directly through a reference of a derived type, so a
variable of type IBoth provides access to Base1Method and Base2Method, as well as
that interface’s own Method3. Implicit conversions exist from derived interface types
to their bases. For example, a reference of type IBoth can be assigned to variables of
type IBase1 and IBase2.

Generics
If you derive from a generic class, you must supply the type arguments it requires.
You must provide concrete types unless your derived type is generic, in which case it
can use its own type parameters as arguments. Example 6-9 shows both techniques,
and also illustrates that when deriving from a class with multiple type parameters,
you can use a mixture, specifying one type argument directly and punting on the
other.

Example 6-9. Deriving from a generic base class

public class GenericBase1<T>
{
    public T Item { get; set; }
}

public class GenericBase2<TKey, TValue>
{
    public TKey Key { get; set; }
    public TValue Value { get; set; }
}

public class NonGenericDerived : GenericBase1<string>
{
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}

public class GenericDerived<T> : GenericBase1<T>
{
}

public class MixedDerived<T> : GenericBase2<string, T>
{
}

Although you are free to use any of your type parameters as type arguments for a
base class, you cannot derive from a type parameter. This is a little disappointing if
you are used to languages that permit such things, but the C# language specification
simply forbids it. However, you are allowed to use your own type as a type argument
to your base class. And you can also specify a constraint on a type argument requir‐
ing it to derive from your own type. Example 6-10 shows each of these.

Example 6-10. Requiring a type argument to derive from the type it’s applied to

public class SelfAsTypeArgument : IComparable<SelfAsTypeArgument>
{
    // ... implementation removed for clarity
}

public class Curious<T>
    where T : Curious<T>
{
}

Covariance and Contravariance
In Chapter 4, I mentioned that generic types have special rules for type compatibility,
referred to as covariance and contravariance. These rules determine whether refer‐
ences of certain generic types are implicitly convertible to one another when implicit
conversions exist between their type arguments.

Covariance and contravariance are applicable only to the generic
type arguments of interfaces and delegates. (Delegates are
described in Chapter 9.) You cannot define a covariant or contra‐
variant class or struct.

Consider the simple Base and Derived classes shown earlier in Example 6-2, and look
at the method in Example 6-11, which accepts any Base. (It does nothing with it, but
that’s not relevant here—what matters is what its signature says it can use.)
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Example 6-11. A method accepting any Base

public static void UseBase(Base b)
{
}

We already know that as well as accepting a reference to any Base, this can also
accept a reference to an instance of any type derived from Base, such as Derived.
Bearing that in mind, consider the method in Example 6-12.

Example 6-12. A method accepting any IEnumerable<Base>

public static void AllYourBase(IEnumerable<Base> bases)
{
}

This requires an object that implements the IEnumerable<T> generic interface
described in Chapter 5, where T is Base. What would you expect to happen if we
attempted to pass an object that did not implement IEnumerable<Base>, but did
implement IEnumerable<Derived>? Example 6-13 does this, and it compiles just fine.

Example 6-13. Passing an IEnumerable<T> of a derived type

IEnumerable<Derived> derivedItems =
    new Derived[] { new Derived(), new Derived() };
AllYourBase(derivedItems);

Intuitively, this makes sense. The AllYourBase method is expecting an object that
can supply a sequence of objects that are all of type Base. An IEnumerable<Derived>
fits the bill because it supplies a sequence of Derived objects, and any Derived object
is also a Base. However, what about the code in Example 6-14?

Example 6-14. A method accepting any ICollection<Base>

public static void AddBase(ICollection<Base> bases)
{
    bases.Add(new Base());
}

Recall from Chapter 5 that ICollection<T> derives from IEnumerable<T>, and it
adds the ability to modify the collection in certain ways. This particular method
exploits that by adding a new Base object to the collection. That would mean trouble
for the code in Example 6-15.
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Example 6-15. Error: trying to pass an ICollection<T> with a derived type

ICollection<Derived> derivedList = new List<Derived>();
AddBase(derivedList);  // Will not compile

Code that uses the derivedList variable will expect every object in that list to be of
type Derived (or something derived from it, such as the MoreDerived class from
Example 6-2). But the AddBase method in Example 6-14 attempts to add a plain Base
instance. That cannot be correct, and the compiler does not allow it. The call to Add
Base will produce a compiler error complaining that references of type ICollec
tion<Derived> cannot be converted implicitly to references of type
ICollection<Base>.

How does the compiler know that it’s not OK to do this, while the very similar-
looking conversion from IEnumerable<Derived> to IEnumerable<Base> is allowed?
It’s not because Example 6-14 contains code that would cause a problem, by the way.
You’d get the same compiler error even if the AddBase method were completely
empty. The reason we don’t get an error in Example 6-13 is that the IEnumerable<T>
interface declares its type argument T as covariant. You saw the syntax for this in
Chapter 5, but I didn’t draw attention to it, so Example 6-16 shows the relevant part
from that interface’s definition again.

Example 6-16. Covariant type parameter

public interface IEnumerable<out T> : IEnumerable

That out keyword does the job. (Again, C# keeps up the C-family tradition of giving
each keyword multiple jobs—we first saw this keyword in the context of method
parameters that can return information to the caller.) Intuitively, describing the type
argument T as “out” makes sense, in that the IEnumerable<T> interface only ever pro‐
vides a T—it does not define any members that accept a T. (The interface uses this
type parameter in just one place: its read-only Current property.)

Compare that with ICollection<T>. This derives from IEnumerable<T>, so clearly
it’s possible to get a T out of it, but it’s also possible to pass a T into its Add method. So
ICollection<T> cannot annotate its type argument with out. (If you were to try to
write your own similar interface, the compiler would produce an error if you
declared the type argument as being covariant. Rather than just taking your word for
it, it checks to make sure you really can’t pass a T in anywhere.)

The compiler rejects the code in Example 6-15 because T is not covariant in ICollec
tion<T>. The terms covariant and contravariant come from a branch of mathematics
called category theory. The parameters that behave like IEnumerable<T>’s T are called
covariant because implicit reference conversions for the generic type work in the
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same direction as conversions for the type argument: Derived is implicitly converti‐
ble to Base, and since T is covariant in IEnumerable<T>, IEnumerable<Derived> is
implicitly convertible to IEnumerable<Base>.

Predictably, contravariance works the other way around, and as you’ve probably
guessed, we denote it with the in keyword. It’s easiest to see this in action with code
that uses members of types, so Example 6-17 shows a marginally more interesting
pair of classes than the earlier examples.

Example 6-17. Class hierarchy with actual members

public class Shape
{
    public Rect BoundingBox { get; set; }
}

public class RoundedRectangle : Shape
{
    public double CornerRadius { get; set; }
}

Example 6-18 defines two classes that use these shape types. Both implement ICom
parer<T>, which I introduced in Chapter 4. The BoxAreaComparer compares two
shapes based on the area of their bounding box—the shape whose bounding box cov‐
ers the greater area will be deemed the larger by this comparison. The CornerSharp
nessComparer, on the other hand, compares rounded rectangles by looking at how
pointy their corners are.

Example 6-18. Comparing shapes

public class BoxAreaComparer : IComparer<Shape>
{
    public int Compare(Shape x, Shape y)
    {
        double xArea = x.BoundingBox.Width * x.BoundingBox.Height;
        double yArea = y.BoundingBox.Width * y.BoundingBox.Height;

        return Math.Sign(xArea - yArea);
    }
}

public class CornerSharpnessComparer : IComparer<RoundedRectangle>
{
    public int Compare(RoundedRectangle x, RoundedRectangle y)
    {
        // Smaller corners are sharper, so smaller radius is "greater" for
        // the purpose of this comparison, hence the backward subtraction.
        return Math.Sign(y.CornerRadius - x.CornerRadius);
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    }
}

References of type RoundedRectangle are implicitly convertible to Shape, so what
about IComparer<T>? Our BoxAreaComparer can compare any shapes, and declares
this by implementing IComparer<Shape>. The comparer’s type argument T is only
ever used in the Compare method, and that is happy to be passed any Shape. It will not
be fazed if we pass it a pair of RoundedRectangle references, so our class is a perfectly
adequate IComparer<RoundedRectangle>. An implicit conversion from
IComparer<Shape> to IComparer<RoundedRectangle> therefore makes sense, and is
in fact allowed. However, the CornerSharpnessComparer is fussier. It uses the Corner
Radius property, which is available only on rounded rectangles, not on any old
Shape. Therefore, no implicit conversion exists from IComparer<RoundedRectangle>
to IComparer<Shape>.

This is the reverse of what we saw with IEnumerable<T>. Implicit conversion is avail‐
able between IEnumerable<T1> and IEnumerable<T2> when an implicit reference
conversion from T1 to T2 exists. But implicit conversion between IComparer<T1> and
IComparer<T2> is available when an implicit reference conversion exists in the other
direction: from T2 to T1. That reversed relationship is called contravariance.
Example 6-19 is an excerpt of the definition for IComparer<T> showing this contra‐
variant type parameter.

Example 6-19. Contravariant type parameter

public interface IComparer<in T>

Most generic type parameters are neither covariant nor contravariant. (They are
invariant.) ICollection<T> cannot be variant, because it contains some members
that accept a T and some that return one. An ICollection<Shape> might contain
shapes that are not RoundedRectangles, so you cannot pass it to a method expecting
an ICollection<RoundedRectangle>, because such a method would expect every
object it retrieves from the collection to be a rounded rectangle. Conversely, an
ICollection<RoundedRectangle> cannot be expected to allow shapes other than
rounded rectangles to be added, and so you cannot pass an ICollection<RoundedRec
tangle> to a method that expects an ICollection<Shape> because that method may
try to add other kinds of shapes.

Arrays are covariant, just like IEnumerable<T>. This is rather odd, because we can
write methods like the one in Example 6-20.
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Example 6-20. Changing an element in an array

public static void UseBaseArray(Base[] bases)
{
    bases[0] = new Base();
}

If I were to call this with the code in Example 6-21, I would be making the same mis‐
take as I did in Example 6-15, where I attempted to pass an ICollection<Derived>
to a method that wanted to put something that was not Derived into the collection.
But while Example 6-15 does not compile, Example 6-21 does, due to the surprising
covariance of arrays.

Example 6-21. Passing an array with derived element type

Derived[] derivedBases = { new Derived(), new Derived() };
UseBaseArray(derivedBases);

This makes it look as though we could sneakily make this array accept a reference to
an object that is not an instance of the array’s element type—in this case, putting a
reference to a non-Derived object, Base, in Derived[]. But that would be a violation
of the type system. Does this mean the sky is falling?

In fact, C# correctly forbids such a violation, but it relies on the CLR to enforce this at
runtime. Although a reference to an array of type Derived[] can be implicitly con‐
verted to a reference of type Base[], any attempt to set an array element in a way that
is inconsistent with the type system will throw an ArrayTypeMismatchException. So
Example 6-20 would throw that exception when it tried to assign a reference to a
Base into the Derived[] array.

Type safety is maintained, and rather conveniently, if we write a method that takes an
array and only reads from it, we can pass arrays of some derived element type and it
will work. The downside is that the CLR has to do extra work at runtime when you
modify array elements to ensure that there is no type mismatch. It may be able to
optimize the code to avoid having to check every single assignment, but there is still
some overhead, meaning that arrays are not quite as efficient as they might be.

This somewhat peculiar arrangement dates back to the time before .NET had formal‐
ized concepts of covariance and contravariance—these came in with generics, which
were introduced in .NET 2.0. Perhaps if generics had been around from the start,
arrays would be less odd, although having said that, even after .NET 2.0 their peculiar
form of covariance was for many years the only mechanism built into the framework
that provided a way to pass a collection covariantly to a method that wanted to read
from it using indexing. Until .NET 4.5 introduced IReadOnlyList<T> (for which T is
covariant), there was no read-only indexed collection interface in the framework, and
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therefore no standard indexed collection interface with a covariant type parameter.
(IList<T> is read/write, so just like ICollection<T>, it cannot offer variance.)

While we’re on the subject of type compatibility and the implicit reference conver‐
sions that inheritance makes available, there’s one more type we should look at:
object.

System.Object
The System.Object type, or object as we usually call it in C#, is useful because it can
act as a sort of universal container: a variable of this type can hold a reference to
almost anything. I’ve mentioned this before, but I haven’t yet explained why it’s true.
The reason this works is that almost everything derives from object.

If you do not specify a base class when writing a class, the C# compiler automatically
uses object as the base. As we’ll see shortly, it chooses different bases for certain
kinds of types such as structs, but even those derive from object indirectly. (As ever,
pointer types are an exception—these do not derive from object.)

The relationship between interfaces and objects is slightly more subtle. Interfaces do
not derive from object, because an interface can specify only other interfaces as its
bases. However, a reference of any interface type is implicitly convertible to a refer‐
ence of type object. This conversion will always be valid, because all types that are
capable of implementing interfaces ultimately derive from object. Moreover, C#
chooses to make the object class’s members available through interface references
even though they are not, strictly speaking, members of the interface. This means that
references of any kind always offer the following methods defined by object:
ToString, Equals, GetHashCode, and GetType.

The Ubiquitous Methods of System.Object
I’ve used ToString in numerous examples already. The default implementation
returns the object’s type name, but many types provide their own implementation of
ToString, returning a more useful textual representation of the object’s current value.
The numeric types return a decimal representation of their value, for example, while
bool returns either "True" or "False".

I discussed Equals and GetHashCode in Chapter 3, but I’ll provide a quick recap here.
Equals allows an object to be compared with any other object. The default imple‐
mentation just performs an identity comparison—that is, it returns true only when
an object is compared with itself. Many types provide an Equals method that per‐
forms value-like comparison—for example, two distinct string objects may contain
identical text, in which case they will report being equal to each other. (Should you
need to perform an identity-based comparison of objects that provide value-based
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2 More precisely, the same assembly, and also friend assemblies. Chapter 12 describes assemblies.

comparison, you can use the object class’s static ReferenceEquals method.) Inci‐
dentally, object also defines a static version of Equals that takes two arguments. This
checks whether the arguments are null, returning true if both are null and false if
only one is null; otherwise, it defers to the first argument’s Equals method. And, as
discussed in Chapter 3, GetHashCode returns an integer that is a reduced representa‐
tion of the object’s value, which is used by hash-based mechanisms such as the Dic
tionary<TKey, TValue> collection class. Any pair of objects for which Equals
returns true must return the same hash codes.

The GetType method provides a way to discover things about the object’s type. It
returns a reference of type Type. That’s part of the reflection API, which is the subject
of Chapter 13.

Besides these public members, available through any reference, object defines two
more members that are not universally accessible. An object has access to these mem‐
bers only on itself. They are Finalize and MemberwiseClone. The CLR calls the
Finalize method to notify you that your object is no longer in use and the memory
it occupies is about to be reclaimed. In C# we do not normally work directly with the
Finalize method, because C# presents this mechanism through destructors, as I’ll
show in Chapter 7. MemberwiseClone creates a new instance of the same type as your
object, initialized with copies of all of your object’s fields. If you need a way to create
a clone of an object, this may be easier than writing code that copies all the contents
across by hand, although it is not very fast.

The reason these last two methods are available only from inside the object is that
you might not want other people cloning your object, and it would be unhelpful if
external code could call the Finalize method, fooling your object into thinking that
it was about to be freed if in fact it wasn’t. The object class limits the accessibility of
these members. But they’re not private—that would mean that only the object class
itself could access them, because private members are not visible even to derived
classes. Instead, object makes theses members protected, an accessibility specifier
designed for inheritance scenarios.

Accessibility and Inheritance
By now, you will already be familiar with most of the accessibility levels available for
types and their members. Elements marked as public are available to all, private
members are accessible only from within the type that declared them, and internal
members are available to code defined in the same component.2 But with inheritance,
we get three other accessibility options.
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A member marked as protected is available inside the type that defined it, and also
inside any derived types. But for code using an instance of your type, protected
members are not accessible, just like private members.

The next protection level for type members is protected internal. (You can write
internal protected if you prefer; the order makes no difference.) This makes the
member more accessible than either protected or internal on its own: the member
will be accessible to all derived types and to all code that shares an assembly.

The third protection level that inheritance adds is protected private. Members
marked with this (or the equivalent private protected) are available only to types
that are both derived from and defined in the same component as the defining type.

You can use protected, protected internal, or protected private for any mem‐
ber of a type, and not just methods. You can even use nested types with these accessi‐
bility specifiers.

Although protected (and protected internal, although not protected private)
members are not available through an ordinary variable of the defining type, they are
still part of the type’s public API, in the sense that anyone who has access to your
classes will be able to use these members. As with most languages that support a simi‐
lar mechanism, protected members in C# are typically used to provide services that
derived classes might find useful. If you write a public class that supports inheri‐
tance, then anyone can derive from it and gain access to its protected members.
Removing or changing protected members would therefore risk breaking code that
depends on your class just as surely as removing or changing public members
would.

When you derive from a class, you cannot make your class more visible than its base.
If you derive from an internal class, for example, you cannot declare your class to be
public. Your base class forms part of your class’s API, so anyone wishing to use your
class will also in effect be using its base class; this means that if the base is inaccessi‐
ble, your class will also be inaccessible, which is why C# does not permit a class to be
more visible than its base. For example, if you derive from a protected nested class,
your derived class could be protected, private, or protected private but not pub
lic, internal, or protected internal.

This restriction does not apply to the interfaces you implement. A
public class is free to implement internal or private interfaces.
However, it does apply to an interface’s bases: a public interface
cannot derive from an internal interface.

When defining methods, there’s another keyword you can add for the benefit of
derived types: virtual.
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Virtual Methods
A virtual method is one that a derived type can replace. Several of the methods
defined by object are virtual: the ToString, Equals, GetHashCode, and Finalize
methods are all designed to be replaced. The code required to produce a useful tex‐
tual representation of an object’s value will differ considerably from one type to
another, as will the logic required to determine equality and produce a hash code.
Types typically define a finalizer only if they need to do some specialized cleanup
work when they go out of use.

Not all methods are virtual. In fact, C# makes methods nonvirtual by default. The
object class’s GetType method is not virtual, so you can always trust the information
it returns to you because you know that you’re calling the GetType method supplied
by .NET, and not some type-specific substitute designed to fool you. To declare that a
method should be virtual, use the virtual keyword, as Example 6-22 shows.

Example 6-22. A class with a virtual method

public class BaseWithVirtual
{
    public virtual void ShowMessage()
    {
        Console.WriteLine("Hello from BaseWithVirtual");
    }
}

You can also apply the virtual keyword to properties. Properties
are just methods under the covers, so this has the effect of making
the accessor methods virtual. The same is true for events, which are
discussed in Chapter 9.

There’s nothing unusual about the syntax for invoking a virtual method. As
Example 6-23 shows, it looks just like calling any other method.

Example 6-23. Using a virtual method

public static void CallVirtualMethod(BaseWithVirtual o)
{
    o.ShowMessage();
}

The difference between virtual and nonvirtual method invocations is that a virtual
method call decides at runtime which method to invoke. The code in Example 6-23
will, in effect, inspect the object passed in, and if the object’s type supplies its own
implementation of ShowMessage, it will call that instead of the one defined in
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BaseWithVirtual. The method is chosen based on the actual type the target object
turns out to have at runtime, and not the static type (determined at compile time) of
the expression that refers to the target object.

Since virtual method invocation selects the method based on the
type of the object on which you invoke the method, static methods
cannot be virtual.

Derived types are not obliged to replace virtual methods. Example 6-24 shows two
classes that derive from the one in Example 6-22. The first leaves the base class’s
implementation of ShowMessage in place. The second overrides it. Note the override
keyword—C# requires us to state explicitly that we are intending to override a virtual
method.

Example 6-24. Overriding virtual methods

public class DeriveWithoutOverride : BaseWithVirtual
{
}

public class DeriveAndOverride : BaseWithVirtual
{
    public override void ShowMessage()
    {
        Console.WriteLine("This is an override");
    }
}

We can use these types with the method in Example 6-23. Example 6-25 calls it three
times, passing in a different type of object each time.

Example 6-25. Exploiting virtual methods

CallVirtualMethod(new BaseWithVirtual());
CallVirtualMethod(new DeriveWithoutOverride());
CallVirtualMethod(new DeriveAndOverride());

This produces the following output:

Hello from BaseWithVirtual
Hello from BaseWithVirtual
This is an override

Obviously, when we pass an instance of the base class, we get the output from the
base class’s ShowMessage method. We also get that with the derived class that has not
supplied an override. It is only the final class, which overrides the method, that pro‐
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duces different output. This shows that virtual methods provide a way to write poly‐
morphic code: Example 6-23 can use a variety of types. You might be wondering why
we need this, given that interfaces also enable polymorphic code. Prior to C# 8.0, one
major advantage of virtual methods over interfaces was that the base class could pro‐
vide an implementation that derived classes would acquire by default, supplying their
own implementation only if they really needed something different. The addition of
default interface implementations to the language means that interfaces can now do
the same thing, although a default interface member implementation cannot define
or access nonstatic fields, so it is somewhat limited compared to a class that defines a
virtual function. (And since default interface implementations require runtime sup‐
port, they are unavailable to code that needs to target runtimes older than .NET Core
3.0, which includes any library targeting .NET Standard 2.0 or older.) However, there
is a more subtle advantage available to virtual methods, but before we can look at it,
we need to explore a feature of virtual methods which at first glance even more
closely resembles the way interfaces work.

Abstract Methods
You can define a virtual method without providing a default implementation. C#
calls this an abstract method. If a class contains one or more abstract methods, the
class is incomplete, because it doesn’t provide all of the methods it defines. Classes of
this kind are also described as being abstract, and it is not possible to construct
instances of an abstract class; attempting to use the new operator with an abstract
class will cause a compiler error. Sometimes when discussing classes, it’s useful to
make clear that some particular class is not abstract, for which we normally use the
term concrete class.

If you derive from an abstract class, then unless you provide implementations for all
the abstract methods, your derived class will also be abstract. You must state your
intention to write an abstract class with the abstract keyword; if this is absent from a
class that has unimplemented abstract methods (either ones it has defined itself, or
ones it has inherited from its base class), the C# compiler will report an error.
Example 6-26 shows an abstract class that defines a single abstract method. Abstract
methods are virtual by definition; there wouldn’t be much use in defining a method
that has no body, if there were no way for derived classes to supply a body.

Example 6-26. An abstract class

public abstract class AbstractBase
{
    public abstract void ShowMessage();
}
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Abstract method declarations just define the signature, and do not contain a body.
Unlike with interfaces, each abstract member has its own accessibility—you can
declare abstract methods as public, internal, protected internal, protected pri
vate, or protected. (It makes no sense to make an abstract or virtual method pri
vate, because the method will be inaccessible to derived types and therefore
impossible to override.)

Although classes that contain abstract methods are required to be
abstract, the converse is not true. It is legal, albeit unusual, to
define a class as abstract even if it would be a viable concrete class.
This prevents the class from being constructed. A class that derives
from this will be concrete without needing to override any abstract
methods.

Abstract classes have the option to declare that they implement an interface without
needing to provide a full implementation. You can’t just omit the unimplemented
members, though. You must explicitly declare all of its members, marking any that
you want to leave unimplemented as being abstract, as Example 6-27 shows. This
forces concrete derived types to supply the implementation.

Example 6-27. Abstract interface implementation

public abstract class MustBeComparable : IComparable<string>
{
    public abstract int CompareTo(string other);
}

There’s clearly some overlap between abstract classes and interfaces. Both provide a
way to define an abstract type that code can use without needing to know the exact
type that will be supplied at runtime. Each option has its pros and cons. Interfaces
have the advantage that a single type can implement multiple interfaces, whereas a
class gets to specify only a single base class. But abstract classes can define fields, and
can use these in any default member implementations they supply, and they also pro‐
vide a way to supply default implementations that will work on runtimes older
than .NET Core 3.0. However, there’s a more subtle advantage available to virtual
methods that comes into play when you release multiple versions of a library over
time.

Inheritance and Library Versioning
Imagine what would happen if you had written and released a library that defined
some public interfaces and abstract classes, and in the second release of the library,
you decided that you wanted to add some new members to one of the interfaces. It’s
conceivable that this might not cause a problem for customers using your code.
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Certainly, any place where they use a reference of that interface type will be unaffec‐
ted by the addition of new features. However, what if some of your customers have
written types that implement your interface? Suppose, for example, that in a future
version of .NET, Microsoft decided to add a new member to the IEnumerable<T>
interface.

Prior to C# 8.0, that would have been a disaster. This interface is widely used, but also
widely implemented. Classes that already implement IEnumerable<T> would become
invalid because they would not provide this new member, so old code would fail to
compile, and code already compiled would throw MissingMethodException errors at
runtime. The introduction in C# 8.0 of support for default member implementations
in interfaces mitigates this: in the unlikely event that Microsoft did add a new mem‐
ber to IEnumerable<T>, it could supply a default implementation preventing these
errors. However, there’s a more subtle problem. Some classes might by chance
already have had a member with the same name and signature as the newly added
method. If that code is recompiled against the new interface definition, the compiler
would treat that existing member as part of the implementation of the interface, even
though the developer who wrote the method did not write it with that intention. So
unless the existing code coincidentally happens to do exactly what the new member
requires, we’d have a problem, and we wouldn’t get compiler errors or warnings to
alert us.

Consequently, the widely accepted rule is that you do not alter interfaces once they
have been published. If you have complete control over all of the code that uses and
implements an interface, you can get away with modifying the interface, because you
can make any necessary modifications to the affected code. But once the interface has
become available for use in codebases you do not control—that is, once it has been
published—it’s no longer possible to change it without risking breaking someone
else’s code. Default interface implementations mitigate this risk, but they cannot
eliminate the problem of existing methods accidentally being misinterpreted when
they get recompiled against the updated interface.

Abstract base classes do not have to suffer from this problem. Obviously, introducing
new abstract members would cause exactly the same MissingMethodException fail‐
ures, but introducing new virtual methods does not. (And since virtual methods have
been in C# since v1, this enables you to target runtimes older than .NET Core 3.0,
where default interface implementation support is unavailable.)

But what if, after releasing version 1.0 of a component, you add a new virtual method
in v1.1 that turns out to have the same name and signature as a method that one of
your customers happens to have added in a derived class? Perhaps in version 1.0,
your component defines the rather uninteresting base class shown in Example 6-28.
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Example 6-28. Base type version 1.0

public class LibraryBase
{
}

If you release this library, perhaps as a product in its own right, or maybe as part of
some software development kit (SDK) for your application, a customer might write a
derived type such as the one in Example 6-29. The Start method they have written is
clearly not meant to override anything in the base class.

Example 6-29. Class derived from version 1.0 base

public class CustomerDerived : LibraryBase
{
    public void Start()
    {
        Console.WriteLine("Derived type's Start method");
    }
}

Since you won’t necessarily get to see every line of code that your customers write,
you might be unaware of this Start method. So in version 1.1 of your component,
you might decide to add a new virtual method, also called Start, as Example 6-30
shows.

Example 6-30. Base type version 1.1

public class LibraryBase
{
    public virtual void Start() { }
}

Imagine that your system calls this method as part of an initialization procedure
introduced in v1.1. You’ve defined a default empty implementation so that types
derived from LibraryBase that don’t need to take part in that procedure don’t have
to do anything. Types that wish to participate will override this method. But what
happens with the class in Example 6-29? Clearly the developer who wrote that did not
intend to participate in your new initialization mechanism, because that didn’t exist
when the code was written. It could be bad if your code calls the CustomerDerived
class’s Start method, because the developer presumably expects it to be called only
when their code decides to call it. Fortunately, the compiler will detect this problem.
If the customer attempts to compile Example 6-29 against version 1.1 of your library
(Example 6-30), the compiler will warn them that something is not right:
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warning CS0114: 'CustomerDerived.Start()' hides inherited member
'LibraryBase.Start()'. To make the current member override that implementation,
add the override keyword. Otherwise add the new keyword.

This is why the C# compiler requires the override keyword when we replace virtual
methods. It wants to know whether we were intending to override an existing
method, so that if we weren’t, it can warn us about collisions. (The absence of any
equivalent keyword signifying the intention to implement an interface member is
why the compiler cannot detect the same problem with default interface implementa‐
tion. And the reason for this absence is that default interface implementation didn’t
exist prior to C# 8.0.)

We get a warning rather than an error, because the compiler provides a behavior that
is likely to be safe when this situation has arisen due to the release of a new version of
a library. The compiler guesses—correctly, in this case—that the developer who
wrote the CustomerDerived type didn’t mean to override the LibraryBase class’s
Start method. So rather than having the CustomerDerived type’s Start method
override the base class’s virtual method, it hides it. A derived type is said to hide a
member of a base class when it introduces a new member with the same name.

Hiding methods is quite different than overriding them. When hiding occurs, the
base method is not replaced. Example 6-31 shows how the hidden Start method
remains available. It creates a CustomerDerived object and places a reference to that
object in two variables of different types: one of type CustomerDerived, and one of
type LibraryBase. It then calls Start through each of these.

Example 6-31. Hidden versus virtual method

var d = new CustomerDerived();
LibraryBase b = d;

d.Start();
b.Start();

When we use the d variable, the call to Start ends up calling the derived type’s Start
method, the one that has hidden the base member. But the b variable’s type is Librar
yBase, so that invokes the base Start method. If CustomerDerived had overridden
the base class’s Start method instead of hiding it, both of those method calls would
have invoked the override.

When name collisions occur because of a new library version, this hiding behavior
is usually the right thing to do. If the customer’s code has a variable of type
CustomerDerived, then that code will want to invoke the Start method specific to
that derived type. However, the compiler produces a warning, because it doesn’t
know for certain that this is the reason for the problem. It might be that you did
mean to override the method, and you just forgot to write the override keyword.
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Like many developers, I don’t like to see compiler warnings, and I try to avoid com‐
mitting code that produces them. But what should you do if a new library version
puts you in this situation? The best long-term solution is probably to change the
name of the method in your derived class so that it doesn’t clash with the method in
the new version of the library. However, if you’re up against a deadline, you may
want a more expedient solution. So C# lets you declare that you know that there’s a
name clash, and that you definitely want to hide the base member, not override it. As
Example 6-32 shows, you can use the new keyword to state that you’re aware of the
issue, and definitely want to hide the base class member. The code will still behave in
the same way, but you’ll no longer get the warning, because you’ve assured the com‐
piler that you know what’s going on. But this is an issue you should fix at some point,
because sooner or later the existence of two methods with the same name on the
same type that mean different things is likely to cause confusion.

Example 6-32. Avoiding warnings when hiding members

public class CustomerDerived : LibraryBase
{
    public new void Start()
    {
        Console.WriteLine("Derived type's Start method");
    }
}

C# does not let you use the new keyword to deal with the equivalent
problem that arises with default interface implementations. There
is no way to retain the default implementation supplied by an
interface and also declare a public method with the same signature.
This is slightly frustrating because it’s possible at the binary level:
it’s the behavior you get if you do not recompile the code that
implements an interface after adding a new member with a default
implementation. You can still have separate implementations of,
say, ILibrary.Start and CustomerDerived.Start, but you have to
use explicit interface implementation.

Just occasionally, you may see the new keyword used in this way for reasons other
than handling library versioning issues. For example, the ISet<T> interface that I
showed in Chapter 5 uses it to introduce a new Add method. ISet<T> derives from
ICollection<T>, an interface that already provides an Add method, which takes an
instance of T and has a void return type. ISet<T> makes a subtle change to this,
shown in Example 6-33.
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Example 6-33. Hiding to change the signature

public interface ISet<T> : ICollection<T>
{
    new bool Add(T item);
    // ... other members omitted for clarity
}

The ISet<T> interface’s Add method tells you whether the item you just added was
already in the set, something the base ICollection<T> interface’s Add method doesn’t
support. ISet<T> needs its Add to have a different return type—bool instead of void
—so it defines Add with the new keyword to indicate that it should hide the ICollec
tion<T> one. Both methods are still available—if you have two variables, one of type
ICollection<T> and the other of type ISet<T>, both referring to the same object,
you’ll be able to access the void Add through the former, and the bool Add through
the latter.

Microsoft didn’t have to do this. It could have called the new Add method something
else—AddIfNotPresent, for example. But it’s arguably less confusing just to have the
one method name for adding things to a collection, particularly since you’re free to
ignore the return value, at which point the new Add looks indistinguishable from the
old one. And most ISet<T> implementations will implement the ICollec

tion<T>.Add method by calling straight through to the ISet<T>.Add method, so it
makes sense that they have the same name.

Aside from the preceding example, so far I’ve discussed method hiding only in the
context of compiling old code against a new version of a library. What happens if you
have old code compiled against an old library but that ends up running against a new
version? That’s a scenario you are highly likely to run into when the library in ques‐
tion is the .NET class library. Suppose you are using third-party components that you
have only in binary form (e.g., ones you’ve bought from a company that does not
supply source code). The supplier will have built these to use some particular version
of .NET. If you upgrade your application to run with a new version of .NET, you
might not be able to get hold of newer versions of the third-party components—
maybe the vendor hasn’t released them yet, or perhaps it has gone out of business.

If the components you’re using were compiled for, say, .NET Standard 1.2, and you
use them in a project built for .NET Core 3.0, all of those older components will end
up using the .NET Core 3.0 versions of the framework class library. .NET has a ver‐
sioning policy that arranges for all the components that a particular program uses to
get the same version of the framework class library, regardless of which version any
individual component may have been built for. So it’s entirely possible that some
component, OldControls.dll, contains classes that derive from classes in .NET Stan‐
dard 1.2, and that define members that collide with the names of members newly
added in .NET Core 3.0.
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This is more or less the same scenario as I described earlier, except that the code that
was written for an older version of a library is not going to be recompiled. We’re not
going to get a compiler warning about hiding a method, because that would involve
running the compiler, and we have only the binary for the relevant component. What
happens now?

Fortunately, we don’t need the old component to be recompiled. The C# compiler
sets various flags in the compiled output for each method it compiles, indicating
things like whether the method is virtual or not, and whether the method was
intended to override some method in the base class. When you put the new keyword
on a method, the compiler sets a flag indicating that the method is not meant to over‐
ride anything. The CLR calls this the newslot flag. When C# compiles a method such
as the one in Example 6-29, which does not specify either override or new, it also sets
this same newslot flag for that method, because at the time the method was compiled,
there was no method of the same name on the base class. As far as both the developer
and the compiler were concerned, the CustomerDerived class’s Start was written as a
brand-new method that was not connected to anything on the base class.

So when this old component gets loaded in conjunction with a new version of the
library defining the base class, the CLR can see what was intended—it can see that, as
far as the author of the CustomerDerived class was concerned, Start is not meant to
override anything. It therefore treats CustomerDerived.Start as a distinct method
from LibraryBase.Start—it hides the base method just like it did when we were
able to recompile.

By the way, everything I’ve said about virtual methods can also apply to properties,
because a property’s accessors are just methods. So you can define virtual properties,
and derived classes can override or hide these in exactly the same way as with meth‐
ods. I won’t be getting to events until Chapter 9, but those are also methods in dis‐
guise, so they can also be virtual.

Just occasionally, you may want to write a class that overrides a virtual method, and
then prevents derived classes from overriding it again. For this, C# defines the sealed
keyword, and in fact, it’s not just methods that can be sealed.

Sealed Methods and Classes
Virtual methods are deliberately open to modification through inheritance. A sealed
method is the opposite—it is one that cannot be overridden. Methods are sealed by
default in C#: methods cannot be overridden unless declared virtual. But when you
override a virtual method, you can seal it, closing it off for further modification.
Example 6-34 uses this technique to provide a custom ToString implementation that
cannot be further overridden by derived classes.
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Example 6-34. A sealed method

public class FixedToString
{
    public sealed override string ToString()
    {
        return "Arf arf!";
    }
}

You can also seal an entire class, preventing anyone from deriving from it.
Example 6-35 shows a class that not only does nothing, but also prevents anyone
from extending it to do something useful. (You’d normally seal only a class that does
something. This example is just to illustrate where the keyword goes.)

Example 6-35. A sealed class

public sealed class EndOfTheLine
{
}

Some types are inherently sealed. Value types, for example, do not support inheri‐
tance, so structs and enums are effectively sealed. The built-in string class is also
sealed.

There are two normal reasons for sealing either classes or methods. One is that you
want to guarantee some particular invariant, and if you leave your type open to mod‐
ification, you will not be able to guarantee that invariant. For example, instances of
the string type are immutable. The string type itself does not provide a way to
modify an instance’s value, and because nobody can derive from string, you can
guarantee that if you have a reference of type string, you have a reference to an
immutable object. This makes it safe for you to use in scenarios where you do not
want the value to change—for example, when you use an object as a key to a dictio‐
nary (or anything else that relies on a hash code), you need the value not to change,
because if the hash code changes while the item is in use as a key, the container will
malfunction.

The other usual reason for leaving things sealed is that designing types that can suc‐
cessfully be modified through inheritance is hard, particularly if your type will be
used outside of your own organization. Simply opening things up for modification is
not sufficient—if you decide to make all your methods virtual, it might make it easy
for people using your type to modify its behavior, but you will have made a rod for
your back when it comes to maintaining the base class. Unless you control all of the
code that derives from your class, it will be almost impossible to change anything in
the base, because you will never know which methods may have been overridden in
derived classes, making it hard to ensure that your class’s internal state is consistent

Sealed Methods and Classes | 293



at all times. Developers writing derived types will doubtless do their best not to break
things, but they will inevitably rely on aspects of your class’s behavior that are undo‐
cumented. So in opening up every aspect of your class for modification through
inheritance, you rob yourself of the freedom to change your class.

You should be very selective about which methods, if any, you make virtual. And you
should also document whether callers are allowed to replace the method completely,
or whether they are required to call the base implementation as part of their override.
Speaking of which, how do you do that?

Accessing Base Members
Everything that is in scope in a base class and is not private will also be in scope and
accessible in a derived type. If you want to access some member of the base class, you
typically just access it as if it were a normal member of your class. You can either
access members through the this reference, or just refer to them by name without
qualification.

However, there are some situations in which you need to state that you are explicitly
referring to a base class member. In particular, if you have overridden a method, call‐
ing that method by name will invoke your override recursively. If you want to call
back to the original method that you overrode, there’s a special keyword for that,
shown in Example 6-36.

Example 6-36. Calling the base method after overriding

public class CustomerDerived : LibraryBase
{
    public override void Start()
    {
        Console.WriteLine("Derived type's Start method");
        base.Start();
    }
}

By using the base keyword, we are opting out of the normal virtual method dispatch
mechanism. If we had written just Start(), that would have been a recursive call,
which would be undesirable here. By writing base.Start(), we get the method that
would have been available on an instance of the base class, the method we overrode.

In this example, I have called the base class’s implementation after completing my
work. C# doesn not care when you call the base—you could call it as the first thing
the method does, as the last, or halfway through the method. You could even call it
several times, or not at all. It is up to the author of the base class to document
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whether and when the base class implementation of the method should be called by
an override.

You can use the base keyword for other members too, such as properties and events.
However, access to base constructors works a bit differently.

Inheritance and Construction
Although a derived class inherits all the members of its base class, this does not mean
the same thing for constructors as it does for everything else. With other members, if
they are public in the base class, they will be public members of the derived class too,
accessible to anyone who uses your derived class. But constructors are special,
because someone using your class cannot construct it by using one of the construc‐
tors defined by the base class.

It’s obvious enough why that should be: if you want an instance of some type D, then
you’ll want it to be a fully fledged D with everything in it properly initialized. Suppose
that D derives from B. If you were able to use one of B’s constructors directly, it
wouldn’t do anything to the parts specific to D. A base class’s constructor won’t know
about any of the fields defined by a derived class, so it cannot initialize them. If you
want a D, you’ll need a constructor that knows how to initialize a D. So with a derived
class, you can use only the constructors offered by that derived class, regardless of
what constructors the base class might provide.

In the examples I’ve shown so far in this chapter, I’ve been able to ignore this because
of the default constructor that C# provides. As you saw in Chapter 3, if you don’t
write a constructor, C# writes one for you that takes no arguments. It does this for
derived classes too, and the generated constructor will invoke the no-arguments con‐
structor of the base class. But this changes if I start writing my own constructors.
Example 6-37 defines a pair of classes, where the base defines an explicit no-
arguments constructor, and the derived class defines one that requires an argument.

Example 6-37. No default constructor in derived class

public class BaseWithZeroArgCtor
{
    public BaseWithZeroArgCtor()
    {
        Console.WriteLine("Base constructor");
    }
}

public class DerivedNoDefaultCtor : BaseWithZeroArgCtor
{
    public DerivedNoDefaultCtor(int i)
    {
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        Console.WriteLine("Derived constructor");
    }
}

Because the base class has a zero-argument constructor, I can construct it with new
BaseWithZeroArgCtor(). But I cannot do this with the derived type: I can construct
that only by passing an argument—for example, new DerivedNoDefaultCtor(123).
So as far as the publicly visible API of DerivedNoDefaultCtor is concerned, the
derived class appears not to have inherited its base class’s constructor.

However, it has in fact inherited it, as you can see by looking at the output you get if
you construct an instance of the derived type:

Base constructor
Derived constructor

When constructing an instance of DerivedNoDefaultCtor, the base class’s construc‐
tor runs immediately before the derived class’s constructor. Since the base construc‐
tor ran, clearly it was present. All of the base class’s constructors are available to a
derived type, but they can be invoked only by constructors in the derived class.
Example 6-37 invoked the base constructor implicitly: all constructors are required to
invoke a constructor on their base class, and if you don’t specify which to invoke, the
compiler invokes the base’s zero-argument constructor for you.

What if the base doesn’t define a parameterless constructor? In that case, you’ll get a
compiler error if you derive a class that does not specify which constructor to call.
Example 6-38 shows a base class without a zero-argument constructor. (The presence
of explicit constructors disables the compiler’s normal generation of a default con‐
structor, and since this base class supplies only a constructor that takes arguments,
this means there is no zero-argument constructor.) It also shows a derived class with
two constructors, both of which call into the base constructor explicitly, using the
base keyword.

Example 6-38. Invoking a base constructor explicitly

public class BaseNoDefaultCtor
{
    public BaseNoDefaultCtor(int i)
    {
        Console.WriteLine("Base constructor: " + i);
    }
}

public class DerivedCallingBaseCtor : BaseNoDefaultCtor
{
    public DerivedCallingBaseCtor()
        : base(123)
    {
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        Console.WriteLine("Derived constructor (default)");
    }

    public DerivedCallingBaseCtor(int i)
        : base(i)
    {
        Console.WriteLine("Derived constructor: " + i);
    }
}

The derived class here decides to supply a parameterless constructor even though the
base class doesn’t have one—it supplies a constant value for the argument the base
requires. The second just passes its argument through to the base.

Here’s a frequently asked question: how do I provide all the same
constructors as my base class, just passing the arguments straight
through? The answer is: write all the constructors by hand. There is
no way to get C# to generate a set of constructors in a derived class
that look identical to the ones that the base class offers. You need
to do it the long-winded way.
At least Visual Studio can generate the code for you—if you click
on a class declaration, and then click the Quick Actions icon that
appears, it will offer to generate constructors with the same argu‐
ments as any nonprivate constructor in the base class, automati‐
cally passing all the arguments through for you.

As Chapter 3 showed, a class’s field initializers run before its constructor. The picture
is more complicated once inheritance is involved, because there are multiple classes
and multiple constructors. The easiest way to predict what will happen is to under‐
stand that although instance field initializers and constructors have separate syntax,
C# ends up compiling all the initialization code for a particular class into the con‐
structor. This code performs the following steps: first, it runs field initializers specific
to this class (so this step does not include base field initializers—the base class will
take care of itself); next, it calls the base class constructor; and finally, it runs the body
of the constructor. The upshot of this is that in a derived class, your instance field
initializers will run before base class construction has occurred—not just before the
base constructor body, but even before the base’s instance fields have been initialized.
Example 6-39 illustrates this.

Example 6-39. Exploring construction order

public class BaseInit
{
    protected static int Init(string message)
    {
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        Console.WriteLine(message);
        return 1;
    }

    private int b1 = Init("Base field b1");

    public BaseInit()
    {
        Init("Base constructor");
    }

    private int b2 = Init("Base field b2");
}

public class DerivedInit : BaseInit
{
    private int d1 = Init("Derived field d1");

    public DerivedInit()
    {
        Init("Derived constructor");
    }

    private int d2 = Init("Derived field d2");
}

I’ve put the field initializers on either side of the constructor just to show that their
position relative to nonfield members is irrelevant. The order of the fields matters,
but only with respect to one another. Constructing an instance of the DerivedInit
class produces this output:

Derived field d1
Derived field d2
Base field b1
Base field b2
Base constructor
Derived constructor

This verifies that the derived type’s field initializers run first, and then the base field
initializers, followed by the base constructor, and then finally the derived constructor.
In other words, although constructor bodies start with the base class, instance field
initialization happens in reverse.

That’s why you don’t get to invoke instance methods in field initializers. Static meth‐
ods are available, but instance methods are not, because the class is a long way from
being ready. It could be problematic if one of the derived type’s field initializers were
able to invoke a method on the base class, because the base class has performed no
initialization at all at that point—not only has its constructor body not run, but its
field initializers haven’t run either. If instance methods were available during this
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phase, we’d have to write all of our code to be very defensive, because we could not
assume that our fields contain anything useful.

As you can see, the constructor bodies run relatively late in the process, which is why
we are allowed to invoke methods from them. But there’s still potential danger here.
What if the base class defines a virtual method and invokes that method on itself in
its constructor? If the derived type overrides that, we’ll be invoking the method
before the derived type’s constructor body has run. (Its field initializers will have run
at that point, though. In fact, this is the main reason field initializers run in what
seems to be reverse order—it means that derived classes have a way of performing
some initialization before the base class’s constructor has a chance to invoke a virtual
method.) If you’re familiar with C++, you might hazard a guess that when the base
constructor invokes a virtual method, it’ll run the base implementation. But C# does
it differently: a base class’s constructor will invoke the derived class’s override in that
case. This is not necessarily a problem, and it can occasionally be useful, but it means
you need to think carefully and document your assumptions clearly if you want your
object to invoke virtual methods on itself during construction.

Special Base Types
The .NET class library defines a few base types that have special significance in C#.
The most obvious is System.Object, which I’ve already described in some detail.

There’s also System.ValueType. This is the abstract base type of all value types, so
any struct you define—and also all of the built-in value types, such as int and bool
—derive from ValueType. Ironically, ValueType itself is a reference type; only types
that derive from ValueType are value types. Like most types, ValueType derives from
System.Object. There is an obvious conceptual difficulty here: in general, derived
classes are everything their base class is, plus whatever functionality they add. So,
given that object and ValueType are both reference types, it may seem odd that types
derived from ValueType are not. And for that matter, it’s not obvious how an object
variable can hold a reference to an instance of something that’s not a reference type. I
will resolve all of these issues in Chapter 7.

C# does not permit you to derive explicitly from ValueType. If you want to write a
type that derives from ValueType, that’s what the struct keyword is for. You can
declare a variable of type ValueType, but since the type doesn’t define any public
members, a ValueType reference doesn’t enable anything you can’t do with an object
reference. The only observable difference is that with a variable of that type, you can
assign instances of any value type into it but not instances of a reference type. Aside
from that, it’s identical to object. Consequently, it’s fairly rare to see ValueType
mentioned explicitly in C# code.
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Enumeration types also all derive from a common abstract base type: System.Enum.
Since enums are value types, you won’t be surprised to find out that Enum derives
from ValueType. As with ValueType, you would never derive from Enum explicitly—
you use the enum keyword for that. Unlike ValueType, Enum does add some useful
members. For example, its static GetValues method returns an array of all the enu‐
meration’s values, while GetNames returns an array with all those values converted to
strings. It also offers Parse, which converts from the string representation back to the
enumeration value.

As Chapter 5 described, arrays all derive from a common base class, System.Array,
and you’ve already seen the features that offers.

The System.Exception base class is special: when you throw an exception, C#
requires that the object you throw be of this type or a type that derives from it.
(Exceptions are the topic of Chapter 8.)

Delegate types all derive from a common base type, System.MulticastDelegate,
which in turn derives from System.Delegate. I’ll discuss these in Chapter 9.

Those are all the base types that the CTS treats as being special. There’s one more
base type to which the C# compiler assigns special significance, and that’s Sys
tem.Attribute. In Chapter 1, I applied certain annotations to methods and classes to
tell the unit test framework to treat them specially. These attributes all correspond to
types, so when I applied the [TestClass] attribute to a class, I was using a type called
TestClassAttribute. Types designed to be used as attributes are all required to
derive from System.Attribute. Some of them are recognized by the compiler—for
example, there are some that control the version numbers that the compiler puts into
the file headers of the EXE and DLL files it produces. I’ll show all of this in Chap‐
ter 14.

Summary
C# supports single implementation inheritance, and only with classes—you cannot
derive from a struct at all. However, interfaces can declare multiple bases, and a class
can implement multiple interfaces. Implicit reference conversions exist from derived
types to base types, and generic interfaces and delegates can choose to offer addi‐
tional implicit reference conversions using either covariance or contravariance. All
types derive from System.Object, guaranteeing that certain standard members are
available on all variables. We saw how virtual methods allow derived classes to mod‐
ify selected members of their bases, and how sealing can disable that. We also looked
at the relationship between a derived type and its base when it comes to accessing
members, and constructors in particular.
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Our exploration of inheritance is complete, but it has raised some new issues, such as
the relationship between value types and references, and the role of finalizers. So, in
the next chapter, I’ll talk about the connection between references and an object’s life
cycle, along with the way the CLR bridges the gap between references and value
types.
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1 The acronym GC is used throughout this chapter to refer to both the garbage collector mechanism and also
garbage collection, which is what the garbage collector does.

CHAPTER 7

Object Lifetime

One benefit of .NET’s managed execution model is that the runtime can automate
most of your application’s memory management. I have shown numerous examples
that create objects with the new keyword, and none has explicitly freed the memory
consumed by these objects.

In most cases, you do not need to take any action to reclaim memory. The runtime
provides a garbage collector (GC),1 a mechanism that automatically discovers when
objects are no longer in use, and recovers the memory they had been occupying so
that it can be used for new objects. However, there are certain usage patterns that can
cause performance issues or even defeat the GC entirely, so it’s useful to understand
how it works. This is particularly important with long-running processes that could
run for days (short-lived processes may be able to tolerate a few memory leaks).

The GC is designed to manage memory efficiently, but memory is not the only limi‐
ted resource you may need to deal with. Some things have a small memory footprint
in the CLR but represent something relatively expensive, such as a database connec‐
tion or a handle from an OS API. The GC doesn’t always deal with these effectively,
so I’ll explain IDisposable, the interface designed for dealing with things that need
to be freed more urgently than memory.

Value types often have completely different rules governing their lifetime—some
local variable values live only for as long as their containing method runs, for exam‐
ple. Nonetheless, value types sometimes end up acting like reference types, and being
managed by the GC. I will discuss why that can be useful, and I will explain the box‐
ing mechanism that makes it possible.
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2 Value types defined with ref struct are an exception: they always live on the stack. Chapter 18 discusses
these.

Garbage Collection
The CLR maintains a heap, a service that provides memory for the objects and values
whose lifetime is managed by the GC. Each time you construct an instance of a class
with new, or you create a new array object, the CLR allocates a new heap block. The
GC decides when to deallocate that block.

A heap block contains all the nonstatic fields for an object, or all the elements if it’s
an array. The CLR also adds a header, which is not directly visible to your program.
This includes a pointer to a structure describing the object’s type. This supports oper‐
ations that depend on the real type of an object. For example, if you call GetType on a
reference, the runtime uses this pointer to find out the type. (The type is often not
completely determined by the static type of the reference, which could be an interface
type or a base class of the actual type.) It’s also used to work out which method to use
when you invoke a virtual method or an interface member. The CLR also uses this to
know how large the heap block is—the header does not include the block size,
because the runtime can work that out from the object’s type. (Most types are fixed
size. There are only two exceptions, strings and arrays, which the CLR handles as spe‐
cial cases.) The header contains one other field, which is used for a variety of diverse
purposes, including multithreaded synchronization and default hash code genera‐
tion. Heap block headers are just an implementation detail, and other CLI implemen‐
tations could choose different strategies. However, it’s useful to know what the
overhead is. On a 32-bit system, the header is 8 bytes long, and if you’re running in a
64-bit process, it takes 16 bytes. So an object that contained just one field of type
double (an 8-byte type) would consume 16 bytes in a 32-bit process, and 24 bytes in a
64-bit process.

Although objects (i.e., instances of a class) always live on the heap, instances of value
types are different: some live on the heap, and some don’t.2 The CLR stores some
value-typed local variables on the stack, for example, but if the value is in an instance
field of a class, the class instance will live on the heap, and that value will therefore
live inside that object on the heap. And in some cases, a value will have an entire heap
block to itself.

If you’re using something through a reference type variable, then you are accessing
something on the heap. It’s important to clarify exactly what I mean by a reference
type variable, because unfortunately, the terminology is a little confusing here: C#
uses the term reference to describe two quite different things. For the purposes of this
discussion, a reference is something you can store in a variable of a type that derives
from object, but not from ValueType. This does not include every in-, out-, or ref-

304 | Chapter 7: Object Lifetime



style method argument, nor ref variables or returns. Although those are references of
a kind, a ref int argument is a reference to a value type, and that’s not the same
thing as a reference type. (The CLR actually uses a different term for the mechanism
that supports ref, in, and out: it calls these managed pointers, making it clear that
they are rather different from object references.)

The managed execution model used by C# (and all .NET languages) means the CLR
knows about every heap block your code creates, and also about every field, variable,
and array element in which your program stores references. This information enables
the runtime to determine at any time which objects are reachable—that is, those that
the program could conceivably get access to in order to use its fields and other mem‐
bers. If an object is not reachable, then by definition the program will never be able to
use it again. To illustrate how the CLR determines reachability, I’ve written a simple
method that fetches web pages from my employer’s website, shown in Example 7-1.

Example 7-1. Using and discarding objects

public static string WriteUrl(string relativeUri)
{
    var baseUri = new Uri("https://endjin.com/");
    var fullUri = new Uri(baseUri, relativeUri);
    var w = new WebClient();
    return w.DownloadString(fullUri);
}

Normally, you would not use the WebClient type shown in
Example 7-1. In most cases, you would use the newer HttpClient
instead. I’m avoiding HttpClient here because it only offers asyn‐
chronous methods, which complicates variables’ lifetimes.

The CLR analyzes the way in which we use local variables and method arguments.
For example, although the relativeUri argument is in scope for the whole method,
we use it just once as an argument when constructing the second Uri, and then never
use it again. A variable is described as live from the first point where it receives a
value up until the last point at which it is used. Method arguments are live from the
start of the method until their final usage, unless they are unused, in which case they
are never live. Local variables become live later; baseUri becomes live once it has
been assigned its initial value, and then ceases to be live with its final usage, which in
this example, happens at the same point as relativeUri. Liveness is an important
property in determining whether a particular object is still in use.

To see the role that liveness plays, suppose that when Example 7-1 reaches the line
that constructs the WebClient, the CLR doesn’t have enough free memory to hold the
new object. It could request more memory from the OS at this point, but it also has
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3 The CLR doesn’t always wait until it runs out of memory. I will discuss the details later. For now, the impor‐
tant point is that from time to time, it will try to free up some space.

the option to try to free up memory from objects that are no longer in use, meaning
that our program wouldn’t need to consume more memory than it’s already using.3

The next section describes the process that the CLR uses when it takes that second
option.

Determining Reachability
The CLR starts by determining all of the root references in your program. A root is a
storage location, such as a local variable, that could contain a reference and is known
to have been initialized, and that your program could use at some point in the future
without needing to go via some other object reference. Not all storage locations are
considered to be roots. If an object contains an instance field of some reference type,
that field is not a root, because before you can use it, you’d need to get hold of a refer‐
ence to the containing object, and it’s possible that the object itself is not reachable.
However, a reference type static field is a root reference, because the program can
read the value in that field at any time—the only situation in which that field will
become inaccessible in the future is when the component that defines the type is
unloaded, which in most cases will be when the program exits.

Local variables and method arguments are more interesting. Sometimes they are
roots, but sometimes not. It depends on exactly which part of the method is currently
executing. A local variable or argument can be a root only if the flow of execution is
currently inside the region in which that variable or argument is live. So, in
Example 7-1, baseUri is a root reference only after it has had its initial value
assigned, and before the call to construct the second Uri, which is a rather narrow
window. The fullUri variable is a root reference for slightly longer, because it
becomes live after receiving its initial value, and continues to be live during the con‐
struction of the WebClient on the following line; its liveness ends only once Download
String has been called.

When a variable’s last use is as an argument in a method or con‐
structor invocation, it ceases to be live when the method call
begins. At that point, the method being called takes over—its own
arguments are live at the start (except for arguments it does not
use). However, they will typically cease to be live before the method
returns. This means that in Example 7-1, the object referred to by
fullUri may cease to be accessible through root references before
the call to DownloadString returns.
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Since the set of live variables changes as the program executes, the set of root refer‐
ences also evolves, so that the CLR needs to be able to form a snapshot of the relevant
program state. The exact details are undocumented, but the garbage collection can
suspend all threads that are running managed code when necessary to guarantee cor‐
rect behavior.

Live variables and static fields are not the only kinds of roots. Temporary objects cre‐
ated as a result of evaluating expressions need to stay alive for as long as necessary to
complete the evaluation, so there can be some root references that don’t correspond
directly to any named entities in your code. And there are other types of root. For
example, the GCHandle class lets you create new roots explicitly, which can be useful
in interop scenarios to enable some unmanaged code to get access to a particular
object. There are also situations in which roots are created implicitly. Interop with
COM objects can establish root references without explicit use of GCHandle—if the
CLR needs to generate a COM wrapper for one of your .NET objects, that wrapper
will effectively be a root reference. Calls into unmanaged code may also involve pass‐
ing pointers to memory on the heap, which will mean that the relevant heap block
needs to be treated as reachable for the duration of the call. The CLI specification
does not dictate the full list of ways in which root references come into existence, but
the broad principle is that roots will exist where necessary to ensure that objects that
are still in use remain reachable.

Having built up a complete list of current root references for all threads, the GC
works out which objects can be reached from these references. It looks at each refer‐
ence in turn, and if non-null, the GC knows that the object it refers to is reachable.
There may be duplicates—multiple roots may refer to the same object, so the GC
keeps track of which objects it has already seen. For each newly discovered object, the
GC adds all of the instance fields of reference type in that object to the list of refer‐
ences it needs to look at, again discarding duplicates. (This includes hidden fields
generated by the compiler, such as those for automatic properties, which I described
in Chapter 3.) This means that if an object is reachable, so are all the objects to which
it holds references. The GC repeats this process until it runs out of new references to
examine. Any objects that it has not discovered to be reachable must be unreachable,
because the GC is simply doing what the program does: a program can use only
objects that are accessible either directly or indirectly through its variables, temporary
local storage, static fields, and other roots.

Going back to Example 7-1, what would all this mean if the CLR decides to run the
GC when we construct the WebClient? The fullUri variable is still live, so the Uri it
refers to is reachable, but the baseUri is no longer live. We did pass a copy of base
Uri into the constructor for the second Uri, and if that had held onto a copy of the
reference, then it wouldn’t matter that baseUri is not live; as long as there’s some way
to get to an object by starting from a root reference, then the object is reachable. But
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as it happens, the second Uri won’t do that, so the first Uri the example allocates
would be deemed to be unreachable, and the CLR would be free to recover the mem‐
ory it had been using.

One important upshot of how reachability is determined is that the GC is unfazed by
circular references. This is one reason .NET uses GC instead of reference counting
(another popular approach for automating memory management). If you have two
objects that refer to each other, a reference counting scheme will consider both
objects to be in use, because each is referred to at least once. But the objects may be
unreachable—if there are no other references to the objects, the application will not
have any way to use them. Reference counting fails to detect this, so it could cause
memory leaks, but with the scheme used by the CLR’s GC, the fact that they refer to
each other is irrelevant—the GC will never get to either of them, so it will correctly
determine that they are no longer in use.

Accidentally Defeating the Garbage Collector
Although the GC can discover ways that your program could reach an object, it has
no way to prove that it necessarily will. Take the impressively idiotic piece of code in
Example 7-2. Although you’d never write code this bad, it makes a common mistake.
It’s a problem that usually crops up in more subtle ways, but I want show it in a more
obvious example first. Once I’ve shown how it prevents the GC from freeing objects
that we’re not going to be using, I’ll describe a less straightforward but more realistic
scenario in which this same problem often occurs.

Example 7-2. An appallingly inefficient piece of code

static void Main(string[] args)
{
    var numbers = new List<string>();
    long total = 0;
    for (int i = 1; i < 100_000; ++i)
    {
        numbers.Add(i.ToString());
        total += i;
    }
    Console.WriteLine("Total: {0}, average: {1}",
        total, total / numbers.Count);
}

This adds together the numbers from 1 to 100,000 and then displays their average.
The first mistake here is that we don’t even need to do the addition in a loop, because
there’s a simple and very well-known closed-form solution for this sort of sum: n*(n
+1)/2, with n being 100,000 in this case. That mathematical gaffe notwithstanding,
this code does something even more stupid: it builds up a list containing every num‐
ber it adds, but all it does with that list is retrieve its Count property to calculate an
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average at the end. Just to make things worse, the code converts each number into a
string before putting it in the list. It never actually uses those strings.

Obviously, this is a contrived example, although I wish I could say I’d never encoun‐
tered anything this bafflingly pointless in real programs. Sadly, I’ve come across gen‐
uine examples at least this bad, although they were all better obfuscated—when you
encounter this sort of thing in the wild, it normally takes half an hour or so to work
out that it really is doing something as staggeringly pointless as this. However, my
point here is not to lament standards of software development. The purpose of this
example is to show how you can run into a limitation of the GC.

Suppose the loop in Example 7-2 has been running for a while—perhaps it’s on its
90,000th iteration, and is trying to add an entry to the numbers list. Suppose that the
List<string> has used up its spare capacity and the Add method will therefore need
to allocate a new, larger internal array. The CLR may decide at this point to run the
GC to see if it can free up some space. What will happen?

Example 7-2 creates three kinds of objects: it constructs a List<string> at the start,
it creates a new string each time around the loop by calling ToString() on an int,
and more subtly, the List<string> will allocate a string[] to hold references to
those strings. Because we keep adding new items, it will have to allocate larger and
larger arrays. (That array is an implementation detail of List<string>, so we can’t
see it directly.) So the question is: which of these objects can the GC discard to make
space for a larger array in the call to Add?

Our numbers variable remains live until the program’s final statement and we’re look‐
ing at an earlier point in the code, so the List<string> object it refers to is reachable.
The string[] array object it is currently using must also be reachable: it’s allocating a
newer, larger one, but it will need to copy the contents of the old one across to the
new one, so the list must still have a reference to that current array stored in one of its
fields. Since that array is still reachable, every string the array refers to will also be
reachable. Our program has created 90,000 strings so far, and the GC will find all of
them by starting at our numbers variable, looking at the fields of the List<string>
object that refers to, and then looking at every element in the array that one of the
list’s private fields refers to.

The only allocated items that the GC might be able to collect are old string[] arrays
that the List<string> created back when the list was smaller, and which it no longer
has a reference to. By the time we’ve added 90,000 items, the list will probably have
resized itself quite a few times. So depending on when the GC last ran, it will proba‐
bly be able to find a few of these now-unused arrays. But more interesting here is
what it cannot free.

The program never uses the 90,000 strings it creates, so ideally, we’d like the GC to
free up the memory they occupy—they will be taking up a few megabytes. We can see
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very easily that these strings are not used, because this is such a short program. But
the GC will not know that; it bases its decisions on reachability, and it correctly deter‐
mines that all 90,000 strings are reachable by starting at the numbers variable. And as
far as the GC is concerned, it’s entirely possible that the list’s Count property, which
we use after the loop finishes, will look at the contents of the list. You and I happen to
know that it won’t, because it doesn’t need to, but that’s because we know what the
Count property means. For the GC to infer that our program will never use any of the
list’s elements directly or indirectly, it would need to know what List<string> does
inside its Add and Count methods. This would mean analysis with a level of detail far
beyond the mechanisms I’ve described, which could make garbage collections con‐
siderably more expensive. Moreover, even with the serious step up in complexity
required to detect which reachable objects this example will never use, in more realis‐
tic scenarios the GC would be unlikely to be able to make predictions that were sig‐
nificantly better than relying on reachability alone.

For example, a much more plausible way to run into this problem is in a cache. If you
write a class that caches data that is expensive to fetch or calculate, imagine what
would happen if your code only ever added items to the cache and never removed
them. All of the cached data would be reachable for as long as the cache object itself is
reachable. The problem is that your cache will consume more and more space, and
unless your computer has sufficient memory to hold every piece of data that your
program could conceivably need to use, it will eventually run out of memory.

A naive developer might complain that this is supposed to be the garbage collector’s
problem. The whole point of GC is meant to be that I don’t need to think about
memory management, so why am I running out of memory all of a sudden? But, of
course, the problem is that the GC has no way of knowing which objects are safe to
remove. Not being clairvoyant, it cannot accurately predict which cached items your
program may need in the future—if the code is running in a server, future cache
usage could depend on what requests the server receives, something the GC cannot
predict. So although it’s possible to imagine memory management smart enough to
analyze something as simple as Example 7-2, in general, this is not a problem the GC
can solve. Thus, if you add objects to collections and keep those collections reachable,
the GC will treat everything in those collections as being reachable. It’s your job to
decide when to remove items.

Collections are not the only situation in which you can fool the GC. As I’ll show in
Chapter 9, there’s a common scenario in which careless use of events can cause mem‐
ory leaks. More generally, if your program makes it possible for an object to be
reached, the GC has no way of working out whether you’re going to use that object
again, so it has to be conservative.

That said, there is a technique for mitigating this with a little help from the GC.
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Weak References
Although the GC will follow ordinary references in a reachable object’s fields, it is
possible to hold a weak reference. The GC does not follow weak references, so if the
only way to reach an object is through weak references, the GC behaves as though the
object is not reachable, and will remove it. A weak reference provides a way of telling
the CLR, “do not keep this object around on my account, but for as long as some‐
thing else needs it, I would like to be able to get access to it.” Example 7-3 shows a
cache that uses WeakReference<T>.

Example 7-3. Using weak references in a cache

public class WeakCache<TKey, TValue> where TValue : class
{
    private readonly Dictionary<TKey, WeakReference<TValue>> _cache =
        new Dictionary<TKey, WeakReference<TValue>>();

    public void Add(TKey key, TValue value)
    {
        _cache.Add(key, new WeakReference<TValue>(value));
    }

    public bool TryGetValue(TKey key, out TValue cachedItem)
    {
        WeakReference<TValue> entry;
        if (_cache.TryGetValue(key, out entry))
        {
            bool isAlive = entry.TryGetTarget(out cachedItem);
            if (!isAlive)
            {
                _cache.Remove(key);
            }
            return isAlive;
        }
        else
        {
            cachedItem = null;
            return false;
        }
    }
}

This cache stores all values via a WeakReference<T>. Its Add method passes the object
to which we’d like a weak reference as the constructor argument for a new WeakRefer
ence<T>. The TryGetValue method attempts to retrieve a value previously stored
with Add. It first checks to see if the dictionary contains a relevant entry. If it does,
that entry’s value will be the WeakReference<T> we created earlier. My code calls that
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weak reference’s TryGetTarget method, which will return true if the object is still
available, and false if it has been collected.

Availability doesn’t necessarily imply reachability. The object may
have become unreachable since the most recent GC. Or there may
not even have been a GC since the object was allocated. TryGetTar
get doesn’t care whether the object is reachable right now, it cares
only whether the GC has detected that it is eligible for collection.

If the object is available, TryGetTarget provides it through an out parameter, and
this will be a strong reference. So, if this method returns true, we don’t need to worry
about any race condition in which the object becomes unreachable moments later—
the fact that we’ve now stored that reference in the variable the caller supplied via the
cachedItem argument will keep the target alive. If TryGetTarget returns false, my
code removes the relevant entry from the dictionary, because it represents an object
that no longer exists. That’s important because although a weak reference won’t keep
its target alive, the WeakReference<T> is an object in its own right, and the GC can’t
free it until I’ve removed it from this dictionary. Example 7-4 tries this code out, forc‐
ing a couple of garbage collections so we can see it in action. (This splits each stage
into separate methods with inlining disabled because otherwise, the JIT compiler
on .NET Core will inline these methods, and it ends up creating hidden temporary
variables that can cause the array to remain reachable longer than it should, distort‐
ing the results of this test.)

Example 7-4. Exercising the weak cache

class Program
{
    static WeakCache<string, byte[]> cache = new WeakCache<string, byte[]>();
    static byte[] data = new byte[100];

    static void Main(string[] args)
    {
        AddData();
        CheckStillAvailable();

        GC.Collect();
        CheckStillAvailable();

        SetOnlyRootToNull();
        GC.Collect();
        CheckNoLongerAvailable();
    }

    [MethodImpl(MethodImplOptions.NoInlining)]
    private static void AddData()
    {
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        cache.Add("d", data);
    }

    [MethodImpl(MethodImplOptions.NoInlining)]
    private static void CheckStillAvailable()
    {
        Console.WriteLine("Retrieval: " +
            cache.TryGetValue("d", out byte[] fromCache));
        Console.WriteLine("Same ref?  " +
            object.ReferenceEquals(data, fromCache));
    }

    [MethodImpl(MethodImplOptions.NoInlining)]
    private static void SetOnlyRootToNull()
    {
        data = null;
    }

    [MethodImpl(MethodImplOptions.NoInlining)]
    private static void CheckNoLongerAvailable()
    {
        byte[] fromCache;
        Console.WriteLine("Retrieval: " + cache.TryGetValue("d", out fromCache));
        Console.WriteLine("Null?  " + (fromCache == null));
    }
}

This begins by creating an instance of my cache class, and then adding a reference to
a 100-byte array to the cache. It also stores a reference to the same array in a static
field called data, keeping it reachable until the code calls SetOnlyRootToNull, which
sets its value to null. The example tries to retrieve the value from the cache immedi‐
ately after adding it, and also uses object.ReferenceEquals just to check that the
value we get back really refers to the same object that we put in. Then I force a
garbage collection, and try again. (This sort of artificial test code is one of the few sit‐
uations in which you’d want to do this—see the section “Forcing Garbage Collec‐
tions” on page 327 for details.) Since the data field still holds a reference to the array,
the array is still reachable, so we would expect the value still to be available from the
cache. Next I set data to null, so my code is no longer keeping that array reachable.
The only remaining reference is a weak one, so when I force another GC, we expect
the array to be collected and the final lookup in the cache to fail. To verify this, I
check both the return value, expecting false, and the value returned through the out
parameter, which should be null. And that is exactly what happens when I run the
program, as you can see:

Retrieval: True
Same ref?  True
Retrieval: True
Same ref?  True
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Retrieval: False
Null?  True

Writing code to illustrate GC behavior means entering treacherous
territory. The principles of operation remain the same, but the
exact behavior of small examples changes over time. (I’ve had to
modify some examples since previous editions of the book.) It’s
entirely possible that if you try these examples, you might see dif‐
ferent behavior due to changes in the runtime since going to press.

Later, I will describe finalization, which complicates matters by introducing a twilight
zone in which the object has been determined to be unreachable, but has not yet
gone. Objects that are in this state are typically of little use, so by default, a weak ref‐
erence will treat objects waiting for finalization as though they have already gone. 
This is called a short weak reference. If, for some reason, you need to know whether
an object has really gone (rather than merely being on its way out), the WeakRefer
ence<T> class’s constructor has overloads, some of which can create a long weak refer‐
ence, which provides access to the object even in this zone between unreachability
and final removal.

Reclaiming Memory
So far, I’ve described how the CLR determines which objects are no longer in use, but
not what happens next. Having identified the garbage, the runtime must then collect
it. The CLR uses different strategies for small and large objects. (By default, it defines
a large object as one bigger than 85,000 bytes.) Most allocations involve small objects,
so I’ll write about those first.

The CLR tries to keep the heap’s free space contiguous. Obviously, that’s easy when
the application first starts up, because there’s nothing but free space, and it can keep
things contiguous by allocating memory for each new object directly after the last
one. But after the first garbage collection occurs, the heap is unlikely to look so neat.
Most objects have short lifetimes, and it’s common for the majority of objects alloca‐
ted after any one GC to be unreachable by the time the next GC runs. However, some
will still be in use. From time to time, applications create objects that hang around for
longer, and, of course, whatever work was in progress when the GC ran will probably
be using some objects, so the most recently allocated heap blocks are likely still to be
in use. This means that the end of the heap might look something like Figure 7-1,
where the grey rectangles are the reachable blocks, and the white ones show blocks
that are no longer in use.
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Figure 7-1. Section of heap with some reachable objects

One possible allocation strategy would be to start using these empty blocks as new
memory is required, but there are a couple of problems with that approach. First, it
tends to be wasteful, because the blocks the application requires will probably not fit
precisely into the holes available. Second, finding a suitable empty block can be
somewhat expensive, particularly if there are lots of gaps and you’re trying to pick
one that will minimize waste. It’s not impossibly expensive, of course—lots of heaps
work this way—but it’s a lot costlier than the initial situation where each new block
could be allocated directly after the last one because all the spare space was contigu‐
ous. The expense of heap fragmentation is nontrivial, so the CLR typically tries to get
the heap back into a state where the free space is contiguous. As Figure 7-2 shows, it
moves all the reachable objects toward the start of the heap, so that all the free space
is at the end, which puts it back in the favorable situation of being able to allocate
new heap blocks one after another in the contiguous lump of free space.

Figure 7-2. Section of heap after compaction

The runtime has to ensure that references to these relocated blocks continue to work
after the blocks have moved. The CLR happens to implement references as pointers
(although the CLI spec does not require this—a reference is just a value that identifies
some particular instance on the heap). It already knows where all the references to
any particular block are because it had to find them to discover which blocks were
reachable. It adjusts all these pointers when it moves the block.

Besides making heap block allocation a relatively cheap operation, compaction offers
another performance benefit. Because blocks are allocated into a contiguous area of
free space, objects that were created in quick succession will typically end up right
next to each other in the heap. This is significant, because the caches in modern
CPUs tend to favor locality (i.e., they perform best when related pieces of data are
stored close together).

The low cost of allocation and the high likelihood of good locality can sometimes
mean that garbage-collected heaps offer better performance than traditional heaps
that require the program to free memory explicitly. This may seem surprising, given
that the GC appears to do a lot of extra work that is unnecessary in a noncollecting
heap. Some of that “extra work” is illusory, however—something has to keep track of
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which objects are in use, and traditional heaps just push that housekeeping overhead
into our code. However, relocating existing memory blocks comes at a price, so the
CLR uses some tricks to minimize the amount of copying it needs to do.

The older an object is, the more expensive it will be for the CLR to compact the heap
once it finally becomes unreachable. If the most recently allocated object is unreacha‐
ble when the GC runs, compaction is free for that object: there are no more objects
after it, so nothing needs to be moved. Compare that with the first object your pro‐
gram allocates—if that becomes unreachable, compaction would mean moving every
reachable object on the heap. More generally, the older an object is, the more objects
will be put after it, so the more data will need to be moved to compact the heap.
Copying 20 MB of data to save 20 bytes does not sound like a great trade-off. So the
CLR will often defer compaction for older parts of the heap.

To decide what counts as “old,” the CLR divides the heap into generations. The
boundaries between generations move around at each GC, because generations are
defined in terms of how many GCs an object has survived. Any object allocated after
the most recent GC is in generation 0, because it has not yet survived any collections.
When the GC next runs, generation 0 objects that are still reachable will be moved as
necessary to compact the heap, and will then be deemed to be in generation 1.

Objects in generation 1 are not yet considered to be old. A GC will typically occur
while the code is right in the middle of doing things—after all, it runs when space on
the heap is being used up, and that won’t happen if the program is idle. So there’s a
high chance that some of the recently allocated objects represent work in progress
and although they are currently reachable, they will become unreachable shortly.
Generation 1 acts as a sort of holding zone while we wait to see which objects are
short-lived and which are longer-lived.

As the program continues to execute, the GC will run from time to time, promoting
new objects that survive into generation 1. Some of the objects in generation 1 will
become unreachable. However, the GC does not necessarily compact this part of the
heap immediately—it may allow a few generation 0 collections and compactions in
between each generation 1 compaction, but it will happen eventually. Objects that
survive this stage are moved into generation 2, which is the oldest generation.

The CLR attempts to recover memory from generation 2 much less frequently than
from other generations. Research shows that in most applications, objects that sur‐
vive into generation 2 are likely to remain reachable for a long time, so when one of
those objects does eventually become unreachable, it’s likely to be very old, as will the
objects around it. This means that compacting this part of the heap to recover the
memory is costly for two reasons: not only will this old object probably be followed
by a large number of other objects (requiring a large volume of data to be copied),
but also the memory it occupied might not have been used for a long time, meaning
it’s probably no longer in the CPU’s cache, slowing down the copy even further. And
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the caching costs will continue after collection, because if the CPU has had to shift
megabytes of data around in old areas of the heap, this will probably have the side
effect of flushing other data out the CPU’s cache. Cache sizes can be as small as 512
KB at the low-power, low-cost end of the spectrum, and can be over 30 MB in high-
end, server-oriented chips, but in the midrange, anything from 2 MB to 16 MB of
cache is typical, and many .NET applications’ heaps will be larger than that. Most of
the data the application had been using would have been in the cache right up until
the generation 2 GC, but would be gone once the GC has finished. So when the GC
completes and normal execution resumes, the code will run in slow motion for a
while until the data the application needs is loaded back into the cache.

Generations 0 and 1 are sometimes referred to as the ephemeral generations, because
they mostly contain objects that exist only for a short while. The contents of these
parts of the heap will often be in the CPU’s cache because they will have been
accessed recently, so compaction is not particularly expensive for these sections.
Moreover, because most objects have a short lifetime, the majority of memory that
the GC is able to collect will be from objects in these first two generations, so these
are likely to offer the greatest reward (in terms of memory recovered) in exchange for
the CPU time expended. So it’s common to see several ephemeral collections per sec‐
ond in a busy program, but it’s also common for several minutes to elapse between
successive generation 2 collections.

The CLR has another trick up its sleeve for generation 2 objects. They often don’t
change much, so there’s a high likelihood that during the first phase of a GC—in
which the runtime detects which objects are reachable—it would be repeating some
work it did earlier, because it will follow exactly the same references and produce the
same results for significant subsections of the heap. So the CLR will sometimes use
the OS memory protection services to detect when older heap blocks are modified.
This enables it to rely on summarized results from earlier GC operations instead of
having to redo all of the work every time.

How does the GC decide to collect just from generation 0, rather than also collecting
from 1 or even 2? Collections for all three generations are triggered by using up a cer‐
tain amount of memory. So, for generation 0 allocations, once you have allocated
some particular number of bytes since the last GC, a new GC will occur. The objects
that survive this will move into generation 1, and the CLR keeps track of the number
of bytes added to generation 1 since the last generation 1 collection; if that number
exceeds a threshold, generation 1 will be collected too. Generation 2 works in the
same way. The thresholds are not documented, and in fact they’re not even constant;
the CLR monitors your allocation patterns and modifies these thresholds to try to
find a good balance for making efficient use of memory, minimizing the CPU time
spent in the GC, and avoiding the excessive latency that could arise if the CLR waited
a very long time between collections, leaving huge amounts of work to do when the
collection finally occurs.
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This explains why, as mentioned earlier, the CLR doesn’t necessar‐
ily wait until it has actually run out of memory before triggering a
GC. It may be more efficient to run one sooner.

You may be wondering how much of the preceding information is of practical signif‐
icance. After all, the bottom line would appear to be that the CLR ensures that heap
blocks are kept around for as long as they are reachable, and that some time after they
become unreachable, it will eventually reclaim their memory, and it employs a strat‐
egy designed to do this efficiently. Are the details of this generational optimization
scheme relevant to a developer? They are insofar as they tell us that some coding
practices are likely to be more efficient than others.

The most obvious upshot of the process is that the more objects you allocate, the
harder the GC will have to work. But you’d probably guess that without knowing
anything about the implementation. More subtly, larger objects cause the GC to work
harder—collections for each generation are triggered by the amount of memory your
application uses. So bigger objects don’t just increase memory pressure, they also end
up consuming more CPU cycles as a result of triggering more frequent GCs.

Perhaps the most important fact to emerge from an understanding of the genera‐
tional collector is that the length of an object’s lifetime has an impact on how hard
the GC must work. Objects that live for a very short time are handled efficiently,
because the memory they use will be recovered quickly in a generation 0 or 1 collec‐
tion, and the amount of data that needs to be moved to compact the heap will be
small. Objects that live for an extremely long time are also OK, because they will end
up in generation 2. They will not be moved about often, because collections are infre‐
quent for that part of the heap. Furthermore, the CLR may be able to use the OS
memory manager’s write detection feature to manage reachability discovery for old
objects more efficiently. However, although very short-lived and very long-lived
objects are handled efficiently, objects that live long enough to get into generation 2
but not much longer are a problem. Microsoft occasionally describes this occurrence
as a mid-life crisis.

If your application has a lot of objects making it into generation 2 that go on to
become unreachable, the CLR will need to perform collections on generation 2 more
often than it otherwise might. (In fact, generation 2 is collected only during a full col‐
lection, which also collects free space previously used by large objects.) These are usu‐
ally significantly more expensive than other collections. Compaction requires more
work with older objects, but also, more housekeeping is required when disrupting the
generation 2 heap. The picture the CLR has built up about reachability within this
section of the heap may need to be rebuilt, and the GC will need to disable the write
detection used to enable that while it compacts the heap, which incurs a cost. There’s
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4 .NET Core provides a configuration setting that lets you change this threshold.

a good chance that most of this part of the heap will not be in the CPU’s cache either,
so working with it can be slow.

Full garbage collections consume significantly more CPU time than collections in the
ephemeral generations. In UI applications, this can cause delays long enough to be
irritating for the user, particularly if parts of the heap had been paged out by the OS.
In server applications, full collections may cause significant blips in the typical time
taken to service a request. Such problems are not the end of the world, of course, and
as I’ll describe later, the CLR offers some mechanisms to mitigate these kinds of
issues. Even so, minimizing the number of objects that survive to generation 2 is
good for performance. You would need to consider this when designing code that
caches interesting data in memory—a cache aging policy that failed to take the GC’s
behavior into account could easily behave inefficiently, and if you didn’t know about
the perils of middle-aged objects, it would be hard to work out why. Also, as I’ll show
later in this chapter, the midlife crisis issue is one reason you might want to avoid C#
destructors where possible.

I have left out some heap operation details, by the way. For example, I’ve not talked
about how the GC typically dedicates sections of the address space to the heap in
fixed-size chunks, nor the details of how it commits and releases memory. Interesting
though these mechanisms are, they have much less relevance to how you design your
code than an awareness of the assumptions that a generational GC makes about typi‐
cal object lifetimes.

There’s one last thing to talk about on the topic of collecting memory from unreacha‐
ble objects. As mentioned earlier, large objects work differently. There’s a separate
heap called, appropriately enough, the Large Object Heap (LOH), and the CLR uses
this for any object larger than 85,000 bytes.4 That’s just the object itself, not the sum
total of all the memory an object allocates during construction. An instance of the
GreedyObject class in Example 7-5 would be tiny—it needs only enough space for a
single reference, plus the heap block overhead. In a 32-bit process, that would be 4
bytes for the reference and 8 bytes of overhead, and in a 64-bit process it would be
twice as large. However, the array to which it refers is 400,000 bytes long, so that
would go on the LOH, while the GreedyObject itself would go on the ordinary heap.

Example 7-5. A small object with a large array

public class GreedyObject
{
    public int[] MyData = new int[100000];
}
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It’s technically possible to create a class whose instances are large enough to require
the LOH, but it’s unlikely to happen outside of generated code or highly contrived
examples. In practice, most LOH heap blocks will contain arrays and possibly strings.

The biggest difference between the LOH and the ordinary heap is that the GC does
not usually compact the LOH, because copying large objects is expensive. (Applica‐
tions can request that the LOH be compacted at the next full GC. But applications
that do not explicitly request this will never have their LOH compacted in current
CLR implementations.) It works more like a traditional C heap: the CLR maintains a
list of free blocks and decides which block to use based on the size requested. How‐
ever, the list of free blocks is populated by the same unreachability mechanism as is
used by the rest of the heap.

Garbage Collector Modes
Although the CLR will tune some aspects of the GC’s behavior at runtime (e.g., by
dynamically adjusting the thresholds that trigger collections for each generation), it
also offers a configurable choice between various modes designed to suit different
kinds of applications. These fall into two broad categories—workstation and server,
and then in each of these you can either use background or nonconcurrent collec‐
tions. Background collection is on by default, but the default top-level mode depends
on the project type: for console applications and applications using a GUI framework
such as WPF, the GC runs in workstation mode, but ASP.NET Core web applications
change this to server mode, as do older ASP.NET web applications. If you don’t want
the defaults, the way you configure server mode depends on which form of .NET you
are targeting. For .NET Core, you can control the GC mode explicitly by defining a
property in your .csproj file, as Example 7-6 shows. This can go anywhere inside the
root Project element.

Example 7-6. Enabling server GC in a .NET Core application project file

<PropertyGroup>
  <ServerGarbageCollection>true</ServerGarbageCollection>
</PropertyGroup>

Project file properties are not available to applications at runtime,
so this ServerGarbageCollection works by making the build sys‐
tem add a setting to the YourApplication.runtimeconfig.json
file that it generates for your application. This contains a config
Properties section, which can contain one or more CLR host con‐
figuration knobs. Enabling server GC in the project file sets the
System.GC.Server knob to true in this configuration file. All GC
settings are also controlled through configuration knobs, as are
some other CLR behaviors, such as the JIT compiler mode.
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For applications running on the .NET Framework, you use an application configura‐
tion file to change GC settings. These are XML files, and they are essentially the pred‐
ecessor of .runtimeconfig.json files. (.NET Core moved to JSON to avoid needing to
load an XML parser on application startup.) Web applications built for the .NET
Framework (i.e., not .NET Core) usually have one called web.config, although since
web applications written using ASP.NET will run with server GC by default, you
won’t need to add this particular setting to a web.config file. Outside of the ASP.NET
web framework, the configuration file is normally called App.config, and many Visual
Studio project templates provide this file automatically. Example 7-7 shows a config‐
uration file that enables server GC mode for an application running on the .NET
Framework. The relevant lines are in bold.

Example 7-7. Legacy server GC configuration (for .NET Framework)

<?xml version="1.0" ?>
<configuration>
  <startup>
      <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.8" />
  </startup>
  <runtime>
    <gcServer enabled="true" />
  </runtime>
</configuration>

The workstation modes are designed, predictably enough, for the workloads that
client-side code typically has to deal with, in which the process is usually working on
either a single task or a small number of tasks at any one time. Workstation mode
offers two variations: nonconcurrent and background.

In background mode (the default) the GC minimizes the amount of time for which it
suspends threads during a garbage collection. There are certain phases of the GC in
which the CLR has to suspend execution to ensure consistency. For collections from
the ephemeral generations, threads will be suspended for the majority of the opera‐
tion. This is usually fine because these collections normally run very quickly—they
take a similar amount of time as a page fault that didn’t cause any disk activity.
(These nonblocking page faults happen fairly often and are fast enough that a lot of
developers seem to be unaware that they even occur.) Full collections are the prob‐
lem, and it’s these that the background mode handles differently. Not all of the work
done in a collection really needs to bring everything to a halt, and background mode
exploits this, enabling full (generation 2) collections to proceed on a background
thread without forcing other threads to block until that collection completes. This
can enable machines with multiple processor cores (most machines, these days) to
perform full GC collections on one core while other cores continue with productive
work. It is especially useful in applications with a UI, because it reduces the likelihood
of an application becoming unresponsive due to GCs.
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5 Rare though single-core CPUs are these days, it’s still common to run in virtual machines that present only
one core to the code they host. This is often the case if your application runs on a cloud-hosted service using a
consumption-based tariff, for example.

The nonconcurrent mode is designed to optimize throughput on a single processor
with a single core. It can be more efficient, because background GC uses slightly
more memory and more CPU cycles for any particular workload than nonconcurrent
GC in exchange for the lower latency. For some workloads, you may find your code
runs faster if you disable it by setting the ConcurrentGarbageCollection property to
false in your project file (or, if you’re running on .NET Framework, add
<gcConcurrent enabled="false" /> inside the <runtime> element of your configu‐
ration file). For most client-side code, the greatest concern is to avoid delays that are
long enough to be visible to users. Users are more sensitive to unresponsiveness than
they are to suboptimal average CPU utilization, so for interactive applications, using
a bit more memory and CPU cycles in exchange for improved perceived performance
is usually a good trade-off.

Server mode is significantly different than workstation mode. It is available only
when you have multiple hardware threads; e.g., a multicore CPU or multiple physical
CPUs. (If you have enabled server GC but your code ends up running on a single-
core machine,5 it falls back to using the workstation GC.) Its availability has nothing
to do with which OS you’re running, by the way—for example, server mode is avail‐
able on nonserver and server editions of Windows alike if you have suitable hard‐
ware, and workstation mode is always available. In server mode, each processor gets
its own section of the heap, so when a thread is working on its own problem inde‐
pendently of the rest of the process, it can allocate heap blocks with minimal conten‐
tion. In server mode, the CLR creates several threads dedicated to garbage collection
work, one for each logical CPU in the machine. These run with higher priority than
normal threads, so when garbage collections do occur, all available CPU cores go to
work on their own heaps, which can provide better throughput with large heaps than
workstation mode.

Objects created by one thread can still be accessed by others—logi‐
cally, the heap is still a unified service. Server mode is just an
implementation strategy optimized for workloads where all the
threads work on their own jobs mostly in isolation. Be aware that it
works best if the jobs all have similar heap allocation patterns.

Some problems can arise with server mode. It works best when only one process on
the machine uses this mode, because it is set up to try to use all CPU cores simultane‐
ously during collections. It also tends to use considerably more memory than work‐
station mode. If a single server hosts multiple .NET processes that all do this,
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contention for resources could reduce efficiency. Another issue with server GC is that
it favors throughput over response time. In particular, collections happen less fre‐
quently, because this tends to increase the throughput benefits that multi-CPU col‐
lections can offer, but it also means that each individual collection takes longer.

As with workstation GC, the server GC uses background collection by default. In
some cases you may find you can improve throughput by disabling it, but be wary of
the problems this can cause. The duration of a full collection in nonconcurrent server
mode can cause serious delays in responsiveness on a website, for example, especially
if the heap is large. You can mitigate this in a couple of ways. You can request notifi‐
cations shortly before the collection occurs (using the System.GC class’s RegisterFor
FullGCNotification, WaitForFullGCApproach, and WaitForFullGCComplete

methods), and if you have a server farm, a server that’s running a full GC may be able
to ask the load balancer to avoid passing it requests until the GC completes. The sim‐
pler alternative is to leave background collection enabled. Since background collec‐
tions allow application threads to continue to run and even to perform generation 0
and 1 collections while the full collection proceeds in the background, it significantly
improves the application’s response time during collections, while still delivering the
throughput benefits of server mode.

Temporarily Suspending Garbage Collections
It is possible to ask .NET to disallow garbage collection while a particular section of
code runs. This is useful if you are performing time-sensitive work. Windows,
macOS, and Linux are not real-time operating systems, so there are never any guar‐
antees, but temporarily ruling out garbage collections at critical moments can none‐
theless be useful for reducing the chances of things going slowly at the worst possible
moment. Be aware that this mechanism works by bringing forward any GC work that
might otherwise have happened in the relevant section of code, so this can cause GC-
related delays to happen earlier than they otherwise would have. It only guarantees
that once your designated region of code starts to run, there will be no further GCs if
you meet certain requirements—in effect, it gets necessary delays out of the way
before the time-sensitive work begins.

The GC class offers a TryStartNoGCRegion method, which you call to indicate that
you want to begin some work that needs to be free from GC-related interruption.
You must pass in a value indicating how much memory you will need during this
work, and it will attempt to ensure that at least that much memory is available before
proceeding (performing a GC to free up that space if necessary). If the method indi‐
cates success, then as long as you do not consume more memory than requested,
your code will not be interrupted by the GC. You should call EndNoGCRegion once
you have finished the time-critical work, enabling the GC to return to its normal
operation. If, before it calls EndNoGCRegion, your code uses more memory than you
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requested, the CLR may have to perform a GC, but it will only do so if it absolutely
cannot avoid it until you call EndNoGCRegion.

Although the single-argument form of TryStartNoGCRegion will perform a full GC if
necessary to meet your request, some overloads take a bool, enabling you to tell it
that if a full blocking GC will be required to free up the necessary space, you’d prefer
to abort. There are also overloads in which you can specify your memory require‐
ments on the ordinary heap and the large object heap separately.

Accidentally Defeating Compaction
Heap compaction is an important feature of the CLR’s GC, because it has a strong
positive impact on performance. Certain operations can prevent compaction, and
that’s something you’ll want to minimize, because fragmentation can increase mem‐
ory use and reduce performance significantly.

To be able to compact the heap, the CLR needs to be able to move heap blocks
around. Normally, it can do this because it knows all of the places in which your
application refers to heap blocks, and it can adjust all the references when it relocates
a block. But what if you’re calling an OS API that works directly with the memory
you provide? For example, if you read data from a file or a network socket, how will
that interact with garbage collection?

If you use system calls that read or write data using devices such as the hard drive or
network interface, these normally work directly with your application’s memory. If
you read data from the disk, the OS may instruct the disk controller to put the bytes
directly into the memory your application passed to the API. The OS will perform the
necessary calculations to translate the virtual address into a physical address. (With
virtual memory, the value your application puts in a pointer is only indirectly related
to the actual address in your computer’s RAM.) The OS will lock the pages into place
for the duration of the I/O request to ensure that the physical address remains valid.
It will then supply the disk system with that address. This enables the disk controller
to copy data from the disk directly into memory, without needing further involve‐
ment from the CPU. This is very efficient, but runs into problems when it encounters
a compacting heap. What if the block of memory is a byte[] array on the heap? Sup‐
pose a GC occurs between us asking to read the data and the disk being able to supply
the data. (The chances are fairly high; a mechanical disk with spinning platters can
take 10 ms or more to start supplying data, which is an age in CPU terms.) If the GC
decided to relocate our byte[] array to compact the heap, the physical memory
address that the OS gave the disk controller would be out of date, so when the con‐
troller started putting data into memory, it would be writing to the wrong place.

There are three ways the CLR could deal with this. One would be to make the GC
wait—heap relocations could be suspended while I/O operations are in progress. But
that’s a nonstarter; a busy server can run for days without ever entering a state in
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which no I/O operations are in progress. In fact, the server doesn’t even need to be
busy. It might allocate several byte[] arrays to hold the next few incoming network
requests, and would typically try to avoid getting into a state where it didn’t have at
least one such buffer available. The OS would have pointers to all of these and may
well have supplied the network card with the corresponding physical address so that
it can get to work the moment data starts to arrive. So even an idle server has certain
buffers that cannot be relocated.

An alternative would be for the CLR to provide a separate nonmoving heap for these
sorts of operations. Perhaps we could allocate a fixed block of memory for an I/O
operation, and then copy the results into the byte[] array on the GC heap once the
I/O has finished. But that’s also not a brilliant solution. Copying data is expensive—
the more copies you make of incoming or outgoing data, the slower your server will
run, so you really want network and disk hardware to copy the data directly to or
from its natural location. And if this hypothetical fixed heap were more than an
implementation detail of the CLR, if it were available for application code to use
directly to minimize copying, that might open the door to all the memory manage‐
ment bugs that GC is supposed to banish.

So the CLR uses a third approach: it selectively prevents heap block relocations. The
GC is free to run while I/O operations are in progress, but certain heap blocks can be
pinned. Pinning a block sets a flag that tells the GC that the block cannot currently be
moved. So, if the GC encounters such a block, it will simply leave it where it is, but
will attempt to relocate everything around it.

There are three ways C# code normally causes heap blocks to be pinned. You can do
so explicitly using the fixed keyword. This allows you to obtain a raw pointer to a
storage location, such as a field or an array element, and the compiler will generate
code that ensures that for as long as a fixed pointer is in scope, the heap block to
which it refers will be pinned. A more common way to pin a block is through interop
(i.e., calls into unmanaged code, such as a method on a COM component, or an OS
API). If you make an interop call to an API that requires a pointer to something, the
CLR will detect when that points to a heap block, and it will automatically pin the
block. (By default, the CLR will unpin it automatically when the method returns. If
you’re calling an asynchronous API, you can use the GCHandle class mentioned ear‐
lier to pin a heap block until you explicitly unpin it.)

The third and most common way to pin heap blocks is also the least direct: many
class library APIs call unmanaged code on your behalf and will pin the arrays you
pass in as a result. For example, the class library defines a Stream class that represents
a stream of bytes. There are several implementations of this abstract class. Some
streams work entirely in memory, but some wrap I/O mechanisms, providing access
to files or to the data being sent or received through a network socket. The abstract
Stream base class defines methods for reading and writing data via byte[] arrays,
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6 With .NET Core, you can use a free Microsoft tool called PerfView. With .NET Framework, you use instead
the Performance Monitor tool built into Windows. These can report numerous useful statistics for garbage
collection and other CLR activities, including the percentage of CPU time spent in the GC, the number of
pinned objects, and the number of generation 0, 1, and 2 collections. Alternatively, the free BenchMarkDotNet
tool has a memory diagnosis feature.

and the I/O-based stream implementations will often pin the heap blocks containing
those arrays for as long as necessary.

If you are writing an application that does a lot of pinning (e.g., a lot of network I/O),
you may need to think carefully about how you allocate the arrays that get pinned.
Pinning does the most harm for recently allocated objects, because these live in the
area of the heap where most compaction activity occurs. Pinning recently allocated
blocks tends to cause the ephemeral section of the heap to fragment. Memory that
would normally have been recovered almost instantly must now wait for blocks to
become unpinned, so by the time the collector can get to those blocks, a lot more
other blocks will have been allocated after them, meaning that a lot more work is
required to recover the memory.

If pinning is causing your application problems, there will be a few common symp‐
toms. The percentage of CPU time spent in the GC will be relatively high—anything
over 10% is considered to be bad. But that alone does not necessarily implicate pin‐
ning—it could be the result of middle-aged objects causing too many full collections.
So you can monitor the number of pinned blocks on the heap6 to see if these are the
specific culprit. If it looks like excessive pinning is causing you pain, there are two
ways to avoid this. One is to design your application so that you only ever pin blocks
that live on the large object heap. Remember, by default the LOH is not compacted,
so pinning does not impose any cost—the GC wasn’t going to move the block in any
case. The challenging part of this is that it forces you to do all of your I/O with arrays
that are at least 85,000 bytes long. That’s not necessarily a problem, because most I/O
APIs can be told to work with a subsection of the array. So, if you actually wanted to
work with, say, 4,096 byte blocks, you could create one array large enough to hold at
least 21 of those blocks. You’d need to write some code to keep track of which slots in
the array were in use, but if it fixes a performance problem, it may be worth the
effort. The Span<T> and MemoryPool<T> types discussed in Chapter 18 can make it
easier to work with arrays in this way. (They also make it much easier than it used to
be to work with memory that does not live on the GC heap. So you could sidestep
pinning entirely, although you’d be taking on the responsibility for managing the rel‐
evant memory.)
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If you choose to mitigate pinning by attempting to use the LOH,
you need to remember that it is an implementation detail. Future
versions of .NET could conceivably remove the LOH entirely. So
you’d need to revisit this aspect of your design for each new release
of .NET.

The other way to minimize the impact of pinning is to try to ensure that pinning
mostly happens only to objects in generation 2. If you allocate a pool of buffers and
reuse them for the duration of the application, this will mean that you’re pinning
blocks that the GC is fairly unlikely to want to move, keeping the ephemeral genera‐
tions free to be compacted at any time. The earlier you allocate the buffers, the better,
because the older an object is, the less likely the GC is to want to move it.

Forcing Garbage Collections
The System.GC class provides a Collect method that allows you to force a garbage
collection to occur. You can pass a number indicating the generation you would like
to collect, and the overload that takes no arguments performs a full collection. You
will rarely have good reason to call GC.Collect. I’m mentioning it here because it
comes up a lot on the web, which could easily make it seem more useful than it is.

Forcing a GC can cause problems. The GC monitors its own performance and tunes
its behavior in response to your application’s allocation patterns. But to do this, it
needs to allow enough time between collections to get an accurate picture of how well
its current settings are working. If you force collections to occur too often, it will not
be able to tune itself, and the outcome will be twofold: the GC will run more often
than necessary, and when it does run, its behavior will be suboptimal. Both problems
are likely to increase the amount of CPU time spent in the GC.

So when would you force a collection? If you happen to know that your application
has just finished some work and is about to go idle, it might be worth considering
forcing a collection. Garbage collections are usually triggered by activity, so if you
know that your application is about to go to sleep—perhaps it’s a service that has just
finished running a batch job, and will not do any more work for another few hours—
you know that it won’t be allocating new objects and will therefore not trigger the GC
automatically. So forcing a GC would provide an opportunity to return memory to
the OS before the application goes to sleep. That said, if this is your scenario, it might
be worth looking at mechanisms that would enable your process to exit entirely—
there are various ways in which jobs or services that are only required from time to
time can be unloaded completely when they are inactive. But if that technique is
inapplicable for some reason—perhaps your process has high startup costs or needs
to stay running to receive incoming network requests—a forced full collection might
be the next best option.
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It’s worth being aware that there is one way that a GC can be triggered without your
application needing to do anything. When the system is running low on memory,
Windows broadcasts a message to all running processes. The CLR handles this mes‐
sage, and forces a GC when it occurs. So even if your application does not proactively
attempt to return memory, memory might be reclaimed eventually if something else
in the system needs it.

Destructors and Finalization
The CLR works hard on our behalf to find out when our objects are no longer in use.
It’s possible to get it to notify you of this—instead of simply removing unreachable
objects, the CLR can first tell an object that it is about to be removed. The CLR calls
this finalization, but C# presents it through a special syntax: to exploit finalization,
you must write a destructor.

If your background is in C++, do not be fooled by the name, or the
similar syntax. As you will see, a C# destructor is different than a
C++ destructor in some important ways.

Example 7-8 shows a destructor. This code compiles into an override of a method
called Finalize, which as Chapter 6 mentioned, is a special method defined by the
object base class. Finalizers are required always to call the base implementation of
Finalize that they override. C# generates that call for us to prevent us from violating
the rule, which is why it doesn’t let us simply write a Finalize method directly. You
cannot write code that invokes a finalizer—they are called by the CLR, so we do not
specify an accessibility level for the destructor.

Example 7-8. Class with destructor

public class LetMeKnowMineEnd
{
    ~LetMeKnowMineEnd()
    {
        Console.WriteLine("Goodbye, cruel world");
    }
}

The CLR does not guarantee to run finalizers on any particular schedule. First of all,
it needs to detect that the object has become unreachable, which won’t happen until
the GC runs. If your program is idle, that might not happen for a long time; the GC
runs only when your program is doing something, or when system-wide memory
pressure causes the GC to spring into life. It’s entirely possible that minutes, hours, or
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even days could pass between your object becoming unreachable and the CLR notic‐
ing that it has become unreachable.

Even when the CLR does detect unreachability, it still doesn’t guarantee to call the
finalizer straightaway. Finalizers run on a dedicated thread. Because current versions
of the CLR have only one finalization thread (regardless of which GC mode you
choose), a slow finalizer will cause other finalizers to wait.

In most cases, the CLR doesn’t even guarantee to run finalizers at all. When a process
exits, if the finalization thread hasn’t already managed to run all extant finalizers, it
will exit without waiting for them all to finish.

In summary, finalizers can be delayed indefinitely if your program is either idle or
busy, and are not guaranteed to run. But it gets worse—you can’t actually do much
that is useful in a finalizer.

You might think that a finalizer would be a good place to ensure that certain work is
properly completed. For example, if your object writes data to a file, but buffers that
data so as to be able to write a small number of large chunks rather than writing in
tiny dribs and drabs (because large writes are often more efficient), you might think
that finalization is the obvious place to ensure that data in your buffers has been
safely flushed out to disk. But think again.

During finalization, an object cannot trust the other objects it has references to. If
your object’s destructor runs, your object must have become unreachable. This
means it’s highly likely that any other objects yours refers to have also become
unreachable. The CLR is likely to discover the unreachability of groups of related
objects simultaneously—if your object created three or four objects to help it do its
job, the whole lot will become unreachable at the same time. The CLR makes no
guarantees about the order in which it runs finalizers. This means it’s entirely possi‐
ble that by the time your destructor runs, all the objects you were using have already
been finalized. So, if they also perform any last-minute cleanup, it’s too late to use
them. For example, the FileStream class, which derives from Stream and provides
access to a file, closes its file handle in its destructor. Thus, if you were hoping to
flush your data out to the FileStream, it’s too late—the file stream may well already
be closed.

To be fair, things are marginally less bad than I’ve made them
sound so far. Although the CLR does not guarantee to run most
finalizers, it will usually run them in practice. The absence of guar‐
antees matters only in relatively extreme situations. Even so, this
doesn’t mitigate the fact that you cannot, in general, rely on other
objects in your destructor.
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Since destructors seem to be of remarkably little use—that is, you can have no idea if
or when they will run, and you can’t use other objects inside a destructor—then what
use are they?

The main reason finalization exists at all is to make it possible to write .NET types
that are wrappers for the sorts of entities that are traditionally represented by handles
—things like files and sockets. These are created and managed outside of the CLR—
files and sockets require the OS kernel to allocate resources; libraries may also pro‐
vide handle-based APIs, and they will typically allocate memory on their own private
heaps to store information about whatever the handle represents. The CLR cannot
see these activities—all it sees is a .NET object with a field containing an integer, and
it has no idea that the integer is a handle for some resource outside of the CLR. So it
doesn’t know that it’s important that the handle be closed when the object falls out of
use. This is where finalizers come in: they are a place to put code that tells something
external to the CLR that the entity represented by the handle is no longer in use. The
inability to use other objects is not a problem in this scenario.

If you are writing code that wraps a handle, you should normally
use one of the built-in classes that derive from SafeHandle or, if
absolutely necessary, derive your own. This base class extends the
basic finalization mechanism with some handle-oriented helpers,
and when running on the .NET Framework it also uses a mecha‐
nism that can, in certain circumstances, guarantee that the finalizer
will run. Furthermore, it gets special handling from the interop
layer to avoid premature freeing of resources.

There are some other uses for finalization, although the unpredictability and unrelia‐
bility already discussed mean there are limits to what it can do for you. Some classes
contain a finalizer that does nothing other than check that the object was not aban‐
doned in a state where it had unfinished work. For example, if you had written a class
that buffers data before writing it to a file as described previously, you would need to
define some method that callers should use when they are done with your object
(perhaps called Flush or Close), and you could write a finalizer that checks to see if
the object was put into a safe state before being abandoned, raising an error if not.
This would provide a way to discover when programs have forgotten to clean things
up correctly. (.NET’s Task Parallel Library, which I’ll describe in Chapter 16, uses this
technique. When an asynchronous operation throws an exception, it uses a finalizer
to discover when the program that launched it fails to get around to detecting that
exception.)

If you write a finalizer, you should disable it when your object is in a state where it no
longer requires finalization, because finalization has its costs. If you offer a Close or
Flush method, finalization is unnecessary once these have been called, so you should
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call the System.GC class’s SuppressFinalize method to let the GC know that your
object no longer needs to be finalized. If your object’s state subsequently changes, you
can call the ReRegisterForFinalize method to reenable it.

The greatest cost of finalization is that it guarantees that your object will survive at
least into the first generation and possibly beyond. Remember, all objects that survive
from generation 0 make it into generation 1. If your object has a finalizer, and you
have not disabled it by calling SuppressFinalize, the CLR cannot get rid of your
object until it has run its finalizer. And since finalizers run asynchronously on a sepa‐
rate thread, the object has to remain alive even though it has been found to be
unreachable. So the object is not yet collectable, even though it is unreachable. It
therefore lives on into generation 1. It will usually be finalized shortly afterward,
meaning that the object will then become a waste of space until a generation 1 collec‐
tion occurs. Those happen rather less frequently than generation 0 collections. If your
object had already made it into generation 1 before becoming unreachable, a finalizer
increases the chances of getting into generation 2 just before it is about to fall out of
use. A finalized object therefore makes inefficient use of memory, which is a reason
to avoid finalization, and a reason to disable it whenever possible in objects that do
sometimes require it.

Even though SuppressFinalize can save you from the most egre‐
gious costs of finalization, an object that uses this technique still
has higher overheads than an object with no finalizer at all. The
CLR does some extra work when constructing finalizable objects to
keep track of those which have not yet been finalized. (Calling Sup
pressFinalize just takes your object back out of this tracking list.)
So, although suppressing finalization is much better than letting it
occur, it’s better still if you don’t ask for it in the first place.

A slightly weird upshot of finalization is that an object that the GC discovered was
unreachable can make itself reachable again. It’s possible to write a destructor that
stores the this reference in a root reference, or perhaps in a collection that is reacha‐
ble via a root reference. Nothing stops you from doing this, and the object will con‐
tinue to work (although its finalizer will not run a second time if the object becomes
unreachable again), but it’s an odd thing to do. This is referred to as resurrection, and
just because you can do it doesn’t mean you should. It is best avoided.

I hope that by now, I have convinced you that destructors do not provide a general-
purpose mechanism for shutting down objects cleanly. They are mostly useful only
for dealing with handles for things that live outside of the CLR’s control and it’s best
to avoid relying on them. If you need timely, reliable cleanup of resources, there’s a
better mechanism.
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IDisposable
The .NET class library defines an interface called IDisposable. The CLR does not
treat this interface as being in any way special, but C# has some built-in support for
it. IDisposable is a simple abstraction; as Example 7-9 shows, it defines just one
member, the Dispose method.

Example 7-9. The IDisposable interface

public interface IDisposable
{
    void Dispose();
}

The idea behind IDisposable is simple. If your code creates an object that imple‐
ments this interface, you should call Dispose once you’ve finished using that object
(with the occasional exception—see “Optional Disposal” on page 339). This then pro‐
vides the object with an opportunity to free up resources it may have allocated. If the
object being disposed of was using resources represented by handles, it will typically
close those handles immediately rather than waiting for finalization to kick in (and it
will suppress finalization at the same time). If the object was using services on some
remote machine in a stateful way—perhaps holding a connection open to a server to
be able to make requests—it would immediately let the remote system know that it
no longer requires the services, in whatever way is necessary (for example, by closing
the connection).

There is a persistent myth that calling Dispose causes the GC to do
something. You may read on the web that Dispose finalizes the
object, or even that it causes the object to be garbage collected. This
is nonsense. The CLR does not handle IDisposable or Dispose
differently than any other interface or method.

IDisposable is important because it’s possible for an object to consume very little
memory and yet tie up some expensive resources. For example, consider an object
that represents a connection to a database. Such an object might not need many fields
—it could even have just a single field containing a handle representing the connec‐
tion. From the CLR’s point of view, this is a pretty cheap object, and we could allocate
hundreds of them without triggering a garbage collection. But in the database server,
things would look different—it might need to allocate a considerable amount of
memory for each incoming connection. Connections might even be strictly limited
by licensing terms. (This illustrates that “resource” is a fairly broad concept—it
means pretty much anything that you might run out of.)
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Relying on GC to notice when database connection objects are no longer in use is
likely to be a bad strategy. The CLR will know that we’ve allocated, say, 50 of the
things, but if that consumes only a few hundred bytes in total, it will see no reason to
run the GC. And yet our application may be about to grind to a halt—if we have only
50 connection licenses for the database, the next attempt to create a connection will
fail. And even if there’s no licensing limitation, we could still be making highly ineffi‐
cient use of database resources by opening far more connections than we need.

It’s imperative that we close connection objects as soon as we can, without waiting for
the GC to tell us which ones are out of use. This is where IDisposable comes in. It’s
not just for database connections, of course. It’s critically important for any object
that is a front for something that lives outside the CLR, such as a file or a network
connection. Even for resources that aren’t especially constrained, IDisposable pro‐
vides a way to tell objects when we’re finished with them, so that they can shut down
cleanly, solving the problem described earlier for objects that perform internal buffer‐
ing.

If a resource is expensive to create, you may want to reuse it. This
is often the case with database connections, so the usual practice is
to maintain a pool of connections. Instead of closing a connection
when you’re finished with it, you return it to the pool, making it
available for reuse. (Most of .NET’s data access providers can do
this for you.) The IDisposable model is still useful here. When
you ask a resource pool for a resource, it usually provides a wrap‐
per around the real resource, and when you dispose that wrapper,
it returns the resource to the pool instead of freeing it. So calling
Dispose is really just a way of saying, “I’m done with this object,”
and it’s up to the IDisposable implementation to decide what to
do next with the resource it represents.

Implementations of IDisposable are required to tolerate multiple calls to Dispose.
Although this means consumers can call Dispose multiple times without harm, they
should not attempt to use an object after it has been disposed. In fact, the class library
defines a special exception that objects can throw if you misuse them in this way:
ObjectDisposedException. (I will discuss exceptions in Chapter 8.)

You’re free to call Dispose directly, of course, but C# also supports IDisposable in 
three ways: foreach loops, using statements, and using declarations. A using state‐
ment is a way to ensure that you reliably dispose an object that implements IDisposa
ble once you’re done with it. Example 7-10 shows how to use it.
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Example 7-10. A using statement

using (StreamReader reader = File.OpenText(@"C:\temp\File.txt"))
{
    Console.WriteLine(reader.ReadToEnd());
}

This is equivalent to the code in Example 7-11. The try and finally keywords are
part of C#’s exception handling system, which I’ll discuss in detail in Chapter 8. In
this case, they’re being used to ensure that the call to Dispose inside the finally
block executes even if something goes wrong in the code inside the try block. This
also ensures that Dispose gets called if you execute a return statement in the middle
of the block. (It even works if you use a goto statement to jump out of it.)

Example 7-11. How using statements expand

{
    StreamReader reader = File.OpenText(@"C:\temp\File.txt");
    try
    {
        Console.WriteLine(reader.ReadToEnd());
    }
    finally
    {
        if (reader != null)
        {
            ((IDisposable) reader).Dispose();
        }
    }
}

If the using statement’s declaration’s variable type is a value type, C# will not gener‐
ate the code that checks for null, and will just invoke Dispose directly. (The same is
true for a using declaration.)

C# 8.0 adds a simpler alternative, a using declaration, shown in Example 7-12. The
difference is that we don’t need to provide a block. A using declaration disposes its
variable when the variable goes out of scope. It still generates try and finally blocks,
so in cases where a using statement’s block happens to finish at the end of some
other block (e.g., it finishes at the end of a method), you can change to a using decla‐
ration with no change of behavior. This reduces the number of nested blocks, which
can make your code easier to read. (On the other hand, with an ordinary using block
it may be easier to see exactly when the object is no longer used. So each style has its
pros and cons.)
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Example 7-12. A using declaration

using StreamReader reader = File.OpenText(@"C:\temp\File.txt");
Console.WriteLine(reader.ReadToEnd());

If you need to use multiple disposable resources within the same scope, you can nest
them, but it might be easier to read if you stack multiple using statements in front of
a single block. Example 7-13 uses this to copy the contents of one file to another.

Example 7-13. Stacking using statements

using (Stream source = File.OpenRead(@"C:\temp\File.txt"))
using (Stream copy = File.Create(@"C:\temp\Copy.txt"))
{
    source.CopyTo(copy);
}

Stacking using statements is not a special syntax; it’s just an upshot of the fact that a
using statement is always followed by single embedded statement, which will be exe‐
cuted before Dispose gets called. Normally, that statement is a block, but in
Example 7-13, the first using statement’s embedded statement is the second using
statement. If you use using declarations instead, stacking is unnecessary because
these don’t have an associated embedded statement.

A foreach loop generates code that will use IDisposable if the enumerator imple‐
ments it. Example 7-14 shows a foreach loop that uses just such an enumerator.

Example 7-14. A foreach loop

foreach (string file in Directory.EnumerateFiles(@"C:\temp"))
{
    Console.WriteLine(file);
}

The Directory class’s EnumerateFiles method returns an IEnumerable<string>. As
you saw in Chapter 5, this has a GetEnumerator method that returns an IEnumera
tor<string>, an interface that inherits from IDisposable. Consequently, the C#
compiler will produce code equivalent to Example 7-15.

Example 7-15. How foreach loops expand

{
    IEnumerator<string> e =
        Directory.EnumerateFiles(@"C:\temp").GetEnumerator();
    try
    {
        while (e.MoveNext())
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        {
            string file = e.Current;
            Console.WriteLine(file);
        }
    }
    finally
    {
        if (e != null)
        {
            ((IDisposable) e).Dispose();
        }
    }
}

There are a few variations the compiler can produce, depending on the collection’s
enumerator type. If it’s a value type that implements IDisposable, the compiler
won’t generate the check for null in the finally block (just as in a using statement).
If the static type of the enumerator does not implement IDisposable, the outcome
depends on whether the type is open for inheritance. If it is sealed, or if it is a value
type, the compiler will not generate code that attempts to call Dispose at all. If it is
not sealed, the compiler generates code in the finally block that tests at runtime
whether the enumerator implements IDisposable, calling Dispose if it does, and
doing nothing otherwise.

The IDisposable interface is easiest to consume when you obtain a resource and fin‐
ish using it in the same method, because you can write a using statement (or where
applicable, a foreach loop) to ensure that you call Dispose. But sometimes, you will
write a class that creates a disposable object and puts a reference to it in a field,
because it will need to use that object over a longer timescale. For example, you might
write a logging class, and if a logger object writes data to a file, it might hold on to a
StreamWriter object. C# provides no automatic help here, so it’s up to you to ensure
that any contained objects get disposed. You would write your own implementation
of IDisposable that disposes the other objects. As Example 7-16 shows, this is not
rocket science. Note that this example sets _file to null, so it will not attempt to
dispose the file twice. This is not strictly necessary, because the StreamWriter will
tolerate multiple calls to Dispose. But it does give the Logger object an easy way to
know that it is in a disposed state, so if we were to add some real methods, we could
check _file and throw an ObjectDisposedException if it is null.

Example 7-16. Disposing a contained instance

public sealed class Logger : IDisposable
{
    private StreamWriter _file;

    public Logger(string filePath)
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    {
        _file = File.CreateText(filePath);
    }

    public void Dispose()
    {
        if (_file != null)
        {
            _file.Dispose();
            _file = null;
        }
    }
    // A real class would go on to do something with the StreamWriter, of course
}

This example dodges an important problem. The class is sealed, which avoids the
issue of how to cope with inheritance. If you write an unsealed class that implements
IDisposable, you should provide a way for a derived class to add its own disposal
logic. The most straightforward solution would be to make Dispose virtual so that a
derived class can override it, performing its own cleanup in addition to calling your
base implementation. However, there is a marginally more complicated pattern that
you will see from time to time in .NET.

Some objects implement IDisposable and also have a finalizer. Since the introduc‐
tion of SafeHandle and related classes, it’s relatively unusual for a class to need to
provide both (unless it derives from SafeHandle). Only wrappers for handles
normally need finalization, and classes that use handles now typically defer to a
SafeHandle to provide that, rather than implementing their own finalizers. However,
there are exceptions, and some library types implement a pattern designed to support
both finalization and IDisposable, allowing you to provide custom behaviors for
both in derived classes. For example, the Stream base class works this way.

This pattern is called the Dispose Pattern, but do not take that to
mean that you should normally use this when implementing IDis
posable. On the contrary, it is extremely unusual to need this pat‐
tern. Even back when it was invented, few classes needed it, and
now that we have SafeHandle, it is almost never necessary. (Safe
Handle was introduced in .NET 2.0, so it has been a very long time
since this pattern was broadly useful.) Unfortunately, some people
misunderstood the narrow utility of this pattern, so you will find a
certain amount of well-intentioned but utterly wrong advice telling
you that you should use this for all IDisposable implementations.
Ignore it. The pattern’s main relevance today is that you sometimes
encounter it in old types such as Stream.
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The pattern is to define a protected overload of Dispose that takes a single bool argu‐
ment. The base class calls this from its public Dispose method and also its destructor,
passing in true or false, respectively. That way, you have to override only one
method, the protected Dispose. It can contain logic common to both finalization and
disposal, such as closing handles, but you can also perform any disposal-specific or
finalization-specific logic because the argument tells you which sort of cleanup is
being performed. Example 7-17 shows how this might look.

Example 7-17. Custom finalization and disposal logic

public class MyFunkyStream : Stream
{
    // For illustration purposes only. Usually better to avoid this whole
    // pattern and to use some type derived from SafeHandle instead.
    private IntPtr _myCustomLibraryHandle;
    private Logger _log;

    protected override void Dispose(bool disposing)
    {
        base.Dispose(disposing);

        if (_myCustomLibraryHandle != IntPtr.Zero)
        {
            MyCustomLibraryInteropWrapper.Close(_myCustomLibraryHandle);
            _myCustomLibraryHandle = IntPtr.Zero;
        }
        if (disposing)
        {
            if (_log != null)
            {
                _log.Dispose();
                _log = null;
            }
        }
    }

    // ... overloads of Stream's abstract methods would go here
}

This hypothetical example is a custom implementation of the Stream abstraction that
uses some external non-.NET library that provides handle-based access to resources.
We prefer to close the handle when the public Dispose method is called, but if that
hasn’t happened by the time our finalizer runs, we want to close the handle then. So
the code checks to see if the handle is still open and closes it if necessary, and it does
this whether the call to the Dispose(bool) overload happened as a result of the object
being explicitly disposed or being finalized—we need to ensure that the handle is
closed in either case. However, this class also appears to use an instance of the Logger
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7 Strictly speaking, it’s the underlying MessageHandler that needs to be reused. If you obtain an HttpClient
from an IHttpClientFactory, it is harmless to dispose it because the factory holds on to the handler and
reuses it across HttpClient instances.

class from Example 7-16. Because that’s an ordinary object, we shouldn’t attempt to
use it during finalization, so we attempt to dispose it only if our object is being dis‐
posed. If we are being finalized, then although Logger itself is not finalizable, it uses a
FileStream, which is finalizable; and it’s quite possible that the FileStream finalizer
will already have run by the time our MyFunkyStream class’s finalizer runs, so it would
be a bad idea to call methods on the Logger.

When a base class provides this virtual protected form of Dispose, it should call
GC.SuppressFinalization in its public Dispose. The Stream base class does this.
More generally, if you find yourself writing a class that offers both Dispose and a
finalizer, then whether or not you choose to support inheritance with this pattern,
you should in any case suppress finalization when Dispose is called.

Optional Disposal
Although you should call Dispose at some point on most objects that implement
IDisposable, there are a few exceptions. For example, the Reactive Extensions
for .NET (described in Chapter 11) provide IDisposable objects that represent sub‐
scriptions to streams of events. You can call Dispose to unsubscribe, but some event
sources come to a natural end, automatically shutting down any subscriptions. If that
happens, you are not required to call Dispose. Also, the Task type, which is used
extensively in conjunction with the asynchronous programming techniques
described in Chapter 17, implements IDisposable but does not need to be disposed
unless you cause it to allocate a WaitHandle, something which will not occur in nor‐
mal usage. The way Task is generally used makes it particularly awkward to find a
good time to call Dispose on it, so it’s fortunate that it’s not normally necessary.

The HttpClient class is another exception to the normal rules, but in a different way.
We rarely call Dispose on instances of this type, but in this case it’s because we are
encouraged to reuse instances. If you construct, use, and dispose an HttpClient each
time you need one, you will defeat its ability to reuse existing connections when mak‐
ing multiple requests to the same server. This can cause two problems. First, opening
an HTTP connection can sometimes take longer than sending the request and receiv‐
ing the response, so preventing HttpClient from reusing connections to send multi‐
ple requests over time can cause significant performance problems. Connection reuse
only works if you reuse the HttpClient.7 Second, the TCP protocol (which underpins
HTTP) has characteristics that mean the OS cannot always instantly reclaim all the
resources associated with a connection: it may need to keep the connection’s TCP
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port reserved for a considerable time (maybe a few minutes) after you’ve told the OS
to close the connection, and it’s possible to run out of ports, preventing all further
communication.

Such exceptions are unusual. It is only safe to omit calls to Dispose when the docu‐
mentation for the class you’re using explicitly states that it is not required.

Boxing
While I’m discussing garbage collection and object lifetime, there’s one more topic I
should talk about in this chapter: boxing. Boxing is the process that enables a variable
of type object to refer to a value type. An object variable is capable only of holding a
reference to something on the heap, so how can it refer to an int? What happens
when the code in Example 7-18 runs?

Example 7-18. Using an int as an object

class Program
{
    static void Show(object o)
    {
        Console.WriteLine(o.ToString());
    }

    static void Main(string[] args)
    {
        int num = 42;
        Show(num);
    }
}

The Show method expects an object, and I’m passing it num, which is a local variable of
the value type int. In these circumstances, C# generates a box, which is essentially a
reference type wrapper for a value. The CLR can automatically provide a box for any
value type, although if it didn’t, you could write your own class that does something
similar. Example 7-19 shows a hand-built box.

Example 7-19. Not actually how a box works

// Not a real box, but similar in effect.
public class Box<T>
    where T : struct
{
    public readonly T Value;
    public Box(T v)
    {
        Value = v;
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    }

    public override string ToString() => Value.ToString();
    public override bool Equals(object obj) => Value.Equals(obj);
    public override int GetHashCode() => Value.GetHashCode();
}

This is a fairly ordinary class that contains a single instance of a value type as its only
field. If you invoke the standard members of object on the box, this class’s overrides
make it look as though you invoked them directly on the field itself. So, if I passed
new Box<int>(num) as the argument to Show in Example 7-18, Show would receive a
reference to that box. When Show called ToString, the box would call the int field’s
ToString, so you’d expect the program to display 42.

We don’t need to write Example 7-19, because the CLR will build the box for us. It
will create an object on the heap that contains a copy of the boxed value, and for‐
wards the standard object methods to the boxed value. And it does some things that
we can’t. If you ask a boxed int its type by calling GetType, it will return the same
Type object as you’d get if you called GetType directly on an int variable—I can’t do
that with my custom Box<T>, because GetType is not virtual. Also, getting back the
underlying value is easier than it would be with a hand-built box, because unboxing is
an intrinsic CLR feature.

If you have a reference of type object, and you cast it to int, the CLR checks to see if
the reference does indeed refer to a boxed int; if it does, the CLR returns a copy of
the boxed value. (If not, it throws an InvalidCastException.) So, inside the Show
method of Example 7-18, I could write (int) o to get back a copy of the original
value, whereas if I were using the class in Example 7-19, I’d need the more convolu‐
ted ((Box<int>) o).Value.

I can also use pattern matching to extract a boxed value. Example 7-20 uses a type
pattern to detect whether the variable o contains a reference to a boxed int, and if it
does, it extracts that into the local variable i. As we saw in Chapter 2, when you use a
pattern with the is operator like this, the resulting expression evaluates to true if the
pattern matches, and false if it does not. So the body of this if statement runs only
if there was an int value there to be unboxed.

Example 7-20. Unboxing a value with a type pattern

if (o is int i)
{
    Console.WriteLine(i * 2);
}
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8 Except for ref struct types, because those invariably live on the stack.

Boxes are automatically available for all structs,8 not just the built-in value types. If
the struct implements any interfaces, the box will provide all the same interfaces.
(That’s another trick that Example 7-19 cannot perform.)

Some implicit conversions cause boxing. You can see this in Example 7-18. I have
passed an expression of type int where object was required, without needing an
explicit cast. Implicit conversions also exist between a value and any of the interfaces
that value’s type implements. For example, you can assign a value of type int into a
variable of type IComparable<int> (or pass it as a method argument of that type)
without needing a cast. This causes a box to be created, because variables of any inter‐
face type are like variables of type object, in that they can hold only a reference to an
item on the garbage-collected heap.

Implicit boxing conversions are not implicit reference conversions.
This means that they do not come into play with covariance or
contravariance. For example, IEnumerable<int> is not compatible
with IEnumerable<object> despite the existence of an implicit
conversion from int to object, because that is not an implicit ref‐
erence conversion.

Implicit boxing can occasionally cause problems for either of two reasons. First, it
makes it easy to generate extra work for the GC. The CLR does not attempt to cache
boxes, so if you write a loop that executes 100,000 times, and that loop contains an
expression that uses an implicit boxing conversion, you’ll end up generating 100,000
boxes, which the GC will eventually have to clean up just like anything else on the
heap. Second, each box operation (and each unbox) copies the value, which might
not provide the semantics you were expecting. Example 7-21 illustrates some poten‐
tially surprising behavior.

Example 7-21. Illustrating the pitfalls of mutable structs

public struct DisposableValue : IDisposable
{
    private bool _disposedYet;

    public void Dispose()
    {
        if (!_disposedYet)
        {
            Console.WriteLine("Disposing for first time");
            _disposedYet = true;
        }

342 | Chapter 7: Object Lifetime



        else
        {
            Console.WriteLine("Was already disposed");
        }
    }
}

class Program
{
    static void CallDispose(IDisposable o)
    {
        o.Dispose();
    }

    static void Main(string[] args)
    {
        var dv = new DisposableValue();
        Console.WriteLine("Passing value variable:");
        CallDispose(dv);
        CallDispose(dv);
        CallDispose(dv);

        IDisposable id = dv;
        Console.WriteLine("Passing interface variable:");
        CallDispose(id);
        CallDispose(id);
        CallDispose(id);

        Console.WriteLine("Calling Dispose directly on value variable:");
        dv.Dispose();
        dv.Dispose();
        dv.Dispose();

        Console.WriteLine("Passing value variable:");
        CallDispose(dv);
        CallDispose(dv);
        CallDispose(dv);
    }
}

The DisposableValue struct implements the IDisposable interface we saw earlier. It
keeps track of whether it has been disposed already. The program contains a CallDis
pose method that calls Dispose on any IDisposable instance. The program declares
a single variable of type DisposableValue and passes this to CallDispose three
times. Here’s the output from that part of the program:

Passing value variable:
Disposing for first time
Disposing for first time
Disposing for first time
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On all three occasions, the struct seems to think this is the first time we’ve called
Dispose on it. That’s because each call to CallDispose created a new box—we are
not really passing the dv variable, we are passing a newly boxed copy each time, so the
CallDispose method is working on a different instance of the struct each time. This
is consistent with how value types normally work—even when they’re not boxed,
when you pass them as arguments, you end up passing a copy (unless you use the ref
or in keywords).

The next part of the program ends up generating just a single box—it assigns the
value into another local variable of type IDisposable. This uses the same implicit
conversion as we did when passing the variable directly as an argument, so this cre‐
ates yet another box, but it does so only once. We then pass the same reference to this
particular box three times over, which explains why the output from this phase of the
program looks different:

Passing interface variable:
Disposing for first time
Was already disposed
Was already disposed

These three calls to CallDispose all use the same box, which contains an instance of
our struct, and so after the first call, it remembers that it has been disposed already.
Next, our program calls Dispose directly on the local variable, producing this output:

Calling Dispose directly on value variable:
Disposing for first time
Was already disposed
Was already disposed

No boxing at all is involved here, so we are modifying the state of the local variable.
Someone who only glanced at the code might not have expected this output—we
have already passed the dv variable to a method that called Dispose on its argument,
so it might be surprising to see that it thinks it hasn’t been disposed the first time
around. But once you understand that CallDispose requires a reference and there‐
fore cannot use a value directly, it’s clear that every call to Dispose before this point
has operated on some boxed copy, and not the local variable.

Finally, we make three more calls passing the dv directly to CallDispose again. This
is exactly what we did at the start of the code, so these calls generate yet more boxed
copies. But this time, we are copying a value that’s already in the state of having been
disposed, so we see different output:

Passing value variable:
Was already disposed
Was already disposed
Was already disposed
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The behavior is all straightforward when you understand what’s going on, but it
requires you to be mindful that you’re dealing with a value type, and to understand
when boxing causes implicit copying. This is one of the reasons Microsoft discour‐
ages developers from writing value types that can change their state—if a value can‐
not change, then a boxed value of that type also cannot change. It matters less
whether you’re dealing with the original or a boxed copy, so there’s less scope for
confusion, although it is still useful to understand when boxing will occur to avoid
performance penalties.

Boxing used to be a much more common occurrence in early versions of .NET.
Before generics arrived in .NET 2.0, collection classes all worked in terms of object,
so if you wanted a resizable list of integers, you’d end up with a box for each int in
the list. Generic collection classes do not cause boxing—a List<int> is able to store
unboxed values directly.

Boxing Nullable<T>
Chapter 3 described the Nullable<T> type, a wrapper that adds null value support to
any value type. Remember, C# has special syntax for this, in which you can just put a
question mark on the end of a value type name, so we’d normally write int? instead
of Nullable<int>. The CLR has special support for Nullable<T> when it comes to
boxing.

Nullable<T> itself is a value type, so if you attempt to get a reference to it, the com‐
piler will generate code that attempts to box it, as it would with any other value type.
However, at runtime, the CLR will not produce a box containing a copy of the Nulla
ble<T> itself. Instead, it checks to see if the value is in a null state (i.e., its HasValue
property returns false), and if so, it just returns null. Otherwise, it boxes the con‐
tained value. For example, if a Nullable<int> has a value, boxing it will produce a
box of type int. This will be indistinguishable from the box you’d get if you had
started with an ordinary int value. (One upshot of this is that the pattern matching
shown in Example 7-20 works whether the type of variable originally boxed was an
int or an int?. You use int in the type pattern in either case.)

You can unbox a boxed int into variables of either type int? or int. So all three
unboxing operations in Example 7-22 will succeed. They would also succeed if the
first line were modified to initialize the boxed variable from a Nullable<int> that
was not in the null state. (If you were to initialize boxed from a Nullable<int> in the
null state, that would have the same effect as initializing it to null, in which case the
final line of this example would throw a NullReferenceException.)
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Example 7-22. Unboxing an int to nullable and nonnullable variables

object boxed = 42;
int? nv = boxed as int?;
int? nv2 = (int?) boxed;
int v = (int) boxed;

This is a runtime feature, and not simply the compiler being clever. The IL box
instruction, which is what C# generates when it wants to box a value, detects Nulla
ble<T> values; the unbox and unbox.any IL instructions are able to produce a Nulla
ble<T> value from either a null or a reference to a boxed value of the underlying
type. So, if you wrote your own wrapper type that looked like Nullable<T>, it would
not behave in the same way; if you assigned a value of your type into an object, it
would box your whole wrapper just like any other value. It’s only because the CLR
knows about Nullable<T> that it behaves differently.

Summary
In this chapter, I described the heap that the runtime provides. I showed the strategy
that the CLR uses to determine which heap objects can still be reached by your code,
and the generation-based mechanism it uses to reclaim the memory occupied by
objects that are no longer in use. The GC is not clairvoyant, so if your program keeps
an object reachable, the GC has to assume that you might use that object in the
future. This means you will sometimes need to be careful to make sure you don’t
cause memory leaks by accidentally keeping hold of objects for too long. We looked
at the finalization mechanism, and its various limitations and performance issues,
and we also looked at IDisposable, which is the preferred system for cleaning up
nonmemory resources. Finally, we saw how value types can act like reference types
thanks to boxing.

In the next chapter, I will show how C# presents the error-handling mechanisms of
the CLR.
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CHAPTER 8

Exceptions

Some operations can fail. If your program is reading data from a file stored on an
external drive, someone might disconnect the drive. Your application might try to
construct an array only to discover that the system does not have enough free mem‐
ory. Intermittent wireless network connectivity can cause network requests to fail.
One widely used way for a program to discover these sorts of failures is for each API
to return a value indicating whether the operation succeeded. This requires develop‐
ers to be vigilant if all errors are to be detected, because programs must check the
return value of every operation. This is certainly a viable strategy, but it can obscure
the code; the logical sequence of work to be performed when nothing goes wrong can
get buried by all of the error checking, making the code harder to maintain. C# sup‐
ports another popular error-handling mechanism that can mitigate this problem:
exceptions.

When an API reports failure with an exception, this disrupts the normal flow of exe‐
cution, leaping straight to the nearest suitable error-handling code. This enables a
degree of separation between error-handling logic and the code that tries to perform
the task at hand. This can make code easier to read and maintain, although it does
have the downside of making it harder to see all the possible ways in which the code
may execute.

Exceptions can also report problems with operations where a return code might not
be practical. For example, the runtime can detect and report problems for basic oper‐
ations, even something as simple as using a reference. Reference type variables can
contain null, and if you try to invoke a method on a null reference, it will fail. The
runtime reports this with an exception.

Most errors in .NET are represented as exceptions. However, some APIs offer you a
choice between return codes and exceptions. For example, the int type has a Parse
method that takes a string and attempts to interpret its contents as a number, and if
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you pass it some nonnumeric text (e.g., "Hello"), it will indicate failure by throwing
a FormatException. If you don’t like that, you can call TryParse instead, which does
exactly the same job, but if the input is nonnumeric, it returns false instead of
throwing an exception. (Since the method’s return value has the job of reporting suc‐
cess or failure, the method provides the integer result via an out parameter.) Numeric
parsing is not the only operation to use this pattern, in which a pair of methods
(Parse and TryParse, in this case) provides a choice between exceptions and return
values. As you saw in Chapter 5, dictionaries offer a similar choice. The indexer
throws an exception if you use a key that’s not in the dictionary, but you can also look
up values with TryGetValue, which returns false on failure, just like TryParse.
Although this pattern crops up in a few places, for the majority of APIs, exceptions
are the only choice.

If you are designing an API that could fail, how should it report failure? Should you
use exceptions, a return value, or both? Microsoft’s class library design guidelines
contain instructions that seem unequivocal:

Do not return error codes. Exceptions are the primary means of reporting errors in
frameworks.

—.NET Framework Design Guidelines

But how does that square with the existence of int.TryParse? The guidelines have a
section on performance considerations for exceptions that says this:

Consider the TryParse pattern for members that may throw exceptions in common
scenarios to avoid performance problems related to exceptions.

—.NET Framework Design Guidelines

Failing to parse a number is not necessarily an error. For example, you might want
your application to allow the month to be specified numerically or as text. So there
are certainly common scenarios in which the operation might fail, but the guideline
has another criterion: it suggests using it for “extremely performance-sensitive APIs,”
so you should offer the TryParse approach only when the operation is fast compared
to the time taken to throw and handle an exception.

Exceptions can typically be thrown and handled in a fraction of a millisecond, so
they’re not desperately slow—not nearly as slow as reading data over a network con‐
nection, for example—but they’re not blindingly fast either. I find that on my com‐
puter, a single thread can parse five-digit numeric strings at a rate of roughly 65
million strings per second on .NET Core 3.0, and it’s capable of rejecting nonnumeric
strings at a similar speed if I use TryParse. The Parse method handles numeric
strings just as fast, but it’s roughly 1,000 times slower at rejecting nonnumeric strings
than TryParse, thanks to the cost of exceptions. Of course, converting strings to inte‐
gers is a pretty fast operation, so this makes exceptions look particularly bad, but
that’s why this pattern is most common on operations that are naturally fast.
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Exceptions can be especially slow when debugging. This is partly
because the debugger has to decide whether to break in, but it’s
particularly pronounced with the first unhandled exception your
program hits. This can give the impression that exceptions are con‐
siderably more expensive than they really are. The numbers in the
preceding paragraph are based on observed runtime behavior
without debugging overheads. That said, those numbers slightly
understate the costs, because handling an exception tends to cause
the CLR to run bits of code and access data structures it would not
otherwise need to use, which can have the effect of pushing useful
data out of the CPU’s cache. This can cause code to run slower for
a short while after the exception has been handled, until the nonex‐
ceptional code and data can make their way back into the cache.
The simplicity of the test reduces this effect.

Most APIs do not offer a TryXxx form, and will report all failures as exceptions, even
in cases where failure might be common. For example, the file APIs do not provide a
way to open an existing file for reading without throwing an exception if the file is
missing. (You can use a different API to test whether the file is there first, but that’s
no guarantee of success. It’s always possible for some other process to delete the file
between your asking whether it’s there and attempting to open it.) Since filesystem
operations are inherently slow, the TryXxx pattern would not offer a worthwhile per‐
formance boost here even though it might make logical sense.

Exception Sources
Class library APIs are not the only source of exceptions. They can be thrown in any
of the following scenarios:

• Your own code detects a problem.
• Your program uses a class library API, which detects a problem.
• The runtime detects the failure of an operation (e.g., arithmetic overflow in a

checked context, or an attempt to use a null reference, or an attempt to allocate
an object for which there is not enough memory).

• The runtime detects a situation outside of your control that affects your code
(e.g., the runtime tries to allocate memory for some internal purpose and finds
that there is not enough free memory).

Although these all use the same exception-handling mechanisms, the places in which
the exceptions emerge are different. When your own code throws an exception
(which I’ll show you how to do later), you’ll know what conditions cause it to hap‐
pen, but when do these other scenarios produce exceptions? I’ll describe where to
expect each sort of exception in the following sections.
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Exceptions from APIs
With an API call, there are several kinds of problems that could result in exceptions.
You may have provided arguments that make no sense, such as a null reference
where a non-null one is required, or an empty string where the name of a file was
expected. Or the arguments might look OK individually, but not collectively. For
example, you could call an API that copies data into an array, asking it to copy more
data than will fit. You could describe these as “that will never work”-style errors, and
they are usually the result of mistakes in the code. (One developer who used to work
on the C# compiler team refers to these as boneheaded exceptions.)

A different class of problems arises when the arguments all look plausible, but the
operation turns out not to be possible given the current state of the world. For exam‐
ple, you might ask to open a particular file, but the file may not be present; or perhaps
it exists, but some other program already has it open and has demanded exclusive
access to the file. Yet another variation is that things may start well, but conditions
can change, so perhaps you opened a file successfully and have been reading data for
a while, but then the file becomes inaccessible. As suggested earlier, someone may
have unplugged a disk, or the drive could have failed due to overheating or age.

Software that communicates with external services over a network needs to take into
account that an exception doesn’t necessarily indicate that anything is really wrong—
sometimes requests fail due to some temporary condition, and you may simply need
to retry the operation. This is particularly common in cloud environments, where it’s
common for individual servers to come and go as part of the load balancing that
cloud platforms typically offer—it is normal for a few operations to fail for no partic‐
ular reason.

When using services via a library you should find out whether it
already handles this for you. For example, the Azure Storage libra‐
ries perform retries automatically by default, and will only throw
an exception if you disable this behavior, or if problems persist
after several attempts. You shouldn’t normally add your own
exception handling and retry loops for this kind of error around
libraries that do this for you.

Asynchronous programming adds yet another variation. In Chapters 16 and 17 , I’ll
show various asynchronous APIs—ones where work can progress after the method
that started it has returned. Work that runs asynchronously can also fail asynchro‐
nously, in which case the library might have to wait until your code next calls into it
before it can report the error.

Despite the variations, in all these cases the exception will come from some API that
your code calls. (Even when asynchronous operations fail, exceptions emerge either
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when you try to collect the result of an operation, or when you explicitly ask whether
an error has occurred.) Example 8-1 shows some code where exceptions of this kind
could emerge.

Example 8-1. Getting an exception from a library call

static void Main(string[] args)
{
    using (var r = new StreamReader(@"C:\Temp\File.txt"))
    {
        while (!r.EndOfStream)
        {
            Console.WriteLine(r.ReadLine());
        }
    }
}

There’s nothing categorically wrong with this program, so we won’t get any excep‐
tions complaining about arguments being self-evidently wrong. (In the unofficial ter‐
minology, it makes no boneheaded mistakes.) If your computer’s C: drive has a Temp
folder, and if that contains a File.txt file, and if the user running the program has per‐
mission to read that file, and if nothing else on the computer has already acquired
exclusive access to the file, and if there are no problems—such as disk corruption—
that could make any part of the file inaccessible, and if no new problems (such as the
drive catching fire) develop while the program runs, this code will work just fine: it
will show each line of text in the file. But that’s a lot of ifs.

If there is no such file, the StreamReader constructor will not complete. Instead, it
will throw an exception. This program makes no attempt to handle that, so the appli‐
cation would terminate. If you ran the program outside of Visual Studio’s debugger,
you would see the following output:

Unhandled Exception: System.IO.DirectoryNotFoundException: Could not find a part
 of the path 'C:\Temp\File.txt'.
   at System.IO.FileStream.ValidateFileHandle(SafeFileHandle fileHandle)
   at System.IO.FileStream.CreateFileOpenHandle(FileMode mode, FileShare share,
FileOptions options)
   at System.IO.FileStream..ctor(String path, FileMode mode, FileAccess access,
FileShare share, Int32 bufferSize, FileOptions options)
   at System.IO.StreamReader.ValidateArgsAndOpenPath(String path, Encoding encod
ing, Int32 bufferSize)
   at System.IO.StreamReader..ctor(String path)
   at Exceptional.Program.Main(String[] args) in c:\Examples\Ch08\Example1\Progr
am.cs:line 10

This tells us what error occurred, and shows the full call stack of the program at the
point at which the problem happened. On Windows, the system-wide error handling
will also step in, so depending on how your computer is configured, you might see its
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error reporting dialog and it may even report the crash to Microsoft’s error-reporting
service. If you run the same program in a debugger, it will tell you about the excep‐
tion and will also highlight the line on which the error occurred, as Figure 8-1 shows.

Figure 8-1. Visual Studio reporting an exception

What we’re seeing here is the default behavior that occurs when a program does
nothing to handle exceptions: if a debugger is attached, it will step in, and if not, the
program just crashes. I’ll show how to handle exceptions soon, but this illustrates that
you cannot simply ignore them.

The call to the StreamReader constructor is not the only line that could throw an
exception in Example 8-1, by the way. The code calls ReadLine multiple times, and
any of those calls could fail. In general, any member access could result in an excep‐
tion, even just reading a property, although class library designers usually try to mini‐
mize the extent to which properties throw exceptions. If you make an error of the
“that will never work” (boneheaded) kind, then a property might throw an exception,
but usually not for errors of the “this particular operation didn’t work” kind. For
example, the documentation states that the EndOfStream property used in
Example 8-1 would throw an exception if you tried to read it after having called Dis
pose on the StreamReader object—an obvious coding error—but if there are prob‐
lems reading the file, StreamReader will throw exceptions only from methods or the
constructor.
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Failures Detected by the Runtime
Another source of exceptions is when the CLR itself detects that some operation has
failed. Example 8-2 shows a method in which this could happen. As with
Example 8-1, there’s nothing innately wrong with this code (other than not being
very useful). It is perfectly possible to use this without causing problems. However, if
someone passes in 0 as the second argument, the code will attempt an illegal
operation.

Example 8-2. A potential runtime-detected failure

static int Divide(int x, int y)
{
    return x / y;
}

The CLR will detect when this division operation attempts to divide by zero and will
throw a DivideByZeroException. This will have the same effect as an exception from
an API call: if the program makes no attempt to handle the exception, it will crash, or
the debugger will break in.

Division by zero is not always illegal in C#. Floating-point types
support special values representing positive and negative infinity,
which is what you get when you divide a positive or negative value
by zero; if you divide zero by itself, you get the special Not a Num‐
ber value. None of the integer types support these special values, so
integer division by zero is always an error.

The final source of exceptions I described earlier is also the detection of certain fail‐
ures by the runtime, but they work a bit differently. They are not necessarily triggered
directly by anything that your code did on the thread on which the exception occur‐
red. These are sometimes referred to as asynchronous exceptions, and in theory they
can be thrown at literally any point in your code, making it hard to ensure that you
can deal with them correctly. However, these tend to be thrown only in fairly cata‐
strophic circumstances, often when your program is about to be shut down, so you
can’t normally handle them in a useful way. For example, in .NET Core, StackOver
flowException and OutOfMemoryException can in theory be thrown at any point
(because the CLR may need to allocate memory for its own purposes even if your
code didn’t do anything that explicitly attempts this).

I’ve described the usual situations in which exceptions are thrown, and you’ve seen
the default behavior, but what if you want your program to do something other than
crash?
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Handling Exceptions
When an exception is thrown, the CLR looks for code to handle the exception. The
default exception-handling behavior comes into play only if there are no suitable
handlers anywhere on the entire call stack. To provide a handler, we use C#’s try and
catch keywords, as Example 8-3 shows.

Example 8-3. Handling an exception

try
{
    using (StreamReader r = new StreamReader(@"C:\Temp\File.txt"))
    {
        while (!r.EndOfStream)
        {
            Console.WriteLine(r.ReadLine());
        }
    }
}
catch (FileNotFoundException)
{
    Console.WriteLine("Couldn't find the file");
}

The block immediately following the try keyword is usually known as a try block,
and if the program throws an exception while it’s inside such a block, the CLR looks
for matching catch blocks. Example 8-3 has just a single catch block, and in the
parentheses following the catch keyword, you can see that this particular block is
intended to handle exceptions of type FileNotFoundException.

You saw earlier that if there is no C:\Temp\File.txt file, the StreamReader constructor
throws a FileNotFoundException. In Example 8-1, that caused our program to crash,
but because Example 8-3 has a catch block for that exception, the CLR will run that
catch block. At this point, it will consider the exception to have been handled, so the
program does not crash. Our catch block is free to do whatever it wants, and in this
case, my code just displays a message indicating that it couldn’t find the file.

Exception handlers do not need to be in the method in which the exception origina‐
ted. The CLR walks up the stack until it finds a suitable handler. If the failing Stream
Reader constructor call were in some other method that was called from inside the
try block in Example 8-3, our catch block would still run (unless that method pro‐
vided its own handler for the same exception).
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1 Strictly speaking, the CLR allows any type as an exception. However, C# can throw only Exception-derived
types. Some languages let you throw other types, but it is strongly discouraged. C# can handle exceptions of
any type, though only because the compiler automatically sets a RuntimeCompatibility attribute on every
component it produces, asking the CLR to wrap exceptions not derived from Exception in a RuntimeWrappe
dException.

Exception Objects
Exceptions are objects, and their type derives from the Exception base class.1 This
defines properties providing information about the exception, and some derived
types add properties specific to the problem they represent. Your catch block can get
a reference to the exception if it needs information about what went wrong.
Example 8-4 shows a modification to the catch block from Example 8-3. In the
parentheses after the catch keyword, as well as specifying the exception type, we also
provide an identifier (x) with which code in the catch block can refer to the exception
object. This enables the code to read a property specific to the FileNotFoundExcep
tion class: FileName.

Example 8-4. Using the exception in a catch block

try
{
    // ... same code as Example 8-3 ...
}
catch (FileNotFoundException x)
{
    Console.WriteLine($"File '{x.FileName}' is missing");
}

This will display the name of the file that couldn’t be found. With this simple pro‐
gram, we already knew which file we were trying to open, but you could imagine this
property being helpful in a more complex program that deals with multiple files.

The general-purpose members defined by the base Exception class include the Mes
sage property, which returns a string containing a textual description of the problem.
The default error handling for console applications displays this. The text Could not
find file 'C:\Temp\File.txt' that we saw when first running Example 8-1 came
from the Message property. This property is important when you’re diagnosing unex‐
pected exceptions.
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The Message property is intended for human consumption, so
many APIs localize these messages. It is therefore a bad idea to
write code that attempts to interpret an exception by inspecting the
Message property, because this may well fail when your code runs
on a computer configured to run in a region where the main spo‐
ken language is different than yours. (And Microsoft doesn’t treat
exception message changes as breaking changes, so the text might
change even within the same locale.) It is best to rely on the actual
exception type, although as you’ll see in Chapter 15 some excep‐
tions such as IOException get used in ambiguous ways. So you
sometimes need to inspect the HResult property which will be set
to an error code from the OS in such cases.

Exception also defines an InnerException property. This is often null, but it comes
into play when one operation fails as a result of some other failure. Sometimes,
exceptions that occur deep inside a library would make little sense if they were
allowed to propagate all the way up to the caller. For example, .NET provides a
library for parsing XAML files. (XAML—Extensible Application Markup Language—
is used by various .NET UI frameworks, including WPF.) XAML is extensible, so it’s
possible that your code (or perhaps some third-party code) will run as part of the
process of loading a XAML file, and this extension code could fail—suppose a bug in
your code causes an IndexOutOfRangeException to be thrown while trying to access
an array element. It would be somewhat mystifying for that exception to emerge from
a XAML API, so regardless of the underlying cause of the failure, the library throws a
XamlParseException. This means that if you want to handle the failure to load a
XAML file, you know exactly which exception to handle, but the underlying cause of
the failure is not lost: when some other exception caused the failure, it will be in the
InnerException.

All exceptions contain information about where the exception was thrown. The
StackTrace property provides the call stack as a string. As you’ve already seen, the
default exception handler for console applications displays that. There’s also a Target
Site property, which tells you which method was executing. It returns an instance of
the reflection API’s MethodBase class. See Chapter 13 for details on reflection.

Multiple catch Blocks
A try block can be followed by multiple catch blocks. If the first catch does not
match the exception being thrown, the CLR will then look at the next one, then the
next, and so on. Example 8-5 supplies handlers for both FileNotFoundException and
IOException.
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Example 8-5. Handling multiple exception types

try
{
    using (StreamReader r = new StreamReader(@"C:\Temp\File.txt"))
    {
        while (!r.EndOfStream)
        {
            Console.WriteLine(r.ReadLine());
        }
    }
}
catch (FileNotFoundException x)
{
    Console.WriteLine($"File '{x.FileName}' is missing");
}
catch (IOException x)
{
    Console.WriteLine($"IO error: '{x.Message}'");
}

An interesting feature of this example is that FileNotFoundException derives from
IOException. I could remove the first catch block, and this would still handle the
exception correctly (just with a less specific message), because the CLR considers a
catch block to be a match if it handles the base type of the exception. So Example 8-5
has two viable handlers for a FileNotFoundException, and in these cases, C# requires
the more specific one to come first. If I were to swap them over so that the IOExcep
tion handler came first, I’d get this compiler error for the FileNotFoundException
handler:

error CS0160: A previous catch clause already catches all exceptions of this or
of a super type ('IOException')

If you write a catch block for the Exception base type, it will catch all exceptions. In
most cases, this is the wrong thing to do. Unless there is some specific and useful
thing you can do with an exception, you should normally let it pass. Otherwise, you
risk masking a problem. If you let the exception carry on, it’s more likely to get to a
place where it will be noticed, increasing the chances that you will fix the problem
properly at some point. A catchall handler would be appropriate if you intend to
wrap all exceptions in another exception and throw that, like the XamlParseExcep
tion described earlier. A catchall exception handler might also make sense if it’s at a
point where the only place left for the exception to go is the default handling supplied
by the system. (That might mean the Main method for a console application, but for
multithreaded applications, it might mean the code at the top of a newly created
thread’s stack.) It might be appropriate in these locations to catch all exceptions and
write the details to a logfile or some similar diagnostic mechanism. Even then, once
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you’ve logged it, you would probably want to rethrow the exception, as described
later in this chapter, or even terminate the process with a nonzero exit code.

For critically important services, you might be tempted to write
code that swallows the exception so that your application can limp
on. This is a bad idea. If an exception you did not anticipate occurs,
your application’s internal state may no longer be trustworthy,
because your code might have been halfway through an operation
when the failure occurred. If you cannot afford for the application
to go offline, the best approach is to arrange for it to restart auto‐
matically after a failure. A Windows Service can be configured to
do this automatically, for example.

Exception Filters
You can make a catch block conditional: if you provide an exception filter for your
catch block, it will only catch exceptions when the filter condition is true.
Example 8-6 shows how this can be useful. It uses the client API for Azure Table
Storage, a no-SQL storage service offered as part of Microsoft’s Azure cloud comput‐
ing platform. This API’s CloudTable class has an Execute method that will throw a
StorageException if something goes wrong. The problem is that “something goes
wrong” is very broad, and covers more than connectivity and authentication failures.
You will also see this exception for situations such as an attempt to insert a row when
another row with the same keys already exists. That is not necessarily an error—it can
occur as part of normal usage in some optimistic concurrency models.

Example 8-6. Catch block with exception filter

public static bool InsertIfDoesNotExist(MyEntity item, CloudTable table)
{
    try
    {
        table.Execute(TableOperation.Insert(item));
        return true;
    }
    catch (StorageException x)
    when (x.RequestInformation.HttpStatusCode == 409)
    {
        return false;
    }
}

Example 8-6 looks for that specific failure case, and returns false instead of allowing
the exception out. It does this with a when clause containing a filter, which must be an
expression of type bool. If the Execute method throws a StorageException that does
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2 Exception filters cannot use the await keyword, which is discussed in Chapter 17.

not match the filter condition, the exception will propagate as usual—it will be as
though the catch block were not there.

An exception filter must be an expression that produces a bool. It can invoke external
methods if necessary. Example 8-6 just fetches a couple of properties and performs a
comparison, but you are free to invoke any method as part of the expression.2 How‐
ever, you should be careful to avoid doing anything in your filter that might cause
another exception. If that happens, it will be lost.

Nested try Blocks
If an exception occurs in a try block that does not provide a suitable handler, the
CLR will keep looking. It will walk up the stack if necessary, but you can have multi‐
ple sets of handlers in a single method by nesting one try/catch inside another try
block, as Example 8-7 shows. ShowFirstLineLength nests a try/catch pair inside the
try block of another try/catch pair. Nesting can also be done across methods—the
Main method will catch any NullReferenceException that emerges from the Show
FirstLineLength method (which will be thrown if the file is completely empty—the
call to ReadLine will return null in that case).

Example 8-7. Nested exception handling

static void Main(string[] args)
{
    try
    {
        ShowFirstLineLength(@"C:\Temp\File.txt");
    }
    catch (NullReferenceException)
    {
        Console.WriteLine("NullReferenceException");
    }
}

static void ShowFirstLineLength(string fileName)
{
    try
    {
        using (var r = new StreamReader(fileName))
        {
            try
            {
                Console.WriteLine(r.ReadLine().Length);
            }

Handling Exceptions | 359



            catch (IOException x)
            {
                Console.WriteLine("Error while reading file: {0}",
                    x.Message);
            }
        }
    }
    catch (FileNotFoundException x)
    {
        Console.WriteLine("Couldn't find the file '{0}'", x.FileName);
    }
}

I nested the IOException handler here to make it apply to one particular part of the
work: it handles only errors that occur while reading the file after it has been opened
successfully. It might sometimes be useful to respond to that scenario differently than
for an error that prevented you from opening the file in the first place.

The cross-method handling here is somewhat contrived. The NullReferenceExcep
tion could be avoided by testing the return value of ReadLine for null. However, the
underlying CLR mechanism this illustrates is extremely important. A particular try
block can define catch blocks just for those exceptions it knows how to handle,
allowing others escape up to higher levels.

Letting exceptions carry on up the stack is often the right thing to do. Unless there is
something useful your method can do in response to discovering an error, it’s going
to need to let its caller know there’s a problem, so unless you want to wrap the excep‐
tion in a different kind of exception, you may as well let it through.

If you’re familiar with Java, you may be wondering if C# has any‐
thing equivalent to checked exceptions. It does not. Methods do
not formally declare the exceptions they throw, so there’s no way
the compiler can tell you if you have failed either to handle them or
declare that your method might, in turn, throw them.

You can also nest a try block inside a catch block. This is important if there are ways
in which your error handler itself can fail. For example, if your exception handler logs
information about a failure to disk, that could fail if there’s a problem with the disk.

Some try blocks never catch anything. It’s illegal to write a try block that isn’t fol‐
lowed directly by something, but that something doesn’t have to be a catch block: it
can be a finally block.
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finally Blocks
A finally block contains code that always runs once its associated try block has fin‐
ished. It runs whether execution left the try block simply by reaching the end,
returning from the middle, or throwing an exception. The finally block will run
even if you use a goto statement to jump right out of the block. Example 8-8 shows a
finally block in use.

Example 8-8. A finally block

using Microsoft.Office.Interop.PowerPoint;

...

[STAThread]
static void Main(string[] args)
{
    var pptApp = new Application();
    Presentation pres = pptApp.Presentations.Open(args[0]);
    try
    {
        ProcessSlides(pres);
    }
    finally
    {
        pres.Close();
    }
}

This is an excerpt from a utility I wrote to process the contents of a Microsoft Office
PowerPoint file. This just shows the outermost code; I’ve omitted the actual detailed
processing code, because it’s not relevant here (although if you’re curious, the full
version in the downloadable examples for this book exports animated slides as video
clips). I’m showing it because it uses finally. This example uses COM interop to
control the PowerPoint application. This example closes the file once it has finished,
and the reason I put that code in a finally block is that I don’t want the program to
leave things open if something goes wrong partway through. This is important
because of the way COM automation works. It’s not like opening a file, where the OS
automatically closes everything when the process terminates. If this program exits
suddenly, PowerPoint will not close whatever had been opened—it just assumes that
you meant to leave things open. (You might do this deliberately when creating a new
document that the user will then edit.) I don’t want that, and closing the file in a
finally block is a reliable way to avoid it.

Normally, you’d write a using statement for this sort of thing, but PowerPoint’s
COM-based automation API doesn’t support .NET’s IDisposable interface. In fact,
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as we saw in the previous chapter, the using statement works in terms of finally
blocks under the covers, as does foreach, so you’re relying on the exception-handling
system’s finally mechanism even when you write using statements and foreach
loops.

finally blocks run correctly when your exception blocks are nes‐
ted. If some method throws an exception that is handled by a
method that’s, say, five levels above it in the call stack, and if some
of the methods in between were in the middle of using statements,
foreach loops, or try blocks with associated finally blocks, all of
these intermediate finally blocks (whether explicit or generated
implicitly by the compiler) will execute before the handler runs.

Handling exceptions is only half of the story, of course. Your code may well detect
problems, and exceptions may be an appropriate mechanism for reporting them.

Throwing Exceptions
Throwing an exception is very straightforward. You simply construct an exception
object of the appropriate type, and then use the throw keyword. Example 8-9 does
this when it is passed a null argument.

Example 8-9. Throwing an exception

public static int CountCommas(string text)
{
    if (text == null)
    {
        throw new ArgumentNullException(nameof(text));
    }
    return text.Count(ch => ch == ',');
}

The CLR does all of the work for us. It captures the information required for the
exception to be able to report its location through properties like StackTrace and
TargetSite. (It doesn’t calculate their final values, because these are relatively expen‐
sive to produce. It just makes sure that it has the information it needs to be able to
produce them if asked.) It then hunts for a suitable try/catch block, and if any
finally blocks need to be run, it’ll execute those.

Example 8-9 illustrates a common technique used when throwing exceptions that
report a problem with a method argument. Exceptions such as ArgumentNullExcep
tion, ArgumentOutOfRangeException, and their base class ArgumentException can
all report the name of the offending argument. (This is optional because sometimes
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you need to report inconsistency across multiple arguments, in which case there isn’t
a single argument to be named.) It’s a good idea to use C#’s nameof operator. You can
use this with any expression that refers to a named item such as an argument, a vari‐
able, a property, or a method. It compiles into a string containing the item’s name.

I could have simply used the string literal "text" here instead, but the advantages of
nameof are that it can avoid silly mistakes (if I type txt instead of text, the compiler
will tell me that there’s no such symbol), and it can help avoid problems caused when
renaming a symbol. If I were to rename the text argument in Example 8-9, I could
easily forget to change a string literal to match. But by using nameof(text), I’ll get an
error if I change the name of the argument to, say, input, without also changing
nameof(text)—the compiler will report that there is no identifier called text. If I ask
Visual Studio to rename the argument, it will automatically update all the places in
the code that use the symbol, so it will replace the exception’s constructor argument
with nameof(input) for me.

Many exception types provide a constructor overload that lets you
set the Message text. A more specialized message may make prob‐
lems easier to diagnose, but there’s one thing to be careful of.
Exception messages often find their way into diagnostic logs, and
may also be sent automatically in emails by monitoring systems.
You should therefore be careful about what information you put in
these messages. This is particularly important if your software will
be used in countries with data protection laws—putting informa‐
tion in an exception message that refers in any way to a specific
user can sometimes contravene those laws.

Rethrowing Exceptions
Sometimes it is useful to write a catch block that performs some work in response to
an error, but allows the error to continue once that work is complete. There’s an
obvious but wrong way to do this, illustrated in Example 8-10.

Example 8-10. How not to rethrow an exception

try
{
    DoSomething();
}
catch (IOException x)
{
    LogIOError(x);
    // This next line is BAD!
    throw x;  // Do not do this
}
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This will compile without errors, and it will even appear to work, but it has a serious
problem: it loses the context in which the exception was originally thrown. The CLR
treats this as a brand-new exception (even though you’re reusing the exception
object) and will reset the location information: the StackTrace and TargetSite will
report that the error originated inside your catch block. This could make it hard to
diagnose the problem, because you won’t be able to see where it was originally
thrown. Example 8-11 shows how you can avoid this problem.

Example 8-11. Rethrowing without loss of context

try
{
    DoSomething();
}
catch (IOException x)
{
    LogIOError(x);
    throw;
}

The only difference between this and Example 8-10 (aside from removing the warn‐
ing comments) is that I’m using the throw keyword without specifying which object
to use as the exception. You’re allowed to do this only inside a catch block, and it
rethrows whichever exception the catch block was in the process of handling. This
means that the Exception properties that report the location from which the excep‐
tion was thrown will still refer to the original throw location, not the rethrow.

On .NET Framework (i.e., if you’re not using .NET Core)
Example 8-11 does not completely fix the problem. Although the
point at which the exception was thrown (which happens some‐
where inside the DoSomething method in this example) will be pre‐
served, the part of the stack trace showing where the method in
Example 8-11 had reached will not. Instead of reporting that the
method had reached the line that calls to DoSomething, it will indi‐
cate that it was on the line containing the throw. The slightly
strange effect of this is that the stack trace will make it look as
though the DoSomething method was called by the throw key‐
word. .NET Core doesn’t have this problem.

There is another context-related issue to be aware of when handling exceptions that
you might need to rethrow that arises from how the CLR supplies information to 
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3 Some people refer to WER by the name of an older Windows crash reporting mechanism: Dr. Watson.

Windows Error Reporting3 (WER), the component that leaps into action when an
application crashes on Windows. Depending on how your machine is configured,
WER might show a crash dialog that can offer options including restarting the appli‐
cation, reporting the crash to Microsoft, debugging the application, or just terminat‐
ing it. In addition to all that, when a Windows application crashes, WER captures
several pieces of information to identify the crash location. For .NET applications,
this includes the name, version, and timestamp of the component that failed, and the
exception type that was thrown. Furthermore, it identifies not just the method, but
also the offset into that method’s IL from which the exception was thrown. These
pieces of information are sometimes referred to as the bucket values. If the applica‐
tion crashes twice with the same values, those two crashes go into the same bucket,
meaning that they are considered to be in some sense the same crash.

Crash bucket values are not exposed as public properties of exceptions, but you can
see them in the Windows event log for any exception that reached the CLR’s default
handler. In the Windows Event Viewer application, these log entries show up in the
Application section under Windows Logs. The Source and Event ID columns for
these entries will contain WER and 1001, respectively. WER reports various kinds of
crashes, so if you open a WER log entry, it will contain an Event Name value.
For .NET crashes, this will be CLR20r3. The assembly name and version are easy
enough to spot, as is the exception type. The method is more obscure: it’s on the line
labeled P7, but it’s just a number based on the method’s metadata token; to find out
what method that refers to, the ILDASM tool supplied with Visual Studio has a
command-line option to report the metadata tokens for all your methods.

Retrieving this information from the Windows Event Log is all very well for code
running on computers you control (or you might prefer to use more direct ways to
monitor such applications, using systems such as Microsoft’s Application Insights to
collect telemetry, in which case WER is not very interesting). Where WER becomes
more important is for applications that may run on other computers outside of your
control, e.g., applications with a UI that run entirely locally, or console applications.
Computers can be configured to upload crash reports to an error reporting service,
and usually, just the bucket values get sent, although the services can request addi‐
tional data if the end user consents. Bucket analysis can be useful when deciding how
to prioritize bug fixes: it makes sense to start with the largest bucket, because that’s
the crash your users are seeing most often. (Or, at least, it’s the one seen most often
by users who have not disabled crash reporting. I always enable this on my comput‐
ers, because I want the bugs I encounter in the programs I use to be fixed first.)
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The way to get access to accumulated crash bucket data depends on
the kind of application you’re writing. For a line-of-business appli‐
cation that runs only inside your enterprise, you will probably want
to run an error reporting server of your own, but if the application
runs outside of your administrative control, you can use Micro‐
soft’s own crash servers. There’s a certificate-based process for ver‐
ifying that you are entitled to the data, but once you’ve jumped
through the relevant hoops, Microsoft will show you all reported
crashes for your applications, sorted by bucket size.

Certain exception-handling tactics can defeat the crash bucket system. If you write
common error-handling code that gets involved with all exceptions, there’s a risk that
WER will think that your application only ever crashes inside that common handler,
which would mean that crashes of all kinds would go into the same bucket. This is
not inevitable, but to avoid it, you need to understand how your exception-handling
code affects WER crash bucket data.

If an exception rises to the top of the stack without being handled, WER will get an
accurate picture of exactly where the crash happened, but things may go wrong if you
catch an exception before eventually allowing it (or some other exception) to con‐
tinue up the stack. A bit surprisingly, .NET will successfully preserve the location for
WER even if you use the bad approach shown in Example 8-10. (It’s only from .NET
perspective’s inside that application that this loses the exception context—Stack

Trace will show the rethrow location. So WER does not necessarily report the same
crash location as .NET code will see in the exception object.) It’s a similar story when
you wrap an exception as the InnerException of a new one: .NET will use that inner
exception’s location for the crash bucket values.

This means that it’s relatively easy to preserve the WER bucket. The only ways to lose
the original context are either to handle the exception completely (i.e., not to crash)
or to write a catch block that handles the exception and then throws a new one
without passing the original one in as an InnerException.

Although Example 8-11 preserves the original context, this approach has a limitation:
you can rethrow the exception only from inside the block in which you caught it.
With asynchronous programming becoming more prevalent, it is increasingly com‐
mon for exceptions to occur on some random worker thread. We need a reliable way
to capture the full context of an exception, and to be able to rethrow it with that full
context some arbitrary amount of time later, possibly from a different thread.

The ExceptionDispatchInfo class solves these problems. If you call its static Capture
method from a catch block, passing in the current exception, it captures the full con‐
text, including the information required by WER. The Capture method returns an
instance of ExceptionDispatchInfo. When you’re ready to rethrow the exception,
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you can call this object’s Throw method, and the CLR will rethrow the exception with
the original context fully intact. Unlike the mechanism shown in Example 8-11, you
don’t need to be inside a catch block when you rethrow. You don’t even need to be
on the thread from which the exception was originally thrown.

If you use the async and await keywords described in Chapter 17,
they use ExceptionDispatchInfo so you can ensure that exception
context is preserved correctly.

Failing Fast
Some situations call for drastic action. If you detect that your application is in a hope‐
lessly corrupt state, throwing an exception may not be sufficient, because there’s
always the chance that something may handle it and then attempt to continue. This
risks corrupting persistent state—perhaps the invalid in-memory state could lead to
your program writing bad data into a database. It may be better to bail out immedi‐
ately before you do any lasting damage.

The Environment class provides a FailFast method. If you call this, the CLR will
then terminate your application. (If you’re running on Windows, it will also write a
message to the Windows event log and provide details to WER.) You can pass a
string to be included in the event log entry, and you can also pass an exception, in
which case on Windows the exception’s details will also be written to the log, includ‐
ing the WER bucket values for the point at which the exception was thrown.

Exception Types
When your code detects a problem and throws an exception, you need to choose
which type of exception to throw. You can define your own exception types, but
the .NET class library defines a large number of exception types, so in a lot of situa‐
tions, you can just pick an existing type. There are hundreds of exception types, so a
full list would be inappropriate here; if you want to see the complete set, the online
documentation for the Exception class lists the derived types. However, there are
certain ones that it’s important to know about.

The class library defines an ArgumentException class, which is the base of several
exceptions that indicate when a method has been called with bad arguments.
Example 8-9 used ArgumentNullException, and there’s also ArgumentOutOfRangeEx
ception. The base ArgumentException defines a ParamName property, which contains
the name of the parameter that was supplied with a bad argument. This is important
for multiargument methods, because the caller will need to know which one was
wrong. All these exception types have constructors that let you specify the parameter
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name, and you can see one of these in use in Example 8-9. The base ArgumentExcep
tion is a concrete class, so if the argument is wrong in a way that is not covered by
one of the derived types, you can just throw the base exception, providing a textual
description of the problem.

Besides the general-purpose types just described, some APIs define more specialized
derived argument exceptions. For example, the System.Globalization namespace
defines an exception type called CultureNotFoundException that derives from Argu
mentException. You can do something similar, and there are two reasons you might
want to. If there is additional information you can supply about why the argument is
invalid, you will need a custom exception type so you can attach that information to
the exception. (CultureNotFoundException provides three properties describing
aspects of the culture information for which it was searching.) Alternatively, it might
be that a particular form of argument error could be handled specially by a caller.
Often, an argument exception simply indicates a programming error, but in situa‐
tions where it might indicate an environment or configuration problem (e.g., not
having the right language packs installed), developers might want to handle that spe‐
cific issue differently. Using the base ArgumentException would be unhelpful in that
case, because it would be hard to distinguish between the particular failure they want
to handle and any other problem with the arguments.

Some methods may want to perform work that could produce multiple errors. Per‐
haps you’re running some sort of batch job, and if some individual tasks in the batch
fail, you’d like to abort those but carry on with the rest, reporting all the failures at
the end. For these scenarios, it’s worth knowing about AggregateException. This
extends the InnerException concept of the base Exception, adding an InnerExcep
tions property that returns a collection of exceptions.

If you nest work that can produce an AggregateException (e.g., if
you run a batch within a batch), you can end up with some of your
inner exceptions also being of type AggregateException. This
exception offers a Flatten method; this recursively walks through
any such nested exceptions and produces a single flat list with all
the nesting removed, returning an AggregateException with that
list as its InnerExceptions.

Another commonly used type is InvalidOperationException. You would throw this
if someone tries to do something with your object that it cannot support in its current
state. For example, suppose you have written a class that represents a request that can
be sent to a server. You might design this in such a way that each instance can be
used only once, so if the request has already been sent, trying to modify the request
further would be a mistake, and this would be an appropriate exception to throw.
Another important example is if your type implements IDisposable, and someone
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tries to use an instance after it has been disposed. That’s a sufficiently common case
that there’s a specialized type derived from InvalidOperationException called
ObjectDisposedException.

You should be aware of the distinction between NotImplementedException and the
similar-sounding but semantically different NotSupportedException. The latter
should be thrown when an interface demands it. For example, the IList<T> interface
defines methods for modifying collections, but does not require collections to be
modifiable—instead, it says that read-only collections should throw NotSupportedEx
ception from members that would modify the collection. An implementation of
IList<T> can throw this and still be considered to be complete, whereas NotImplemen
tedException means something is missing. You will most often see this in code gen‐
erated by Visual Studio. The IDE can create stub methods if you ask it to generate an
interface implementation or provide an event handler. It generates this code to save
you from having to type in the full method declaration, but it’s still your job to imple‐
ment the body of the method, so Visual Studio will often supply a method that
throws this exception so that you do not accidentally leave an empty method in place.

You would normally want to remove all code that throws NotImplementedException
before shipping, replacing it with appropriate implementations. However, there is a
situation in which you might want to throw it. Suppose you’ve written a library con‐
taining an abstract base class, and your customers write classes that derive from this.
When you release new versions of the library, you can add new methods to that base
class. Now imagine that you want to add a new library feature for which it would
seem to make sense to add a new abstract method to your base class. That would be a
breaking change—existing code that successfully derives from the old version of the
class would no longer work. You can avoid this problem by providing a virtual
method instead of an abstract method, but what if there’s no useful default imple‐
mentation that you can provide? In that case, you might write a base implementation
that throws a NotImplementedException. Code built against the old version of the
library will not try to use the new feature, so it would never attempt to invoke the
method. But if a customer tried to use the new library feature without overriding the
relevant method in their class, they would then get this exception. In other words,
this provides a way to enforce a requirement of the form: you must override this
method if and only if you want to use the feature it represents. (You could use the
same approach when adding new members to an interface if you use C# 8.0’s newly
added support for default interface implementations.)

There are, of course, other, more specialized exceptions in the framework, and you
should always try to find an exception that matches the problem you wish to report.
However, you will sometimes need to report an error for which the .NET class library
does not supply a suitable exception. In this case, you will need to write your own
exception class.
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4 You could also consider looking up a localized string with the facilities in the System.Resources namespace
instead of hardcoding it. The exceptions in the .NET class library all do this. It’s not mandatory, because not
all programs run in multiple regions, and even for those that do, exception messages will not necessarily be
shown to end users.

Custom Exceptions
The minimum requirement for a custom exception type is that it should derive from
Exception (either directly or indirectly). However, there are some design guidelines.
The first thing to consider is the immediate base class: if you look at the built-in
exception types, you’ll notice that many of them derive only indirectly from Excep
tion, through either ApplicationException or SystemException. You should avoid
both of these. They were originally introduced with the intention of distinguishing
between exceptions produced by applications and ones produced by .NET. However,
this did not prove to be a useful distinction. Some exceptions could be thrown by
both in different scenarios, and in any case, it was not normally useful to write a han‐
dler that caught all application exceptions but not all system ones, or vice versa. The
class library design guidelines now tell you to avoid these two base types.

Custom exception classes normally derive directly from Exception, unless they rep‐
resent a specialized form of some existing exception. For example, we already saw
that ObjectDisposedException is a special case of InvalidOperationException, and
the class library defines several more specialized derivatives of that same base class,
such as ProtocolViolationException for networking code. If the problem you wish
your code to report is clearly an example of some existing exception type, but it still
seems useful to define a more specialized type, then you should derive from that
existing type.

Although the Exception base class has a parameterless constructor, you should not
normally use it. Exceptions should provide a useful textual description of the error, so
your custom exception’s constructors should all call one of the Exception construc‐
tors that take a string. You can either hardcode the message string4 in your derived
class, or define a constructor that accepts a message, passing it on to the base class;
it’s common for exception types to provide both, although that might be a waste of
effort if your code uses only one of the constructors. It depends on whether your
exception might be thrown by other code, or just yours.

It’s also common to provide a constructor that accepts another exception, which will
become the InnerException property value. Again, if you’re writing an exception
entirely for your own code’s use, there’s not much point in adding this constructor
until you need it, but if your exception is part of a reusable library, this is a common
feature. Example 8-12 shows a hypothetical example that offers various constructors,
along with an enumeration type that is used by the property the exception adds.
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Example 8-12. A custom exception

public class DeviceNotReadyException : InvalidOperationException
{
    public DeviceNotReadyException(DeviceStatus status)
        : this("Device status must be Ready", status)
    {
    }

    public DeviceNotReadyException(string message, DeviceStatus status)
        : base(message)
    {
        Status = status;
    }

    public DeviceNotReadyException(string message, DeviceStatus status,
                                   Exception innerException)
        : base(message, innerException)
    {
        Status = status;
    }

    public DeviceStatus Status { get; }
}

public enum DeviceStatus
{
    Disconnected,
    Initializing,
    Failed,
    Ready
}

The justification for a custom exception here is that this particular error has some‐
thing more to tell us besides the fact that something was not in a suitable state. It pro‐
vides information about the object’s state at the moment at which the operation
failed.

The .NET Framework Design Guidelines used to recommend that exceptions be seri‐
alizable. Historically, this was to enable them to cross between appdomains. An app‐
domain is an isolated execution context; however, they are now deprecated because
they are not supported in .NET Core. That said, there are still some application types
in which serialization of exceptions is interesting, most notably microservice-based
architectures such as those running on Akka.NET (see https://github.com/akkadot
net/akka.net) or Microsoft Service Fabric, in which a single application runs across
multiple processes, often spread across many different machines. By making an
exception serializable, you make it possible for the exception to cross process bound‐
aries—the original exception object cannot be used directly across the boundary, but
serialization enables a copy of the exception to be built in the target process.
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So although serialization is no longer recommended for all exception types, it is use‐
ful for exceptions that may be used in these kinds of multiprocess environments.
Most exception types in .NET Core continue to support serialization for this reason.
If you don’t need to support this, your exceptions don’t have to be made serializable,
but since it’s fairly common to do so, I’ll describe the changes you would need to
make. First, you would need to add the [Serializable] attribute in front of the class
declaration. Then, you’d need to override a method defined by Exception that han‐
dles serialization. Finally, you must provide a special constructor to be used when
deserializing your type. Example 8-13 shows the members you would need to add to
make the custom exception in Example 8-12 support serialization. The GetObject
Data method simply stores the current value of the exception’s Status property in a
name/value container supplied during serialization. It retrieves this value in the con‐
structor that gets called during deserialization.

Example 8-13. Adding serialization support

public override void GetObjectData(SerializationInfo info,
                                   StreamingContext context)
{
    base.GetObjectData(info, context);
    info.AddValue("Status", Status);
}

protected DeviceNotReadyException(SerializationInfo info,
                               StreamingContext context)
    : base(info, context)
{
    Status = (DeviceStatus) info.GetValue("Status", typeof(DeviceStatus));
}

Unhandled Exceptions
Earlier, you saw the default behavior that a console application exhibits when your
application throws an exception that it does not handle. It displays the exception’s
type, message, and stack trace and then terminates the process. This happens whether
the exception went unhandled on the main thread or a thread you created explicitly,
or even a thread pool thread that the CLR created for you.

Be aware that there have been a couple of changes to unhandled exception behavior
over the years which still have some relevance because you can optionally re-enable
the old behavior. Before .NET 2.0, threads created for you by the CLR would swallow
exceptions without reporting them or crashing. You may occasionally encounter old
applications that still rely on this: if the application has a .NET Framework-style con‐
figuration file (the XML kind, which I showed in Chapter 7 to configure the GC) that
contains a legacyUnhandledExceptionPolicy element with an enabled="1"
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5 Although .NET Core does not support the creation of new appdomains, it does still provide the AppDomain
class, because it exposes certain important features, such as this event. It will provide a single instance via
AppDomain.CurrentDomain.

attribute, the old .NET v1 behavior returns, meaning that unhandled exceptions can
vanish silently. .NET 4.5 moved in the opposite direction for one feature. If you use
the Task class (described in Chapter 16) to run concurrent work instead of using
threads or the thread pool directly, any unhandled exceptions inside tasks would
once have terminated the process, but as of .NET 4.5, they no longer do by default.
You can revert to the old behavior through the configuration file. (See Chapter 16 for
details.)

The CLR provides a way to discover when unhandled exceptions reach the top of the
stack. The AppDomain class provides an UnhandledException event, which the CLR
raises when this happens on any thread.5 I’ll be describing events in Chapter 9, but
jumping ahead a little, Example 8-14 shows how to handle this event. It also throws
an unhandled exception to try the handler out.

Example 8-14. Unhandled exception notifications

static void Main(string[] args)
{
    AppDomain.CurrentDomain.UnhandledException += OnUnhandledException;

    // Crash deliberately to illustrate the UnhandledException event
    throw new InvalidOperationException();
}

private static void OnUnhandledException(object sender,
    UnhandledExceptionEventArgs e)
{
    Console.WriteLine($"An exception went unhandled: {e.ExceptionObject}");
}

When the handler is notified, it’s too late to stop the exception—the CLR will termi‐
nate the process shortly after calling your handler. The main reason this event exists
is to provide a place to put logging code so that you can record some information
about the failure for diagnostic purposes. In principle, you could also attempt to store
any unsaved data to facilitate recovery if the program restarts, but you should be
careful: if your unhandled exception handler gets called, then by definition your pro‐
gram is in a suspect state, so whatever data you save may be invalid.

Some application frameworks provide their own ways to deal with unhandled excep‐
tions. For example, UI frameworks (e.g., Windows Forms or WPF) for desktop appli‐
cations for Windows do this, partly because the default behavior of writing details to
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the console is not very useful for applications that don’t show a console window.
These applications need to run a message loop to respond to user input and system
messages. It inspects each message and may decide to call one or more methods in
your code, in which case it wraps each call in a try block so that it can catch any
exceptions your code may throw. The frameworks may show error information in a
window instead. And web frameworks, such as ASP.NET Core, need a different
mechanism: at a minimum, they should generate a response that indicates a server-
side error in the way recommended by the HTTP specification.

This means that the UnhandledException event that Example 8-14 uses may not be
raised when an unhandled exception escapes from your code, because it may be
caught by a framework. If you are using an application framework, you should check
to see if it provides its own mechanism for dealing with unhandled exceptions. For
example, ASP.NET Core applications can supply a callback to a method called UseEx
ceptionHandler. WPF has its own Application class, and its DispatcherUnhandle
dException event is the one to use. Likewise, Windows Forms provides an
Application class with a ThreadException member.

Even when you’re using these frameworks, their unhandled exception mechanisms
deal only with exceptions that occur on threads the frameworks control. If you create
a new thread and throw an unhandled exception on that, it would show up in the
AppDomain class’s UnhandledException event, because frameworks don’t control the
whole CLR.

Summary
In .NET, errors are usually reported with exceptions, apart from in certain scenarios
where failure is expected to be common and the cost of exceptions is likely to be high
compared to the cost of the work at hand. Exceptions allow error-handling code to be
separate from code that does work. They also make it hard to ignore errors—unex‐
pected errors will propagate up the stack and eventually cause the program to termi‐
nate and produce an error report. catch blocks allow us to handle those exceptions
that we can anticipate. (You can also use them to catch all exceptions indiscrimin‐
ately, but that’s usually a bad idea—if you don’t know why a particular exception
occurred, you cannot know for certain how to recover from it safely.) finally blocks
provide a way to perform cleanup safely regardless of whether code executes success‐
fully or encounters exceptions. The .NET class library defines numerous useful
exception types, but if necessary, we can write our own.

In the chapters so far, we’ve looked at the basic elements of code, classes and other
custom types, collections, and error handling. There’s one last feature of the C# type
system to look at: a special kind of object called a delegate.
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CHAPTER 9

Delegates, Lambdas, and Events

The most common way to use an API is to invoke the methods and properties its
classes provide, but sometimes, things need to work in reverse—the API may need to
call your code. In Chapter 5, I showed the search features offered by arrays and lists.
To use these, I wrote a method that returned true when its argument met my criteria,
and the relevant APIs called my method for each item they inspected. Not all call‐
backs are immediate. Asynchronous APIs can call a method in our code when long-
running work completes. In a client-side application, I want my code to run when the
user interacts with certain visual elements in particular ways, such as clicking a
button.

Interfaces and virtual methods can enable callbacks. In Chapter 4, I showed the ICom
parer<T> interface, which defines a single CompareTo method. This is called by meth‐
ods like Array.Sort when we want a customized sort ordering. You could imagine a
UI framework that defined an IClickHandler interface with a Click method, and
perhaps also DoubleClick. The framework could require us to implement this inter‐
face if we want to be notified of button clicks.

In fact, none of .NET’s UI frameworks use the interface-based approach, because it
gets cumbersome when you need multiple kinds of callback. Single- and double-
clicks are the tip of the iceberg for user interactions—in WPF applications, each UI
element can provide over 100 kinds of notifications. Most of the time, you need to
handle only one or two events from any particular element, so an interface with 100
methods to implement would be annoying.

Splitting notifications across multiple interfaces could mitigate this inconvenience.
Also, C# 8.0’s support for default interface implementations could help, because it
would make it possible to provide default, empty implementations for all callbacks,
meaning we’d need to override only the ones we were interested in. (If you need to
target runtimes older than .NET Core 3.0, the first to support this feature, you could
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supply a base class with virtual methods instead.) But even with these improvements,
there’s a serious drawback with this object-oriented approach. Imagine a UI with four
buttons. In a hypothetical UI framework that used the approach I’ve just described, if
you wanted different Click handler methods for each button, you’d need four dis‐
tinct implementations of the IClickHandler interface. A single class can implement
any particular interface only once, so you’d need to write four classes. That seems
very cumbersome when all we really want to do is tell a button to call a particular
method when clicked.

C# provides a much simpler solution in the form of a delegate, which is a reference to
a method. If you want a library to call your code back for any reason, you will nor‐
mally just pass a delegate referring to the method you’d like it to call. I showed an
example of that in Chapter 5, which I’ve reproduced in Example 9-1. This finds the
index of the first nonzero element in an int[] array.

Example 9-1. Searching an array using a delegate

public static int GetIndexOfFirstNonEmptyBin(int[] bins) =>
    Array.FindIndex(bins, IsGreaterThanZero);

private static bool IsGreaterThanZero(int value) => value > 0;

At first glance, this seems very simple: the second parameter to Array.FindIndex
requires a method that it can call to ask whether a particular element is a match, so I
passed my IsGreaterThanZero method as an argument. But what does it really mean
to pass a method, and how does this fit in with .NET’s type system, the CTS?

Delegate Types
Example 9-2 shows the declaration of the FindIndex method used in Example 9-1.
The first parameter is the array to be searched, but it’s the second one we’re interes‐
ted in—that’s where I passed a method.

Example 9-2. Method with a delegate parameter

public static int FindIndex<T>(
      T[] array,
      Predicate<T> match)

The method’s second argument’s type is Predicate<T>, where T is the array element
type, and since Example 9-1 uses an int[], that will be a Predicate<int>. (In case
you don’t have a background in either formal logic or computer science, this type
uses the word predicate in the sense of a function that determines whether something
is true or false. For example, you could have a predicate that tells you whether a
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number is even. Predicates are often used in this kind of filtering operation.)
Example 9-3 shows how this type is defined. This is the whole of the definition, not
an excerpt; if you wanted to write a type that was equivalent to Predicate<T>, that’s
all you’d need to write.

Example 9-3. The Predicate<T> delegate type

public delegate bool Predicate<in T>(T obj);

Breaking Example 9-3 down, we begin as usual with type definitions, with the acces‐
sibility, and we can use all the same keywords we could for other types, such as pub
lic or internal. (Like any type, delegate types can optionally be nested inside some
other type, so you can also use private or protected.) Next is the delegate key‐
word, which just tells the C# compiler that we’re defining a delegate type. The rest of
the definition looks, not coincidentally, just like a method declaration. We have a
return type of bool. You put the delegate type name where you’d normally see the
method name. The angle brackets indicate that this is a generic type with a single type
argument T, and the in keyword indicates that T is contravariant. (Chapter 6
described contravariance.) Finally, the method signature has a single parameter of
that type.

Delegates are special types in .NET, and they work quite differently than classes or
structs. The compiler generates a superficially normal-looking class definition with
various members that we’ll look at in more detail later, but the members are all empty
—C# produces no IL for any of them. The CLR provides the implementation at
runtime.

Instances of delegate types are usually just called delegates, and they refer to methods.
A method is compatible with (i.e., can be referred to by an instance of) a particular
delegate type if its signature matches. The IsGreaterThanZero method in
Example 9-1 takes an int and returns a bool, so it is compatible with Predi
cate<int>. The match does not have to be precise. If implicit reference conversions
are available for parameter types, you can use a more general method. (This has
nothing to do with T being contravariant. Variance makes certain implicit reference
conversions available between delegate types instantiated from the same unbound
generic delegate with different type arguments. Here we’re discussing the range of
method signatures acceptable for a single delegate type.) For example, a method with
a return type of bool, and a single parameter of type object, would be compatible
with Predicate<object>, but because such a method can accept string arguments,
it would also be compatible with Predicate<string>. (It would not be compatible
with Predicate<int>, because there’s no implicit reference conversion from int to
object. There’s an implicit conversion, but it’s a boxing conversion, not a reference
conversion.)
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Creating a Delegate
You can use the new keyword to create a delegate. Where you’d normally pass con‐
structor arguments, you can supply the name of a compatible method. Example 9-4
constructs a Predicate<int>, so it needs a method with a bool return type that takes
an int, and as we’ve just seen, the IsGreaterThanZero method in Example 9-1 fits
the bill. (You could write this code only where IsGreaterThanZero is in scope—that
is, inside the same class.)

Example 9-4. Constructing a delegate

var p = new Predicate<int>(IsGreaterThanZero);

In practice, we rarely use new for delegates. It’s necessary only in cases where the
compiler cannot infer the delegate type. Expressions that refer to methods are
unusual in that they have no innate type—the expression IsGreaterThanZero is com‐
patible with Predicate<int>, but there are other compatible delegate types. You
could define your own nongeneric delegate type that takes an int and returns a bool.
Later in this chapter, I’ll show the Func family of delegate types; you could store a
reference to IsGreaterThanZero in a Func<int, bool> delegate. So IsGreaterThan
Zero does not have a type of its own, which is why the compiler needs to know which
particular delegate type we want. Example 9-4 assigns the delegate into a variable
declared with var, which tells the compiler nothing about what type to use, and that
is why I’ve had to tell it explicitly with the constructor syntax.

In cases where the compiler knows what type is required, it can implicitly convert the
method name to the target delegate type. Example 9-5 declares the variable with an
explicit type, so the compiler knows a Predicate<int> is required. This compiles to
the same code as Example 9-4. Example 9-1 relies on the same mechanism—the com‐
piler knows that the second argument to FindIndex is Predicate<T>, and because we
supply a first argument of type int[], it deduces that T is int, so it knows the second
argument’s full type is Predicate<int>. Having worked that out, it uses the same
built-in implicit conversion rules to construct the delegate as Example 9-5.

Example 9-5. Implicit delegate construction

Predicate<int> p = IsGreaterThanZero;

When code refers to a method by name like this, the name is technically called a
method group, because multiple overloads may exist for a single name. The compiler
narrows this down by looking for the best possible match, in a similar way to how it
chooses an overload when you invoke a method. As with method invocation, it is
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possible that there will be either no matches or multiple equally good matches, and in
these cases the compiler will produce an error.

Method groups can take several forms. In the examples shown so far, I have used an
unqualified method name, which works only when the method in question is in
scope. If you want to refer to a static method defined in some other class, you would
need to qualify it with the class name, as Example 9-6 shows.

Example 9-6. Delegates to methods in another class

internal class Program
{
    static void Main(string[] args)
    {
        Predicate<int> p1 = Tests.IsGreaterThanZero;
        Predicate<int> p2 = Tests.IsLessThanZero;
    }
}

internal class Tests
{
    public static bool IsGreaterThanZero(int value) => value > 0;

    public static bool IsLessThanZero(int value) => value < 0;
}

Delegates don’t have to refer to static methods. They can refer to an instance method.
There are a couple of ways you can make that happen. One is simply to refer to an
instance method by name from a context in which that method is in scope. The
GetIsGreaterThanPredicate method in Example 9-7 returns a delegate that refers to
IsGreaterThan. Both are instance methods, so they can be used only with an object
reference, but GetIsGreaterThanPredicate has an implicit this reference, and the
compiler automatically provides that to the delegate that it implicitly creates.

Example 9-7. Implicit instance delegate

public class ThresholdComparer
{
    public int Threshold { get; set; }

    public bool IsGreaterThan(int value) => value > Threshold;

    public Predicate<int> GetIsGreaterThanPredicate() => IsGreaterThan;
}
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Alternatively, you can be explicit about which instance you want. Example 9-8 creates
three instances of the ThresholdComparer class from Example 9-7, and then creates
three delegates referring to the IsGreaterThan method, one for each instance.

Example 9-8. Explicit instance delegate

var zeroThreshold = new ThresholdComparer { Threshold = 0 };
var tenThreshold = new ThresholdComparer { Threshold = 10 };
var hundredThreshold = new ThresholdComparer { Threshold = 100 };

Predicate<int> greaterThanZero = zeroThreshold.IsGreaterThan;
Predicate<int> greaterThanTen = tenThreshold.IsGreaterThan;
Predicate<int> greaterThanOneHundred = hundredThreshold.IsGreaterThan;

You don’t have to limit yourself to simple expressions of the form variable
Name.MethodName. You can take any expression that evaluates to an object reference,
and then just append .MethodName; if the object has one or more methods called Meth
odName, that will be a valid method group.

I’ve shown only single-argument delegates so far, but you can
define delegate types with any number of arguments. For example,
the class library defines Comparison<T>, which compares two
items, and therefore takes two arguments (both of type T).

C# will not let you create a delegate that refers to an instance method without speci‐
fying either implicitly or explicitly which instance you mean, and it will always initi‐
alize the delegate with that instance.

When you pass a delegate to some other code, that code does not
need to know whether the delegate’s target is a static or an instance
method. And for instance methods, the code that uses the delegate
does not supply the instance. Delegates that refer to instance meth‐
ods always know which instance they refer to, as well as which
method.

There’s another way to create a delegate that can be useful if you do not necessarily
know which method or object you will use until runtime: you can use the reflection
API (which I will explain in detail in Chapter 13). First, you obtain a MethodInfo, an
object representing a particular method. Then you call its CreateDelegate method,
passing the delegate type and, where required, the target object. (If you’re creating a
delegate referring to a static method, there is no target object, so there’s an overload
that takes only the delegate type.) This will create a delegate referring to whichever
method the MethodInfo instance identifies. Example 9-9 uses this technique. It
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1 ILDASM ships with Visual Studio. At the time of writing Microsoft doesn’t provide a cross-platform version,
but open source alternatives are available.

obtains a Type object (also part of the reflection API; it’s a way to refer to a particular
type) representing the ThresholdComparer class. Next, it asks it for a MethodInfo rep‐
resenting the IsGreaterThan method. On this, it calls the overload of CreateDele
gate that takes the delegate type and the target instance.

Example 9-9. CreateDelegate

MethodInfo m = typeof(ThresholdComparer).GetMethod("IsGreaterThan");
var greaterThanZero = (Predicate<int>) m.CreateDelegate(
    typeof(Predicate<int>), zeroThreshold);

There is another way to perform the same job: the Delegate type has a static Create
Delegate method, which avoids the need to obtain the MethodInfo. You pass it two
type objects—the delegate type and the type defining the target method—and also the
method name. If you already have a MethodInfo to hand, you may as well use that,
but if all you have is the name, this alternative is more convenient.

So a delegate identifies a specific function, and if that’s an instance function, the dele‐
gate also contains an object reference. But some delegates do more.

Multicast Delegates
If you look at any delegate type with a reverse-engineering tool such as ILDASM,1

you’ll see that whether it’s a type supplied by the .NET class library or one you’ve
defined yourself, it derives from a base type called MulticastDelegate. As the name
suggests, this means delegates can refer to more than one method. This is mostly of
interest in notification scenarios where you may need to invoke multiple methods
when some event occurs. However, all delegates support this whether you need it or
not.

Even delegates with non-void return types derive from MulticastDelegate. That
doesn’t usually make much sense. For example, code that requires a Predicate<T>
will normally inspect the return value. Array.FindIndex uses it to find out whether
an element matches our search criteria. If a single delegate refers to multiple meth‐
ods, what’s FindIndex supposed to do with multiple return values? As it happens, it
will execute all the methods, but will ignore the return values of all except the final
method that runs. (As you’ll see in the next section, that’s the default behavior you
get if you don’t provide special handling for multicast delegates.)

The multicast feature is available through the Delegate class’s static Combine method.
This takes any two delegates and returns a single delegate. When the resulting
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pass[<span class="keep-together">delegate</span>] is invoked, it is as though you
invoked the two original delegates one after the other. This works even when the del‐
egates you pass to Combine already refer to multiple methods—you can chain
together ever larger multicast delegates. If the same method is referred to in both
arguments, the resulting combined delegate will invoke it twice.

Delegate combination always produces a new delegate. The Com
bine method does not modify either of the delegates you pass it.

In fact, we rarely call Delegate.Combine explicitly, because C# has built-in support
for combining delegates. You can use the + or += operators. Example 9-10 shows
both, combining the three delegates from Example 9-8 into a single multicast dele‐
gate. The two resulting delegates are equivalent—this just shows two ways of writing
the same thing. Both cases compile into a couple of calls to Delegate.Combine.

Example 9-10. Combining delegates

Predicate<int> megaPredicate1 =
    greaterThanZero + greaterThanTen + greaterThanOneHundred;

Predicate<int> megaPredicate2 = greaterThanZero;
megaPredicate2 += greaterThanTen;
megaPredicate2 += greaterThanOneHundred;

You can also use the - or -= operators, which produce a new delegate that is a copy of
the first operand, but with its last reference to the method referred to by the second
operand removed. As you might guess, this turns into a call to Delegate.Remove.
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Delegate removal behaves in a potentially surprising way if the del‐
egate you remove refers to multiple methods. Subtraction of a
multicast delegate succeeds only if the delegate from which you are
subtracting contains all of the methods in the delegate being sub‐
tracted sequentially and in the same order. (The operation is effec‐
tively looking for one exact match for its input, rather than
removing each of the items contained by its input.) Given the dele‐
gates in Example 9-10, subtracting (greaterThanTen + greater
ThanOneHundred) from megaPredicate1 would work, but
subtracting (greaterThanZero + greaterThanOneHundred) would
not. Although megaPredicate1 contains references to the same two
methods and in the same order, the sequence is not the same,
because megaPredicate1 has an additional delegate in the middle.
So it can sometimes be simpler to avoid removing multicast dele‐
gates—removing handlers one at a time avoids these problems.

Invoking a Delegate
So far, I’ve shown how to create a delegate, but what if you’re writing your own API
that needs to call back into a method supplied by your caller? First, you would need
to pick a delegate type. You could use one supplied by the class library or, if neces‐
sary, you can define your own. You can use this delegate type for a method parameter
or a property. Example 9-11 shows what to do when you want to call the method (or
methods) the delegate refers to.

Example 9-11. Invoking a delegate

public static void CallMeRightBack(Predicate<int> userCallback)
{
    bool result = userCallback(42);
    Console.WriteLine(result);
}

As this not terribly realistic example shows, you can use an argument of delegate type
as though it were a function. This also works for local variables, fields, and properties.
In fact, any expression that produces a delegate can be followed by an argument list
in parentheses. The compiler will generate code that invokes the delegate. If the dele‐
gate has a non-void return type, the invocation expression’s value will be whatever
the underlying method returns (or, in the case of a delegate referring to multiple
methods, whatever the final method returns).

Although delegates are special types with runtime-generated code, there is ultimately
nothing magical about invoking them. The call happens on the same thread, and
exceptions propagate through methods that were invoked via a delegate in exactly the
same way as they would if the method were invoked directly. Invoking a delegate
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with a single target method works as though your code had called the target method
in the conventional way. Invoking a multicast delegate is just like calling each of its
target methods in turn.

If you want to get all the return values from a multicast delegate, you can take control
of the invocation process. Example 9-12 retrieves an invocation list for a delegate,
which is an array containing a single-method delegate for each of the methods to
which the original multicast delegate refers. If the original delegate contained only a
single method, this list will contain just that one delegate, but if the multicast feature
is being exploited, this provides a way to invoke each in turn. This enables the exam‐
ple to look at what each individual predicate says.

Example 9-12 relies on a trick with foreach. The GetInvocation
List method returns an array of type Delegate[]. The foreach
loop nonetheless specifies an iteration variable type of Predi
cate<int>. This causes the compiler to generate a loop that casts
each item to that type as it retrieves it from the collection. You
should only do this if you’re sure the items are of that type, because
it will throw an exception at runtime if you’re wrong.

Example 9-12. Invoking each delegate individually

public static void TestForMajority(Predicate<int> userCallbacks)
{
    int trueCount = 0;
    int falseCount = 0;
    foreach (Predicate<int> p in userCallbacks.GetInvocationList())
    {
        bool result = p(42);
        if (result)
        {
            trueCount += 1;
        }
        else
        {
            falseCount += 1;
        }
    }
    if (trueCount > falseCount)
    {
        Console.WriteLine("The majority returned true");
    }
    else if (falseCount > trueCount)
    {
        Console.WriteLine("The majority returned false");
    }
    else
    {
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        Console.WriteLine("It's a tie");
    }
}

There is one more way to invoke a delegate that is occasionally useful. The base Dele
gate class provides a DynamicInvoke method. You can call this on a delegate of any
type without needing to know at compile time exactly what arguments are required.
It takes a params array of type object[], so you can pass any number of arguments.
It will verify the number and type of arguments at runtime. This can enable certain
late binding scenarios, although the intrinsic dynamic features (discussed in Chap‐
ter 2) added in C# 4.0 are more comprehensive. However, the dynamic keyword is
slightly more heavyweight due to its extra flexiblity, so if DynamicInvoke does pre‐
cisely what you need, it is the better choice.

Common Delegate Types
The .NET class library provides several useful delegate types, and you will often be
able to use these instead of needing to define your own. For example, it defines a set
of generic delegates named Action with varying numbers of type parameters. These
all follow a common pattern: for each type parameter, there’s a single method param‐
eter of that type. Example 9-13 shows the first four, including the zero-argument
form.

Example 9-13. The first few Action delegates

public delegate void Action();
public delegate void Action<in T1>(T1 arg1);
public delegate void Action<in T1, in T2 >(T1 arg1, T2 arg2);
public delegate void Action<in T1, in T2, in T3>(T1 arg1, T2 arg2, T3 arg3);

Although this is clearly an open-ended concept—you could imagine delegates of this
form with any number of arguments—the CTS does not provide a way to define this
sort of type as a pattern, so the class library has to define each form as a separate type.
Consequently, there is no 200-argument form of Action. The upper limit is 16 argu‐
ments.

The obvious limitation with Action is that these types have a void return type, so
they cannot refer to methods that return values. But there’s a similar family of dele‐
gate types, Func, that allows any return type. Example 9-14 shows the first few dele‐
gates in this family, and as you can see, they’re pretty similar to Action. They just get
an additional final type parameter, TResult, which specifies the return type. As with
Action<T>, you can go up to 16 arguments.
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Example 9-14. The first few Func delegates

public delegate TResult Func<out TResult>();
public delegate TResult Func<in T1, out TResult>(T1 arg1);
public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);
public delegate TResult Func<in T1, in T2, in T3, out TResult>(
    T1 arg1, T2 arg2, T3 arg3);

These two families of delegates would appear to have most requirements covered.
Unless you’re writing monster methods with more than 16 arguments, when would
you ever need anything else? Why does the class library define a separate Predi
cate<T> when it could just use Func<T, bool> instead? In some cases, the answer is
history: many delegate types have been around since before these general-purposes
types were added. But that’s not the only reason—new delegate types continue to be
added even now. The main reason is that sometimes it’s useful to define a specialized
delegate type to indicate particular semantics. Also, if you need a delegate that can
work with ref or out arguments, you’ll have to write a matching delegate type.

If you have a Func<T, bool>, all you know is that you’ve got a method that takes a T
and returns a bool. But with a Predicate<T>, there’s an implied meaning: it makes a
decision about that T instance, and returns true or false accordingly; not all meth‐
ods that take a single argument and return a bool necessarily fit that pattern. By pro‐
viding a Predicate<T>, you’re not just saying that you have a method with a
particular signature, you’re saying you have a method that serves a particular pur‐
pose. For example, HashSet<T> (described in Chapter 5) has an Add method that
takes a single argument and returns a bool, so it matches the signature of Predi
cate<T> but not the semantics. Add’s main job is to perform an action with side
effects, returning some information about what it did, whereas predicates just tell you
something about a value or object. (As it happens, Predicate<T> was introduced
before Func<T, bool>, so history is part of the reason some APIs use it. However,
semantics still matter—there are some newer APIs for which Func<T, bool> was an
option that nonetheless opted for Predicate<T>.)

Since C# 7 introduced ref struct types, there has been another reason to define a
custom delegate type: you cannot use a ref struct as a generic type argument.
(Chapter 18 discusses these types.) So if you try to instantiate the generic Action<T>
type with Span<int>, which is a ref struct type, by writing Action<Span<int>>,
you will get a compiler error. The reason for this is that ref struct types can only be
used in certain scenarios (they must always live on the stack), and there’s no way to
determine whether any particular generic type or method uses its type arguments
only in the ways that are allowed. (You could imagine a new kind of type argument
constraint that expressed this, but at the time of writing this, no such constraint
exists.) So if you want a delegate type that can refer to a method that takes a ref
struct argument, it needs to be a dedicated, nongeneric delegate.
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The .NET class library defines many delegate types, most of them even more special‐
ized than Predicate<T>. For example, the System.IO namespace and its descendants
define several that relate to specific events, such as SerialPinChangedEventHandler,
which is used only when you’re working with old-fashioned serial ports such as the
once-ubiquitous RS232 interface.

Type Compatibility
Delegate types do not derive from one another. Any delegate type you define in C#
will derive directly from MulticastDelegate, as do all of the delegate types in the
class library. However, the type system supports certain implicit reference conver‐
sions for generic delegate types through covariance and contravariance. The rules are
very similar to those for interfaces. As the in keyword in Example 9-3 showed, the
type argument T in Predicate<T> is contravariant, which means that if an implicit
reference conversion exists between two types, A and B, an implicit reference conver‐
sion also exists between the types Predicate<B> and Predicate<A>. Example 9-15
shows an implicit conversion that this enables.

Example 9-15. Delegate covariance

public static bool IsLongString(object o)
{
    return o is string s && s.Length > 20;
}

static void Main(string[] args)
{
    Predicate<object> po = IsLongString;
    Predicate<string> ps = po;
    Console.WriteLine(ps("Too short"));
}

The Main method first creates a Predicate<object> referring to the IsLongString
method. Any target method for this predicate type is capable of inspecting any
object of any kind; thus, it’s clearly able to meet the needs of code that requires a
predicate capable of inspecting strings, so it makes sense that the implicit conversion
to Predicate<string> should succeed—which it does, thanks to contravariance.
Covariance also works in the same way as it does with interfaces, so it would typically
be associated with a delegate’s return type. (We denote covariant type parameters
with the out keyword.) All of the built-in Func delegate types have a covariant type
argument representing the function’s return type called TResult. The type parame‐
ters for the function’s parameters are all contravariant, as are all of the type argu‐
ments for the Action delegate types.
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2 Alternatively, you may just be one of nature’s dynamic language enthusiasts, with an allergy to expressing
semantics through static types. If that’s the case, C# may not be the language for you.

The variance-based delegate conversions are implicit reference
conversions. This means that when you convert the reference, the
result still refers to the same delegate instance. (All implicit refer‐
ence conversions have this characteristic, but not all implicit con‐
versions work this way. Implicit numeric conversions create a new
instance of the target type; implicit boxing conversions create a
new box on the heap.) So in Example 9-15, po and ps refer to the
same delegate on the heap. This is subtly different from assigning
IsLongString into both variables—that would create two delegates
of different types.

You might also expect delegates that look the same to be compatible. For example, a
Predicate<int> can refer to any method that a Func<int, bool> can use, and vice
versa, so you might expect an implicit conversion to exist between these two types.
You might be further encouraged by the “Delegate compatibility” section in the C#
specification, which says that delegates with identical parameter lists and return types
are compatible. (In fact, it goes further, saying that certain differences are allowed.
For example, I mentioned earlier that argument types may be different as long as cer‐
tain implicit reference conversions are available.) However, if you try the code in
Example 9-16, it won’t work.

Example 9-16. Illegal delegate conversion

Predicate<string> pred = IsLongString;
Func<string, bool> f = pred;  // Will fail with compiler error

An explicit cast doesn’t work either—adding one avoids the compiler error, but you’ll
just get a runtime error instead. The CTS considers these to be incompatible types, so
a variable declared with one delegate type cannot hold a reference to a different dele‐
gate type even if their method signatures are compatible (except for when the two
delegate types in question are based on the same generic delegate type, and are com‐
patible thanks to covariance or contravariance). This is not the scenario for which
C#’s delegate compatibility rules are designed—they are mainly used to determine
whether a particular method can be the target for a particular delegate type.

The lack of type compatibility between “compatible” delegate types may seem odd,
but structurally identical delegate types don’t necessarily have the same semantics, as
we’ve already seen with Predicate<T> and Func<T,bool>. If you find yourself need‐
ing to perform this sort of conversion, it may be a sign that something is not quite
right in your code’s design.2
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That said, it is possible to create a new delegate that refers to the same method as the
original if the new type is compatible with the old type. It’s always best to stop and
ask why you find yourself needing to do that, but it’s occasionally necessary, and at
first glance, it seems simple. Example 9-17 shows one way to do it. However, as the
remainder of this section shows, it’s a bit more complex than it looks, and this is not
actually the most efficient solution (which is another reason you might want to see if
you can modify the design to avoid needing to do this in the first place).

Example 9-17. A delegate referring to another delegate

Predicate<string> pred = IsLongString;
var pred2 = new Func<string, bool>(pred); // Less efficient than
                                          // a direct reference

The problem with Example 9-17 is that it adds an unnecessary level of indirection.
The second delegate does not refer to the same method as the first one, it actually
refers to the first delegate—so instead of a delegate that’s a reference to IsLong
String, the pred2 variable ends up referring to a delegate that is a reference to a dele‐
gate that is a reference to IsLongString. This is because the compiler treats
Example 9-17 as though you had written the code in Example 9-18. (All delegate
types have an Invoke method. It is implemented by the CLR, and it does the work
necessary to invoke all of the methods to which the delegate refers.)

Example 9-18. A delegate explicitly referring to another delegate

Predicate<string> pred = IsLongString;
var pred2 = new Func<string, bool>(pred.Invoke);

In either Example 9-17 or 9-18, when you invoke the second delegate through the
pred2 variable, it will in turn invoke the delegate referred to by pred, which will end
up invoking the IsLongString method. The right method gets called, just not as
directly as we might like. If you know that the delegate refers to a single method (i.e.,
you’re not using the multicast capability), Example 9-19 produces a more direct
result.

Example 9-19. New delegate for the current target

Predicate<string> pred = IsLongString;
var pred2 = (Func<string, bool>) pred.Method.CreateDelegate(
    typeof(Func<string, bool>), pred.Target);

This retrieves the MethodInfo representing the target method from the pred delegate
and passes it the required delegate type and the pred delegate’s target to create a new
Func<string, bool> delegate. The result is a new delegate that refers directly to the
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same IsLongString method as pred. (The Target will be null because this is a static
method, but I’m still passing it to CreateDelegate, because I want to show code that
works for both static and instance methods.) If you need to deal with multicast dele‐
gates, Example 9-19 won’t work, because it presumes that there’s only one target
method. You would need to call CreateDelegate in a similar way for each item in the
invocation list. This isn’t a scenario that comes up very often, but for completeness,
Example 9-20 shows how it’s done.

Example 9-20. Converting a multicast delegate

public static TResult DuplicateDelegateAs<TResult>(MulticastDelegate source)
    where TResult : Delegate
{
    Delegate result = null;
    foreach (Delegate sourceItem in source.GetInvocationList())
    {
        var copy = sourceItem.Method.CreateDelegate(
            typeof(TResult), sourceItem.Target);
        result = Delegate.Combine(result, copy);
    }

    return (TResult) (object) result;
}

In Example 9-20, the argument for the TResult type parameter has
to be a delegate, so I have specified a corresponding constraint for
this type parameter. Note that C# did not allow a constraint of this
kind to be expressed until C# 7.3, so if you encounter code that
seems like it should specify a constraint of this kind, but which
does not, that may be why.

These last few examples have depended upon various members of delegate types: Tar
get, Method, and Invoke. The first two come from the Delegate class, which is the
base class of MulticastDelegate, from which all delegate types derive. The Target
property’s type is object. It will be null if the delegate refers to a static method;
otherwise, it will refer to the instance on which the method will be invoked. The
Method property returns a MethodInfo identifying the target method. The third mem‐
ber, Invoke, is generated by the compiler. This is one of a few standard members that
the C# compiler produces when you define a delegate type.

Behind the Syntax
Although it takes just a single line of code to define a delegate type (as Example 9-3
showed), the compiler turns this into a type that defines three methods and a con‐
structor. Of course, the type also inherits members from its base classes. All delegates
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3 IntPtr is a value type typically used for opaque handle values. You also sometimes see it in interop scenarios
—on the rare occasions that you see a raw handle from an OS API in .NET, it may be represented as an
IntPtr, although in many cases is has been superseded by SafeHandle.

derive from MulticastDelegate, although all of the interesting instance members
come from its base class, Delegate. (Delegate inherits from object, so delegates all
have the ubiquitous object methods too.) Even GetInvocationList, clearly a
multicast-oriented feature, is defined by the Delegate base class.

The split between Delegate and MulticastDelegate is the mean‐
ingless and arbitrary result of a historical accident. The original
plan was to support both multicast and unicast delegates, but
toward the end of the prerelease period for .NET 1.0 this distinc‐
tion was dropped, and now all delegate types support multicast
instances. This happened sufficiently late in the day that Microsoft
felt it was too risky to merge the two base types into one, so the
split remained even though it serves no purpose.

I’ve already shown all of the public instance members that Delegate defines. Dynami
cInvoke, GetInvocationList, Target, and Method.) Example 9-21 shows the signa‐
tures of the compiler-generated constructor and methods for a delegate type. The
details vary from one type to the next; these are the generated members in the Predi
cate<T> type.

Example 9-21. The members of a delegate type

public Predicate(object target, IntPtr method);

public bool Invoke(T obj);

public IAsyncResult BeginInvoke(T obj, AsyncCallback callback, object state);
public bool EndInvoke(IAsyncResult result);

Any delegate type you define will have four similar members, and none of them will
have bodies. The compiler generates the declarations, but the implementation is sup‐
plied automatically by the CLR at runtime.

The constructor takes the target object, which is null for static methods, and an
IntPtr identifying the method.3 Notice that this is not the MethodInfo returned by
the Method property. Instead, this is a function token, an opaque binary identifier for
the target method. The CLR can provide binary metadata tokens for all members and
types, but there’s no C# syntax for working with them, so we don’t normally see
them. When you construct a new instance of a delegate type, the compiler automati‐
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cally generates IL that fetches the function token. The reason delegates use tokens
internally is that they can be more efficient than working with reflection API types
such as MethodInfo.

The Invoke method is the one that calls the delegate’s target method (or methods).
You can use this explicitly from C#, as Example 9-22 shows. It is almost identical to
Example 9-11, the only difference being that the delegate variable is followed
by .Invoke. This generates exactly the same code as Example 9-11, so whether you
write Invoke, or just use the syntax that treats delegate identifiers as though they were
method names, is a matter of style. As a former C++ developer, I’ve always felt at
home with the Example 9-11 syntax, because it’s similar to using function pointers in
that language, but there’s an argument that writing Invoke explicitly makes it easier
to see that the code is using a delegate.

Example 9-22. Using Invoke explicitly

public static void CallMeRightBack(Predicate<int> userCallback)
{
    bool result = userCallback.Invoke(42);
    Console.WriteLine(result);
}

One benefit of this explicit form is that you can use the null-conditional operator to
handle the case where the delegate variable is null. Example 9-23 uses this to attempt
invocation only when a non-null argument is supplied.

Example 9-23. Using Invoke with the null-conditional operator

public static void CallMeMaybe(Action<int> userCallback)
{
    userCallback?.Invoke(42);
}

The Invoke method is the home for a delegate type’s method signature. When you
define a delegate type, this is where the return type and parameter list you specify end
up. When the compiler needs to check whether a particular method is compatible
with a delegate type (e.g., when you create a new delegate of that type), the compiler
compares the Invoke method with the method you’ve supplied.

As Example 9-21 shows, all delegate types also have BeginInvoke and EndInvoke
methods. These are deprecated, and do not work on .NET Core. (They throw a Plat
formNotSupportedException.) They still work on .NET Framework, but they are
obsolete. They provide a way of invoking methods asynchronously via the thread
pool known as asynchronous delegate invocation. Although this was once a popular
way to perform asynchronous work, with early versions of .NET, it had fallen out of
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4 Unhelpfully, there are two similar terms that somewhat arbitrarily mean almost but not quite the same thing.
The C# documentation uses the term anonymous function as the general term for either kind of method
expression. Anonymous method would be a better name for this because not all of these things are strictly
functions—they can have a void return, but by the time Microsoft needed a general term for these things, that
name was already taken.

widespread use some time before being deprecated, for three reasons. First, .NET 4.0
introduced the Task Parallel Library (TPL), which provides a more flexible and pow‐
erful abstraction for the services of the thread pool. (See Chapter 16 for details.) Sec‐
ond, these methods implement an older pattern known as the Asynchronous
Programming Model (also described in Chapter 16), which does not fit directly with
the new asynchronous language features of C# (described in Chapter 17). Finally, the
largest benefit of asynchronous delegate invocation was that it provided an easy way
to pass a set of values from one thread to another—you could just pass whatever you
needed as the arguments for the delegate. However, C# 2.0 introduced a much better
way to solve the problem: anonymous functions.

Anonymous Functions
C# lets you create delegates without needing to define a separate method explicitly.
You can write a special kind of expression whose value is a method. You could think
of them as method expressions or function expressions, but the official name is anony‐
mous functions. Expressions can be passed directly as arguments, or assigned directly
into variables, so the methods these expressions produce don’t have names. (At least,
not in C#. The runtime requires all methods to have names, so C# generates hidden
names for these things, but from a C# language perspective, they are anonymous.)

For simple methods, the ability to write them inline as expressions can remove a lot
of clutter. And as we’ll see in “Captured Variables” on page 396, the compiler exploits
the fact that delegates are more than just a reference to a method to provide anony‐
mous functions with access to any variables that were in scope in the containing
method at the point at which the anonymous function appears.

For historical reasons, C# provides two ways to define an anonymous function. The
older way involves the delegate keyword, and is shown in Example 9-24. This form
is known as an anonymous method.4 I’ve put each argument for FindIndex on a sepa‐
rate line to make the anonymous functions (the second argument) stand out, but C#
does not require this.

Example 9-24. Anonymous method syntax

public static int GetIndexOfFirstNonEmptyBin(int[] bins)
{
    return Array.FindIndex(
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        bins,
        delegate (int value) { return value > 0; }
    );
}

In some ways, this resembles the normal syntax for defining methods. The parameter
list appears in parentheses and is followed by a block containing the body of the
method (which can contain as much code as you like, by the way, and is free to con‐
tain nested blocks, local variables, loops, and anything else you can put in a normal
method). But instead of a method name, we just have the keyword delegate. The
compiler infers the return type. In this case, the FindIndex method’s signature
declares the second argument to be a Predicate<T>, which tells the compiler that the
return type has to be bool.

In fact, the compiler knows more. I’ve passed FindIndex an int[] array, so the com‐
piler knows that the type argument T is int, so we need a Predicate<int>. This
means that in Example 9-24, I had to supply information—the type of the delegate’s
argument—that the compiler already knew. C# 3.0 introduced a more compact
anonymous function syntax that takes better advantage of what the compiler can
deduce, shown in Example 9-25.

Example 9-25. Lambda syntax

public static int GetIndexOfFirstNonEmptyBin(int[] bins)
{
    return Array.FindIndex(
        bins,
        value => value > 0
    );
}

This form of anonymous function is called a lambda expression, and it is named after
a branch of mathematics that is the foundation of a function-based model for com‐
putation. There is no particular significance to the choice of the Greek letter lambda
(λ). It was the accidental result of the limitations of 1930s printing technology. The
inventor of lambda calculus, Alonzo Church, originally wanted a different notation,
but when he published his first paper on the subject, the typesetting machine opera‐
tor decided to print λ instead, because that was the closest approximation to Church’s
notation that the machine could produce. Despite these inauspicious origins, this
arbitrarily chosen term has become ubiquitous. LISP, an early and influential pro‐
gramming language, used the name lambda for expressions that are functions, and
since then, many languages have followed suit, including C#.

Example 9-25 is exactly equivalent to Example 9-24; I’ve just been able to leave vari‐
ous things out. The => token unambiguously marks this out as being a lambda, so the
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compiler does not need that cumbersome and ugly delegate keyword just to recog‐
nize this as an anonymous function. The compiler knows from the surrounding con‐
text that the method has to take an int, so there’s no need to specify the parameter’s
type; I just provided the parameter’s name: value. For simple methods that consist of
just a single expression, the lambda syntax lets you omit the block and the return
statement. This all makes for very compact lambdas, but in some cases, you might
not want to omit quite so much, so as Example 9-26 shows, there are various optional
features. Every lambda in that example is equivalent.

Example 9-26. Lambda variations

Predicate<int> p1 = value => value > 0;
Predicate<int> p2 = (value) => value > 0;
Predicate<int> p3 = (int value) => value > 0;
Predicate<int> p4 = value => { return value > 0; };
Predicate<int> p5 = (value) => { return value > 0; };
Predicate<int> p6 = (int value) => { return value > 0; };

The first variation is that you can put parentheses around the parameter. This is
optional with a single parameter, but it is mandatory for multiparameter lambdas.
You can also be explicit about the parameters’ types (in which case you will also need
parentheses, even if there’s only one parameter). And, if you like, you can use a block
instead of a single expression, at which point you also have to use the return key‐
word if the lambda returns a value. The normal reason for using a block would be if
you wanted to write multiple statements inside the method.

You may be wondering why there are quite so many different forms—why not have
just one syntax and be done with it? Although the final line of Example 9-26 shows
the most general form, it’s also a lot more cluttered than the first line. Since one of
the goals of lambdas is to provide a more concise alternative to anonymous methods,
C# supports these shorter forms where they can be used without ambiguity.

You can also write a lambda that takes no arguments. As Example 9-27 shows, we
just put an empty pair of parentheses in front of the => token. (And, as this example
also shows, lambdas that use the greater than or equals operator, >=, can look a bit
odd due to the meaningless similarity between the => and >= tokens.)

Example 9-27. A zero-argument lambda

Func<bool> isAfternoon = () => DateTime.Now.Hour >= 12;

The flexible and compact syntax means that lambdas have all but displaced the older
anonymous method syntax. However, the older syntax offers one advantage: it allows
you to omit the argument list entirely. In some situations where you provide a call‐
back, you need to know only that whatever you were waiting for has now happened.
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This is particularly common when using the standard event pattern described later in
this chapter, because that requires event handlers to accept arguments even in situa‐
tions where they serve no purpose. For example, when a button is clicked, there’s not
much else to say beyond the fact that it was clicked, and yet all of the button types
in .NET’s various UI frameworks pass two arguments to the event handler.
Example 9-28 successfully ignores this by using an anonymous method that omits the
parameter list.

Example 9-28. Ignoring arguments in an anonymous method

EventHandler clickHandler = delegate { Debug.WriteLine("Clicked!"); };

EventHandler is a delegate type that requires its target methods to take two argu‐
ments, of type object and EventArgs. If our handler needed access to either, we
could, of course, add a parameter list, but the anonymous method syntax lets us leave
it out if we want. You cannot do this with a lambda.

Captured Variables
While anonymous functions often take up much less space in your source code than
a full, normal method, they’re not just about conciseness. The C# compiler uses a del‐
egate’s ability to refer not just to a method, but also to some additional context to
provide an extremely useful feature: it can make variables from the containing
method available to the anonymous function. Example 9-29 shows a method that
returns a Predicate<int>. It creates this with a lambda that uses an argument from
the containing method.

Example 9-29. Using a variable from the containing method

public static Predicate<int> IsGreaterThan(int threshold)
{
    return value => value > threshold;
}

This provides the same functionality as the ThresholdComparer class from
Example 9-7, but it now achieves it in a single, simple method, rather than requiring
us to write an entire class. We can make this even more compact by using an
expression-bodied method, as Example 9-30 shows.

Example 9-30. Using a variable from the containing method

public static Predicate<int> IsGreaterThan(int threshold) =>
    value => value > threshold;
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In fact, the code is almost deceptively simple, so it’s worth looking closely at what it
does. The IsGreaterThan method returns a delegate instance. That delegate’s target
method performs a simple comparison—it evaluates the value > threshold expres‐
sion and returns the result. The value variable in that expression is just the delegate’s
argument—the int passed by whichever code invokes the Predicate<int> that
IsGreaterThan returns. The second line of Example 9-31 invokes that code, passing
in 200 as the argument for value.

Example 9-31. Where value comes from

Predicate<int> greaterThanTen = IsGreaterThan(10);
bool result = greaterThanTen(200);

The threshold variable in the expression is trickier. This is not an argument to the
anonymous function. It’s the argument of IsGreaterThan, and Example 9-31 passes a
value of 10 as the threshold argument. However, IsGreaterThan has to return
before we can invoke the delegate it returns. Since the method for which that thres
hold variable was an argument has already returned, you might think that the vari‐
able would no longer be available by the time we invoke the delegate. In fact, it’s fine,
because the compiler does some work on our behalf. If an anonymous function uses
arguments of, or local variables that were declared by the containing method, the
compiler generates a class to hold those variables so that they can outlive the method
that created them. The compiler generates code in the containing method to create
an instance of this class. (Remember, each invocation of a block gets its own set of
local variables, so if any locals get pushed into an object to extend their lifetime, a
new object will be required for each invocation.) This is one of the reasons why the
popular myth that says local variables of value type always live on the stack is not true
—in this case, the compiler copies the incoming threshold argument’s value to a
field of an object on the heap, and code that uses the threshold variable ends up
using that field instead. Example 9-32 shows the generated code that the compiler
produces for the anonymous function in Example 9-29.

Example 9-32. Code generated for an anonymous function

[CompilerGenerated]
private sealed class <>c__DisplayClass1_0
{
    public int threshold;

    public bool <IsGreaterThan>b__0(int value)
    {
        return (value > this.threshold);
    }
}
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The class and method names all begin with characters that are illegal in C# identifi‐
ers, to ensure that this compiler-generated code cannot clash with anything we write
—this is technically an unspeakable name. (The exact names are not fixed, by the way
—you may find they are slightly different if you try this.) This generated code bears a
striking resemblance to the ThresholdComparer class from Example 9-7, which is
unsurprising, because the goal is the same: the delegate needs some method that it
can refer to, and that method’s behavior depends on a value that is not fixed. Anony‐
mous functions are not a feature of the runtime’s type system, so the compiler has to
generate a class to provide this kind of behavior on top of the CLR’s basic delegate
functionality.

Local functions (described in Chapter 3) can also access the local
variables of their containing methods. Normally, this doesn’t
change those variables’ lifetimes, because the local function is inac‐
cessible outside of its containing method. However, if you create a
delegate that refers to a local function, this means it might be
invoked after the containing method returns, so the compiler will
then perform the same trick that it does for anonymous functions,
enabling variables to live on after the outer method returns.

Once you know that this is what’s really happening when you write an anonymous
function, it follows naturally that the inner method is able not just to read the vari‐
able, but also to modify it. This variable is just a field in an object that two methods—
the anonymous function and the containing method—have access to. Example 9-33
uses this to maintain a count that is updated from an anonymous function.

Example 9-33. Modifying a captured variable

static void Calculate(int[] nums)
{
    int zeroCount = 0;
    int[] nonZeroNums = Array.FindAll(
        nums,
        v =>
        {
            if (v == 0)
            {
                zeroCount += 1;
                return false;
            }
            else
            {
                return true;
            }
        });
    Console.WriteLine($"Number of zero entries: {zeroCount}");
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    Console.WriteLine($"First non-zero entry: {nonZeroNums[0]}");
}

Everything in scope for the containing method is also in scope for anonymous func‐
tions. If the containing method is an instance method, this includes any instance
members of the type, so your anonymous function could access fields, properties, and
methods. (The compiler supports this by adding a field to the generated class to hold
a copy of the this reference.) The compiler puts only what it needs to in generated
classes of the kind shown in Example 9-32, and if you don’t use variables or instance
members from the containing scope, it might not even have to generate a class at all,
and may be able just to add a static method to your existing type.

The FindAll method in the preceding examples does not hold on to the delegate after
it returns—any callbacks will happen while FindAll runs. Not everything works that
way, though. Some APIs perform asynchronous work and will call you back at some
point in the future, by which time the containing method may have returned. This
means that any variables captured by the anonymous function will live longer than
the containing method. In general, this is fine, because all of the captured variables
live in an object on the heap, so it’s not as though the anonymous function is relying
on a stack frame that is no longer present. The one thing you need to be careful of,
though, is explicitly releasing resources before callbacks have finished. Example 9-34
shows an easy mistake to make. This uses an asynchronous, callback-based API to
download the resource at a particular URL via HTTP. (This calls the ContinueWith
method on the Task<Stream> returned by HttpClient.GetStreamAsync, passing a
delegate that will be invoked once the HTTP response comes back. This method is
part of the Task Parallel Library described in Chapter 16.)

Example 9-34. Premature disposal

HttpClient http = GetHttpClient();
using (FileStream file = File.OpenWrite(@"c:\temp\page.txt"))
{
    http.GetStreamAsync("https://endjin.com/")
        .ContinueWith((Task<Stream> t) => t.Result.CopyToAsync(file));
} // Will probably dispose StreamWriter before callback runs

The using statement in this example will dispose the FileStream as soon as execu‐
tion reaches the point at which the file variable goes out of scope in the outer
method. The problem is that this file variable is also used in an anonymous func‐
tion, which will in all likelihood run after the thread executing that outer method has
left that using statement’s block. The compiler has no understanding of when the
inner block will run—it doesn’t know whether that’s a synchronous callback like
Array.FindAll uses, or an asynchronous one. So it cannot do anything special here
—it just calls Dispose at the end of the block, as that’s what our code told it to do.
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The asynchronous language features discussed in Chapter 17 can
help avoid this sort of problem. When you use those to consume
APIs that present this kind of Task-based pattern, the compiler can
then know exactly how long things remain in scope. This enables
the compiler to generate continuation callbacks for you, and as
part of this, it can arrange for the using statement to call Dispose
at the correct moment.

In performance-critical code, you may need to bear the costs of anonymous functions
in mind. If the anonymous function uses variables from the outer scope, then in
addition to the delegate object that you create to refer to the anonymous function,
you may be creating an additional one: an instance of the generated class to hold
shared local variables. The compiler will reuse these variable holders when it can—if
one method contains two anonymous functions, they may be able to share an object,
for example. Even with this sort of optimization, you’re still creating additional
objects, increasing the pressure on the garbage collector. (And in some cases you can
end up creating this object even if you never hit the code path that creates the dele‐
gate.) It’s not particularly expensive—these are typically small objects—but if you’re
up against a particularly oppressive performance problem, you might be able to eke
out some small improvements by writing things in a more long-winded fashion in
order to reduce the number of object allocations.

Local functions do not always incur this same overhead. When a
local function uses its outer method’s variables, it does not extend
their lifetime. The compiler therefore doesn’t need to create an
object on the heap to hold the shared variables. It still creates a type
to hold all the shared variables, but it defines this as a struct that it
passes by reference as a hidden in argument, avoiding the need for
a heap block. (If you create a delegate that refers to a local function,
it can no longer use this optimization, and it reverts to the same
strategy as it uses for anonymous functions, putting shared vari‐
ables in an object on the heap.)

More subtly, using local variables from an outer scope in an anonymous function will
extend the liveness of those variables, which may mean the GC will take longer to
detect when objects those variables refer to are no longer in use. As you may recall
from Chapter 7, the CLR analyzes your code to work out when variables are in use, so
that it can free objects without waiting for the variables that refer to them to go out of
scope. This enables the memory used by some objects to be reclaimed significantly
earlier, particularly in methods that take a long time to complete. But liveness analy‐
sis applies only to conventional local variables. It cannot be applied for variables that
are used in an anonymous function, because the compiler transforms those variables
into fields. (From the CLR’s perspective, they are not local variables at all.) Since C#
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typically puts all of these transformed variables for a particular scope into a single
object, you will find that none of the objects these variables refer to can be reclaimed
until the method completes and the object containing the variables becomes unreach‐
able itself. This can mean that in some cases there may be a measurable benefit to
setting a local variable to null when you’re done with it, enabling that particular
object’s memory to be reclaimed at the next GC. (Normally, that would be bad
advice, and even with anonymous functions it might not have a useful effect in prac‐
tice. You should only do this if performance testing demonstrates a clear advantage.
But it’s worth investigating in cases where you’re seeing GC-related performance
problems, and you make heavy use of long-running anonymous functions.)

Variable capture can also occasionally lead to bugs, particularly due to a subtle scope-
related issue with for loops. (This used to afflict foreach loops too, but Microsoft
changed how foreach behaved in C# 5.0, having decided that the original behavior
was unlikely to be something that any developer actually wanted.) Example 9-35 runs
into this problem.

Example 9-35. Problematic variable capture in a for loop

public static void Caught()
{
    var greaterThanN = new Predicate<int>[10];
    for (int i = 0; i < greaterThanN.Length; ++i)
    {
        greaterThanN[i] = value => value > i; // Bad use of i
    }

    Console.WriteLine(greaterThanN[5](20));
    Console.WriteLine(greaterThanN[5](6));
}

This example initializes an array of Predicate<int> delegates, where each delegate
tests whether the value is greater than some number. (You wouldn’t have to use
arrays to see the problem I’m about to describe, by the way. Your loop might instead
pass the delegates it creates into one of the mechanisms described in Chapter 16 that
enable parallel processing by running the code on multiple threads. But arrays make
it easier to show the problem.) Specifically, it compares the value with i, the loop
counter that decides where in the array each delegate goes, so you might expect the
element at index 5 to refer to a method that compares its argument with 5. If that
were so, this code would show True twice. In fact, it displays True and then False. It
turns out that Example 9-35 produces an array of delegates where every single ele‐
ment compares its argument with 10.

This usually surprises people when they encounter it. With hindsight, it’s easy
enough to see why this happens when you know how the C# compiler enables an
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anonymous function to use variables from its containing scope. The for loop
declares the i variable, and because it is used not only by the containing Caught
method, but also by each delegate the loop creates, the compiler will generate a class
similar to the one in Example 9-32, and the variable will live in a field of that class.
Since the variable comes into scope when the loop starts, and remains in scope for the
duration of the loop, the compiler will create one instance of that generated class, and
it will be shared by all of the delegates. So, as the loop increments i, this modifies the
behavior of all of the delegates, because they all use that same i variable.

Fundamentally, the problem is that there’s only one i variable here. You can fix the
code by introducing a new variable inside the loop. Example 9-36 copies the value of
i into another local variable, current, which does not come into scope until an itera‐
tion is under way, and goes out of scope at the end of each iteration. So, although
there is only one i variable, which lasts for as long as the loop runs, we get what is
effectively a new current variable each time around the loop. Because each delegate
gets its own distinct current variable, this modification means that each delegate in
the array compares its argument with a different value—the value that the loop
counter had for that particular iteration.

Example 9-36. Modifying a loop to capture the current value

for (int i = 0; i < greaterThanN.Length; ++i)
{
    int current = i;
    greaterThanN[i] = value => value > current;
}

The compiler still generates a class similar to the one in Example 9-32 to hold the
current variable that’s shared by the inline and containing methods, but this time, it
will create a new instance of that class each time around the loop in order to give each
anonymous function a different instance of that variable. (This happens automati‐
cally when you use a foreach loop because its scoping rules are a little different: its
iteration variable’s scope is per iteration, meaning that it’s logically a different
instance of the variable each time around the loop, so there’s no need to add an extra
variable inside the loop as we had to with for.)

You may be wondering what would happen if you wrote an anonymous function that
used variables at multiple scopes. Example 9-37 declares a variable called offset
before the loop, and the lambda uses both that and a variable whose scope lasts for
only one iteration.
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Example 9-37. Capturing variables at different scopes

int offset = 10;
for (int i = 0; i < greaterThanN.Length; ++i)
{
    int current = i;
    greaterThanN[i] = value => value > (current + offset);
}

In that case, the compiler would generate two classes, one to hold any per-iteration
shared variables (current, in this example) and one to hold those whose scope spans
the whole loop (offset, in this case). Each delegate’s target object would be the object
containing inner scope variables, and that would contain a reference to the outer
scope.

Figure 9-1 shows roughly how this would work, although it has been simplified to
show just the first five items. The greaterThanN variable contains a reference to an
array. Each array element contains a reference to a delegate. Each delegate refers to
the same method, but each one has a different target object, which is how each dele‐
gate can capture a different instance of the current variable. Each of these target
objects refers to a single object containing the offset variable captured from the
scope outside of the loop.

Figure 9-1. Delegates and captured scopes
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Lambdas and Expression Trees
Lambdas have an additional trick up their sleeves beyond providing delegates. Some
lambdas produce a data structure that represents code. This occurs when you use the
lambda syntax in a context that requires an Expression<T>, where T is a delegate
type. Expression<T> itself is not a delegate type; it is a special type in the .NET class
library (in the System.Linq.Expressions namespace) that triggers this alternative
handling of lambdas in the compiler. Example 9-38 uses this type.

Example 9-38. A lambda expression

Expression<Func<int, bool>> greaterThanZero = value => value > 0;

This example looks similar to some of the lambdas and delegates I’ve shown already
in this chapter, but the compiler handles this very differently. It will not generate a
method—there will be no compiled IL representing the lambda’s body. Instead, the
compiler will produce code similar to that in Example 9-39.

Example 9-39. What the compiler does with a lambda expression

ParameterExpression valueParam = Expression.Parameter(typeof(int), "value");
ConstantExpression constantZero = Expression.Constant(0);
BinaryExpression comparison = Expression.GreaterThan(valueParam, constantZero);
Expression<Func<int, bool>> greaterThanZero =
    Expression.Lambda<Func<int, bool>>(comparison, valueParam);

This code calls various factory functions provided by the Expression class to produce
an object for each subexpression in the lambda. This starts with the simple operands
—the value parameter and the constant value 0. These are fed into an object repre‐
senting the “greater than” comparison expression, which in turn becomes the body of
an object representing the whole lambda expression.

The ability to produce an object model for an expression makes it possible to write an
API where the behavior is controlled by the structure and content of an expression.
For example, some data access APIs can take an expression similar to the ones pro‐
duced by Examples 9-38 and 9-39 and use it to generate part of a database query. I’ll
be talking about C#’s integrated query features in Chapter 10, but Example 9-40 gives
a flavor of how a lambda expression can be used as the basis of a query.

Example 9-40. Expressions and database queries

var expensiveProducts = dbContext.Products.Where(p => p.ListPrice > 3000);

This example happens to use a Microsoft library called the Entity Framework, but
various other data access technologies support the same approach. In this example,
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5 You may be surprised to see Func<Product,bool> here and not Predicate<Product>. The Where method is
part of a .NET feature called LINQ that makes extensive use of delegates. To avoid defining huge numbers of
new delegate types, LINQ uses Func types, and for consistency across the API, it prefers Func even when other
standard types would fit.

the Where method takes an argument of type Expression<Func<Product,bool>>.5

Product is a class that corresponds to an entity in the database, but the important
part here is the use of Expression<T>. That means that the compiler will generate
code that creates a tree of objects whose structure corresponds to that lambda expres‐
sion. The Where method processes this expression tree, generating a SQL query that
includes this clause: WHERE [Extent1].[ListPrice] > cast(3000 as deci

mal(18)). So, although I wrote my query as a C# expression, the work required to
find matching objects will all happen on my database server.

Lambda expressions were added to C# to enable this sort of query handling as part of
the set of features known collectively as LINQ (which is the subject of Chapter 10).
However, as with most LINQ-related features, it’s possible to use them for other
things. For example, a popular .NET library used in automated testing called Moq
(https://github.com/moq) exploits this. It creates fake implementations of interfaces
for test purposes, and it uses lambda expressions to provide a simple API for config‐
uring how those fakes should behave. Example 9-41 uses Moq’s Mock<T> class to cre‐
ate a fake implementation of .NET’s IEqualityComparer<string> interface. The
code calls the Setup method, which takes an expression indicating a specific invoca‐
tion we’d like to define special handling for—in this case if the fake’s implementation
of IEqualityComparer<string>.Equals is called with the arguments of "Color" and
"Colour", we’d like it to return true.

Example 9-41. Use of lambda expressions by the Moq library

var fakeComparer = new Mock<IEqualityComparer<string>>();
fakeComparer
    .Setup(c => c.Equals("Color", "Colour"))
    .Returns(true);

If that argument to Setup were just a delegate, there would be no way for Moq to
inspect it. But because it’s an expression tree, Moq is able to delve into it and find out
what we’ve asked for.

Unfortunately, expression trees are an area of C# that have lagged
behind the rest of the language. They were introduced in C# 3.0,
and various language features added since then, such as support for
tuples and asynchronous expressions, cannot be used in an expres‐
sion tree because the object model has no way to represent them.
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Events
Sometimes it is useful for objects to be able to provide notifications of when interest‐
ing things have happened—in a client-side UI framework, you will want to know
when the user clicks on one of your application’s buttons, for example. Delegates
provide the basic callback mechanism required for notifications, but there are many
ways you could go about using them. Should the delegate be passed as a method
argument, a constructor argument, or perhaps as a property? How should you sup‐
port unsubscribing from notifications? The CTS formalizes the answers to these
questions through a special kind of class member called an event, and C# has syntax
for working with events. Example 9-42 shows a class with one event member.

Example 9-42. A class with an event

public class Eventful
{
    public event Action<string> Announcement;

    public void Announce(string message)
    {
        Announcement?.Invoke(message);
    }
}

As with all members, you can start with an accessibility specifier, and it will default to
private if you leave that off. Next, the event keyword singles this out as an event.
Then there’s the event’s type, which can be any delegate type. I’ve used
Action<string>, although as you’ll soon see, this is an unorthodox choice. Finally,
we put the member name, so this example defines an event called Announcement.

To handle an event, you must provide a delegate of the right type, and you must use
the += syntax to attach that delegate as the handler. Example 9-43 uses a lambda, but
you can use any expression that produces, or is implicitly convertible to, a delegate of
the type the event requires.

Example 9-43. Handling events

var source = new Eventful();
source.Announcement += m => Console.WriteLine("Announcement: " + m);

Example 9-42 also shows how to raise an event—that is, how to invoke all the han‐
dlers that have been attached to the event. Its Announce uses the same syntax we
would use if Announcement were a field containing a delegate that we wanted to
invoke. In fact, as far as the code inside the class is concerned, that’s exactly what an
event looks like—it appears to be a field. I’ve chosen to use the delegate’s Invoke
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member explicitly here instead of writing Announcement(message) (despite saying
earlier that I usually prefer the latter approach) because this lets me use the null-
conditional operator (?.). This causes the compiler to generate code that only
invokes the delegate if it is not null. Otherwise I would have had to write an if state‐
ment verifying that the field is not null before invoking it.

So why do we need a special member type if this looks just like a field? Well, it looks
like a field only from inside the defining class. Code outside of the class cannot raise
the event, so the code shown in Example 9-44 will not compile.

Example 9-44. How not to raise an event

var source = new Eventful();
source.Announcement("Will this work?"); // No, this will not even compile

From the outside, the only things you can do to an event are to attach a handler using
+= and to remove one using -=. The syntax for adding and removing event handlers
is unusual in that it’s the only case in C# in which you get to use += and -= without
the corresponding standalone + or - operators being available. The actions performed
by += and -= on events both turn out to be method calls in disguise. Just as properties
are really pairs of methods with a special syntax, so are events. They are similar in
concept to the code shown in Example 9-45. (In fact, the real code includes some
moderately complex lock-free, thread-safe code. I’ve not shown this because the mul‐
tithreading obscures the basic intent.) This won’t have quite the same effect, because
the event keyword adds metadata to the type identifying the methods as being an
event, so this is just for illustration.

Example 9-45. The approximate effect of declaring an event

private Action<string> Announcement;

// Not the actual code.
// The real code is more complex, to tolerate concurrent calls.
public void add_Announcement(Action<string> handler)
{
    Announcement += handler;
}
public void remove_Announcement(Action<string> handler)
{
    Announcement -= handler;
}

Just as with properties, events exist mainly to offer a convenient, distinctive syntax,
and to make it easier for tools to know how to present the features that classes offer.
Events are particularly important for UI elements. In most UI frameworks, the
objects representing interactive elements can often raise a wide range of events,
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corresponding to various forms of input such as keyboard, mouse, or touch. There
are also often events relating to behavior specific to a particular control, such as
selecting a new item in a list. Because the CTS defines a standard idiom by which ele‐
ments can expose events, visual UI designers, such as the ones built into Visual Stu‐
dio, can display the available events and offer to generate handlers for you.

Standard Event Delegate Pattern
The event in Example 9-42 is unusual in that it uses the Action<T> delegate type.
This is perfectly legal, but in practice, you will rarely see that, because almost all
events use delegate types that conform to a particular pattern. This pattern requires
the delegate’s method signature to have two arguments. The first argument’s type is
object, and the second’s type is either EventArgs or some type derived from Even
tArgs. Example 9-46 shows the EventHandler delegate type in the System name‐
space, which is the simplest and most widely used example of this pattern.

Example 9-46. The EventHandler delegate type

public delegate void EventHandler(object sender, EventArgs e);

The first argument is usually called sender, because the event source passes a refer‐
ence to itself for this argument. This means that if you attach a single delegate to mul‐
tiple event sources, that handler can always know which source raised any particular
notification.

The second argument provides a place to put information specific to the event. For
example, WPF UI elements define various events for handling mouse input that use
more specialized delegate types, such as MouseButtonEventHandler, with signatures
that specify a corresponding specialized event argument that offers details about the
event. For example, MouseButtonEventArgs defines a GetPosition method that tells
you where the mouse was when the button was clicked, and it defines various other
properties offering further detail, including ClickCount and Timestamp.

Whatever the specialized type of the second argument may be, it will always derive
from the base EventArgs type. That base type is not very interesting—it does not add
members beyond the standard ones provided by object. However, it does make it
possible to write a general-purpose method that can be attached to any event that
uses this pattern. The rules for delegate compatibility mean that even if the delegate
type specifies a second argument of type MouseButtonEventArgs, a method whose
second argument is of type EventArgs is an acceptable target. This can occasionally
be useful for code generation or other infrastructure scenarios. However, the main
benefit of the standard event pattern is simply one of familiarity—experienced C#
developers generally expect events to work this way.
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Custom Add and Remove Methods
Sometimes, you might not want to use the default event implementation generated
by the C# compiler. For example, a class may define a large number of events, most
of which will not be used on the majority of instances. UI frameworks often have this
characteristic. A WPF UI can have thousands of elements, every one of which offers
over 100 events, but you normally attach handlers only to a few of these elements,
and even with these, you handle only a fraction of the events on offer. It is inefficient
for every element to dedicate a field to every available event in this case.

Using the default field-based implementation for large numbers of rarely used events
could add hundreds of bytes to the footprint of each element in a UI, which can have
a discernible effect on performance. (In WPF, this could add up to a few hundred
thousand bytes. That might not sound like much given modern computers’ memory
capacities, but it can put your code in a place where it is no longer able to make effi‐
cient use of the CPU’s cache, causing a nosedive in application responsiveness. Even
if the cache is several megabytes in size, the fastest parts of the cache are usually much
smaller, and wasting a few hundred kilobytes in a critical data structure can make a
world of difference to performance.)

Another reason you might want to eschew the default compiler-generated event
implementation is that you may want more sophisticated semantics when raising
events. For example, WPF supports event bubbling: if a UI element does not handle
certain events, they will be offered to the parent element, then the parent’s parent,
and so on up the tree until a handler is found or it reaches the top. Although it would
be possible to implement this sort of scheme with the standard event implementation
C# supplies, much more efficient strategies are possible when event handlers are rela‐
tively sparse.

To support these scenarios, C# lets you provide your own add and remove methods
for an event. It will look just like a normal event from the outside—anyone using
your class will use the same += and -= syntax to add and remove handlers—and it
won’t be possible to tell that it provides a custom implementation. Example 9-47
shows a class with two events, and it uses a single dictionary, shared across all instan‐
ces of the class, to keep track of which events have been handled on which objects.
The approach is extensible to larger numbers of events—the dictionary uses pairs of
objects as the key, so each entry represents a particular (source, event) pair. (This is
not production-quality code by the way. It’s not safe for multithreaded use and it will
also leak memory when a ScarceEventSource instance that still has event handlers
attached falls out of use. This example just illustrates how custom event handlers
look; it’s not a fully engineered solution.)
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Example 9-47. Custom add and remove for sparse events

public class ScarceEventSource
{
    // One dictionary shared by all instances of this class,
    // tracking all handlers for all events.
    // Beware of memory leaks - this code is for illustration only.
    private static readonly
     Dictionary<(ScarceEventSource, object), EventHandler> _eventHandlers
      = new Dictionary<(ScarceEventSource, object), EventHandler>();

    // Objects used as keys to identify particular events in the dictionary.
    private static readonly object EventOneId = new object();
    private static readonly object EventTwoId = new object();

    public event EventHandler EventOne
    {
        add
        {
            AddEvent(EventOneId, value);
        }
        remove
        {
            RemoveEvent(EventOneId, value);
        }
    }

    public event EventHandler EventTwo
    {
        add
        {
            AddEvent(EventTwoId, value);
        }
        remove
        {
            RemoveEvent(EventTwoId, value);
        }
    }

    public void RaiseBoth()
    {
        RaiseEvent(EventOneId, EventArgs.Empty);
        RaiseEvent(EventTwoId, EventArgs.Empty);
    }

    private (ScarceEventSource, object) MakeKey(object eventId) => (this, eventId);

    private void AddEvent(object eventId, EventHandler handler)
    {
        var key = MakeKey(eventId);
        eventHandlers.TryGetValue(key, out EventHandler entry);
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        entry += handler;
        _eventHandlers[key] = entry;
    }

    private void RemoveEvent(object eventId, EventHandler handler)
    {
        var key = MakeKey(eventId);
        EventHandler entry = _eventHandlers[key];
        entry -= handler;
        if (entry == null)
        {
            _eventHandlers.Remove(key);
        }
        else
        {
            _eventHandlers[key] = entry;
        }
    }

    private void RaiseEvent(object eventId, EventArgs e)
    {
        var key = MakeKey(eventId);
         if (_eventHandlers.TryGetValue(key, out EventHandler handler))
        {
            handler(this, e);
        }
    }
}

The syntax for custom events is reminiscent of the full property syntax: we add a
block after the member declaration that contains the two members, although they are
called add and remove instead of get and set. (Unlike with properties, you must
always supply both methods.) This disables the generation of the field that would
normally hold the event, meaning that the ScarceEventSource class has no instance
fields at all—instances of this type are as small as it’s possible for an object to be.

The price for this small memory footprint is a considerable increase in complexity;
I’ve written about 16 times as many lines of code as I would have needed with
compiler-generated events, and we’d need even more to fix the shortcomings
described earlier. Moreover, this technique provides an improvement only if the
events really are not handled most of the time—if I attached handlers to both events
for every instance of this class, the dictionary-based storage would consume more
memory than simply having a field for each event in each instance of the class. So you
should consider this sort of custom event handling only if you either need nonstan‐
dard event-raising behavior, or if you are very sure that you really will be saving
memory, and that the savings are worthwhile.
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Events and the Garbage Collector
As far as the GC is concerned, delegates are normal objects like any other. If the GC
discovers that a delegate instance is reachable, then it will inspect the Target prop‐
erty, and whichever object that refers to will also be considered reachable, along with
whatever objects that object in turn refers to. Although there is nothing remarkable
about this, there are situations in which leaving event handlers attached can cause
objects to hang around in memory when you might have expected them to be collec‐
ted by the GC.

There’s nothing intrinsic to delegates and events that makes them unusually likely to
defeat the GC. If you do get an event-related memory leak, it will have the same
structure as any other .NET memory leak: starting from a root reference, there will be
some chain of references that keeps an object reachable even after you’ve finished
using it. The only reason events get special blame for memory leaks is that they are
often used in ways that can cause problems.

For example, suppose your application maintains some object model representing its
state, and that your UI code is in a separate layer that makes use of that underlying
model, adapting the information it contains for presentation on screen. This sort of
layering is usually advisable—it’s a bad idea to intermingle code that deals with user
interactions and code that implements the application’s logic. But a problem can
arise if the underlying model advertises changes in state that the UI needs to reflect. If
these changes are advertised through events, your UI code will typically attach han‐
dlers to those events.

Now imagine that someone closes one of your application’s windows. You would
hope that the objects representing that window’s UI would all be detected as unreach‐
able the next time the GC runs. The UI framework is likely to have attempted to
make that possible. For example, WPF ensures that each instance of its Window class
is reachable for as long as the corresponding window is open, but once the window
has been closed, it stops holding references to the window, to enable all of the UI
objects for that window to be collected.

However, if you handle an event from your main application’s model with a method
in a Window-derived class, and if you do not explicitly remove that handler when the
window is closed, you will have a problem. As long as your application is still run‐
ning, something somewhere will presumably be keeping your application’s underly‐
ing model reachable. This means that the target objects of any delegates held by your
application model (e.g., delegates that were added as event handlers) will continue to
be reachable, preventing the GC from freeing them. So, if a Window-derived object for
the now-closed window is still handling events from your application model, that
window—and all of the UI elements it contains—will still be reachable and will not
be garbage collected.
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There’s a persistent myth that this sort of event-based memory leak
has something to do with circular references. In fact, GC copes per‐
fectly well with circular references. It’s true that there are often cir‐
cular references in these scenarios, but they’re not the issue. The
problem is caused by accidentally keeping objects reachable after
you no longer need them. Doing that will cause problems regard‐
less of whether circular references are present.

You can deal with this by ensuring that if your UI layer ever attaches handlers to
objects that will stay alive for a long time, you remove those handlers when the rele‐
vant UI element is no longer in use. Alternatively, you could use weak references to
ensure that if your event source is the only thing holding a reference to the target, it
doesn’t keep it alive. WPF can help you with this—it provides a WeakEventManager
class that allows you to handle an event in such a way that the handling object is able
to be garbage collected without needing to unsubscribe from the event. WPF uses this
technique itself when databinding the UI to a data source that provides property
change notification events.

Although event-related leaks often arise in UIs, they can occur any‐
where. As long as an event source remains reachable, all of its
attached handlers will also remain reachable.

Events Versus Delegates
Some APIs provide notifications through events, while others just use delegates
directly. How should you decide which approach to use? In some cases, the decision
may be made for you because you want to support some particular idiom. For exam‐
ple, if you want your API to support the new asynchronous features in C#, you will
need to implement the pattern described in Chapter 17, which uses delegates, but not
events, for completion callbacks. Events, on the other hand, provide a clear way to
subscribe and unsubscribe, which will make them a better choice in some situations.
Convention is another consideration: if you are writing a UI element, events will
most likely be appropriate, because that’s the predominant idiom.

In cases where constraints or conventions do not provide an answer, you need to
think about how the callback will be used. If there will be multiple subscribers for a
notification, an event could be the best choice. This is not absolutely necessary,
because any delegate is capable of multicast behavior, but by convention, this behav‐
ior is usually offered through events. If users of your class will need to remove the
handler at some point, events are also likely to be a good choice. That being said, the
IObservable interface also supports unsubscription, and might be a better choice if
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you need more advanced functionality. This interface is part of the Reactive Exten‐
sions for .NET, and is described in Chapter 11.

You would typically pass a delegate as an argument to a method or constructor if it
only makes sense to have a single target method. For example, if the delegate type has
a non-void return value that the API depends on (such as the bool returned by the
predicate passed to Array.FindAll), it makes no sense to have multiple targets or
zero targets. An event is the wrong idiom here, because its subscription-oriented
model considers it perfectly normal to attach either no handlers or multiple handlers.

Occasionally, it might make sense to have either zero handlers or one handler, but
never more than one. For example, take WPF’s CollectionView class, which can
sort, group, and filter data from a collection. You configure filtering by providing a
Predicate<object>. This is not passed as a constructor argument, because filtering is
optional, so instead, the class defines a Filter property. An event would be inappro‐
priate here, partly because Predicate<object> does not fit the usual event delegate
pattern, but mainly because the class needs an unambiguous answer of yes or no, so it
does not want to support multiple targets. (The fact that all delegate types support
multicast means that it’s still possible to supply multiple targets, of course. But the
decision to use a property rather than an event signals the fact that it’s not useful to
attempt to provide multiple callbacks here.)

Delegates Versus Interfaces
Back at the start of this chapter, I argued that delegates offer a less cumbersome
mechanism for callbacks and notifications than interfaces. So why do some APIs
require callers to implement an interface to enable callbacks? Why do we have ICom
parer<T> and not a delegate? Actually, we have both—there’s a delegate type called
Comparison<T>, which is supported as an alternative by many of the APIs that accept
an IComparer<T>. Arrays and List<T> have overloads of their Sort methods that take
either.

There are some situations in which the object-oriented approach may be preferable
to using delegates. An object that implements IComparer<T> could provide properties
to adjust the way the comparison works (e.g., the ability to select between various
sorting criteria). You may want to collect and summarize information across multiple
callbacks, and although you can do that through captured variables, it may be easier
to get the information back out again at the end if it’s available through properties of
an object.

This is really a decision for whoever is writing the code that is being called back, and
not for the developer writing the code that makes the call. Delegates ultimately are
more flexible, because they allow the consumer of the API to decide how to structure
their code, whereas an interface imposes constraints. However, if an interface
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happens to align with the abstractions you want, delegates can seem like an irritating
extra detail. This is why some APIs present both options, such as the sorting APIs
that accept either an IComparer<T> or a Comparison<T>.

One situation in which interfaces might be preferable to delegates is if you need to
provide multiple related callbacks. The Reactive Extensions for .NET define an
abstraction for notifications that include the ability to know when you’ve reached the
end of a sequence of events or when there has been an error, so in that model, sub‐
scribers implement an interface with three methods—OnNext, OnCompleted, and OnEr
ror. It makes sense to use an interface, because all three methods are typically
required for a complete subscription.

Summary
Delegates are objects that provide a reference to a method, which can be either a
static or an instance method. With instance methods, the delegate also holds a refer‐
ence to the target object, so the code that invokes the delegate does not need to sup‐
ply a target. Delegates can also refer to multiple methods, although that complicates
matters if the delegate’s return type is not void. While delegate types get special han‐
dling from the CLR, they are still just reference types, meaning that a reference to a
delegate can be passed as an argument, returned from a method, and stored in a field,
variable, or property. A delegate type defines a signature for the target method. This
is represented through the type’s Invoke method, but C# can hide this, offering a syn‐
tax in which you can invoke a delegate expression directly without explicitly referring
to Invoke. You can construct a delegate that refers to any method with a compatible
signature. You can also get C# to do more of the work for you—if you write an
anonymous function, C# will supply a suitable declaration for you, and can also do
work behind the scenes to make variables in the containing method available to the
inner one. Delegates are the basis of events, which provide a formalized publish/
subscribe model for notifications.

One C# feature that makes particularly extensive use of delegates is LINQ, which is
the subject of the next chapter.
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CHAPTER 10

LINQ

Language Integrated Query (LINQ) is a powerful collection of C# language features
for working with sets of information. It is useful in any application that needs to
work with multiple pieces of data (i.e., almost any application). Although one of its
original goals was to provide straightforward access to relational databases, LINQ is
applicable to many kinds of information. For example, it can also be used with in-
memory object models, HTTP-based information services, JSON, and XML
documents.

LINQ is not a single feature. It relies on several language elements that work together. 
The most conspicuous LINQ-related language feature is the query expression, a form
of expression that loosely resembles a database query but which can be used to per‐
form queries against any supported source, including plain old objects. As you’ll see,
query expressions rely heavily on some other language features such as lambdas,
extension methods, and expression object models.

Language support is only half the story. LINQ needs class libraries to implement a set
of querying primitives called LINQ operators. Each different kind of data requires its
own implementation, and a set of operators for any particular type of information is
referred to as a LINQ provider. (These can also be used from Visual Basic and F#, by
the way, because those languages support LINQ too.) Microsoft supplies several pro‐
viders, some built into the .NET class library and some available as separate NuGet
packages. There is a provider for the Entity Framework for example, an object/rela‐
tional mapping system for working with databases. They offer a LINQ provider for
their Cosmos DB cloud database (a feature of Microsoft Azure). And the Reactive
Extensions for .NET (Rx) described in Chapter 11 provide LINQ support for live
streams of data. In short, LINQ is a widely supported idiom in .NET, and it’s extensi‐
ble, so you will also find open source and other third-party providers.
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Most of the examples in this chapter use LINQ to Objects. This is partly because it
avoids cluttering the examples with extraneous details such as database or service
connections, but there’s a more important reason. LINQ’s introduction in 2007 sig‐
nificantly changed the way I write C#, and that’s entirely because of LINQ to Objects.
Although LINQ’s query syntax makes it look like it’s primarily a data access technol‐
ogy, I have found it to be far more valuable than that. Having LINQ’s services avail‐
able on any collection of objects makes it useful in every part of your code.

Query Expressions
The most visible feature of LINQ is the query expression syntax. It’s not the most
important—as we’ll see later, it’s entirely possible to use LINQ productively without
ever writing a query expression. However, it’s a very natural syntax for many kinds of
queries.

At first glance, a query expression loosely resembles a database query, but the syntax
works with any LINQ provider. Example 10-1 shows a query expression that uses
LINQ to Objects to search for certain CultureInfo objects. (A CultureInfo object
provides a set of culture-specific information, such as the symbol used for the local
currency, what language is spoken, and so on. Some systems call this a locale.) This
particular query looks at the character that denotes what would, in English, be called
the decimal point. Many countries actually use a comma instead of a period, and in
those countries, 100,000 would mean the number 100 written out to three decimal
places; in English-speaking cultures, we would normally write this as 100.000. The
query expression searches all the cultures known to the system and returns those that
use a comma as the decimal separator.

Example 10-1. A LINQ query expression

IEnumerable<CultureInfo> commaCultures =
    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures)
    where culture.NumberFormat.NumberDecimalSeparator == ","
    select culture;

foreach (CultureInfo culture in commaCultures)
{
    Console.WriteLine(culture.Name);
}

The foreach loop in this example shows the results of the query. On my system, this
lists the name of 389 cultures, indicating that slightly under half of the 841 available
cultures use a comma, not a decimal point. Of course, I could easily have achieved
this without using LINQ. Example 10-2 will produce the same results.
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Example 10-2. The non-LINQ equivalent

CultureInfo[] allCultures = CultureInfo.GetCultures(CultureTypes.AllCultures);
foreach (CultureInfo culture in allCultures)
{
    if (culture.NumberFormat.NumberDecimalSeparator == ",")
    {
        Console.WriteLine(culture.Name);
    }
}

Both examples have eight nonblank lines of code, although if you ignore lines that
contain only braces, Example 10-2 contains just four, two fewer than Example 10-1.
Then again, if we count statements, the LINQ example has just three, compared to
four in the loop-based example. So it’s difficult to argue convincingly that either
approach is simpler than the other.

However, Example 10-1 has a significant advantage: the code that decides which
items to choose is well separated from the code that decides what to do with those
items. Example 10-2 intermingles these two concerns: the code that picks the objects
is half outside and half inside the loop.

Another difference is that Example 10-1 has a more declarative style: it focuses on
what we want, not how to get it. The query expression describes the items we’d like,
without mandating that this be achieved in any particular way. For this very simple
example, that doesn’t matter much, but for more complex examples, and particularly
when using a LINQ provider for database access, it can be very useful to allow the
provider a free hand in deciding exactly how to perform the query. Example 10-2’s
approach of iterating over everything in a foreach loop and picking the item it wants
would be a bad idea if we were talking to a database—you generally want to let the
server do this sort of filtering work.

The query in Example 10-1 has three parts. All query expressions are required to
begin with a from clause, which specifies the source of the query. In this case, the
source is an array of type CultureInfo[], returned by the CultureInfo class’s GetCul
tures method. As well as defining the source for the query, the from clause contains a
name, which here is culture. This is called the range variable, and we can use it in
the rest of the query to represent a single item from the source. Clauses can run many
times—the where clause in Example 10-1 runs once for every item in the collection,
so the range variable will have a different value each time. This is reminiscent of the
iteration variable in a foreach loop. In fact, the overall structure of the from clause is
similar—we have the variable that will represent an item from a collection, then the
in keyword, then the source for which that variable will represent individual items.
Just as a foreach loop’s iteration variable is in scope only inside the loop, the range
variable culture is meaningful only inside this query expression.
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Although analogies with foreach can be helpful for understanding
the intent of LINQ queries, you shouldn’t take this too literally. For
example, not all providers directly execute the expressions in a
query. Some LINQ providers convert query expressions into data‐
base queries, in which case the C# code in the various expressions
inside the query does not run in any conventional sense. So,
although it is true to say that the range variable represents a single
value from the source, it’s not always true to say that that clauses
will execute once for every item they process, with the range value
taking that item’s value. It happens to be true for Example 10-1
because it uses LINQ to Objects, but it’s not so for all providers.

The second part of the query in Example 10-1 is a where clause. This clause is
optional, or if you want, you can have several in one query. A where clause filters the
results, and the one in this example states that I want only the CultureInfo objects
with a NumberFormat that indicates that the decimal separator is a comma.

The final part of the query is a select clause, and all query expressions end with
either one of these or a group clause. This determines the final output of the query.
This example indicates that we want each CultureInfo object that was not filtered
out by the query. The foreach loop in Example 10-1 that shows the results of the
query uses only the Name property, so I could have written a query that extracted only
that. As Example 10-3 shows, if I do this, I also need to change the loop, because the
resulting query now produces strings instead of CultureInfo objects.

Example 10-3. Extracting just one property in a query

IEnumerable<string> commaCultures =
    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures)
    where culture.NumberFormat.NumberDecimalSeparator == ","
    select culture.Name;

foreach (string cultureName in commaCultures)
{
    Console.WriteLine(cultureName);
}

This raises a question: in general, what type do query expressions have? In
Example 10-1, commaCultures is an IEnumerable<CultureInfo>; in Example 10-3,
it’s an IEnumerable<string>. The output item type is determined by the final clause
of the query—the select or, in some cases, the group clause. However, not all query
expressions result in an IEnumerable<T>. It depends on which LINQ provider you
use—I’ve ended up with IEnumerable<T> because I’m using LINQ to Objects.
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It’s very common to use the var keyword when declaring variables
that hold LINQ queries. This is necessary if a select clause pro‐
duces instances of an anonymous type, because there is no way to
write the name of the resulting query’s type. Even if anonymous
types are not involved, var is still widely used, and there are two
reasons. One is just a matter of consistency: some people feel that
because you have to use var for some LINQ queries, you should
use it for all of them. Another argument is that LINQ query types
often have verbose and ugly names, and var results in less cluttered
code. This can be a particularly pressing concern in the strictly lim‐
iting confines of a book’s layout, so in many examples in this chap‐
ter I have departed from my usual preference for explicit types, and
have used var to make things fit.

How did C# know that I wanted to use LINQ to Objects? It’s because I used an array
as the source in the from clause. More generally, LINQ to Objects will be used when
you specify any IEnumerable<T> as the source, unless a more specialized provider is
available. However, this doesn’t really explain how C# discovers the existence of pro‐
viders in the first place, and how it chooses between them. To understand that, you
need to know what the compiler does with a query expression.

How Query Expressions Expand
The compiler converts all query expressions into one or more method calls. Once it
has done that, the LINQ provider is selected through exactly the same mechanisms
that C# uses for any other method call. The compiler does not have any built-in con‐
cept of what constitutes a LINQ provider. It just relies on convention. Example 10-4
shows what the compiler does with the query expression in Example 10-3.

Example 10-4. The effect of a query expression

IEnumerable<string> commaCultures =
    CultureInfo.GetCultures(CultureTypes.AllCultures)
    .Where(culture => culture.NumberFormat.NumberDecimalSeparator == ",")
    .Select(culture => culture.Name);

The Where and Select methods are examples of LINQ operators. A LINQ operator is
nothing more than a method that conforms to one of the standard patterns. I’ll
describe these patterns later, in “Standard LINQ Operators” on page 432.

The code in Example 10-4 is all one statement, and I’m chaining method calls
together—I call the Where method on the return value of GetCultures, and I call the
Select method on the return value of Where. The formatting looks a little peculiar,
but it’s too long to go on one line; and, even though it’s not terribly elegant, I prefer
to put the . at the start of the line when splitting chained calls across multiple lines,
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because it makes it much easier to see that each new line continues from where the
last one left off. Leaving the period at the end of the preceding line looks neater, but
also makes it much easier to misread the code.

The compiler has turned the where and select clauses’ expressions into lambdas.
Notice that the range variable ends up as a parameter in each lambda. This is one
example of why you should not take the analogy between query expressions and
foreach loops too literally. Unlike a foreach iteration variable, the range variable
does not exist as a single conventional variable. In the query, it is just an identifier
that represents an item from the source, and in expanding the query into method
calls, C# may end up creating multiple real variables for a single range variable, like it
has with the arguments for the two separate lambdas here.

All query expressions boil down to this sort of thing—chained method calls with
lambdas. (This is why we don’t strictly need the query expression syntax—you could
write any query using method calls instead.) Some are more complex than others.
The expression in Example 10-1 ends up with a simpler structure despite looking
almost identical to Example 10-3. Example 10-5 shows how it expands. It turns out
that when a query’s select clause just passes the range variable straight through, the
compiler interprets that as meaning that we want to pass the results of the preceding
clause straight through without further processing, so it doesn’t add a call to Select.
(There is one exception to this: if you write a query expression that contains nothing
but a from and a select clause, it will generate a call to Select even if the select
clause is trivial.)

Example 10-5. How trivial select clauses expand

IEnumerable<CultureInfo> commaCultures =
    CultureInfo.GetCultures(CultureTypes.AllCultures)
    .Where(culture => culture.NumberFormat.NumberDecimalSeparator == ",");

The compiler has to work harder if you introduce multiple variables within the
query’s scope. You can do this with a let clause. Example 10-6 performs the same job
as Example 10-3, but I’ve introduced a new variable called numFormat to refer to the
number format. This makes my where clause shorter and easier to read, and in a
more complex query that needed to refer to that format object multiple times, this
technique could remove a lot of clutter.

Example 10-6. Query with a let clause

IEnumerable<string> commaCultures =
    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures)
    let numFormat = culture.NumberFormat
    where numFormat.NumberDecimalSeparator == ","
    select culture.Name;
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When you write a query that introduces additional variables like this, the compiler
automatically generates a hidden class with a field for each of the variables so that it
can make them all available at every stage. To get the same effect with ordinary
method calls, we’d need to do something similar, and an easy way to do that is to
introduce an anonymous type to contain them, as Example 10-7 shows.

Example 10-7. How multivariable query expressions expand (approximately)

IEnumerable<string> commaCultures =
    CultureInfo.GetCultures(CultureTypes.AllCultures)
    .Select(culture => new { culture, numFormat = culture.NumberFormat })
    .Where(vars => vars.numFormat.NumberDecimalSeparator == ",")
    .Select(vars => vars.culture.Name);

No matter how simple or complex they are, query expressions are simply a special‐
ized syntax for method calls. This suggests how we might go about writing a custom
source for a query expression.

Supporting Query Expressions
Because the C# compiler just converts the various clauses of a query expression into
method calls, we can write a type that participates in these expressions by defining
some suitable methods. To illustrate that the C# compiler really doesn’t care what
these methods do, Example 10-8 shows a class that makes absolutely no sense but
nonetheless keeps C# happy when used from a query expression. The compiler just
mechanically converts a query expression into a series of method calls, so if suitable-
looking methods exist, the code will compile successfully.

Example 10-8. Nonsensical Where and Select

public class SillyLinqProvider
{
    public SillyLinqProvider Where(Func<string, int> pred)
    {
        Console.WriteLine("Where invoked");
        return this;
    }

    public string Select<T>(Func<DateTime, T> map)
    {
        Console.WriteLine($"Select invoked, with type argument {typeof(T)}");
        return "This operator makes no sense";
    }
}

I can use an instance of this class as the source of a query expression. That’s crazy
because this class does not in any way represent a collection of data, but the compiler
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doesn’t care. It just needs certain methods to be present, so if I write the code in
Example 10-9, the compiler will be perfectly happy even though the code doesn’t
make any sense.

Example 10-9. A meaningless query

var q = from x in new SillyLinqProvider()
        where int.Parse(x)
        select x.Hour;

The compiler converts this into method calls in exactly the same way that it did with
the more sensible query in Example 10-1. Example 10-10 shows the result. If you’re
paying close attention, you’ll have noticed that my range variable actually changes
type partway through—my Where method requires a delegate that takes a string, so in
that first lambda, x is of type string. But my Select method requires its delegate to
take a DateTime, so that’s the type of x in that lambda. (And it’s all ultimately irrele‐
vant, because my Where and Select methods don’t even use these lambdas.) Again,
this is nonsense, but it shows how mechanically the C# compiler converts queries to
method calls.

Example 10-10. How the compiler transforms the meaningless query

var q = new SillyLinqProvider().Where(x => int.Parse(x)).Select(x => x.Hour);

Obviously, it’s not useful to write code that makes no sense. The reason I’m showing
you this is to demonstrate that the query expression syntax knows nothing about
semantics—the compiler has no particular expectation of what any of the methods it
invokes will do. All that it requires is that they accept lambdas as arguments, and
return something other than void.

Clearly, the real work is happening elsewhere. It’s the LINQ providers themselves
that make things happen. So now I’ll outline what we would need to write to make
the queries I showed in the first couple of examples work if LINQ to Objects didn’t
exist.

You’ve seen how LINQ queries are transformed into code such as that shown in
Example 10-4, but this isn’t the whole story. The where clause becomes a call to the
Where method, but we’re calling it on an array of type CultureInfo[], a type that
does not in fact have a Where method. This works only because LINQ to Objects
defines an appropriate extension method. As I showed in Chapter 3, it’s possible to
add new methods to existing types, and LINQ to Objects does that for IEnumera
ble<T>. (Since most collections implement IEnumerable<T>, this means LINQ to
Objects can be used on almost any kind of collection.) To use these extension meth‐
ods, you need a using directive for the System.Linq namespace. (The extension
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1 Well, the using directive suggestion is helpful. The System.Core.dll suggestion is only correct on .NET
Framework, since the relevant code lives in System.Linq.dll on .NET Core, which is in any case included in
the references you get by default in .NET Core applications.

methods are all defined by a static class in that namespace called Enumerable, by the
way.) If attempt to use LINQ without that directive, the compiler would produce this
error for the query expression for Example 10-1 or Example 10-3:

error CS1935: Could not find an implementation of the query pattern for source
type 'System.Globalization.CultureInfo[]'.  'Where' not found.  Are you missing
a reference to 'System.Core.dll' or a using directive for 'System.Linq'?

In general, that error message’s suggestion would be helpful,1 but in this case, I want
to write my own LINQ implementation. Example 10-11 does this, and I’ve shown the
whole source file because extension methods are sensitive to the use of namespaces
and using directives. The contents of the Main method should look familiar—this is
the code from Example 10-3, but this time, instead of using the LINQ to Objects pro‐
vider, it will use the extension methods from my CustomLinqProvider class. (Nor‐
mally, you make extension methods available with a using directive, but because
CustomLinqProvider is in the same namespace as the Program class, all of its exten‐
sion methods are automatically available to Main.)

Although Example 10-11 behaves as intended, you should not take
this as an example of how a LINQ provider normally executes its
queries. This does illustrate how LINQ providers put themselves in
the picture, but as I’ll show later, there are some issues with how
this code goes on to perform the query. Also, it’s rather minimalis‐
tic—there’s more to LINQ than Where and Select, and most real
providers offer slightly more than just these two operators.

Example 10-11. A custom LINQ provider for CultureInfo[]

using System;
using System.Globalization;

namespace CustomLinqExample
{
    public static class CustomLinqProvider
    {
        public static CultureInfo[] Where(this CultureInfo[] cultures,
                                          Predicate<CultureInfo> filter)
        {
            return Array.FindAll(cultures, filter);
        }

        public static T[] Select<T>(this CultureInfo[] cultures,
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                                    Func<CultureInfo, T> map)
        {
            var result = new T[cultures.Length];
            for (int i = 0; i < cultures.Length; ++i)
            {
                result[i] = map(cultures[i]);
            }
            return result;
        }
    }

    class Program
    {
        static void Main(string[] args)
        {
            var commaCultures =
              from culture in CultureInfo.GetCultures(CultureTypes.AllCultures)
              where culture.NumberFormat.NumberDecimalSeparator == ","
              select culture.Name;

            foreach (string cultureName in commaCultures)
            {
                Console.WriteLine(cultureName);
            }
        }
    }
}

As you’re now well aware, the query expression in Main will first call Where on the
source, and will then call Select on whatever Where returns. As before, the source is
the return value of GetCultures, which is an array of type CultureInfo[]. That’s the
type for which CustomLinqProvider defines extension methods, so this will invoke
CustomLinqProvider.Where. That uses the Array class’s FindAll method to find all
of the elements in the source array that match the predicate. The Where method
passes its own argument straight through to FindAll as the predicate, and as you
know, when the C# compiler calls Where, it passes a lambda based on the expression
in the LINQ query’s where clause. That predicate will match the cultures that use a
comma as their decimal separator, so the Where clause returns an array of type Cul
tureInfo[] that contains only those cultures.

Next, the code that the compiler created for the query will call Select on the Cultur
eInfo[] array returned by Where. Arrays don’t have a Select method, so the exten‐
sion method in CustomLinqProvider will be used. My Select method is generic, so
the compiler will need to work out what the type argument should be, and it can infer
this from the expression in the select clause.

First, the compiler transforms it into a lambda: culture => culture.Name. Because
this becomes the second argument for Select, the compiler knows that we require a
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Func<CultureInfo, T>, so it knows that the culture parameter must be of type Cul
tureInfo. This enables it to infer that T must be string, because the lambda returns
culture.Name, and that Name property’s type is string. So the compiler knows that it
is invoking CustomLinqProvider.Select<string>. (The deduction I just described is
not specific to query expressions here, by the way. The type inference takes place after
the query has been transformed into method calls. The compiler would have gone
through exactly the same process if we had started with the code in Example 10-4.)

The Select method will now produce an array of type string[] (because T is string
here). It populates that array by iterating through the elements in the incoming Cul
tureInfo[], passing each CultureInfo as the argument to the lambda that extracts
the Name property. So we end up with an array of strings, containing the name of each
culture that uses a comma as its decimal separator.

That’s a slightly more realistic example than my SillyLinqProvider, because this
does now provide the expected behavior. However, although the query produces the
same strings as it did when using the real LINQ to Objects provider, the mechanism
by which it does so is somewhat different. My CustomLinqProvider performed each
operation immediately—the Where and Select methods both returned fully popula‐
ted arrays. LINQ to Objects does something quite different. In fact, so do most LINQ
providers.

Deferred Evaluation
If LINQ to Objects worked in the same way as my custom provider in
Example 10-11, it would not cope well with Example 10-12. This has a Fibonacci
method that returns a never-ending sequence—it will keep providing numbers from
the Fibonacci series for as long as the code keeps asking for them. I have used the
IEnumerable<BigInteger> returned by this method as the source for a query expres‐
sion. Since we have a using directive for System.Linq in place near the start, I’m
back to using LINQ to Objects here.

Example 10-12. Query with an infinite source sequence

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;

class Program
{
    static IEnumerable<BigInteger> Fibonacci()
    {
        BigInteger n1 = 1;
        BigInteger n2 = 1;
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        yield return n1;
        while (true)
        {
            yield return n2;
            BigInteger t = n1 + n2;
            n1 = n2;
            n2 = t;
        }
    }

    static void Main(string[] args)
    {
        var evenFib = from n in Fibonacci()
                      where n % 2 == 0
                      select n;

        foreach (BigInteger n in evenFib)
        {
            Console.WriteLine(n);
        }
    }
}

This will use the Where extension method that LINQ to Objects provides for IEnumer
able<T>. If that worked the same way as my CustomLinqExtension class’s Where
method for CultureInfo[], this program would never make it as far as displaying a
single number. My Where method did not return until it had filtered the whole of its
input and produced a fully populated array as its output. If the LINQ to Objects
Where method tried that with my infinite Fibonacci enumerator, it would never
finish.

In fact, Example 10-12 works perfectly—it produces a steady stream of output con‐
sisting of the Fibonacci numbers that are divisible by 2. This means it can’t be
attempting to perform all of the filtering when we call Where. Instead, its Where
method returns an IEnumerable<T> that filters items on demand. It won’t try to fetch
anything from the input sequence until something asks for a value, at which point it
will start retrieving one value after another from the source until the filter delegate
says that a match has been found. It then returns that and doesn’t try to retrieve any‐
thing more from the source until it is asked for the next item. Example 10-13 shows
how you could implement this behavior by taking advantage of C#’s yield return
feature.

Example 10-13. A custom deferred Where operator

public static class CustomDeferredLinqProvider
{
    public static IEnumerable<T> Where<T>(this IEnumerable<T> src,
                                          Func<T, bool> filter)
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    {
        foreach (T item in src)
        {
            if (filter(item))
            {
                yield return item;
            }
        }
    }
}

The real LINQ to Objects implementation of Where is somewhat more complex. It
detects certain special cases, such as arrays and lists, and it handles them in a way that
is slightly more efficient than the general-purpose implementation that it falls back to
for other types. However, the principle is the same for Where and all of the other
operators: these methods do not perform the specified work. Instead, they return
objects that will perform the work on demand. It’s only when you attempt to retrieve
the results of a query that anything really happens. This is called deferred evaluation.

Deferred evaluation has the benefit of not doing work until you need it, and it makes
it possible to work with infinite sequences. However, it also has disadvantages. You
may need to be careful to avoid evaluating queries multiple times. Example 10-14
makes this mistake, causing it to do much more work than necessary. This loops
through several different numbers, and writes out each one using the currency for‐
mat of each culture that uses a comma as a decimal separator.

If you run this on Windows, you may find that most of the lines
this code displays will contain ? characters, indicating that the con‐
sole cannot display the most of the currency symbols. In fact, it can
—it just needs permission. By default, the Windows console uses
an 8-bit code page for backward-compatibility reasons. If you run
the command chcp 65001 from a Command Prompt, it will switch
that console window into a UTF-8 code page, enabling it to show
any Unicode characters supported by your chosen console font.
You might want to configure the console to use either Consolas or
Lucida Console to take best advantage of that.

Example 10-14. Accidental reevaluation of a deferred query

var commaCultures =
    from culture in CultureInfo.GetCultures(CultureTypes.AllCultures)
    where culture.NumberFormat.NumberDecimalSeparator == ","
    select culture;

object[] numbers = { 1, 100, 100.2, 10000.2 };

foreach (object number in numbers)
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{
    foreach (CultureInfo culture in commaCultures)
    {
        Console.WriteLine(string.Format(culture, "{0}: {1:c}",
                          culture.Name, number));
    }
}

The problem with this code is that even though the commaCultures variable is initial‐
ized outside of the number loop, we iterate through it for each number. And because
LINQ to Objects uses deferred evaluation, that means that the actual work of running
the query is redone every time around the outer loop. So, instead of evaluating that
where clause once for each culture (841 times on my system), it ends up running four
times for each culture (3,364 times) because the whole query is evaluated once for
each of the four items in the numbers array. It’s not a disaster—the code still works
correctly. But if you do this in a program that runs on a heavily loaded server, it will
harm your throughput.

If you know you will need to iterate through the results of a query multiple times,
consider using either the ToList or ToArray extension methods provided by LINQ to
Objects. These immediately evaluate the whole query once, producing an IList<T>
or a T[] array, respectively (so you shouldn’t use these methods on infinite sequen‐
ces, obviously). You can then iterate through that as many times as you like without
incurring any further costs (beyond the minimal cost inherent in reading array or list
elements). But in cases where you iterate through a query only once, it is usually bet‐
ter not to use these methods, as they’ll consume more memory than necessary.

LINQ, Generics, and IQueryable<T>
Most LINQ providers use generic types. Nothing enforces this, but it is very com‐
mon. LINQ to Objects uses IEnumerable<T>. Several of the database providers use a
type called IQueryable<T>. More broadly, the pattern is to have some generic type
Source<T>, where Source represents some source of items, and T is the type of an
individual item. A source type with LINQ support makes operator methods available
on Source<T> for any T, and those operators also typically return Source<TResult>,
where TResult may or may not be different than T.

IQueryable<T> is interesting because it is designed to be used by multiple providers.
This interface, its base IQueryable, and the related IQueryProvider are shown in
Example 10-15.
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Example 10-15. IQueryable and IQueryable<T>

public interface IQueryable : IEnumerable
{
    Type ElementType { get; }
    Expression Expression { get; }
    IQueryProvider Provider { get; }
}

public interface IQueryable<out T> : IEnumerable<T>, IQueryable
{
}

public interface IQueryProvider
{
    IQueryable CreateQuery(Expression expression);
    IQueryable<TElement> CreateQuery<TElement>(Expression expression);
    object Execute(Expression expression);
    TResult Execute<TResult>(Expression expression);
}

The most obvious feature of IQueryable<T> is that it adds no members to its bases.
That’s because it’s designed to be used entirely via extension methods. The Sys
tem.Linq namespace defines all of the standard LINQ operators for IQueryable<T>
as extension methods provided by the Queryable class. However, all of these simply
defer to the Provider property defined by the IQueryable base. So, unlike LINQ to
Objects, where the extension methods on IEnumerable<T> define the behavior, an
IQueryable<T> implementation is able to decide how to handle queries because it
gets to supply the IQueryProvider that does the real work.

However, all IQueryable<T>-based LINQ providers have one thing in common: they
interpret the lambdas as expression objects, not delegates. Example 10-16 shows the
declaration of the Where extension methods defined for IEnumerable<T> and IQuerya
ble<T>. Compare the predicate parameters.

Example 10-16. Enumerable versus Queryable

public static class Enumerable
{
    public static IEnumerable<TSource> Where<TSource>(
        this IEnumerable<TSource> source,
        Func<TSource, bool> predicate)
    ...
}

public static class Queryable
{
    public static IQueryable<TSource> Where<TSource>(
        this IQueryable<TSource> source,
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        Expression<Func<TSource, bool>> predicate)
    ...
}

The Where extension for IEnumerable<T> (LINQ to Objects) takes a Func<TSource,
bool>, and as you saw in Chapter 9, this is a delegate type. But the Where extension
method for IQueryable<T> (used by numerous LINQ providers) takes Expres
sion<Func<TSource, bool>>, and as you also saw in Chapter 9, this causes the com‐
piler to build an object model of the expression and pass that as the argument.

A LINQ provider typically uses IQueryable<T> if it wants these expression trees. And
that’s usually because it’s going to inspect your query and convert it into something
else, such as a SQL query.

There are some other common generic types that crop up in LINQ. Some LINQ fea‐
tures guarantee to produce items in a certain order, and some do not. More subtly, a
handful of operators produce items in an order that depends upon the order of their
input. This can be reflected in the types for which the operators are defined and the
types they return. LINQ to Objects defines IOrderedEnumerable<T> to represent
ordered data, and there’s a corresponding IOrderedQueryable<T> type for
IQueryable<T>-based providers. (Providers that use their own types tend to do
something similar—Parallel LINQ (see Chapter 16) defines an OrderedParallel
Query<T>, for example.) These interfaces derive from their unordered counterparts,
such as IEnumerable<T> and IQueryable<T>, so all the usual operators are available,
but they make it possible to define operators or other methods that need to take the
existing order of their input into account. For example, in “Ordering” on page 443, I
will show a LINQ operator called ThenBy, which is available only on sources that are
already ordered.

When looking at LINQ to Objects, this ordered/unordered distinction may seem
unnecessary, because IEnumerable<T> always produces items in some sort of order.
But some providers do not necessarily do things in any particular order, perhaps
because they parallelize query execution, or because they get a database to execute the
query for them, and databases reserve the right to meddle with the order in certain
cases if it enables them to work more efficiently.

Standard LINQ Operators
In this section, I will describe the standard operators that LINQ providers can supply.
Where applicable, I will also describe the query expression equivalent, although many
operators do not have a corresponding query expression form. Some LINQ features
are available only through explicit method invocation. This is even true with certain
operators that can be used in query expressions, because most operators are overloa‐
ded, and query expressions can’t use some of the more advanced overloads.
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LINQ operators are not operators in the usual C# sense—they are
not symbols such as + or &&. LINQ has its own terminology, and
for this chapter, an operator is a query capability offered by a LINQ
provider. In C#, it looks like a method.

All of these operators have something in common: they have all been designed to
support composition. This means that you can combine them in almost any way you
like, making it possible to build complex queries out of simple elements. To enable
this, operators not only take some type representing a set of items (e.g., an IEnumera
ble<T>) as their input, but most of them also return something representing a set of
items. As already mentioned, the item type is not always the same—an operator
might take some IEnumerable<T> as input, and produce IEnumerable<TResult> as
output, where TResult does not have to be the same as T. Even so, you can still chain
the things together in any number of ways. Part of the reason this works is that LINQ
operators are like mathematical functions in that they do not modify their inputs;
rather, they produce a new result that is based on their operands. (Functional pro‐
gramming languages typically have the same characteristic.) This means that not only
are you free to plug operators together in arbitrary combinations without fear of side
effects, but you are also free to use the same source as the input to multiple queries,
because no LINQ query will ever modify its input. Each operator returns a new query
based on its input.

Nothing enforces this functional style. As you saw with my SillyLinqProvider, the
compiler doesn’t care what a method representing a LINQ operator does. However,
the convention is that operators are functional, in order to support composition. The
built-in LINQ providers all work this way.

Not all providers offer complete support for all operators. The main providers Micro‐
soft supplies—such as LINQ to Objects or the LINQ support in Entity Framework
and Rx—are as comprehensive as they can be, but there are some situations in which
certain operators will not make sense.

To demonstrate the operators in action, I need some source data. Many of the exam‐
ples in the following sections will use the code in Example 10-17.

Example 10-17. Sample input data for LINQ queries

public class Course
{
    public string Title { get; set; }

    public string Category { get; set; }

    public int Number { get; set; }
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    public DateTime PublicationDate { get; set; }

    public TimeSpan Duration { get; set; }

    public static readonly Course[] Catalog =
    {
        new Course
        {
            Title = "Elements of Geometry",
            Category = "MAT", Number = 101, Duration = TimeSpan.FromHours(3),
            PublicationDate = new DateTime(2009, 5, 20)
        },
        new Course
        {
            Title = "Squaring the Circle",
            Category = "MAT", Number = 102, Duration = TimeSpan.FromHours(7),
            PublicationDate = new DateTime(2009, 4, 1)
        },
        new Course
        {
            Title = "Recreational Organ Transplantation",
            Category = "BIO", Number = 305, Duration = TimeSpan.FromHours(4),
            PublicationDate = new DateTime(2002, 7, 19)
        },
        new Course
        {
            Title = "Hyperbolic Geometry",
            Category = "MAT", Number = 207, Duration = TimeSpan.FromHours(5),
            PublicationDate = new DateTime(2007, 10, 5)
        },
        new Course
        {
            Title = "Oversimplified Data Structures for Demos",
            Category = "CSE", Number = 104, Duration = TimeSpan.FromHours(2),
            PublicationDate = new DateTime(2019, 9, 21)
        },
        new Course
        {
            Title = "Introduction to Human Anatomy and Physiology",
            Category = "BIO", Number = 201, Duration = TimeSpan.FromHours(12),
            PublicationDate = new DateTime(2001, 4, 11)
        },
    };
}

Filtering
One of the simplest operators is Where, which filters its input. You provide a predi‐
cate, which is a function that takes an individual item and returns a bool. Where
returns an object representing the items from the input for which the predicate is
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true. (Conceptually, this is very similar to the FindAll method available on List<T>
and array types, but using deferred execution.)

As you’ve already seen, query expressions represent this with a where clause. How‐
ever, there’s an overload of the Where operator that provides an additional feature not
accessible from a query expression. You can write a filter lambda that takes two argu‐
ments: an item from the input and an index representing that item’s position in the
source. Example 10-18 uses this form to remove every second number from the
input, and it also removes courses shorter than three hours.

Example 10-18. Where operator with index

IEnumerable<Course> q = Course.Catalog.Where(
    (course, index) => (index % 2 == 0) && course.Duration.TotalHours >= 3);

Indexed filtering is meaningful only for ordered data. It always works with LINQ to
Objects, because that uses IEnumerable<T>, which produces items one after another,
but not all LINQ providers process items in sequence. For example, with the Entity
Framework, the LINQ queries you write in C# will be handled on the database.
Unless a query explicitly requests some particular order, a database is usually free to
process items in whatever order it sees fit, possibly in parallel. In some cases, a data‐
base may have optimization strategies that enable it to produce the results a query
requires using a process that bears little resemblance to the original query. So it might
not even be meaningful talk about, say, the 14th item handled by a WHERE clause.
Consequently, if you were to write a query similar to Example 10-18 using the Entity
Framework, executing the query would cause an exception, complaining that the
indexed Where operator is not applicable. If you’re wondering why the overload is
even present if the provider doesn’t support it, it’s because the Entity Framework uses
IQueryable<T>, so all the standard operators are available at compile time; providers
that choose to use IQueryable<T> can only report the nonavailability of operators at
runtime.

LINQ providers that implement some or all of the query logic on
the server side usually impose limitations on what you can do in
the lambdas that make up a query. Conversely, LINQ to Objects
runs queries in process so it lets you invoke any method from
inside a filter lambda—if you want to call Console.WriteLine or
read data from a file in your predicate, LINQ to Objects can’t stop
you. But only a very limited selection of methods is available in
providers for databases. These providers need to be able to trans‐
late your lambdas into something the server can process, and they
will reject expressions that attempt to invoke methods that have no
server-side equivalent.
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Even so, you might have expected the exception to emerge when you invoke Where,
instead of when you try to execute the query (i.e., when you first try to retrieve one or
more items). However, providers that convert LINQ queries into some other form,
such as a SQL query, typically defer all validation until you execute the query. This is
because some operators may be valid only in certain scenarios, meaning that the pro‐
vider may not know whether any particular operator will work until you’ve finished
building the whole query. It would be inconsistent if errors caused by nonviable
queries sometimes emerged while building the query and sometimes when executing
it, so even in cases where a provider could determine earlier that a particular operator
will fail, it will usually wait until you execute the query to tell you.

The Where operator’s filter lambda must take an argument of the item type (the T in
IEnumerable<T>, for example), and it must return a bool. You may remember from
Chapter 9 that the class library defines a suitable delegate type called Predicate<T>,
but I also mentioned in that chapter that LINQ avoids this, and we can now see why.
The indexed version of the Where operator cannot use Predicate<T>, because there’s
an additional argument, so that overload uses Func<T, int, bool>. There’s nothing
stopping the unindexed form of Where from using Predicate<T>, but LINQ provid‐
ers tend to use Func across the board to ensure that that operators with similar mean‐
ings have similar-looking signatures. Most providers therefore use Func<T, bool>
instead, to be consistent with the indexed version. (C# doesn’t care which you use—
query expressions still work if the provider uses Predicate<T>, as my custom Where
operator in Example 10-11 shows, but none of Microsoft’s providers do this.)

LINQ defines another filtering operator: OfType<T>. This is useful if your source con‐
tains a mixture of different item types—perhaps the source is an IEnumera
ble<object> and you’d like to filter this down to only the items of type string.
Example 10-19 shows how the OfType<T> operator can do this.

Example 10-19. The OfType<T> operator

static void ShowAllStrings(IEnumerable<object> src)
{
    foreach (string s in src.OfType<string>())
    {
        Console.WriteLine(s);
    }
}

Both Where and OfType<T> will produce empty sequences if none of the objects in the
source meet the requirements. This is not considered to be an error—empty sequen‐
ces are quite normal in LINQ. Many operators can produce them as output, and most
operators can cope with them as input.
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Select
When writing a query, we may want to extract only certain pieces of data from the
source items. The select clause at the end of most queries lets us supply a lambda
that will be used to produce the final output items, and there are a couple of reasons
we might want to make our select clause do more than simply passing each item
straight through. We might want to pick just one specific piece of information from
each item, or we might want to transform it into something else entirely.

You’ve seen several select clauses already, and I showed in Example 10-3 that the
compiler turns them into a call to Select. However, as with many LINQ operators,
the version accessible through a query expression is not the only option. There’s one
other overload, which provides not just the input item from which to generate the
output item, but also the index of that item. Example 10-20 uses this to generate a
numbered list of course titles.

Example 10-20. Select operator with index

IEnumerable<string> nonIntro = Course.Catalog.Select((course, index) =>
      $"Course {index}: {course.Title}");

Be aware that the zero-based index passed into the lambda will be based on what
comes into the Select operator, and will not necessarily represent the item’s original
position in the underlying data source. This might not produce the results you were
hoping for in code such as Example 10-21.

Example 10-21. Indexed Select downstream of Where operator

IEnumerable<string> nonIntro = Course.Catalog
    .Where(c => c.Number >= 200)
    .Select((course, index) => $"Course {index}: {course.Title}");

This code will select the courses found at indexes 2, 3, and 5, respectively, in the
Course.Catalog array, because those are the courses whose Number property satisfies
the Where expression. However, this query will number the three courses as 0, 1, and
2, because the Select operator sees only the items the Where clause let through. As
far as it is concerned, there are only three items, because the Select clause never had
access to the original source. If you wanted the indexes relative to the original collec‐
tion, you’d need to extract those upstream of the Where clause, as Example 10-22
shows.
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Example 10-22. Indexed Select upstream of Where operator

IEnumerable<string> nonIntro = Course.Catalog
    .Select((course, index) => new { course, index })
    .Where(vars => vars.course.Number >= 200)
    .Select(vars => $"Course {vars.index}: {vars.course.Title}");

You may be wondering why I’ve used an anonymous type here and not a tuple. I
could replace new { course, index } with just (course, index), and the code
would work equally well. However, in general, tuples will not always work in LINQ.
The lightweight tuple syntax was introduced in C# 7.0, so they weren’t around when
expression trees were added back in C# 3.0. The expression object model has not
been updated to support this language feature, so if you try to use a tuple with an
IQueryable<T>-based LINQ provider, you will get compiler error CS8143, telling you
that An expression tree may not contain a tuple literal. So I tend to use
anonymous types in this chapter because they work with query-based providers. But
if you’re using a purely local LINQ provider (e.g., Rx, or LINQ to Objects) feel free to
use tuples.

The indexed Select operator is similar to the indexed Where operator. So, as you
would probably expect, not all LINQ providers support it in all scenarios.

Data shaping and anonymous types

If you are using a LINQ provider to access a database, the Select operator can offer
an opportunity to reduce the quantity of data you fetch, which could reduce the load
on the server. When you use a data access technology such as the Entity Framework
to execute a query that returns a set of objects representing persistent entities, there’s
a trade-off between doing too much work up front and having to do lots of extra
deferred work. Should those frameworks fully populate all of the object properties
that correspond to columns in various database tables? Should they also load related
objects? In general, it’s more efficient not to fetch data you’re not going to use, and
data that is not fetched up front can always be loaded later on demand. However, if
you try to be too frugal in your initial request, you may ultimately end up making a
lot of extra requests to fill in the gaps, which could outweigh any benefit from avoid‐
ing unnecessary work.

When it comes to related entities, the Entity Framework allows you to configure
which related entities should be prefetched and which should be loaded on demand,
but for any particular entity that gets fetched, all properties relating to columns are
typically fully populated. This means queries that request whole entities end up fetch‐
ing all the columns for any row that they touch.

If you needed to use only one or two columns, this is relatively expensive.
Example 10-23 uses this somewhat inefficient approach. It shows a fairly typical
Entity Framework query.
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Example 10-23. Fetching more data than is needed

var pq = from product in dbCtx.Product
         where product.ListPrice > 3000
         select product;
foreach (var prod in pq)
{
    Console.WriteLine($"{prod.Name} ({prod.Size}): {prod.ListPrice}");
}

This LINQ provider translates the where clause into an efficient SQL equivalent.
However, the SQL SELECT clause retrieves all the columns from the table. Compare
that with Example 10-24. This modifies only one part of the query: the LINQ select
clause now returns an instance of an anonymous type that contains only those prop‐
erties we require. (The loop that follows the query can remain the same. It uses var
for its iteration variable, which will work fine with the anonymous type, which pro‐
vides the three properties that loop requires.)

Example 10-24. A select clause with an anonymous type

var pq = from product in dbCtx.Product
         where (product.ListPrice > 3000)
         select new { product.Name, product.ListPrice, product.Size };

The code produces exactly the same results, but it generates a much more compact
SQL query that requests only the Name, ListPrice, and Size columns. If you’re using
a table with many columns, this will produce a significantly smaller response because
it’s no longer dominated by data we don’t need, reducing the load on the network
connection to the database server, and also resulting in faster processing because the
data will take less time to arrive. This technique is called data shaping.

This approach will not always be an improvement. For one thing, it means you are
working directly with data in the database instead of using entity objects. This might
mean working at a lower level of abstraction than would be possible if you use the
entity types, which might increase development costs. Also, in some environments,
database administrators do not allow ad hoc queries, forcing you to use stored proce‐
dures, in which case you won’t have the flexibility to use this technique.

Projecting the results of a query into an anonymous type is not limited to database
queries, by the way. You are free to do this with any LINQ provider, such as LINQ to
Objects. It can sometimes be a useful way to get structured information out of a
query without needing to define a class specially. (As I mentioned in Chapter 3,
anonymous types can be used outside of LINQ, but this is one of the main scenarios
for which they were designed. Grouping by composite keys is another, as I’ll describe
in “Grouping” on page 459.)
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Projection and mapping

The Select operator is sometimes referred to as projection, and it is the same opera‐
tion that many languages call map, which provides a slightly different way to think
about the Select operator. So far, I’ve presented Select as a way to choose what
comes out of a query, but you can also look at it as a way to apply a transformation to
every item in the source. Example 10-25 uses Select to produce modified versions of
a list of numbers. It variously doubles the numbers, squares them, and turns them
into strings.

Example 10-25. Using Select to transform numbers

int[] numbers = { 0, 1, 2, 3, 4, 5 };

IEnumerable<int> doubled = numbers.Select(x => 2 * x);
IEnumerable<int> squared = numbers.Select(x => x * x);
IEnumerable<string> numberText = numbers.Select(x => x.ToString());

SelectMany
The SelectMany LINQ operator is used in query expressions that have multiple from
clauses. It’s called SelectMany because, instead of selecting a single output item for
each input item, you provide it with a lambda that produces a whole collection for
each input item. The resulting query produces all of the objects from all of these col‐
lections, as though each of the collections your lambda returns were merged into one.
(This won’t remove duplicates. Sequences can contain duplicates in LINQ. You can
remove them with the Distinct operator described in “Set Operations” on page 457.)
There are a couple of ways of thinking about this operator. One is that it provides a
means of flattening two levels of hierarchy—a collection of collections—into a single
level. Another way to look at it is as a Cartesian product—that is, a way to produce
every possible combination from some input sets.

Example 10-26 shows how to use this operator in a query expression. This code high‐
lights the Cartesian-product-like behavior. It shows every combination of the letters
A, B, and C with a single digit from 1 to 5—that is, A1, B1, C1, A2, B2, C2, etc. (If
you’re wondering about the apparent incompatibility of the two input sequences, the
select clause of this query relies on the fact that if you use the + operator to add a
string and some other type, C# generates code that calls ToString on the nonstring
operand for you.)

440 | Chapter 10: LINQ



Example 10-26. Using SelectMany from a query expression

int[] numbers = { 1, 2, 3, 4, 5 };
string[] letters = { "A", "B", "C" };

IEnumerable<string> combined = from number in numbers
                               from letter in letters
                               select letter + number;
foreach (string s in combined)
{
    Console.WriteLine(s);
}

Example 10-27 shows how to invoke the operator directly. This is equivalent to the
query expression in Example 10-26.

Example 10-27. SelectMany operator

IEnumerable<string> combined = numbers.SelectMany(
        number => letters,
        (number, letter) => letter + number);

Example 10-26 uses two fixed collections—the second from clause returns the same
letters collection every time. However, you can make the expression in the second
from clause return a value based on the current item from the first from clause. You
can see in Example 10-27 that the first lambda passed to SelectMany (which actually
corresponds to the second from clause’s final expression) receives the current item
from the first collection through its number argument, so you can use that to choose a
different collection for each item from the first collection. I can use this to exploit
SelectMany’s flattening behavior.

I’ve copied a jagged array from Example 5-16 in Chapter 5 into Example 10-28,
which then processes it with a query containing two from clauses. Note that the
expression in the second from clause is now row, the range variable of the first from
clause.

Example 10-28. Flattening a jagged array

int[][] arrays =
{
    new[] { 1, 2 },
    new[] { 1, 2, 3, 4, 5, 6 },
    new[] { 1, 2, 4 },
    new[] { 1 },
    new[] { 1, 2, 3, 4, 5 }
};

IEnumerable<int> flattened = from row in arrays
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                            from number in row
                            select number;

The first from clause asks to iterate over each item in the top-level array. Each of
these items is also an array, and the second from clause asks to iterate over each of
these nested arrays. This nested array’s type is int[], so the range variable of the sec‐
ond from clause, number, represents an int from that nested array. The select clause
just returns each of these int values.

The resulting sequence provides every number in the arrays in turn. It has flattened
the jagged array into a simple linear sequence of numbers. This behavior is conceptu‐
ally similar to writing a nested pair of loops, one iterating over the outer int[][]
array, and an inner loop iterating over the contents of each individual int[] array.

The compiler uses the same overload of SelectMany for Example 10-28 as it does for
Example 10-27, but there’s an alternative in this case. The final select clause is sim‐
pler in Example 10-28—it just passes on items from the second collection unmodi‐
fied, which means the simpler overload shown in Example 10-29 does the job equally
well. With this overload, we just provide a single lambda, which chooses the collec‐
tion that SelectMany will expand for each of the items in the input collection.

Example 10-29. SelectMany without item projection

var flattened = arrays.SelectMany(row => row);

That’s a somewhat terse bit of code, so in case it’s not clear quite how that could end
up flattening the array, Example 10-30 shows how you might implement SelectMany
for IEnumerable<T> if you had to write it yourself.

Example 10-30. One implementation of SelectMany

static IEnumerable<T2> MySelectMany<T, T2>(
            this IEnumerable<T> src, Func<T, IEnumerable<T2>> getInner)
{
    foreach (T itemFromOuterCollection in src)
    {
        IEnumerable<T2> innerCollection = getInner(itemFromOuterCollection);
        foreach (T2 itemFromInnerCollection in innerCollection)
        {
            yield return itemFromInnerCollection;
        }
    }
}

Why does the compiler not use the simpler option shown in Example 10-29? The C#
language specification defines how query expressions are translated into method
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calls, and it mentions only the overload shown in Example 10-26. Perhaps the reason
the specification doesn’t mention the simpler overload is to reduce the demands C#
makes of types that want to support this double-from query form—you’d need to
write only one method to enable this syntax for your own types. However, .NET’s
various LINQ providers are more generous, providing this simpler overload for the
benefit of developers who choose to use the operators directly. In fact, some provid‐
ers define two more overloads: there are versions of both the SelectMany forms we’ve
seen so far that also pass an item index to the first lambda. (The usual caveats about
indexed operators apply, of course.)

Although Example 10-30 gives a reasonable idea of what LINQ to Objects does in
SelectMany, it’s not the exact implementation. There are optimizations for special
cases. Moreover, other providers may use very different strategies. Databases often
have built-in support for Cartesian products, so some providers may implement
SelectMany in terms of that.

Ordering
In general, LINQ queries do not guarantee to produce items in any particular order
unless you explicitly define the order you require. You can do this in a query expres‐
sion with an orderby clause. As Example 10-31 shows, you specify the expression by
which you’d like the items to be ordered, and a direction—so this will produce a col‐
lection of courses ordered by ascending publication date. As it happens, ascending is
the default, so you can leave off that qualifier without changing the meaning. As
you’ve probably guessed, you can specify descending to reverse the order.

Example 10-31. Query expression with orderby clause

var q = from course in Course.Catalog
        orderby course.PublicationDate ascending
        select course;

The compiler transforms the orderby clause in Example 10-31 into a call to the
OrderBy method, and it would use OrderByDescending if you had specified a descend
ing sort order. With source types that make a distinction between ordered and unor‐
dered collections, these operators return the ordered type (for example,
IOrderedEnumerable<T> for LINQ to Objects, and IOrderedQueryable<T> for
IQueryable<T>-based providers).
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With LINQ to Objects, these operators have to retrieve every ele‐
ment from their input before they can produce any output ele‐
ments. An ascending OrderBy can determine which item to return
first only once it has found the lowest item, and it won’t know for
certain which is the lowest until it has seen all of them. It still uses
deferred evaluation—it won’t do anything until you ask it for the
first item. But as soon as you do ask it for something, it has to do
all the work at once. Some providers will have additional knowl‐
edge about the data that can enable more efficient strategies. (For
example, a database may be able to use an index to return values in
the order required.)

LINQ to Objects’ OrderBy and OrderByDescending operators each have two over‐
loads, only one of which is available from a query expression. If you invoke the meth‐
ods directly, you can supply an additional parameter of type IComparer<TKey>, where
TKey is the type of the expression by which the items are being sorted. This is likely to
be important if you sort based on a string property, because there are several differ‐
ent orderings for text, and you may need to choose one based on your application’s
locale, or you may want to specify a culture-invariant ordering to ensure consistency
across all environments.

The expression that determines the order in Example 10-31 is very simple—it just
retrieves the PublicationDate property from the source item. You can write more
complex expressions if you want to. If you’re using a provider that translates a LINQ
query into something else, there may be limitations. If the query runs on the data‐
base, you may be able to refer to other tables—the provider might be able to convert
an expression such as product.ProductCategory.Name into a suitable join. However,
you will not be able to run any old code in that expression, because it must be some‐
thing that the database can execute. But LINQ to Objects just invokes the expression
once for each object, so you really can put in there whatever code you like.

You may want to sort by multiple criteria. You should not do this by writing multiple
orderby clauses. Example 10-32 makes this mistake.

Example 10-32. How not to apply multiple ordering criteria

var q = from course in Course.Catalog
        orderby course.PublicationDate ascending
        orderby course.Duration descending // BAD! Could discard previous order
        select course;

This code orders the items by publication date and then by duration, but does so as
two separate and unrelated steps. The second orderby clause guarantees only that the
results will be in the order specified in that clause, and does not guarantee to preserve
anything about the order in which the elements originated. If what you actually
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wanted was for the items to be in order of publication date, and for any items with
the same publication date to be ordered by descending duration, you would need to
write the query in Example 10-33.

Example 10-33. Multiple ordering criteria in a query expression

var q = from course in Course.Catalog
        orderby course.PublicationDate ascending, course.Duration descending
        select course;

LINQ defines separate operators for this multilevel ordering: ThenBy and ThenByDes
cending. Example 10-34 shows how to achieve the same effect as the query expres‐
sion in Example 10-33 by invoking the LINQ operators directly. For LINQ providers
whose types make a distinction between ordered and unordered collections, these
two operators will be available only on the ordered form, such as IOrderedQuerya
ble<T> or IOrderedEnumerable<T>. If you were to try to invoke ThenBy directly on
Course.Catalog, the compiler would report an error.

Example 10-34. Multiple ordering criteria with LINQ operators

var q = Course.Catalog
    .OrderBy(course => course.PublicationDate)
    .ThenByDescending(course => course.Duration);

You will find that some LINQ operators preserve some aspects of ordering even if
you do not ask them to. For example, LINQ to Objects will typically produce items in
the same order in which they appeared in the input unless you write a query that
causes it to change the order. But this is simply an artifact of how LINQ to Objects
works, and you should not rely on it in general. In fact, even when you are using that
particular LINQ provider, you should check with the documentation to see whether
the order you’re getting is guaranteed, or just an accident of implementation. In most
cases, if you care about the order, you should write a query that makes that explicit.

Containment Tests
LINQ defines various standard operators for discovering things about what the col‐
lection contains. Some providers may be able to implement these operators without
needing to inspect every item. (For example, a database-based provider might use a
WHERE clause, and the database could be able to use an index to evaluate that without
needing to look at every element.) However, there are no restrictions—you can use
these operators however you like, and it’s up to the provider to discover whether it
can exploit a shortcut.
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Unlike most LINQ operators, in the majority of providers these
return neither a collection nor an item from their input. They gen‐
erally just return true or false, or in some cases, a count. Rx is a
notable exception: its implementations of these operators wrap the
bool or int in a single-element IObservable<T> that produces the
result. It does this to preserve the reactive nature of processing in
Rx.

The simplest operator is Contains. You pass an item, and some providers (including
LINQ to Objects) provide an overload that also takes an IEqualityComparer<T> so
that you can customize how the operator determines whether an item in the source is
the same as the specified item. Contains returns true if the source contains the speci‐
fied item, and false if it does not. (If you use the single-argument version with a col‐
lection that implements ICollection<T> (which includes all IList<T>

implementations) LINQ to Objects will detect that, and its implementation of Con
tains just defers to the collection. If you use a non-ICollection<T> collection, or
you provide a custom equality comparer, it will have to examine every item in the
collection.)

If, instead of looking for a particular value, you want to know whether a collection
contains any values that satisfy some particular criteria, you can use the Any operator.
This takes a predicate, and it returns true if the predicate is true for at least one item
in the source. If you want to know how many items match some criteria, you can use
the Count operator. This also takes a predicate, and instead of returning a bool, it
returns an int. If you are working with very large collections, the range of int may be
insufficient, in which case you can use the LongCount operator, which returns a 64-bit
count. (This is likely to be overkill for most LINQ to Objects applications, but it
could matter when the collection lives in a database.)

The Any, Count, and LongCount operators have overloads that do not take any argu‐
ments. For Any, this tells you whether the source contains at least one element, and
for Count and LongCount, these overloads tell you how many elements the source
contains.

Be wary of code such as if (q.Count() > 0). Calculating the
exact count may require the entire source query (q in this case) to
be evaluated, and in any case, it is likely to require more work than
simply answering the question, is this empty? If q refers to a LINQ
query, writing if (q.Any()) is likely to be more efficient. (That
said, outside of LINQ this is not the case for list-like collections,
where retrieving an element count is cheap and may actually be
more efficient than the Any operator.)

446 | Chapter 10: LINQ



A close relative to the Any operator is the All operator. This one is not overloaded—it
takes a predicate, and it returns true if and only if the source contains no items that
do not match the predicate. I used an awkward double negative in the preceding sen‐
tence for a reason: All returns true when applied to an empty sequence, because an
empty sequence certainly doesn’t contain any elements that fail to match the predi‐
cate for the simple reason that it doesn’t contain any elements at all.

This may seems like a curiously pig-headed form of logic. It’s reminiscent of the child
who, when asked, “Have you eaten your vegetables?” unhelpfully replies, “I ate all the
vegetables I put on my plate,” neglecting to mention that he didn’t put any vegetables
on his plate in the first place. It’s not technically untrue, but it fails to provide the
information the parent was looking for. Nonetheless, the operators work this way for
a reason: they correspond to some standard mathematical logical operators. Any is the
existential quantifier, usually written as a backward E (∃) and pronounced “there
exists,” and All is the universal quantifier, usually written as an upside-down A (∀)
and pronounced “for all.” Mathematicians long ago agreed on a convention for state‐
ments that apply the universal quantifier to an empty set. For example, defining 𝕍 as
the set of all vegetables, I can assert that ∀{v : (v ∈ 𝕍) ∧ putOnPlateByMe(v)} eaten‐
ByMe(v), or, in English, “for each vegetable that I put on my plate, it is true to say
that I ate that vegetable.” This statement is deemed to be true if the set of vegetables I
put on my plate is empty. (Perhaps mathematicians don’t like vegetables either.)
Rather pleasingly, the proper term for such a statement is a vacuous truth.

Asynchronous Immediate Evaluation
Although most LINQ operators defer execution, as you’ve now seen there are some
exceptions. With most LINQ providers, the Contains, Any and All operators do not
produce a wrapped result. (E.g., in LINQ to Objects, these return a bool, not an IEnu
merable<bool>.) This sometimes means that these operators need to do some slow
work. For example, the Entity Framework’s LINQ provider will need to send a query
off to the database and wait for the response before being able to return the bool
result. The same goes for ToArray and ToList, which produce fully-populated collec‐
tions, instead of an IEnumerable<T> or IQueryable<T> that have the potential to pro‐
duce results in the future.

As Chapter 16 describes, it is common for slow operations like these to implement
the Task-based Asynchronous Pattern (TAP), enabling us to use the await keyword
described in Chapter 17. Some LINQ providers therefore choose to offer asynchro‐
nous versions of these operators. For example, Entity Framework offers SingleAsync,
ContainsAsync, AnyAsync, AllAsync, ToArrayAsync, and ToListAsync, and equiva‐
lents for the other operators we’ll see that perform immediate evaluation.
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Specific Items and Subranges
It can be useful to write a query that produces just a single item. Perhaps you’re look‐
ing for the first object in a list that meets certain criteria, or maybe you want to fetch
information in a database identified by a particular key. LINQ defines several opera‐
tors that can do this, and some related ones for working with a subrange of the items
a query might return.

Use the Single operator when you have a query that you believe should produce
exactly one result. Example 10-35 shows just such a query—it looks up a course by its
category and number, and in my sample data, this uniquely identifies a course.

Example 10-35. Applying the Single operator to a query

var q = from course in Course.Catalog
        where course.Category == "MAT" && course.Number == 101
        select course;

Course geometry = q.Single();

Because LINQ queries are built by chaining operators together, we can take the query
built by the query expression and add on another operator—the Single operator, in
this case. While most operators would return an object representing another query
(an IEnumerable<T> here, since we’re using LINQ to Objects) Single is different.
Like ToArray and ToList, the Single operator evaluates the query immediately, but
it then returns the one and only object that the query produced. If the query fails to
produce exactly one object—perhaps it produces no items, or two—this will throw an
InvalidOperationException. (Since this is another of the operators that produces an
operator immediately, some providers offer SingleAsync as described in the sidebar
“Asynchronous Immediate Evaluation” on page 447.)

There’s an overload of the Single operator that takes a predicate. As Example 10-36
shows, this allows us to express the same logic as the whole of Example 10-35 more
compactly. (As with the Where operator, all the predicate-based operators in this sec‐
tion use Func<T, bool>, not Predicate<T>.)

Example 10-36. Single operator with predicate

Course geometry = Course.Catalog.Single(
    course => course.Category == "MAT" && course.Number == 101);

The Single operator is unforgiving: if your query does not return exactly one item, it
will throw an exception. There’s a slightly more flexible variant called SingleOrDe
fault, which allows a query to return either one item or no items. If the query
returns nothing, this method returns the default value for the item type (i.e., null if
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it’s a reference type, 0 if it’s a numeric type, and false if the type is bool). Multiple
matches still cause an exception. As with Single, there are two overloads: one with
no arguments for use on a source that you believe contains no more than one object,
and one that takes a predicate lambda.

LINQ defines two related operators, First and FirstOrDefault, each of which offer
overloads taking no arguments or a predicate. For sequences containing zero or one
matching items, these behave in exactly the same way as Single and SingleOrDe
fault: they return the item if there is one; if there isn’t, First will throw an excep‐
tion, while FirstOrDefault will return null or an equivalent value. However, these
operators respond differently when there are multiple results—instead of throwing
an exception, they just pick the first result and return that, discarding the rest. This
might be useful if you want to find the most expensive item in a list—you could order
a query by descending price and then pick the first result. Example 10-37 uses a simi‐
lar technique to pick the longest course from my sample data.

Example 10-37. Using First to select the longest course

var q = from course in Course.Catalog
        orderby course.Duration descending
        select course;
Course longest = q.First();

If you have a query that doesn’t guarantee any particular order for its results, these
operators will pick one item arbitrarily.

Do not use First or FirstOrDefault unless you expect there to be
multiple matches and you want to process only one of them. Some
developers use these when they expect only a single match. The
operators will work, of course, but the Single and SingleOrDe
fault operators more accurately express your expectations. They
will let you know when your expectations were misplaced by
throwing an exception when there are multiple matches. If your
code embodies incorrect assumptions, it’s usually best to know
about it instead of plowing on regardless.

The existence of First and FirstOrDefault raises an obvious question: can I pick
the last item? The answer is yes, there are also Last and LastOrDefault operators,
and again, each offers two overloads—one taking no arguments, and one taking a
predicate.

The next obvious question is: what if I want a particular element that’s neither the
first nor the last? Your wish is, in this particular instance, LINQ’s command, because
it offers ElementAt and ElementAtOrDefault operators, both of which take just an
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index. (There are no overloads.) This provides a way to access elements of any IEnu
merable<T> by index, but be careful: if you ask for the 10,000th element, these opera‐
tors may need to request and discard the first 9,999 elements to get there. As it
happens, LINQ to Objects detects when the source object implements IList<T>, in
which case it uses the indexer to retrieve the element directly instead of going the
slow way around. But not all IEnumerable<T> implementations support random
access, so these operators can be very slow. In particular, even if your source imple‐
ments IList<T>, once you’ve applied one or more LINQ operators to it, the output of
those operators will typically not support indexing. So it would be particularly disas‐
trous to use ElementAt in a loop of the kind shown in Example 10-38.

Example 10-38. How not to use ElementAt

var mathsCourses = Course.Catalog.Where(c => c.Category == "MAT");
for (int i = 0; i < mathsCourses.Count(); ++i)
{
    // Never do this!
    Course c = mathsCourses.ElementAt(i);
    Console.WriteLine(c.Title);
}

Even though Course.Catalog is an array, I’ve filtered its contents with the Where
operator, which returns a query of type IEnumerable<Course> that does not imple‐
ment IList<Course>. The first iteration won’t be too bad—I’ll be passing ElementAt
an index of 0, so it just returns the first match, and with my sample data, the very first
item Where inspects will match. But the second time around the loop, we’re calling
ElementAt again. The query that mathsCourses refers to does not keep track of where
we got to in the previous loop—it’s an IEnumerable<T>, not an IEnumerator<T>—so
this will start again. ElementAt will ask that query for the first item, which it will
promptly discard, and then it will ask for the next item, and that becomes the return
value. So the Where query has now been executed twice—the first time, ElementAt
asked it for only one item, and then the second time it asked it for two, so it has pro‐
cessed the first course twice now. The third time around the loop (which happens to
be the final time), we do it all again, but this time, ElementAt will discard the first two
matches and will return the third, so now it has looked at the first course three times,
the second one twice, and the third and fourth courses once. (The third course in my
sample data is not in the MAT category, so the Where query will skip over this when
asked for the third item.) So, to retrieve three items, I’ve evaluated the Where query
three times, causing it to evaluate my filter lambda seven times.

In fact, it’s worse than that, because the for loop will also invoke that Count method
each time, and with a nonindexable source such as the one returned by Where, Count
has to evaluate the entire sequence—the only way the Where operator can tell you
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how many items match is to look at all of them. So this code fully evaluates the query
returned by Where three times in addition to the three partial evaluations performed
by ElementAt. We get away with it here because the collection is small, but if I had an
array with 1,000 elements, all of which turned out to match the filter, we’d be fully
evaluating the Where query 1,000 times, and performing partial evaluations another
1,000 times. Each full evaluation calls the filter predicate 1,000 times, and the partial
evaluations here will do so on average 500 times, so the code would end up executing
the filter 1,500,000 times. Iterating through the Where query with the foreach loop
would evaluate the query just once, executing the filter expression 1,000 times, and
would produce the same results.

So be careful with both Count and ElementAt. If you use them in a loop that iterates
over the collection on which you invoke them, the resulting code will have O(n2)
complexity.

All of the operators I’ve just described return a single item from the source. There are
two more operators that also get selective about which items to use but can return
multiple items: Skip and Take. Both of these take a single int argument. As the name
suggests, Skip discards the specified number of elements and then returns everything
else from its source. Take returns the specified number of elements from the start of
the sequence and then discards the rest (so it is similar to TOP in SQL). TakeLast does
the same except it works at the end, e.g. you could use it to get the final 5 items from
the source.

There are predicate-driven equivalents, SkipWhile and TakeWhile. SkipWhile will
discard items from the sequence until it finds one that matches the predicate, at
which point it will return that and every item that follows for the rest of the sequence
(whether or not the remaining items match the predicate). Conversely, TakeWhile
returns items until it encounters the first item that does not match the predicate, at
which point it discards that and the remainder of the sequence.

Although Skip, Take, SkipWhile, and TakeWhile are all clearly order-sensitive, they
are not restricted to just the ordered types, such as IOrderedEnumerable<T>. They are
also defined for IEnumerable<T>, which is reasonable, because even though there
may be no particular order guaranteed, an IEnumerable<T> always produces ele‐
ments in some order. (The only way you can extract items from an IEnumerable<T>
is one after another, so there will always be an order, even if it’s meaningless. It might
not be the same every time you enumerate the items, but for any single evaluation,
the items must come out in some order.) Moreover, IOrderedEnumerable<T> is not
widely implemented outside of LINQ, so it’s quite common to have non-LINQ-aware
objects that produce items in a known order but which implement only IEnumera
ble<T>. These operators are useful in these scenarios, so the restriction is relaxed.
Slightly more surprisingly, IQueryable<T> also supports these operations, but that’s
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consistent with the fact that many databases support TOP (roughly equivalent to Take)
even on unordered queries. As always, individual providers may choose not to sup‐
port individual operations, so in scenarios where there’s no reasonable interpretation
of these operators, they will just throw an exception.

Aggregation
The Sum and Average operators add together the values of all the source items. Sum
returns the total, and Average returns the total divided by the number of items. LINQ
providers that support these typically make them available for collections of items of
these numeric types: decimal, double, float, int, and long. There are also overloads
that work with any item type in conjunction with a lambda that takes an item and
returns one of those numeric types. That allows us to write code such as
Example 10-39, which works with a collection of Course objects and calculates the
average of a particular value extracted from the object: the course length in hours.

Example 10-39. Average operator with projection

Console.WriteLine("Average course length in hours: {0}",
    Course.Catalog.Average(course => course.Duration.TotalHours));

LINQ also defines Min and Max operators. You can apply these to any type of
sequence, although it is not guaranteed to succeed—the particular provider you’re
using may report an error if it doesn’t know how to compare the types you’ve used.
For example, LINQ to Objects requires the objects in the sequence to implement
IComparable.

Min and Max both have overloads that accept a lambda that gets the value to use from
the source item. Example 10-40 uses this to find the date on which the most recent
course was published.

Example 10-40. Max with projection

DateTime m = mathsCourses.Max(c => c.PublicationDate);

Notice that this does not return the course with the most recent publication date; it
returns that course’s publication date. If you want to select the object for which a par‐
ticular property has the maximum value, you could use the OrderByDescending oper‐
ator followed by First, although that might be somewhat inefficient, since it may do
more work than necessary—you’re asking it to sort the entire input.

LINQ to Objects defines specialized overloads of Min and Max for sequences that
return the same numeric types that Sum and Average deal with (i.e., decimal, double,
float, int, and long). It also defines similar specializations for the form that takes a
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2 This name requires some explanation. It’s part of the Reactive Extensions project described in Chapter 11.
The System.Reactive package defines standard LINQ operators for an interface called IObservable<T>, but
it also adds a load of useful non-standard operators. System.Interactive provides all of those extra opera‐
tors for IEnumerable<T>, and its name is meant as a sort of mirror image of System.Reactive.

lambda. These overloads exist to improve performance by avoiding boxing. The
general-purpose form relies on IComparable and getting an interface type reference
to a value always involves boxing that value. For large collections, boxing every single
value would put considerable extra pressure on the garbage collector.

Microsoft provides a NuGet package called System.Interactive2

that provides various extra LINQ-style operators. It includes MaxBy,
which is a more direct (and likely more efficient) way to achieve
the same result. And if you want even more LINQ, there’s the non-
Microsoft MoreLINQ project.

LINQ defines an operator called Aggregate, which generalizes the pattern that Min,
Max, Sum, and Average all use, which is to produce a single result with a process that
involves taking every source item into consideration. It’s possible to implement all
four of these operators in terms of Aggregate. Example 10-41 uses the Sum operator
to calculate the total duration of all courses, and then shows how to use the Aggre
gate operator to perform the exact same calculation.

Example 10-41. Sum and equivalent with Aggregate

double t1 = Course.Catalog.Sum(course => course.Duration.TotalHours);
double t2 = Course.Catalog.Aggregate(
    0.0, (hours, course) => hours + course.Duration.TotalHours);

Aggregation works by building up a value that represents what we know about all the
items inspected so far, referred to as the accumulator. The type we use depends on
the knowledge we want to accumulate. Here, I’m just adding all the numbers
together, so I’ll use a double (because the TimeSpan type’s TotalHours property is
also a double).

Initially we have no knowledge, because we haven’t looked at any items yet. We need
to provide an accumulator value to represent this starting point, so the Aggregate
operator’s first argument is the seed, an initial value for the accumulator. In
Example 10-41, the accumulator is just a running total, so the seed is 0.0.

The second argument is a lambda that describes how to update the accumulator to
incorporate information for a single item. Since my goal here is simply to calculate
the total time, I just add the duration of the current course to the running total.
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Once Aggregate has looked at every item, this particular overload returns the accu‐
mulator directly. It will be the total number of hours across all courses in this case.
The accumulator doesn’t have to use addition. We can implement Max, using the
same process, but a different accumulation strategy. Instead of maintaining a running
total, the value representing everything we know so far about the data is simply the
highest value seen yet. Example 10-42 shows the rough equivalent of Example 10-40.
(It’s not exactly the same, because Example 10-42 makes no attempt to detect an
empty source. Max will throw an exception if this source is empty, but this will just
return the date 0/0/0000.)

Example 10-42. Implementing Max with Aggregate

DateTime m = mathsCourses.Aggregate(
    new DateTime(),
    (date, c) => date > c.PublicationDate ? date : c.PublicationDate);

This illustrates that Aggregate does not impose any single meaning for the value that
accumulates knowledge—the way you use it depends on what you’re doing. Some
operations require an accumulator with a bit more structure. Example 10-43 calcu‐
lates the average course duration with Aggregate.

Example 10-43. Implementing Average with Aggregate

double average = Course.Catalog.Aggregate(
    new { TotalHours = 0.0, Count = 0 },
    (totals, course) => new
    {
        TotalHours = totals.TotalHours + course.Duration.TotalHours,
        Count = totals.Count + 1
    },
    totals => totals.Count >= 0
        ? totals.TotalHours / totals.Count
        : throw new InvalidOperationException("Sequence was empty"));

The average duration requires us to know two things: the total duration, and the
number of items. So, in this example, my accumulator uses a type that can contain
two values, one to hold the total and one to hold the item count. I’ve used an anony‐
mous type because as already mentioned, that is sometimes the only option in LINQ
and I want to show the most general case. However, it’s worth mentioning that in this
particular case, a tuple might be better. It will work because this is LINQ to objects,
and since lightweight tuples are value types whereas anonymous types are reference
types, a tuple would reduce the number of objects being allocated.
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3 If you do so, be careful not to confuse it with another WPF type, Rectangle. That’s an altogether more com‐
plex beast that supports animation, styling, layout, user input, data binding, and various other WPF features.
Do not attempt to use Rectangle outside of a WPF application.

Example 10-43 relies on the fact that when two separate methods
in the same component create instances of two structurally identi‐
cal anonymous types, the compiler generates a single type that is
used for both. The seed produces an instance of an anonymous
type consisting of a double called TotalHours and an int called
Count. The accumulation lambda also returns an instance of an
anonymous type with the same member names and types in the
same order. The C# compiler deems that these will be the same
type, which is important, because Aggregate requires the lambda
to accept and also return an instance of the accumulator type.

Example 10-43 uses a different overload than the earlier example. It takes an extra
lambda, which is used to extract the return value from the accumulator—the accu‐
mulator builds up the information I need to produce the result, but the accumulator
itself is not the result in this example.

Of course, if all you want to do is calculate the sum, maximum, or average values, you
wouldn’t use Aggregate—you’d use the specialized operators designed to do those
jobs. Not only are they simpler, but they’re often more efficient. (For example, a
LINQ provider for a database might be able to generate a query that uses the data‐
base’s built-in features to calculate the minimum or maximum value.) I just wanted
to show the flexibility, using examples that are easily understood. But now that I’ve
done that, Example 10-44 shows a particularly concise example of Aggregate that
doesn’t correspond to any other built-in operator. This takes a collection of rectan‐
gles, and returns the bounding box that contains all of those rectangles.

Example 10-44. Aggregating bounding boxes

public static Rect GetBounds(IEnumerable<Rect> rects) =>
    rects.Aggregate(Rect.Union);

The Rect structure in this example is from the System.Windows namespace. This is
part of WPF, and it’s a very simple data structure that just contains four numbers—X,
Y, Width, and Height—so you can use it in non-WPF applications if you like.3

Example 10-44 uses the Rect type’s static Union method, which takes two Rect argu‐
ments, and returns a single Rect that is the bounding box of the two inputs (i.e., the
smallest rectangle that contains both of the input rectangles).
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I’m using the simplest overload of Aggregate here. It does the same thing as the one I
used in Example 10-41, but it doesn’t require me to supply a seed—it just uses the
first item in the list. Example 10-45 is equivalent to Example 10-44, but makes the
steps more explicit. I’ve provided the first Rect in the sequence as an explicit seed
value, using Skip to aggregate over everything except that first element. I’ve also writ‐
ten a lambda to invoke the method, instead of passing the method itself. If you’re
using this sort of lambda that just passes its arguments straight on to an existing
method with LINQ to Objects, you can just pass the method name instead, and it will
call the target method directly rather than going through your lambda. (You can’t do
that with expression-based providers, because they require a lambda.)

Using the method directly is more succinct and marginally more efficient, but it also
makes for slightly obscure code, which is why I’ve spelled it out in Example 10-45.

Example 10-45. More verbose and less obscure bounding box aggregation

public static Rect GetBounds(IEnumerable<Rect> rects)
{
    IEnumerable<Rect> theRest = rects.Skip(1);
    return theRest.Aggregate(rects.First(), (r1, r2) => Rect.Union(r1, r2));
}

These two examples work the same way. They start with the first rectangle as the
seed. For the next item in the list, Aggregate will call Rect.Union, passing in the seed
and the second rectangle. The result—the bounding box of the first two rectangles—
becomes the new accumulator value. And that then gets passed to Union along with
the third rectangle, and so on. Example 10-46 shows what the effect of this Aggregate
operation would be if performed on a collection of four Rect values. (I’ve represented
the four values here as r1, r2, r3, and r4. To pass them to Aggregate, they’d need to
be inside a collection such as an array.)

Example 10-46. The effect of Aggregate

Rect bounds = Rect.Union(Rect.Union(Rect.Union(r1, r2), r3), r4);

As I mentioned earlier, Aggregate is LINQ’s name for an operation sometimes called
reduce. You also sometimes see it called fold. LINQ went with the name Aggregate
for the same reason it calls its projection operator Select instead of map (the more
common name in functional programming languages): LINQ’s terminology is more
influenced by SQL than it is by functional programming languages.
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4 This is unrelated to the Rect.Union method used in the preceding example.

Set Operations
LINQ defines three operators that use some common set operations to combine two
sources. Intersect produces a result that contains only those items that were in both
of the input sources. Except includes only those items from the first input source that
were not in the second. The output of Union4 contains items that were in either (or
both) of the input sources.

Although LINQ defines these set operations, most LINQ source types do not corre‐
spond directly to the abstraction of a set. With a mathematical set, any particular
item either belongs to a set or it does not, with no innate concept of order, or of the
number of times a particular item appears in a set. IEnumerable<T> is not like that—
it’s a sequence of items, so it’s possible to have duplicates, and the same is true of
IQueryable<T>. This is not necessarily a problem, because some collections will hap‐
pen never to get into a situation where they contain duplicates, and in some cases, the
presence of duplicates won’t cause a problem. However, it can sometimes be useful to
take a collection that contains duplicates and remove them. For this, LINQ defines
the Distinct operator, which removes duplicates. Example 10-47 contains a query
that extracts the category names from all the courses, and then feeds that into the
Distinct operator to ensure that each unique category name appears just once.

Example 10-47. Removing duplicates with Distinct

var categories = Course.Catalog.Select(c => c.Category).Distinct();

All of these set operators are available in two forms, because you can optionally pass
any of them an IEqualityComparer<T>. This allows you to customize how the opera‐
tors decide whether two items are the same thing.

Whole-Sequence, Order-Preserving Operations
LINQ defines certain operators whose output includes every item from the source,
and that preserve or reverse the order. Not all collections necessarily have an order,
so these operators will not always be supported. However, LINQ to Objects supports
all of them. The simplest is Reverse, which reverses the order of the elements.

The Concat operator combines two sequences. It returns a sequence that produces all
of the elements from the first sequence (in whatever order that sequence returns
them), followed by all of the elements from the second sequence (again, preserving
the order). In cases where you need to add just a single element to the end of the first
sequence, you can use Append instead. There is also Prepend which adds a single item
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at the start. The Repeat operator effectively concatenates the specified number of
copies of the source.

The DefaultIfEmpty operator returns all of the elements from its source. However, if
the source is empty, it returns a single element that has the default, zero-like value of
the element type.

The Zip operator also combines two sequences, but instead of returning one after the
other, it works with pairs of elements. So the first item it returns will be based on
both the first item from the first sequence and the first item from the second
sequence. The second item in the zipped sequence will be based on the second items
from each of the sequences, and so on. The name Zip is meant to bring to mind how
a zipper in an article of clothing brings two things together in perfect alignment. (It’s
not an exact analogy. When a zipper brings together the two parts, the teeth from the
two halves interlock in an alternating fashion. But the Zip operator does not inter‐
leave its inputs like a physical zipper’s teeth. It brings items from the two sources
together in pairs.)

Since Zip works with pairs of items, you need to tell it how you’d like them com‐
bined. It takes a lambda with two arguments, and it will pass item pairs from the two
sources as those arguments, and produce whatever your lambda returns as output
items. Example 10-48 uses a selector that combines each pair of items using string
concatenation.

.NET Core adds an overload of Zip that does not require the
lambda. It just returns a sequence of tuples.

Example 10-48. Combining lists with Zip

string[] firstNames = { "Carmel", "Ed", "Arthur", "Arthur" };
string[] lastNames = { "Eve", "Freeman", "Dent", "Pewty" };
IEnumerable<string> fullNames = firstNames.Zip(lastNames,
    (first, last) => first + " " + last);
foreach (string name in fullNames)
{
    Console.WriteLine(name);
}

The two lists that this example zips together contain first names and last names,
respectively. The output looks like this:

Carmel Eve
Ed Freeman
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Arthur Dent
Arthur Pewty

If the input sources contain different numbers of items, Zip will stop once it reaches
the end of the shorter collection, and will not attempt to retrieve any further items
from the longer collection. It does not treat mismatched lengths as an error.

The SequenceEqual operator bears a resemblance to Zip in that it works on two
sequences, and acts on pairs of items found at the same position in the two sequen‐
ces. But, instead of passing them to a lambda to be combined, SequenceEqual just
compares each pair. If this comparison process finds that the two sources contain the
same number of items, and that for every pair, the two items are equal, then it returns
true. If the sources are of different lengths, or if even just one pair of items is not
equal, it returns false. SequenceEqual has two overloads, one that accepts just the
list with which to compare the source, and another that also takes an IEqualityCom
parer<T> to customize what you mean by equal.

Grouping
Sometimes you will want to process all items that have something in common as a
group. Example 10-49 uses a query to group courses by category, writing out a title
for each category before listing all the courses in that category.

Example 10-49. Grouping query expression

var subjectGroups = from course in Course.Catalog
                    group course by course.Category;

foreach (var group in subjectGroups)
{
    Console.WriteLine("Category: " + group.Key);
    Console.WriteLine();

    foreach (var course in group)
    {
        Console.WriteLine(course.Title);
    }
    Console.WriteLine();
}

A group clause takes an expression that determines group membership—in this case,
any courses whose Category properties return the same value will be deemed to be in
the same group. A group clause produces a collection in which each item implements
a type representing a group. Since I am using LINQ to Objects, and I am grouping by
category string, the type of the subjectGroup variable in Example 10-49 will be IEnu

Standard LINQ Operators | 459



merable<IGrouping<string, Course>>. This particular example produces three
group objects, depicted in Figure 10-1.

Figure 10-1. Result of evaluating a grouping query

Each of the IGrouping<string, Course> items has a Key property, and because the
query groups items by the course’s Category property, each key contains a string
value from that property. There are three different category names in the sample data
in Example 10-17: MAT, BIO, and CSE, so these are the Key values for the three groups.

The IGrouping<TKey, TItem> interface derives from IEnumerable<TItem>, so each
group object can be enumerated to find the items it contains. So in Example 10-49,
the outer foreach loop iterates over the three groups returned by the query, and then
the inner foreach loop iterates over the Course objects in each of the groups.

The query expression turns into the code in Example 10-50.

Example 10-50. Expanding a simple grouping query

var subjectGroups = Course.Catalog.GroupBy(course => course.Category);
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Query expressions offer some variations on the theme of grouping. With a slight
modification to the original query, we can arrange for the items in each group to be
something other than the original Course objects. In Example 10-51, I’ve changed the
expression immediately after the group keyword from just course to course.Title.

Example 10-51. Group query with item projection

var subjectGroups = from course in Course.Catalog
                    group course.Title by course.Category;

This still has the same grouping expression, course.Category, so this produces three
groups as before, but now it’s of type IGrouping<string, string>. If you were to
iterate over the contents of one of the groups, you’d find each group offers a sequence
of strings, containing the course names. As Example 10-52 shows, the compiler
expands this query into a different overload of the GroupBy operator.

Example 10-52. Expanding a group query with an item projection

var subjectGroups = Course.Catalog
    .GroupBy(course => course.Category, course => course.Title);

Query expressions are required to have either a select or a group as their final
clause. However, if a query contains a group clause, that doesn’t have to be the last
clause. In Example 10-51, I modified how the query represents each item within a
group (i.e., the boxes on the right of Figure 10-1), but I’m also free to customize the
objects representing each group (the items on the left). By default, I get the IGroup
ing<TKey, TItem> objects (or the LINQ provider in question’s equivalent), but I can
change this. Example 10-53 uses the optional into keyword in its group clause. This
introduces a new range variable, which iterates over the group objects, which I can go
on to use in the rest of the query. I could follow this with other clause types, such as
orderby or where, but in this case, I’ve chosen to use a select clause.

Example 10-53. Group query with group projection

var subjectGroups =
    from course in Course.Catalog
    group course by course.Category into category
    select $"Category '{category.Key}' contains {category.Count()} courses";

The result of this query is an IEnumerable<string>, and if you display all the strings
it produces, you get this:

Category 'MAT' contains 3 courses
Category 'BIO' contains 2 courses
Category 'CSE' contains 1 courses
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As Example 10-54 shows, this expands into a call to the same GroupBy overload that
Example 10-50 uses, and then uses the ordinary Select operator for the final clause.

Example 10-54. Expanded group query with group projection

IEnumerable<string> subjectGroups = Course.Catalog
    .GroupBy(course => course.Category)
    .Select(category =>
        $"Category '{category.Key}' contains {category.Count()} courses");

LINQ to Objects defines some more overloads for the GroupBy operator that are not
accessible from the query syntax. Example 10-55 shows an overload that provides a
slightly more direct equivalent to Example 10-53.

Example 10-55. GroupBy with key and group projections

IEnumerable<string> subjectGroups = Course.Catalog.GroupBy(
    course => course.Category,
    (category, courses) =>
        $"Category '{category}' contains {courses.Count()} courses");

This overload takes two lambdas. The first is the expression by which items are grou‐
ped. The second is used to produce each group object. Unlike the previous examples,
this does not use the IGrouping<TKey, TItem> interface. Instead, the final lambda
receives the key as one argument, and then a collection of the items in the group as
the second. This is exactly the same information that IGrouping<TKey, TItem>

encapsulates, but because this form of the operator can pass these as separate argu‐
ments, it removes the need for objects to represent the groups.

There’s yet another version of this operator shown in Example 10-56. It combines the
functionality of all the other flavors.

Example 10-56. GroupBy operator with key, item, and group projections

IEnumerable<string> subjectGroups = Course.Catalog.GroupBy(
    course => course.Category,
    course => course.Title,
    (category, titles) =>
         $"Category '{category}' contains {titles.Count()} courses: " +
             string.Join(", ", titles));

This overload takes three lambdas. The first is the expression by which items are
grouped. The second determines how individual items in a group are represented—
this time I’ve chosen to extract the course title. The third lambda is used to produce
each group object, and as with Example 10-55, this final lambda is passed the key as
one argument, and its other argument gets the group items, as transformed by the
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second lambda. So, rather than the original Course items, this second argument will
be an IEnumerable<string> containing the course titles, because that’s what the sec‐
ond lambda in this example requested. The result of this GroupBy operator is once
again a collection of strings, but now it looks like this:

Category 'MAT' contains 3 courses: Elements of Geometry, Squaring the Circle, Hy
perbolic Geometry
Category 'BIO' contains 2 courses: Recreational Organ Transplantation, Introduct
ion to Human Anatomy and Physiology
Category 'CSE' contains 1 courses: Oversimplified Data Structures for Demos

I’ve shown four versions of the GroupBy operator. All four take a lambda that selects
the key to use for grouping, and the simplest overload takes nothing else. The others
let you control the representation of individual items in the group, or the representa‐
tion of each group, or both. There are four more versions of this operator. They offer
all the same services as the four I’ve shown already, but also take an IEqualityCom
parer<T>, which lets you customize the logic that decides whether two keys are con‐
sidered to be the same for grouping purposes.

Sometimes it is useful to group by more than one value. For example, suppose you
want to group courses by both category and publication year. You could chain the
operators, grouping first by category, and then by year within the category (or vice
versa). But you might not want this level of nesting—instead of groups of groups, you
might want to group courses under each unique combination of Category and publi‐
cation year. The way to do this is simply to put both values into the key, and you can
do that by using an anonymous type, as Example 10-57 shows.

Example 10-57. Composite group key

var bySubjectAndYear =
    from course in Course.Catalog
    group course by new { course.Category, course.PublicationDate.Year };
foreach (var group in bySubjectAndYear)
{
    Console.WriteLine($"{group.Key.Category} ({group.Key.Year})");
    foreach (var course in group)
    {
        Console.WriteLine(course.Title);
    }
}

This takes advantage of the fact that anonymous types implement Equals and
GetHashCode for us. It works for all forms of the GroupBy operator. With LINQ pro‐
viders that don’t treat their lambdas as expressions (e.g., LINQ to Objects) you could
use a tuple instead, which would be slightly more succinct, while having the same
effect.
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There is one other operator that groups its outputs, called GroupJoin, but it does so
as part of a join operation, and we’ll look at the simpler joins first.

Joins
LINQ defines a Join operator that enables a query over one source to use related data
from some other source, much as a database query can join information from one
table with data in another table. Suppose our application stored a list of which stu‐
dents had signed up for which courses. If you stored that information in a file, you
wouldn’t want to copy the full details for either the course or the student out into
every line—you’d want just enough information to identify a student and a particular
course. In my example data, courses are uniquely identified by the combination of
the category and the number. So, to record who’s signed up for what, we’d need
records containing three pieces of information: the course category, the course num‐
ber, and something to identify the student. The class in Example 10-58 shows how we
might represent such a record in memory.

Example 10-58. Class associating a student with a course

public class CourseChoice
{
    public int StudentId { get; set; }

    public string Category { get; set; }

    public int Number { get; set; }
}

Once our application has loaded this information into memory, we may want access
to the Course objects, rather than just the information identifying the course. We can
get this with a join clause, as shown in Example 10-59 (which also supplies some
additional sample data using the CourseChoice class, so that the query has something
to work with).

Example 10-59. Query with join clause

CourseChoice[] choices =
{
    new CourseChoice { StudentId = 1, Category = "MAT", Number = 101 },
    new CourseChoice { StudentId = 1, Category = "MAT", Number = 102 },
    new CourseChoice { StudentId = 1, Category = "MAT", Number = 207 },
    new CourseChoice { StudentId = 2, Category = "MAT", Number = 101 },
    new CourseChoice { StudentId = 2, Category = "BIO", Number = 201 },
};

var studentsAndCourses = from choice in choices
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                         join course in Course.Catalog
                           on new { choice.Category, choice.Number }
                           equals new { course.Category, course.Number }
                         select new { choice.StudentId, Course = course };

foreach (var item in studentsAndCourses)
{
    Console.WriteLine(
        $"Student {item.StudentId} will attend {item.Course.Title}");
}

This displays one line for each entry in the choices array. It shows the title for each
course, because even though that was not available in the input collection, the join
clause located the relevant item in the course catalog. Example 10-60 shows how the
compiler translates the query in Example 10-59.

Example 10-60. Using the Join operator directly

var studentsAndCourses = choices.Join(
    Course.Catalog,
    choice => new { choice.Category, choice.Number },
    course => new { course.Category, course.Number },
    (choice, course) => new { choice.StudentId, Course = course });

The Join operator’s job is to find an item in the second sequence that corresponds to
the item in the first. This correspondence is determined by the first two lambdas;
items from the two sources will be considered to correspond to one another if the
values returned by these two lambdas are equal. This example uses an anonymous
type, and depends on the fact that two structurally identical anonymously typed
instances in the same assembly share the same type. In other words, those two lamb‐
das both produce objects with the same type. The compiler generates an Equals
method for any anonymous type that compares each member in turn, so the effect of
this code is that two rows are considered to correspond if their Category and Number
properties are equal. (Once again, with IQueryable<T>-based providers we have to
use anonymous types, not tuples, because these lambdas will be turned into expres‐
sion trees. But since this example uses a non-expression-based provider, LINQ to
Objects, you could simplify this code slightly by using tuples instead.)

I’ve set up this example so that there can be only one match, but what would happen
if the course category and number did not uniquely identify a course for some rea‐
son? If there are multiple matches for any single input row, the Join operator will
produce one output item for each match, so in that case, we’d get more output items
than there were entries in the choices array. Conversely, if an item in the first source
has no corresponding item in the second collection, Join will not produce any output
for the item—it effectively ignores that input item.
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LINQ offers an alternative join type that handles input rows with either zero or mul‐
tiple corresponding rows differently than the Join operator. Example 10-61 shows
the modified query expression. (The difference is the addition of into courses on
the end of the join clause, and the final select clause refers to that instead of the
course range variable.) This produces output in a different form, so I’ve also modi‐
fied the code that writes out the results.

Example 10-61. A grouped join

var studentsAndCourses =
    from choice in choices
    join course in Course.Catalog
      on new { choice.Category, choice.Number }
      equals new { course.Category, course.Number }
      into courses
    select new { choice.StudentId, Courses = courses };

foreach (var item in studentsAndCourses)
{
    Console.WriteLine($"Student {item.StudentId} will attend " +
        string.Join(",", item.Courses.Select(course => course.Title)));
}

As Example 10-62 shows, this causes the compiler to generate a call to the GroupJoin
operator instead of Join.

Example 10-62. GroupJoin operator

var studentsAndCourses = choices.GroupJoin(
    Course.Catalog,
    choice => new { choice.Category, choice.Number },
    course => new { course.Category, course.Number },
    (choice, courses) => new { choice.StudentId, Courses = courses });

This form of join produces one result for each item in the input collection by invok‐
ing the final lambda. Its first argument is the input item, and its second argument will
be a collection of all the corresponding objects from the second collection. (Compare
this with Join, which invokes its final lambda once for each match, passing the corre‐
sponding items one at a time.) This provides a way to represent an input item that
has no corresponding items in the second collection: the operator can just pass an
empty collection.

Both Join and GroupJoin also have overloads that accept an IEqualityComparer<T>
so that you can define a custom meaning for equality for the values returned by the
first two lambdas.
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Conversion
Sometimes you will need to convert a query of one type to some other type. For
example, you might have ended up with a collection where the type argument speci‐
fies some base type (e.g., object), but you have good reason to believe that the collec‐
tion actually contains items of some more specific type (e.g., Course). When dealing
with individual objects, you can just use the C# cast syntax to convert the reference to
the type you believe you’re dealing with. Unfortunately, this doesn’t work for types
such as IEnumerable<T> or IQueryable<T>.

Although covariance means that an IEnumerable<Course> is implicitly convertible to
an IEnumerable<object>, you cannot convert in the other direction even with an
explicit downcast. If you have a reference of type IEnumerable<object>, attempting
to cast that to IEnumerable<Course> will succeed only if the object implements IEnu
merable<Course>. It’s quite possible to end up with a sequence that consists entirely
of Course objects but does not implement IEnumerable<Course>. Example 10-63 cre‐
ates just such a sequence, and it will throw an exception when it tries to cast to IEnu
merable<Course>.

Example 10-63. How not to cast a sequence

IEnumerable<object> sequence = Course.Catalog.Select(c => (object) c);
var courseSequence = (IEnumerable<Course>) sequence; // InvalidCastException

This is a contrived example, of course. I forced the creation of an IEnumera
ble<object> by casting the Select lambda’s return type to object. However, it’s
easy enough to end up in this situation for real, in only slightly more complex cir‐
cumstances. Fortunately, there’s an easy solution. You can use the Cast<T> operator,
shown in Example 10-64.

Example 10-64. How to cast a sequence

var courseSequence = sequence.Cast<Course>();

This returns a query that produces every item in its source in order, but it casts each
item to the specified target type as it does so. This means that although the initial
Cast<T> might succeed, it’s possible that you’ll get an InvalidCastException some
point later when you try to extract values from the sequence. After all, in general, the
only way the Cast<T> operator can verify that the sequence you’ve given it really does
only ever produce values of type T is to extract all those values and attempt to cast
them. It can’t evaluate the whole sequence up front because you might have supplied
an infinite sequence. If the first billion items your sequence produces will be of the
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right type, but after that you return one of an incompatible type, the only way
Cast<T> can discover this is to try casting items one at a time.

LINQ to Objects defines an AsEnumerable<T> operator. This just returns the source
without modification—it does nothing. Its purpose is to force the use of LINQ to
Objects even if you are dealing with something that might have been handled by a
different LINQ provider. For example, suppose you have something that implements
IQueryable<T>. That interface derives from IEnumerable<T>, but the extension
methods that work with IQueryable<T> will take precedence over the LINQ to
Objects ones. If your intention is to execute a particular query on a database, and
then use further client-side processing of the results with LINQ to Objects, you can
use AsEnumerable<T> to draw a line that says, “this is where we move things to the
client side.”

Cast<T> and OfType<T> look similar, and developers sometimes
use one when they should have used the other (usually because
they didn’t know both existed). OfType<T> does almost the same
thing as Cast<T>, but it silently filters out any items of the wrong
type instead of throwing an exception. If you expect and want to
ignore items of the wrong type, use OfType<T>. If you do not
expect items of the wrong type to be present at all, use Cast<T>,
because if you turn out to be wrong, it will let you know by throw‐
ing an exception, reducing the risk of allowing a potential bug to
remain hidden.

Conversely, there’s also AsQueryable<T>. This is designed to be used in scenarios
where you have a variable of static type IEnumerable<T> that you believe might con‐
tain a reference to an object that also implements IQueryable<T>, and you want to
ensure that any queries you create use that instead of LINQ to Objects. If you use this
operator on a source that does not in fact implement IQueryable<T>, it returns a
wrapper that implements IQueryable<T> but uses LINQ to Objects under the covers.

Yet another operator for selecting a different flavor of LINQ is AsParallel. This
returns a ParallelQuery<T>, which lets you build queries to be executed by Parallel
LINQ, a LINQ provider that can execute certain operations in parallel to improve
performance when multiple CPU cores are available.

There are some operators that convert the query to other types, and also have the
effect of executing the query immediately rather than building a new query chained
off the back of the previous one. ToArray, ToList, and ToHashSet return an array,
list, or hash set respectively, containing the complete results of executing the input
query. ToDictionary and ToLookup do the same, but rather than producing a
straightforward list of the items, they both produce results that support associative
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lookup. ToDictionary returns an IDictionary<TKey, TValue>, so it is intended for
scenarios where a key corresponds to exactly one value. ToLookup is designed for sce‐
narios where a key may be associated with multiple values, so it returns a different
type, ILookup<TKey, TValue>.

I did not mention this interface in Chapter 5 because it is specific to LINQ. It is
essentially the same as the dictionary interface, except the indexer returns an IEnumer
able<TValue> instead of a single TValue.

While the array and list conversions take no arguments, the dictionary and lookup
conversions need to be told what value to use as the key for each source item. You tell
them by passing a lambda, as Example 10-65 shows. This uses the course’s Category
property as the key.

Example 10-65. Creating a lookup

ILookup<string, Course> categoryLookup =
    Course.Catalog.ToLookup(course => course.Category);
foreach (Course c in categoryLookup["MAT"])
{
    Console.WriteLine(c.Title);
}

The ToDictionary operator offers an overload that takes the same argument but
returns a dictionary instead of a lookup. It would throw an exception if you called it
in the same way that I called ToLookup in Example 10-65, because multiple course
objects share categories, so they would map to the same key. ToDictionary requires
each object to have a unique key. To produce a dictionary from the course catalog,
you’d either need to group the data by category first and have each dictionary entry
refer to an entire group, or you’d need a lambda that returned a composite key based
on both the course category and number, because that combination is unique to a
course.

Both operators also offer an overload that takes a pair of lambdas—one that extracts
the key, and a second that chooses what to use as the corresponding value (you are
not obliged to use the source item as the value). Finally, there are overloads that also
take an IEqualityComparer<T>.

You’ve now seen all of the standard LINQ operators, but since that has taken quite a
few pages, you may find it useful to have a concise summary. Table 10-1 lists the
operators and describes briefly what each is for.
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Table 10-1. Summary of LINQ operators

Operator Purpose

Aggregate Combines all items through a user-supplied function to produce a single result.

All Returns true if the predicate supplied is false for no items.

Any Returns true if predicate supplied is true for at least one item.

Append Returns a sequence with all the items from its input sequence with one item added to the end.

AsEnumerable Returns the sequence as an IEnumerable<T>. (Useful for forcing use of LINQ to Objects.)

AsParallel Returns a ParallelQuery<T> for parallel query execution.

AsQueryable Ensures use of IQueryable<T> handling where available.

Average Calculates the arithmetic mean of the items.

Cast Casts each item in the sequence to the specified type.

Concat Forms a sequence by concatenating two sequences.

Contains Returns true if the specified item is in the sequence.

Count, LongCount Return the number of items in the sequence.

DefaultIfEmpty Produces the source sequence’s elements, unless there are none, in which case it produces a
single element with the default value for the element type.

Distinct Removes duplicate values.

ElementAt Returns the element at the specified position (throwing an exception if out of range).

ElementAtOrDefault Returns the element at the specified position (producing the element type’s default value if out
of range).

Except Filters out items that are in the other collection provided.

First Returns the first item, throwing an exception if there are no items.

FirstOrDefault Returns the first item, or the element type’s default value if there are no items.

GroupBy Gathers items into groups.

GroupJoin Groups items in another sequence by how they relate to items in the input sequence.

Intersect Filters out items that are not in the other collection provided.

Join Produces an item for each matching pair of items from the two input sequences.

Last Returns the final item, throwing an exception if there are no items.

LastOrDefault Returns the final item, or the element type’s default value if there are no items.

Max Returns the highest value.

Min Returns the lowest value.

OfType Filters out items that are not of the specified type.

OrderBy Produces items in an ascending order.

OrderByDescending Produces items in a descending order.

Prepend Returns a sequence starting with a specified single item, followed by all the items from its input
sequence.

Reverse Produces items in the opposite order than the input.

Select Projects each item through a function.
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Operator Purpose

SelectMany Combines multiple collections into one.

SequenceEqual Returns true only if all items are equal to those in the other sequence provided.

Single Returns the only item, throwing an exception if there are no items or more than one item.

SingleOrDefault Returns the only item, or the element type’s default value if there are no items; throws an
exception if there is more than one item.

Skip Filters out the specified number of items from the start.

SkipWhile Filters out items from the start for as long as the items match a predicate.

Sum Returns the result of adding all the items together.

Take Produces the specified number of items, discarding the rest.

TakeLast Produces the specified number of items from the end of the input (discarding all items before
that).

TakeWhile Produces items as long as they match a predicate, discarding the rest of the sequence as soon as
one fails to match.

ToArray Returns an array containing all of the items.

ToDictionary Returns a dictionary containing all of the items.

ToHashSet Returns a HashSet<T> containing all of the items.

ToList Returns a List<T> containing all of the items.

ToLookup Returns a multivalue associative lookup containing all of the items.

Union Produces all items that are in either or both of the inputs.

Where Filters out items that do not match the predicate provided.

Zip Combines pairs of items from two inputs.

Sequence Generation
The Enumerable class defines the extension methods for IEnumerable<T> that consti‐
tute LINQ to Objects. It also offers a few additional (nonextension) static methods
that can be used to create new sequences. Enumerable.Range takes two int argu‐
ments, and returns an IEnumerable<int> that produces a sequentially increasing ser‐
ies of numbers, starting from the value of the first argument and containing as many
numbers as the second argument. For example, Enumerable.Range(15, 10) pro‐
duces a sequence containing the numbers 15 to 24 (inclusive).

Enumerable.Repeat<T> takes a value of type T and a count. It returns a sequence that
will produce that value the specified number of times.

Enumerable.Empty<T> returns an IEnumerable<T> that contains no elements. This
may not sound very useful, because there’s a much less verbose alternative. You could
write new T[0], which creates an array that contains no elements. (Arrays of type T
implement IEnumerable<T>.) However, the advantage of Enumerable.Empty<T> is
that for any given T, it returns the same instance every time. This means that if for
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any reason you end up needing an empty sequence repeatedly in a loop that executes
many iterations, Enumerable.Empty<T> is more efficient, because it puts less pressure
on the garbage collector.

Other LINQ Implementations
Most of the examples I’ve shown in this chapter have used LINQ to Objects, except
for a handful that have referred to the Entity Framework. In this final section, I will
provide a quick description of some other LINQ-based technologies. This is not a
comprehensive list, because anyone can write a LINQ provider.

Entity Framework
The database examples I have shown have used the LINQ provider that is part of the
Entity Framework (EF). The EF is a data access technology that shipped as part of
the .NET Framework, but which has now been moved into a separate NuGet pack‐
age, Microsoft.EntityFrameworkCore. (Older versions are still built into .NET
Framework, but not .NET Core. In any case, if you wish to use the latest version, you
must use the NuGet package.) EF can map between a database and an object layer. It
supports multiple database vendors.

The EF relies on IQueryable<T>. For each persistent entity type in a data model, the
EF can provide an object that implements IQueryable<T> and that can be used as the
starting point for building queries to retrieve entities of that type and of related types.
Since IQueryable<T> is not unique to the EF, you will be using the standard set of
extension methods provided by the Queryable class in the System.Linq namespace,
but that mechanism is designed to allow each provider to plug in its own behavior.

Because IQueryable<T> defines the LINQ operators as methods that accept Expres
sion<T> arguments and not plain delegate types, any expressions you write in either
query expressions or as lambda arguments to the underlying operator methods will
turn into compiler-generated code that creates a tree of objects representing the
structure of the expression. The EF relies on this to be able to generate database quer‐
ies that fetch the data you require. This means that you are obliged to use lambdas;
unlike with LINQ to Objects, you cannot use anonymous methods or delegates with
an EF query.
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Because IQueryable<T> derives from IEnumerable<T>, it’s possible
to use LINQ to Objects operators on any EF source. You can do
this explicitly with the AsEnumerable<T> operator, but it could also
happen accidentally if you used an overload that’s supported by
LINQ to Objects and not IQueryable<T>. For example, if you
attempt to use a delegate instead of a lambda as, say, the predicate
for the Where operator, this will fall back to LINQ to Objects. The
upshot here is that EF will end up downloading the entire contents
of the table and then evaluating the Where operator on the client
side. This is unlikely to be a good idea.

Parallel LINQ (PLINQ)
Parallel LINQ is similar to LINQ to Objects in that it is based on objects and dele‐
gates rather than expression trees and query translation. But when you start asking
for results from a query, it will use multithreaded evaluation where possible, using
the thread pool to try to use the available CPU resources efficiently. Chapter 16 will
show multithreading in action.

LINQ to XML
LINQ to XML is not a LINQ provider. I’m mentioning it here because its name
makes it sound like one. It’s really an API for creating and parsing XML documents.
It’s called LINQ to XML because it was designed to make it easy to execute LINQ
queries against XML documents, but it achieves this by presenting XML documents
through a .NET object model. The .NET class library provides two separate APIs that
do this: as well as LINQ to XML, it also offers the XML Document Object Model
(DOM). The DOM is based on a platform-independent standard, and thus, it’s not a
brilliant match for .NET idioms, and feels unnecessarily quirky compared with most
of the class library. LINQ to XML was designed purely for .NET, so it integrates bet‐
ter with normal C# techniques. This includes working well with LINQ, which it does
by providing methods that extract features from the document in terms of IEnumera
ble<T>. This enables it to defer to LINQ to Objects to define and execute the queries.

Reactive Extensions
The Reactive Extensions for .NET (or Rx, as they’re often abbreviated) are the subject
of the next chapter, so I won’t say too much about them here, but they are a good
illustration of how LINQ operators can work on a variety of types. Rx inverts the
model shown in this chapter where we ask a query for items once we’re good and
ready. So, instead of writing a foreach loop that iterates over a query, or calling one
of the operators that evaluates the query such as ToArray or SingleOrDefault, an Rx
source calls us when it’s ready to supply data.
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Despite this inversion, there is a LINQ provider for Rx that supports most of the
standard LINQ operators.

Tx (LINQ to Logs and Traces)
One of the less known LINQ providers is Tx, which supports running LINQ queries
directly on log files and Event Tracing for Windows (ETW) files. This is an open
source project available at https://github.com/Microsoft/Tx written by Microsoft.

Summary
In this chapter, I showed the query syntax that supports some of the most commonly
used LINQ features. This lets us write queries in C# that resemble database queries
but can query any LINQ provider, including LINQ to Objects, which lets us run
queries against our object models. I showed the standard LINQ operators for query‐
ing, all of which are available with LINQ to Objects, and most of which are available
with database providers. I also provided a quick roundup of some of the common
LINQ providers for .NET applications.

The last provider I mentioned was Rx. But before we look at Rx’s LINQ provider, the
next chapter will begin by looking at how Rx itself works.
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CHAPTER 11

Reactive Extensions

The Reactive Extensions for .NET, or Rx, are designed for working with asynchro‐
nous and event-based sources of information. Rx provides services that help you
orchestrate and synchronize the way your code reacts to data from these kinds of
sources. We already saw how to define and subscribe to events in Chapter 9, but Rx
offers much more than these basic features. It provides an abstraction for event sour‐
ces that has a steeper learning curve than events, but it comes with a powerful set of
operators that makes it far easier to combine and manage multiple streams of events
than is possible with the free-for-all that delegates and .NET events provide.

Rx’s fundamental abstraction, IObservable<T>, represents a sequence of items, and
its operators are defined as extension methods for this interface. This might sound a
lot like LINQ to Objects, and there are similarities—not only does IObservable<T>
have a lot in common with IEnumerable<T>, but Rx also supports almost all of the
standard LINQ operators. If you are familiar with LINQ to Objects, you will also feel
at home with Rx. The difference is that in Rx, sequences are less passive. Unlike IEnu
merable<T>, Rx sources do not wait to be asked for their items, nor can the consumer
of an Rx source demand to be given the next item. Instead, Rx uses a push model in
which the source notifies its recipients when items are available.

For example, if you’re writing an application that deals with live financial informa‐
tion, such as stock market price data, IObservable<T> is a much more natural model
than IEnumerable<T>. Because Rx implements standard LINQ operators, you can
write queries against a live source—you could narrow down the stream of events with
a where clause, or group them by stock symbol. Rx goes beyond standard LINQ,
adding its own operators that take into account the temporal nature of a live event
source. For example, you could write a query that provides data only for stocks that
are changing price more frequently than some minimum rate.
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Rx’s push-oriented approach makes it a better match than IEnumerable<T> for event-
like sources. But why not just use events, or even plain delegates? Rx addresses four
shortcomings of those alternatives. First, it defines a standard way for sources to
report errors. Second, it is able to deliver items in a well-defined order, even in multi‐
threaded scenarios involving numerous sources. Third, Rx provides a clear way to
signal when there are no more items. Fourth, because a traditional event is repre‐
sented by a special kind of member, not a normal object, there are significant limits
on what you can do with an event—you can’t pass an event as an argument to a
method, for example. Rx makes an event source a first-class entity, because it’s just an
object. This means you can pass an event source as an argument, store it in a field, or
offer it in a property—all things you can’t do with an ordinary .NET event. You can
pass a delegate as an argument, of course, but that’s not the same thing—delegates
handle events, but they do not represent them. There’s no way to write a method that
subscribes to some .NET event that you pass as an argument, because you can’t pass
the actual event itself. Rx fixes this by representing event sources as objects, instead of
a special distinctive feature of the type system that doesn’t work like anything else.

These are all features you get for free back in the world of IEnumerable<T>, of course.
A collection can simply throw an exception when its contents are being enumerated,
but with callbacks, it’s less obvious when and where to deliver exceptions. IEnumera
ble<T> makes consumers retrieve items one at a time, so the ordering is unambigu‐
ous, but with plain events and delegates, nothing enforces that. And IEnumerable<T>
tells consumers when the end of the collection has been reached, but with a simple
callback, it’s not necessarily clear when you’ve had the last call. IObservable<T> han‐
dles all of these eventualities, bringing the things we can take for granted with IEnu
merable<T> into the world of events.

By providing a coherent abstraction that addresses these problems, Rx is able to bring
all of the benefits of LINQ to event-driven scenarios. Rx does not replace events; I
wouldn’t have dedicated one-fifth of Chapter 9 to them if it did. In fact, Rx can inte‐
grate with events. It can bridge between its own abstractions and several others, not
just ordinary events, but also IEnumerable<T> and various asynchronous program‐
ming models. Far from deprecating events, Rx raises their capabilities to a new level.
It’s considerably harder to get your head around Rx than events, but it offers much
more power once you do.

Two interfaces form the heart of Rx. Sources that present items through this model
implement IObservable<T>. Subscribers are required to supply an object that imple‐
ments IObserver<T>. These two interfaces are built into .NET. The other parts of Rx
are in the System.Reactive NuGet package.
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Fundamental Interfaces
The two most important types in Rx are the IObservable<T> and IObserver<T>
interfaces. They are important enough to be in the System namespace. Example 11-1
shows their definitions.

Example 11-1. IObservable<T> and IObserver<T>

public interface IObservable<out T>
{
    IDisposable Subscribe(IObserver<T> observer);
}

public interface IObserver<in T>
{
    void OnCompleted();
    void OnError(Exception error);
    void OnNext(T value);
}

The fundamental abstraction in Rx, IObservable<T>, is implemented by event sour‐
ces. Instead of using the event keyword, it models events as a sequence of items. An
IObservable<T> provides items to subscribers as and when it’s ready to.

As you can see, the type argument for IObservable<T> is covariant, meaning if you
have a type Base that is the base type of another type Derived, then just as you can
pass a Derived to any method expecting a Base, you can pass an IObserva
ble<Derived> to anything expecting an IObservable<Base>. It makes sense intui‐
tively to see the out keyword here, because like IEnumerable<T>, this is a source of
information—items come out of it. Conversely, items go into a subscriber’s IOb
server<T> implementation, so that has the in keyword, which denotes contravar‐
iance—you can pass an IObserver<Base> to anything expecting an
IObserver<Derived>. (I described variance in Chapter 6.)

We can subscribe to a source by passing an implementation of IObserver<T> to the
Subscribe method. The source will invoke OnNext when it wants to report events,
and it can call OnCompleted to indicate that there will be no further activity. If the
source wants to report an error, it can call OnError. Both OnCompleted and OnError
indicate the end of the stream—an observable should not call any further methods on
the observer after that.
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You will not necessarily get an exception immediately if you break
these rules. In some cases you will—if you use the NuGet Sys
tem.Reactive library to help implement and consume these inter‐
faces, there are certain circumstances in which it can detect this
kind of mistake. But in general it is the responsibility of code call‐
ing these methods to stick to the rules.

There’s a visual convention for representing Rx activity. It’s sometimes called a mar‐
ble diagram, because it consists mainly of small circles that look a bit like marbles.
Figure 11-1 uses this convention to represent two sequences of events. The horizontal
lines represent subscriptions to sources, with the vertical bar on the left indicating the
start of the subscription, and the horizontal position indicating when something
occurred (with elapsed time increasing from left to right). The circles indicate calls to
OnNext, i.e., events being reported by the source). An arrow on the righthand end
indicates that the subscription was still active by the end of the time the diagram rep‐
resents. A vertical bar on the right indicates the end of the subscription—either due
to a call to OnError or OnCompleted, or because the subscriber unsubscribed.

Figure 11-1. Simple marble diagram

When you call Subscribe on an observable, it returns an object that implements IDis
posable, which provides a way to unsubscribe. If you call Dispose, the observable
will not deliver any more notifications to your observer. This can be more convenient
than the mechanism for unsubscribing from an event; to unsubscribe from an event,
you must pass in an equivalent delegate to the one you used for subscription. If
you’re using anonymous methods, that can be surprisingly awkward, because often
the only way to do that is to keep hold of a reference to the original delegate. With
Rx, any subscription to a source is represented as an IDisposable, making it easier to
handle in a uniform way. In fact, you often do not need to unsubscribe anyway—this
is necessary only if you want to stop receiving notifications before the source com‐
pletes (making this an example of something that is relatively unusual in .NET:
optional disposability).

IObserver<T>
As you’ll see, in practice we often don’t call a source’s Subscribe method directly,
nor do we usually need to implement IObserver<T> ourselves. Instead, it’s common
to use one of the delegate-based extension methods that Rx provides, and that
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attaches an Rx-supplied implementation. However, those extension methods are not
part of Rx’s fundamental types, so for now I’ll show what you’d need to write if these
interfaces are all you’ve got. Example 11-2 shows a simple but complete observer.

Example 11-2. Simple IObserver<T> implementation

class MySubscriber<T> : IObserver<T>
{
    public void OnNext(T value) => Console.WriteLine("Received: " + value);
    public void OnCompleted() => Console.WriteLine("Complete");
    public void OnError(Exception ex) => Console.WriteLine("Error: " + ex);
}

Rx sources (i.e., implementations of IObservable<T>) are required to make certain
guarantees about how they call an observer’s methods. As I already mentioned, the
calls happen in a certain order: OnNext is called for each item that the source pro‐
vides, but once either OnCompleted or OnError is called, the observer knows that
there will be no further calls to any of the three methods. Either of those methods
signals the end of the sequence.

Also, calls are not allowed to overlap—when an observable source calls one of our
observer’s methods, it must wait for that method to return before calling again. A
multithreaded observable must take care to coordinate its calls, and even in a single-
threaded world, the possibility of recursion can make it can necessary for sources to
detect and prevent re-entrant calls.

This makes life simple for the observer. Because Rx provides events as a sequence, my
code doesn’t need to deal with the possibility of concurrent calls. It’s up to the source
to call methods in the correct order. So, although IObservable<T> may look like the
simpler interface, having just one method, it’s the more demanding one to imple‐
ment. As you’ll see later, it’s usually easiest to let the Rx libraries implement this for
you, but it’s still important to know how observable sources work, so I’ll implement it
by hand to begin with.

IObservable<T>
Rx makes a distinction between hot and cold observable sources. A hot observable
produces each value as and when something of interest happens, and if no subscrib‐
ers are attached at that moment, that value will be lost. A hot observable typically
represents something live, such as mouse input, keypresses, or data reported by a sen‐
sor, which is why the values it produces are independent of how many subscribers, if
any, are attached. Hot sources typically have broadcast-like behavior—they send each
item to all of their subscribers. These can be the more complex kind of source to
implement, so I’ll discuss cold sources first.
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Implementing cold sources
Whereas hot sources report items as and when they want to, cold observables work
differently. They start pushing values when an observer subscribes, and they provide
values to each subscriber separately, rather than broadcasting. This means that a sub‐
scriber won’t miss anything by being too late, because the source starts providing
items when you subscribe. Example 11-3 shows a very simple cold source.

Example 11-3. A simple cold observable source

public class SimpleColdSource : IObservable<string>
{
    public IDisposable Subscribe(IObserver<string> observer)
    {
        observer.OnNext("Hello,");
        observer.OnNext("world!");
        observer.OnCompleted();
        return NullDisposable.Instance;
    }

    private class NullDisposable : IDisposable
    {
        public readonly static NullDisposable Instance = new NullDisposable();
        public void Dispose() { }
    }
}

The moment an observer subscribes, this source will provide two values, the strings
"Hello," and "world!", and will then indicate the end of the sequence by calling
OnCompleted. It does all that inside Subscribe, so this doesn’t really look like a sub‐
scription—the sequence is already over by the time Subscribe returns, so there’s
nothing meaningful to do to support unsubscription. That’s why this returns a trivial
implementation of IDisposable. (I’ve chosen an extremely simple example so I can
show the basics. Real sources will be more complex.)

To show this in action, we need to create an instance of SimpleColdSource, and also
an instance of my observer class from Example 11-2, and use that to subscribe to the
source, as Example 11-4 does.

Example 11-4. Attaching an observer to an observable

var source = new SimpleColdSource();
var sub = new MySubscriber<string>();
source.Subscribe(sub);

Predictably, this produces the following output:
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Received: Hello,
Received: world!
Complete

In general, a cold observer will have access to some underlying source of information,
which it can push to a subscriber on demand. In Example 11-3, that “source” was just
two hardcoded values. Example 11-5 shows a slightly more interesting cold observa‐
ble, which reads the lines out of a file and provides them to a subscriber.

Example 11-5. A cold observable representing a file’s contents

public class FilePusher : IObservable<string>
{
    private readonly string _path;
    public FilePusher(string path)
    {
        _path = path;
    }

    public IDisposable Subscribe(IObserver<string> observer)
    {
        using (var sr = new StreamReader(_path))
        {
            while (!sr.EndOfStream)
            {
                observer.OnNext(sr.ReadLine());
            }
        }
        observer.OnCompleted();
        return NullDisposable.Instance;
    }

    private class NullDisposable : IDisposable
    {
        public static NullDisposable Instance = new NullDisposable();
        public void Dispose() { }
    }
}

As before, this does not represent a live source of events, and it leaps into action only
when something subscribes, but it’s a little more interesting than Example 11-3. This
calls into the observer as and when it retrieves each line from a file, so although the
point at which it starts doing its work is determined by the subscriber, this source is
in control of the rate at which it provides values. Just like Example 11-3, this delivers
all the items to the observer on the caller’s thread inside the call to Subscribe, but it
would be a relatively small conceptual leap from Example 11-5 to one in which the
code reading from the file either ran on a separate thread or used asynchronous tech‐
niques (such as those described in Chapter 17), thus enabling Subscribe to return
before the work is complete (at which point you’d need to write a more interesting
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IDisposable implementation to enable callers to unsubscribe). This would still be a
cold source, because it represents some underlying set of data that it can enumerate
from the start for the benefit of each individual subscriber.

Example 11-5 is not quite complete—it fails to handle errors that occur while reading
from the file. We need to catch these and call the observer’s OnError method.
Unfortunately, it’s not quite as simple as wrapping the whole loop in a try block,
because that would also catch exceptions that emerged from the observer’s OnNext
method. If that throws an exception, we should allow it to carry on up the stack—we
should handle only exceptions that emerge from the places we expect in our code.
Unfortunately, this rather complicates the code. Example 11-6 puts all the code that
uses FileStream inside a try block, but will allow any exceptions thrown by the
observer to propagate up the stack, because it’s not up to us to handle those.

Example 11-6. Handling filesystem errors but not observer errors

public IDisposable Subscribe(IObserver<string> observer)
{
    StreamReader sr = null;
    string line = null;
    bool failed = false;

    try
    {
        while (true)
        {
            try
            {
                if (sr == null)
                {
                    sr = new StreamReader(_path);
                }
                if (sr.EndOfStream)
                {
                    break;
                }
                line = sr.ReadLine();
            }
            catch (IOException x)
            {
                observer.OnError(x);
                failed = true;
                break;
            }

            observer.OnNext(line);
        }
    }
    finally
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    {
        if (sr != null)
        {
            sr.Dispose();
        }
    }
    if (!failed)
    {
        observer.OnCompleted();
    }
    return NullDisposable.Instance;
}

If I/O exceptions occur while reading from the file, this reports them to the observer’s
OnError method—so this source uses all three of the IObserver<T> methods.

Implementing hot sources
Hot sources notify all current subscribers of values as they become available. This
means that any hot observable must keep track of which observers are currently sub‐
scribed. Subscription and notification are separated out with hot sources in a way
that they usually aren’t with cold ones.

Example 11-7 is an observable source that reports a single item for each keypress, and
it’s a particularly simple source as hot ones go. It’s single-threaded, so it doesn’t need
to do anything special to avoid overlapping calls. It doesn’t report errors, so it never
needs to call observers’ OnError methods. And it never stops, so it doesn’t need to call
OnCompleted either. Even so, it’s quite involved. (Things will get much simpler once I
introduce the Rx library support—this example is relatively complex because for
now, I’m sticking with just the two fundamental interfaces.)

Example 11-7. IObservable<T> for monitoring keypresses

public class KeyWatcher : IObservable<char>
{
    private readonly List<Subscription> _subscriptions = new List<Subscription>();

    public IDisposable Subscribe(IObserver<char> observer)
    {
        var sub = new Subscription(this, observer);
        _subscriptions.Add(sub);
        return sub;
    }

    public void Run()
    {
        while (true)
        {
            // Passing true here stops the console from showing the character
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            char c = Console.ReadKey(true).KeyChar;
            // Iterate over snapshot to handle the case where the observer
            // unsubscribes from inside its OnNext method.
            foreach (Subscription sub in _subscriptions.ToArray())
            {
                sub.Observer.OnNext(c);
            }
        }
    }

    private void RemoveSubscription(Subscription sub)
    {
        _subscriptions.Remove(sub);
    }

    private class Subscription : IDisposable
    {
        private KeyWatcher _parent;
        public Subscription(KeyWatcher parent, IObserver<char> observer)
        {
            _parent = parent;
            Observer = observer;
        }

        public IObserver<char> Observer { get; }

        public void Dispose()
        {
            if (_parent != null)
            {
                _parent.RemoveSubscription(this);
                _parent = null;
            }
        }
    }
}

This defines a nested class called Subscription to keep track of each observer that
subscribes, and this also provides the implementation of IDisposable that our Sub
scribe method is required to return. The observable creates a new instance of this
nested class and adds it to a list of current subscribers during Subscribe, and then if
Dispose is called, it removes itself from that list.

As a general rule in .NET, you should Dispose any IDisposable resources allocated
on your behalf when you’ve finished using them. However, in Rx, it is common not
to dispose objects representing subscriptions, so if you implement such an object, you
should not count on it being disposed. It’s typically unnecessary, because Rx can
clean up for you. Unlike with ordinary .NET events or delegates, observables can
unambiguously come to an end, at which point any resources allocated to subscribers
can be freed. (Some run indefinitely, but in that case, subscriptions usually remain
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active for the life of the program.) Admittedly, the examples I’ve shown so far don’t
clean up automatically, because I’ve provided my own implementations that are sim‐
ple enough not to need to, but the Rx libraries do if you use their source and sub‐
scriber implementations. The only time you’d normally dispose of a subscription in
Rx is if you want to unsubscribe before the source completes.

Subscribers are not obliged to ensure that the object returned by
Subscribe remains reachable. You can simply ignore it if you don’t
need the ability to unsubscribe early, and it won’t matter if the
garbage collector frees the object, because none of the IDisposable
implementations that Rx supplies to represent subscriptions have
finalizers. (And although you don’t normally implement these
yourself—I’m doing so here only to illustrate how it works—if you
did decide to write your own, take the same approach: do not
implement a finalizer on a class that represents a subscription.)

The KeyWatcher class in Example 11-7 has a Run method. That’s not a standard Rx
feature, it’s just a loop that sits and waits for keyboard input—this observable won’t
actually produce any notifications unless something calls that method. Each time this
loop receives a key, it calls the OnNext method on every currently subscribed
observer. Notice that I’m building a copy of the subscriber list (by calling ToArray—
that’s a simple way to get a List<T> to duplicate its contents), because there’s every
possibility that a subscriber might choose to unsubscribe in the middle of a call to
OnNext, meaning that if I passed the subscriber list directly to foreach, I would get an
exception. This is because lists don’t allow items to be added and removed if you’re in
the middle of iterating through them.

This example only guards against re-entrant calls on the same
thread; handling multithreaded unsubscription would be alto‐
gether more complex. In fact, even building a copy is not suffi‐
ciently paranoid. I should really be checking that each observer in
my snapshot is still currently subscribed before calling its OnNext,
because it’s possible that one observer might choose to unsubscribe
some other observer. This also makes no attempt to deal with
unsubscription from another thread. Later on, I’ll replace all of this
with a much more robust implementation from the Rx library.

In use, this hot source is very similar to my cold sources. We need to create an
instance of the KeyWatcher, and also another instance of my observer class (with a
type argument of char this time, because this source produces characters instead of
strings). Because this source does not generate items until its monitoring loop runs, I
need to call Run to kick it off, as Example 11-8 does.
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Example 11-8. Attaching an observer to an observable

var source = new KeyWatcher();
var sub = new MySubscriber<char>();
source.Subscribe(sub);
source.Run();

Running that code, the application will wait for keyboard input, and if you press, say,
the m key, the observer (Example 11-2) will display the message Received: m. (And
since my source never ends, the Run method will never return.)

You might need to deal with a mixture of hot and cold observables. Also, some cold
sources have some hot characteristics. For example, you could imagine a source that
represented alert messages, and it might make sense to implement that in such a way
that it stored alerts, to make sure you didn’t miss anything that happens in between
creating the source and attaching a subscriber. So it would be a cold source—any new
subscriber would get all the events so far—but once a subscriber has caught up, the
ongoing behavior would look more like a hot source, because any new events would
be broadcast to all current subscribers. As you’ll see, the Rx libraries provide various
ways to mix and adapt between the two types of sources.

While it’s useful to see what observers and observables need to do, it’s more produc‐
tive to let Rx take care of the grunt work, so now I’ll show how you would write sour‐
ces and subscribers if you were using the System.Reactive NuGet library instead of
just the two fundamental interfaces.

Publishing and Subscribing with Delegates
If you use the System.Reactive NuGet package, you do not need to implement
either IObservable<T> or IObserver<T> directly. The library provides several imple‐
mentations. Some of these are adapters, bridging between other representations of
asynchronously generated sequences. Some wrap existing observable streams. But the
helpers aren’t just for adapting existing things. They can also help if you want to write
code that originates new items or that acts as the final destination for items. The sim‐
plest of these helpers provide delegate-based APIs for creating and consuming
observable streams.

Creating an Observable Source with Delegates
As you have seen in some of the preceding examples, although IObservable<T> is a
simple interface, sources that implement it may have to do a fair amount of work to
track subscribers. And we’ve not even seen the whole story yet. As you’ll see in
“Schedulers” on page 517, a source often needs to take extra measures to ensure that it
integrates well with Rx’s threading mechanisms. Fortunately, the Rx libraries can do
some of that work for us. Example 11-9 shows how to use the Observable class’s
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static Create method to implement a cold source. (Each call to GetFilePusher will
create a new source, so this is effectively a factory method.)

Example 11-9. Delegate-based observable source

public static IObservable<string> GetFilePusher(string path)
{
    return Observable.Create<string>(observer =>
        {
            using (var sr = new StreamReader(path))
            {
                while (!sr.EndOfStream)
                {
                    observer.OnNext(sr.ReadLine());
                }
            }
            observer.OnCompleted();
            return () => { };
        });
}

This serves the same purpose as Example 11-5—it provides an observable source that
supplies each line in a file in turn to subscribers. (As with Example 11-5, I’ve left out
error handling for clarity. In practice, you’d need to report errors in the same way as
Example 11-6.) The heart of the code is the same, but I’ve been able to write just a
single method instead of a whole class, because Rx is now providing the IObserva
ble<T> implementation. Each time an observer subscribes to that observable, Rx calls
the callback I passed to Create. So all I have to do is write the code that provides the
items. As well as not needing the outer class implementing IObservable<T>, I’ve also
been able to omit the nested class that implements IDisposable—the Create method
allows us to return an Action delegate instead of an object, and it will invoke that if
the subscriber chooses to unsubscribe. Since my method doesn’t return until after it
has finished producing items, there’s nothing useful I can do, so I’ve just returned an
empty method.

So I’ve written rather less code than in Example 11-5, but as well as simplifying my
implementation, Observable.Create does two more slightly subtle things for us that
are not immediately apparent from the code.

First, if a subscriber unsubscribes early, this code will now correctly stop sending it
items, even though I’ve written no code to handle that. When an observer subscribes
to a source of this kind, Rx does not pass the IObserver<T> directly to our callback.
The observer argument in the nested method in Example 11-9 refers to an Rx-
supplied wrapper. If the underlying observer unsubscribes, that wrapper automati‐
cally stops forwarding notifications. My loop will carry on running through the file
even after the subscriber stops listening, which is wasteful, but at least the subscriber
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doesn’t get items after it has asked me to stop. (You may be wondering how the sub‐
scriber even gets a chance to unsubscribe, given that my code doesn’t return until it
has finished. But in multithreaded scenarios, it’s possible to get the IDisposable pro‐
vided by Rx’s wrapper representing the subscription before my code returns.)

You can use Rx in conjunction with the C# asynchronous language features (specifi‐
cally, the async and await keywords) to implement a version of Example 11-9 that
not only handles unsubscription more efficiently, but also reads from the file asyn‐
chronously, meaning subscription does not need to block. This is significantly more
efficient, and yet the code is almost identical. I won’t be introducing the asynchro‐
nous language features until Chapter 17, so this might not make complete sense yet,
but if you’re curious, Example 11-10 shows how it looks. The modified lines are in
bold. (Again, this is the version without error handling. Asynchronous methods can
handle exceptions in much the same way as synchronous ones, so you could manage
errors with the same approach as Example 11-6.)

Example 11-10. An asynchronous source

public static IObservable<string> GetFilePusher(string path)
{
    return Observable.Create<string>(async (observer, cancel) =>
    {
        using (var sr = new StreamReader(path))
        {
            while (!sr.EndOfStream && !cancel.IsCancellationRequested)
            {
                observer.OnNext(await sr.ReadLineAsync());
            }
        }
        observer.OnCompleted();
        return () => { };
    });
}

The second thing Observable.Create does for us under the covers is that in certain
circumstances, it will use Rx’s scheduler system to call our code via a work queue
instead of invoking it directly. This avoids possible deadlocks in cases where you’ve
chained multiple observables together. I will be describing schedulers later in this
chapter.

This technique is good for cold sources such as Example 11-9. Hot sources work dif‐
ferently, broadcasting live events to all subscribers, and Observable.Create does not
cater for them directly because it invokes the delegate you pass once for each sub‐
scriber. However, the Rx libraries can still help.

Rx provides a Publish extension method for any IObservable<T>, defined by the
Observable class in the System.Reactive.Linq namespace. This method is designed
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to wrap a source whose subscription method (i.e., the delegate you pass to Observa
ble.Create) supports being run only once, but to which you want to attach multiple
subscribers—it handles the multicast logic for you. Strictly speaking, a source that
supports only a single subscription is degenerate, but as long as you hide it behind
Publish, it doesn’t matter, and you can use this as a way to implement a hot source.
Example 11-11 shows how to create a source that provides the same functionality as
the KeyWatcher in Example 11-7. I’ve also hooked up two subscribers, just to illus‐
trate the point that this supports multiple subscribers.

Example 11-11. Delegate-based hot source

IObservable<char> singularHotSource = Observable.Create(
    (Func<IObserver<char>, IDisposable>) (obs =>
    {
        while (true)
        {
            obs.OnNext(Console.ReadKey(true).KeyChar);
        }
    }));

IConnectableObservable<char> keySource = singularHotSource.Publish();

keySource.Subscribe(new MySubscriber<char>());
keySource.Subscribe(new MySubscriber<char>());

The Publish method does not call Subscribe on the source immediately. Nor does it
do so when you first attach a subscriber to the source it returns. So, by the time all of
the code in Example 11-11 has run, the loop that reads the keypresses will not yet be
executing. I have to tell the published source when I want it to start. Notice that Pub
lish returns an IConnectableObservable<T>. This derives from IObservable<T>
and adds a single extra method, Connect. This interface represents a source that
doesn’t start until it’s told to, and it’s designed to let you hook up all the subscribers
you need before you set it running. Calling Connect on the source returned by Pub
lish causes it to subscribe to my original source, which will invoke the subscription
callback I passed to Observable.Create, running my loop. This causes the Connect
method to have the same effect as calling Run on my original Example 11-7.

Connect returns an IDisposable. This provides a way to discon‐
nect at some later point—that is, to unsubscribe from the underly‐
ing source. (If you don’t call this, the connectable observable
returned by Publish will remain subscribed to your source even if
you Dispose each of the individual downstream subscriptions.)
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The combination of the delegate-based Observable.Create and the multicasting
offered by Publish has enabled me to throw away everything in Example 11-7 except
for the loop that actually generates items, and even that has become simpler. Being
able to remove about 80% of the code isn’t the whole story, either. This will work bet‐
ter—Publish lets Rx handle my subscribers, which will deal correctly with the awk‐
ward situations in which subscribers unsubscribe while being notified.

Of course, the Rx libraries don’t just help with implementing sources. They can sim‐
plify subscribers too.

Subscribing to an Observable Source with Delegates
Just as you don’t have to implement IObservable<T>, it’s also not necessary to pro‐
vide an implementation of IObserver<T>. You won’t always care about all three
methods—the KeyWatcher observable in Example 11-7 never even calls the OnComple
ted or OnError methods, because it runs indefinitely and has no error detection.
Even when you do need to provide all three methods, you won’t necessarily want to
write a whole separate type to provide them. So the Rx libraries provide extension
methods to simplify subscription, defined by the ObservableExtensions class in the
System namespace. Most C# source files include a using System; directive, so the
extensions it offers will usually be available as long as your project has a reference to
the System.Reactive NuGet package. There are several overloads for the Subscribe
method available for any IObservable<T>. Example 11-12 uses one of them.

Example 11-12. Subscribing without implementing IObserver<T>

var source = new KeyWatcher();
source.Subscribe(value => Console.WriteLine("Received: " + value));
source.Run();

This example has the same effect as Example 11-8. However, by using this approach,
we no longer need most of the code in Example 11-2. With this Subscribe extension
method, Rx provides the IObserver<T> implementation for us, and we provide meth‐
ods only for the notifications we want.

The Subscribe overload used by Example 11-12 takes an Action<T>, where T is the
item type of the IObservable<T>, which in this case is char. My source doesn’t pro‐
vide error notifications, nor does it use OnCompleted to indicate the end of the items,
but plenty of sources do, so there are three overloads of Subscribe to handle that.
One takes an extra delegate of type Action<Exception> to handle errors. Another
takes a second delegate of type Action (i.e., one that takes no arguments) to handle
the completion notification. The third overload takes three delegates—the same per-
item callback that they all take, and then an exception handler and a completion
handler.
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If you do not provide an exception handler when using delegate-
based subscription, but the source calls OnError, the IObserver<T>
Rx supplies throws the exception to keep the error from going
unnoticed. Example 11-5 calls OnError in the catch block where it
handles I/O exceptions, and if you subscribed using the technique
in Example 11-12, you’d find that the call to OnError throws the
IOException right back out again—the same exception is then
thrown twice in a row, once by the StreamReader, and then again
by the Rx-supplied IObserver<T> implementation. Since we’d
already be in the catch block in Example 11-5 by this time (and
not the try block), this second throw would cause the exception to
emerge from the Subscribe method, either to be handled farther
up the stack, or crashing the application.

There’s one more overload of the Subscribe extension method that takes no argu‐
ments. This subscribes to a source and then does nothing with the items it receives.
(It will throw any errors back to the source, just like the other overloads that don’t
take an error callback.) This would be useful if you have a source that does something
important as a side effect of subscription, although it’s probably best to avoid designs
where that’s necessary.

Sequence Builders
Rx defines several methods that create new sequences from scratch, without requir‐
ing either custom types or callbacks. These are designed for certain simple scenarios
such as single-element sequences, empty sequences, or particular patterns. These are
all static methods defined by the Observable class.

Empty
The Observable.Empty<T> method is similar to the Enumerable.Empty<T> method
from LINQ to Objects that I showed in Chapter 10: it produces an empty sequence.
(The difference, of course, is that it implements IObservable<T>, not IEnumera
ble<T>.) As with the LINQ to Objects method, this is useful when you’re working
with APIs that demand an observable source, and you have no items to provide.

Any observer that subscribes to an Observable.Empty<T> sequence will have its
OnCompleted method called immediately.

Never
The Observable.Never<T> method produces a sequence that never does anything—it
produces no items, and unlike an empty sequence, it never even completes. (The Rx
team considered calling this Infinite<T> to emphasize the fact that as well as never
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producing anything, it also never ends.) There is no counterpart in LINQ to Objects.
If you wanted to write an IEnumerable<T> equivalent of Never, it would be one that
blocked indefinitely when you first tried to retrieve an item. In the pull-based world
of LINQ to Objects, this would not be at all useful—it would cause the calling thread
to freeze for the lifetime of the process. But in Rx’s reactive world, sources don’t block
threads just because they are in a state where they’re not currently producing items,
so Never is a less disastrous idea. It can be helpful with some of the operators I’ll
show later that can use an IObservable<T> to represent duration. Never can repre‐
sent an activity you want to run indefinitely.

Return
The Observable.Return<T> method takes a single argument, and returns an observa‐
ble sequence that immediately produces that one value and then completes. This is a
cold source—you can subscribe to it any number of times, and each subscriber will
receive the same value. There is no exact equivalent in LINQ to Objects, although the
Rx team provides a library called the Interactive Extensions for .NET (or Ix for short,
available in the System.Interactive NuGet package) that provides IEnumerable<T>
versions of this and several of the other operators described in this chapter that are in
Rx but not LINQ to Objects.

Throw
The Observable.Throw<T> method takes a single argument of type Exception, and
returns an observable sequence that passes that exception to OnError immediately for
any subscriber. Like Return, this is also a cold source that can be subscribed to any
number of times, and it will do the same thing to each subscriber.

Range
The Observable.Range method generates a sequence of numbers. Like the Enumera
ble.Range method, it takes a starting number and a count. This is a cold source that
will produce the entire range for each subscriber.

Repeat
The Observable.Repeat<T> method takes an input and produces a sequence that
repeatedly produces that input over and over again. The input can be a single value,
but it can also be another observable sequence, in which case it will forward items
until that input completes, and will then resubscribe to produce the whole sequence
repeatedly. (That means that this will only genuinely repeat the data if you pass it a
cold observable.)
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If you pass no other arguments, the resulting sequence will produce values indefi‐
nitely—the only way to stop it is to unsubscribe. You can also pass a count, saying
how many times you would like the input to repeat.

Generate
The Observable.Generate<TState, TResult> method can produce more complex
sequences than the other methods I’ve just described. You provide Generate with an
object or value representing the generator’s initial state. This can be any type you like
—it’s one of the method’s generic type arguments. You must also supply three func‐
tions: one that inspects the current state to decide whether the sequence is complete
yet, one that advances the state in preparation for producing the next item, and one
that determines the value to produce for the current state. Example 11-13 uses this to
create a source that produces random numbers until the sum total of all the numbers
produced exceeds 10,000.

Example 11-13. Generating items

IObservable<int> src = Observable.Generate(
    (Current: 0, Total: 0, Random: new Random()),
    state => state.Total <= 10000,
    state =>
    {
        int value = state.Random.Next(1000);
        return (value, state.Total + value, state.Random);
    },
    state => state.Current);

This always produces 0 as the first item, illustrating that it calls the function that
determines the current value (the final lambda in Example 11-13) before making the
first call to the function that iterates the state.

You could achieve the same effect as this example by using Observable.Create and a
loop. However, Generate inverts the flow of control: instead of your code sitting in a
loop telling Rx when to produce the next item, Rx asks your functions for the next
item. This gives Rx more flexibility over scheduling of the work. For example, it ena‐
bles Generate to offer overloads that bring timing into the picture. Example 11-14
produces items in a similar way but passes an extra function as the final argument
that tells Rx to delay the delivery of each item by a random amount.

Example 11-14. Generating timed items

IObservable<int> src = Observable.Generate(
    (Current: 0, Total: 0, Random: new Random()),
    state => state.Total < 10000,
    state =>
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    {
        int value = state.Random.Next(1000);
        return (value, state.Total + value, state.Random);
    },
    state => state.Current,
    state => TimeSpan.FromMilliseconds(state.Random.Next(1000)));

For this to work, Rx needs to be able to schedule work to happen at some point in the
future. I’ll explain how this works in “Schedulers” on page 517.

LINQ Queries
One of the greatest benefits of using Rx is that it has a LINQ implementation, ena‐
bling you to write queries to process asynchronous streams of items such as events.
Example 11-15 illustrates this. It begins by producing an observable source represent‐
ing MouseMove events from a UI element. I’ll talk about this technique in more detail
in “Adaptation” on page 524, but for now it’s enough to know that Rx can wrap
any .NET event as an observable source. Each event produces an item that provides
two properties containing the values normally passed to event handlers as arguments
(i.e., the sender and the event arguments).

Example 11-15. Filtering items with a LINQ query

IObservable<EventPattern<MouseEventArgs>> mouseMoves =
    Observable.FromEventPattern<MouseEventArgs>(
        background, nameof(background.MouseMove));

IObservable<Point> dragPositions =
    from move in mouseMoves
    where Mouse.Captured == background
    select move.EventArgs.GetPosition(background);

dragPositions.Subscribe(point => { line.Points.Add(point); });

The where clause in the LINQ query filters the events so that we process only those
events that were raised while a specific UI element (background) has captured the
mouse. This particular example is based on WPF, but in general, Windows desktop
applications that want to support dragging capture the mouse when the mouse but‐
ton is pressed, and release it afterward. This ensures that the capturing element
receives mouse move events for as long as the drag is in progress, even if the mouse
moves over other UI elements. Typically, UI elements receive mouse move events
when the mouse is over them even if they have not captured the mouse. So I need
that where clause in Example 11-15 to ignore those events, leaving only mouse move‐
ments that occur while a drag is in progress. So, for the code in Example 11-15 to
work, you’d need to attach event handlers such as those in Example 11-16 to the rele‐
vant element’s MouseDown and MouseUp events.
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Example 11-16. Capturing the mouse

private void OnBackgroundMouseDown(object sender, MouseButtonEventArgs e)
{
    background.CaptureMouse();
}

private void OnBackgroundMouseUp(object sender, MouseButtonEventArgs e)
{
    if (Mouse.Captured == background)
    {
        background.ReleaseMouseCapture();
    }
}

The select clause in Example 11-15 works in Rx just like it does in LINQ to Objects,
or with any other LINQ provider. It allows us to extract information from the source
items to use as the output. In this case, mouseMoves is an observable sequence of Even
tPattern<MouseEventArgs> objects, but what I really want is an observable sequence
of mouse locations. So the select clause in Example 11-15 asks for the position rela‐
tive to a particular UI element.

The upshot of this query is that dragPositions refers to an observable sequence of
Point values, which will report each change of mouse position that occurs while a
particular UI element in my application has captured the mouse. This is a hot source,
because it represents something that’s happening live: mouse input. The LINQ filter‐
ing and projection operators do not change the nature of the source, so if you apply
them to a hot source, the resulting query will also be hot, and if the source is cold, the
filtered result will be too.

Operators do not detect the hotness of the source. The Where and
Select operators just pass this aspect straight through. Each time
you subscribe to the final query produced by the Select operator,
it will subscribe to its input. In this case, the input was the observa‐
ble returned by the Where operator, which will in turn subscribe to
the source produced by adapting the mouse move events. If you
subscribe a second time, you’ll get a second chain of subscriptions.
The hot event source will broadcast every event to both chains, so
each item will go through the filtering and projection process
twice. So be aware that attaching multiple subscribers to a complex
query of a hot source will work but may incur unnecessary
expense. If you need to do this, it may be better to call to Publish
on the query, which as you’ve seen, can make a single subscription
to its input and then multicast each item to all its subscribers.
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1 You can download the full WPF example to which this snippet belongs as part of the examples for this book.

2 It is missing the OrderBy and ThenBy operators, because these make little sense in a push-based world. They
cannot produce any items until they have seen all of their input items.

The final line of Example 11-15 subscribes to the filtered and projected source, and
adds each Point value it produces to the Points collection of another UI element
called line. That’s a Polyline element, not shown here,1 and the upshot of this is
that you can scrawl on the application’s window with the mouse. (If you’ve been
doing Windows development for long enough, you may remember the Scribble
examples—the effect here is much the same.)

Rx provides most of the standard query operators described in Chapter 10.2 Most of
these work in Rx exactly as they do with other LINQ implementations. However,
some work in ways that may seem slightly surprising at first glance, as I will describe
in the next few sections.

Grouping Operators
The standard grouping operator, GroupBy, produces a sequence of sequences. With
LINQ to Objects, it returns IEnumerable<IGrouping<TKey, TSource>>, and as you
saw in Chapter 10, IGrouping<TKey, TSource> itself derives from IEnumera
ble<TSource>. The GroupJoin is similar in concept: although it returns a plain IEnu
merable<T>, that T is the result of a projection function that is passed a sequence as
input. So, in either case, you get what is logically a sequence of sequences.

In the world of Rx, grouping produces an observable sequence of observable sequen‐
ces. This is perfectly consistent, but can seem a little surprising because Rx introduces
a temporal aspect: the observable source that represents all the groups produces a
new item (a new observable source) at the instant it discovers each new group.
Example 11-17 illustrates this by watching for changes in the filesystem and then
forming them into groups based on the folder in which they occurred. For each
group, we get an IGroupedObservable<TKey, TSource>, which is the Rx equivalent
of IGrouping<TKey, TSource>.

Example 11-17. Grouping events

string path = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments);
var w = new FileSystemWatcher(path);
IObservable<EventPattern<FileSystemEventArgs>> changes =
    Observable.FromEventPattern<FileSystemEventHandler, FileSystemEventArgs>(
        h => w.Changed += h, h => w.Changed -= h);
w.IncludeSubdirectories = true;
w.EnableRaisingEvents = true;
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IObservable<IGroupedObservable<string, string>> folders =
    from change in changes
    group Path.GetFileName(change.EventArgs.FullPath)
       by Path.GetDirectoryName(change.EventArgs.FullPath);

folders.Subscribe(f =>
{
    Console.WriteLine("New folder ({0})", f.Key);
    f.Subscribe(file =>
        Console.WriteLine("File changed in folder {0}, {1}", f.Key, file));
});

The lambda that subscribes to the grouping source, folders, subscribes to each
group that the source produces. The number of folders from which events could
occur is endless, as new ones could be added while the program is running. So the
folders observable will produce a new observable source each time it detects a
change in a folder it hasn’t seen before, as Figure 11-2 shows.

Figure 11-2. Splitting an IObservable<T> into groups

Notice that the production of a new group doesn’t mean that any previous groups are
now complete, which is different than how grouping works in LINQ to Objects.
When you run a grouping query on an IEnumerable<T>, as it produces each group
you can enumerate the contents entirely before moving on to the next one. But you
can’t do that with Rx, because each group is represented as an observable, and
observables aren’t finished until they tell you they’re complete—instead, each group
subscription remains active. In Example 11-17, it’s entirely possible that a folder for
which a group had already started will be dormant for a long time while activity
occurs in other folders, only for it to start up again later. And more generally, Rx’s
grouping operators have to be prepared for that to happen with any source.
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Join Operators
Rx provides the standard Join and GroupJoin operators. However, they work a bit
differently than how LINQ to Objects or most database LINQ providers handle joins.
In those worlds, items from two input sets are typically joined based on having some
value in common. In a database, a very common example when joining two tables
would be to connect rows where a foreign key column in a row from one table has
the same value as a primary key column in a row from the other table. However, Rx
does not base joins on values. Instead, items are joined if they are contemporaneous
—if their durations overlap, then they are joined.

But hang on a minute. What exactly is an item’s duration? Rx deals in instantaneous
events; producing an item, reporting an error, and finishing a stream are all things
that happen at a particular moment. So the join operators use a convention: for each
source item, you can provide a function that returns an IObservable<T>. The dura‐
tion for that source item starts when the item is produced and finishes when the cor‐
responding IObservable<T> first reacts (i.e., it either completes or generates an item
or an error). Figure 11-3 illustrates this idea. At the top is an observable source,
beneath which is a series of sources that define each item’s duration. At the bottom,
I’ve shown the duration that the per-item observables establish for their source items.

Figure 11-3. Defining duration with an IObservable<T> for each source item

Although you can use a different IObservable<T> for each source item, as
Figure 11-3 shows, you don’t have to—it’s valid to use the same source every time.
For example, if you apply the group operator to an IObservable<T> representing a
stream of MouseDown events, and you then use another IObservable<T> representing
a stream of MouseUp events to define the duration of each item, this would cause Rx to
consider each MouseDown event’s “duration” to last until the next MouseUp event.
Figure 11-4 depicts this arrangement, and you can see that the effective duration of
each MouseDown event, shown at the bottom, is delineated by a pair of MouseDown and
MouseUp events.
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Figure 11-4. Defining duration with a pair of event streams

A source can even define its own duration. For example, if you provide an observable
source representing MouseDown events, you might want each item’s duration to end
when the next item begins. This would mean that the items had contiguous durations
—after the first item arrives, there is always exactly one current item, and it is the last
one that occurred. Figure 11-5 illustrates this.

Figure 11-5. Adjacent item duration

Item durations are allowed to overlap. If you wanted to, you could supply a duration-
defining IObservable<T> that indicated that an input item’s duration finishes some
time after the next item begins.

Now that we know how Rx decides what constitutes an item’s duration for the pur‐
poses of a join, how does it use that information? Remember, join operators combine
two inputs. (The duration-defining sources do not count as an input. They provide
additional information about one of the inputs.) Rx considers a pair of items from
the two input streams to be related if their durations overlap. The way it presents
related items in the output depends on whether you use the Join or the GroupJoin
operator. The Join operator’s output is a stream containing one item for each pair of
related items. (You provide a projection function that will be passed each pair, and
it’s up to you what to do with them. This function gets to decide the output item type
for the joined stream.) Figure 11-6 shows two input streams, both based on events
and their corresponding durations. These are similar to the sources in Figure 11-4
and Figure 11-5, but I’ve added letters and numbers to make it easier to refer to each
of the items in these streams. At the bottom of the diagram is the observable the Join
operator would produce for these two streams.
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Figure 11-6. Join operator

As you can see, any place where the durations of two items from the input streams
overlap, we get an output item combining the two inputs. If the overlapping items
started at different times (which will normally be the case), the output item is pro‐
duced whenever the later of the two inputs started. The MouseDown event A starts
before the MouseMove event 1, so the resulting output, A1, occurs where the overlap
begins (i.e., when MouseMove event 1 occurs). But event 3 occurs before event B, so the
joined output B3 occurs when B starts.

Event 5’s duration does not overlap with any MouseDown items’ durations, so we do
not see any items for that in the output stream. Conversely, it would be possible for a
MouseMove event to appear in multiple output items (just like each MouseDown event
does). If there had been no 3 event, event 2 would have a duration that started inside
A and finished inside B, so as well as the A2 shown in Figure 11-6, there would be a B2
event at the same time as B starts.

Example 11-18 shows code that performs the join illustrated in Figure 11-6, using a
query expression. As you saw in Chapter 10, the compiler turns query expressions
into a series of method calls, and Example 11-19 shows the method-based equivalent
of the query in Example 11-18.

Example 11-18. Query expression with join

IObservable<EventPattern<MouseEventArgs>> downs =
    Observable.FromEventPattern<MouseEventArgs>(
        background, nameof(background.MouseDown));
IObservable<EventPattern<MouseEventArgs>> ups =
    Observable.FromEventPattern<MouseEventArgs>(
        background, nameof(background.MouseUp));
IObservable<EventPattern<MouseEventArgs>> allMoves =
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    Observable.FromEventPattern<MouseEventArgs>(
        background, nameof(background.MouseMove));

IObservable<Point> dragPositions =
    from down in downs
    join move in allMoves
      on ups equals allMoves
    select move.EventArgs.GetPosition(background);

Example 11-19. Join in code

IObservable<Point> dragPositions = downs.Join(
    allMoves,
    down => ups,
    move => allMoves,
    (down, move) => move.EventArgs.GetPosition(background));

We can use the dragPositions observable source produced by either of these exam‐
ples to replace the one in Example 11-15. We no longer need to filter based on
whether the background element has captured the mouse, because Rx is now provid‐
ing us only move events whose duration overlaps with the duration of a mouse down
event. Any moves that happen in between mouse presses will either be ignored or, if
they are the last move to occur before a mouse down, we’ll receive that position at the
moment the mouse button is pressed.

GroupJoin combines items in a similar way, but instead of producing a single observ‐
able output, it produces an observable of observables. For the present example, that
would mean that its output would produce a new observable source for each Mouse
Down input. This would consist of all the pairs containing that input, and it would
have the same duration as that input. Figure 11-7 shows this operator in action with
the same input events as Figure 11-6. I’ve put vertical bars on the ends of the output
sequences to clarify when they will call their observers’ OnComplete methods. The
start and finish of these observables align exactly with the duration of the corre‐
sponding input, so they often finish some time after producing their final output
item.

In general, with LINQ, the GroupJoin operator is able to produce empty groups, so
unlike the Join operator, there will be one output for each item from the first input
even if there are no corresponding items from the other stream. The Rx GroupJoin
works the same way, adding in a temporal aspect. Each output group starts at the
same moment the corresponding input event happens (MouseDown, in this example)
and ends when that event is deemed to have finished (at the next MouseUp here); if
there were no moves in that time, that observable will generate no items. Since move
event durations are contiguous here, that could happen only before receiving the first
move. But in joins where the second input’s items have noncontiguous durations,
empty groups are more likely.
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Figure 11-7. GroupJoin operator

In the context of my example application that allows the user to scribble in a window
with the mouse, this grouped output is useful, because it presents each individual
drag as a separate object. This means I could create a new line for each drag, rather
than adding points onto the same increasingly long line. With the code in
Example 11-15, each new drag operation will draw a line from wherever the previous
drag finished to the new location, making it impossible to draw separate shapes. But
grouped output makes separation easy. Example 11-20 subscribes to the grouped out‐
put, and for each new group (which represents a new drag operation), it creates a new
Polyline to render the scribble and then subscribes to the items in the group to pop‐
ulate that individual line.

Example 11-20. Adding a new line for each drag operation

var dragPointSets = from mouseDown in downs
                    join move in allMoves
                      on ups equals allMoves into m
                    select m.Select(e => e.EventArgs.GetPosition(background));

dragPointSets.Subscribe(dragPoints =>
{
    var currentLine = new Polyline { Stroke = Brushes.Black, StrokeThickness = 2 };
    background.Children.Add(currentLine);

    dragPoints.Subscribe(point =>
    {
        currentLine.Points.Add(point);
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    });
});

Just to be clear, all of this works in real time even with a join operator—these are all
hot sources. The IObservable<IObservable<Point>> returned by GroupJoin in
Example 11-20 will produce a new group the instant the mouse button is pressed.
The IObservable<Point> from that group will produce a new Point immediately for
each MouseMove event. The upshot is that the user sees the line appear and grow
instantly when dragging the mouse.

SelectMany Operator
As you saw in Chapter 10, the SelectMany operator effectively flattens a collection of
collections into a single one. This operator gets used when a query expression has
multiple from clauses, and with LINQ to Objects, its operation is similar to having
nested foreach loops. With Rx, it still has this flattening effect—it lets you take an
observable source where each item it produces is also an observable source (or can be
used to generate one), and the result of the SelectMany operator will be a single
observable sequence that contains all of the items from all of the child sources. How‐
ever, as with grouping, the effect is rather less orderly than in LINQ to Objects. The
push-driven nature of Rx, with its potential for asynchronous operation, makes it
possible for all of the observable sources involved to be pushing new items at once,
including the original source that is used as a source of nested sources. (The operator
still ensures that only one event will be delivered at a time—when it calls on OnNext,
it waits for that to return before making another call. The potential for chaos only
goes as far as mixing up the order in which events are delivered.)

When you use LINQ to Objects to iterate through a jagged array, everything happens
in a straightforward order. It will retrieve the first nested array and then iterate
through all the elements in that array before moving to the next nested array and iter‐
ating through that, and so on. But this orderly flattening occurs only because with
IEnumerable<T>, the consumer of items is in control of when to retrieve which items.
With Rx, subscribers receive items when sources provide them.

Despite the free-for-all, the behavior is straightforward enough: the output stream
produced by SelectMany just provides items as and when the sources provide them.

Aggregation and Other Single-Value Operators
Several of the standard LINQ operators reduce an entire sequence of values to a sin‐
gle value. These include the aggregation operators, such as Min, Sum, and Aggregate;
the quantifiers Any and All; and the Count operator. It also includes selective opera‐
tors, such as ElementAt. These are available in Rx, but unlike most LINQ implemen‐
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tations, the Rx implementations do not return plain single values. They all return an
IObservable<T>, just like operators that produce sequences as outputs.

The First, Last, FirstOrDefault, LastOrDefault, Single, and
SingleOrDefault operators should all work the same way, but for
historical reasons, they do not. Introduced in v1 of Rx, they
returned single values that were not wrapped in an IObserva
ble<T>, which meant they would block until the source provided
what they needed. This doesn’t fit well with a push-based model
and risks introducing deadlock, so these are now deprecated, and
there are new asynchronous versions that work the same way as the
other single-value operators in Rx. These all just append Async to
the original operators’ names (e.g., FirstAsync, LastAsync, etc.).

Each of these operators still produces a single value, but they all present that value as
an observable source. The reason is that unlike LINQ to Objects, Rx cannot enumer‐
ate its input to calculate the aggregate value or to find the value being selected. The
source is in control, so the Rx versions of these operators have to wait for the source
to provide its values—like all operators, the single-value operators have to be reactive,
not proactive. Operators that need to see every value, such as Average, cannot pro‐
duce their result until the source says it has finished. Even an operator that doesn’t
need to wait until the very end of the input, such as FirstAsync or ElementAt, still
cannot do anything until the source decides to provide the value the operator is wait‐
ing for. As soon as a single-value operator is able to provide a value, it does so and
then completes.

The ToArray, ToList, ToDictionary, and ToLookup operators work in a similar way.
Although these all produce the entire contents of the source, they do so as a single
output object, which is wrapped as a single-item observable source.

If you really want to sit and wait for the value of any of these items, you can use the
Wait operator, a nonstandard operator specific to Rx available on any IObserva
ble<T>. This blocking operator waits for the source to complete and then returns the
final element, so the “sit and wait” behavior of the deprecated First, Last, etc., oper‐
ators is still available, it’s just no longer the default. Alternatively, you can use C#s
asynchronous language features—you can give the await keyword an observable
source. Logically, it does the same thing as Wait, but it does so with an efficient non‐
blocking asynchronous wait of the kind described in Chapter 17.

Concat Operator
Rx’s Concat operator shares the same concept as other LINQ implementations: it
combines two input sequences to produce a sequence that will produce every item in
its first input, followed by every item in its second input. (In fact, Rx goes further
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than some LINQ providers, and can accept a collection of inputs and will concatenate
them all.) This is useful only if the first stream eventually completes—that’s true in
LINQ to Objects too, of course, but infinite sources are more common in Rx. Also, be
aware that this operator does not subscribe to the second stream until the first has
finished. This is because cold streams typically start producing items when you sub‐
scribe, and the Concat operator does not want to have to buffer the second source’s
items while it waits for the first to complete. This means that Concat may produce
nondeterministic results when used with hot sources. (If you want an observable
source that contains all the items from two hot sources, use Merge, which I’ll describe
shortly.)

Rx is not satisfied with merely providing standard LINQ operators. It defines many
more of its own operators.

Rx Query Operators
One of Rx’s main goals is to simplify working with multiple potentially independent
observable sources that produce items asynchronously. Rx’s designers sometimes
refer to “orchestration and synchronization,” meaning that your system may have
many things going on at once, but that you need to achieve some kind of coherency
in how your application reacts to events. Many of Rx’s operators are designed with
this goal in mind.

Not everything in this section is driven by the unique requirements
of Rx. A few of Rx’s nonstandard operators (e.g., Scan) would
make perfect sense in other LINQ providers. And versions of many
of these are available for IEnumerable<T> in the Interactive Exten‐
sions for .NET (Ix) which, as mentioned earlier, are to be found in
the System.Interactive NuGet package.

Rx has such a large repertoire of operators that to do them all justice would roughly
quadruple the size of this chapter, which is already on the long side. Since this is not a
book about Rx, and because some of the operators are very specialized, I will just pick
some of the most useful. I recommend browsing through the Rx documentation (or
the source, at https://github.com/dotnet/reactive) to discover the full and remarkably
comprehensive set of operators it provides.

Merge
The Merge operator combines all of the elements from two or more observable
sequences into a single observable sequence. I can use this to fix a problem that
occurs in Examples 11-15, 11-18, and 11-20. These all process mouse input, and if
you’ve done much Windows UI programming, you know that you will not necessar‐
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3 Like some developers.

ily get a mouse move notification corresponding to the points at which the mouse
button was pressed and released. The notifications for these button events include
mouse location information, so Windows sees no need to send a separate mouse
move message providing these locations, because it would just be sending you the
same information twice. This is perfectly logical, and also rather annoying.3 These
start and end locations are not in the observable source that represents mouse posi‐
tions in those examples. I can fix that by merging in the positions from all three
events. Example 11-21 shows how to fix Example 11-15.

Example 11-21. Merging observables

IObservable<EventPattern<MouseEventArgs>> downs =
    Observable.FromEventPattern<MouseEventArgs>(
        background, nameof(background.MouseDown));
IObservable<EventPattern<MouseEventArgs>> ups =
    Observable.FromEventPattern<MouseEventArgs>(
        background, nameof(background.MouseUp));
IObservable<EventPattern<MouseEventArgs>> allMoves =
    Observable.FromEventPattern<MouseEventArgs>(
        background, nameof(background.MouseMove));

IObservable<EventPattern<MouseEventArgs>> dragMoves =
    from move in allMoves
    where Mouse.Captured == background
    select move;

IObservable<EventPattern<MouseEventArgs>> allDragPositionEvents =
    Observable.Merge(downs, ups, dragMoves);

IObservable<Point> dragPositions =
    from move in allDragPositionEvents
    select move.EventArgs.GetPosition(background);

I’ve created three observables to represent the three relevant events: MouseDown,
MouseUp, and MouseMove. Since all three of these need to share the same projection
(the select clause), but only one needs to filter events, I’ve restructured things a bit.
Only mouse moves need filtering, so I’ve written a separate query for that. I’ve then
used the Observable.Merge method to combine all three event streams into one.
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Merge is available both as an extension method and a nonextension
static method. If you use the extension methods available on a
single observable, the only Merge overloads available combine it
with a single other source (optionally specifying a scheduler). In
this case, I had three sources, which is why I used the nonextension
method form. However, if you have an expression that is either an
enumerable of observable sources, or an observable source of
observable sources, you’ll find that there are also Merge extension
methods for these. So I could have written new[] { downs, ups,
dragMoves }.Merge().

My allDragPositionEvents variable refers to a single observable stream that will
report all the mouse moves I need. Finally, I run this through a projection to extract
the mouse position for each item. Again, the result is a hot stream. As before, it will
produce a position any time the mouse moves while the background element has cap‐
tured the mouse, but it will also produce a position each time either the MouseDown or
MouseUp event occurs. I could subscribe to this with the same call shown in the final
line of Example 11-15 to keep my UI up to date, and this time, I wouldn’t be missing
the start and end positions.

In the example I’ve just shown, the sources are all endless, but that will not always be
the case. What should a merged observable do when one of its inputs stops? If one
stops due to an error, that error will be passed on by the merged observable, at which
point it will be complete—an observable is not allowed to continue producing items
after reporting an error. However, although an input can unilaterally terminate the
output with an error, if inputs complete normally, the merged observable doesn’t
complete until all of its inputs are complete.

Windowing Operators
Rx defines two operators, Buffer and Window, that both produce an observable out‐
put where each item is based on multiple adjacent items from the source. (The name
Window has nothing to do with UIs, by the way.) Figure 11-8 shows three ways in
which you could use the Buffer operator. I’ve numbered the circles representing
items in the input, and below this are blobs representing the items that will emerge
from the observable source produced by Buffer, with lines and numbers indicating
which input items are associated with each output item. Window works in a very simi‐
lar way, as you’ll see shortly.

Rx Query Operators | 507



Figure 11-8. Sliding windows with the Buffer operator

In the first case, I’ve passed arguments of (2, 2), indicating that I want each output
item to correspond to two input items, and that I want to start a new buffer on every
second input item. That may sound like two different ways of saying the same thing
until you look at the second example in Figure 11-8, in which arguments of (3, 2)
indicate that each output item corresponds to three items from the input, but I still
want the buffers to begin on every other input. This means that each window—the set
of items from the input used to build an output item—overlaps with its neighbors.
This will happen whenever the second argument, the skip, is smaller than the win‐
dow. The first output item’s window contains the first, second, and third input. The
second output’s window contains the third, fourth, and fifth, so the third item
appears in both.

The final example in the figure shows a window size of three, but this time I’ve asked
for a skip size of one—so in this case, the window moves along by only one input
item at a time, but it incorporates three items from the source each time. I could also
specify a skip that is larger than the window, in which case the input items that fell
between windows would simply be ignored.

The Buffer and Window operators tend to introduce a lag. In the second and third
cases, the window size of three means that the input observable needs to produce its
third value before the whole window can be provided for the output item. With
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Buffer, this always means a delay of the size of the window, but as you’ll see, with the
Window operator, each window can get under way before it is full.

The difference between the Buffer and Window operators is the way in which they
present the windowed items. Buffer is the most straightforward. It provides an
IObservable<IList<T>>, where T is the input item type. In other words, if you sub‐
scribe to the output of Buffer, for each window produced, your subscriber will be
passed a list containing all the items in the window. Example 11-22 uses this to pro‐
duce a smoothed-out version of the mouse locations from Example 11-15.

Example 11-22. Smoothing input with Buffer

IObservable<Point> smoothed = from points in dragPositions.Buffer(5, 2)
                              let x = points.Average(p => p.X)
                              let y = points.Average(p => p.Y)
                              select new Point(x, y);

The first line of this query states that I want to see groups of five consecutive mouse
locations, and I want one group for every other input. The rest of the query calculates
the average mouse position within the window and produces that as the output item.
Figure 11-9 shows the effect. The top line is the result of using the raw mouse posi‐
tions. The line immediately beneath it uses the smoothed points generated by
Example 11-22 from the same input. As you can see, the top line is rather ragged, but
the bottom line has smoothed out a lot of the lumps.

Figure 11-9. Smoothing in action

Example 11-22 uses a mixture of LINQ to Objects and Rx’s LINQ implementation.
The query expression itself uses Rx, but the range variable, points, is of type
IList<Point> (because Buffer returns an IObservable<IList<Point>> in this
example). So the nested queries that invoke the Average operator on points will get
the LINQ to Objects implementation.

If the Buffer operator’s input is hot, it will produce a hot observable as a result. So
you could subscribe to the observable in the smoothed variable in Example 11-22 with
similar code to the final line of Example 11-15, and it would show the smoothed line
in real time as you drag the mouse. As discussed, there will be a slight lag, of course—
the code specifies a skip of two, so it will update the screen only for every other

Rx Query Operators | 509



mouse event. Averaging over the last five points will also tend to increase the gap
between the mouse pointer and the end of the line. With these parameters, the dis‐
crepancy is small enough not to be too distracting, but with more aggressive smooth‐
ing, it could get annoying.

The Window operator is very similar to the Buffer operator, but instead of presenting
each window as an IList<T>, it provides an IObservable<T>. If you used Window on
dragPositions in Example 11-22, the result would be IObservable<IObserva
ble<Point>>. Figure 11-10 shows how the Window operator would work in the last of
the scenarios illustrated in Figure 11-8, and as you can see, it can start each window
sooner. It doesn’t have to wait until all of the items in the window are available;
instead of providing a fully populated list containing the window, each output item is
an IObservable<T> that will produce the window’s items as and when they become
available. Each observable produced by Window completes immediately after supply‐
ing the final item (i.e., at the same instant at which Buffer would have provided the
whole window). So, if your processing depends on having the whole window, Window
can’t get it to you any faster, because it’s ultimately governed by the rate at which
input items arrive, but it will start to provide values earlier.

One potentially surprising feature of the observables produced by Window in this
example is their start times. Whereas they end immediately after producing their
final item, they do not start immediately before producing their first. The observable
representing the very first window starts right away—you will receive that observable
as soon as you subscribe to the observable of observables the operator returns. So the
first window will be available immediately, even if the Window operator’s input hasn’t
done anything yet. Then each new window starts as soon as all the input items it
needs to skip have been received. In this example, I’m using a skip count of one, so
the second window starts after the input has produced one item, the third after two
have been produced, and so on.

As you’ll see later in this section, and also in “Timed Operations” on page 530, Window
and Buffer support some other ways to define when each window starts and stops.
The general pattern is that as soon as the Window operator gets to a point where a new
item from the source would go into a new window, the operator creates that window,
anticipating the window’s first item rather than waiting for it.
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Figure 11-10. Window operator

If the input completes, all currently open windows will also com‐
plete. This means that it’s possible to see empty windows. (In fact,
with a skip size of one, you’re guaranteed to get one empty window
if the source completes.) In Figure 11-10, one window right at the
bottom has started but has not yet produced any items. If the input
were to complete without producing any more items, the three
observable sources still in progress would also complete, including
that final one that hasn’t yet produced anything.

Because Window delivers items into windows as soon as the source provides them, it
might enable you to get started with processing sooner than you can with Buffer,
perhaps improving overall responsiveness. The downside of Window is that it tends to
be more complex—your subscribers will start receiving output values before all the
items for the corresponding input window are available. Whereas Buffer provides
you with a list that you can inspect at your leisure, with Window, you’ll need to con‐
tinue working in Rx’s world of sequences that produce items only when they’re good
and ready. To perform the same smoothing as Example 11-22 with Window requires
the code in Example 11-23.
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Example 11-23. Smoothing with Window

IObservable<Point> smoothed =
    from points in dragPositions.Window(5, 2)
    from totals in points.Aggregate(
      new { X = 0.0, Y = 0.0, Count = 0 },
      (acc, point) => new
          { X = acc.X + point.X, Y = acc.Y + point.Y, Count = acc.Count + 1 })
    where totals.Count > 0
    select new Point(totals.X / totals.Count, totals.Y / totals.Count);

This is a little more complicated because I’ve been unable to use the Average opera‐
tor, due to the need to cope with the possibility of empty windows. (Strictly speaking,
that doesn’t matter in the case where I have one Polyline that keeps getting longer
and longer. But if I group the points by drag operation, as Example 11-20 does, each
individual observable source of points will complete at the end of the drag, forcing
me to handle any empty windows.) The Average operator produces an error if you
provide it with an empty sequence, so I’ve used the Aggregate operator instead,
which lets me add a where clause to filter out empty windows instead of crashing. But
that’s not the only aspect that is more complex.

As I mentioned earlier, all of Rx’s aggregation operators—Aggregate, Min, Max, and
so on—work differently than with most LINQ providers. LINQ requires these opera‐
tors to reduce the stream down to a single value, so they normally return a single
value. For example, if I were to call the LINQ to Objects version of Aggregate with
the arguments shown in Example 11-23, it would return a single value of the anony‐
mous type I’m using for my accumulator. But in Rx, the return type is IObserva
ble<T> (where T is that accumulator type in this case). It still produces a single value,
but it presents that value through an observable source. Unlike LINQ to Objects,
which can enumerate its input to calculate, say, an average, the Rx operator has to
wait for the source to provide its values, so it can’t produce an aggregate of those val‐
ues until the source says it has finished.

Because the Aggregate operator returns an IObservable<T>, I’ve had to use a second
from clause. This passes that source to the SelectMany operator, which extracts all
values and makes them appear in the final stream—in this case, there is just one value
(per window), so SelectMany is effectively unwrapping the averaged point from its
single-item stream.

The code in Example 11-23 is a little more complex than Example 11-22, and I think
it’s considerably harder to understand how it works. Worse, it doesn’t even offer any
benefit. The Aggregate operator will begin its work as soon as inputs become avail‐
able, but the code cannot produce the final result—the average—until it has seen
every point in the window. If I’m going to have to wait until the end of the window
before I can update the UI, I may as well stick with Buffer. So, in this particular case,
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Window was a lot more work for no benefit. However, if the work being done on the
items in the window was less trivial, or if the volumes of data involved were so large
that you didn’t want to buffer the entire window before starting to process it, the
extra complexity could be worth the benefit of being able to start the aggregation pro‐
cess without having to wait for the whole input window to become available.

Demarcating windows with observables

The Window and Buffer operators provide some other ways of defining when win‐
dows should start and finish. Just as the join operators can specify duration with an
observable, you can supply a function that returns a duration-defining observable for
each window. Example 11-24 uses this to break keyboard input into words. The key
Source variable in this example is the one from Example 11-11. It’s an observable
sequence that produces an item for each keypress.

Example 11-24. Breaking text into words with windows

IObservable<IObservable<char>> wordWindows = keySource.Window(
    () => keySource.FirstAsync(char.IsWhiteSpace));

IObservable<string> words = from wordWindow in wordWindows
                            from chars in wordWindow.ToArray()
                            select new string(chars).Trim();

words.Subscribe(word => Console.WriteLine("Word: " + word));

The Window operator will immediately create a new window in this example, and it
will also invoke the lambda I’ve supplied to find out when that window should end. It
will keep it open until the observable source my lambda returns either produces a
value or completes. When that happens, Window will immediately open the next win‐
dow, invoking my lambda again to get another observable to determine the length of
the second window, and so on. The lambda here produces the next whitespace char‐
acter from the keyboard, so the window will close on the next space. In other words,
this breaks the input sequence into a series of windows where each window contains
zero or more nonwhitespace characters followed by one whitespace character.

The observable sequence the Window operator returns presents each window as an
IObservable<char>. The second statement in Example 11-24 is a query that converts
each window to a string. (This will produce empty strings if the input contains multi‐
ple adjacent whitespace characters. That’s consistent with the behavior of the string
type’s Split method, which performs the pull-oriented equivalent of this partition‐
ing. If you don’t like it, you can always filter out the blanks with a where clause.)

Because Example 11-24 uses Window, it will start making characters for each word
available as soon as the user types them. But because my query calls ToArray on the
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window, it will end up waiting until the window completes before producing any‐
thing. This means Buffer would be equally effective. It would also be simpler. As
Example 11-25 shows, I don’t need a second from clause to collect the completed
window if I use Buffer, because it provides me with windows only once they are
complete.

Example 11-25. Word breaking with Buffer

IObservable<IList<char>> wordWindows = keySource.Buffer(
    () => keySource.FirstAsync(char.IsWhiteSpace));

IObservable<string> words = from wordWindow in wordWindows
                            select new string(wordWindow.ToArray()).Trim();

The Scan Operator
The Scan operator is very similar to the standard Aggregate operator, with one dif‐
ference. Instead of producing a single result after its source completes, it produces a
sequence containing each accumulator value in turn. To illustrate this, I will first
introduce a class that will act as a very simple model for a stock trade. This class,
shown in Example 11-26, also defines a static method that provides a randomly gen‐
erated stream of trades for test purposes.

Example 11-26. Simple stock trade with test stream

public class Trade
{
    public string StockName { get; set; }
    public decimal UnitPrice { get; set; }
    public int Number { get; set; }

    public static IObservable<Trade> TestStream()
    {
        return Observable.Create<Trade>(obs =>
            {
                string[] names = { "MSFT", "GOOGL", "AAPL" };
                var r = new Random(0);
                for (int i = 0; i < 100; ++i)
                {
                    var t = new Trade
                    {
                        StockName = names[r.Next(names.Length)],
                        UnitPrice = r.Next(1, 100),
                        Number = r.Next(10, 1000)
                    };
                    obs.OnNext(t);
                }
                obs.OnCompleted();
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                return default(IDisposable);
            });
    }
}

Example 11-27 shows the normal Aggregate operator being used to calculate the
total number of stocks traded, by adding up the Number property of every trade.
(You’d normally just use the Sum operator, of course, but I’m showing this for com‐
parison with Scan.)

Example 11-27. Summing with Aggregate

IObservable<Trade> trades = Trade.TestStream();

IObservable<long> tradeVolume = trades.Aggregate(
    0L, (total, trade) => total + trade.Number);
tradeVolume.Subscribe(Console.WriteLine);

This displays a single number, because the observable produced by Aggregate pro‐
vides only a single value. Example 11-28 shows almost exactly the same code, but
using Scan instead.

Example 11-28. Running total with Scan

IObservable<Trade> trades = Trade.TestStream();

IObservable<long> tradeVolume = trades.Scan(
    0L, (total, trade) => total + trade.Number);
tradeVolume.Subscribe(Console.WriteLine);

Instead of producing a single output value, this produces one output item for each
input, which is the running total for all items the source has produced so far. Scan is
particularly useful if you need aggregation-like behavior in an endless stream, such as
one based on an event source. Aggregate is no use in that scenario because it will not
produce anything if its input never completes.

The Amb Operator
Rx defines an operator with the somewhat cryptic name of Amb. (See the next sidebar,
“Why Amb?”) This takes any number of observable sequences and waits to see which
one does something first. (The documentation talks about which of the inputs
“reacts” first. This means that it calls any of the three IObserver<T> methods.)
Whichever input jumps into action first effectively becomes the Amb operator’s output
—it forwards everything the chosen stream does, immediately unsubscribing from
the other streams. (If any of them manage to produce elements after the first stream
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does, but before the operator has had time to unsubscribe, those elements will be
ignored.)

Why Amb?
The Amb operator’s name is short for ambiguous. This seems like a violation of Micro‐
soft’s own class library design guidelines, which forbid abbreviations unless the short‐
ened form is more widely used than the full name and likely to be understood even by
nonexperts. This operator’s name is well established—it was introduced in 1963 in a
paper by John McCarthy (inventor of the LISP programming language). However, it’s
not all that widely used, so the name fails the test of being instantly understandable by
nonexperts.

However, the expanded name isn’t really any more transparent. If you’re not already
familiar with the operator, the name Ambiguous wouldn’t be much more help in try‐
ing to guess what it does than just Amb. If you are familiar with it, you will already
know that it’s called Amb. So there is no obvious downside to using the abbreviation,
and there’s a benefit for people who already know it.

Another reason the Rx team used this name was to pay homage to John McCarthy,
whose work was profoundly influential for computing in general, and for the LINQ
and Rx projects in particular. (Many of the features discussed in this chapter and
Chapter 10 are directly influenced by McCarthy’s work.)

You might use this operator to optimize a system’s response time by sending a
request to multiple machines in a server pool, and using the result from whichever
responds first. (There are dangers with this technique, of course, not least of which is
that it could increase the overall load on your system so much that the effect is to
slow everything down, not speed anything up. However, there are some scenarios in
which careful application of this technique can be successful.)

DistinctUntilChanged
The final operator I’m going to describe in this section is very simple, but rather use‐
ful. The DistinctUntilChanged operator removes adjacent duplicates. Suppose you
have an observable source that produces items on a regular basis, but tends to pro‐
duce the same value multiple times in a row. You might need to take action only
when a different value emerges. DistinctUntilChanged is for exactly this scenario—
when its input produces an item, it will be passed on only if it was different from the
previous item (or if it was the first item).

I’ve not yet shown all of the Rx operators I want to introduce. However, the remain‐
ing ones, which I’ll discuss in “Timed Operations” on page 530, are all time sensitive.
And before I can show those, I need to describe how Rx handles timing.
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4 This name (which is now a bit anachronistic) comes from the fact that for a while, Windows Store apps were
the only supported environment for using .NET Core. However, this CoreDispatcherScheduler is not avail‐
able in any other .NET Core-based framework.

Schedulers
Rx performs certain work through schedulers. A scheduler is an object that provides
three services. The first is to decide when to execute a particular piece of work. For
example, when an observer subscribes to a cold source, should the source’s items be
delivered to the subscriber immediately, or should that work be deferred? The second
service is to run work in a particular context. A scheduler might decide always to exe‐
cute work on a particular thread, for example. The third job is to keep track of time.
Some Rx operations are time dependent; to ensure predictable behavior and to enable
testing, schedulers provide a virtualized model for time, so Rx code does not have to
depend on the current time of day reported by .NET’s DateTimeOffset class.

The scheduler’s first two roles are sometimes interdependent. For example, Rx sup‐
plies a few schedulers for use in UI applications. There’s a CoreDispatcherScheduler
for Windows Store apps,4 DispatcherScheduler for WPF applications, Control
Scheduler for Windows Forms programs, and a more generic one called Synchroni
zationContextScheduler, which will work in all .NET UI frameworks, albeit with
slightly less control over the details than the framework-specific ones. All of these
have a common characteristic: they ensure that work executes in a suitable context
for accessing UI objects, which typically means running the work on a particular
thread. If code that schedules work is running on some other thread, the scheduler
may have no choice but to defer the work, because it will not be able to run it until
the UI framework is ready. This might mean waiting for a particular thread to finish
whatever it is doing. In this case, running the work in the right context necessarily
also has an impact on when the work is executed.

This isn’t always the case, though. Rx provides two schedulers that use the current
thread. One of them, ImmediateScheduler, is extremely simple: it runs work the
instant it is scheduled. When you give this scheduler some work, it won’t return until
the work is complete. The other, CurrentThreadScheduler, maintains a work queue,
which gives it some flexibility with ordering. For example, if some work is scheduled
in the middle of executing some other piece of work, it can allow the work item in
progress to finish before starting on the next. If no work items are queued or in pro‐
gress, CurrentThreadScheduler runs work immediately, just like ImmediateSchedu
ler. When a work item it has invoked completes, the CurrentThreadScheduler
inspects the queue and will invoke the next item if it’s not empty. So it attempts to
complete all work items as quickly as possible, but unlike ImmediateScheduler, it will
not start to process a new work item before the previous one has finished.
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5 The overloads are spread across multiple classes because some of these extension methods are technology
specific. WPF gets ObserveOn overloads that work directly with its Dispatcher class instead of IScheduler,
for example.

Specifying Schedulers
Rx operations often do not go through schedulers. Many observable sources invoke
their subscribers’ methods directly. Sources that can generate a large number of items
in quick succession are typically an exception. For example, the Range and Repeat
methods for creating sequences use a scheduler to govern the rate at which they pro‐
vide items to new subscribers. You can pass in an explicit scheduler, or let them pick
a default one. You can also get a scheduler involved explicitly even when using sour‐
ces that don’t accept one as an argument.

ObserveOn

A common way to specify a scheduler is with one of the ObserveOn extension meth‐
ods defined by various static classes in the System.Reactive.Linq namespace.5 This
is useful if you want to handle events in a specific context (such as the UI thread)
even though they may originate from somewhere else.

You can invoke ObserveOn on any IObservable<T>, passing in an IScheduler, and it
returns another IObservable<T>. If you subscribe to the observable that returns, your
observer’s OnNext, OnCompleted, and OnError methods will all be invoked through
the scheduler you specified. Example 11-29 uses this to ensure that it’s safe to update
the UI in the item handler callback.

Example 11-29. ObserveOn

IObservable<Trade> trades = GetTradeStream();
IObservable<Trade> tradesInUiContext =
    trades.ObserveOn(DispatcherScheduler.Current);
tradesInUiContext.Subscribe(t =>
{
    tradeInfoTextBox.AppendText(
        $"{t.StockName}: {t.Number} at {t.UnitPrice}\r\n");
});

In this example, I used the DispatcherScheduler class’s static Current property,
which returns a scheduler that executes work via the current thread’s Dispatcher.
(Dispatcher is the class that manages the UI message loop in WPF applications.)
There’s an alternative ObserveOn overload I could have used here. The DispatcherOb
servable class defines some extension methods providing WPF-specific overloads,
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enabling me to call ObserveOn passing just a Dispatcher object. I could use this in
the codebehind for a UI element with code such as that in Example 11-30.

Example 11-30. WPF-specific ObserveOn overload

IObservable<Trade> tradesInUiContext = trades.ObserveOn(this.Dispatcher);

The advantage of this overload is that I don’t need to be on the UI thread at the point
at which I call ObserveOn. The Current property used in Example 11-29 works only if
you are on the thread for the dispatcher you require. If I’m already on that thread,
there’s an even simpler way to set this up. I can use the ObserveOnDispatcher exten‐
sion method, which obtains a DispatcherScheduler for the current thread’s dis‐
patcher, as shown in Example 11-31.

Example 11-31. Observing on the current dispatcher

IObservable<Trade> tradesInUiContext = trades.ObserveOnDispatcher();

SubscribeOn

Most of the various ObserveOn extension methods have corresponding SubscribeOn
methods. (There’s also SubscribeOnDispatcher, the counterpart of ObserveOnDis
patcher.) Instead of arranging for each call to an observer’s methods to be made
through the scheduler, SubscribeOn performs the call to the source observable’s Sub
scribe method through the scheduler. And if you unsubscribe by calling Dispose,
that will also be delivered through the scheduler. This can be important for cold sour‐
ces, because many perform significant work in their Subscribe method, some even
delivering all of their items immediately.

In general, there’s no guarantee of any correspondence between the
context in which you subscribe to a source and the context in
which the items it produces will be delivered to a subscriber. Some
sources will notify you from their subscription context, but many
won’t. If you need to receive notifications in a particular context,
then unless the source provides some way to specify a scheduler,
use ObserveOn.

Passing schedulers explicitly
Some operations accept a scheduler as an argument. You will tend to find this in
operations that can generate many items. The Observable.Range method that gener‐
ates a sequence of numbers optionally takes a scheduler as a final argument to control
the context from which these numbers are generated. This also applies to the APIs for
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adapting other sources, such as IEnumerable<T> to observable sources, as described
in “Adaptation” on page 524.

Another scenario in which you can usually provide a scheduler is when using an
observable that combines inputs. Earlier, you saw how the Merge operator combines
the output of multiple sequences. You can provide a scheduler to tell the operator to
subscribe to the sources from a specific context.

Finally, timed operations all depend on a scheduler. I will show some of these in
“Timed Operations” on page 530.

Built-in Schedulers
I’ve already described the four UI-oriented schedulers, DispatcherScheduler (for
WPF), CoreDispatcherScheduler (for Windows Store apps), ControlScheduler (for
Windows Forms), and SynchronizationContextScheduler, and also the two sched‐
ulers for running work on the current thread, CurrentThreadScheduler and Immedia
teScheduler. But there are some others worth being aware of.

EventLoopScheduler runs all work items on a specific thread. It can create a new
thread for you, or you can provide it with a callback method that it will invoke when
it wants you to create the thread. You might use this in a UI application to process
incoming data. It lets you move work off the UI thread to keep the application
responsive, but ensures that all processing happens on a single thread, which can
simplify concurrency issues.

NewThreadScheduler creates a new thread for each top-level work item it processes.
(If that work item spawns further work items, those will run on the same thread,
rather than creating new ones.) This is appropriate only if you need to do a lot of
work for each item, because threads have relatively high startup and teardown costs
in Windows. You are normally better off using a thread pool if you need concurrent
processing of work items.

TaskPoolScheduler uses the Task Parallel Library’s (TPL) thread pool. The TPL,
described in Chapter 16, provides an efficient pool of threads that can reuse a single
thread for multiple work items, amortizing the startup costs of creating the thread.

ThreadPoolScheduler uses the CLR’s thread pool to run work. This is similar in con‐
cept to the TPL thread pool, but it’s a somewhat older piece of technology. (The TPL
was introduced in .NET 4.0, but the CLR threadpool has existed since v1.0.) This is a
bit less efficient in certain scenarios. Rx introduced this scheduler because early ver‐
sions of Rx supported old versions of .NET that didn’t have the TPL. It retains it for
backward-compatibility reasons.

HistoricalScheduler is useful when you want to test time-sensitive code without
needing to execute your tests in real time. All schedulers will provide a time-keeping
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6 In fact, Publish uses Subject<T> internally in the current version of Rx.

service, but the HistoricalScheduler lets you decide the exact rate at which you
want the scheduler to behave as though time is elapsing. So, if you need to test what
happens if you wait 30 seconds, you can just tell the HistoricalScheduler to act as
though 30 seconds have passed, without having to actually wait.

Subjects
Rx defines various subjects, classes that implement both IObserver<T> and IObserva
ble<T>. These can sometimes be useful if you need Rx to provide a robust implemen‐
tation of either of these interfaces, but the usual Observable.Create or Subscribe
methods are not convenient. For example, perhaps you need to provide an observable
source, and there are several different places in your code from which you want to
provide values for that source to produce. This is awkward to fit into the Create
method’s subscription callback model, and can be easier to handle with a subject.
Some of the subject types provide additional behavior, but I’ll start with the simplest,
Subject<T>.

Subject<T>
The Subject<T> class’s IObserver<T> implementation just relays calls to all observers
that have subscribed using its IObservable<T> interface. So, if you subscribe one or
more observables to a Subject<T> and then call OnNext, the subject will call OnNext
on each of its subscribers. It’s the same for the other methods, OnCompleted and OnEr
ror. This multicast relay is very similar to the facility provided by the Publish opera‐
tor6 I used in Example 11-11, so this provides an alternative way for me to remove all
of the code for tracking subscribers from my KeyWatcher source, resulting in the
code shown in Example 11-32. This is much simpler than the original in
Example 11-7, although not quite as simple as the delegate-based version in
Example 11-11.

Example 11-32. Implementing IObservable<T> with a Subject<T>

public class KeyWatcher : IObservable<char>
{
    private readonly Subject<char> _subject = new Subject<char>();

    public IDisposable Subscribe(IObserver<char> observer)
    {
        return _subject.Subscribe(observer);
    }
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    public void Run()
    {
        while (true)
        {
            _subject.OnNext(Console.ReadKey(true).KeyChar);
        }
    }
}

This defers to a Subject<char> in its Subscribe method, so everything that tries to
subscribe to this KeyWatcher will end up being subscribed to that subject instead. My
loop can then just call the subject’s OnNext method, and it’ll take care of broadcasting
that to all the subscribers.

In fact, I can simplify things further by exposing the observable as a separate prop‐
erty, rather than making my entire type observable, as Example 11-33 shows. Not
only does this make the code slightly simpler, but it also means my KeyWatcher could
now provide multiple sources if it wanted to.

Example 11-33. Providing an IObservable<T> as a property

public class KeyWatcher
{
    private readonly Subject<char> _subject = new Subject<char>();

    public IObservable<char> Keys => _subject;

    public void Run()
    {
        while (true)
        {
            _subject.OnNext(Console.ReadKey(true).KeyChar);
        }
    }
}

This is still not quite as simple as the combination of Observable.Create and the
Publish operator that I used in Example 11-11, but it does offer two advantages.
First, it’s now easier to see when the loop that generates keypress notifications runs. I
was in control of that in Example 11-11, but for anyone not totally familiar with how
Publish works, it would not be obvious how this was being achieved. I find
Example 11-33 a little less cryptic. Second, if I wanted to, I could use this subject from
anywhere inside my KeyWatcher class, whereas in Example 11-11, the only place from
which I could easily provide an item was inside the callback function invoked by
Observable.Create. As it happens, in this example I don’t need this flexibility, but in
scenarios where you do, a Subject<T> is likely to be a better choice than the callback
approach.
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BehaviorSubject<T>
BehaviorSubject<T> looks almost exactly like a Subject<T> except for one thing:
when any observer first subscribes, it is guaranteed to receive a value straightaway as
long you have not completed the subject by calling OnComplete. (If you have already
completed the subject, it’ll just call OnComplete immediately on any further subscrib‐
ers.) It remembers the last item it passed on, and hands that out to new subscribers.
When you construct a BehaviorSubject<T>, you have to provide an initial value that
it will provide to new subscribers until the first call to OnNext.

One way to think of this subject is as Rx’s version of a variable. It’s something that
has a value that you can retrieve at any time, and its value can also change over time.
But being reactive, you subscribe to it to retrieve its value, and your observer will be
notified of any further changes until you unsubscribe.

This subject has a mix of hot and cold characteristics. It will instantly provide a value
to any subscriber, making it seem like a cold source, but once that’s happened, it then
broadcasts new values to all subscribers, more like a hot source does. There’s another
subject with a similar mix, but that takes the cold side a bit further.

ReplaySubject<T>
ReplaySubject<T> can record every value it receives from whichever source you sub‐
scribe it to. (Or, if you invoke its methods directly, it remembers every value you pro‐
vide through OnNext.) Each new subscriber to this subject will receive every item that
the ReplaySubject<T> has seen so far. So this is much more like an ordinary cold
subject—instead of just getting the most recent value as you would from a Behavior
Subject<T>, you get a complete set of items. However, once the ReplaySubject<T>
has provided a particular subscriber with all of the items it has recorded, it then tran‐
sitions into more hot-like behavior for that subscriber, because it will continue to
provide new incoming items.

So, in the long run, every subscriber to a ReplaySubject<T> will by default see every
item that the ReplaySubject<T> receives from its source, regardless of how early or
late that subscriber subscribed to the subject.

In its default configuration, a ReplaySubject<T> will consume ever more memory
for as long as it is subscribed to a source. There’s no way to tell it that it will have no
more new subscribers, and that it’s now OK for it to discard old items that it has
already distributed to all of its existing subscribers. You should therefore not leave it
subscribed indefinitely to an endless source. However, you can limit the amount that
a ReplaySubject<T> buffers. It offers various constructor overloads, some of which
let you specify either an upper limit on the number of items to replay, or an upper
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limit on the time for which it will hold onto items. Obviously, if you do this, new sub‐
scribers can no longer depend on getting all of the items previously received.

AsyncSubject<T>
AsyncSubject<T> remembers just one value from its source, but unlike BehaviorSub
ject<T>, which remembers the most recent value, AsyncSubject<T> waits for its
source to complete. It will then produce the final item as its output. If the source
completes without providing any values, the AsyncSubject<T> will do the same to its
subscribers.

If you subscribe to an AsyncSubject<T> before its source has completed, the Asyn
cSubject<T> will do nothing with your observer until the source completes. But once
the source has completed, the AsyncSubject<T> acts as a cold source that provides a
single value, unless the source completed without providing a value, in which case
this subject will complete all new subscribers immediately.

Adaptation
Interesting and powerful though Rx is, it would not be much use if it existed in a vac‐
uum. If you are working with asynchronous notifications, it’s possible that they will
be supplied by an API that does not support Rx. Although IObservable<T> and IOb
server<T> have been around for a long time (since .NET 4.0, which was released in
2010), not every API that could support these interfaces does. Also, because Rx’s fun‐
damental abstraction is a sequence of items, there’s a good chance that at some point
you might need to convert between Rx’s push-oriented IObservable<T>, and the
pull-oriented equivalents, IEnumerable<T> and IAsyncEnumerable<T>. Rx provides
ways to adapt all these kinds of sources into IObservable<T>, and in some cases, it
can adapt in either direction.

IEnumerable<T> and IAsyncEnumerable<T>
Any IEnumerable<T> can easily be brought into the world of Rx thanks to the ToOb
servable extension methods. These are defined by the Observable static class in the
System.Reactive.Linq namespace. Example 11-34 shows the simplest form, which
takes no arguments.

Example 11-34. Converting an IEnumerable<T> to an IObservable<T>

public static void ShowAll(IEnumerable<string> source)
{
    IObservable<string> observableSource = source.ToObservable();
    observableSource.Subscribe(Console.WriteLine);
}
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The ToObservable method itself does nothing with the input—it just returns a wrap‐
per that implements IObservable<T>. This wrapper is a cold source, and each time
you subscribe an observer to it, only then does it iterate through the input, passing
each item to the observer’s OnNext method, and calling OnCompleted at the end. If the
source throws an exception, this adapter will call OnError. Example 11-35 shows how
ToObservable might work if it weren’t for the fact that it needs to use a scheduler.

Example 11-35. How ToObservable might look without scheduler support

public static IObservable<T> MyToObservable<T>(this IEnumerable<T> input)
{
    return Observable.Create((IObserver<T> observer) =>
        {
            bool inObserver = false;
            try
            {
                foreach (T item in input)
                {
                    inObserver = true;
                    observer.OnNext(item);
                    inObserver = false;
                }
                inObserver = true;
                observer.OnCompleted();
            }
            catch (Exception x)
            {
                if (inObserver)
                {
                    throw;
                }
                observer.OnError(x);
            }
            return () => { };
        });
}

This is not how it really works, because Example 11-35 cannot use a scheduler. (A full
implementation would have been much harder to read, defeating the purpose of the
example, which was to show the basic idea behind ToObservable.) The real method
uses a scheduler to manage the iteration process, enabling subscription to occur asyn‐
chronously if required. It also supports stopping the work if the observer’s subscrip‐
tion is cancelled early. There’s an overload that takes a single argument of type
IScheduler, which lets you tell it to use a particular scheduler; if you don’t provide
one, it’ll use CurrentThreadScheduler.

When it comes to going in the other direction—that is, when you have an IObserva
ble<T>, but you would like to treat it as an IEnumerable<T>—you can call the
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ToEnumerable extension methods, also provided by the Observable class.
Example 11-36 wraps an IObservable<string> as an IEnumerable<string> so that
it can iterate over the items in the source using an ordinary foreach loop.

Example 11-36. Using an IObservable<T> as an IEnumerable<T>

public static void ShowAll(IObservable<string> source)
{
    foreach (string s in source.ToEnumerable())
    {
        Console.WriteLine(s);
    }
}

The wrapper subscribes to the source on your behalf. If the source provides items
faster than you can iterate over them, the wrapper will store the items in a queue so
you can retrieve them at your leisure. If the source does not provide items as fast as
you can retrieve them, the wrapper will just wait until items become available.

.NET Core 3.0 and .NET Standard 2.1 add the IAsyncEnumerable<T> interface, which
provides the same model as IEnumerable<T> but in a way that enables efficient asyn‐
chronous operation using the techniques discussed in Chapter 17. Rx offers a ToOb
servable extension method for this, and also a ToAsyncEnumerable method
extension method for IObservable<T>. These both come from the AsyncEnumerable
class, and to use that you’ will need a reference to a separate NuGet package called
System.Linq.Async.

.NET Events
Rx can wrap a .NET event as an IObservable<T> using the Observable class’s static
FromEventPattern method. Earlier in Example 11-17 I used a FileSystemWatcher, a
class from the System.IO namespace that raises various events when files are added,
deleted, renamed, or otherwise modified in a particular folder. Example 11-37 repro‐
duces the first part of that example, which I glossed over last time. This code uses the
Observable.FromEventPattern static method to produce an observable source rep‐
resenting the watcher’s Created event. (If you want to handle a static event, you can
pass a Type object as the first argument instead. Chapter 13 describes the Type class.)

Example 11-37. Wrapping an event in an IObservable<T>

string path = Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);
var watcher = new FileSystemWatcher(path);
watcher.EnableRaisingEvents = true;

IObservable<EventPattern<FileSystemEventArgs>> changes =
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    Observable.FromEventPattern<FileSystemEventArgs>(
        watcher, nameof(watcher.Created));
changes.Subscribe(evt => Console.WriteLine(evt.EventArgs.FullPath));

On the face of it, this seems significantly more complicated than just subscribing to
the event in the normal way shown in Chapter 9, and with no obvious advantage.
And in this particular example, that would have been better. However, one obvious
benefit of using Rx is that if you were writing a UI application, you could use
ObserveOn with a suitable scheduler to ensure that your handler was always invoked
on the right thread, regardless of which thread raised the event. Of course, another
benefit—and the usual reason for doing this—is that you can use any of Rx’s query
operators to process the events. (That’s why the original Example 11-17 did this.)

The element type of the observable source that Example 11-37 produces is EventPat
tern<FileSystemEventArgs>. The generic EventPattern<T> is a type defined by Rx
specifically for representing the raising of an event, where the event’s delegate type
conforms to the standard pattern described in Chapter 9 (i.e., it takes two arguments,
the first being of type object, representing the object that raised the event, and the
second being some type derived from EventArgs, containing information about the
event). EventPattern<T> has two properties, Sender and EventArgs, corresponding
to the two arguments that an event handler would receive. In effect, this is an object
that represents what would normally be a method call to an event handler.

A surprising feature of Example 11-37 is that the second argument to FromEventPat
tern is a string containing the name of the event. Rx resolves this to the real event
member at runtime. This is less than ideal for a couple of reasons. First, it means that
if you type the name in wrong, the compiler won’t notice (although using the nameof
operator mitigates this). Second, it means the compiler can’t help you with types—if
you handle a .NET event directly with a lambda, the compiler can infer the argument
types from the event definition, but here, because we’re passing the event name as a
string, the compiler doesn’t know which event I’m using (or even that I’m using an
event at all), so I’ve had to specify the generic type argument for the method explic‐
itly. And again, if I get that wrong, the compiler won’t know—it’ll be checked at run‐
time instead.

This string-based approach arises from a shortcoming of events: you can’t pass an
event as an argument. In fact, events are very limited members. You can’t do any‐
thing with an event from outside of the class that defines it other than adding or
removing handlers. This is one of the ways in which Rx improves on events—once
you’re in the world of Rx, event sources and subscribers are both represented as
objects (implementing IObservable<T> and IObserver<T>, respectively), making it
straightforward to pass them into methods as arguments. But that doesn’t help us at
the point where we’re dealing with an event that’s not yet in Rx’s world.
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Rx does provide an overload that doesn’t require you to use a string—you can pass in
delegates that add and remove the handlers for Rx, as Example 11-38 shows.

Example 11-38. Delegate-based event wrapping

IObservable<EventPattern<FileSystemEventArgs>> changes =
    Observable.FromEventPattern<FileSystemEventHandler, FileSystemEventArgs>(
    h => watcher.Created += h, h => watcher.Created -= h);

This is somewhat more verbose, because it requires a generic type argument specify‐
ing the handler delegate type as well as the event argument type. The string-based
version discovers the handler type for itself at runtime, but because the normal rea‐
son for using the approach in Example 11-38 is to get compile-time type checking,
the compiler needs to know what types you’re using, and the lambdas in that example
don’t provide quite enough information for the compiler to infer all the type argu‐
ments automatically.

As well as wrapping an event as an observable source, it’s possible to go in the other
direction. Rx defines an operator for IObservable<EventPattern<T>> called ToEvent
Pattern<T>. (Note that this is not available for any old observable source—it has to
be an observable sequence of EventPattern<T>.) If you call this, it returns an object
that implements IEventPatternSource<T>. This defines a single event called OnNext,
of type EventHandler<T>, which allows you to hook up an event handler in the ordi‐
nary .NET way to an observable source.

The Universal Windows Platform (UWP, which provides Windows Store applica‐
tions with the common API used by both .NET and C++ apps) has its own variation
on the event pattern based around a type called TypedEventHandler. The Sys
tem.Reactive.Linq namespace defines a WindowsObservable class with methods for
mapping between these and Rx. (This is only available when you target UWP—Rx’s
NuGet packages provide separate versions of the DLLs for various target platforms,
so that it can offer platform-specific features like these.) It defines FromEventPattern
and ToEventPattern methods that provide the same services as the versions I’ve
already shown, but for UWP events instead of ordinary .NET events.

Asynchronous APIs
.NET supports various asynchronous patterns, which I’ll be describing in detail in
Chapter 16 and Chapter 17. The first to be introduced in .NET was the Asynchro‐
nous Programming Model (APM). However, this pattern is not supported directly by
the new C# asynchronous language features, so most .NET APIs now use the TPL,
and for older APIs the TPL offers adapters that can provide a task-based wrapper for
an APM-based API. Rx can represent any TPL task as an observable source.
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The basic model for all of .NET’s asynchronous patterns is that you start some work
that will eventually complete, optionally producing a result. So it may seem odd to
translate this into Rx, where the fundamental abstraction is a sequence of items, not a
single result. In fact, one useful way to understand the difference between Rx and the
TPL is that IObservable<T> is analogous to IEnumerable<T>, while Task<T> is analo‐
gous to a property of type T. Whereas with IEnumerable<T> and properties, the caller
decides when to fetch information from the source, with IObservable<T> and
Task<T>, the source provides the information when it’s ready. The choice of which
party decides when to provide information is separate from the question of whether
the information is singular or a sequence of items. So a mapping between singular
asynchronous APIs and IObservable<T> seems a little mismatched. But then we can
cross similar boundaries in the nonasynchronous world—as you saw in Chapter 10,
LINQ defines various standard operators that produce a single item from a sequence,
such as First or Last. Rx supports those operators, but it additionally supports going
in the other direction: bringing singular asynchronous sources into a stream-like
world. The upshot is an IObservable<T> source that produces just a single item (or
reports an error if the operation fails). The analogy in the nonasynchronous world
would be taking a single value and wrapping it in an array so that you can pass it to
an API that requires an IEnumerable<T>.

Example 11-39 uses this facility to produce an IObservable<string> that will either
produce a single value containing the text downloaded from a particular URL, or
report a failure should the download fail.

Example 11-39. Wrapping a Task<T> as an IObservable<T>

public static IObservable<string> GetWebPageAsObservable(
    Uri pageUrl, IHttpClientFactory cf)
{
    HttpClient web = cf.CreateClient();
    Task<string> getPageTask = web.GetStringAsync(pageUrl);
    return getPageTask.ToObservable();
}

The ToObservable method used in this example is an extension method defined for
Task by Rx. For this to be available, you’ll need the System.Reactive.Thread
ing.Tasks namespace to be in scope.

One potentially unsatisfactory feature of Example 11-39 is that it will attempt the
download only once, no matter how many observers subscribe to the source.
Depending on your requirements, that might be fine, but in some scenarios, it might
make sense to attempt to download a fresh copy every time. If you want that, a better
approach would be to use the Observable.FromAsync method, because you pass that
a lambda that it invokes each time a new observer subscribes. Your lambda returns a
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task that will then be wrapped as an observable source. Example 11-40 uses this to
start a new download for each subscriber.

Example 11-40. Creating a new task for each subscriber

public static IObservable<string> GetWebPageAsObservable(
    Uri pageUrl, IHttpClientFactory cf)
{
    return Observable.FromAsync(() =>
        {
            HttpClient web = cf.CreateClient();
            return web.GetStringAsync(pageUrl);
        });
}

This might be suboptimal if you have many subscribers. On the other hand, it’s more
efficient when nothing attempts to subscribe at all. Example 11-39 starts the asyn‐
chronous work immediately without even waiting for any subscribers. That may be a
good thing—if the stream will definitely have subscribers, kicking off slow work
without waiting for the first subscriber will reduce your overall latency. However, if
you are writing a class in a library that presents multiple observable sources, which
might not all be used, deferring work until the first subscription might be better.

The Windows Runtime defines some asynchronous patterns of its own through the
IAsyncOperation and IAsyncOperationWithProgress interfaces. The System.Reac
tive.Windows.Foundation namespace defines extension methods for mapping
between these and Rx. It defines ToObservable extension methods for these types,
and also ToAsyncOperation and ToAsyncOperationWithProgress extension methods
for IObservable<T>.

Timed Operations
Because Rx can work with live streams of information, you may need to handle items
in a time-sensitive way. For example, the rate at which items arrive might be impor‐
tant, or you may wish to group items based on when they were provided. In this final
section, I’ll describe some of the time-based operators that Rx offers.

Interval
The Observable.Interval method returns a sequence that regularly produces values
at the interval specified by an argument of type TimeSpan. Example 11-41 creates and
subscribes to a source that will produce one value every second.
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Example 11-41. Regular items with Interval

IObservable<long> src = Observable.Interval(TimeSpan.FromSeconds(1));
src.Subscribe(i => Console.WriteLine($"Event {i} at {DateTime.Now:T}"));

The items produced by Interval are of type long. It produces values of zero, one,
two, etc.

Interval handles each subscriber independently (i.e., it is a cold source). To demon‐
strate this, add the code in Example 11-42 after that in Example 11-41 to wait for a
short while and then create a second subscription.

Example 11-42. Two subscribers for one Interval source

Thread.Sleep(2500);
src.Subscribe(i => Console.WriteLine(
    $"Event {i} at {DateTime.Now:T} (2nd subscriber)"));

The second subscriber subscribes two and a half seconds after the first one, so this
will produce the following output:

Event 0 at 09:46:58
Event 1 at 09:46:59
Event 2 at 09:47:00
Event 0 at 09:47:00 (2nd subscriber)
Event 3 at 09:47:01
Event 1 at 09:47:01 (2nd subscriber)
Event 4 at 09:47:02
Event 2 at 09:47:02 (2nd subscriber)
Event 5 at 09:47:03
Event 3 at 09:47:03 (2nd subscriber)

You can see that the second subscriber’s values start from zero, and that’s because it
gets its own sequence. If you want a single set of these timed items to feed into multi‐
ple subscribers, you can use the Publish operator described earlier.

You could use an Interval source in conjunction with a group join as a way to break
items into chunks based on when they arrive. (This is not the only way—there are
overloads of Buffer and Window that can do the same.) Example 11-43 combines a
timer with an observable sequence representing the words the user types. (That sec‐
ond sequence is in the words variable, which comes from Example 11-25.)

Example 11-43. Calculating words per minute

IObservable<long> ticks = Observable.Interval(TimeSpan.FromSeconds(6));
IObservable<int> wordGroupCounts = from tick in ticks
                                   join word in words
                                     on ticks equals words into wordsInTick
                                   from count in wordsInTick.Count()
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                                   select count * 10;

wordGroupCounts.Subscribe(c => Console.WriteLine($"Words per minute: {c}"));

Having grouped the words into boundaries based on events from the Interval
source, this query goes on to count the number of items in each group. Since the
groups are evenly spaced in time, this can be used to calculate the approximate rate at
which the user is typing words. I’m forming a group once every 6 seconds, so we can
multiply the number of words in the group by 10 to estimate the words per minute.

The results are not entirely accurate, because Rx will join two items if their durations
overlap. That will cause words to be counted multiple times here. The final word at
the end of one interval will also be the first word at the start of the next interval. In
this case, the measurements are pretty approximate, so I’m not too worried, but you
would need to bear in mind how overlaps affect this sort of operation if you wanted
more precise results. Window or Buffer may offer a better solution.

Timer
The Observable.Timer method can create a sequence that produces exactly one item.
It waits for the duration specified with a TimeSpan argument before producing that
item. It looks very similar to Observable.Interval, because not only does it take the
same argument, but it even returns a sequence of the same type: IObservable<long>.
So I can subscribe to this kind of source in almost exactly the same way as with an
interval sequence, as Example 11-44 shows.

Example 11-44. Single item with Timer

IObservable<long> src = Observable.Timer(TimeSpan.FromSeconds(1));
src.Subscribe(i => Console.WriteLine($"Event {i} at {DateTime.Now:T}"));

The effect is the same as an Interval that stops after producing its first item, so you
will always get a value of zero. There are also overloads that accept an extra TimeSpan,
which will repeatedly produce the value just like Interval. In fact, Interval uses
Timer internally—it’s just a wrapper offering a simpler API.

Timestamp
In the preceding two sections, I used DateTime.Now when writing out messages to
indicate when the sources produced items. One potential problem with this is that it
tells us the time at which our handler processed the message, which will not always be
an accurate reflection of when the message was received. For example, if you have
used ObserveOn to ensure that your handler always runs on the UI thread, there may
be a significant delay in between the item being produced and your code getting to
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handle it, because the UI thread may be busy doing other things. You can mitigate
this with the Timestamp operator, available on any IObservable<T>. Example 11-45
uses this as an alternative way to show the time at which an Interval produces its
items.

Example 11-45. Timestamped items

IObservable<Timestamped<long>> src =
    Observable.Interval(TimeSpan.FromSeconds(1)).Timestamp();
src.Subscribe(i => Console.WriteLine(
    $"Event {i.Value} at {i.Timestamp.ToLocalTime():T}"));

If the source observable’s item type is some type T, this operator will produce an
observable of Timestamped<T> items. This defines a Value property, containing the
original value from the source observable, and a Timestamp property, indicating
when the value went through the Timestamp operator.

The Timestamp property is a DateTimeOffset, and it picks a time
zone offset of zero (i.e., it is in UTC). This provides a stable basis
for timing by removing any possibility of moving in or out of day‐
light saving time while your program runs. However, if you want
to show the timestamp to an end user, you may want to adjust it,
which is why Example 11-45 calls ToLocalTime on it.

You should apply this operator directly to the observable you want to timestamp,
rather than leaving it later on in the chain. Writing src.ObserveOn(sched).Time
stamp() would defeat the purpose, because you would be timing the items after they
had been dispatched by the scheduler passed to ObserveOn. You would want to write
src.Timestamp().ObserveOn(sched) to ensure that you acquire a timestamp before
feeding the items into a processing chain that might introduce delay.

TimeInterval
Whereas Timestamp records the current time at which items are produced, its relative
counterpart TimeInterval records the time between successive items. Example 11-46
uses this on an observable sequence produced by Observable.Interval, so we’d
expect the items to be reasonably evenly spaced.

Example 11-46. Measuring the gaps

IObservable<long> ticks = Observable.Interval(TimeSpan.FromSeconds(0.75));
IObservable<TimeInterval<long>> timed = ticks.TimeInterval();
timed.Subscribe(x => Console.WriteLine(
    $"Event {x.Value} took {x.Interval.TotalSeconds:F3}"));
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While the Timestamped<T> items produced by the Timestamp operator provide a Time
stamp property, the TimeInterval<T> items produced by the TimeInterval operator
define an Interval property. This is a TimeSpan instead of a DateTimeOffset. I’ve
chosen to show the number of seconds between each item to three decimal places.
Here’s some of what I see when I run it on my computer:

Event 0 took 0.760
Event 1 took 0.757
Event 2 took 0.743
Event 3 took 0.751
Event 4 took 0.749
Event 5 took 0.750

This shows intervals that are as much as 10 ms away from what I asked for, but that’s
fairly typical. Windows is not a real-time operating system.

Throttle
The Throttle operator lets you limit the rate at which you process items. You pass a
TimeSpan that specifies the minimum time interval you want between any two items.
If the underlying source produces items faster than this, Throttle will just discard
them. If the source is slower than the specified rate, Throttle just passes everything
straight through.

Surprisingly (or at least, I found this surprising), once the source exceeds the speci‐
fied rate, Throttle drops everything until the rate drops back down below the speci‐
fied level. So, if you specify a rate of 10 items a second, and the source produces 100
per second, it won’t simply return every 10th item—it’ll return nothing until the
source slows down.

Sample
The Sample operator produces items from its input at the interval specified by its
TimeSpan argument, regardless of the rate at which the input observable is generating
items. If the underlying source produces items faster than the chosen rate, Sample
drops items to limit the rate. However, if the source is running slower, the Sample
operator will just repeat the last value to ensure a constant supply of notifications.

Timeout
The Timeout operator passes everything through from its source observable unless
the source leaves too large a gap between either the subscription time and the first
item, or between two subsequent calls to the observer. You specify the minimum
acceptable gap with a TimeSpan argument. If no activity occurs within that time, the
Timeout operator completes by reporting a TimeoutException to OnError.
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Windowing Operators
I described the Buffer and Window operators earlier, but I didn’t show their time-
based overloads. As well as being able to specify a window size and skip count, or to
mark window boundaries with an ancillary observable source, you can also specify
time-based windows.

If you pass just a TimeSpan, both operators will break the input into adjacent win‐
dows at the specified interval. This provides a considerably simpler way to estimate
the words per minute than Example 11-43. Example 11-47 shows how to achieve the
same effect with the Buffer operator using a timed window.

Example 11-47. Timed windows with Buffer

IObservable<int> wordGroupCounts =
    from wordGroup in words.Buffer(TimeSpan.FromSeconds(6))
    select wordGroup.Count * 10;
wordGroupCounts.Subscribe(c => Console.WriteLine("Words per minute: " + c));

There are also overloads accepting both a TimeSpan and an int, enabling you to close
the current window (thus starting the next window) either when the specified inter‐
val elapses or when the number of items exceeds a threshold. In addition, there are
overloads accepting two TimeSpan arguments. These support the time-based equiva‐
lent of the combination of a window size and a skip count. The first TimeSpan argu‐
ment specifies the window duration, while the second specifies the interval at which
to start new windows. This means the windows do not need to be strictly adjacent—
you can have gaps between them, or they can overlap. Example 11-48 uses this to
provide more frequent estimates of the word rate while still using a six-second
window.

Example 11-48. Overlapping timed windows

IObservable<int> wordGroupCounts =
    from wordGroup in words.Buffer(TimeSpan.FromSeconds(6),
                                   TimeSpan.FromSeconds(1))
    select wordGroup.Count * 10;

Unlike the join-based chunking I showed in Example 11-43, Window and Buffer do
not double-count items because they are not based on a concept of overlapping dura‐
tions. They treat item arrivals as instantaneous events, which are either inside or out‐
side of any given window. So the examples I’ve just shown will provide a slightly
more accurate measure of rate.
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Delay
The Delay operator allows you to time-shift an observable source. You can pass a
TimeSpan, in which case the operator will delay everything by the specified amount,
or you can pass a DateTimeOffset, indicating a specific time at which you would like
it to start replaying its input. Alternatively, you can pass an observable, and whenever
that observable first produces something or completes, the Delay operator will start
producing the values it has stored.

Regardless of how the time-shift duration is determined, in all cases the Delay opera‐
tor attempts to maintain the same spacing between inputs. So, if the underlying
source produces an item immediately, then another item after three seconds, and
then a third item after a minute, the observable produced by Delay will produce
items separated by the same time intervals.

Obviously, if your source starts producing items at a ferocious rate—two million
items in a second, perhaps—there’s a limit to the fidelity with which Delay can repro‐
duce the exact timing of the items, but it will do its best. The limits on accuracy are
not fixed. They will be determined by the nature of the scheduler you’re using, and
the available CPU capacity on the machine. For example, if you use one of the UI-
based schedulers, it will be limited by the availability of the UI thread, and the rate at
which that can dispatch work. (As with all time-based operators, Delay will pick a
default scheduler for you, but it provides overloads that let you pass one.)

DelaySubscription
The DelaySubscription operator offers a similar set of overloads to the Delay opera‐
tor, but the way it tries to effect a delay is different. When you subscribe to an observ‐
able source produced by Delay, it will immediately subscribe to the underlying
source and start buffering items, forwarding each item only when the required delay
has elapsed. The strategy employed by DelaySubscription is simply to delay the sub‐
scription to the underlying source and then forward each item immediately.

For cold sources, DelaySubscription will typically do what you need, because delay‐
ing the start of work for a cold source will typically time-shift the entire process. But
for a hot source, DelaySubscription will cause you to miss any events that occurred
during the delay, and after that, you’ll start getting events with no time shift.

The Delay operator is more dependable—by time-shifting each item individually, it
works for both hot and cold sources. However, it has to do more work—it needs to
buffer everything it receives for the delay duration. For busy sources or long delays,
this could consume a lot of memory. And the attempt to reproduce the original tim‐
ings with a time shift is considerably more complicated than just passing items
straight on. So, in scenarios where it is viable, DelaySubscription is more efficient.
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Summary
As you’ve now seen, the Reactive Extensions for .NET provide a lot of functionality.
The concept underpinning Rx is a well-defined abstraction for sequences of items
where the source decides when to provide each item, and a related abstraction repre‐
senting a subscriber to such a sequence. By representing both concepts as objects,
event sources and subscribers both become first-class entities, meaning you can pass
them as arguments, store them in fields, and generally do anything with them that
you can do with any other data type in .NET. While you can do all of that with a dele‐
gate too, .NET events are not first class. Moreover, Rx provides a clearly defined
mechanism for notifying a subscriber of errors, something that neither delegates nor
events handle well. As well as defining a first-class representation for event sources,
Rx defines a comprehensive LINQ implementation, which is why Rx is sometimes
described as LINQ to Events. In fact, it goes well beyond the set of standard LINQ
operators, adding numerous operators that exploit and help to manage the live and
potentially time-sensitive world that event-driven systems occupy. Rx also provides
various services for bridging between its basic abstractions and those of other worlds,
including standard .NET events, IEnumerable<T>, and various asynchronous models.
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CHAPTER 12

Assemblies

So far in this book, I’ve used the term component to describe either a library or an
executable. It’s now time to look more closely at exactly what that means. In .NET the
proper term for a software component is an assembly, and it is typically a .dll or .exe
file. Occasionally, an assembly will be split into multiple files, but even then it is an
indivisible unit of deployment—you must either make the whole assembly available
to the runtime, or not deploy it at all. Assemblies are an important aspect of the type
system, because each type is identified not just by its name and namespace, but also
by its containing assembly. Assemblies provide a kind of encapsulation that operates
at a larger scale than individual types, thanks to the internal accessibility specifier,
which works at the assembly level.

The runtime provides an assembly loader, which automatically finds and loads the
assemblies a program needs. To ensure that the loader can find the right components,
assemblies have structured names that include version information, and they can
optionally contain a globally unique element to prevent ambiguity.

In Visual Studio, most of the C# project types in the “Create a new project” dialog
produce a single assembly as their main output. They will often put additional files in
the output folder too, such as copies of any assemblies that your project relies on that
are not built into the .NET runtime, and other files needed by your application. (For
example, a website project will typically need to produce CSS and script files in addi‐
tion to server-side code.) But there will usually be a particular assembly that is the
build target of your project, containing all of the types your project defines along with
the code those types contain.
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1 I’m using modern in a very broad sense here—Windows NT introduced PE support in 1993.

2 With suitable build settings you can produce bootstrappers for all supported targets regardless of which OS
you build on.

Anatomy of an Assembly
Assemblies use the Win32 Portable Executable (PE) file format, the same format that 
executables (EXEs) and dynamic link libraries (DLLs) have always used in modern
versions of Windows.1 It is “portable” in the sense that the same basic file format is
used across different CPU architectures. Non-.NET PE files are generally
architecture-specific, but .NET assemblies often aren’t. Even if you’re running .NET
Core on Linux or macOS, it’ll still use this Windows-based format—assemblies built
for .NET Core or .NET Standard can usually run on all supported operating systems,
so we use the same file format everywhere.

The C# compiler produces an assembly as its output, with an extension of either .dll
or .exe. Tools that understand the PE file format will recognize a .NET assembly as a
valid, but rather dull, PE file. The CLR essentially uses PE files as containers for
a .NET-specific data format, so to classic Win32 tools, a C# DLL will not appear to
export any APIs. Remember that C# compiles to a binary intermediate language (IL),
which is not directly executable. The normal Windows mechanisms for loading and
running the code in an executable or DLL won’t work with IL, because that can run
only with the help of the CLR. Similarly, .NET defines its own format for encoding
metadata, and does not use the PE format’s native capability for exporting entry
points or importing the services of other DLLs.

The Ahead-of-Time (AoT) compilation tools in .NET Core can
add native executable code to your assemblies later in the build
process, but with Ready to Run assemblies (as the output of .NET
Core’s AoT tools are called), even the embedded native code is
loaded and executed under the control of the CLR, and is directly
accessible only to managed code.

With .NET Core 3.0 or later, you won’t build .NET assemblies with an extension
of .exe. Even project types that produce directly runnable outputs (such as console or
WPF applications) produce a .dll as their primary output. They also generate an exe‐
cutable file too, but it’s not a .NET assembly. It’s just a bootstrapper that starts the
runtime and then loads and executes your application’s main assembly. By default,
the type of bootstrapper you get depends on what OS you build on—for example, if
you build on Windows you’ll get a Windows .exe bootstrapper, whereas on Linux it
will be an executable in the ELF format.2 (If you target the .NET Framework, it is dif‐
ferent. Since that supports only Windows, it doesn’t need different bootstrappers for
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different operating systems, so these projects produce a .NET assembly with an
extension of .exe that incorporates the bootstrapper.)

.NET Metadata
As well as containing the compiled IL, an assembly contains metadata, which pro‐
vides a full description of all of the types it defines, whether public or private. The
CLR needs to have complete knowledge of all the types your code uses to be able to
make sense of the IL and turn it into running code—the binary format for IL fre‐
quently refers to the containing assembly’s metadata and is meaningless without it.
The reflection API, which is the subject of Chapter 13, makes the information in this
metadata available to your code.

Resources
You can embed binary resources in a DLL alongside the code and metadata. Client-
side applications might do this with bitmaps, for example. To embed a file, you can
add it to a project, select it in Solution Explorer, and then use the Properties panel to
set its Build Action to Embedded Resource. This compiles a copy of the entire file
into the component. To extract the resource at runtime, you use the Assembly class’s
GetManifestResourceStream method, which is part of the reflection API described
in Chapter 13. However, in practice, you wouldn’t normally use this facility directly—
most applications use embedded resources through a localizable mechanism that I’ll
describe later in this chapter.

So, in summary, an assembly contains a comprehensive set of metadata describing all
the types it defines; it holds all of the IL for those types’ methods, and it can option‐
ally embed any number of binary streams. This is typically all packaged up into a sin‐
gle PE file. However, that is not always the whole story.

Multifile Assemblies
.NET Framework allowed an assembly to span multiple files. You could split the code
and metadata across multiple modules, and it was also possible for some binary
streams that are logically embedded in an assembly to be put in separate files. This
feature was rarely used, and .NET Core does not support it. However, it’s necessary
to know about it because some of its consequences persist. In particular, parts of the
design of the Reflection API (Chapter 13) make no sense unless you know about this
feature.

With a multifile assembly, there’s always one master file that represents the assembly. 
This will be a PE file, and it contains a particular element of the metadata called the
assembly manifest. This is not to be confused with the Win32-style manifest that most
executables contain. The assembly manifest is just a description of what’s in the
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3 This was the year Windows Vista shipped. Application manifests existed before then, but this was the first
version of Windows to treat their absence as signifying legacy code.

assembly, including a list of any external modules or other external files; in a multi‐
module assembly, the manifest describes which types are defined in which files.
When writing code that uses the types in an assembly directly, you generally didn’t
need to care whether it was split across multiple modules, because the loader would
inspect the manifest and automatically load whichever modules were needed. Multi‐
ple modules were typically only an issue for code that inspected the structure of a
component using reflection.

Other PE Features
Although C# does not use the classic Win32 mechanisms for representing code or
exporting APIs in EXEs and DLLs, there are still a couple of old-school features of the
PE format that assemblies can use.

Win32-style resources
.NET defines its own mechanism for embedding binary resources, and a localization
API built on top of that, so for the most part it makes no use of the PE file format’s
intrinsic support for embedding resources. There’s nothing stopping you from
putting classic Win32-style resources into a .NET component—the C# compiler
offers various command-line switches that do this. However, there’s no .NET API for
accessing these resources at runtime from within your application, which is why
you’d normally use .NET’s own resource system. But there are some exceptions.

Windows expects to find certain resources in executables. For example, it defines a
way to embed version information as an unmanaged resource. C# assemblies nor‐
mally do this, but you don’t need to define a version resource explicitly. The compiler
can generate one for you, as I show in “Version” on page 558. This ensures that if an
end user looks at your assembly’s properties in Windows File Explorer, they will be
able to see the version number. (By convention, .NET assemblies typically contain
this Win32-style version information whether they target just Windows, or can run
on any platform.)

Windows .exe files typically contain two additional Win32 resources. You may want
to define a custom icon for your application to control how it appears on the task bar
or in Windows File Explorer. This requires you to embed the icon in the Win32 way,
because File Explorer doesn’t know how to extract .NET resources. Also, if you’re
writing a classic Windows desktop application or console application (whether writ‐
ten with .NET or not), it should supply an application manifest. Without this, Win‐
dows will presume that your application was written before 20063 and will modify or
disable certain features for backward compatibility. The manifest also needs to be
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present if you are writing a desktop application and you want it to pass certain
Microsoft certification requirements. This kind of manifest has to be embedded as a
Win32 resource. Again, the Application tab in the project properties pages has special
support for embedding an icon and a manifest, and if you create a desktop applica‐
tion, Visual Studio configures your project to provide a suitable manifest by default.

Remember that with .NET Core, the main assembly is a .dll, even for Windows desk‐
top applications, and the build process produces a separate .exe that launches
the .NET runtime and then loads that assembly. As far as Windows is concerned, this
bootstrapper is your application, so when you target .NET Core, the icon and mani‐
fest resources will end up in this bootstrapping assembly. But if you target the .NET
Framework, there will be no separate bootstrapper, so these resources end up in the
main assembly.

Console versus GUI
Windows makes a distinction between console applications and Windows applica‐
tions. To be precise, the PE format requires an .exe file to specify a subsystem, and
back in the old days of Windows NT, this enabled the use of multiple operating sys‐
tem personalities—early versions included a POSIX subsystem, for example. (Subsys‐
tems briefly made a reappearance in 2017 with the Linux Subsystem for Windows,
which enables Linux executable files to run directly on Windows 10. But in 2019
Microsoft switched Linux support from the subsystem feature to a specialized light‐
weight utility virtual machine to improve compatibility.) So these days, PE files target
one of just three subsystems, and one of those is for kernel-mode device drivers. The
two user-mode options used today select between Windows graphical user interface
(GUI) and Windows console applications. The principal difference is that Windows
will show a console window when running the latter (or if you run it from a com‐
mand prompt, it will just use the existing console window), but a Windows GUI
application does not get a console window.

You can select between these subsystems in the project’s Application property page
using the “Output type” drop-down list. This offers Windows Application and Con‐
sole Application. (It also offers Class Library, which builds a DLL, but since the sub‐
system is determined when a process launches, it makes no difference whether a DLL
targets the Windows Console or Windows GUI subsystem. The Class Library setting
always targets the former.) If you target the .NET Framework, this subsystem setting
applies to the .exe file that is built as your application’s main assembly, and with
newer versions of .NET, it will apply to the bootstrapper .exe. (As it happens, it will
also apply to the main assembly .dll that the bootstrapper loads, but this has no effect
because the subsystem is determined by the .exe for which the process is launched.)
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Type Identity
As a C# developer, your first point of contact with assemblies will usually be the fact
that they form part of a type’s identity. When you write a class, it will end up in an
assembly. When you use a type from the .NET class library or from some other
library, your project will need a reference to the assembly that contains the type
before you can use it.

This is not always obvious when using system types. The build system automatically
adds references to various .NET class library assemblies, so most of the time, you will
not need to add a reference before you can use a .NET class library type, and since
you do not normally refer to a type’s assembly explicitly in the source code, it’s not
immediately obvious that the assembly is a mandatory part of what it takes to pin‐
point a type. But despite not being explicit in the code, the assembly has to be part of
a type’s identity, because there’s nothing stopping you or anyone else from defining
new types that have the same name as existing types. For example, you could define a
class called System.String in your project. This is a bad idea, and the compiler will
warn you that this introduces ambiguity, but it won’t stop you. And even though
your class will have the exact same fully qualified name as the built-in string type, the
compiler and the runtime can still distinguish between these types.

Whenever you use a type, either explicitly by name (e.g., in a variable or parameter
declaration) or implicitly through an expression, the C# compiler knows exactly what
type you’re referring to, meaning it knows which assembly defined the type. So it is
able to distinguish between the System.String intrinsic to .NET, and a Sys
tem.String unhelpfully defined in your own component. The C# scoping rules mean
that an explicit reference to System.String identifies the one that you defined in
your own project, because local types effectively hide ones of the same name in exter‐
nal assemblies. If you use the string keyword, that always refers to the built-in type.
You’ll also be using the built-in type when you use a string literal, or if you call an
API that returns a string. Example 12-1 illustrates this—it defines its own Sys
tem.String, and then uses a generic method that displays the type and assembly
name for the static type of whatever argument you pass it. (This uses the Reflection
API, which is described in Chapter 13.)

Example 12-1. What type is a piece of string?

using System;

// Never do this!
namespace System
{
    public class String
    {
    }
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}

class Program
{
    static void Main(string[] args)
    {
        System.String s = null;
        ShowStaticTypeNameAndAssembly(s);
        string s2 = null;
        ShowStaticTypeNameAndAssembly(s2);
        ShowStaticTypeNameAndAssembly("String literal");
        ShowStaticTypeNameAndAssembly(Environment.OSVersion.VersionString);
    }

    static void ShowStaticTypeNameAndAssembly<T>(T item)
    {
        Type t = typeof(T);
        Console.WriteLine(
            $"Type: {t.FullName}. Assembly {t.Assembly.FullName}.");
    }
}

The Main method in this example tries each of the ways of working with strings I just
described, and it writes out the following:

Type: System.String. Assembly MyApp, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=null.
Type: System.String. Assembly System.Private.CoreLib, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=7cec85d7bea7798e.
Type: System.String. Assembly System.Private.CoreLib, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=7cec85d7bea7798e.
Type: System.String. Assembly System.Private.CoreLib, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=7cec85d7bea7798e.

The explicit use of System.String ended up with my type, and the rest all used the
system-defined string type. This demonstrates that the C# compiler can cope with
multiple types with the same name. This also shows that IL is able to make that dis‐
tinction. IL’s binary format ensures that every reference to a type identifies the con‐
taining assembly. But just because you can create and use multiple identically named
types doesn’t mean you should. Because you do not usually name the containing
assembly explicitly in C#, it’s a particularly bad idea to introduce pointless collisions
by defining, say, your own System.String class. (As it happens, in a pinch you can
resolve this sort of collision if you really need to—see the sidebar “Extern Aliases” on
page 546 for details—but it’s better to avoid it.)

By the way, if you run Example 12-1 on .NET Framework, you’ll see mscorlib in
place of System.Private.CoreLib. .NET Core changed which assemblies many class
library types live in. You might be wondering how this can work with .NET Standard,
which enables you to write a single DLL that can run on both .NET Framework
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and .NET Core. How could a .NET Standard component correctly identify a type that
lives in different assemblies on different targets? The answer is that .NET has a type
forwarding feature in which references to types in one assembly can be redirected to
some other assembly at runtime. (A type forwarder is just an assembly-level attribute
that describes where the real type definition can be found. Attributes are the subject
of Chapter 14.) .NET Standard components reference neither mscorlib nor Sys
tem.Private.CoreLib—they are built as though class library types are defined in an
assembly called netstandard. Each .NET runtime supplies a netstandard implemen‐
tation that forwards to the appropriate types at runtime. In fact, even code built
directly for .NET Core often ends up using type forwarding. If you inspect the com‐
piled output you’ll find that it expects most .NET class library types to be defined in
an assembly called System.Runtime, and it’s only through type forwarding that these
end up using types in System.Private.CoreLib.

Extern Aliases
When multiple types with the same name are in scope, C# normally uses the one
from the nearest scope, which is why a locally defined System.String can hide the
built-in type of the same name. It’s unwise to introduce this sort of name clash in the
first place, but occasionally you can end up with this problem when external libraries
that you depend on have made bad naming decisions. If that’s where you are, C#
offers a mechanism that lets you specify the assembly you want. You can define an
extern alias.

In Chapter 1, I showed type aliases defined with the using keyword that make it eas‐
ier to refer to types that have the same simple name but different namespaces. An
extern alias makes it possible to distinguish between types with the same fully quali‐
fied name in different assemblies.

To define an extern alias, expand the Dependencies list in Solution Explorer, and
then expand either the Projects or Assemblies section and select a reference. (You
can’t use this technique for references obtained via NuGet.) You can then set the alias
for that reference in the Properties panel. If you define an alias of A1 for one assembly
and A2 for another, you can then declare that you want to use these aliases by putting
the following at the top of a C# file:

extern alias A1;
extern alias A2;

With these in place, you can qualify type names with A1:: or A2:: followed by the
fully qualified name. This tells the compiler that you want to use types defined by the
assembly (or assemblies) associated with that alias, even if some other type of the
same name would otherwise have been in scope.
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If it’s a bad idea to have multiple types with the same name, why does .NET make it
possible in the first place? In fact, supporting name collisions was not the goal, it’s
just a side effect of the fact that .NET makes the assembly part of the type. The assem‐
bly needs to be part of the type definition so that the CLR can know which assembly
to load for you at runtime when you first use some feature of that type.

Loading Assemblies
You may have been alarmed earlier when I said that the build system automatically
adds references to all the .NET class library components available on your target
framework. Perhaps you wondered how you might go about removing some of these
in the name of efficiency. As far as runtime overhead is concerned, you do not need
to worry. The C# compiler effectively ignores any references to built-in assemblies
that your project never uses, so there’s no danger of loading DLLs that you don’t
need. (It is, however, worth removing references to unused components that are not
built in to avoid copying unneeded DLLs when you deploy the app—there’s no sense
in making deployments larger than they need to be. But unused references to DLLs
that are already installed as part of .NET cost you nothing.)

Even if C# didn’t strip out unused references at compile time, there would still be no
risk of unnecessary loading of unused DLLs. The CLR does not attempt to load
assemblies until your application first needs them. Most applications do not exercise
every possible code path each time they execute, so it’s fairly common for significant
portions of the code in your application not to run. Your program may even finish its
work having left entire classes unused—perhaps classes that get involved only when
an unusual error condition arises. If the only place you use a particular assembly is
inside a method of such a class, that assembly won’t get loaded.

The CLR has some discretion for deciding exactly what it means to “use” a particular
assembly. If a method contains any code that refers to a particular type (e.g., it
declares a variable of that type or it contains expressions that use the type implicitly),
then the CLR may consider that type to be used when that method first runs even if
you don’t get to the part that really uses it. Consider Example 12-2.

Example 12-2. Type loading and conditional execution

static IComparer<string> GetComparer(bool useStandardOrdering)
{
    if (useStandardOrdering)
    {
        return StringComparer.CurrentCulture;
    }
    else
    {
        return new MyCustomComparer();
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    }
}

Depending on its argument, this function either returns an object provided by
the .NET class library’s StringComparer, or constructs a new object of type MyCustom
Comparer. The StringComparer type is defined in the same assembly as core types
such as int and string, so that will have been loaded when our program started. But
suppose the other type, MyCustomComparer, was defined in a separate assembly from
my application, called ComparerLib. Obviously, if this GetComparer method is called
with an argument of false, the CLR will need to load ComparerLib if it hasn’t
already. But what’s slightly more surprising is that it will probably load ComparerLib
the first time this method is called even if the argument is true. To be able to JIT
compile this GetComparer method, the CLR will need access to the MyCustomCom
parer type definition—for one thing it will need to check that the type really has a
zero-argument constructor. (Obviously Example 12-2 wouldn’t compile in that case,
but it’s possible that code was compiled against a different version of ComparerLib
than is present at runtime.) The JIT compiler’s operation is an implementation detail,
so it’s not fully documented and could change from one version to the next, but it
seems to operate one method at a time. So simply invoking this method is likely to be
enough to trigger the loading of the ComparerLib assembly.

This raises the question of how .NET finds assemblies. If assemblies can be loaded
implicitly as a result of running a method, we don’t necessarily have a chance to tell
the runtime where to find them. So .NET has a mechanism for this.

Assembly Resolution
When the runtime needs to load an assembly, it goes through a process called assem‐
bly resolution. In some cases you will tell .NET to load a particular assembly (e.g.,
when you first run an application), but the majority are loaded implicitly. The exact
mechanism depends on a couple of factors: whether you target .NET Core or the
older .NET Framework, and, if the former, whether your application is self-contained.

.NET Core supports two deployment options for applications: self-contained and
framework-dependent. When you publish a self-contained application, it includes a
complete copy of .NET Core—the whole of the CLR and all the built-in assemblies.
Example 12-3 shows the command line for building an application this way—if you
run this from the folder containing a .csproj file, it will compile the project and then
produce a publish folder containing your compiled code and a complete copy of a
suitable version of .NET Core. (The version will depend on your project’s configured
target framework. Generally, your project file will specify a major and minor version,
e.g., netcoreapp3.0, and then the SDK will copy the latest patch version that is
installed on your machine. The available versions will be determined by what ver‐
sions of the .NET Core SDK you have installed.) The -r switch indicates the platform
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to build for: the CLR for Linux is necessarily somewhat different from the one for
Windows, and the macOS one is different again. And for Windows and Linux, there
are versions for Intel architecture CPUs (both 32-bit and 64-bit) and also ARM. The
build system needs to know which one to copy. Example 12-3 selects the runtime for
Windows running on 64-bit Intel architecture CPUs.

Example 12-3. Publishing a self-contained application

dotnet publish -c Release -r win-x64 --self-contained true

When you build this way, assembly resolution is pretty straightforward because
everything—your application’s own assemblies, any external libraries you depend on,
all of the system assemblies built into .NET, and the CLR itself—ends up in one
folder. (At the time of writing, that amounts to about 66 MB for a simple Hello world
console application for this target architecture on .NET Core 3.0.)

There are two main advantages to self-contained deployment. First, there is no need
to install .NET on target machines—the application can just run directly because it
contains its own copy of .NET. Second, you know exactly what version of .NET and
which versions of all DLLs you are running against. Microsoft goes to great lengths to
ensure backward compatibility with new releases, but breaking changes can some‐
times occur, and a self-contained deployment can be one way out if you find that
your application stops working after an update to .NET Core. With self-contained
deployment, unless the application directs the CLR to look elsewhere everything will
load from the application folder, including all assemblies built into .NET.

But what if you don’t want to put an entire copy of .NET Core into your build out‐
put? The default build behavior for applications is to create a framework-dependent
executable. (There’s a variation on this called framework-dependent deployment,
which is almost the same thing, except it omits the bootstrapper executable. To run a
framework-dependent deployment, you will need to use the dotnet command-line
tool to launch the runtime, which will then run your application. Prior to v3.0, .NET
Core defaulted to framework-dependent deployment. This has the advantage of
being completely platform independent; the bootstrapper in a framework-dependent
executable deployment is always OS specific. But it is less convenient—you can’t run
the build output without the dotnet tool.) In this case, your code relies on a suitable
version of .NET Core already being installed on the machine. The build output will
contain your own application assembly, and may contain assemblies your application
depends on, but it will not contain any of the libraries built into .NET.

Framework-dependent applications necessarily use a more complex resolution mech‐
anism than self-contained ones. When such an application starts up it will first deter‐
mine exactly which version of .NET Core to run. This won’t necessarily be the
version your application was built against, and there are various options to configure
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exactly which is chosen. By default, if the same Major.Minor version is available, that
will be used. E.g., if a framework-dependent application built for .NET Core 2.2 runs
on a machine with .NET Core versions 2.1.12, 2.2.6, and 3.0.0 installed, it will run on
2.2.6. In cases where such a match isn’t available, but a major version number match
is, it will typically roll forward to that; e.g., if the app targets 2.1, and the machine has
only 2.2.6, it will run on 2.2.6. It is also possible to run on a higher major version
number than the app was built against (e.g., build for 2.1 but run on 3.0) but only by
explicitly requesting this through configuration.

The chosen runtime version selects not just the CLR, but also the assemblies making
up the parts of the class library built into .NET. You can typically find all the installed
runtime versions in the C:\Program Files\dotnet\shared\Microsoft.NETCore.App\
folder on Windows, or /usr/share/dotnet/shared/Microsoft.NETCore.app on Linux,
with version-based subfolders such as 3.0.0. (You should not rely on these paths—the
files may move in future versions of .NET.) The assembly resolution process will look
in this version-specific folder, and this is how framework-dependent applications get
to use built-in .NET assemblies.

If you poke around these folders, you may notice other folders under shared, such as
Microsoft.AspNetCore.App. It turns out that this mechanism is not just for the .NET
class library files built into .NET—it is also possible to install the assemblies for whole
frameworks. .NET Core applications declare that they are using a particular applica‐
tion framework. (The build tools automatically produce a file with a .runtimecon‐
fig.json in your build output declaring the framework you are using. Console apps
specify Microsoft.NETCore.App, whereas a web application will specify Micro
soft.AspNetCore.App.) This enables applications that target specific Microsoft
frameworks not to have to include a complete copy of all of the framework’s DLLs
even though that framework is not part of .NET Core itself.

If you install the plain .NET Core runtime, you will get just Microsoft.NETCore.App,
and none of the application frameworks. So applications that target frameworks such
as ASP.NET Core or WPF will be unable to run if they are built in the default way,
because that presumes that those frameworks will be preinstalled on target machines,
and the assembly resolution process will fail to find framework-specific components.
The .NET Core SDK installs these additional framework components, so you won’t
see this problem on your development machine, but you might see it when deploying
at runtime. You can tell the build tools to include the framework’s components, but
this is not normally necessary. If you run your application on a public cloud service
such as Azure, these generally preinstall relevant framework components, so in prac‐
tice you will usually only run into this situation if you are configuring a server your‐
self, or when deploying desktop applications. For those cases, Microsoft offers
installers for the .NET Core runtime that also include the components for web or
desktop frameworks.
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The shared folder in the dotnet installation folder is not one you should modify your‐
self. It is intended only for Microsoft’s own frameworks. However, it is possible to
install additional system-wide components if you want, because .NET Core also sup‐
ports something called the runtime package store. This is an additional directory
structured in much the same way as the shared folder just described. You can build a
suitable directory layout with the dotnet store command, and if you set the DOT
NET_SHARED_STORE environment variable, the CLR will look in there during assembly
resolution. This enables you to play the same trick as is possible with Microsoft’s
frameworks: you can build applications that depend on a set of components without
needing to include them in your build output, as long as you’ve arranged for those
components to be preinstalled on the target machine.

Aside from looking in these two locations for common frameworks, the CLR will also
look in the application’s own directory during assembly resolution, just as it would
for a self-contained application. Also, the CLR has some mechanisms for enabling
updates to be applied. For example, on Windows, it is possible for Microsoft to push
out critical updates to .NET Core components via Windows Update.

But broadly speaking, the basic process of assembly resolution for framework-
dependent applications is that implicit assembly loading occurs either from your
application directory, or from a shared set of components installed on the machine.
(This is also true for applications running on the older .NET Framework, although
the mechanisms are a bit different. It has something called the Global Assembly Cache
(GAC), which effectively combines the functionality provided by both of the shared
stores in .NET Core. It is less flexible, because the store location is fixed; .NET Core’s
use of an environment variable opens up the possibility of different shared stores for
different applications.)

Explicit Loading
Although the CLR will load assemblies automatically, you can also load them explic‐
itly. For example, if you are creating an application that supports plugins, during
development you will not know exactly what components you will load at runtime.
The whole point of a plugin system is that it’s extensible, so you’d probably want to
load all the DLLs in a particular folder. (You would need to use reflection to discover
and make use of the types in those DLLs, as Chapter 13 describes.)

In some scenarios, dynamic loading is restricted. For example, apps
built for Windows 10 using the UWP installed from Microsoft’s
store can only run code from the components that ship as part of
the application. This is because Microsoft runs various tests on
these store apps designed to avoid security and stability problems,
for which they need access to all of your app’s code. The ability to
download and run external code would defeat these checks.
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4 This is not available in .NET Framework, and is also not in any current version of .NET Standard at the time
of writing. Isolation was typically managed with appdomains on .NET Framework, an older mechanism that
is not supported in .NET Core.

If you know the full path of an assembly, loading it is very straightforward: you call
the Assembly class’s static LoadFrom method, passing the path of the file. The path
can be relative to the current directory, or it can be absolute. This static method
returns an instance of the Assembly class, which is part of the Reflection API. It pro‐
vides ways of discovering and using the types defined by the assembly.

Occasionally, you might want to load a component explicitly (e.g., to use it via reflec‐
tion) without wanting to specify the path. For example, you might want to load a par‐
ticular assembly from the .NET class library. You should never hardcode the location
for a system component—they tend to move from one version of .NET to the next. If
your project has a reference to the relevant assembly and you know the name of a
type it defines, you can write typeof(TheType).Assembly. But if that’s not an option,
you should use the Assembly.Load method, passing the name of the assembly.

Assembly.Load uses exactly the same mechanism as implicitly triggered loading. So
you can refer to either a component that you’ve installed alongside your application,
or a system component. In either case, you should specify a full name, which must
contain name and version information, e.g., ComparerLib, Version=1.0.0.0, Cul
ture=neutral, PublicKeyToken=null.

The .NET Framework version of the CLR remembers which assemblies were loaded
with LoadFrom. If an assembly loaded in this way triggers the implicit loading of fur‐
ther assemblies, the CLR will search the location from which that assembly was
loaded. This means that if your application keeps plugins in a separate folder that the
CLR would not normally look in, those plugins could install other components that
they depend on in that same plugin folder. The CLR will then find them without
needing further calls to LoadFrom, even though it would not normally have looked in
that folder for an implicitly triggered load. However, .NET Core does not support
this behavior. It provides a different mechanism to support plugin scenarios.

Isolation and Plugins with AssemblyLoadContext
.NET Core introduced a type called AssemblyLoadContext. It enables a degree of iso‐
lation between groups of assemblies within a single application.4 This solves a prob‐
lem that can arise in applications that support a plugin model.

If a plugin depends on some component that the hosting application also uses, but
each wants a different version, this can cause problems if you use the simple mecha‐
nisms described in the preceding section. Typically, the .NET runtime unifies these
references, loading just a single version. In any cases where the types in that shared
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component are part of the plugin interface, this is exactly what you need: if an appli‐
cation requires plugins to implement some interface that relies on types from, say,
the Newtonsoft.Json library, it’s important that the application and the plugins all
agree on which version of that library is in use.

But unification can cause problems with components used as implementation details,
and not as part of the API between the application and its plugins. If the host applica‐
tion uses, say, v2.2 of Microsoft.Extensions.Logging internally, and a plugin uses
v3.0 of the same component, there’s no particular need to unify this to a single ver‐
sion choice at runtime—there would be no harm in the application and plugin each
using the version they require. Unification could cause problems: forcing the plugin
to use v2.2 would cause exceptions at runtime if it attempted to use features only
present in v3.0. Forcing the application to use v3.0 could also cause problems because
major version number changes often imply that a breaking change was introduced.

To avoid these kinds of problems, you can introduce custom assembly load contexts.
You can write a class that derives from AssemblyLoadContext, and for each of these
that you instantiate, the .NET runtime creates a corresponding load context which
supports loading of different versions of assemblies than may already have been
loaded by the application. You can define the exact policy you require by overloading
the Load method, as Example 12-4 shows.

Example 12-4. A custom AssemblyLoadContext for plugins

using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.Loader;

namespace HostApp
{
    public class PlugInLoadContext : AssemblyLoadContext
    {
        private readonly AssemblyDependencyResolver _resolver;
        private readonly ICollection<string> _plugInApiAssemblyNames;

        public PlugInLoadContext(
            string pluginPath,
            ICollection<string> plugInApiAssemblies)
        {
            _resolver = new AssemblyDependencyResolver(pluginPath);
            _plugInApiAssemblyNames = plugInApiAssemblies;
        }

        protected override Assembly Load(AssemblyName assemblyName)
        {
            if (!_plugInApiAssemblyNames.Contains(assemblyName.Name))
            {
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                string assemblyPath = _resolver.ResolveAssemblyToPath(assemblyName);
                if (assemblyPath != null)
                {
                    return LoadFromAssemblyPath(assemblyPath);
                }
            }

            return AssemblyLoadContext.Default.LoadFromAssemblyName(
                assemblyName);
        }
    }
}

This takes the location of the plugin DLL, along with a list of the names of any special
assemblies where the plugin must use the same version as the host application. (This
would include interfaces defining types used in your plugin interface. You don’t need
to include assemblies that are included as part of .NET itself—these are always uni‐
fied, even if you use custom load contexts.) The runtime will call this class’s Load
method each time an assembly is loaded in this context. This code checks to see
whether the assembly being loaded is one of the special ones that must be common to
plugins and the host application. If not, this looks in the plugin’s folder to see if the
plugin has supplied its own version of that assembly. In cases where it will not use an
assembly from the plugin folder (either because the plugin hasn’t supplied this partic‐
ular assembly, or because it is one of the special ones), this context defers to Assembly
LoadContext.Default, meaning that the application host and plugin use the same
assemblies in these cases. Example 12-5 shows this in use.

Example 12-5. Using the plugin load context

Assembly[] plugInApiAssemblies =
{
    typeof(IPlugIn).Assembly,
    typeof(JsonReader).Assembly
};
var plugInAssemblyNames = new HashSet<string>(
    plugInApiAssemblies.Select(a => a.GetName().Name));

var ctx = new PlugInLoadContext(plugInDllPath, plugInAssemblyNames);
Assembly plugInAssembly = ctx.LoadFromAssemblyPath(plugInDllPath);

This builds a list of assemblies that the plugin and application must share, and passes
their names into the plugin context, along with a path to the plugin DLL. Any DLLs
that the plugin depends on and which are copied into the same folder as the plugin
will be loaded, unless they are in that list, in which case the plugin will use the same
assembly as the host application itself.
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5 If you use Assembly.LoadFrom, the CLR does not care whether the filename matches the simple name.

Assembly Names
Assembly names are structured. They always include a simple name, which is the
name by which you would normally refer to the DLL, such as MyLibrary or Sys‐
tem.Runtime. This is usually the same as the filename but without the extension. It
doesn’t technically have to be,5 but the assembly resolution mechanism assumes that
it is. Assembly names always include a version number. There are also some optional
components, including the public key token, a string of hexadecimal digits, which is
required if you want a unique name.

Strong Names
If an assembly’s name includes a public key token, it is said to be a strong name.
Microsoft advises that any .NET component that is published for shared use (e.g.,
made available via NuGet) should have a strong name. Since the purpose of strong
naming is to make the assembly name unique, you may be wondering why .NET does
not simply use a Globally Unique Identifier (GUID). The answer is that historically,
strong names also did another job: they were designed to provide some degree of
assurance that the assembly has not been tampered with. Early versions of .NET
checked strongly named assemblies for tampering at runtime, but these checks were
removed because they imposed a considerable runtime overhead, often for little or no
benefit. Microsoft’s documentation now explicitly advises against treating strong
names as a security feature. However, in order to understand and use strong names,
you need to know how they were originally meant to work.

As the terminology suggests, an assembly name’s public key token has a connection
with cryptography. It is the hexadecimal representation of a 64-bit hash of a public
key. Strongly named assemblies are required to contain a copy of the full public key
from which the hash was generated. The assembly file format also provides space for
a digital signature, generated with the corresponding private key.

Asymmetric Encryption
If you’re not familiar with asymmetric encryption, this is not the place for a thorough
introduction, but here’s a very rough summary. Strong names use an encryption algo‐
rithm called RSA, which works with a pair of keys: the public key and the private key.
Messages encrypted with the public key can be decrypted only with the private key,
and vice versa. .NET exploits this to form a digital signature for an assembly: to sign
an assembly you calculate a hash of its contents, and then encrypt that hash with the
private key. This signature is then copied into the assembly, and its validity can be
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verified by anyone with access to the public key—they can calculate the hash of the
assembly’s contents themselves, and they can decrypt your signature with the public
key, and if the results are different, the signature is invalid, implying either that it was
not produced by the owner of the private key, or that the file has been modified since
the signature was generated, so the file is suspect. The mathematics of encryption are
such that it is thought to be essentially impossible to create a valid-looking signature
unless you have access to the private key, and it’s also essentially impossible to modify
the assembly without modifying the hash. And in cryptography, “essentially impossi‐
ble” means “theoretically possible, but too computationally expensive to be practical,
unless some major unexpected breakthrough in number theory or perhaps quantum
computing emerges, rendering most current cryptosystems useless.”

The uniqueness of a strong name relies on the fact that key generation systems use
cryptographically secure random-number generators, and the chances of two people
generating two key pairs with the same public key token are vanishingly small. The
assurance that the assembly has not been tampered with comes from the fact that a
strongly named assembly must be signed, and only someone in possession of the pri‐
vate key can generate a valid signature. Any attempt to modify the assembly after
signing it will invalidate the signature.

The signature associated with a strong name is independent of
Authenticode, a longer-established code signing mechanism in
Windows. These serve different purposes. Authenticode provides
traceability, because the public key is wrapped in a certificate that
tells you something about where the code came from. With a
strong name’s public key token, all you get is a number, so unless
you happen to know who owns that token, it tells you nothing.
Authenticode lets you ask, “Where did this component come
from?” A public key token lets you say, “This is the component I
want.” It’s common for a single .NET component to use both
mechanisms.

If an assembly’s private key becomes public knowledge, anyone can generate valid-
looking assemblies with the corresponding key token. Some open source projects
deliberately publish both keys, so that anyone can build the components from source.
This completely abandons any security the key token could offer, but that’s fine
because Microsoft now recommends that we should not treat strong names as a secu‐
rity feature. The practice of publishing your strong naming private key recognizes
that it is useful to have a unique name, even without a guarantee of authentic‐
ity. .NET Core takes this one step further, by making it possible for components to
have a strong name without needing to use a private key at all. In keeping with
Microsoft’s adoption of open source development, this means you can now build and
use your own versions of Microsoft-authored components that have the same strong
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name, even though Microsoft has not published its private key. See the next sidebar,
“Strong Name Keys and Public Signing”, for information on how to work with keys.

Strong Name Keys and Public Signing
There are three popular approaches for working with strong names. The simplest is
to use the real names throughout the development process, and to copy the public
and private keys to all developers’ machines so that they can sign the assemblies every
time they build. This approach is viable only if you don’t need to keep the private key
secret, because it’s easy for developers to compromise the secrecy of the private key
either accidentally or deliberately. Since strong names no longer offer security, there’s
nothing wrong with this. However, some organizations nonetheless attempt to keep
their private keys secret as a matter of policy, so you may encounter other ways of
working.

Another approach is to use a completely different set of keys during development,
switching to the real name only for designated release builds. This avoids the need for
all developers to have a copy of the real private key, but it can cause confusion,
because developers may end up with two sets of components on their machines, one
with development names, and one with real names.

The third approach is to use the real names across the board, but instead of signing
every build, just filling the part of the file reserved for the signature with 0 val‐
ues. .NET Core calls this Public Signing, and it’s more of a convention than a feature:
it works because the .NET Core CLR never checks the signatures of strongly named
assemblies. (.NET Framework does still check signatures in certain cases. For exam‐
ple, to install an assembly in the GAC, it must have a strong name with a valid signa‐
ture. It has a slightly more complex mechanism called Delay Signing, which makes
you jump through a few more hoops, but the effect is the same: developers can com‐
pile assemblies that have the real strong names without then needing to generate sig‐
natures.)

You can generate a key file for a strong name from the Signing tab of a project’s prop‐
erties in Visual Studio. Alternatively, you can use a command-line utility called sn
(short for strong name), which can do things Visual Studio cannot, such as adding a
signature to an assembly that was originally built with delay signing, or configuring
the locally installed .NET Framework to ignore the absence of a valid signature for
specific delay-signed assemblies.

Microsoft uses the same token on most of the assemblies in the .NET class library.
(Many groups at Microsoft produce .NET components, so this token is common only
to the components that are part of .NET, not for Microsoft as a whole.) Here’s the full
name of mscorlib, a system assembly that offers definitions of various core types such
as System.String:
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mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

By the way, that’s the right name even for the latest versions of .NET at the time of
writing. It reports 4.0.0.0 even though .NET Framework is now on v4.8, and .NET
Core on 3.0. (In .NET Core, mscorlib contains nothing but type forwarders, because
the relevant types have moved, mostly to System.Private.CoreLib, but the version
number is the same.) Assembly version numbers have technical significance, so
Microsoft does not always update the version number in the names of library compo‐
nents in step with the marketing version numbers—the versions don’t necessarily
even match on the major number. The .NET 3.5 version of mscorlib had a version
number of 2.0.0.0, for example.

While the public key token is an optional part of an assembly’s name, the version is
mandatory.

Version
All assembly names include a four-part version number. When an assembly name is
represented as a string (e.g., when you pass one as an argument to Assembly.Load),
the version consists of four decimal integers separated by dots (e.g., 4.0.0.0). The
binary format that IL uses for assembly names and references limits the range of
these numbers—each part must fit in a 16-bit unsigned integer (a ushort), and the
highest allowable value in a version part is actually one less than the maximum value
that would fit, making the highest legal version number 65534.65534.65534.65534.

Each of the four parts has a name. From left to right, they are the major version, the
minor version, the build, and the revision. However, there’s no particular significance
to any of these. Some developers use certain conventions, but nothing checks or
enforces them. A common convention is that any change in the public API requires a
change to either the major or minor version number, and a change likely to break
existing code should involve a change of the major number. (Marketing is another
popular reason for a major version change.) If an update is not intended to make any
visible changes to behavior (except, perhaps, fixing a bug), changing the build num‐
ber is sufficient. The revision number could be used to distinguish between two com‐
ponents that you believe were built against the same source, but not at the same time.
Alternatively, some people relate the version numbers to branches in source control,
so a change in just the revision number might indicate a patch applied to a version
that has long since stopped getting major updates. However, you’re free to make up
your own meanings. As far as the CLR is concerned, there’s really only one interest‐
ing thing you can do with a version number, which is to compare it with some other
version number—either they match or one is higher than the other.
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NuGet packages also have version numbers, and these do not need
to be connected in any way to assembly versions. Many package
authors make them similar by convention, but this is not universal.
NuGet does treat the components of a package version number as
having particular significance: it has adopted the widely used
semantic versioning rules. This uses versions with three parts,
named major, minor, and patch.

Version numbers in .NET class library assembly names ignore all the conventions I
have just described. Most of the components had the same version number (2.0.0.0)
across four major updates. With .NET 4.0, everything changed to 4.0.0.0, which is
still in use with the latest version of .NET Framework (4.8), at the time of writ‐
ing. .NET Core 3.0 also uses 4 as the major version of most of its class library compo‐
nents.

You typically specify the version number by adding a <Version> element inside a
<PropertyGroup> of your .csproj file. (Visual Studio also offers a UI for this: if you
open the Properties page for the project, its Package tab lets you configure various
naming-related settings. The “Package version” field sets the version.) The build sys‐
tem uses this in two ways: it sets the version number on the assembly, but also, if you
generate a NuGet package for your project, by default it will also use this same ver‐
sion number for the package, and since NuGet versions numbers have three parts,
you normally specify just three numbers here, and the fourth part of the assembly
version will default to zero. (If you want to specify all four digits, consult the docu‐
mentation for how to set the assembly and NuGet versions separately.)

The build system tells the compiler which version number to use for the assembly
name via an assembly-level attribute. I’ll describe attributes in more detail in Chap‐
ter 14, but this one’s pretty straightforward. If you want to find it, the build system
typically generates a file called ProjectName.AssemblyInfo.cs in a subfolder of your
project’s obj folder. This contains various attributes describing details about the
assembly, including an AssemblyVersion attribute, such as the one shown in
Example 12-6.

Example 12-6. Specifying an assembly’s version

[assembly: System.Reflection.AssemblyVersion("1.0.0.0")]

The C# compiler provides special handling for this attribute—it does not apply it
blindly as it would most attributes. It parses the version number and embeds it in the
way required by .NET’s metadata format. It also checks that the string conforms to
the expected format and that the numbers are in the allowed range.
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By the way, the version that forms part of an assembly’s name is distinct from the one
stored using the standard Win32 mechanism for embedding versions. Most .NET
files contain both kinds. By default, the build system will use the <Version> setting
for both, but it’s common for the file version to change more frequently. For exam‐
ple, although many of the files in the current .NET class library have an assembly
name version number of 4.0.0.0, if you look at the Windows-style file version infor‐
mation, you’ll usually see something different. This was particularly important
with .NET Framework in which only a single instance of any major version can be
installed at once—if a machine has .NET Framework 4.7.2 installed and you
install .NET Framework 4.8, that will replace version 4.7.2. (.NET Core doesn’t do
this—you can install any number of versions side by side on a single computer.) This
in-place updating combined with Microsoft’s tendency to keep assembly versions the
same across releases could make it hard to work out exactly what is installed, at which
point the file version becomes important. On a computer with .NET Framework 4.0
sp1 installed, its version of mscorlib.dll has a Win32 version number of
4.0.30319.239, but if you’ve installed .NET 4.8, this changes to 4.8.4018.0. (As ser‐
vice packs and other updates are released, the last part will keep climbing.)

By default, the build system will use the <Version> for both the assembly and Win‐
dows file versions, but if you want to set the file version separately, you can add a
<FileVersion> to your project file. (Visual Studio’s project properties Package page
also lets you set this.) Under the covers, this works with another attribute that gets
special handling from the compiler, AssemblyFileVersion. It causes the compiler to
embed a Win32 version resource in the file, so this is the version number users see if
they right-click on your assembly in Windows Explorer and show the file properties.

This file version is usually a more appropriate place to put a version number that
identifies the build provenance than the version that goes into the assembly name.
The latter is really a declaration of the supported API version, and any updates that
are designed to be fully backward compatible should probably leave it unaltered, and
should change only the file version.

Version numbers and assembly loading
Since version numbers are part of an assembly’s name (and therefore its identity),
they are also, ultimately, part of a type’s identity. The System.String in mscorlib ver‐
sion 2.0.0.0 is not the same thing as the type of the same name in mscorlib version
4.0.0.0.

The handling of assembly version numbers changed with .NET Core. In .NET
Framework, when you load a strongly named assembly by name (either implicitly by
using types it defines, or explicitly with Assembly.Load), the CLR requires the
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6 It’s possible to configure the CLR to substitute a specific different version, but even then, the loaded assembly
has to have the exact version specified by the configuration.

version number to be an exact match.6 .NET Core relaxes this, so if the version on
disk has a version number equal to or higher than the version requested, it will use it.
There are two factors behind this change. The first is that the .NET development eco‐
system has come to rely on NuGet (which didn’t even exist for most of the first dec‐
ade of .NET’s existence), meaning that it has become increasingly common to depend
on fairly large numbers of external components. Second, the rate of change has
increased—in the early days we would often need to wait for years between new
releases of .NET components. (Security patches and other bug fixes might turn up
more often, but new functionality would tend to emerge slowly, and typically in big
chunks, as part of a whole wave of updates to the runtime, frameworks, and develop‐
ment tools.) But today, it can be rare to go for as long as a month without the version
of some component somewhere changing. .NET Framework’s strict versioning policy
now looks unhelpful. (In fact, there are parts of the build system dedicated to digging
through your NuGet dependencies, working out the specific versions of each compo‐
nent you’re using, and automatically generating a configuration file with a vast num‐
ber of version substitution rules telling the CLR to use those versions no matter
which version any single assembly says it wants. So even if you target the .NET
Framework, the build system will, by default, effectively disable strict versioning.)

Another change is that .NET Framework only takes assembly versions into account
for strongly named assemblies. .NET Core checks that the version number of the
assembly on disk is equal to or greater than the required version regardless of
whether the target assembly is strongly named.

Culture
So far we’ve seen that assembly names include a simple name, a version number, and
optionally a public key token. They also have a culture component. (A culture repre‐
sents a language and a set of conventions, such as currency, spelling variations, and
date formats.) This is not optional, although the most common value for this is the
default: neutral, indicating that the assembly contains no culture-specific code or
data. The culture is usually set to something else only on assemblies that contain
culture-specific resources. The culture of an assembly’s name is designed to support
localization of resources such as images and strings. To show how, I’ll need to explain
the localization mechanism that uses it.

All assemblies can contain embedded binary streams. (You can put text in these
streams, of course. You just have to pick a suitable encoding.) The Assembly class in
the reflection API provides a way to work directly with these, but it’s more common
to use the ResourceManager class in the System.Resources namespace. This is far
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more convenient than working with the raw binary streams, because the Resource
Manager defines a container format that allows a single stream to hold any number of
strings, images, sound files, and other binary items, and Visual Studio has a built-in
editor for working with this container format. The reason I’m mentioning all of this
in the middle of a section that’s ostensibly about assembly names is that ResourceMan
ager also provides localization support, and the assembly name’s culture is part of
that mechanism. To demonstrate how this works, I’ll walk you through a quick
example.

The easiest way to use the ResourceManager is to add a resource file in the .resx for‐
mat to your project. (This is not the format used at runtime. It’s an XML format that
gets compiled into the binary format required by ResourceManager. It’s easier to
work with text than binary in most source control systems.) To add one of these from
the Add New Item dialog, select the Visual C#→General category and then choose
Resources File. I’ll call mine MyResources.resx. Visual Studio will show its resource
editor, which opens in string editing mode, as Figure 12-1 shows. As you can see, I’ve
defined a single string with a name of ColString and a value of Color.

Figure 12-1. Resource file editor in string mode

I can retrieve this value at runtime. The build system generates a wrapper class for
each .resx file you add, with a static property for each resource you define. This
makes it very easy to look up a string resource, as Example 12-7 shows.

Example 12-7. Retrieving a resource with the wrapper class

string colText = MyResources.ColString;

The wrapper class hides the details, which is usually convenient, but in this case, the
details are the whole reason I’m demonstrating a resource file, so I’ve shown how to
use the ResourceManager directly in Example 12-8. I’ve included the entire source for
the file, because namespaces are significant here—Visual Studio prepends your
project’s default namespace to the embedded resource stream name, so I’ve had to
ask for ResourceExample.MyResources instead of just MyResources. (If I had put the
resources in a folder in Solution Explorer, Visual Studio would also include the name
of that folder in the resource stream name.)
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7 England.

Example 12-8. Retrieving a resource at runtime

using System;
using System.Resources;

namespace ResourceExample
{
    class Program
    {
        static void Main(string[] args)
        {
            var rm = new ResourceManager(
                "ResourceExample.MyResources", typeof(Program).Assembly);
            string colText = rm.GetString("ColString");
            Console.WriteLine("And now in " + colText);
        }
    }
}

So far, this is just a rather long-winded way of getting hold of the string "Color".
However, now that we’ve got a ResourceManager involved, I can define some local‐
ized resources. Being British, I have strong opinions on the correct way to spell the
word color. They are not consistent with O’Reilly’s editorial policy, and in any case
I’m happy to adapt my work for my predominantly American readership. But a pro‐
gram can do better—it should be able to provide different spellings for different audi‐
ences. (And taking it a step further, it should be able to change the language entirely
for countries in which some form of English is not the predominant language.) In
fact, my program already contains all the code it needs to support localized spellings
of the word color. I just need to provide it with the alternative text.

I can do this by adding a second resource file with a carefully chosen name:
MyResources.en-GB.resx. That’s almost the same as the original but with an extra .en-
GB before the .resx extension. That is short for English-Great Britain, and it is the
standardized (albeit politically tone-deaf) name of the culture for my home. (The
name for the culture that denotes English-speaking parts of the US is en-US.) Having
added such a file to my project, I can add a string entry with the same name as before,
ColString, but this time with the correct (where I’m sitting7) value of Colour. If you
run the application on a machine configured with a British locale, it will use the Brit‐
ish spelling. The odds are that your machine is not configured for this locale, so if you
want to try this, you can add the code in Example 12-9 at the very start of the Main
method in Example 12-8 to force .NET to use the British culture when looking up
resources.
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Example 12-9. Forcing a nondefault culture

Thread.CurrentThread.CurrentUICulture =
    new System.Globalization.CultureInfo("en-GB");

How does this relate to assemblies? Well, if you look at the compiled output, you’ll
see that, as well as the usual executable file and related debug files, Visual Studio has
created a subdirectory called en-GB, which contains an assembly file called Resour‐
ceExample.resources.dll. (ResourceExample is the name of my project. If you created a
project called SomethingElse, you’d see SomethingElse.resources.dll.) That assembly’s
name will look like this:

ResourceExample.resources, Version=1.0.0.0, Culture=en-GB, PublicKeyToken=null

The version number and public key token will match those for the main project—in
my example, I’ve left the default version number, and I’ve not given my assembly a
strong name. But notice the Culture. Instead of the usual neutral value, I’ve got en-
GB, the same culture string I specified in the filename for the second resource file I
added. If you add more resource files with other culture names, you’ll get a folder
containing a culture-specific assembly for each culture you specify. These are called
satellite resource assemblies.

When you first ask a ResourceManager for a resource, it will look for a satellite
resource assembly with the same culture as the thread’s current UI culture. So it
would attempt to load an assembly using the name shown a couple of paragraphs
ago. If it doesn’t find that, it tries a more generic culture name—if it fails to find en-
GB resources, it will look for a culture called just en, denoting the English language
without specifying any particular region. Only if it finds neither (or if it finds match‐
ing assemblies, but they do not contain the resource being looked up) does it fall back
to the neutral resource built into the main assembly.

The CLR’s assembly loader looks in different places when a nonneutral culture is
specified. It looks in a subdirectory named for the culture. That’s why Visual Studio
placed my satellite resource assembly in an en-GB folder.

The search for culture-specific resources incurs some runtime costs. These are not
large, but if you’re writing an application that will never be localized, you might want
to avoid paying the price for a feature you’re not using. You might still want to use
the ResourceManager, however—it’s a more convenient way to embed resources than
using assembly manifest resource streams directly. The way to avoid the costs is to
tell .NET that the resources built directly into your main assembly are the right ones
for a particular culture. You can do this with the assembly-level attribute shown in
Example 12-10.
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8 Internal items are also available to friend assemblies, meaning any assemblies referred to with an InternalsVi
sibleTo attribute, as described in Chapter 14.

Example 12-10. Specifying the culture for built-in resources

[assembly: NeutralResourcesLanguage("en-US")]

When an application with that attribute runs on a machine in the usual US locale, the
ResourceManager will not attempt to search for resources. It will just go straight for
the ones compiled into your main assembly.

Protection
In Chapter 3, I described some of the accessibility specifiers you can apply to types
and their members, such as private or public. In Chapter 6, I showed some of the
additional mechanisms available when you use inheritance. It’s worth quickly revisit‐
ing these features, because assemblies play a part.

Also in Chapter 3, I introduced the internal keyword, and said that classes and
methods with this accessibility are available only within the same component, a
slightly vague term that I chose because I had not yet introduced assemblies. Now
that it’s clear what an assembly is, it’s safe for me to say that a more precise descrip‐
tion of the internal keyword is that it indicates that a member or type should be
accessible only to code in the same assembly.8 Likewise, protected internal mem‐
bers are available to code in derived types, and also to code defined in the same
assembly, and the similar but more restrictive protected private protection level
makes members available only to code that is in a derived type that is defined in the
same assembly.

Summary
An assembly is a deployable unit, almost always a single file, typically with a .dll
or .exe extension. It is a container for types and code. A type belongs to exactly one
assembly, and that assembly forms part of the type’s identity—the .NET runtime can
distinguish between two types with the same name in the same namespace if they are
defined in different assemblies. Assemblies have a composite name consisting of a
simple textual name, a four-part version number, a culture string, and optionally a
public key token. Assemblies with a public key token are called strongly named
assemblies, giving them a globally unique name. Assemblies can either be deployed
alongside the application that uses them, or stored in a machine-wide repository.
(In .NET Framework, that repository was the Global Assembly Cache, and assemblies
must be strongly named to use this. .NET Core provides shared copies of built-in
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assemblies, and depending on how you install it, it may also have shared copies of
frameworks such as ASP.NET Core and WPF. And you can optionally set up a sepa‐
rate runtime package store containing other shared assemblies to avoid having to
include them in application folders.)

The runtime can load assemblies automatically on demand, which typically happens
the first time you run a method that contains some code that depends on a type
defined in the relevant assembly. You can also load assemblies explicitly if you need
to.

As I mentioned earlier, every assembly contains comprehensive metadata describing
the types it contains. In the next chapter, I’ll show how you can get access to this
metadata at runtime.
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CHAPTER 13

Reflection

The CLR knows a great deal about the types our programs define and use. It requires
all assemblies to provide detailed metadata, describing each member of every type,
including private implementation details. It relies on this information to perform
critical functions, such as JIT compilation and garbage collection. However, it does
not keep this knowledge to itself. The reflection API grants access to this detailed type
information, so your code can discover everything that the runtime can see. More‐
over, you can use reflection to make things happen. For example, a reflection object
representing a method not only describes the method’s name and signature, but it
also lets you invoke the method. And you can go further still and generate code at
runtime.

Reflection is particularly useful in extensible frameworks, because they can use it to
adapt their behavior at runtime based on the structure of your code. For example,
Visual Studio’s Properties panel uses reflection to discover what public properties a
component offers, so if you write a component that can appear on a design surface,
such as a UI element, you do not need to do anything special to make its properties
available for editing—Visual Studio will find them automatically.

Many reflection-based frameworks that can automatically discover
what they need to know also allow components to enrich that
information explicitly. For example, although you don’t need to do
anything special to support editing in the Properties panel, you can
customize the categorization, description, and editing mechanisms
if you want to. This is normally achieved with attributes, which are
the topic of Chapter 14.
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1 For reasons of history discussed later, a subset of this functionality is in a derived type called TypeInfo. But
the base Type class is the one you most often encounter.

Reflection Types
The reflection API defines various classes in the System.Reflection namespace.
These classes have a structural relationship that mirrors the way that assemblies and
the type system work. For example, a type’s containing assembly is part of its identity,
so the reflection class that represents a type (Type1) has an Assembly property that
returns its containing Assembly object. And you can navigate this relationship in
both directions—you can discover all of the types in an assembly from the Assembly
class’s DefinedTypes property. An application that can be extended by loading plugin
DLLs would typically use this to find the types each plugin provides. Figure 13-1
shows the reflection types that correspond to .NET types, their members, and the
components that contain them. The arrows represent containment relationships. (As
with assemblies and types, these are all navigable in both directions.)

Figure 13-1. Reflection containment hierarchy

Figure 13-2 illustrates the inheritance hierarchy for these types. This shows a couple
of extra abstract types, MemberInfo and MethodBase, which are shared by various
reflection classes that have a certain amount in common. For example, constructors
and methods both have parameter lists, and the mechanism for inspecting these is
provided by their shared base class, MethodBase. All members of types have certain
common features, such as accessibility, so anything that is (or can be) a member of a
type is represented in reflection by an object that derives from MemberInfo.
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Figure 13-2. Reflection inheritance hierarchy

Assembly
The Assembly class represents, predictably enough, a single assembly. If you’re writ‐
ing a plugin system, or some other sort of framework that needs to load user-supplied
DLLs and use them (such as a unit test runner), the Assembly type will be your start‐
ing point. As Chapter 12 showed, the static Assembly.Load method takes an assembly
name and returns the object for that assembly. (That method will load the assembly if
necessary, but if it has already been loaded, it just returns a reference to the relevant
Assembly object.) But there are some other ways to get hold of objects of this kind.

The Assembly class defines three context-sensitive static methods that each return an
Assembly. The GetEntryAssembly method returns the object representing the EXE
file containing your program’s Main method. The GetExecutingAssembly method
returns the assembly that contains the method from which you called it. GetCallin
gAssembly walks up the stack by one level, and returns the assembly containing the
code that called the method that called GetCallingAssembly.

The JIT compiler’s optimizations can sometimes produce surpris‐
ing results with GetExecutingAssembly and GetCallingAssembly.
Method inlining and tail call optimizations can both cause these
methods to return the assembly for methods that are one stack
frame farther back than you would expect. You can prevent inlin‐
ing optimizations by annotating a method with the MethodImplAt
tribute, passing the NoInlining flag from the MethodImplOptions
enumeration. (Attributes are described in Chapter 14.) There’s no
way to disable tail call optimizations explicitly, but those will be
applied only when a particular method call is the last thing a
method does before returning.

GetCallingAssembly can sometimes be useful in diagnostic logging, because it pro‐
vides information about the code that called your method. The GetExecutingAssem
bly method is less useful: you presumably already know which assembly the code will
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be in because you’re the developer writing it. It may still be useful to get hold of the
Assembly object for the component you’re writing, but there are other ways. The
Type object described in the next section provides an Assembly property.
Example 13-1 uses that to get the Assembly via the containing class. Empirically, this
seems to be faster, which is not entirely surprising because it’s doing less work—both
techniques need to retrieve reflection objects, but one of them also has to inspect the
stack.

Example 13-1. Obtaining your own Assembly via a Type

class Program
{
    static void Main(string[] args)
    {
        Assembly me = typeof(Program).Assembly;
        Console.WriteLine(me.FullName);
    }
}

If you want to use an assembly from a specific place on disk, you can use the Load
File method described in Chapter 12. Alternatively, you can use another of the
Assembly class’s static methods, ReflectionOnlyLoadFrom. This loads the assembly
in such a way that you can inspect its type information, but no code in the assembly
will execute, nor will any assemblies it depends on be loaded automatically. This is an
appropriate way to load an assembly if you’re writing a tool that displays or otherwise
processes information about a component but does not want to run its code. There
are a few reasons it can be important to avoid loading an assembly in the usual way
with such a tool. Loading an assembly and inspecting its types can sometimes trigger
the execution of code (such as static constructors) in that assembly. Also, if you load
for reflection purposes only, the processor architecture is not significant, so you
could load a 32-bit-only DLL into a 64-bit process, or you could inspect an ARM-
only assembly in an x86 process.

Having obtained an Assembly from any of the aforementioned mechanisms, you can
discover various things about it. The FullName property provides the display name,
for example. Or you can call GetName, which returns an AssemblyName object, provid‐
ing easy programmatic access to all of the components of the assembly’s name.

You can retrieve a list of all of the other assemblies on which a particular Assembly
depends by calling GetReferencedAssemblies. If you call this on an assembly you’ve
written, it will not necessarily return all of the assemblies you can see in the Depen‐
dencies node in Visual Studio’s Solution Explorer, because the C# compiler strips out
unused references.
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Assemblies contain types, so you can find Type objects representing those types by
calling an Assembly object’s GetType method, passing in the name of the type you
require, including its namespace. This will return null if the type is not found, unless
you call one of the overloads that additionally accept a bool—with these, passing
true produces an exception if the type is not found. There’s also an overload that
takes two bool arguments, the second of which lets you pass true to request a case-
insensitive search. All of these methods will return either public or internal types.
You can also request a nested type, by specifying the name of the containing type,
then a + symbol, then the nested type name. Example 13-2 gets the Type object for a
type called Inside nested inside a type called ContainingType in the MyLib name‐
space. This works even if the nested type is private.

Example 13-2. Getting a nested type from an assembly

Type nt = someAssembly.GetType("MyLib.ContainingType+Inside");

The Assembly class also provides a DefinedTypes property that returns a collection
containing a TypeInfo object for every type (top-level or nested) the assembly
defines, and also ExportedTypes, which returns only public types, and it returns Type
objects and not full TypeInfo objects. (The distinction between TypeInfo and Type is
described in “Type and TypeInfo” on page 577.) That will also include any public nes‐
ted types. It will not include protected types nested inside public types, which is
perhaps a bit surprising because such types are accessible from outside the assembly
(albeit only to classes that derive from the containing type).

Besides returning types, Assembly can also create new instances of them with the Cre
ateInstance method. If you pass just the fully qualified name of the type as a string,
this will create an instance if the type is public and has a no-arguments constructor.
There’s an overload that lets you work with nonpublic types and types with construc‐
tors that require arguments; however, it is rather more complex to use, because it also
takes arguments that specify whether you want a case-insensitive match for the type
name, along with a CultureInfo object that defines the rules to use for case-
insensitive comparisons—different countries have different ideas about how such
comparisons work. It also has arguments for controlling more advanced scenarios.
However, you can pass null for most of these, as Example 13-3 shows.

Example 13-3. Dynamic construction

object o = asm.CreateInstance(
    "MyApp.WithConstructor",
    false,
    BindingFlags.Public | BindingFlags.Instance,
    null,
    new object[] { "Constructor argument" },
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    null,
    null);

This creates an instance of a type called WithConstructor in the MyApp namespace in
the assembly to which asm refers. The false argument indicates that we want an
exact match on the name, not a case-insensitive comparison. The BindingFlags indi‐
cate that we are looking for a public instance constructor. (See the following sidebar,
“BindingFlags”.) The first null argument is where you could pass a Binder object,
which allows you to customize the behavior when the arguments you have supplied
do not exactly match the types of the required arguments. By leaving this out, I’m
indicating that I expect the ones I’ve supplied to match exactly. (I’ll get an exception
if they don’t.) The object[] argument contains the list of arguments I’d like to pass
to the constructor—a single string, in this case. The penultimate null is where I’d
pass a culture if I were using either case-insensitive comparisons or automatic con‐
versions between numeric types and strings, but since I’m doing neither, I can leave it
out. And the final argument once supported scenarios that have now been depre‐
cated, so it should always be null.

BindingFlags
Many of the reflection APIs take an argument of the BindingFlags enumeration type
to determine which members to return. For example, you can specify Binding
Flags.Public to indicate that you want only public members or types, or Binding
Flags.NonPublic to indicate that you want only items that are not public, or you can
combine both flags to indicate that you’d like either.

Be aware that it’s possible to specify combinations that will return nothing. When
working with members, you must include either BindingFlags.Instance, Binding
Flags.Static, or both, for example, because all type members are one or the other
(likewise for BindingFlags.Public and BindingFlags.NonPublic).

Often, methods that can accept BindingFlags offer an overload that does not. This
typically defaults to specifying public members, both instance and static (i.e., Binding
Flags.Public | BindingFlags.Static | BindingFlags.Instance).

BindingFlags defines numerous options, but not all are applicable in every scenario.
For example, it defines a FlattenHierarchy value, which is used for reflection APIs
that return type members: if this flag is present, members defined by the base class
will be considered, as well as those defined by the class specified. This option is not
applicable to Assembly.CreateInstance because you cannot use a base class con‐
structor directly to construct a derived type.

If the assembly comprises multiple files, you can get a complete list of these with the
GetFiles method, which returns an array of FileStream objects, the type .NET uses

572 | Chapter 13: Reflection



to represent files. If you pass true, this will include any resource streams stored as
separate files external to the main assembly. Otherwise, it will just provide one stream
per module. Alternatively, you could call GetModules, which also returns an array
representing the modules making up the assembly, but instead of returning File
Stream objects, it returns Module objects.

Module
The Module class represents one of the modules that make up an assembly. The
majority of assemblies are single-module (and on .NET Core, they always are), so you
do not often need to use this type. It is important if you generate code at runtime,
because you need to tell .NET in which module to place the code you generate, so
even in the usual single-module scenarios, you need to be explicit about the module
involved. But when you are not generating new components at runtime, you can
often ignore the Module class completely—you can normally do everything you need
with the other types in the reflection API. (.NET’s APIs for generating code at run‐
time are beyond the scope of this book.)

If you do need a Module object for some reason, you can retrieve modules from their
containing Assembly object’s Modules property. Alternatively, you can use any of the
API types described in the following sections that derive from MemberInfo.
(Figure 13-2 shows which types do so.) This defines a Module property that returns
the Module in which the relevant member is defined.

The Module class provides an Assembly property, which returns a reference to the
module’s containing assembly. The Name property returns the filename for this mod‐
ule, and FullyQualifiedName provides the filename, including the full path.

As with the Assembly class, Module defines a GetType method. In a single-module
assembly, this will be indistinguishable from the same method on the Assembly class,
but if you have split your assembly’s code across multiple modules, these methods
will provide access only to the types defined in the module to which you have a
reference.

More surprisingly, the Module class also defines GetField, GetFields, GetMethod,
and GetMethods properties. These provide access to globally scoped methods and
fields. You never see these in C#, because the language requires all fields and methods
to be defined within a type, but the CLR allows globally scoped methods and fields,
and so the reflection API has to be able to present them. (C++/CLI can create global
fields.)
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MemberInfo
Like all the classes I’m describing in this section, MemberInfo is abstract. However,
unlike the rest, it does not correspond to one particular feature of the type system. It
is a shared base class providing common functionality for all of the types that repre‐
sent items that can be members of other types. So this is the base class of Construc
torInfo, MethodInfo, FieldInfo, PropertyInfo, EventInfo, and Type, because all of
those can be members of other types. In fact, in C#, all except Type are required to be
members of some other type (although, as you just saw in the preceding section,
some languages allow methods and fields to be scoped to a module instead of a type).

MemberInfo defines common properties required by all type members. There’s a Name
property, of course, and also a DeclaringType, which refers to the Type object for the
item’s containing type; this returns null for nonnested types and module-scoped
methods and fields. MemberInfo also defines a Module property that refers to the con‐
taining module, regardless of whether the item in question is module-scoped or a
member of a type.

As well as DeclaringType, MemberInfo defines a ReflectedType, which indicates the
type from which the MemberInfo was retrieved. These will often be the same, but can
be different when inheritance is involved. Example 13-4 shows the distinction.

Example 13-4. DeclaringType versus ReflectedType

class Base
{
    public void Foo()
    {
    }
}

class Derived : Base
{
}

class Program
{
    static void Main(string[] args)
    {
        MemberInfo bf = typeof(Base).GetMethod("Foo");
        MemberInfo df = typeof(Derived).GetMethod("Foo");

        Console.WriteLine("Base    Declaring: {0}, Reflected: {1}",
                          bf.DeclaringType, bf.ReflectedType);
        Console.WriteLine("Derived Declaring: {0}, Reflected: {1}",
                          df.DeclaringType, df.ReflectedType);
    }
}
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This gets the MethodInfo for the Base.Foo and Derived.Foo methods. (MethodInfo
derives from MemberInfo.) These are just different ways of describing the same
method—Derived does not define its own Foo, and simply inherits the one defined
by Base. The program produces this output:

Base    Declaring: Base, Reflected: Base
Derived Declaring: Base, Reflected: Derived

When retrieving the information for Foo via the Base class’s Type object, the Decla
ringType and ReflectedType are, unsurprisingly, both Base. However, when we
retrieve the Foo method’s information via the Derived type, the DeclaringType tells
us that the method is defined by Base, while the ReflectedType tells us that we
obtained this method via the Derived type.

Because a MemberInfo remembers which type you retrieved it from,
comparing two MemberInfo objects is not a reliable way to detect
whether they refer to the same thing. Comparing bf and df in
Example 13-4 with either the == operator or their Equals method
would return false despite the fact that they both refer to
Base.Foo. In one sense, it’s logical—these are different objects and
their properties are not all identical, so clearly they are not equal.
But if you had been unaware of the ReflectedType property, you
might not have expected this behavior.

Slightly surprisingly, MemberInfo does not provide any information about the visibil‐
ity of the member it describes. This may seem odd, because in C#, all of the con‐
structs that correspond to the types that derive from MemberInfo (such as
constructors, methods, or properties) can be prefixed with public, private, etc. The
reflection API does make this information available, but not through the MemberInfo
base class. This is because the CLR handles visibility for certain member types a little
differently from how C# presents it. From the CLR’s perspective, properties and
events do not have an accessibility of their own. Instead, their accessibility is man‐
aged at the level of the individual methods. This enables a property’s get and set to
have different accessibility levels, and likewise for an event’s accessors. Of course, we
can control property accessor accessibility independently in C# if we want to. Where
C# misleads us is that it lets us specify a single accessibility level for the entire prop‐
erty. But this is just shorthand for setting both accessors to the same level. The con‐
fusing part is that it lets us specify the accessibility for the property and then a
different accessibility for one of the members, as Example 13-5 does.
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Example 13-5. Property accessor accessibility

public int Count
{
    get;
    private set;
}

This is a bit misleading because, despite how it looks, that public accessibility does
not apply to the whole property. This property-level accessibility simply tells the
compiler what to use for accessors that don’t specify their own accessibility level. The
first version of C# required both property accessors to have the same accessibility so
it made sense to state it for the whole property. (It still has an equivalent restriction
for events.) But this was an arbitrary restriction—the CLR has always allowed each
accessor to have a different accessibility. C# now supports this, but because of the his‐
tory, the syntax for exploiting this is misleadingly asymmetric. From the CLR’s point
of view, Example 13-5 just says to make the get public and the set private.
Example 13-6 would be a better representation of what’s really going on.

Example 13-6. How the CLR sees property accessibility

// Won't compile, but arguably should
int Count
{
    public get;
    private set;
}

But we can’t write it that way, because C# demands that the accessibility for the more
visible of the two accessors be stated at the property level. This makes the syntax sim‐
pler when both properties have the same accessibility, but it makes things a bit weird
when they’re different. Moreover, the syntax in Example 13-5 (i.e., the syntax the
compiler actually supports) makes it look like we should be able to specify accessibil‐
ity in three places: the property and both of the accessors. The CLR does not support
that, so the compiler will produce an error if you try to specify accessibility for both
of the accessors in a property or an event. So there is no accessibility for the property
or event itself. (Imagine if there were—what would it even mean if a property had
public accessibility but its get were internal and its set were private?) Conse‐
quently, not everything that derives from MemberInfo has a particular accessibility, so
the reflection API provides properties representing accessibility farther down in the
class hierarchy.
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Type and TypeInfo
The Type class represents a particular type. It is more widely used than any of the
other classes in this chapter, which is why it alone lives in the System namespace
while the rest are defined in System.Reflection. It’s the easiest to get hold of
because C# has an operator designed for just this job: typeof. I’ve shown this in a few
examples already, but Example 13-7 shows it in isolation. As you can see, you can use
either a built-in name, such as string, or an ordinary type name, such as IDisposa
ble. You could also include the namespace, but that’s not necessary when the type’s
namespace is in scope.

Example 13-7. Getting a Type with typeof

Type stringType = typeof(string);
Type disposableType = typeof(IDisposable);

Also, as I mentioned in Chapter 6, the System.Object type (or object, as we usually
write it in C#) provides a GetType instance method that takes no arguments. You can
call this on any reference type variable to retrieve the type of the object that variable
refers to. This will not necessarily be the same type as the variable itself, because the
variable may refer to an instance of a derived type. You can also call this method on
any value type variable, and because value types do not support inheritance, it will
always return the type object for the variable’s static type.

So all you need is an object, a value, or a type identifier (such as string), and it is
trivial to get a Type object. And, there are many other places Type objects can come
from.

In addition to Type we also have TypeInfo. This was introduced in early versions
of .NET Core with the intention of enabling Type to serve purely as a lightweight
identifier, and for TypeInfo to be the mechanism by which you reflect against a type.
This was a departure from how Type had always worked in the .NET Framework,
where it performs both roles. This dual role was arguably a mistake because if you
only need an identifier, Type is unnecessarily heavyweight. .NET Core was originally
envisaged as having a separate existence from the .NET Framework with no need for
strict compatibility, so it seemed to provide an opportunity to fix historical design
problems. However, once Microsoft took the decision that .NET Core would be the
basis of all future versions of .NET, it became necessary to bring it back into line with
how the .NET Framework had always worked. However, by this time, the .NET
Framework had also introduced TypeInfo, and for a while, new type-level reflection
features were added to that instead of Type to minimize incompatibilities with .NET
Core 1. .NET Core 2.0 realigned with the .NET Framework, but this meant that the
split of functionality between Type and TypeInfo is now just an upshot of what was
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added when. TypeInfo contains members added during the brief period between its
introduction, and the decision to revert to the old way. In cases where you have a
Type but you need to use a feature specific to TypeInfo, you can get this from a type
by calling GetTypeInfo.

As you’ve already seen, you can retrieve Type objects from an Assembly, either by
name or as a comprehensive list. The reflection types that derive from MemberInfo
also provide a reference to their containing type through DeclaringType. (Type
derives from MemberInfo, so it also offers this property, which is relevant when deal‐
ing with nested types.)

You can also call the Type class’s own static GetType method. If you pass just a
namespace-qualified string, it will search for the named type in a system assembly
called mscorlib, and also in the assembly from which you called the method. How‐
ever, you can pass an assembly-qualified name, which combines an assembly name
and a type name. A name of this form starts with the namespace-qualified type name,
followed by a comma and the assembly name. For example, this is the assembly-
qualified name of the System.String class in .NET 4.8 (split across two lines to fit in
this book):

System.String, mscorlib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089

You can discover a type’s assembly-qualified name through the Type.AssemblyQuali
fiedName property. Be aware that this won’t always match what you asked for. If you
pass the preceding type name into Type.GetType on .NET Core, it will work, but if
you then ask the returned Type for its AssemblyQualifiedName, it will return this
instead:

System.String, System.Private.CoreLib, Version=4.0.0.0, Culture=neutral,
 PublicKeyToken=7cec85d7bea7798e

The only reason it works when you pass either the first string or just System.String
is because mscorlib still exists for backward compatibility purposes. I described this in
the preceding chapter, but to summarize, in .NET Framework, the mscorlib assembly
contains the core types of the class library, but in .NET Core, the code has moved
elsewhere. mscorlib still exists, but it contains only type forwarding entries indicating
which assembly each class now lives in. For example, it forwards System.String to
its new home, which, at the time of this writing, is the System.Private.CoreLib
assembly.

There is a corresponding ReflectionOnlyGetType method that works in a similar
way but will load assemblies in the reflection-only context, just like the Assembly
class’s ReflectionOnlyLoadFrom method described earlier.
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As well as the standard MemberInfo properties, such as Module and Name, the Type
and TypeInfo classes add various properties of their own. The inherited Name prop‐
erty contains the unqualified name, so Type adds a Namespace property. All types are
scoped to an assembly, so Type defines an Assembly property. (You could, of course,
get there via Module.Assembly, but it’s more convenient to use the Assembly prop‐
erty.) It also defines a BaseType property, although that will be null for some types
(e.g., nonderived interfaces, and the type object for the System.Object class).

Since Type can represent all sorts of types, there are properties you can use to deter‐
mine exactly what you’ve got: IsArray, IsClass, IsEnum, IsInterface, IsPointer,
and IsValueType. (You can also get Type objects for non-.NET types in interop sce‐
narios, so there’s also an IsCOMObject property.) If it represents a class, there are
some properties that tell you more about what kind of class you’ve got: IsAbstract,
IsSealed, and IsNested. That last one is applicable to value types as well as classes.

Type also defines numerous properties providing information about the type’s visibil‐
ity. For nonnested types, IsPublic tells you whether it’s public or internal, but
things are more complex for nested types. IsNestedAssembly indicates an internal
nested type, while IsNestedPublic and IsNestedPrivate indicate public and pri
vate nested types. Instead of the usual C-family “protected” terminology, the CLR
uses the term “family,” so we have IsNestedFamily for protected, IsNestedFamORAs
sem for protected internal, and IsNestedFamANDAssem for protected private.

The TypeInfo class also provides methods to discover related reflection objects. (The
properties in this paragraph are all defined on TypeInfo not Type. As previously dis‐
cussed, this is just an accident of when they were defined.) Most of these come in two
forms: one where you know the name of the thing you’re looking for, and one where
you want a complete list of all the items of the specified kind. For example, we have
DeclaredConstructors, DeclaredEvents, DeclaredFields, DeclaredMethods,
DeclaredNestedTypes, and DeclaredProperties, and their counterparts, GetDeclar
edConstructor, GetDeclaredEvent, GetDeclaredField, GetDeclaredMethod, GetDe
claredNestedType, and GetDeclaredProperty.

The Type class lets you discover type compatibility relationships. You can ask
whether one type derives from another type by calling the type’s IsSubclassOf
method. Inheritance is not the only reason one type may be compatible with a refer‐
ence of a different type—a variable whose type is an interface can refer to an instance
of any type that implements that interface, regardless of its base class. The Type class
therefore offers a more general method called IsAssignableFrom, which
Example 13-8 uses.
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Example 13-8. Testing type compatibility

Type stringType = typeof(string);
Type objectType = typeof(object);
Console.WriteLine(stringType.IsAssignableFrom(objectType));
Console.WriteLine(objectType.IsAssignableFrom(stringType));

This shows False and then True, because you cannot take a reference to an instance
of type object and assign it into a variable of type string, but you can take a refer‐
ence to an instance of type string and assign it into a variable of type object.

As well as telling you things about a type and its relationships to other types, the Type
class provides the ability to use a type’s members at runtime. It defines an InvokeMem
ber method, the exact meaning of which depends on what kind member you invoke
—it could mean calling a method, or getting or setting a property or field, for exam‐
ple. Since some member types support multiple kinds of invocation (e.g., both get
and set), you need to specify which particular operation you want. Example 13-9 uses
InvokeMember to invoke a method identified by its name (the member string argu‐
ment) on an instance of a type, also identified by name, that it instantiates dynami‐
cally. This illustrates how reflection can be used to work with types and members
whose identities are not known until runtime.

Example 13-9. Invoking a method with InvokeMember

public static object CreateAndInvokeMethod(
  string typeName, string member, params object[] args)
{
    Type t = Type.GetType(typeName);
    object instance = Activator.CreateInstance(t);
    return t.InvokeMember(
      member,
      BindingFlags.Instance | BindingFlags.Public | BindingFlags.InvokeMethod,
      null,
      instance,
      args);
}

This example first creates an instance of the specified type—this uses a slightly differ‐
ent approach to dynamic creation than the one I showed earlier with Assembly.Crea
teInstance. Here I’m using Type.GetType to look up the type, and then I’m using a
class I’ve not mentioned before, Activator. This class’s job is to create new instances
of objects whose type you have determined at runtime. Its functionality overlaps
somewhat with Assembly.CreateInstance, but in this case, it’s the most convenient
way to get from a Type to a new instance of that type. Then I’ve used the Type object’s
InvokeMember to invoke the specified method. As with Example 13-3, I’ve had to
specify binding flags to indicate what kind of member I’m looking for and also what
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to do with it—here I’m looking to call a method (as opposed to, say, setting a prop‐
erty value). The null argument is, as with Example 13-3, a place where I would have
specified a Binder if I had wanted to support automatic coercion of the method argu‐
ment types.

Generic types

.NET’s support for generics complicates the role of the Type class. As well as repre‐
senting an ordinary nongeneric type, a Type can represent a particular instance of a
generic type (e.g., List<int>), but also an unbound generic type (e.g., List<>,
although that’s an illegal type identifier in all but one very specific scenario).
Example 13-10 shows how to obtain both kinds of Type objects.

Example 13-10. Type objects for generic types

Type bound = typeof(List<int>);
Type unbound = typeof(List<>);

The typeof operator is the only place in which you can use an unbound generic type
identifier in C#—in all other contexts, it would be an error not to supply type argu‐
ments. By the way, if the type takes multiple type arguments, you must provide com‐
mas—for example, typeof(Dictionary<,>). This is necessary to avoid ambiguity
when there are multiple generic types with the same names, distinguished only by the
number of type parameters they require (also known as the arity)—for example,
typeof(Func<,>) versus typeof(Func<,,,>). You cannot specify a partially bound
generic type. For example, typeof(Dictionary<string,>) would fail to compile.

You can tell when a Type object refers to a generic type—the IsGenericType property
will return true for both bound and unbound from Example 13-10. You can also
determine whether or not the type arguments have been supplied by using the IsGe
nericTypeDefinition property, which would return false and true for the Type
objects corresponding to bound and unbound, respectively. If you have a bound
generic type and you’d like to get the unbound type from which it was constructed,
you use the GetGenericTypeDefinition method—calling that on bound would
return the same type object that unbound refers to.

Given a Type object whose IsGenericTypeDefinition property returns true, you
can construct a new bound version of that type by calling MakeGenericType, passing
an array of Type objects, one for each type argument.

If you have a generic type, you can retrieve its type arguments from the GenericTy
peArguments property. Perhaps surprisingly, this even works for unbound types,
although it behaves differently than with a bound type. If you get GenericTypeArgu
ments from bound from Example 13-10, it will return an array containing a single
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Type object, which will be the same one you would get from typeof(int). If you get
unbound.GenericTypeArguments, you will also get an array containing a single Type,
but this time, it will be a Type object that does not represent a specific type—its IsGe
nericParameter property will be true, indicating that this represents a placeholder.
Its name in this case will be T. In general, the name will correspond to whatever
placeholder name the generic type chooses. For example, with typeof(Dictio
nary<,>), you’ll get two Type objects called TKey and TValue, respectively. You will
encounter similar generic argument placeholder types if you use the reflection API to
look up members of generic types. For example, if you retrieve the MethodInfo for
the Add method of the unbound List<> type, you’ll find that it takes a single argu‐
ment of a type named T, which returns true from its IsGenericParameter property.

When a Type object represents an unbound generic parameter, you can find out
whether the parameter is covariant or contravariant (or neither) through its Generi
cParameterAttributes method.

MethodBase, ConstructorInfo, and MethodInfo
Constructors and methods have a great deal in common. The same accessibility
options are available for both kinds of members, they both have argument lists, and
they can both contain code. Consequently, the MethodInfo and ConstructorInfo
reflection types share a base class, MethodBase, which defines properties and methods
for handling these common aspects.

To obtain a MethodInfo or ConstructorInfo, besides using the Type class properties
I mentioned earlier, you can also call the MethodBase class’s static GetCurrentMethod
method. This inspects the calling code to see if it’s a constructor or a normal method,
and returns either a MethodInfo or ConstructorInfo accordingly.

As well as the members it inherits from MemberInfo, MethodBase defines properties
specifying the member’s accessibility. These are similar in concept to those I
described earlier for types, but the names are marginally different, because unlike
Type, MethodBase does not define accessibility properties that make a distinction
between nested and nonnested members. So with MethodBase, we find IsPublic,
IsPrivate, IsAssembly, IsFamily, IsFamilyOrAssembly, and IsFamilyAndAssembly
for public, private, internal, protected, protected internal, and protected
private, respectively.

In addition to accessibility-related properties, MethodBase defines properties that tell
you about aspects of the method, such as IsStatic, IsAbstract, IsVirtual, IsFinal,
and IsConstructor.

There are also properties for dealing with generic methods. IsGenericMethod and
IsGenericMethodDefinition are the method-level equivalents of the type-level
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IsGenericType and IsGenericTypeDefinition properties. As with Type, there’s a
GetGenericMethodDefinition method to get from a bound generic method to an
unbound one, and a MakeGenericMethod to produce a bound generic method from
an unbound one. You can retrieve type arguments by calling GetGenericArguments,
and as with generic types, this will return specific types when called on a bound
method, and will return placeholder types when used with an unbound method.

You can inspect the implementation of the method by calling GetMethodBody. This
returns a MethodBody object that provides access to the IL (as an array of bytes), and
also to the local variable definitions used by the method.

The MethodInfo class derives from MethodBase and represents only methods (and
not constructors). It adds a ReturnType property that provides a Type object indicat‐
ing the method’s return type. (There’s a special system type, System.Void, whose
Type object is used here when a method returns nothing.)

The ConstructorInfo class does not add any properties beyond those it inherits from
MethodBase. It does define two read-only static fields, though: ConstructorName and
TypeConstructorName. These contain the strings ".ctor" and ".cctor", respectively,
which are the values you will find in the Name property for ConstructorInfo objects
for instance and static constructors. As far as the CLR is concerned, these are the real
names—although in C# constructors appear to have the same name as their contain‐
ing type, that’s true only in your C# source files, and not at runtime.

You can invoke the method or constructor represented by a MethodInfo or Construc
torInfo by calling the Invoke method. This does the same thing as Type.InvokeMem
ber—Example 13-9 used that to call a method. However, because Invoke is
specialized for working with just methods and constructors, it’s rather simpler to use.
With a ConstructorInfo, you need to pass only an array of arguments. With Method
Info, you also pass the object on which you want to invoke the method, or null if
you want to invoke a static method. Example 13-11 performs the same job as
Example 13-9, but using MethodInfo.

Example 13-11. Invoking a method

public static object CreateAndInvokeMethod(
  string typeName, string member, params object[] args)
{
    Type t = Type.GetType(typeName);
    object instance = Activator.CreateInstance(t);
    MethodInfo m = t.GetMethod(member);
    return m.Invoke(instance, args);
}
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For either methods or constructors, you can call GetParameters, which returns an
array of ParameterInfo objects representing the method’s parameters.

ParameterInfo
The ParameterInfo class represents parameters for methods or constructors. Its
ParameterType and Name properties provide the basic information you’d see from
looking at the method signature. It also defines a Member property that refers back to
the method or constructor to which the parameter belongs. The HasDefaultValue
property will tell you whether the parameter is optional, and if it is, DefaultValue
provides the value to be used when the argument is omitted.

If you are working with members defined by unbound generic types, or with an
unbound generic method, be aware that the ParameterType of a ParameterInfo
could refer to a generic type argument, and not a real type. This is also true of any
Type objects returned by the reflection objects described in the next three sections.

FieldInfo
FieldInfo represents a field in a type. You typically obtain it from a Type object with
GetField or GetFields, or if you’re using code written in a language that supports
global fields, you can retrieve those from the containing Module.

FieldInfo defines a set of properties representing accessibility. These look just like
the ones defined by MethodBase. Additionally, there’s FieldType, representing the
type a field can contain. (As always, if the member belongs to an unbound generic
type, this might refer to a type argument rather than a specific type.) There are also
some properties providing further information about the field, including IsStatic,
IsInitOnly, and IsLiteral. These correspond to static, readonly, and const in
C#, respectively. (Fields representing values in enumeration types will also return
true from IsLiteral.)

FieldInfo defines GetValue and SetValue methods that let you read and write the
value of the field. These take an argument specifying the instance to use, or null if
the field is static. As with the MethodBase class’s Invoke, these do not do anything
you couldn’t do with the Type class’s InvokeMember, but these methods are typically
more convenient.

PropertyInfo
The PropertyInfo type represents a property. You can obtain these from the con‐
taining Type object’s GetProperty or GetProperties methods. As I mentioned ear‐
lier, PropertyInfo does not define any properties for accessibility, because the
accessibility is determined at the level of the individual get and set methods. You can
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retrieve those with the GetGetMethod and GetSetMethod methods, which both return
MethodInfo objects.

Much like with FieldInfo, the PropertyInfo class defines GetValue and SetValue
methods for reading and writing the value. Properties are allowed to take arguments
—C# indexers are properties with arguments, for example. So there are overloads of
GetValue and SetValue that take arrays of arguments. Also, there is a GetIndexPara
meters method that returns an array of ParameterInfo objects, representing the
arguments required to use the property. The property’s type is available through the
PropertyType property.

EventInfo
Events are represented by EventInfo objects, which are returned by the Type class’s
GetEvent and GetEvents methods. Like PropertyInfo, this does not have any acces‐
sibility properties, because the event’s add and remove methods each define their
own accessibility. You can retrieve those methods with GetAddMethod and GetRemove
Method, which both return a MethodInfo. EventInfo defines an EventHandlerType,
which returns the type of delegate that event handlers are required to supply.

You can attach and remove handlers by calling the AddEventHandler and
RemoveEventHandler methods. As with all other dynamic invocation, these just offer
a more convenient alternative to the Type class’s InvokeMember method.

Reflection Contexts
.NET has a feature called reflection contexts. These enable reflection to provide a vir‐
tualized view of the type system. By writing a custom reflection context, you can
modify how types appear—you can cause a type to look like it has extra properties, or
you can add to the set of attributes that members and parameters appear to offer.
(Chapter 14 will describe attributes.)
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Reflection contexts did not work in .NET Core prior to version 3.0.
It is possible to compile code that uses them thanks to the existence
of a System.Reflection.Context NuGet package, which might
lead you to expect them to work. However, this initially existed to
aid porting code from .NET Framework to .NET Core and .NET
Standard. It made it possible to write .NET Standard libraries that
used custom reflection contexts, and if you used these libraries on
the .NET Framework, everything would be fine. If you used these
libraries on .NET Core in a way that didn’t hit any code path that
tried to use custom reflection contexts, everything would also be
fine. It was only if you tried to use a feature that relied on custom
reflection contexts while running on .NET Core that problems
arose: it would throw a PlatformNotSupportedException. But
with .NET Core 3.0, and v4.6 or later of the System.Reflec
tion.Context NuGet package, everything will work because .NET
Core 3.0 added the necessary capabilities to the CLR.

Reflection contexts are useful because they make it possible to write reflection-driven
frameworks that enable individual types to customize how they are handled, but
without forcing every type that participates into providing explicit support. Prior to
the introduction of custom reflection contexts in .NET 4.5, this was handled with
various ad hoc systems. Take the Properties panel in Visual Studio, for example. This
can automatically display every public property defined by any .NET object that ends
up on a design surface (e.g., any UI component you write). It’s great to have auto‐
matic editing support even for components that do not provide any explicit handling
for that, but components should have the opportunity to customize how they behave
at design time.

Because the Properties panel predates .NET 4.5, it uses one of the ad hoc solutions:
the TypeDescriptor class. This is a wrapper on top of reflection, which allows any
class to augment its design-time behavior by implementing ICustomTypeDescriptor,
enabling a class to customize the set of properties it offers for editing, and also to
control how they are presented, even offering custom editing UIs. This is flexible, but
has the downside of coupling the design-time code with the runtime code—compo‐
nents that use this model cannot easily be shipped without also supplying the design-
time code. So Visual Studio introduced its own virtualization mechanisms for
separating the two.

To avoid having each framework define its own virtualization system, custom reflec‐
tion contexts add virtualization directly into the reflection API. If you want to write
code that can consume type information provided by reflection but can also support
design-time augmentation or modification of that information, it’s no longer neces‐
sary to use some sort of wrapper layer. You can use the usual reflection types
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described earlier in this chapter, but it’s now possible to ask reflection to give you dif‐
ferent implementations of these types, providing different virtualized views.

You do this by writing a custom reflection context that describes how you want to
modify the view that reflection provides. Example 13-12 shows a particularly boring
type followed by a custom reflection context that makes that type look like it has a
property.

Example 13-12. A simple type, enhanced by a reflection context

class NotVeryInteresting
{
}

class MyReflectionContext : CustomReflectionContext
{
    protected override IEnumerable<PropertyInfo> AddProperties(Type type)
    {
        if (type == typeof(NotVeryInteresting))
        {
            var fakeProp = CreateProperty(
                MapType(typeof(string).GetTypeInfo()),
                "FakeProperty",
                o => "FakeValue",
                (o, v) => Console.WriteLine($"Setting value: {v}"));

            return new[] { fakeProp };
        }
        else
        {
            return base.AddProperties(type);
        }
    }
}

Code that uses the reflection API directly will see the NotVeryInteresting type
directly as it is, with no properties. However, we can map that type through MyReflec
tionContext, as Example 13-13 shows.

Example 13-13. Using a custom reflection context

var ctx = new MyReflectionContext();
TypeInfo mappedType = ctx.MapType(typeof(NotVeryInteresting).GetTypeInfo());

foreach (PropertyInfo prop in mappedType.DeclaredProperties)
{
    Console.WriteLine($"{prop.Name} ({prop.PropertyType.Name})");
}
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The mappedType variable holds a reference to the resulting mapped type. It still looks
like an ordinary reflection TypeInfo object, and we can iterate through its properties
in the usual way with DeclaredProperties, but because we’ve mapped the type
through my custom reflection context, we see the modified version of the type. This
code’s output will show that the type appears to define one property called FakeProp
erty, of type string.

Summary
The reflection API makes it possible to write code whose behavior is based on the
structure of the types it works with. This might involve deciding which values to
present in a UI grid based on the properties an object offers, or it might mean modi‐
fying the behavior of a framework based on what members a particular type chooses
to define. For example, parts of the ASP.NET Core web framework will detect
whether your code is using synchronous or asynchronous programming techniques
and adapt appropriately. These techniques require the ability to inspect code at run‐
time, which is what reflection enables. All of the information in an assembly required
by the type system is available to our code. Furthermore, you can present this
through a virtualized view by writing a custom reflection context, making it possible
to customize the behavior of reflection-driven code.
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CHAPTER 14

Attributes

In .NET, you can annotate components, types, and their members with attributes. An
attribute’s purpose is to control or modify the behavior of a framework, a tool, the
compiler, or the CLR. For example, in Chapter 1, I showed a class annotated with the
[TestClass] attribute. This told a unit testing framework that the annotated class
contains some tests to be run as part of a test suite.

Attributes are passive containers of information that do nothing on their own. To
draw an analogy with the physical world, if you print out a shipping label containing
destination and tracking information and attach it to a package, that label will not in
itself cause the package to make its way to a destination. Such a label is useful only
once the package is in the hands of a shipping company. When the company picks up
your parcel, it’ll expect to find the label, and will use it to work out how to route your
package. So the label is important, but ultimately, its only job is to provide informa‐
tion that some system requires. .NET attributes work the same way—they have an
effect only if something goes looking for them. Some attributes are handled by the
CLR or the compiler, but these are in the minority. The majority of attributes are
consumed by frameworks, libraries, tools (such as a unit test runner), or your own
code.

Applying Attributes
To avoid having to introduce an extra set of concepts into the type system, .NET
models attributes as instances of .NET types. To be used as an attribute, a type must
derive from the System.Attribute class, but it can otherwise be entirely ordinary. To
apply an attribute, you put the type’s name in square brackets, and this usually goes
directly before the attribute’s target. Example 14-1 shows some attributes from
Microsoft’s test framework. I’ve applied one to the class to indicate that this contains
tests I’d like to run, and I’ve also applied attributes to individual methods, telling the
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test framework which ones represent tests and which contain initialization code to be
run before each test.

Example 14-1. Attributes in a unit test class

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace ImageManagement.Tests
{
    [TestClass]
    public class WhenPropertiesRetrieved
    {
        private ImageMetadataReader _reader;

        [TestInitialize]
        public void Initialize()
        {
            _reader = new ImageMetadataReader(TestFiles.GetImage());
        }

        [TestMethod]
        public void ReportsCameraMaker()
        {
            Assert.AreEqual(_reader.CameraManufacturer, "Fabrikam");
        }

        [TestMethod]
        public void ReportsCameraModel()
        {
            Assert.AreEqual(_reader.CameraModel, "Fabrikam F450D");
        }
    }
}

If you look at the documentation for most attributes, you’ll find that their real name
ends with Attribute. If there’s no class with the name you specify in the brackets, the
C# compiler tries appending Attribute, so the [TestClass] attribute in
Example 14-1 refers to the TestClassAttribute class. If you really want to, you can
spell the class name out in full—for example, [TestClassAttribute]—but it’s more
common to use the shorter version.

If you want to apply multiple attributes, you have two options. You can either pro‐
vide multiple sets of brackets, or put multiple attributes inside a single pair of brack‐
ets, separated by commas.

Some attribute types can take constructor arguments. For example, Microsoft’s test
framework includes a TestCategoryAttribute. When running tests, you can choose
to execute only those in a certain category. This attribute requires you to pass the cat‐
egory name as a constructor argument, because there would be no point in applying
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this attribute without specifying the name. As Example 14-2 shows, the syntax for
specifying an attribute’s constructor arguments is unsurprising.

Example 14-2. Attribute with constructor argument

[TestCategory("Property Handling")]
[TestMethod]
public void ReportsCameraMaker()
{
    ...

You can also specify property or field values. Some attributes have features that can
be controlled only through properties or fields, and not constructor arguments. (If an
attribute has lots of optional settings, it’s usually easier to present these as properties
or fields, instead of defining a constructor overload for every conceivable combina‐
tion of settings.) The syntax for this is to write one or more PropertyOrField
Name=Value entries after the constructor arguments (or instead of them, if there are
no constructor arguments). Example 14-3 shows another attribute used in unit test‐
ing, ExpectedExceptionAttribute, which allows you to specify that when your test
runs, you expect it to throw a particular exception. The exception type is mandatory,
so we pass that as a constructor argument, but this attribute also allows you to state
whether the test runner should accept exceptions of a type derived from the one
specified. (By default, it will accept only an exact match.) This is controlled with the
AllowDerivedTypes property.

Example 14-3. Specifying optional attribute settings with properties

[ExpectedException(typeof(ArgumentException), AllowDerivedTypes = true)]
[TestMethod]
public void ThrowsWhenNameMalformed()
{
    ...

Applying an attribute will not cause it to be constructed. All you are doing when you
apply an attribute is providing instructions on how the attribute should be created
and initialized if something should ask to see it. (There is a common misconception
that method attributes are instantiated when the method runs. Not so.) When the
compiler builds the metadata for an assembly, it includes information about which
attributes have been applied to which items, including a list of constructor arguments
and property values, and the CLR will dig that information out and use it only if
something asks for it. For example, when you tell Visual Studio to run your unit tests,
it will load your test assembly, and then for each public type, it asks the CLR for any
test-related attributes. That’s the point at which the attributes get constructed. If you
were simply to load the assembly by, say, adding a reference to it from another
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project and then using some of the types it contains, the attributes would never come
into existence—they would remain as nothing more than a set of building instruc‐
tions frozen into your assembly’s metadata.

Attribute Targets
Attributes can be applied to numerous different kinds of targets. You can put
attributes on any of the features of the type system represented in the reflection API
that I showed in Chapter 13. Specifically, you can apply attributes to assemblies,
modules, types, methods, method parameters, constructors, fields, properties, events,
and generic type parameters. In addition, you can supply attributes that target a
method’s return value.

For most of these, you denote the target simply by putting the attribute in front of it.
But that’s not an option for assemblies or modules, because there is no single feature
that represents those in your source code—everything in your project goes into the
assembly it produces, and modules are likewise an aggregate (typically constituting
the whole assembly, as I described in Chapter 12). So for these, we have to state the
target explicitly at the start of the attribute. You will often see assembly-level
attributes like the one shown in Example 14-4 in a GlobalSuppressions.cs file. Visual
Studio sometimes makes suggestions for modifying your code, and if you choose to
suppress these, it does so with assembly-level attributes.

Example 14-4. Assembly-level attributes

[assembly: System.Diagnostics.CodeAnalysis.SuppressMessage(
    "StyleCop.CSharp.NamingRules",
    "SA1313:Parameter names should begin with lower-case letter",
    Justification = "Triple underscore acceptable for unused lambda parameter",
    Scope = "member",
    Target = "~M:Idg.Examples.SomeMethod")]

You can put assembly-level attributes in any file. The sole restriction is that they must
appear before any namespace or type definitions. The only things that should come
before assembly-level attributes are whichever using directives you need, comments,
and whitespace (all of which are optional).

Module-level attributes follow the same pattern, although they are much less com‐
mon, not least because multimodule assemblies are pretty rare, and are not supported
in .NET Core. Example 14-5 shows how to configure the debuggability of a particular
module, should you want one module in a multimodule assembly to be easily debug‐
gable but the rest to be JIT-compiled with full optimizations. (This is a contrived sce‐
nario so that I can show the syntax. In practice, you’re unlikely ever to want to do
this.) I’ll talk about the DebuggableAttribute later, in “JIT compilation” on page 603.
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Example 14-5. Module-level attribute

using System.Diagnostics;

[module: Debuggable(DebuggableAttribute.DebuggingModes.DisableOptimizations)]

Methods’ return values can be annotated, and this also requires qualification, because
return value attributes go in front of the method, the same place as attributes that
apply to the method itself. (Attributes for parameters do not need qualification,
because these appear inside the parentheses with the arguments.) Example 14-6
shows a method with attributes applied to both the method and the return type. (The
attributes in this example are part of the interop services that enable .NET code to call
external code, such as OS APIs. This example imports a function from a Win32 DLL,
enabling you to use it from C#. There are several different representations for
Boolean values in unmanaged code, so I’ve annotated the return type here with a Mar
shalAsAttribute to say which particular one the CLR should expect.)

Example 14-6. Method and return value attributes

[DllImport("User32.dll")]
[return: MarshalAs(UnmanagedType.Bool)]
static extern bool IsWindowVisible(HandleRef hWnd);

Another kind of target that needs qualification is a compiler-generated field. You get
these with properties in which you do not supply code for the getter or setter, and
event members without explicit add and remove implementations. The attributes in
Example 14-7 apply to the fields that hold the property’s value and the delegate for
the event; without the field: qualifiers, attributes in those positions would apply to
the property or event itself.

Example 14-7. Attribute for compiler-generated property and event fields

[field: NonSerialized]
public int DynamicId { get; set; }

[field: NonSerialized]
public event EventHandler Frazzled;

Compiler-Handled Attributes
The C# compiler recognizes certain attribute types and handles them in special ways.
For example, assembly names and versions are set via attributes, and also some
related information about your assembly. As Chapter 12 described, in modern .NET
projects, the build process generates a hidden source file containing these for you. If
you’re curious, it usually ends up in the obj\Debug or obj\Release folder of your
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project, and it will be named something like YourProject.AssemblyInfo.cs.
Example 14-8 shows a typical example.

Example 14-8. A typical generated file with assembly-level attributes

//------------------------------------------------------------------------------
// <auto-generated>
//     This code was generated by a tool.
//     Runtime Version:4.0.30319.42000
//
//     Changes to this file may cause incorrect behavior and will be lost if
//     the code is regenerated.
// </auto-generated>
//------------------------------------------------------------------------------

using System;
using System.Reflection;

[assembly: System.Reflection.AssemblyCompanyAttribute("MyCompany")]
[assembly: System.Reflection.AssemblyConfigurationAttribute("Debug")]
[assembly: System.Reflection.AssemblyFileVersionAttribute("1.0.0.0")]
[assembly: System.Reflection.AssemblyInformationalVersionAttribute("1.0.0")]
[assembly: System.Reflection.AssemblyProductAttribute("MyApp")]
[assembly: System.Reflection.AssemblyTitleAttribute("MyApp")]
[assembly: System.Reflection.AssemblyVersionAttribute("1.0.0.0")]

// Generated by the MSBuild WriteCodeFragment class.

In projects created before .NET Core came along, the build process didn’t generate
this file automatically, so instead most projects included a AssemblyInfo.cs file
(although by default Visual Studio hid it inside the project’s Properties node in Solu‐
tion Explorer).

Even though you only control these attributes indirectly, it’s useful to understand
them since they affect the compiler output.

Names and versions
As you saw in Chapter 12, assemblies have a compound name. The simple name,
which is typically the same as the filename but without the .exe or .dll extension, is
configured as part of the project settings. The name also includes a version number,
and this is controlled with an attribute, as Example 14-9 shows.

Example 14-9. Version attributes

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyFileVersion("1.0.0.0")]
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As you may recall from Chapter 12, the first of these sets the version part of the
assembly’s name. The second has nothing to do with .NET—the compiler uses this to
generate a Win32-style version resource. This is the version number end users will
see if they select your assembly in Windows Explorer and open the Properties
window.

The culture is also part of the assembly name. This will often be set automatically if
you’re using the satellite resource assembly mechanisms described in Chapter 12.
You can set it explicitly with the AssemblyCulture attribute, but for nonresource
assemblies, the culture should usually not be set. (The only culture-related assembly-
level attribute you will normally specify explicitly is the NeutralResourcesLangua
geAttribute, which I showed in Chapter 12.)

Strongly named assemblies have an additional component in their name: the public
key token. The easiest way to set up a strong name is with the Signing tab of your
project’s properties. However, you can also manage strong naming from the source
code, because the compiler recognizes some special attributes for this. AssemblyKeyFi
leAttribute takes the name of a file that contains a key. Alternatively, you can install
a key in the computer’s key store (which is part of the Windows cryptography sys‐
tem). If you want to do that, you can use the AssemblyKeyNameAttribute instead.
The presence of either of these attributes causes the compiler to embed the public key
in the assembly, and include a hash of that key as the public key token of the strong
name. If the key file includes the private key, the compiler will sign your assembly
too. If it does not, it will fail to compile, unless you also enable either delay signing or
public signing. You can enable delay signing by applying the AssemblyDelaySignAt
tribute with a constructor argument of true. Alternatively you can add either
<DelaySign>true</DelaySign> or <PublicSign>true</PublicSign> to your .csproj
file.

Although the key-related attributes trigger special handling from
the compiler, it still embeds them in the metadata as normal
attributes. So, if you use the AssemblyKeyFileAttribute, the path
to your key file will be visible in the final compiled output. This is
not necessarily a problem, but you might prefer not to advertise
these sorts of details, so it may be better to use the project-level
configuration for strong names than the attribute-based approach.

Description and related resources

The version resource produced by the AssemblyFileVersion attribute is not the only
information that the C# compiler can embed in Win32-style resources. There are sev‐
eral other attributes providing copyright information and other descriptive text.
Example 14-10 shows a typical selection.
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Example 14-10. Typical assembly description attributes

[assembly: AssemblyTitle("ExamplePlugin")]
[assembly: AssemblyDescription("An example plug-in DLL")]
[assembly: AssemblyConfiguration("Retail")]
[assembly: AssemblyCompany("Endjin Ltd.")]
[assembly: AssemblyProduct("ExamplePlugin")]
[assembly: AssemblyCopyright("Copyright © 2019 Endjin Ltd.")]
[assembly: AssemblyTrademark("")]

As with the file version, these are all visible in the Details tab of the Properties win‐
dow that Windows Explorer can show for the file. And as with all of these attributes,
you can also cause them to be generated by editing the project file, either directly, or
using Visual Studio’s project properties page.

Caller information attributes
There are some compiler-handled attributes designed for scenarios where your meth‐
ods need information about the context from which they were invoked. This is useful
for certain diagnostic logging scenarios, and it is also helpful when implementing a
particular interface commonly used in UI code.

Example 14-11 illustrates how you can use these attributes in logging code. If you
annotate method parameters with one of these three new attributes, the compiler
provides some special handling when callers omit the arguments. It will pass in either
the name of the member (method or property) that calls the attributed method, the
filename containing the code that called the method, or the line number from which
the call was made.

These attributes are allowed only for optional parameters. The only
way to make an argument optional is to provide a default value
with that argument. C# will always substitute a different value
when these attributes are present, so the default you specify will not
be used if you invoke the method from C# (or Visual Basic, which
also supports these attributes). Nonetheless, you must provide a
default because without one, the parameter is not optional, so we
normally use empty strings, null, or the number 0.

Example 14-11. Applying caller info attributes to method parameters

public static void Log(
    string message,
    [CallerMemberName] string callingMethod = "",
    [CallerFilePath] string callingFile = "",
    [CallerLineNumber] int callingLineNumber = 0)
{
    Console.WriteLine("Message {0}, called from {1} in file '{2}', line {3}",
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        message, callingMethod, callingFile, callingLineNumber);
}

If you supply all arguments when invoking this method, nothing unusual happens.
But if you omit any of the optional arguments, C# will generate code that provides
information about the site from which the method was invoked. The default values
for the three optional arguments in Example 14-11 will be the name of the method or
property that called this Log method, the full path of the source code containing the
code that made the call, and the line number from which Log was called.

The CallerMemberName attribute has a superficial resemblance to the nameof opera‐
tor, which we saw in Chapter 8. Both cause the compiler to create a string containing
the name of some feature of the code, but they work quite differently. With nameof,
you always know exactly what string you’ll get, because it’s determined by the expres‐
sion you supply. (E.g., nameof(message) inside Log in Example 14-11 will always
evaluate to "message".) But CallerMemberName changes the way the compiler invokes
the method to which they apply—callingMethod has that attribute, and its value is
not fixed. It will depend on where this method is called from.

You can discover the calling method another way: the StackTrace
and StackFrame class in the System.Diagnostics namespace can
report information about methods above you in the call stack.
However, these have a considerably higher runtime expense—the
caller information attributes calculate the values at compile time,
making the runtime overhead very low. (Likewise with nameof.)
Also, StackFrame can determine the filename and line number
only if debug symbols are available.

Although diagnostic logging is the obvious application for this, I also mentioned a
certain scenario that most .NET UI developers will be familiar with. The .NET class
library defines an interface called INotifyPropertyChanged. As Example 14-12
shows, this is a very simple interface with just one member, an event called Property
Changed.

Example 14-12. INotifyPropertyChanged

public interface INotifyPropertyChanged
{
    event PropertyChangedEventHandler PropertyChanged;
}

Types that implement this interface raise the PropertyChanged event every time one
of their properties changes. The PropertyChangedEventArgument provides a string
containing the name of the property that just changed. These change notifications are
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useful in UIs, because they enable an object to be used with data binding technologies
(such as those provided by .NET’s WPF UI framework) that can automatically
update the UI any time a property changes. Data binding can help you to achieve a
clean separation between the code that deals directly with UI types and code that
contains the logic that decides how the application should respond to user input.

Implementing INotifyPropertyChanged can be both tedious and error-prone.
Because the PropertyChanged event indicates which property changed as a string, it
is very easy to mistype the property name, or to accidentally use the wrong name if
you copy and paste the implementation from one property to another. Also, if you
rename a property, it’s easy to forget to change the text used for the event, meaning
that code that was previously correct will now provide the wrong name when raising
the PropertyChanged event. The nameof operator helps avoid mistyping, and helps
with renames, but can’t always detect cut-and-paste errors. (It won’t notice if you fail
to update the name when pasting code between properties of the same class, for
example.)

Caller information attributes can help make implementing this interface much less
error-prone. Example 14-13 shows a base class that implements INotifyProperty
Changed, supplying a helper for raising change notifications in a way that exploits one
of these attributes. (It also uses the null-conditional ?. operator to ensure that it only
invokes the event’s delegate if it is non-null. By the way, when you use the operator
this way, C# generates code that only evaluates the delegate’s Invoke method’s argu‐
ments if it is non-null. So not only does it skip the call to Invoke when the delegate is
null, it will also avoid constructing the PropertyChangedEventArgs that would have
been passed as an argument.) This code also detects whether the value really has
changed, only raising the event when that’s the case, and its return value indicates
whether it changed, in case callers might find that useful.

Example 14-13. A reusable INotifyPropertyChanged implementation

public class NotifyPropertyChanged : INotifyPropertyChanged
{
    public event PropertyChangedEventHandler PropertyChanged;

    protected bool SetProperty<T>(
        ref T field,
        T value,
        [CallerMemberName] string propertyName = null)
    {
        if (!Equals(field, value))
        {
            return false;
        }

        field = value;
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        PropertyChanged?.Invoke(this, new PropertyChangedEventArgs(propertyName));
        return true;
    }
}

The presence of the [CallerMemberName] attribute means that a class deriving from
this type does not need to specify the property name if it calls SetProperty from
inside a property setter, as Example 14-14 shows.

Example 14-14. Raising a property changed event

public class MyViewModel : NotifyPropertyChanged
{
    private string _name;

    public string Name
    {
        get => _name;
        set => SetProperty(ref _name, value);
    }
}

Even with the new attribute, implementing INotifyPropertyChanged is clearly more
effort than an automatic property, where you just write { get; set; } and let the
compiler do the work for you. But it’s only a little more complex than an explicit
implementation of a trivial field-backed property, and it’s simpler than would be pos‐
sible without [CallerMemberName], because I’ve been able to omit the property name
when asking the base class to raise the event. More importantly, it’s less error prone: I
can now be confident that the right name will be used every time, even if I rename
the property at some point in the future.

CLR-Handled Attributes
Some attributes get special treatment at runtime from the CLR. There is no official
comprehensive list of such attributes, so in the next few sections, I will just describe
some of the most widely used examples.

InternalsVisibleToAttribute

You can apply the InternalsVisibleToAttribute to an assembly to declare that any
internal types or members it defines should be visible to one or more other assem‐
blies. A popular use for this is to enable unit testing of internal types. As
Example 14-15 shows, you just pass the name of the assembly as a constructor
argument.
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Strong naming complicates matters. Strongly named assemblies
cannot make their internals visible to assemblies that are not
strongly named, and vice versa. When a strongly named assembly
makes its internals visible to another strongly named assembly, it
must specify not just the simple name, but also the public key of
the assembly to which it is granting access. And this is not just the
public key token I described in Chapter 12—it is the hexadecimal
for the entire public key, which will be several hundred digits. You
can discover an assembly’s full public key with the .NET SDK’s
sn.exe utility, using the -Tp switch followed by the assembly’s path.

Example 14-15. InternalsVisibleToAttribute

[assembly:InternalsVisibleTo("ImageManagement.Tests")]
[assembly:InternalsVisibleTo("ImageServices.Tests")]

This shows that you can make the types visible to multiple assemblies by applying the
attribute multiple times, with a different assembly name each time.

The CLR is responsible for enforcing accessibility rules. Normally, if you try to use an
internal class from another assembly, you’ll get an error at runtime. (C# won’t even
let you compile such code, but it’s possible to trick the compiler. Or you could write
directly in IL. The IL assembler, ILASM, does what you tell it and imposes far fewer
restrictions than C#. Once you get past the compile-time restrictions, then you’ll hit
the runtime ones.) But when this attribute is present, the CLR relaxes its rules for the
assemblies you list. The compiler also understands this attribute and lets code that
tries to use externally defined internal types compile as long as the external library
names your assembly in an InternalsVisibleToAttribute.

This attribute provides a better solution to the problem I encountered with the first
example in Chapter 1—I wanted to exercise the program entry point from a test, but
by default, the containing Program class is internal. I fixed this by making that and
the Main method public, but if I had used an InternalsVisibleTo attribute instead,
I could have left the class as internal. I would still have had to make Main more visi‐
ble—it’s private by default, and I would have needed to make it at least internal,
but that’s still an improvement on making it public.

Besides being useful in unit test scenarios, this attribute can also be helpful if you
want to split code across multiple assemblies. If you have written a large class library,
you might not want to put it into one massive DLL. If it has several areas that your
customers might want to use in isolation, it could make sense to split it up so that
they can deploy just the parts that they need. However, although you may be able to
partition your library’s public-facing API, the implementation might not be as easy to
divide, particularly if your codebase performs a lot of reuse. You might have many
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classes that are not designed for public consumption but that you use throughout
your code.

If it weren’t for the InternalsVisibleToAttribute, it would be awkward to reuse
shared implementation details across assemblies. Either each assembly would need to
contain its own copy of the relevant classes, or you’d need to make them public types
in some common assembly. The problem with that second technique is that making
types public effectively invites people to use them. Your documentation might state
that the types are for the internal use of your framework and should not be used, but
that won’t stop some people.

Fortunately, you don’t have to make them public. Any types that are just implemen‐
tation details can remain internal, and you can make them available to all of your
assemblies with the InternalsVisibleToAttribute, while keeping them inaccessible
to everyone else.

Serialization attributes
The CLR can serialize certain objects, meaning that it can write all of the values in the
object’s fields into a binary stream. It can deserialize this stream back into a new
object some time later, possibly in a different process or even on a different com‐
puter. When serialization encounters fields containing references it automatically
serializes other objects that yours refer to. It detects circular references to avoid enter‐
ing an infinite loop. This feature has a curious status: Microsoft discourages its use,
did not initially include it in .NET Core, and had been intending to deprecate it.
However, it got a partial reprieve in .NET Core 2.1. You are still mostly discouraged
from using it, and many of the .NET class library types that support serialization
in .NET Framework do not in .NET Core. However, in some cases you have to use it:
for example, if you want to enable exceptions to be serialized across process bound‐
aries, this is the mechanism that enables that. Serialization is of particular interest in
this chapter because its attributes are somewhat unusual.

Not all objects are serializable. For example, consider an object that represents a net‐
work connection. What would it mean if you were to serialize this, copy the resulting
binary stream to a different computer, and then deserialize it? Would you expect to
get an object that was also connected to the same endpoint as the original object? For
many network protocols, this cannot possibly work. (Take TCP, the wildly popular
protocol that underpins HTTP and numerous other forms of communication. The
addresses of the two communicating computers form an integral part of a TCP con‐
nection, so if you move to a different machine, then by definition, you need a new
connection.)

In practice, because the OS provides the networking stack, an object representing a
connection will probably have a numeric field containing some opaque OS-supplied
handle for the connection that won’t work in another process. Even within a single
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machine there are issues. In Windows, handle values are usually scoped to one pro‐
cess. (There are ways to share handles in certain situations, but there’s no completely
general mechanism for doing so. Apart from anything else, it’s very common for one
particular numeric handle value to mean different things in different processes, so
even if you want to share a handle in your process with another process, that other
process may already be using that same handle value to refer to something else. So,
although two different processes might be able to get handles for the same underlying
thing, the actual numeric values of those handles will often be different.) Deserializ‐
ing objects that contain handles without special handling will at best cause errors, but
could well cause more subtle problems. And even if you’re happy to customize the
process, serialization is not meaningful for many handle types.

So serialization is necessarily an opt-in feature—only the author of a type will know
whether making a field-by-field copy of an object (which is effectively what serializa‐
tion does) will have a useful result. You can opt in by applying the SerializableAt
tribute to your class. Unlike most attributes, this one gets special handling in .NET’s
metadata format—it just ends up setting a flag in part of the class’s definition. See the
next sidebar, “Attributes or Custom Attributes?” for some related details.

Attributes or Custom Attributes?
You will sometimes come across the term custom attribute. The C# specification does
not define a meaning for this term, but the CLI specification does. It defines a custom
attribute as any attribute that does not have special intrinsic handling in the metadata
format, and when you see the text CustomAttribute in a .NET API, that’s usually the
definition that applies. The vast majority of attributes you’ll use fit into this category,
including most attributes defined by the .NET class library. Even some of the CLR-
handled attributes, such as InternalsVisibleToAttribute, are custom attributes by
this definition. Attributes with intrinsic support in the file format, such as Serializa
bleAttribute, are exceptional.

In a few places, the documentation uses the term in a slightly different way: some‐
times custom attribute is used to mean an attribute type that didn’t ship as part
of .NET. In other words, the distinction appears to be whether you wrote the attribute
type or Microsoft did. Conversely, at one point, some documentation used a broader
definition, presenting StructLayoutAttribute as an example of a custom attribute.
That attribute is part of the CLR’s interop services (which make it possible to call
native code, such as OS APIs), and like SerializeableAttribute, it’s one of the very
few intrinsic attribute types—the .NET metadata format has native handling for cer‐
tain interop features. Microsoft has in recent years improved the documentation, and
now tends to use custom attribute in the CLI sense, and uses the term pseudo-
attribute for the kind with intrinsic metadata support. However, you may still come
across content that doesn’t use these names.
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Part of the reason for the vagueness and inconsistency is that in most situations,
there’s no real technical need to draw a distinction. If you’re writing a tool that works
directly with the binary format for metadata, obviously you’ll need to know which
attributes are supported directly by the format, but most code can ignore those
details; in C#, it’s the same syntax either way, and the compiler and runtime will han‐
dle the difference for you. There are several serialization mechanisms in .NET, and
only one of them gets intrinsic metadata support, but that doesn’t make a significant
difference in the way you use them. And there’s no technical difference between one
of your classes that derives from Attribute and a similar class that happens to ship as
part of the .NET class library.

By applying the SerializableAttribute, you’re giving .NET’s serialization system
permission to dig directly into your class’s fields and write their values to a stream.
You’re also giving it permission to bypass the usual constructors when reconstituting
an instance of your type from a serialized stream. (In fact, you can provide a special
constructor for serialization purposes, as I showed in Chapter 8, but if you don’t pro‐
vide that particular form of constructor, serialization will bring instances of your type
into existence without invoking any constructor. This is one of the reasons that seri‐
alization is a CLR feature rather than a library feature.) You can opt individual fields
out of serialization by applying the NonSerializedAttribute.

By the way, there are several mechanisms in the .NET class libraries that perform a
similar job to CLR serialization. In fact, the number of options is somewhat bewilder‐
ing, with XmlSerializer, DataContractSerializer, NetDataContractSerializer,
and DataContractJsonSerializer offering various serialization formats and philos‐
ophies. I’ll discuss the most widely used ones in Chapter 15, but for now, these sys‐
tems are relevant only because they define numerous attributes. However, since these
other forms of serialization are all just library features rather than intrinsic runtime
services, their attributes don’t get any special treatment from the CLR.

JIT compilation
There are a few attributes that influence how the JIT compiler generates code. You
can apply the MethodImplAttribute to a method, passing values from the MethodIm
plOptions enumeration. Its NoInlining value ensures that whenever your method is
called by another method, it will be a full method call. Without this, the JIT compiler
will sometimes just copy a method’s code directly into the calling code.

In general, you’ll want to leave inlining enabled. The JIT compiler inlines only small
methods, and it’s particularly important for tiny methods, such as property accessors.
For simple field-based properties, invoking accessors with a normal function call
often requires more code than inlining, so this optimization can produce code that’s
smaller, as well as faster. (Even if the code is no smaller, it may still be faster, because
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function calls can be surprisingly expensive. Modern CPUs tend to handle long
sequential streams of instructions more efficiently than code that leaps around from
one location to another.) However, inlining is an optimization with observable side
effects—an inlined method does not get its own stack frame. Earlier, I mentioned
some diagnostic APIs you can use to inspect the stack, and inlining will change the
number of reported stack frames. If you just want to ask the question, “Which
method is calling me?” the caller info attributes described earlier provide a more effi‐
cient way to discover this, and will not be defeated by inlining, but if you have code
that inspects the stack for any reason, it can sometimes be confused by inlining. So,
just occasionally, it’s useful to disable it.

Conversely, you can specify AggressiveInlining, which encourages the JIT com‐
piler to inline things it might otherwise leave as normal method calls. If you have
identified a particular method as being highly performance sensitive, it might be
worth trying this setting to see if it makes any difference, although be aware that it
could make code either slower or faster—it will depend on the circumstances. Con‐
versely, you can disable all optimizations with the NoOptimization option (although
the documentation implies that this is more for the benefit of the CLR team at Micro‐
soft than for consumers, because it is for “debugging possible code generation
problems”).

Another attribute that has an impact on optimization is the DebuggableAttribute.
The C# compiler automatically applies this to your assembly in Debug builds. The
attribute tells the CLR to be less aggressive about certain optimizations, particularly
ones that affect variable lifetime, and ones that change the order in which code exe‐
cutes. Normally, the compiler is free to change such things as long as the final result
of the code is the same, but this can cause confusion if you break into the middle of
an optimized method with the debugger. This attribute ensures that variable values
and the flow of execution are easy to follow in that scenario.

STAThread and MTAThread
Applications that run only on Windows and which present a UI (e.g., anything
using .NET’s WPF or Windows Forms frameworks) typically have the [STAThread]
attribute on their Main method (although you won’t always see it, because the entry
point is often generated by the build system for these kinds of applications). This is
an instruction to the CLR’s COM interop layer, but it has broader implications: you
need this attribute on Main if you want your main thread to host UI elements.

Various Windows UI features rely on COM under the covers. The clipboard uses it,
for example, as do certain kinds of controls. COM has several threading models, and
only one of them is compatible with UI threads. One of the main reasons for this is
that UI elements have thread affinity, so COM needs to ensure that it does certain
work on the right thread. Also, if a UI thread doesn’t regularly check for messages
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and handle them, deadlock can ensue. If you don’t tell COM that a particular thread
is a UI thread, it will omit these checks, and you will encounter problems.

Even if you’re not writing UI code, some interop scenarios need
the [STAThread] attribute, because certain COM components are
incapable of working without it. However, UI work is the most
common reason for seeing it.

Since COM is managed for you by the CLR, the CLR needs to know that it should tell
COM that a particular thread needs to be handled as a UI thread. When you create a
new thread explicitly using the techniques shown in Chapter 16, you can configure its
COM threading mode, but the main thread is a special case—the CLR creates it for
you when your application starts, and by the time your code runs, it’s too late to con‐
figure the thread. Placing the [STAThread] attribute on the Main method tells the
CLR that your main thread should be initialized for UI-compatible COM behavior.

STA is short for single-threaded apartment. Threads that participate in COM always
belong to either an STA or a multithreaded apartment (MTA). There are other kinds
of apartments, but threads have only temporary membership of those; when a thread
starts using COM, it must pick either STA or MTA mode. So there is, unsurprisingly,
also an [MTAThread] attribute.

Interop
The CLR’s interop services define numerous attributes. Most of them are handled
directly by the CLR, because interop is an intrinsic feature of the runtime. Since the
attributes make sense only in the context of the mechanisms they support, and
because there are so many, I will not describe them in full here, but Example 14-16
illustrates the kinds of things they can do.

Example 14-16. Interop attributes

[DllImport("advapi32.dll", CharSet = CharSet.Unicode, SetLastError = true,
           EntryPoint = "LookupPrivilegeValueW")]
internal static extern bool LookupPrivilegeValue(
    [MarshalAs(UnmanagedType.LPTStr)] string lpSystemName,
    [MarshalAs(UnmanagedType.LPTStr)] string lpName,
    out LUID lpLuid);

This uses two interop attributes that we saw earlier in Example 14-6, but in a some‐
what more complex way. This calls into a function exposed by advapi32.dll, part of
the Win32 API. The first argument to the DllImport attribute tells us that, but unlike
the earlier example, this goes on to provide the interop layer with additional informa‐
tion. This API deals with strings, so interop needs to know which particular character
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representation is in use. This particular API uses a common Win32 idiom: it returns
a Boolean value to indicate success or failure, but it also uses the Windows SetLastEr
ror API to provide more information in the failure case. The attribute’s SetLastEr
ror property tells the interop layer to retrieve that immediately after calling this API
so that .NET code can inspect it if necessary. The EntryPoint property deals with the
fact that Win32 APIs taking strings sometimes come in two forms, working with
either 8-bit or 16-bit characters (Windows 95 only supported 8-bit text, to conserve
memory), and that we want to call the Wide form (hence the W suffix). It then uses
MarshalAs on the two string arguments to tell the interop layer which of the many
different string representations available in unmanaged code this particular API
expects.

Defining and Consuming Attributes
The vast majority of attributes you will come across are not intrinsic to the runtime
or compiler. They are defined by class libraries and have an effect only if you are
using the relevant libraries or frameworks. You are free to do exactly the same in
your own code—you can define your own attribute types. Because attributes don’t do
anything on their own—they don’t even get instantiated unless something asks to see
them—it is normally useful to define an attribute type only if you’re writing some
sort of framework, particularly one that is driven by reflection.

For example, unit test frameworks often discover the test classes you write via reflec‐
tion, and enable you to control the test runner’s behavior with attributes. Another
example is how Visual Studio uses reflection to discover the properties of editable
objects on design surfaces (such as UI controls), and it will look for certain attributes
that enable you to customize the editing behavior. Another application of attributes is
how you can configure exceptions to rules applied by Visual Studio’s static code anal‐
ysis tools by annotating your code with attributes. In all these cases, some tool or
framework examines your code and decides what to do based on what it finds. This is
the kind of scenario in which attributes are a good fit.

For example, attributes could be useful if you write an application that end users
could extend. You might support loading of external assemblies that augment your
application’s behavior—this is often known as a plugin model. It might be useful to
define an attribute that allows a plugin to provide descriptive information about
itself. It’s not strictly necessary to use attributes—you would probably define at least
one interface that all plugins are required to implement, and you could have mem‐
bers in that interface for retrieving the necessary information. However, one advan‐
tage of using attributes is that you would not need to create an instance of the plugin
just to retrieve the description information. That would enable you to show the
plugin’s details to the user before loading it, which might be important if construct‐
ing the plugin could have side effects that the user might not want.
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Attribute Types
Example 14-17 shows how an attribute containing information about a plugin might
look.

Example 14-17. An attribute type

[AttributeUsage(AttributeTargets.Class)]
public class PluginInformationAttribute : Attribute
{
    public PluginInformationAttribute(string name, string author)
    {
        Name = name;
        Author = author;
    }

    public string Name { get; }

    public string Author { get; }

    public string Description { get; set; }
}

To act as an attribute, a type must derive from the Attribute base class. Although
Attribute defines various static methods for discovering and retrieving attributes, it
does not provide very much of interest for instances. We do not derive from it to get
any particular functionality; we do so because the compiler will not let you use a type
as an attribute unless it derives from Attribute.

Notice that my type’s name ends in the word Attribute. This is not an absolute
requirement, but it is an extremely widely used convention. As you saw earlier, it’s
even built into the compiler, which automatically adds the Attribute suffix if you
leave it out when applying an attribute. So there’s usually no reason not to follow this
convention.

As you’ve seen, sometimes when we apply an attribute, we need to
state its target. For example, when an attribute appears before a
method, its target is the method, unless you qualify it with the
return: prefix. You might have hoped that you’d be able to leave
out these prefixes when using attributes that can target only certain
members. For example, if an attribute can be applied only to an
assembly, do you really need the assembly: qualifier? However, C#
doesn’t let you leave it off. It uses the AttributeUsageAttribute
only to verify that an attribute has not been misapplied.
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I’ve annotated my attribute type with an attribute. Most attribute types are annotated
with the AttributeUsageAttribute, indicating the targets to which the attribute can
usefully be applied. The C# compiler will enforce this. Since my attribute in
Example 14-17 states that it may be applied only to classes, the compiler will generate
an error if anyone attempts to apply it to anything else.

The attribute defines only one constructor, so any code that uses it will have to pass
the arguments that the constructor requires, as Example 14-18 does.

Example 14-18. Applying an attribute

[PluginInformation("Reporting", "Endjin Ltd.")]
public class ReportingPlugin
{
    ...
}

Attribute classes are free to define multiple constructor overloads to support different
sets of information. They can also define properties as a way to support optional
pieces of information. My attribute defines a Description property, which is not
required because the constructor does not demand a value for it, but which I can set
using the syntax I described earlier in this chapter. Example 14-19 shows how that
looks for my attribute.

Example 14-19. Providing an optional property value for an attribute

[PluginInformation("Reporting", "Endjin Ltd.",
    Description = "Automated report generation")]
public class ReportingPlugin
{
    ...
}

So far, nothing I’ve shown will cause an instance of my PluginInformationAttri
bute type to be created. These annotations are simply instructions for how the
attribute should be initialized if anything asks to see it. So, if this attribute is to be
useful, I need to write some code that will look for it.

Retrieving Attributes
You can discover whether a particular kind of attribute has been applied using the
reflection API, which can also instantiate the attribute for you. In Chapter 13, I
showed all of the reflection types representing the various targets to which attributes
can be applied—types such as MethodInfo, Type, and PropertyInfo. These all imple‐
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ment an interface called ICustomAttributeProvider, which is shown in
Example 14-20.

Example 14-20. ICustomAttributeProvider

public interface ICustomAttributeProvider
{
    object[] GetCustomAttributes(bool inherit);
    object[] GetCustomAttributes(Type attributeType, bool inherit);
    bool IsDefined(Type attributeType, bool inherit);
}

The IsDefined method simply tells you whether a particular attribute type is present
—it does not instantiate it. The two GetCustomAttributes overloads create attributes
and return them. (This is the point at which attributes are constructed, and also when
any properties the annotations specify are set.) The first overload returns all
attributes applied to the target, while the second lets you request only those attributes
of a particular type.

All of these methods take a bool argument that lets you specify whether you want
only attributes that were applied directly to the target you’re inspecting, or also
attributes defined by the base type or types.

This interface was introduced in .NET 1.0, so it does not use generics, meaning you
need to cast the objects that come back. Fortunately the CustomAttributeExtensions
static class defines several extension methods. Instead of defining them for the ICus
tomAttributeProvider interface, it extends the reflection classes that offer attributes.
For example, if you have a variable of type Type, you could call GetCustomAttri
bute<PluginInformationAttribute>() on it, which would construct and return the
plugin information attribute, or null if the attribute is not present. Example 14-21
uses this to show all of the plugin information from all the DLLs in a particular
folder.

Example 14-21. Showing plugin information

static void ShowPluginInformation(string pluginFolder)
{
    var dir = new DirectoryInfo(pluginFolder);
    foreach (var file in dir.GetFiles("*.dll"))
    {
        Assembly pluginAssembly = Assembly.LoadFrom(file.FullName);
        var plugins =
             from type in pluginAssembly.ExportedTypes
             let info = type.GetCustomAttribute<PluginInformationAttribute>()
             where info != null
             select new { type, info };
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        foreach (var plugin in plugins)
        {
            Console.WriteLine($"Plugin type: {plugin.type.Name}");
            Console.WriteLine(
                $"Name: {plugin.info.Name}, written by {plugin.info.Author}");
            Console.WriteLine($"Description: {plugin.info.Description}");
        }
    }
}

There’s one potential problem with this. I said that one benefit of attributes is that
they can be retrieved without instantiating their target types. That’s true here—I’m
not constructing any of the plugins in Example 14-21. However, I am loading the
plugin assemblies, and a possible side effect of enumerating the plugins would be to
run static constructors in the plugin DLLs. So, although I’m not deliberately running
any code in those DLLs, I can’t guarantee that no code from those DLLs will run. If
my goal is to present a list of plugins to the user, and to load and run only the ones
explicitly selected, I’ve failed, because I’ve given plugin code a chance to run. How‐
ever, we can fix this.

Reflection-only load
You do not need to load an assembly fully in order to retrieve attribute information.
As I discussed in Chapter 13, you can load an assembly for reflection purposes only.
This prevents any of the code in the assembly from running, but enables you to
inspect the types it contains. However, this presents a challenge for attributes. The
usual way to inspect an attribute’s properties is to instantiate it by calling GetCusto
mAttributes or a related extension method. Since that involves constructing the
attribute—which means running some code—it is not supported for assemblies
loaded for reflection (not even if the attribute type in question were defined in a dif‐
ferent assembly that has been fully loaded in the normal way). If I modified
Example 14-21 to load the assembly with ReflectionOnlyLoadFrom, the call to Get
CustomAttribute<PluginInformationAttribute> would throw an exception.

When loading for reflection only, you have to use the GetCustomAttributesData
method. Instead of instantiating the attribute for you, this returns the information
stored in the metadata—the instructions for creating the attribute. Example 14-22
shows a version of the relevant code from Example 14-21 modified to work this way.

Example 14-22. Retrieving attributes with the reflection-only context

Assembly pluginAssembly = Assembly.ReflectionOnlyLoadFrom(file.FullName);
var plugins =
     from type in pluginAssembly.ExportedTypes
     let info = type.GetCustomAttributesData().SingleOrDefault(
        attrData => attrData.AttributeType.FullName == pluginAttributeType.FullName)

610 | Chapter 14: Attributes



     where info != null
     let description = info.NamedArguments
                           .SingleOrDefault(a => a.MemberName == "Description")
     select new
     {
         type,
         Name = (string) info.ConstructorArguments[0].Value,
         Author = (string) info.ConstructorArguments[1].Value,
         Description =
             description == null ? null : description.TypedValue.Value
     };

foreach (var plugin in plugins)
{
    Console.WriteLine($"Plugin type: {plugin.type.Name}");
    Console.WriteLine($"Name: {plugin.Name}, written by {plugin.Author}");
    Console.WriteLine($"Description: {plugin.Description}");
}

The code is rather more cumbersome because we don’t get back an instance of the
attribute. GetCustomAttributesData returns a collection of CustomAttributeData
objects. Example 14-22 uses LINQ’s SingleOrDefault operator to find the entry for
the PluginInformationAttribute, and if that’s present, the info variable in the
query will end up holding a reference to the relevant CustomAttributeData object.
The code then picks through the constructor arguments and property values using
the ConstructorArguments and NamedArguments properties, enabling it to retrieve
the three descriptive text values embedded in the attribute.

As this demonstrates, the reflection-only context adds complexity, so you should use
it only if you need the benefits it offers. One benefit is the fact that it won’t run any of
the assemblies you load. It can also load assemblies that might be rejected if they were
loaded normally (e.g., because they target a specific processor architecture that
doesn’t match your process). But if you don’t need the reflection-only option, access‐
ing the attributes directly, as Example 14-21 does, is more convenient.

Summary
Attributes provide a way to embed custom data into an assembly’s metadata. You can
apply attributes to a type, any member of a type, a parameter, a return value, or even
a whole assembly or one of its modules. A handful of attributes get special handling
from the CLR, and a few control compiler features, but most have no intrinsic behav‐
ior, acting merely as passive information containers. Attributes do not even get
instantiated unless something asks to see them. All of this makes attributes most use‐
ful in systems with reflection-driven behavior—if you already have one of the reflec‐
tion API objects such as ParameterInfo or Type, you can ask it directly for attributes.
You therefore most often see attributes used in frameworks that inspect your code
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with reflection, such as unit test frameworks, serialization frameworks, data-driven
UI elements like Visual Studio’s Properties panel, or plugin frameworks. If you are
using a framework of this kind, you will typically be able to configure its behavior by
annotating your code with the attributes the framework recognizes. If you are writing
this sort of framework, then it may make sense to define your own attribute types.
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CHAPTER 15

Files and Streams

Most of the techniques I’ve shown so far in this book revolve around the information
that lives in objects and variables. This kind of state is stored in a particular process’s
memory, but to be useful, a program must interact with a broader world. This might
happen through UI frameworks, but there’s one particular abstraction that can be
used for many kinds of interactions with the outside world: a stream.

Streams are so widely used in computing that you will no doubt already be familiar
with them, and a .NET stream is much the same as in most other programming sys‐
tems: it is simply a sequence of bytes. That makes a stream a useful abstraction for
many commonly encountered features such as a file on disk, or the body of an HTTP
response. A console application uses streams to represent its input and output. If you
run such a program interactively, the text that the user types at the keyboard becomes
the program’s input stream, and anything the program writes to its output stream
appears on screen. A program doesn’t necessarily know what kind of input or output
it has, though—you can redirect these streams with console programs. For example,
the input stream might actually provide the contents of a file on disk, or it could even
be the output from some other program.

Not all I/O APIs are stream-based. For example, in addition to the
input stream, the Console class provides a ReadKey method that
gives information about exactly which key was pressed, which
works only if the input comes from the keyboard. So, although you
can write programs that do not care whether their input comes
interactively or from a file, some programs are pickier.

The stream APIs present you with raw byte data. However, it is possible to work at a
different level. For example, there are text-oriented APIs that can wrap underlying
streams, so you can work with characters or strings instead of raw bytes. There are
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also various serialization mechanisms that enable you to convert .NET objects into a
stream representation, which you can turn back into objects later, making it possible
to save an object’s state persistently or to send that state over the network. I’ll show
these higher-level APIs later, but first, let’s look at the stream abstraction itself.

The Stream Class
The Stream class is defined in the System.IO namespace. It is an abstract base class,
with concrete derived types such as FileStream or GZipStream representing particu‐
lar kinds of streams. Example 15-1 shows the Stream class’s three most important
members. It has several other members, but these are at the heart of the abstraction.
(As you’ll see later, there are also asynchronous versions of Read and Write. .NET
Core 3.0 and .NET Standard also add overloads that take one of the span types
described in Chapter 18 in place of an array. Everything I say in this section about
these methods also applies to the asynchronous and span-based forms.)

Example 15-1. The most important members of Stream

public abstract int Read(byte[] buffer, int offset, int count);
public abstract void Write(byte[] buffer, int offset, int count);
public abstract long Position { get; set; }

Some streams are read-only. For example, when the input stream for a console appli‐
cation represents the keyboard or the output of some other program, there’s no
meaningful way for the program to write to that stream. (And for consistency, even if
you use input redirection to run a console application with a file as its input, the
input stream will be read-only.) Some streams are write-only, such as the output
stream of a console application. If you call Read on a write-only stream or Write on a
read-only one, these methods throw a NotSupportedException.

The Stream class defines various bool properties that describe a
stream’s capabilities, so you don’t have to wait until you get an
exception. You can check the CanRead or CanWrite properties.

Both Read and Write take a byte[] array as their first argument, and these methods
copy data into or out of that array, respectively. The offset and count arguments
that follow indicate the array element at which to start, and the number of bytes to
read or write; you do not have to use the whole array. Notice that there are no argu‐
ments to specify the offset within the stream at which to read or write. This is man‐
aged by the Position property—this starts at zero, but each time you read or write,
the position advances by the number of bytes processed.
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Notice that the Read method returns an int. This tells you how many bytes were read
from the stream—the method does not guarantee to provide the amount of data you
requested. One obvious reason for this is that you could reach the end of the stream,
so even though you may have asked to read 100 bytes into your array, there may have
been only 30 bytes of data left between the current Position and the end of the
stream. However, that’s not the only reason you might get less than you asked for,
and this often catches people out, so for the benefit of people skim-reading this chap‐
ter, I’ll put this in a scary warning.

If you ask for more than one byte at a time, a Stream is always free
to return less data than you requested from Read for any reason.
You should never presume that a call to Read returned as much
data as it could, even if you have good reason to know that the
amount you asked for will be available.

The reason Read is slightly tricky is that some streams are live, representing a source
of information that produces data gradually as the program runs. For example, if a
console application is running interactively, its input stream can provide data only as
fast as the user types; a stream representing data being received over a network con‐
nection can provide data only as fast as it arrives. If you call Read and you ask for
more data than is currently available, a stream might wait until it has as much as
you’ve asked for, but it doesn’t have to—it may return whatever data it has immedi‐
ately. (The only situation in which it is obliged to wait before returning is if it cur‐
rently has no data at all, but is not yet at the end of the stream. It has to return at least
one byte, because a 0 return value indicates the end of the stream.) If you want to
ensure that you read a specific number of bytes, you’ll have to check whether Read
returned fewer bytes than you wanted, and if necessary, keep calling it until you have
what you need. Example 15-2 shows how to do this.

Example 15-2. Reading a specific number of bytes

static int ReadAll(Stream s, byte[] buffer, int offset, int length)
{
    if ((offset + length) > buffer.Length)
    {
        throw new ArgumentException("Buffer too small to hold requested data");
    }

    int bytesReadSoFar = 0;
    while (bytesReadSoFar < length)
    {
        int bytes = s.Read(
            buffer, offset + bytesReadSoFar, length - bytesReadSoFar);
        if (bytes == 0)
        {
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            break;
        }
        bytesReadSoFar += bytes;
    }

    return bytesReadSoFar;
}

Notice that this code checks for a 0 return value from Read to detect the end of the
stream. Without that, it would loop forever if it reached the end of the stream before
reading as much data as has been asked for. That means that if we do reach the end of
the stream, this method will have to provide less data than the caller requested, so this
may seem like it hasn’t really solved the problem. However, it does rule out the situa‐
tion where you get less than you asked for despite not reaching the end of the stream.
(Of course, you could change the method so that it throws an exception if it reaches
the end of the stream before providing the specified number of bytes. That way, if the
method returns at all, it is guaranteed to return exactly as many bytes as have been
requested.)

Stream offers a simpler way to read. The ReadByte method returns a single byte,
unless you hit the end of the stream, at which point it returns a value of −1. (Its return
type is int, enabling it to return any possible value for byte as well as negative val‐
ues.) This avoids the problem of being handed back only some of the data you
requested, because if you get anything back at all, you always get exactly one byte.
However, it’s not especially convenient or efficient if you want to read larger chunks
of data.

The Write method doesn’t have any of these issues. If it succeeds, it always accepts all
of the data you provide. Of course, it might fail—it could throw an exception before it
manages to write all of the data because of an error (e.g., running out of space on disk
or losing a network connection).

Position and Seeking
tion property”)))Streams automatically update their current position each time you
read or write. As you can see in Example 15-1, the Position property can be set, so
you can attempt to move directly to a particular position. This is not guaranteed to
work because it’s not always possible to support it. For example, a Stream that repre‐
sents data being received over a TCP network connection could produce data indefi‐
nitely—as long as the connection remains open and the other end keeps sending data,
the stream will continue to honor calls to Read. A connection could remain open for
many days, and might receive terabytes of data in that time. If such a stream let you
set its Position property, enabling your code to go back and reread data received
earlier, the stream would have to find somewhere to store every single byte it received
just in case the code using the stream wants to see it again. Since that might involve
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1 Although Seek is logically equivalent to setting the Position, some streams handle these subtly differently,
although not for any discernible reason. The class library’s BufferedStream discards all previously read data
when you set Position directly, whereas the Seek method checks to see whether the new position is within
data it has already loaded.

storing more data than you have space for on disk, this is clearly not practical, so
some streams will throw NotSupportedException when you try to set the Position
property. (There’s a CanSeek property you can use to discover whether a particular
stream supports changing the position, so just like with read-only and write-only
streams, you don’t have to wait until you get an exception to find out whether it will
work.)

As well as the Position property, Stream also defines a Seek method, whose signa‐
ture is shown in Example 15-3. This lets you specify the position you require relative
to the stream’s current position. (This also throws NotSupportedException on
streams that don’t support seeking.)

Example 15-3. The Seek method

public abstract long Seek(long offset, SeekOrigin origin);

If you pass SeekOrigin.Current as the second argument, it will set the position by
adding the first argument to the current position. You can pass a negative offset if
you want to move backward. You can also pass SeekOrigin.End to set the position to
be some specified number of bytes from the end of the stream. Passing SeekOri
gin.Begin has the same logical effect as just setting Position—it sets the position
relative to the start of the stream.1

Flushing
As with many stream APIs on other programming systems, writing data to a Stream
does not necessarily cause the data to reach its destination immediately. When a call
to Write returns, all you know is that it has copied your data somewhere; but that
might be a buffer in memory, not the final target. For example, if you write a single
byte to a stream representing a file on disk, the stream object will typically defer writ‐
ing that to the disk until it has enough bytes to make it worth the effort. Disks are
block-based devices, meaning that writes happen in fixed-size chunks, typically sev‐
eral kilobytes in size, so it generally makes sense to wait until there’s enough data to
fill a block before writing anything out.

This buffering is usually a good thing—it improves write performance while enabling
you to ignore the details of how the disk works. However, a downside is that if you
write data only occasionally (e.g., when writing error messages to a logfile), you could
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easily end up with long delays between the program writing data to a stream, and that
data reaching the disk. This could be perplexing for someone trying to diagnose a
problem by looking at the logfiles of a program that’s currently running. And more
insidiously, if your program crashes, anything in a stream’s buffers that has not yet
made it to disk will probably be lost.

The Stream class therefore offers a Flush method. This lets you tell the stream that
you want it to do whatever work is required to ensure that any buffered data is writ‐
ten to its target, even if that means making suboptimal use of the buffer.

When using a FileStream, the Flush method does not necessarily
guarantee that the data being flushed has made it to disk yet. It
merely makes the stream pass the data to the OS. Before you call
Flush, the OS hasn’t even seen the data, so if you were to terminate
the process suddenly, the data would be lost. After Flush has
returned, the OS has everything your code has written, so the pro‐
cess could be terminated without loss of data. However, the OS
may perform additional buffering of its own, so if the power fails
before the OS gets around to writing everything to disk, the data
will still be lost. If you need to guarantee that data has been written
persistently (rather than merely ensuring that you’ve handed it to
the OS), you will also need to use either the WriteThrough flag,
described in “FileStream Class” on page 633, or call the Flush over‐
load that takes a bool, passing true to force flushing to disk.

A stream automatically flushes its contents when you call Dispose. You need to use
Flush only when you want to keep a stream open after writing out buffered data. It is
particularly important if there will be extended periods during which the stream is
open but inactive. (If the stream represents a network connection, and if your appli‐
cation depends on prompt data delivery—this would be the case in an online chat
application or game, for example—you would call Flush even if you expect only fairly
brief periods of inactivity.)

Copying
Copying all of the data from one stream to another is occasionally useful. It wouldn’t
be hard to write a loop to do this, but you don’t have to, because the Stream class’s
CopyTo method (or the equivalent CopyToAsync) does it for you. There’s not much to
say about it. The main reason I’m mentioning it is that it’s not uncommon for devel‐
opers to write their own version of this method because they didn’t know the func‐
tionality was built into Stream.
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Length
Some streams are able to report their length through the predictably named Length
property. As with Position, this property’s type is long—Stream uses 64-bit num‐
bers because streams often need to be larger than 2 GB, which would be the upper
limit if sizes and positions were represented with int.

Stream also defines a SetLength method that lets you define the length of a stream
(where supported). You might think about using this when writing a large quantity of
data to a file, to ensure that there is enough space to contain all the data you wish to
write—better to get an IOException before you start than wasting time on a doomed
operation and potentially causing system-wide problems by using up all of the free
space. However, many filesystems support sparse files, letting you create files far
larger than the available free space, so in practice you might not see any error until
you start writing nonzero data. Even so, if you specify a length that is longer than the
filesystem supports, SetLength will throw an ArgumentException.

Not all streams support length operations. The Stream class documentation says that
the Length property is available only on streams that support CanSeek. This is
because streams that support seeking are typically ones where the whole content of
the stream is known and accessible up front. Seeking is unavailable on streams where
the content is produced at runtime (e.g., input streams representing user input, or
streams representing data received over the network), and in those cases the length is
also very often not known in advance. As for SetLength, the documentation states
that this is supported only on streams that support both writing and seeking. (As
with all members representing optional features, Length and SetLength will throw a
NotSupportedException if you try to use these members on streams that do not sup‐
port them.)

Disposal
Some streams represent resources external to the .NET runtime. For example, File
Stream provides stream access to the contents of a file, so it needs to obtain a file han‐
dle from the OS. It’s important to close handles when you’re done with them;
otherwise you might prevent other applications from being able to use the file. Con‐
sequently, the Stream class implements the IDisposable interface (described in
Chapter 7) so that it can know when to do that. And, as I mentioned earlier, buffering
streams such as FileStream flush their buffers when you call Dispose, before closing
handles.

Not all stream types depend on Dispose being called: MemoryStream works entirely in
memory, so the GC would be able to take care of it. But in general, if you caused a
stream to be created, you should call Dispose when you no longer need it.
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There are some situations in which you will be provided with a
stream, but it is not your job to dispose it. For example, ASP.NET
Core can provide streams to represent data in HTTP requests and
responses. It creates these for you and then disposes them after
you’ve used them, so you should not call Dispose on them.

Confusingly, the Stream class also has a Close method. This is an accident of history.
The first public beta release of .NET 1.0 did not define IDisposable, and C# did not
have using statements—the keyword was only for using directives, which bring
namespaces into scope. The Stream class needed some way of knowing when to clean
up its resources, and since there was not yet a standard way to do this, it invented its
own idiom. It defined a Close method, which was consistent with the terminology
used in many stream-based APIs in other programming systems. IDisposable was
added before the final release of .NET 1.0, and the Stream class added support for
this, but it left the Close method in place; removing it would have disrupted a lot of
early adopters who had been using the betas. But Close is redundant, and the docu‐
mentation actively advises against using it. It says you should call Dispose instead
(through a using statement if that is convenient). There’s no harm in calling Close—
there’s no practical difference between that and Dispose—but Dispose is the more
common idiom, and is therefore preferred.

Asynchronous Operation
The Stream class offers asynchronous versions of Read and Write. Be aware that there
are two forms. Stream first appeared in .NET 1.0, so it supported what was then the
standard asynchronous mechanism, the Asynchronous Programming Model (APM,
described in Chapter 16) through the BeginRead, EndRead, BeginWrite, and End
Write methods. This model is now deprecated, having been superseded by the newer
Task-based Asynchronous Pattern (or TAP, also described in Chapter 16). Stream
supports this through its ReadAsync and WriteAsync methods. There are two more
operations that did not originally have any kind of asynchronous form that now have
TAP versions: FlushAsync and CopyToAsync. (These support only TAP, because
APM was already deprecated by the time Microsoft added these methods.)

Avoid the old APM-based Begin/End forms of Read and Write.
They weren’t present at all in early versions of .NET Core, nor
in .NET Standard prior to 2.0. They reappeared to make it easier to
migrate existing code from .NET Framework to .NET Core, so they
are supported only for legacy scenarios.

Some stream types implement asynchronous operations using very efficient techni‐
ques that correspond directly to the asynchronous capabilities of the underlying OS.
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(FileStream does this, as do the various streams .NET can provide to represent con‐
tent from network connections.) You may come across libraries with custom stream
types that do not do this, but even then, the asynchronous methods will be available,
because the base Stream class can fall back to using multithreaded techniques instead.

One thing you need to be careful of when using asynchronous reads and writes is that
a stream only has a single Position property. Reads and writes depend on the cur‐
rent Position and also update it when they are done, so in general you must avoid
starting a new operation before one already in progress is complete. (If you wish to
perform multiple concurrent read or write operations from a particular file, you can
either create multiple stream objects for that file, or you can open the file in asyn‐
chronous mode. FileStream has special handling for asynchronous files. Operations
use the value Position has at the start of the operation, and once an asynchronous
read or write has started, you are allowed to change Position and start another oper‐
ation without waiting for all the previous ones to complete. But this only applies to
FileStream, and only when the file was opened in asynchronous mode.)

.NET Core 3.0 and .NET Standard 2.1 have added IAsyncDisposable, an asynchro‐
nous form of Dispose. The Stream class implements this, because disposal often
involves flushing, which is a potentially slow operation.

Concrete Stream Types
The Stream class is abstract, so to use a stream, you’ll need a concrete derived type. In
some situations, this will be provided for you—the ASP.NET Core web framework
supplies stream objects representing HTTP request and response bodies, for example,
and the client-side HttpClient class will do something similar. But sometimes you’ll
need to create a stream object yourself. This section describes a few of the more com‐
monly used types that derive from Stream.

The FileStream class represents a file on the filesystem. I will describe this in “Files
and Directories” on page 632.

MemoryStream lets you create a stream on top of a byte[] array. You can either take
an existing byte[] and wrap it in a MemoryStream, or you can create a MemoryStream
and then populate it with data by calling Write (or the asynchronous equivalent).
You can retrieve the populated byte[] once you’re done by calling either ToArray or
GetBuffer. (ToArray allocates a new array, with the size based on the number of
bytes actually written. GetBuffer is more efficient because it returns the underlying
array MemoryStream is using, but unless the writes happened to fill it completely, the
array returned will contain more bytes than were written.) This class is useful when
you are working with APIs that require a stream and you don’t have one for some
reason. For example, most of the serialization APIs described later in this chapter
work with streams, but you might end up wanting to use that in conjunction with
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some other API that works in terms of byte[]. MemoryStream lets you bridge between
those two representations.

Both Windows and Unix define an interprocess communication (IPC) mechanism
enabling you to connect two processes through a stream. Windows calls these named
pipes. Unix also has a mechanism with that name but it is completely different; it does
however offer a mechanism similar to Windows named pipes: domain sockets.
Although the precise details of Windows named pipes and Unix domain sockets dif‐
fer, the various classes derived from PipeStream provide a common abstraction for
both in .NET.

BufferedStream derives from Stream, but also takes a Stream in its constructor. It
adds a layer of buffering, which is useful if you want to perform small reads or writes
on a stream that is designed to work best with larger operations. (You don’t need to
use this with FileStream because that has its own built-in buffering mechanism.)

There are various stream types that transform the contents of other streams in some
way. For example, DeflateStream, GZipStream, and BrotliStream implement three
widely used compression algorithms. You can wrap these around other streams to
compress the data written to the underlying stream, or to decompress the data read
from it. (These just provide the lowest-level compression service. If you want to work
with the popular ZIP format for packages of compressed files, use the ZipArchive
class.) There’s also a class called CryptoStream, which can encrypt or decrypt the
contents of other streams using any of the wide variety of encryption mechanisms
supported in .NET.

One Type, Many Behaviors
As you’ve now seen, the abstract base class Stream gets used in a wide range of sce‐
narios. It is arguably an abstraction that has been stretched a little too thin. The pres‐
ence of properties such as CanSeek that tell you whether the particular Stream you
have can be used in a certain way is arguably a symptom of an underlying problem,
an example of something known as a code smell. .NET streams did not invent this
particular one-size-fits-all approach—it was popularized by Unix and the C program‐
ming language’s standard library a long time ago. The problem is that when writing
code that deals with a Stream, you might not know what sort of thing you are dealing
with.

There are many different ways to use a Stream, but three usage styles come up a lot:

• Sequential access of a sequence of bytes
• Random access, with a presumption of efficient caching
• Access to some underlying capability of a device or system
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As you know, not all Stream implementations support all three models—if CanSeek
returns false, that rules out the middle option. But what is less obvious is that even
when these properties indicate that a capability is available, not all streams support all
usage models equally efficiently.

For example, I worked on a project that used a library for accessing files in a cloud-
hosted storage service that was able to represent those files with Stream objects. This
looks convenient because you can pass those to any API that works with a Stream.
However, it was designed very much for the third style of use above: every single call
to Read (or ReadAsync) would cause the library to make an HTTP request to the stor‐
age service. We had initially hoped to use this with another library that knew how to
parse Parquet files (a binary tabular data storage format widely used in high-volume
data processing). However, it turned out that the library was expecting a stream that
supported the second type of access: it jumped back and forth through the file, mak‐
ing large numbers of fairly small reads. It worked perfectly well with the FileStream
type I’ll be describing later, because that supports the first two modes of use well. (For
the second style, it relies on the OS to do the caching.) But it would have been a per‐
formance disaster to plug a Stream from the storage service library directly into the
Parquet parsing library.

It’s not always obvious when you have a mismatch of this kind. In this example, the
properties reporting capabilities such as CanSeek gave no clue that there would be a
problem. And applications that use Parquet files often use some sort of remote stor‐
age service, rather than the local filesystem, so there was no obvious reason to think
that this library would presume that any Stream would offer local filesystem-like
caching. It did technically work when we tried it: the storage library Stream worked
hard to do everything asked of it, and the code worked correctly…eventually. So
whenever you use a Stream, it’s important to make sure you have fully understood
what access patterns it will be subjected to, and how efficiently it supports those
patterns.

In some cases you might be able to bridge the gap. The BufferedStream class can
often take a Stream designed only for the third usage style above and adapt it for the
first style of usage. However, there’s nothing in the .NET class library that can add
support for the second style of usage to a Stream that doesn’t already innately support
it. (This is typically only available either with streams that represent something
already fully in memory, or which wrap some local API that does the caching for you,
such as the OS filesystem APIs.) In these cases you will either need to rethink your
design (e.g., make a local copy of the stream), change the way that the Stream is con‐
sumed, or write some sort of custom caching adapter. (In the end, we wrote an
adapter that augmented the capabilities of BufferedStream with just enough random
access caching to solve the performance problems.)
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2 You might have thought that the pound sign was #, but if, like me, you’re British, that’s just not on. It would
be like someone insisting on referring to @ as a dollar sign. Unicode’s canonical name for # is number sign,
and it also allows my preferred option, hash, as well as octothorpe, crosshatch, and, regrettably, pound sign.

Text-Oriented Types
The Stream class is byte oriented, but it’s common to work with files that contain
text. If you want to process text stored in a file (or received over the network), it is
cumbersome to use a byte-based API, because this forces you to deal explicitly with
all of the variations that can occur. For example, there are multiple conventions for
how to represent the end of a line—Windows typically uses two bytes with values of
13 and 10, as do many internet standards such as HTTP, but Unix-like systems often
use just a single byte with the value 10.

There are also multiple character encodings in popular use. Some files use one byte
per character, some use two, and some use a variable-length encoding. There are
many different single-byte encodings too, so if you encounter a byte value of, say, 163
in a text file, you cannot know what that means unless you know which encoding is
in use.

In a file using the single-byte Windows-1252 encoding, the value 163 represents a
pound sign: £.2 But if the file is encoded with ISO/IEC 8859-5 (designed for regions
that use Cyrillic alphabets), the exact same code represents the Cyrillic capital letter
DJE: Ђ. And if the file uses the UTF-8 encoding, that character would only be allowed
as part of a multibyte sequence representing a single character.

Awareness of these issues is, of course, an essential part of any developer’s skill set,
but that doesn’t mean you should have to handle every little detail any time you
encounter text. So .NET defines specialized abstractions for working with text.

TextReader and TextWriter
The abstract TextReader and TextWriter classes present data as a sequence of char
values. Logically speaking, these classes are similar to a stream, but each element in
the sequence is a char instead of a byte. However, there are some differences in the
details. For one thing, there are separate abstractions for reading and writing. Stream
combines these, because it’s common to want read/write access to a single entity, par‐
ticularly if the stream represents a file on disk. For byte/oriented random access this
makes sense, but it’s a problematic abstraction for text.

Variable-length encodings make it tricky to support random write access (i.e., the
ability to change values at any point in the sequence). Consider what it would mean
to take a 1 GB UTF-8 text file whose first character is a $ and replace that first charac‐
ter with a £. In UTF-8, the $ character takes only one byte, but £ requires two, so
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changing that first character would require an extra byte to be inserted at the start of
the file. This would mean moving the remaining file contents—almost 1 GB of data—
along by one byte.

Even read-only random access is relatively expensive. Finding the millionth character
in a UTF-8 file requires you to read the first 999,999 characters, because without
doing that, you have no way of knowing what mix of single-byte and multibyte char‐
acters there is. The millionth character might start at the millionth byte, but it could
also start some 4 million bytes in, or anywhere in between. Since supporting random
access with variable-length text encodings is expensive, particularly for writeable
data, these text-based types don’t offer it. Without random access, there’s no real
benefit in merging readers and writers into one type. Also, separating reader and
writer types removes the need to check the CanWrite property—you know that you
can write because you’ve got a TextWriter.

TextReader offers several ways to read data. The simplest is the zero-argument over‐
load of Read, which returns an int. This will return −1 if you’ve reached the end of
the input, and will otherwise return a character value. (You’ll need to cast it to a char
once you’ve verified that it’s nonnegative.) Alternatively, there are two methods that
look similar to the Stream class’s Read method, as Example 15-4 shows.

Example 15-4. TextReader chunk reading methods

public virtual int Read(char[] buffer, int index, int count) { ... }
public virtual int ReadBlock(char[] buffer, int index, int count) { ... }

Just like Stream.Read, these take an array, as well as an index into that array and a
count, and will attempt to read the number of values specified. The most obvious dif‐
ference from Stream is that these use char instead of byte. But what’s the difference
between Read and ReadBlock? Well, ReadBlock solves the same problem that I had to
solve manually for Stream in Example 15-2: whereas Read may return fewer charac‐
ters than you asked for, ReadBlock will not return until either as many characters as
you asked for are available or it reaches the end of the content.

One of the challenges of handling text input is dealing with the various conventions
for line endings, and TextReader can insulate you from that. Its ReadLine method
reads an entire line of input and returns it as a string. This string will not include
the end-of-line character or characters.
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TextReader does not presume one particular end-of-line conven‐
tion. It accepts either a carriage return (character value 13, which
we write as \r in string literals) or a line feed (10, or \n). And if
both characters appear adjacently, the character pair is treated as
being a single end of line, despite being two characters. This pro‐
cessing happens only when you use either ReadLine or ReadLineA
sync. If you work directly at the character level by using Read or
ReadBlock, you will see the end-of-line characters exactly as they
are.

TextReader also offers ReadToEnd, which reads the input in its entirety and returns it
as a single string. And finally, there’s Peek, which does the same thing as the single-
argument Read method, except it does not change the state of the reader. It lets you
look at the next character without consuming it, so the next time you call either Peek
or Read, it will return the same character again.

As for TextWriter, it offers two overloaded methods for writing: Write and Write
Line. Each of these offers overloads for all of the built-in value types (bool, int,
float, etc.). Functionally, the class could have got away with a single overload that
takes an object, because that can just call ToString on its argument, but these speci‐
alized overloads make it possible to avoid boxing the argument. TextWriter also
offers a Flush method for much the same reason that Stream does.

By default, a TextWriter will use the default end of line sequence for the OS you are
running on. On Windows this is the \r\n sequence (13, then 10). On Linux you will
just get a single \n at each line end. You can change this by setting the writer’s New
Line property.

Both these abstract classes implement IDisposable because some of the concrete-
derived text reader and writer types are wrappers around either unmanaged resour‐
ces or other disposable resources.

As with Stream, these classes offer asynchronous versions of their methods. Unlike
with Stream, this was a fairly recent addition, so they support only the task-based pat‐
tern described in Chapter 16, which can be consumed with the await keyword
described in Chapter 17.

Concrete Reader and Writer Types
As with Stream, various APIs in .NET will present you with TextReader and Text
Writer objects. For example, the Console class defines In and Out properties that
provide textual access to the process’s input and output streams. You’ve not seen
these before, but we have been using them implicitly—the Console.WriteLine
method overloads are all just wrappers that call Out.WriteLine for you. Likewise, the
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Console class’s Read and ReadLine methods simply forward to In.Read and In.Read
Line. There’s also Error, another TextWriter for writing to the standard error out‐
put stream. However, there are some concrete classes that derive from TextReader or
TextWriter that you might want to instantiate directly.

StreamReader and StreamWriter

Perhaps the most useful concrete text reader and writer types are StreamReader and
StreamWriter, which wrap a Stream object. You can pass a Stream as a constructor
argument, or you can just pass a string containing the path of a file, in which case
they will automatically construct a FileStream for you and then wrap that.
Example 15-5 uses this technique to write some text to a file.

Example 15-5. Writing text to a file with StreamWriter

using (var fw = new StreamWriter(@"c:\temp\out.txt"))
{
    fw.WriteLine($"Writing to a file at {DateTime.Now}");
}

There are various constructor overloads offering more fine-grained control. When
passing a string in order to use a file with a StreamWriter (as opposed to some
Stream you have already obtained), you can optionally pass a bool indicating
whether to start from scratch or to append to an existing file if one exists. (A true
value enables appending.) If you do not pass this argument, appending is not used,
and writing will begin from the start. You can also specify an encoding. By default,
StreamWriter will use UTF-8 with no byte order mark (BOM), but you can pass any
type derived from the Encoding class, which is described in “Encoding” on page 628.

StreamReader is similar—you can construct it by passing either a Stream or a string
containing the path of a file, and you can optionally specify an encoding. However, if
you don’t specify an encoding, the behavior is subtly different from StreamWriter.
Whereas StreamWriter just defaults to UTF-8, StreamReader will attempt to detect
the encoding from the stream’s content. It looks at the first few bytes, and will look
for certain features that are typically a good sign that a particular encoding is in use.
If the encoded text begins with a Unicode BOM, this makes it possible to determine
with high confidence what the encoding is.

StringReader and StringWriter

The StringReader and StringWriter classes serve a similar purpose to
MemoryStream: they are useful when you are working with an API that requires either
a TextReader or TextWriter, but you want to work entirely in memory. Whereas
MemoryStream presents a Stream API on top of a byte[] array, StringReader wraps a
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string as a TextReader, while StringWriter presents a TextWriter API on top of a
StringBuilder.

One of the APIs .NET offers for working with XML, XmlReader, requires either a
Stream or a TextReader. Suppose you have XML content in a string. If you pass a
string when creating a new XmlReader, it will interpret that as a URI from which to
fetch the content, rather than the content itself. The constructor for StringReader
that takes a string just wraps that string as the content of the reader, and we can pass
that to the XmlReader.Create overload that requires a TextReader, as Example 15-6
shows. (The line that does this is in bold—the code that follows just uses the
XmlReader to read the content to show that it works as expected.)

Example 15-6. Wrapping a string in a StringReader

string xmlContent =
    "<message><text>Hello</text><recipient>world</recipient></message>";
var xmlReader = XmlReader.Create(new StringReader(xmlContent));
while (xmlReader.Read())
{
    if (xmlReader.NodeType == XmlNodeType.Text)
    {
        Console.WriteLine(xmlReader.Value);
    }
}

As for StringWriter, well, you already saw that in Chapter 1. As you may recall, the
very first example in this book is a unit test that verifies that the program under test
produces the expected output (the inevitable “Hello, world!” message). The relevant
lines are reproduced in Example 15-7.

Example 15-7. Capturing console output in a StringWriter

var w = new System.IO.StringWriter();
Console.SetOut(w);

Just as Example 15-6 used an API that expects a TextReader, Example 15-7 uses one
that requires a TextWriter. I want to capture everything written to that writer (i.e., all
calls to Console.Write and Console.WriteLine) in memory so my test can look at it.
The call to SetOut lets us provide the StringWriter that is used for console output.

Encoding
As I mentioned earlier, if you’re using the StreamReader or StreamWriter, these
need to know which character encoding the underlying stream uses to be able to con‐
vert correctly between the bytes in the stream and .NET’s char or string types. To
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3 Just in case you’ve not come across the term, in little-endian representations, multibyte values start with the
lower-order bytes, so the value 0x1234 in 16-bit little-endian would be 0x34, 0x12, whereas the big-endian
version would be 0x12, 0x34. Little-endian looks reversed, but it’s the native format for Intel’s processors.

manage this, the System.Text namespace defines an abstract Encoding class, with
various encoding-specific public concrete-derived types, including: ASCIIEncoding,
UTF7Encoding, UTF8Encoding, UTF32Encoding, and UnicodeEncoding.

Most of those type names are self-explanatory, because they are named after the stan‐
dard character encodings they represent, such as ASCII or UTF-8. The one that
requires a little more explanation is UnicodeEncoding—after all, UTF-7, UTF-8, and
UTF-32 are all Unicode encodings, so what’s this other one for? When Windows
introduced support for Unicode back in the first version of Windows NT, it adopted
a slightly unfortunate convention: in documentation and various API names, the
term Unicode was used to refer to a 2-byte little-endian3 character encoding, which is
just one of many possible encoding schemes, all of which could correctly be described
as being “Unicode” of one form or another.

The UnicodeEncoding class is named to be consistent with this historical convention,
although even then it’s still a bit confusing. The encoding referred to as “Unicode” in
Win32 APIs is effectively UTF-16LE, but the UnicodeEncoding class is also capable of
supporting the big-endian UTF-16BE.

The base Encoding class defines static properties that return instances of all the
encoding types I’ve mentioned, so if you need an object representing a particular
encoding, you would normally just write Encoding.ASCII or Encoding.UTF8, etc.,
instead of constructing a new object. There are two properties of type UnicodeEncod
ing: the Unicode property returns one configured for UTF-16LE, and BigEndianUni
code returns one for UTF-16BE.

For the various Unicode encodings, these properties will return encoding objects that
will tell StreamWriter to generate a BOM at the start of the output. The main pur‐
pose of the BOM is to enable software that reads encoded text to detect automatically
whether the encoding is big- or little-endian. (You can also use it to recognize UTF-8,
because that encodes the BOM differently than other encodings.) If you know that
you will be using an endian-specific encoding (e.g., UTF-16LE), the BOM is unneces‐
sary, because you already know the order, but the Unicode specification defines
adaptable formats in which the encoded bytes can advertise the order in use by start‐
ing with a BOM, a character with Unicode code point U+FEFF. The 16-bit version of
this encoding is just called UTF-16, and you can tell whether any particular set of
UTF-16-encoded bytes is big- or little-endian by seeing whether it begins with 0xFE,
0xFF or 0xFF, 0xFE.
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Although Unicode defines encoding schemes that allow the
endianness to be detected, it is not possible to create an Encoding
object that works that way—it will always have a specific endian‐
ness. So, although an Encoding specifies whether a BOM should be
written when writing data, this does not influence the behavior
when reading data—it will always presume the endianness speci‐
fied when the Encoding was constructed. This means that the
Encoding.UTF32 property is arguably misnamed—it always inter‐
prets data as little-endian even though the Unicode specification
allows UTF-32 to use either big- or little-endian. Encoding.UTF32
is really UTF-32LE.

As mentioned earlier, if you do not specify an encoding when creating a Stream
Writer, it defaults to UTF-8 with no BOM, which is different from Encoding.UTF8—
that will generate a BOM. And recall that StreamReader is more interesting: if you do
not specify an encoding, it will attempt to detect the encoding. So .NET is able to
handle automatic detection of byte ordering as required by the Unicode specification
for UTF-16 and UTF-32, it is just that the way to do it is not to specify any particular
encoding when constructing a StreamReader. It will look for a BOM, and if it finds
one present, it will use a suitable Unicode encoding; otherwise, it presumes UTF-8
encoding.

UTF-8 is a popular encoding. If your main language is English, it’s a particularly con‐
venient representation, because if you happen to use only the characters available in
ASCII, each character will occupy a single byte, and the encoded text will have the
exact same byte values as it would with ASCII encoding. But unlike ASCII, you’re not
limited to a 7-bit character set. All Unicode code points are available; you just have to
use multibyte representations for anything outside of the ASCII range. However,
although it’s very widely used, UTF-8 is not the only popular 8-bit encoding.

Code page encodings
Windows, like DOS before it, has long supported 8-bit encodings that extend ASCII.
ASCII is a 7-bit encoding, meaning that with 8-bit bytes you have 128 “spare” values
to use for other characters. This is nowhere near enough to cover every character for
every locale, but within a particular country, it’s often enough to get by (although not
always—many far Eastern countries need more than 8 bits per character). But each
country tends to want a different set of non-ASCII characters, depending on which
accented characters are popular in that locale, and whether a non-Roman alphabet is
required. So various code pages exist for different locales. For example, code page
1253 uses values in the range 193–254 to define characters from the Greek alphabet
(filling the remaining non-ASCII values with useful characters such as non-US cur‐
rency symbols). Code page 1255 defines Hebrew characters instead, while 1256
defines Arabic characters in the upper range (and there is some common ground for
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these particular code pages, such as using 128 for the euro symbol, €, and 163 for the
pound sign, £).

One of the most commonly encountered code pages is 1252, because that’s Windows’
default for English-speaking locales. This does not define a non-Roman alphabet;
instead it uses the upper character range for useful symbols, and for various accented
versions of the Roman alphabet that enable a wide range of Western European lan‐
guages to be adequately represented.

You can create an encoding for a code page by calling the Encoding.GetEncoding
method, passing in the code page number. (The concrete type of the object you get
back is often not one of those I listed earlier. This method may return nonpublic
types that derive from Encoding.) Example 15-8 uses this to write text containing a
pound sign to a file using code page 1252.

Example 15-8. Writing with the Windows 1252 code page

using (var sw = new StreamWriter("Text.txt", false,
                                 Encoding.GetEncoding(1252)))
{
    sw.Write("£100");
}

This will encode the £ symbol as a single byte with the value 163. With the default
UTF-8 encoding, it would have been encoded as two bytes, with values of 194 and
163, respectively.

Using encodings directly

TextReader and TextWriter are not the only way to use encodings. Objects repre‐
senting encodings (such as Encoding.UTF8) define various members. The GetBytes
method converts a string directly to a byte[] array, for example, and the GetString
method converts back again.

You can also discover how much data these conversions will produce. GetByteCount
tells you how large an array GetBytes would produce for a given string, while GetCh
arCount tells you how many characters decoding a particular array would generate.
You can also find an upper limit for how much space will be required without know‐
ing the exact text with GetMaxByteCount. Instead of a string, this takes a number,
which it interprets as a string length; since .NET strings use UTF-16, this means that
this API answers the question “If I have this many UTF-16 code units, what’s the
largest number of code units that might be required to represent the same text in the
target encoding?” This can produce a significant overestimate for variable-length
encodings. For example, with UTF-8 GetMaxByteCount multiplies the length of the
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4 Some Unicode characters can take up to 4 bytes in UTF-8, so multiplying by three might seem like it could
underestimate. However, all such characters require two bytes in UTF-16. Any single char in .NET will never
require more than 3 bytes in UTF-8.

input string by three4 and adds an extra 3 bytes to deal with an edge case that can
occur with surrogate characters. It produces a correct description of the worst possi‐
ble case, but text containing any characters that don’t require 3 bytes in UTF-8 (i.e.,
any text in English or any other languages that use the Latin alphabet, and also any
text using Greek, Cyrillic, Hebrew, or Arabic writing systems, for example) will
require significantly less space than GetMaxByteCount predicts.

Some encodings can provide a preamble, a distinctive sequence of bytes that, if found
at the start of some encoded text, indicate that you are likely to be looking at some‐
thing using that encoding. This can be useful if you are trying to detect which encod‐
ing is in use when you don’t already know. The various Unicode encodings all return
their encoding of the BOM as the preamble, which you can retrieve with the Get
Preamble method.

The Encoding class defines instance properties offering information about the encod‐
ing. EncodingName returns a human-readable name for the encoding, but there are
two more names available. The WebName property returns the standard name for the
encoding registered with the Internet Assigned Numbers Authority (IANA), which
manages standard names and numbers for things on the internet such as MIME
types. Some protocols, such as HTTP, sometimes put encoding names into headers,
and this is the text you should use in that situation. The other two names, BodyName
and HeaderName, are somewhat more obscure, and are used only for internet email—
there are different conventions for how certain encodings are represented in the body
and headers of email.

Files and Directories
The abstractions I’ve shown so far in this chapter are very general purpose in nature
—you can write code that uses a Stream without needing to have any idea where the
bytes it contains come from or are going to, and likewise, TextReader and Text
Writer do not demand any particular origin or destination for their data. This is use‐
ful because it makes it possible to write code that can be applied in a variety of
scenarios. For example, the stream-based GZipStream can compress or decompress
data from a file, over a network connection, or from any other stream. However,
there are occasions where you know you will be dealing with files and want access to
file-specific features. This section describes the classes for working with files and the
filesystem.
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5 Four overloads became obsolete when .NET 2.0 introduced a new way of representing OS handles. The over‐
loads that accept an IntPtr were deprecated at that point, and new ones taking a SafeFileHandle replaced
them.

FileStream Class
The FileStream class derives from Stream and represents a file from the filesystem.
I’ve used it a few times in passing already. It adds relatively few members to those
provided by the base class. The Lock and Unlock methods provide a way of acquiring
exclusive access to specific byte ranges when using a single file from multiple pro‐
cesses. The Name property tells you the filename.

FileStream offers a great deal of control in its constructors—disregarding the ones
marked with the [Obsolete] attribute,5 there are no fewer than nine constructor
overloads. The ways of creating a FileStream fall into two groups: ones where you
already have an OS file handle, and ones where you don’t. If you already have a han‐
dle from somewhere, you are required to tell the FileStream whether that handle
offers read, write, or read/write access to the file, which you do by passing a value
from the FileAccess enumeration. The other overloads optionally let you indicate
the buffer size you’d like to use when reading or writing, and a flag indicating
whether the handle was opened for overlapped I/O, a Win32 mechanism for support‐
ing asynchronous operation. (The constructors that don’t take that flag assume that
you did not request overlapped I/O when creating the file handle.)

It is more common to use the other constructors, in which the FileStream uses OS
APIs to create the file handle on your behalf. You can provide varying levels of detail
on how you’d like this done. At a minimum, you must specify the file’s path, and a
value from the FileMode enumeration. Table 15-1 shows the values this enumeration
defines and describes what the FileStream constructor will do for each value in sit‐
uations where the named file already exists, and where it does not.

Table 15-1. FileMode enumeration

Value Behavior if file exists Behavior if file does not exist

CreateNew Throws IOException Creates new file

Create Replaces existing file Creates new file

Open Opens existing file Throws FileNotFoundException

OpenOrCreate Opens existing file Creates new file

Truncate Replaces existing file Throws FileNotFoundException

Append Opens existing file, setting Position to
end of file

Creates new file
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You can optionally specify a FileAccess too. If you do not, the FileStream will use
FileAccess.ReadWrite unless you’ve chosen a FileMode of Append. Files opened in
append mode can only be written to, so FileStream chooses Write in that case. (If
you pass an explicit FileAccess asking for anything other than Write when opening
in Append mode, the constructor throws an ArgumentException.)

By the way, as I describe each additional constructor argument in this section, the rel‐
evant overload will take all of the previously described ones too (with the exception
of the useAsync argument, which appears in just one constructor). As Example 15-9
shows, most of these constructors looks just like the one before it, with one additional
argument.

Example 15-9. FileStream constructors taking a path

public FileStream(string path, FileMode mode)
public FileStream(string path, FileMode mode, FileAccess access)
public FileStream(string path, FileMode mode, FileAccess access,
                  FileShare share)
public FileStream(string path, FileMode mode, FileAccess access,
                  FileShare share, int bufferSize);
public FileStream(string path, FileMode mode, FileAccess access,
                  FileShare share, int bufferSize, bool useAsync);
public FileStream(string path, FileMode mode, FileAccess access,
                  FileShare share, int bufferSize, FileOptions options);

If you pass an argument of type FileShare, you can specify whether you want exclu‐
sive access to the file, or whether you are prepared to allow other processes (or other
code in your process) to open the file simultaneously. By default, you get read shar‐
ing, meaning that multiple simultaneous readers are allowed, but if anything opens
the file with write or read/write file access, no other handles may be open at the same
time. More strangely, you can enable write sharing, in which any number of handles
with write access may be active simultaneously, but no readers will be allowed until
all other handles are released. There’s a ReadWrite value, which allows simultaneous
reading and writing. You can also pass Delete, indicating that you don’t mind if
someone else tries to delete the file while you have it open. Obviously, you’ll get I/O
exceptions if you try to use a file after it has been deleted, so you’d need to be pre‐
pared for that, but this can sometimes be worth the effort; otherwise, attempts to
delete a file will be blocked while you have it open.

All parties must agree on sharing to be able to open multiple handles. If program A
uses FileShare.ReadWrite to open a file, and program B then passes File
Share.None while attempting to open the file for reading and writing, program B will
get an exception because although A was ready to share, B was not, so B’s require‐
ments cannot be met. If program B had managed to open the file first, it would have
succeeded, and A’s request would have failed.
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Unix has fewer comprehensive file-locking mechanisms than Win‐
dows, so these locking semantics will often be mapped to some‐
thing simpler in those environments. Also, file locks are advisory in
Unix, meaning processes can simply ignore them if they want to.

The next piece of information we can pass is the buffer size. This controls the size of
block that the FileStream will use when reading from and writing to disk. It defaults
to 4,096 bytes. In most scenarios, this value works just fine, but if you are processing
very high volumes of data from disk, a large buffer size might provide better through‐
put. However, as with all performance matters, you should measure the effect of such
a change to see if it is worthwhile—in some cases, you will not see any difference in
data throughput, and will simply use a bit more memory than necessary.

The useAsync flag lets you determine whether the file handle is opened in a way that
is optimized for large asynchronous reads and writes. (On Windows, this opens the
file for overlapped I/O, a Win32 feature supporting asynchronous operations.) If you
are reading data in relatively large chunks, and you use the stream’s asynchronous
APIs, you will typically get better performance by setting this flag. However, if you
read data a few bytes at a time, this mode actually increases overhead. If the code
accessing the file is particularly performance sensitive, it will be worth trying both
settings to see which works better for your workload.

The next argument you can add is of type FileOptions. If you’re paying close atten‐
tion, you’ll notice in Example 15-9 that each of the overloads we’ve looked at up to
now adds one more argument, but with this one, the FileOptions argument replaces
the bool useAsync argument. That’s because one of the options you can specify with
FileOptions is asynchronous access. FileOptions is a flags enumeration, so you can
specify a combination of any of the flags it offers, which are described in Table 15-2.

Table 15-2. FileOptions flags

Flag Meaning

WriteThrough Disables OS write buffering so data goes straight to disk when you flush the stream.

Asynchronous Specifies the use of asynchronous I/O.

RandomAccess Hints to filesystem cache that you will be seeking, not reading or writing data in order.

SequentialScan Hints to filesystem cache that you will be reading or writing data in order.

DeleteOnClose Tells FileStream to delete the file when you call Dispose.

Encrypted Encrypts the file so that its contents cannot be read by other users.

Be wary of the WriteThrough flag. Although it works as advertised, it might not have
the desired effect, because some hard drives defer writes to improve performance.
(Many hard drives have their own RAM, enabling them to receive data from the
computer very quickly, and to report write operations as having completed before
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6 These all return a DateTime that is relative to the computer’s current time zone. Each of these methods has an
equivalent that returns the time relative to time zone zero (e.g., GetCreationTimeUtc).

really storing the data.) The WriteThrough flag will ensure that when you dispose or
flush the stream, all the data you’ve written will have been delivered to the drive, but
the drive will not necessarily have written that data persistently, so you could still lose
the data if the power fails. The exact behavior will depend on how you have told the
OS to configure the drive.

While FileStream gives you control over the contents of the file, some operations
you might wish to perform on files are either cumbersome or not supported at all
with FileStream. For example, you can copy a file with this class, but it’s not as
straightforward as it could be, and FileStream does not offer any way to delete a file.
So the .NET class library includes a separate class for these kinds of operations.

File Class
The static File class provides methods for performing various operations on files.
The Delete method removes the named file from the filesystem. The Move method
can either move or just rename a file. There are methods for retrieving information
and attributes that the filesystem stores about each file, such as GetCreationTime,
GetLastAccessTime, GetLastWriteTime,6 and GetAttributes. (The last of those
returns a FileAttributes value, which is a flags enumeration type telling you
whether the file is read only, a hidden file, a system file, and so on.)

The Encrypt method overlaps with FileStream to some extent—as you saw earlier,
you can request that a file be stored with encryption when you create it. However,
Encrypt is able to work with a file that has already been created without encryption
—it effectively encrypts it in situ. (This is only supported on Windows, and only on
drives where the filesystem supports it. It will throw PlatformNotSupportedExcep
tion on other operating systems, and NotSupportedException on Windows if
encryption is not available for the specified file. This has the same effect as enabling
encryption through a file’s Properties window in Windows File Explorer.) You can
also turn an encrypted file back into an unencrypted one by calling Decrypt.
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It is not necessary to call Decrypt before reading an encrypted file.
When logged in under the same user account that encrypted a file,
you can read its contents in the usual way—encrypted files look
just like normal ones because Windows automatically decrypts the
contents as you read from them. The purpose of this particular
encryption mechanism is that if some other user manages to obtain
access to the file (e.g., if it’s on an external drive that gets stolen),
the content will appear to be random junk. Decrypt removes this
encryption, meaning that anyone who can access the file will be
able to look at its contents.

The other methods provided by File all just offer slightly more convenient ways of
doing things you could have done by hand with FileStream. The Copy method
makes a copy of a file, and while you could do that with the CopyTo method on File
Stream, Copy takes care of some awkward details. For example, it ensures that the tar‐
get file carries over attributes such as whether it’s read-only and whether encryption
is enabled.

The Exists method lets you discover whether a file exists before you attempt to open
it. You don’t strictly need this, because FileStream will throw a FileNotFound excep‐
tion if you attempt to open a nonexistent file, but Exists lets you avoid an exception.
That might be useful if you expect to need to check for a file very frequently—excep‐
tions are comparatively expensive. However, you should be wary of this method; just
because Exists returns true, that’s no guarantee that you won’t get a FileNotFound
exception. It’s always possible that in between your checking for a file’s existence and
attempting to open it, another process might delete the file. Alternatively, the file
might be on a network share, and you might lose network connectivity. So you
should always be prepared for exceptions with file access, even if you’ve attempted to
avoid provoking them.

File offers many helper methods to simplify the opening or creating of files. The
Create method simply constructs a FileStream for you, passing in suitable File
Mode, FileAccess, and FileShare values. Example 15-10 shows how to use it, and
also shows what the equivalent code would look like without using the Create helper.
The Create method provides overloads letting you specify the buffer size, FileOp
tions, and FileSecurity, but these still provide the other arguments for you.

Example 15-10. File.Create versus new FileStream

using (FileStream fs = File.Create("foo.bar"))
{
   ...
}
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// Equivalent code without using File class
using (var fs = new FileStream("foo.bar", FileMode.Create,
                               FileAccess.ReadWrite, FileShare.None))
{
    ...
}

The File class’s OpenRead and OpenWrite methods provide similar decluttering for
when you want to open an existing file for reading, or to open or create a file for writ‐
ing. There’s also an Open method that requires you to pass a FileMode. This is of
more marginal utility—it’s very similar to the FileStream constructor overload that
also takes just a path and a mode, automatically supplying suitable other settings. The
somewhat arbitrary difference is that while the FileStream constructor defaults to
FileShare.Read, the File.Open method defaults to FileShare.None.

File also offers several text-oriented helpers. The simplest method, OpenText, opens
a file for text reading, and is of limited value because it does exactly the same thing as
the StreamReader constructor that takes a single string argument. The only reason to
use this is if you happen to prefer how it makes your code look—if your code makes
heavy use of the File helpers, you might choose to use this for idiomatic consistency.

Several of the methods exposed by File are text oriented. These enable us to improve
on code of the kind shown in Example 15-11. This appends a line of text to a logfile.

Example 15-11. Appending to a file with StreamWriter

static void Log(string message)
{
    using (var sw = new StreamWriter(@"c:\temp\log.txt", true))
    {
        sw.WriteLine(message);
    }
}

One issue with this is that it’s not all that easy to see at a glance how the Stream
Writer is being opened—what does that true argument mean? As it happens, that
tells the StreamWriter that we want it to create the underlying FileStream in append
mode. Example 15-12 has the same effect—it uses File.AppendText, which just calls
the exact same FileStream constructor for us. But while I was somewhat dismissive
of File.OpenText earlier for offering similarly marginal value, I think File.Append
Text did once provide a genuinely useful improvement in readability in a way that
File.OpenText does not. It’s much easier to see that Example 15-12 will append text
to a file than it is with Example 15-11. However, since support for named arguments
was added to C#, AppendText now looks less useful—we could just name the append
argument in Example 15-11 for a similar improvement in readability.

638 | Chapter 15: Files and Streams



Example 15-12. Creating an appending StreamWriter with File.AppendText

static void Log(string message)
{
    using (StreamWriter sw = File.AppendText(@"c:\temp\log.txt"))
    {
        sw.WriteLine(message);
    }
}

If you’re only going to append some text to a file and immediately close it, there’s an
even easier way. As Example 15-13 shows, we can simplify things further with the
AppendAllText helper.

Example 15-13. Appending a single string to a file

static void Log(string message)
{
    File.AppendAllText(@"c:\temp\log.txt", message);
}

Be careful, though. This does not do quite the same thing as Example 15-12. That
example used WriteLine to append the text, but Example 15-13 is equivalent to using
just Write. So, if you were to call the Log method in Example 15-13 multiple times,
you’d end up with one long line in your output file, unless the strings you were using
happened to contain end-of-line characters. If you want to work with lines, there’s an
AppendAllLines method that takes a collection of strings, and appends each as a new
line to the end of a file. Example 15-14 uses this to append a full line with each call.

Example 15-14. Appending a single line to a file

static void Log(string message)
{
    File.AppendAllLines(@"c:\temp\log.txt", new[] { message });
}

Since AppendAllLines accepts an IEnumerable<string>, you can use it to append
any number of lines. But it’s perfectly happy to append just one if that’s what you
want. File also defines WriteAllText and WriteAllLines methods, which work in a
very similar way, but if there is already a file at the specified path, these will replace it
instead of appending to it.

There are also some related text-oriented methods for reading the contents of files.
ReadAllText performs the equivalent of constructing a StreamReader and then call‐
ing its ReadToEnd method—it returns the entire content of the file as a single string.
ReadAllBytes fetches the whole file into a byte[] array. ReadAllLines reads the
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whole file as a string[] array, with one element for each line in the file. ReadLines is
superficially very similar. It provides access to the whole file as an IEnumera
ble<string> with one item for each line, but the difference is that it works lazily—
unlike all the other methods I’ve described in this paragraph, it does not read the
entire file into memory up front, so ReadLines would be a better choice for very large
files. It not only consumes less memory, but it also enables your code to get started
more quickly—you can begin to process data as soon as the first line can be read from
disk, whereas none of the other methods return until they have read the whole file.

Directory Class
Just as File is a static class offering methods for performing operations with files,
Directory is a static class offering methods for performing operations with directo‐
ries. Some of the methods are very similar to those offered by File—there are meth‐
ods to get and set the creation time, last access time, and last write time, for example,
and we also get Move, Exists, and Delete methods. Unlike File, Directory.Delete
has two overloads. One takes just a path, and works only if the directory is empty.
The other takes a bool that, if true, will delete everything in the folder, recursively
deleting any nested folders and the files they contain. Use that one carefully.

Of course, there are also directory-specific methods. GetFiles takes a directory path
and returns a string[] array containing the full path of each file in that directory.
There’s an overload that lets you specify a pattern by which to filter the results, and a
third overload that takes a pattern and also a flag that lets you request recursive
searching of all subfolders. Example 15-15 uses that to find all files with a .jpg exten‐
sion in my Pictures folder. (Unless you’re also called Ian, you’d need to change that
path to match your account name for this to work on your computer, obviously.)
Then again, in a real application, you should get this path using the technique shown
in “Known Folders” on page 644.

Example 15-15. Recursively searching for files of a particular type

foreach (string file in Directory.GetFiles(@"c:\users\ian\Pictures",
                                           "*.jpg",
                                           SearchOption.AllDirectories))
{
    Console.WriteLine(file);
}

There is a similar GetDirectories method, offering the same three overloads, which
returns the directories inside the specified directory instead of returning files. And
there’s a GetFileSystemEntries method, again with the same three overloads, which
returns both files and folders.
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There are also methods called EnumerateFiles, EnumerateDirectories, and
EnumerateFileSystemEntries, which do exactly the same thing as the three GetXxx
methods, but they return IEnumerable<string>. This is a lazy enumeration, so you
can start processing results immediately instead of waiting for all the results as one
big array.

The Directory class offers methods relating to the process’s current directory (i.e.,
the one used any time you call a file-based API without specifying the full path). Get
CurrentDirectory returns the path, and SetCurrentDirectory sets it.

You can create new directories too. The CreateDirectory method takes a path and
will attempt to create as many directories as are necessary to ensure that the path
exists. So, if you pass C:\new\dir\here, and there is no C:\new directory, it will create
three new directories: first it will create C:\new, then C:\new\dir, and then C:\new\dir
\here. If the folder you ask for already exists, it doesn’t treat that as an error, it just
returns without doing anything.

The GetDirectoryRoot strips a directory path down to the drive name or other root,
such as a network share name. For example, on Windows if you pass this C:\temp
\logs, it will return C:\; and if you pass \\someserver\myshare\dir\test, it will return
\\someserver\myshare. This sort of string slicing, in which you split a path into its
component parts, is a sufficiently common requirement that there’s a class dedicated
to various operations of this kind.

Path Class
The static Path class provides useful utilities for strings containing filenames. Some
extract pieces from a file path, such as the containing folder name or the file exten‐
sion. Some combine strings to produce new file paths. Most of these methods just
perform specialized string processing and do not require the files or directories to
which the paths refer to exist. However, there are a few that go beyond string manip‐
ulation. For example, Path.GetFullPath will take the current directory into account
if you do not pass an absolute path as the argument. But only the methods that need
to make use of real locations will do so.

The Path.Combine method deals with the fiddly issues around combining folder and
filenames. If you have a folder name, C:\temp, and a filename, log.txt, passing both to
Path.Combine returns C:\temp\log.txt. And it will also work if you pass C:\temp\ as
the first argument, so one of the issues it deals with is working out whether it needs to
supply an extra \ character. If the second path is absolute, it detects this and simply
ignores the first path, so if you pass C:\temp and C:\logs\log.txt, the result will be C:
\logs\log.txt. Although these may seem like trivial matters, it’s surprisingly easy to get
the file path combination wrong if you try to do it yourself by concatenating strings,
so you should always avoid the temptation to do that and just use Path.Combine.

Files and Directories | 641



.NET Core has platform-specific behavior when it comes to paths.
On Unix-like systems, only the / character is used as a directory
separator, so the various methods in Path that expect paths to con‐
tain directories will treat only / as a separator on these systems.
Windows uses a \ as a separator, although it is common for / to be
tolerated as a substitute, and Path follows suit. So Path.Com
bine("/x/y", "/z.txt") will produce the same results on Win‐
dows and Linux, but Path.Combine(@"\x\y", @"\z.txt") will
not. Also, on Windows, if a path begins with a drive letter, it is an
absolute path, but Unix does not recognize drive letters. The exam‐
ples in the preceding paragraph will produce strange-looking
results on Linux or macOS because on those systems, all the paths
will be treated as relative paths. If you remove the drive letters and
replace \ with /, the results will be as you’d expect.

Given a file path, the GetDirectoryName method removes the filename part and just
returns the directory. This method provides a good illustration of why you need to
remember that most of the Path class’s members do not look at the filesystem. If you
didn’t take that into account, you might expect that if you pass GetDirectoryName
just the name of a folder (e.g., C:\Program Files), it would detect that this is a folder
and return the same string, but in fact it will return just C:\. The name Program Files
is a perfectly good name for either a file or a directory, and since GetDirectoryName
does not inspect the disk, and it expects to be passed a path that includes a filename,
it will conclude in this case that it is a file. This method effectively looks for the final /
or \ character and returns everything before that. (So, if you pass a folder name with
a trailing \, such as C:\Program Files\, it will return C:\Program Files. Then again, the
whole point of this API is to remove the filename from a file’s full path. If you already
have a string with just a folder name, you should not call this API.)

The GetFileName method returns just the filename (including the extension, if any).
Like GetDirectoryName, it also looks for the last directory separator character, but it
returns the text that comes after it rather than before it. Again, it does not look at the
filesystem—this works purely through string manipulation (although as with all of
these operations, it takes into account the local system’s rules for what counts as a
directory separator, or an absolute path). GetFileNameWithoutExtension is similar,
but if an extension is present (e.g., .txt or .jpg), it removes that from the end of the
name. Conversely, GetExtension returns the extension and nothing else.

If you need to create temporary files to perform some work, Path provides three use‐
ful methods. GetRandomFileName uses a random-number generator to create a name
you can use for either a random file or folder. The random number is cryptographi‐
cally strong, which provides two useful properties: the name will be unique and hard
to guess. (Certain kinds of attacks on a system’s security can become possible if an
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attacker can predict the name or location of temporary files.) This method does not
actually create anything on the filesystem—it just hands back a suitable name. Get
TempFileName, on the other hand, will create a file in the location the OS provides for
temporary files. This file will be empty, and the method returns you its path as a
string. You can then open the file and modify it. (This does not guarantee to use
cryptography to pick a truly random name, so you should not depend on this sort of
file’s location being unguessable. It will be unique, but that is all.) You should delete
any file created by GetTempFileName once you have finished with it. Finally, GetTemp
Path returns the path of the folder that GetTempFileName would use; this doesn’t cre‐
ate anything, but you could use this in conjunction with a name returned by
GetRandomFileName (combined with Path.Combine) to pick a location in which to
create your own temporary file.

FileInfo, DirectoryInfo, and FileSystemInfo
Although the File and Folder classes provide you with access to information—such
as a file’s creation time, and whether it is a system file or a read-only file—those
classes have an issue if you need access to multiple pieces of information. It’s not very
efficient to collect each bit of data with a separate call, because the information can be
fetched from the underlying OS with fewer steps. And it can sometimes be easier to
pass around a single object containing all the data you need instead of finding some‐
where to put lots of separate items. So the System.IO namespace defines FileInfo
and DirectoryInfo classes that contain the information about a file or directory.
Since there’s a certain amount of common ground, these types both derive from a
base class, FileSystemInfo.

To construct instances of these classes, you pass the path of the file or folder you
want, as Example 15-16 shows. By the way, if some time later you think the file may
have been changed by some other program, and you want to update the information
a FileInfo or DirectoryInfo returns, you can call Refresh, and it will reload infor‐
mation from the filesystem.

Example 15-16. Displaying information about a file with FileInfo

var fi = new FileInfo(@"c:\temp\log.txt");
Console.WriteLine(
    $"{fi.FullName} ({fi.Length} bytes) last modified on {fi.LastWriteTime}");

As well as providing properties corresponding to the various File and Directory
methods that fetch information (CreationTime, Attributes, etc.), these information
classes provide instance methods that correspond to many of the static methods of
File and Directory. For example, if you have a FileInfo, it provides Delete,
Encrypt, and Decrypt—methods that work just like their File namesakes, except you
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don’t need to pass a path argument. There is also a counterpart of Move, although
with a different name, MoveTo.

FileInfo also provides equivalents to the various helper methods for opening the file
with a Stream or a FileStream, such as AppendText, OpenRead, and OpenText. Per‐
haps more surprisingly, Create and CreateText are also available. It turns out that
you can construct a FileInfo for a file that does not exist yet, and then create it with
these helpers. It doesn’t attempt to populate any of the properties that describe the
file until the first time you try to read them, so it will defer throwing a FileNotFoun
dException until that point, in case you were creating the FileInfo in order to create
a new file.

As you’d expect, DirectoryInfo also offers instance methods that correspond to the
various static helper methods defined by Directory.

Known Folders
Desktop applications sometimes need to use specific folders. For example, an applica‐
tion’s settings will typically be stored in a certain folder under the user’s profile.
There’s a separate folder for system-wide application settings. On Windows these are
typically in the user’s AppData folder and C:\ProgramData, respectively. Windows
also defines standard places for pictures, videos, music, and documents, and there are
also folders representing special shell features, such as the desktop and the user’s
“favorites.”

Although these folders are often in much the same place from one system to another,
you should never presume that they will be where you expect. (So you should never
do what Example 15-15 does in real code.) Many of these folders have different
names in localized versions of Windows. And even within a particular language,
there’s no guarantee that these folders will be in the usual place—it’s possible to move
some of them, and the locations have not remained fixed across different versions of
Windows.

So, if you need access to a particular standard folder, you should use the Environment
class’s GetFolderPath method, as shown in Example 15-17. This takes a member
from the nested Environment.SpecialFolder enum type, which defines values for all
of the well-known folder types available in Windows.

Example 15-17. Discovering where to store settings

string appSettingsRoot =
    Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData);
string myAppSettingsFolder =
    Path.Combine(appSettingsRoot, @"Endjin\FrobnicatorPro");
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On non-Windows systems, GetFolderPath returns an empty string
for most of these enumeration’s entries, because there is no local
equivalent. However, a few work, such as MyDocuments, CommonAp
plicationData, and UserProfile.

The ApplicationData folder is in the roaming section of the user’s profile. Informa‐
tion that does not need to be copied across all the machines a person uses (e.g., a
cache that could be reconstructed if necessary) should go in the local section, which
you can get with the LocalApplicationData enum entry.

Serialization
The Stream, TextReader, and TextWriter types provide the ability to read and write
data in files, networks, or anything else stream-like that provides a suitable concrete
class. But these abstractions support only byte or text data. Suppose you have an
object with several properties of various types, including some numeric types and
perhaps also references to other objects, some of which might be collections. What if
you wanted to write all the information in that object out to a file or over a network
connection, so that an object of the same type and with the same property values
could be reconstituted at a later date, or on another computer at the other end of a
connection?

You could do this with the abstractions shown in this chapter, but it would require a
fair amount of work. You’d have to write code to read each property and write its
value out to a Stream or TextWriter, and you’d need to convert the value to either
binary or text. You’d also need to decide on your representation—would you just
write values out in a fixed order, or would you come up with a scheme for writing
name/value pairs, so that you’re not stuck with an inflexible format if you need to add
more properties later on? You’d also need to come up with ways to handle collections
and references to other objects, and you’d need to decide what to do in the face of
circular references—if two objects each refer to one another, naive code could end up
getting stuck in an infinite loop.

.NET offers several solutions to this problem, each making varying trade-offs
between the complexity of the scenarios they are able to support, how well they deal
with versioning, and how suitable they are for interoperating with other platforms.
These techniques all fall under the broad name of serialization (because they involve
writing an object’s state into some form that stores data sequentially—serially—such
as a Stream). Many different mechanisms have been introduced over the years
in .NET, so I won’t cover all of them. I’ll just present the ones that best represent par‐
ticular approaches to the problem.
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BinaryReader, BinaryWriter, and BinaryPrimitives
Although they are not strictly forms of serialization, no discussion of this area is com‐
plete without covering the BinaryReader and BinaryWriter classes, because they
solve a fundamental problem that any attempt to serialize and deserialize objects
must deal with: they can convert the CLR’s intrinsic types to and from streams of
bytes. BinaryPrimitives does the same thing, but it is able to work with Span<byte>
and related types, which are discussed in Chapter 18.

BinaryWriter is a wrapper around a writable Stream. It provides a Write method
that has overloads for all of the intrinsic types except for object. So it can take a
value of any of the numeric types, or the string, char, or bool types, and it writes a
binary representation of that value into a Stream. It can also write arrays of type byte
or char.

BinaryReader is a wrapper around a readable Stream, and it provides various meth‐
ods for reading data, each corresponding to the overloads of Write provided by Bina
ryWriter. For example, you have ReadDouble, ReadInt32, and ReadString.

To use these types, you would create a BinaryWriter when you want to serialize
some data, and write out each value you wish to store. When you later want to deseri‐
alize that data, you’d wrap a BinaryReader around a stream containing the data writ‐
ten with the writer, and call the relevant read methods in the exact same order that
you wrote the data out in the first place.

BinaryPrimitives works slightly differently. It is designed for code that needs to
minimize the number of heap allocations, so it’s not a wrapper type—it is a static
class offering a wide range of methods, such as ReadInt32LittleEndian and Write
UInt16BigEndian. These take ReadOnlySpan<byte> and Span<byte> arguments,
respectively, because it is designed to work directly with data wherever it may lie in
memory (not necessarily wrapped in a Stream). However, the basic principle is the
same: it converts between byte sequences and primitive .NET types. (Also, string
handling is rather more complex: there’s no ReadString method because anything
that returns a string will create a new string object on the heap, unless there’s a fixed
set of possible strings that you can preallocate and hand out again and again. See
Chapter 18 for details.)

These classes only solve the problem of how to represent various .NET types in
binary. You are still left with the task of working out how to represent whole objects,
and what to do about more complex kinds of structures such as references between
objects.
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CLR Serialization
CLR serialization is, as the name suggests, a feature built into the runtime itself—it is
not simply a library feature. It was not supported in .NET Core for the first few ver‐
sions, but Microsoft eventually added it back in a somewhat reduced form to make it
easier to migrate applications from the .NET Framework. They discourage its use, but
it continues to be popular in certain scenarios. It is fairly widely used in microservice
environments for sending exceptions and relatively straightforward data structures
across service boundaries. .NET Core’s limited support is aimed at these scenarios, so
you cannot serialize just any old .NET object.

The most interesting aspect of CLR serialization is that it deals directly with object
references. If you serialize, say, a List<SomeType> where multiple entries in the list
refer to the same object, CLR serialization will detect this, storing just one copy of
that object, and when deserializing, it will recreate that one-object-many-references
structure. (Serialization systems based on the very widely used JSON format generally
don’t do this.)

Types are required to opt into CLR serialization. .NET defines a [Serializable]
attribute that must be present before the CLR will serialize your type. But once you’ve
added this, the CLR can take care of all of the details for you. Example 15-18 shows a
type with this attribute that I’ll use to illustrate serialization in action.

Example 15-18. A serializable type

using System;
using System.Collections.Generic;
using System.Linq;

[Serializable]
class Person
{
    public string Name { get; set; }

    public IList<Person> Friends { get; } = new List<Person>();

    public override string ToString() =>
        $"{Name} (friends: {string.Join(", ", Friends.Select(f => f.Name))})";
}

Serialization works directly with an object’s fields. It uses reflection, which enables it
to access all members, whether public or private. In this example class, there are two
fields, both hidden and generated by the compiler, for the Friends and Name proper‐
ties. (List<T> has the [Serializable] attribute, by the way. If it didn’t, this example
wouldn’t work.) As Example 15-19 shows, we can use the BinaryFormatter type
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(which is in the System.Runtime.Serialization.Formatters.Binary namespace) to
serialize an instance of this type to a stream.

Example 15-19. Serializing with the BinaryFormatter

var stream = new MemoryStream();
var serializer = new BinaryFormatter();
serializer.Serialize(stream, person);

As Example 15-20 shows, the BinaryFormatter type also performs deserialization.

Example 15-20. Deserializing with the BinaryFormatter

stream.Seek(0, SeekOrigin.Begin);
var serializer = new BinaryFormatter();
var personCopy = (Person) serializer.Deserialize(stream);

If the person variable in Example 15-19 referred to an object whose Friends property
returns a collection that contains references to Person objects with Friends proper‐
ties containing collections that in turn referred back to the same object as person,
that would mean we had circular references. The BinaryFormatter correctly detects
this, storing just one copy of each object in the stream, and when we deserialize, it
would restore any such structure correctly.

So this is pretty powerful—by simply adding a single attribute, I can write out a com‐
plete graph of objects. There is a downside: if I change the implementation of any of
the types being serialized, I will be in trouble if a new version of my code attempts to
deserialize a stream produced by an old version. So this is not a good choice for writ‐
ing out an application’s settings to disk, because those are likely to evolve with each
new version. As it happens, you can customize the way serialization works, which
does make it possible to support versioning, but at that point, you’re back to doing a
lot of the work by hand. (It may actually be easier to use BinaryReader and Binary
Writer.) Also, it’s easy to introduce security problems with this style of serialization:
someone who controls a stream that you deserialize essentially has complete control
over all the fields of your objects.

Another issue with CLR serialization is that it produces binary streams in a .NET-
specific format. If the only code that needs to deal with the stream is running .NET,
then that’s not a problem, but you might want to produce streams for a broader audi‐
ence. However, there are other serialization mechanisms than CLR serialization, and
these can produce streams that may be easier for other systems to consume.
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JSON.NET
The most widely used serialization mechanism used on .NET is, surprisingly, not
written by Microsoft, although several Microsoft frameworks make extensive use of
it. The framework JSON.NET is an open source project written by James Newton-
King, released under the MIT license. You can find it at http://www.newtonsoft.com/
json or via NuGet as Newtonsoft.Json. As the name suggests, it works with JSON,
the JavaScript Object Notation, a wildly popular data interchange format. Its perfor‐
mance, relative ease of use, and comprehensive support of all flavors of .NET have
made it the go-to library for JSON serialization.

At one time, the ASP.NET Core web framework used JSON.NET
internally. However, .NET Core 3.0 and .NET Standard 2.1 intro‐
duced a new Microsoft-produced JSON library, consisting of vari‐
ous types in the System.Text.Json namespace. These use the new
memory-efficient techniques described in Chapter 18, making
them somewhat less convenient to use, but also more efficient.
ASP.NET Core has moved over to this library, partly for speed, but
also partly to remove the dependency. (There are several different
versions of JSON.NET, and dependency conflicts can arise if a
framework depends on one particular version and you want to use
a library that depends on a different version.)

JSON.NET supports three ways of working with JSON data. It defines JsonReader
and JsonWriter interfaces, which are stream-like abstractions that present the con‐
tents of JSON data as a sequence of elements. These can be useful if you need to pro‐
cess JSON documents that are too large to load into memory as a single object, but
more often you will use these types just as a means of getting data into and out of
JSON.NET’s other mechanisms. In practice, it is typically easier to use JsonSerial
izer (often used indirectly through the simpler JsonConvert helper class). This con‐
verts between objects and entire streams of JSON. It requires you to define classes
with a structure corresponding to the JSON. Finally, there is a more dynamic option
called LINQ to JSON. As the name suggests, it supports LINQ queries over JSON
data, but it’s more than that: it is useful when you do not know at development time
exactly what the structure of your JSON data will be.

JsonSerializer and JsonConvert

JsonSerializer offers an attribute-driven serialization model in which you define
one or more classes reflecting the structure of the JSON data you need to deal with,
and can then convert JSON data to and from that model. Often, you won’t use the
JsonSerializer type directly. Unless you need fine control over certain aspects of
serialization, you would normally use the JsonConvert helper.
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Example 15-21 shows a simple model suitable for use with JSON.NET. As you can
see, I’m not required to use any particular base class, and there are no mandatory
attributes.

Example 15-21. Simple JSON.NET model

public class SimpleData
{
    public int Id { get; set; }
    public IList<string> Names { get; set; }
    public NestedData Location { get; set; }
    public IDictionary<string, int> Map { get; set; }
}

public class NestedData
{
    public string LocationName { get; set; }
    public double Latitude { get; set; }
    public double Longitude { get; set; }
}

Example 15-22 creates an instance of this model, and then uses the JsonConvert
class’s SerializeObject method to serialize it to a string. (This uses JsonSerializer
under the covers. For simple scenarios, it’s easiest to use JsonConvert, because the
flexibility offered by JsonSerializer makes things more complicated.)

Example 15-22. Serializing data with JsonConvert

var model = new SimpleData
{
    Id = 42,
    Names = new[] { "Bell", "Stacey", "her", "Jane" },
    Location = new NestedData
    {
        LocationName = "London",
        Latitude = 51.503209,
        Longitude = -0.119145
    },
    Map = new Dictionary<string, int>
    {
        { "Answer", 42 },
        { "FirstPrime", 2 }
    }
};

string json = JsonConvert.SerializeObject(model, Formatting.Indented);
Console.WriteLine(json);
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The second argument to SerializeObject is optional. I’ve used it here to indent the
JSON to make it easier to read. (By default, JSON.NET will use a more efficient lay‐
out with no unnecessary whitespace, but which is much harder to read.) The results
look like this:

{
  "Id": 42,
  "Names": [
    "Bell",
    "Stacey",
    "her",
    "Jane"
  ],
  "Location": {
    "LocationName": "London",
    "Latitude": 51.503209,
    "Longitude": -0.119145
  },
  "Map": {
    "Answer": 42,
    "FirstPrime": 2
  }
}

As you can see, each object has become a JSON object, where the name/value pairs
correspond to properties in my model. Numbers and strings are represented exactly
as you would expect. The IList<string> has become a JSON array, and the IDic
tionary<string, int> has become another JSON dictionary. I’ve used interfaces for
these collections, but you can also use the concrete List<T> and Dictio

nary<TKey,TValue> types. You can use ordinary arrays to represent lists if you pre‐
fer. I tend to use the interfaces, because it leaves you free to use whatever collection
types you want. (E.g., Example 15-22 used a string array, but it could also have used
List<string> without changing the model type.)

Converting serialized JSON back into the model is equally straightforward, as
Example 15-23 shows.

Example 15-23. Deserializing data with JsonConvert

var deserialized = JsonConvert.DeserializeObject<SimpleData>(json);

Although a plain and simple model such as this will suffice, sometimes you may need
to take control over some aspects of serialization, particularly if you are working with
an externally defined JSON format. For example, some APIs use casing conventions
that are different from .NET’s—camelCasing is popular, but conflicts with the Pascal‐
Casing convention for .NET properties. You can resolve this by using the JsonProp
erty attribute to specify the name to use in the JSON, as Example 15-24 shows.
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Example 15-24. Controlling the JSON with JsonProperty attributes

public class NestedData
{
    [JsonProperty("locationName")]
    public string LocationName { get; set; }

    [JsonProperty("latitude")]
    public double Latitude { get; set; }

    [JsonProperty("longitude")]
    public double Longitude { get; set; }
}

JSON.NET will use the names specified in JsonProperty when serializing, and will
look for those names when deserializing. Alternatively, you can tell JSON.NET that
you want this casing convention for all properties by passing a suitably configured
JsonSerializerSettings to JsonConvert, in which case you wouldn’t need these
attributes. You can control things in much more detail than this—you can define cus‐
tom serialization mechanisms for data types, for example. (E.g., you might want to
represent something as a DateTimeOffset in your C# code, but to have that become a
string with a particular date time format in the JSON.) The full details can be found
in the JSON.NET documentation.

LINQ to JSON

Whereas JsonSerializer requires you to define one or more types representing the
structure of the JSON you want to work with, JSON.NET provides a set of types that
take a more dynamic approach, which it calls LINQ to JSON. This parses JSON data
into objects of type JObject, JArray, JProperty, and JValue, all of which derive
from a JToken base class. Using these types is similar to working with JSON from
JavaScript—you can just access the content directly without having to define classes
(with the corresponding downside that certain kinds of mistakes that the compiler
would detect with the JsonSerializer approach will only be discovered at runtime).
Example 15-25 uses this technique to read some data from the same JSON that the
last few examples have used.

Example 15-25. Reading JSON with JToken

var jo = (JObject) JToken.Parse(json);
Console.WriteLine(jo["Id"]);
foreach (JToken name in jo["Names"])
{
    Console.WriteLine(name);
}
foreach (JToken loc in jo["Location"])
{

652 | Chapter 15: Files and Streams



    Console.WriteLine(loc);
}

As you can see, JObject provides an indexer with which you can retrieve properties
of JSON objects. I’ve been able to use a foreach loop to iterate over the array of
names. I can also do this for nested objects, such as the object in the Location prop‐
erty. Because this API has no idea what types to expect, everything is defined in terms
of the base JToken type, with the concrete type being determined by what JSON.NET
finds at runtime. So with the data we happen to have, that first foreach loop will find
a series of JValue objects (one for each string in the array), while the second will find
a series of JProperty objects (one for each property in the nested object).

In Example 15-25 I’ve cheated slightly by passing each JToken to Console.Write
Line. Each concrete type derived from JToken implements ToString in a way that
means this program will produce reasonably sensible output:

42
Bell
Stacey
her
Jane
"locationName": "London"
"latitude": 51.503209
"longitude": -0.119145

But what if you want to work with the data in code, rather than just showing it to the
user? In that case you can work with arrays and nested objects by casting each JToken
to the type you believe it to be (either because you’ve inspected the type at runtime,
or just because you have reason to believe that the data will be in a particular format),
and then with values, you can use the JToken class’s Value<T> method to extract the
data, specifying the type you think the value should have as the generic type argu‐
ment, as Example 15-26 does.

Example 15-26. Working with data in LINQ to JSON

int id = jo["Id"].Value<int>();
var names = (JArray) jo["Names"];
string firstName = names[0].Value<string>();

Each line of this example could throw an exception at runtime. If the Id property is
not present, or if it cannot be converted to an int, the first line will fail. If the Names
property is not present, or it does not contain an array, the second line will fail. And
if the array is empty, or its first element cannot be converted to a string (e.g., because
it is a nested object) the final line will fail.

The upside is that you don’t need to define any types to model the data, and it’s also
much easier to write code whose behavior is driven by the structure of the data,
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because this API is able to describe what it found. For example, you’ve already seen
that using foreach on a JObject produces a sequence of JProperty objects. We can
exploit this to write queries over JSON, which is where this API gets its name.
Example 15-27 finds all of the JProperty elements in the data where the first letter of
the property name is lowercase.

Example 15-27. Querying over JSON data

IEnumerable<JProperty> propsStartingWithLowerCase = jo.Descendants()
    .OfType<JProperty>()
    .Where(p => char.IsLower(p.Name[0]));
foreach (JProperty p in propsStartingWithLowerCase)
{
    Console.WriteLine(p);
}

The OfType and Where methods here both come from LINQ to Objects. JSON.NET
does not supply its own implementation of the standard LINQ operators. It supports
LINQ simply by presenting the structure of your JSON data through implementa‐
tions of IEnumerable<T>, making it possible to use LINQ to Objects to perform quer‐
ies. The only extra thing it does to help you is to provide methods such as
Descendants, which recursively walks the entire structure of the JSON beneath the
node on which you invoke it, returning every JToken in a single flattened collection.

Summary
The Stream class is an abstraction representing data as a sequence of bytes. A stream
can support reading, writing, or both, and may support seeking to arbitrary offsets as
well as straightforward sequential access. TextReader and TextWriter provide
strictly sequential reading and writing of character data, abstracting away the charac‐
ter encoding. These types may sit on top of a file, a network connection, or memory,
or you could implement your own versions of these abstract classes. The FileStream
class also provides some other filesystem access features, but for full control, we also
have the File and Directory classes. When bytes and strings aren’t enough, .NET
offers various serialization mechanisms that can automate the mapping between an
object’s state in memory and a representation that can be written out to disk or sent
over the network or any other stream-like target; this representation can later be
turned back into an object of the same type and with equivalent state.
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CHAPTER 16

Multithreading

Multithreading enables an application to execute several pieces of code simultane‐
ously. There are two common reasons for doing this. One is to exploit the computer’s
parallel processing capabilities—multicore CPUs are now more or less ubiquitous,
and to realize their full performance potential, you’ll need to provide the CPU with
multiple streams of work to give all of the cores something useful to do. The other
usual reason for writing multithreaded code is to prevent progress from grinding to a
halt when you do something slow, such as reading from disk.

Multithreading is not the only way to solve that second problem—asynchronous
techniques can be preferable. C# has features for supporting asynchronous work.
Asynchronous execution doesn’t necessarily mean multithreading, but the two are
often related in practice, and I will be describing some of the asynchronous program‐
ming models in this chapter. However, this chapter focuses on the threading founda‐
tions. I will describe the language-level support for asynchronous code in Chapter 17.

Threads
All the operating systems that .NET can run on allow each process to contain multi‐
ple threads. Each thread has its own stack, and the OS presents the illusion that a
thread gets a whole CPU hardware thread to itself. (See the next sidebar, “Processors,
Cores, and Hardware Threads”.) You can create far more OS threads than the num‐
ber of hardware threads your computer provides, because the OS virtualizes the CPU,
context switching from one thread to another. The computer I’m using as I write this
has 16 hardware threads, which is a reasonably generous quantity, but some way
short of the 8,893 threads currently active across the various processes running on
the machine.
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Processors, Cores, and Hardware Threads
A hardware thread is one piece of hardware capable of executing code. Back in the
early 2000s, one processor chip gave you one hardware thread, and you got multiple
hardware threads only in computers that had multiple, physically separate CPUs
plugged into separate sockets on the motherboard. However, two inventions have
made the relationship between hardware and threads more complex: multicore CPUs
and hyperthreading.

With a multicore CPU, you effectively get multiple processors on a single piece of sili‐
con. This means that opening up your computer and counting the number of pro‐
cessor chips doesn’t necessarily tell you how many hardware threads you’ve got. But
if you were to inspect the CPU’s silicon with a suitable microscope, you’d see two or
more distinct processors next to each other on the chip.

Hyperthreading, also known as simultaneous multithreading (SMT), complicates
matters further. A hyperthreaded core is a single processor that has two sets of certain
parts. (It could be more than two, but doubling seems most common.) So, although
there might be only a single part of the core capable of performing, say, floating-point
division, there will be two sets of registers. Each set of registers includes an instruc‐
tion pointer (IP) register that keeps track of where execution has reached. Registers
also contain the immediate working state of the code, so by having two sets, a single
core can run code from two places at once—in other words, hyperthreading enables a
single core to provide two hardware threads. Since only certain parts of the CPU are
doubled up, two execution contexts have to share some resources—they can’t both
perform floating-point division operations simultaneously, because there’s only one
piece of hardware in the core to do that. However, if one of the hardware threads
wants to do some division while another multiplies two numbers together, they will
typically be able to do so in parallel, because those operations are performed by dif‐
ferent areas of the core. Hyperthreading enables more parts of a single CPU core to
be kept busy simultaneously. It doesn’t give you quite the same throughput as two full
cores (because if the two hardware threads both want to do the same kind of work at
once, one of them will have to wait), but it can often provide better throughput from
each core than would otherwise be possible.

In a hyperthreaded system, the total number of hardware threads available is the
number of cores multiplied by the number of hyperthreaded execution units per core.
For example, the Intel Core i9-9900K processor has 8 cores with two-way hyper‐
threading, giving a total of 16 hardware threads.

The CLR presents its own threading abstraction on top of OS threads. Normally,
there will be a direct relationship—if you write a console application, a Windows
desktop application, or a web application, each .NET Thread object corresponds
directly to some particular underlying OS thread. However, this relationship is not
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1 I’m using the word state here broadly. I just mean information stored in variables and objects.

guaranteed always to exist—the CLR was designed to make it possible for a .NET
thread to hop between different OS threads. This happens only in an application that
uses the CLR’s unmanaged hosting APIs to customize the relationship between the
CLR and its containing process. (SQL Server’s CLR Integration feature does this, for
example.) Most of the time, a CLR thread will, in practice, correspond to an OS
thread, but library code should try not to depend on this; code that makes this
assumption could break when used in an application that provides a custom CLR
host.

I will get to the Thread class shortly, but before writing multithreaded code, you need
to understand the ground rules for managing state1 when using multiple threads.

Threads, Variables, and Shared State
Each CLR thread gets various thread-specific resources, such as the call stack (which
holds method arguments and some local variables). Because each thread has its own
stack, the local variables that end up there will be local to the thread. Each time you
invoke a method, you get a new set of its local variables. Recursion relies on this, but
it’s also important in multithreaded code, because data that is accessible to multiple
threads requires much more care, particularly if that data changes. Coordinating
access to shared data is complex. I’ll be describing some of the techniques for that in
the section “Synchronization” on page 671, but it’s better to avoid the problem entirely
where possible, and the thread-local nature of the stack can be a great help.

For example, consider a web-based application. Busy sites have to handle requests
from multiple users simultaneously, so you’re likely to end up in a situation where a
particular piece of code (e.g., the code for your site’s home page) is being executed
simultaneously on several different threads—ASP.NET Core uses multithreading to
be able to serve the same logical page to multiple users. (Websites typically don’t just
serve up the exact same content, because pages are often tailored to particular users,
so if 1,000 users ask to see the home page, it will run the code that generates that page
1,000 times.) ASP.NET Core provides you with various objects that your code will
need to use, but most of these are specific to a particular request. So, if your code is
able to work entirely with those objects and with local variables, each thread can
operate completely independently. If you need shared state (such as objects that are
visible to multiple threads, perhaps through a static field or property), life will get
more difficult, but local variables are usually straightforward.

Why only “usually”? Things get more complex if you use lambdas or anonymous
functions, because they make it possible to declare a variable in a containing method
and then use that in an inner method. This variable is now available to two or more
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methods, and with multithreading, it’s possible that these methods could execute
concurrently. (As far as the CLR is concerned, it’s not really a local variable anymore
—it’s a field in a compiler-generated class.) Sharing local variables across multiple
methods removes the guarantee of complete locality, so you need to take the same
sort of care with such variables as you would with more obviously shared items, like
static properties and fields.

Another important point to remember in multithreaded environments is the distinc‐
tion between a variable and the object it refers to. (This is an issue only with reference
type variables.) Although a local variable is accessible only inside its declaring
method, that variable may not be the only one that refers to a particular object. Some‐
times it will be—if you create the object inside the method and never store it any‐
where that would make it accessible to a wider audience, then you have nothing to
worry about. The StringBuilder that Example 16-1 creates is only ever used within
the method that creates it.

Example 16-1. Object visibility and methods

public static string FormatDictionary<TKey, TValue>(
    IDictionary<TKey, TValue> input)
{
    var sb = new StringBuilder();
    foreach (var item in input)
    {
        sb.AppendFormat("{0}: {1}", item.Key, item.Value);
        sb.AppendLine();
    }

    return sb.ToString();
}

This code does not need to worry about whether other threads might be trying to
modify the StringBuilder. There are no nested methods here, so the sb variable is
truly local, and that’s the only thing that contains a reference to the StringBuilder.
(This relies on the fact that the StringBuilder doesn’t sneakily store copies of its
this reference anywhere that other threads might be able to see.)

But what about the input argument? That’s also local to the method, but the object it
refers to is not: the code that calls FormatDictionary gets to decide what input refers
to. Looking at Example 16-1 in isolation, it’s not possible to say whether the dictio‐
nary object to which it refers is currently in use by other threads. The calling code
could create a single dictionary and then create two threads, and have one modify the
dictionary while the other calls this FormatDictionary method. This would cause a
problem: most dictionary implementations do not support being modified on one
thread at the same time as being used on some other thread. And even if you were
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working with a collection that was designed to cope with concurrent use, you’re often
not allowed to modify a collection while an enumeration of its contents is in progress
(e.g., a foreach loop).

You might think that any collection designed to be used from multiple threads simul‐
taneously (a thread-safe collection, you might say) should allow one thread to iterate
over its contents while another modifies the contents. If it disallows this, then in what
sense is it thread safe? In fact, the main difference between a thread-safe and a non-
thread-safe collection in this scenario is predictability: whereas a thread-safe collec‐
tion might throw an exception when it detects that this has happened, a non-thread-
safe collection does not guarantee to do anything in particular. It might crash, or you
might start getting perplexing results from the iteration such as a single entry appear‐
ing multiple times. It could do more or less anything because you’re using it in an
unsupported way. Sometimes, thread safety just means that failure happens in a well-
defined and predictable manner.

As it happens, the various collections in the System.Collection.Concurrent name‐
space do in fact support changes while enumeration is in progress without throwing
exceptions. However, for the most part they have a different API from the other col‐
lection classes specifically to support concurrency, so they are not always drop-in
replacements.

There’s nothing Example 16-1 can do to ensure that it uses its input argument safely
in multithreaded environments, because it is at the mercy of its callers. Concurrency
hazards need to be dealt with at a higher level. In fact, the term thread safe is poten‐
tially misleading, because it suggests something that is not, in general, possible. Inex‐
perienced developers often fall into the trap of thinking that they are absolved of all
responsibility for thinking about threading issues in their code by just making sure
that all the objects they’re using are thread safe. This usually doesn’t work, because
while individual thread-safe objects will maintain their own integrity, that’s no guar‐
antee that your application’s state as a whole will be coherent.

To illustrate this, Example 16-2 uses the ConcurrentDictionary<TKey, TValue>
class from the System.Collections.Concurrent namespace. Every operation this
class defines is thread safe in the sense that each will leave the object in a consistent
state, and will produce the expected result given the collection’s state prior to the call.
However, this example contrives to use it in a non-thread-safe fashion.

Example 16-2. Non-thread-safe use of a thread-safe collection

static string UseDictionary(ConcurrentDictionary<int, string> cd)
{
    cd[1] = "One";
    return cd[1];
}
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This seems like it could not fail. (It also seems pointless; that’s just to show how even
a very simple piece of code can go wrong.) But if the dictionary instance is being used
by multiple threads (which seems likely, given that we’ve chosen a type designed
specifically for multithreaded use), it’s entirely possible that in between setting a
value for key 1 and trying to retrieve it, some other thread will have removed that
entry. If I put this code into a program that repeatedly runs this method on several
threads, but which also has several other threads busily removing the very same
entry, I eventually see a KeyNotFoundException.

Concurrent systems need a top-down strategy to ensure system-wide consistency.
(This is why database management systems often use transactions, which group sets
of operations together as atomic units of work that either succeed completely, or have
no effect at all. This atomic grouping is a critical part of how transactions help to
ensure system-wide consistency of state.) Looking at Example 16-1, this means that it
is the responsibility of code that calls FormatDictionary to ensure that the dictionary
can be used freely for the duration of the method.

Although calling code should guarantee that whatever objects it
passes are safe to use for the duration of a method call, you cannot
in general assume that it’s OK to hold on to references to your
arguments for future use. Anonymous functions and delegates
make it easy to do this accidentally—if a nested method refers to its
containing method’s arguments, and if that nested method runs
after the containing method returns, it may no longer be safe to
assume that you’re allowed to access the objects to which the argu‐
ments refer. If you need to do this, you will need to document the
assumptions you’re making about when you can use objects, and
inspect any code that calls the method to make sure that these
assumptions are valid.

Thread-local storage
Sometimes it can be useful to maintain thread-local state at a broader scope than a
single method. Various parts of the .NET class library do this. For example, the Sys
tem.Transactions namespace defines an API for using transactions with databases,
message queues, and any other resource managers that support them. It provides an
implicit model where you can start an ambient transaction, and any operations that
support this will enlist in it without you needing to pass any explicit transaction-
related arguments. (It also supports an explicit model, should you prefer that.) The
Transaction class’s static Current property returns the ambient transaction for the
current thread, or it returns null if the thread currently has no ambient transaction
in progress.
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To support this sort of per-thread state, .NET offers the ThreadLocal<T> class.
Example 16-3 uses this to provide a wrapper around a delegate that allows only a sin‐
gle call into the delegate to be in progress on any one thread at any time.

Example 16-3. Using ThreadLocal<T>

class Notifier
{
    private readonly ThreadLocal<bool> _isCallbackInProgress =
        new ThreadLocal<bool>();

    private readonly Action _callback;

    public Notifier(Action callback)
    {
        _callback = callback;
    }

    public void Notify()
    {
        if (_isCallbackInProgress.Value)
        {
            throw new InvalidOperationException(
                "Notification already in progress on this thread");
        }

        try
        {
            _isCallbackInProgress.Value = true;
            _callback();
        }
        finally
        {
            _isCallbackInProgress.Value = false;
        }
    }
}

If the method that Notify calls back attempts to make another call to Notify, this will
block that attempt at recursion by throwing an exception. However, because it uses a
ThreadLocal<bool> to track whether a call is in progress, this will allow simultaneous
calls as long as each call happens on a separate thread.

You get and set the value that ThreadLocal<T> holds for the current thread through
the Value property. The constructor is overloaded, and you can pass a Func<T> that
will be called back each time a new thread first tries to retrieve the value to create a
default initial value. (The initialization is lazy—the callback won’t run every time a
new thread starts. A ThreadLocal<T> invokes the callback only the first time a thread
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attempts to use the value.) There is no fixed limit to the number of ThreadLocal<T>
objects you can create.

ThreadLocal<T> also provides some support for cross-thread communication. If you
pass an argument of true to one of the constructor overloads that accepts a bool, the
object will maintain a collection reporting the latest value stored for every thread,
which is available through its Values property. It provides this service only if you ask
for it when constructing the object, because it requires some additional housekeeping
work. Also, if you use a reference type as the type argument, enabling tracking may
mean that objects will be kept alive longer. Normally, any reference that a thread
stores in a ThreadLocal<T> will cease to exist when the thread terminates, and if that
reference was the only one keeping an object reachable, the GC will then be able to
reclaim its memory. But if you enable tracking, all such references will remain reach‐
able for as long as the ThreadLocal<T> instance itself is reachable, because Values
reports values even for threads that have terminated.

There’s one thing you need to be careful about with thread-local storage. If you create
a new object for each thread, be aware that an application might create a large num‐
ber of threads over its lifetime, especially if you use the thread pool (which is
described in detail later). If the per-thread objects you create are expensive, this
might cause problems. Furthermore, if there are any disposable per-thread resources,
you will not necessarily know when a thread terminates; the thread pool regularly
creates and destroys threads without telling you when it does so.

One last note of caution: be wary of thread-local storage (and any mechanism based
on it) if you plan to use the asynchronous language features described in Chapter 17,
because those make it possible for a single invocation of a method to use multiple dif‐
ferent threads as it progresses. This would make it a bad idea for that sort of method
to use ambient transactions, or anything else that relies on thread-local state.
Many .NET features that you might think would use thread-local storage (e.g., the
ASP.NET Core framework’s static HttpContext.Current property, which returns an
object relating to the HTTP request that the current thread is handling) turn out to
associate information with something called the execution context instead. An execu‐
tion context is more flexible, because it can hop across threads when required. I’ll be
describing it later.

For the issues I’ve just discussed to be relevant, we’ll need to have multiple threads.
There are four main ways to use multithreading. In one, the code runs in a frame‐
work that creates multiple threads on your behalf, such as ASP.NET Core. Another is
to use certain kinds of callback-based APIs. A few common patterns for this are
described in “Tasks” on page 694, and “Other Asynchronous Patterns” on page 707.
But the two most direct ways to use threads are to create new threads explicitly, or to
use the .NET thread pool.
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The Thread Class
As I mentioned earlier, the Thread class (defined in the System.Threading name‐
space) represents a CLR thread. You can obtain a reference to the Thread object rep‐
resenting the thread that’s executing your code with the Thread.CurrentThread
property, but if you’re looking to introduce some multithreading, you can simply
construct a new Thread object.

A new thread needs to know what code it should run when it starts, so you must pro‐
vide a delegate, and the thread will invoke the method the delegate refers to when it
starts. The thread will run until that method returns normally, or allows an exception
to propagate all the way to the top of the stack (or the thread is forcibly terminated
through any of the OS mechanisms for killing threads or their containing processes).
Example 16-4 creates three threads to download the contents of three web pages
simultaneously.

Example 16-4. Creating threads

class Program
{
    private static void Main(string[] args)
    {
        var t1 = new Thread(MyThreadEntryPoint);
        var t2 = new Thread(MyThreadEntryPoint);
        var t3 = new Thread(MyThreadEntryPoint);

        t1.Start("https://endjin.com/");
        t2.Start("https://oreilly.com/");
        t3.Start("https://dotnet.microsoft.com/");
    }

    private static void MyThreadEntryPoint(object arg)
    {
        string url = (string) arg;

        using (var w = new WebClient())
        {
            Console.WriteLine($"Downloading {url}");
            string page = w.DownloadString(url);
            Console.WriteLine($"Downloaded {url}, length {page.Length}");
        }
    }
}
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In most cases, HttpClient is preferred over the WebClient type
shown in Example 16-4. I’m avoiding HttpClient for now because
it only offers asynchronous methods, which we’ll be getting to
later.

The Thread constructor is overloaded, and accepts two delegate types. The Thread
Start delegate requires a method that takes no arguments and returns no value, but
in Example 16-4, the MyThreadEntryPoint method takes a single object argument,
which matches the other delegate type, ParameterizedThreadStart. This provides a
way to pass an argument to each thread, which is useful if you’re invoking the same
method on several different threads, as this example does. The thread will not run
until you call Start, and if you’re using the ParameterizedThreadStart delegate
type, you must call the overload that takes a single object argument. I’m using this to
make each thread download from a different URL.

There are two more overloads of the Thread constructor, each adding an int argu‐
ment after the delegate argument. This int specifies the size of stack for the thread.
Current .NET implementations require stacks to be contiguous in memory, making it
necessary to preallocate address space for the stack. If a thread exhausts this space,
the CLR throws a StackOverflowException. (You normally see those only when a
bug causes infinite recursion.) Without this argument, the CLR will use the default
stack size for the process. (This varies by OS; on Windows it will usually be 1 MB.
You can change it by setting the COMPlus_DefaultStackSize environment variable.)
It’s rare to need to change this, but not unheard of. If you have recursive code that
produces very deep stacks, you might need to run it on a thread with a larger stack.
Conversely, if you’re creating huge numbers of threads, you might want to reduce the
stack size to conserve resources, because the default of 1 MB is usually considerably
more than is really required. However, it’s usually not a great idea to create such a
large number of threads. So, in most cases, you will create only a moderate number of
threads, and just use the constructors that use the default stack size.

Notice that the Main method in Example 16-4 returns immediately after starting the
three threads. Despite this, the application continues to run—it will run until all the
threads finish. The CLR keeps the process alive until there are no foreground threads
running, where a foreground thread is defined to be any thread that hasn’t explicitly
been designated as a background thread. If you want to prevent a particular thread
from keeping the process running, set its IsBackground property to true. (This
means that background threads may be terminated while they’re in the middle of
doing something, so you need to be careful about what kind of work you do on these
threads.)

Creating threads directly is not the only option. The thread pool provides a com‐
monly used alternative.
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The Thread Pool
On most operating systems, it is relatively expensive to create and shut down threads.
If you need to perform a fairly short piece of work (such as serving up a web page, or
some similarly brief operation), it would be a bad idea to create a thread just for that
job and to shut it down when the work completes. There are two serious problems
with this strategy: first, you may end up expending more resources on the startup and
shutdown costs than on useful work; second, if you keep creating new threads as
more work comes in, the system may bog down under load—with heavy workloads,
creating ever more threads will tend to reduce throughput. This is because, in addi‐
tion to basic per-thread overheads such as the memory required for the stack, the OS
needs to switch regularly between runnable threads to enable them all to make pro‐
gress, and this switching has its own overheads.

To avoid these problems, .NET provides a thread pool. You can supply a delegate that
the runtime will invoke on a thread from the pool. If necessary, it will create a new
thread, but where possible, it will reuse one it created earlier, and it might make your
work wait in a queue if all the threads created so far are busy. After your method
runs, the CLR will not normally terminate the thread; instead, the thread will stay in
the pool, waiting for other work items to amortize the cost of creating the thread over
multiple work items. It will create new threads if necessary, but it tries to keep the
thread count at a level that results in the number of runnable threads matching the
hardware thread count, to minimize switching costs.

The thread pool always creates background threads, so if the thread
pool is in the middle of doing something when the last foreground
thread in your process exits, the work will not complete, because all
background threads will be terminated at that point. If you need to
ensure that work being done on the thread pool completes, you
must wait for that to happen before allowing all foreground threads
to finish.

Launching thread pool work with Task

The usual way to use the thread pool is through the Task class. This is part of the
Task Parallel Library (discussed in more detail in “Tasks” on page 694), but its basic
usage is pretty straightforward, as Example 16-5 shows.

Example 16-5. Running code on the thread pool with a Task

Task.Run(() => MyThreadEntryPoint("https://oreilly.com/"));

This queues the lambda for execution on the thread pool (which, when it runs, just
calls the MyThreadEntryPoint method from Example 16-4). If a thread is available, it
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will start to run straightaway, but if not, it will wait in a queue until a thread becomes
available (either because some other work item in progress completes, or because the
thread pool decides to add a new thread to the pool).

There are other ways to use the thread pool, the most obvious of which is through the
ThreadPool class. Its QueueUserWorkItem method works in a similar way to StartNew
—you pass it a delegate and it will queue the method for execution. This is a lower-
level API—it does not provide any direct way to handle completion of the work, nor
to chain operations together, so for most cases, the Task class is preferable.

Thread creation heuristics
.NET adjusts the number of threads based on the workload you present. The heuris‐
tics it uses are not documented and have changed across releases of .NET, so you
should not depend on the exact behavior I’m about to describe; however, it is useful
to know roughly what to expect.

If you give the thread pool only CPU-bound work, in which every method you ask it
to execute spends its entire time performing computations, and never blocks waiting
for I/O to complete, you might end up with one thread for each of the hardware
threads in your system (although if the individual work items take long enough, the
thread pool might decide to allocate more threads). For example, on the eight-core
two-way hyperthreaded computer I’m using as I write this, queuing up a load of
CPU-intensive work items initially causes the CLR to create 16 thread pool threads,
and as long as the work items complete about once a second, the number of threads
mostly stays at that level. (It occasionally goes over that because the runtime will try
adding an extra thread from time to time to see what effect this has on throughput,
and then it drops back down again.) But if the rate at which the program gets through
items drops, the CLR gradually increases the thread count.

If thread pool threads get blocked (e.g., because they’re waiting for data from disk, or
for a response over the network from a server), the CLR increases the number of pool
threads more quickly. Again, it starts off with one per hardware thread, but when
slow work items consume very little processor time, it can add threads as frequently
as twice a second.

In either case, the CLR will eventually stop adding threads. The exact default limit
varies in 32-bit processes, depending on the exact version of .NET, although it’s typi‐
cally on the order of 1,000 threads. In 64-bit mode, the setting appears to default to
32,767. You can change this limit—the ThreadPool class has a SetMaxThreads
method that lets you configure different limits for your process. You may run into
other limitations that place a lower practical limit. For example, each thread has its
own stack that has to occupy a contiguous range of virtual address space. By default,
each thread gets 1 MB of the process’s address space reserved for its stack, so by the
time you have 1,000 threads, you’ll be using 1 GB of address space for stacks alone.
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2 On 32-bit versions of Windows, some of this is reserved for the system, meaning applications only get to use
at most 3 GB of the address range.

Thirty-two-bit processes have only 4 GB of address space2—so you might not have
space for the number of threads you request. In any case, 1,000 threads is usually
more than is helpful, so if it gets that high, this may be a symptom of some underly‐
ing problem that you should investigate. So, if you call SetMaxThreads, it will nor‐
mally be to specify a lower limit—you may find that with some workloads,
constraining the number of threads improves throughput by reducing the level of
contention for system resources.

ThreadPool also has a SetMinThreads method. This lets you ensure that the number
of threads does not drop below a certain number. This can be useful in applications
that work most efficiently with some minimum number of threads, and which want
to be able to operate at maximum speed instantly, without waiting for the thread
pool’s heuristics to adjust the thread count.

I/O completion threads
On Windows, the thread pool contains two kinds of threads: worker threads and I/O
completion threads. Worker threads are used for executing the delegates you queue
up with the techniques for launching tasks I’ve shown so far (although, as I’ll show
later in “Schedulers” on page 702, you can select different threading strategies). The
ThreadPool class also uses these threads with its QueueUserWorkItem method. I/O
completion threads are used on Windows to invoke methods that you provide as call‐
backs for when an I/O operation (such as reading data from a file or a socket) that
you initiated asynchronously eventually completes.

Internally, the Windows version of the CLR uses the I/O completion port mechanism
that Windows provides for handling large numbers of concurrent asynchronous
operations efficiently. The thread pool separates threads that service this completion
port from the other worker threads. This reduces the chances of deadlocking the sys‐
tem when you hit the pool’s maximum thread limit. If the CLR didn’t keep I/O
threads separate, it could get into a state where all the thread pool threads were busy
waiting for I/O to complete, at which point the process would deadlock, because
there would be no threads left to service the completion of the I/O operations that
these other threads are waiting for. (On Unix, this mechanism does not exist, so any
request to queue work on an I/O thread will just be directed to the worker thread
pool.)

In practice, you can normally ignore the distinction between I/O threads and ordi‐
nary threads in the thread pool, because the CLR decides which to use. However, you
will occasionally be confronted with the distinction. For example, if you decide for
some reason to modify the thread pool size, you need to specify the upper limits for

Threads | 667



normal and I/O completion threads separately—the SetMaxThreads method I men‐
tioned in the preceding section takes two arguments.

Thread Affinity and SynchronizationContext
Some objects demand that you use them only from certain threads. This is particu‐
larly common with UI code—the WPF and Windows Forms UI frameworks require
that UI objects be used from the thread on which they were created. This is called
thread affinity, and although it is most often a UI concern, it can also crop up in
interoperability scenarios—some COM objects have thread affinity.

Thread affinity can make life awkward if you want to write multithreaded code. Sup‐
pose you’ve carefully implemented a multithreaded algorithm that can exploit all of
the hardware threads in an end user’s computer, significantly improving perfor‐
mance when running on a multicore CPU compared to a single-threaded algorithm.
Once the algorithm completes, you may want to present the results to the end user.
The thread affinity of UI objects requires you to perform that final step on a particu‐
lar thread, but your multithreaded code may well produce its final results on some
other thread. (In fact, you will probably have avoided the UI thread entirely for the
CPU-intensive work, to make sure that the UI remained responsive while the work
was in progress.) If you try to update the UI from some random worker thread, the
UI framework will throw an exception complaining that you’ve violated its thread
affinity requirements. Somehow, you’ll need to pass a message back to the UI thread
so that it can display the results.

The .NET class library provides the SynchronizationContext class to help in these
scenarios. Its Current static property returns an instance of the SynchronizationCon
text class that represents the context in which your code is currently running. For
example, in a WPF application, if you retrieve this property while running on a UI
thread, it will return an object associated with that thread. You can store the object
that Current returns and use it from any thread, any time you need to perform fur‐
ther work on the UI thread. Example 16-6 does this so that it can perform some
potentially slow work on a thread pool thread, and then update the UI back on the UI
thread.

Example 16-6. Using the thread pool and then SynchronizationContext

private void findButton_Click(object sender, RoutedEventArgs e)
{
    SynchronizationContext uiContext = SynchronizationContext.Current;

    Task.Run(() =>
    {
        string pictures =
            Environment.GetFolderPath(Environment.SpecialFolder.MyPictures);
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        var folder = new DirectoryInfo(pictures);
        FileInfo[] allFiles =
            folder.GetFiles("*.jpg", SearchOption.AllDirectories);
        FileInfo largest =
            allFiles.OrderByDescending(f => f.Length).FirstOrDefault();

        uiContext.Post(_ =>
        {
            long sizeMB = largest.Length / (1024 * 1024);
            outputTextBox.Text =
                $"Largest file ({sizeMB}MB) is {largest.FullName}";
        },
        null);
    });
}

This code handles a Click event for a button. (It happens to be a WPF application,
but SynchronizationContext works in exactly the same way in other desktop UI
frameworks, such as Windows Forms.) UI elements raise their events on the UI
thread, so when the first line of the click handler retrieves the current Synchroniza
tionContext, it will get the context for the UI thread. The code then runs some work
on a thread pool thread via the Task class. The code looks at every picture in the
user’s Pictures folder, searching for the largest file, so this could take a while. It’s a
bad idea to perform slow work on a UI thread—UI elements that belong to that
thread cannot respond to user input while the UI thread is busy doing something
else. So pushing this into the thread pool is a good idea.

The problem with using the thread pool here is that once the work completes, we’re
on the wrong thread to update the UI. This code updates the Text property of a text
box, and we’d get an exception if we tried that from a thread pool thread. So, when
the work completes, it uses the SynchronizationContext object it retrieved earlier,
and calls its Post method. That method accepts a delegate, and it will arrange to
invoke that back on the UI thread. (Under the covers, it posts a custom message to
the Windows message queue, and when the UI thread’s main message processing
loop picks up that message, it will invoke the delegate.)

The Post method does not wait for the work to complete. There is
a method that will wait, called Send, but I would recommend not
using it. Making a worker thread block while it waits for the UI
thread to do something can be risky, because if the UI thread is
currently blocked waiting for the worker thread to do something,
the application will deadlock. Post avoids this problem by enabling
the worker thread to proceed concurrently with the UI thread.

Example 16-6 retrieves SynchronizationContext.Current while it’s still on the UI
thread, before it starts the thread pool work. This is important because this static
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property is context sensitive—it returns the context for the UI thread only while
you’re on the UI thread. (In fact, it’s possible for each window to have its own UI
thread in WPF, so it wouldn’t be possible to have an API that returns the UI thread—
there might be several.) If you read this property from a thread pool thread, the con‐
text object it returns will not post work to the UI thread.

The SynchronizationContext mechanism is extensible, so you can derive your own
type from it if you want, and you can call its static SetSynchronizationContext
method to make your context the current context for the thread. This can be useful in
unit testing scenarios—it enables you to write tests to verify that objects interact with
the SynchronizationContext correctly without needing to create a real UI.

ExecutionContext

The SynchronizationContext class has a cousin, ExecutionContext. This provides a
similar service, allowing you to capture the current context, and then use it to run a
delegate some time later in the same context, but it differs in two ways. First, it cap‐
tures different things. Second, it uses a different approach for re-establishing the con‐
text. A SynchronizationContext will often run your work on some particular thread,
whereas ExecutionContext will always use your thread, and it just makes sure that all
of the contextual information it has captured is available on that thread. One way to
think of the difference is that SynchronizationContext does the work in an existing
context, whereas ExecutionContext brings the contextual information to you.

Slightly confusingly, the implementation of ExecutionContext
on .NET Framework captures the current SynchonizationCon
text, so there’s a sense in which the ExecutionContext is a super‐
set of the SynchronizationContext. However, ExecutionContext
doesn’t use the captured SynchronizationContext when it invokes
your delegate. All it does is ensure that if code executed via an Exe
cutionContext reads the SynchonizationContext.Current prop‐
erty, it will get the SynchronizationContext property that was
current at the point when the ExecutionContext was captured.
This will not necessarily be the SynchonizationContext that the
thread is currently running in! This design flaw was fixed in .NET
Core.

You retrieve the current context by calling the ExecutionContext.Capture method.
The execution context does not capture thread-local storage, but it does include any
information in the current logical call context. You can access this through the Call
Context class, which provides LogicalSetData and LogicalGetData methods to
store and retrieve name/value pairs, or through the higher-level wrapper, AsyncLo
cal<T>. This information is usually associated with the current thread, but if you run
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code in a captured execution context, it will make information from the logical con‐
text available, even if that code runs on some other thread entirely.

.NET uses the ExecutionContext class internally whenever long-running work that
starts on one thread later ends up continuing on a different thread (as happens with
some of the asynchronous patterns described later in this chapter). You may want to
use the execution context in a similar way if you write any code that accepts a call‐
back that it will invoke later, perhaps from some other thread. To do this, you call
Capture to grab the current context, which you can later pass to the Run method to
invoke a delegate. Example 16-7 shows ExecutionContext at work.

Example 16-7. Using ExecutionContext

public class Defer
{
    private readonly Action _callback;
    private readonly ExecutionContext _context;

    public Defer(Action callback)
    {
        _callback = callback;
        _context = ExecutionContext.Capture();
    }

    public void Run()
    {
        ExecutionContext.Run(_context, (unusedStateArg) => _callback(), null);
    }
}

In .NET Framework, a single captured ExecutionContext cannot be used on multi‐
ple threads simultaneously. Sometimes you might need to invoke multiple different
methods in a particular context, and in a multithreaded environment, you might not
be able to guarantee that the previous method has returned before calling the next.
For this scenario, ExecutionContext provides a CreateCopy method that generates a
copy of the context, enabling you to make multiple simultaneous calls through equiv‐
alent contexts. In .NET Core, ExecutionContext became immutable, meaning this
restriction no longer applies, and CreateCopy just returns its this reference.

Synchronization
Sometimes you will want to write multithreaded code in which multiple threads have
access to the same state. For example, in Chapter 5, I suggested that a server could
use a Dictionary<TKey, TValue> as part of a cache to avoid duplicating work when
it receives multiple similar requests. While this sort of caching can offer significant
performance benefits in some scenarios, it presents a challenge in a multithreaded
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3 At the time of this writing, the documentation does not offer read-only thread safety guarantees for Hash
Set<T> and SortedSet<T>. Nonetheless, I have been assured by Microsoft that these also support concurrent
reads.

environment. (And if you’re working on server code with demanding performance
requirements, you will most likely need more than one thread to handle requests.)
The Thread Safety section of the documentation for the dictionary class says this:

A Dictionary<TKey, TValue> can support multiple readers concurrently, as long as
the collection is not modified. Even so, enumerating through a collection is intrinsi‐
cally not a thread-safe procedure. In the rare case where an enumeration contends
with write accesses, the collection must be locked during the entire enumeration. To
allow the collection to be accessed by multiple threads for reading and writing, you
must implement your own synchronization.

This is better than we might hope for—the vast majority of types in the .NET class
library simply don’t support multithreaded use of instances at all. Most types support
multithreaded use at the class level, but individual instances must be used one thread
at a time. Dictionary<TKey, TValue> is more generous: it explicitly supports multi‐
ple concurrent readers, which sounds good for our caching scenario. However, when
modifying a collection, not only must we ensure that we do not try to change it from
multiple threads simultaneously, but also we must not have any read operations in
progress while we do so.

The other generic collection classes make similar guarantees (unlike most other
classes in the library). For example, List<T>, Queue<T>, Stack<T>, SortedDiction
ary<TKey, TValue>, HashSet<T>, and SortedSet<T> all support concurrent read-
only use. (Again, if you modify any instance of these collections, you must make sure
that no other threads are either modifying or reading from the same instance at the
same time.) Of course, you should always check the documentation before attempt‐
ing multithreaded use of any type.3 Be aware that the generic collection interface
types make no thread safety guarantees—although List<T> supports concurrent
readers, not all implementations of IList<T> will. (For example, imagine an imple‐
mentation that wraps something potentially slow, such as the contents of a file. It
might make sense for this wrapper to cache data to make read operations faster.
Reading an item from such a list could change its internal state, so reads could fail
when performed simultaneously from multiple threads if the code did not take steps
to protect itself.)

If you can arrange never to have to modify a data structure while it is in use from
multithreaded code, the support for concurrent access offered by many of the collec‐
tion classes may be all you need. But if some threads will need to modify shared state,
you will need to coordinate access to that state. To enable this, .NET provides various
synchronization mechanisms that you can use to ensure that your threads take it in
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turns to access shared objects when necessary. In this section, I’ll describe the most
commonly used ones.

Monitors and the lock Keyword
The first option to consider for synchronizing multithreaded use of shared state is the
Monitor class. This is popular because it is efficient, it offers a straightforward model,
and C# provides direct language support, making it very easy to use. Example 16-8
shows a class that uses the lock keyword (which in turn uses the Monitor class) any
time it either reads or modifies its internal state. This ensures that only one thread
will be accessing that state at any one time.

Example 16-8. Protecting state with lock

public class SaleLog
{
    private readonly object _sync = new object();

    private decimal _total;

    private readonly List<string> _saleDetails = new List<string>();

    public decimal Total
    {
        get
        {
            lock (_sync)
            {
                return _total;
            }
        }
    }

    public void AddSale(string item, decimal price)
    {
        string details = $"{item} sold at {price}";
        lock (_sync)
        {
            _total += price;
            _saleDetails.Add(details);
        }
    }

    public string[] GetDetails(out decimal total)
    {
        lock (_sync)
        {
            total = _total;
            return _saleDetails.ToArray();
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        }
    }
}

To use the lock keyword, you provide a reference to an object, and a block of code.
The C# compiler generates code that will cause the CLR to ensure that no more than
one thread is inside a lock block for that object at any one time. Suppose you created
a single instance of this SaleLog class, and on one thread you called the AddSale
method, while on another thread you called GetDetails at the same time. Both
threads will reach lock statements, passing in the same _sync field. Whichever thread
happens to get there first will be allowed to run the block following the lock. The
other thread will be made to wait—it won’t be allowed to enter its lock block until
the first thread leaves its lock block.

The SaleLog class only ever uses any of its fields from inside a lock block using the
_sync argument. This ensures that all access to fields is serialized (in the concurrency
sense—that is, threads get to access fields one at a time, rather than all piling in
simultaneously). When the GetDetails method reads from both the _total and
_saleDetails fields, it can be confident that it’s getting a coherent view—the total
will be consistent with the current contents of the list of sales details, because the
code that modifies these two pieces of data does so within a single lock block. This
means that updates will appear to be atomic from the point of view of any other lock
block using _sync.

It may look excessive to use a lock block even for the get accessor that returns the
total. However, decimal is a 128-bit value, so access to data of this type is not intrins‐
ically atomic—without that lock, it would be possible for the returned value to be
made up of a mixture of two or more values that _total had at different times. (For
example, the bottom 64 bits might be from an older value than the top 64 bits.) This
is often described as a torn read. The CLR guarantees atomic reads and writes only
for data types whose size is no larger than 4 bytes, and also for references, even on a
platform where they are larger than 4 bytes. (It guarantees this only for naturally
aligned fields, but in C#, fields will always be aligned unless you have deliberately
misaligned them for interop purposes.)

A subtle but important detail of Example 16-8 is that whenever it returns information
about its internal state, it returns a copy. The Total property’s type is decimal, which
is a value type, and values are always returned as copies. But when it comes to the list
of entries, the GetDetails method calls ToArray, which will build a new array con‐
taining a copy of the list’s current contents. It would be a mistake to return the refer‐
ence in _saleDetails directly, because that would enable code outside of the
SalesLog class to access and modify the collection without using lock. We need to
ensure that all access to that collection is synchronized, and we lose the ability to do
that if our class hands out references to its internal state.
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If you write code that performs some multithreaded work that
eventually comes to a halt, it’s OK to share references to the state
after the work has stopped. But if multithreaded modifications to
an object are ongoing, you need to ensure that all use of that
object’s state is protected.

The lock keyword accepts any object reference, so you might wonder why I’ve cre‐
ated an object specially—couldn’t I have passed this instead? That would have
worked, but the problem is that your this reference is not private—it’s the same ref‐
erence by which external code uses your object. Using a publicly visible feature of
your object to synchronize access to private state is imprudent; some other code
could decide that it’s convenient to use a reference to your object as the argument to
some completely unrelated lock blocks. In this case, it probably wouldn’t cause a
problem, but with more complex code, it could tie conceptually unrelated pieces of
concurrent behavior together in a way that might cause performance problems or
even deadlocks. Thus, it’s usually better to code defensively, and use something that
only your code has access to as the lock argument. Of course, I could have used the
_saleDetails field because that refers to an object that only my class has access to.
However, even if you code defensively, you should not assume that other developers
will, so in general, it’s safer to avoid using an instance of a class you didn’t write as
the argument for a lock, because you can never be certain that it isn’t using its this
reference for its own locking purposes.

The fact that you can use any object reference is a bit of an oddity in any case. Most
of .NET’s synchronization mechanisms use an instance of some distinct type as the
point of reference for synchronization. (For example, if you want reader/writer lock‐
ing semantics, you use an instance of the ReaderWriterLockSlim class, not just any
old object.) The Monitor class (which is what lock uses) is an exception that dates
back to an old requirement for a degree of compatibility with Java (which has a simi‐
lar locking primitive). This is not relevant to modern .NET development, so this fea‐
ture is now just a historical peculiarity. Using a distinct object whose only job is to act
as a lock argument adds minimal overhead (compared to the costs of locking in the
first place) and tends to make it easier to see how synchronization is being managed.
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You cannot use a value type as an argument for lock—C# prevents
this, and with good reason. The compiler performs an implicit con‐
version to object on the lock argument, which for reference types,
doesn’t require the CLR to do anything at runtime. But when you
convert a value type to a reference of type object, a box needs to
be created. That box would be the argument to lock, and that
would be a problem, because you get a new box every time you
convert a value to an object reference. So, each time you ran a
lock, it would get a different object, meaning there would be no
synchronization in practice. This is why the compiler prevents you
from trying.

How the lock keyword expands

Each lock block turns into code that does three things: first, it calls Monitor.Enter,
passing the argument you provided to lock. Then it attempts to run the code in the
block. Finally, it will usually call Monitor.Exit once the block finishes. But it’s not
entirely straightforward, thanks to exceptions. The code will still call Monitor.Exit if
the code you put in the block throws an exception, but it needs to handle the possibil‐
ity that Monitor.Enter itself threw, which would mean that the code does not own
the lock and should therefore not call Monitor.Exit. Example 16-9 shows what the
compiler makes of the lock block in the GetDetails method in Example 16-8.

Example 16-9. How lock blocks expand

bool lockWasTaken = false;
var temp = _sync;
try
{
    Monitor.Enter(temp, ref lockWasTaken);
    {
        total = _total;
        return _saleDetails.ToArray();
    }
}
finally
{
    if (lockWasTaken)
    {
        Monitor.Exit(temp);
    }
}

Monitor.Enter is the API that does the work of discovering whether some other
thread already has the lock, and if so, making the current thread wait. If this returns
at all, it normally succeeds. (It might deadlock, in which case it will never return.)
There is a small possibility of failure caused by an exception, e.g., due to running out
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of memory. That would be fairly unusual, but the generated code takes it into
account nonetheless—this is the purpose of the slightly roundabout-looking code for
the lockWasTaken variable. (In practice, the compiler will make that a hidden variable
without an accessible name, by the way. I’ve named it to make it more readable here.)
The Monitor.Enter method guarantees that acquisition of the lock will be atomic
with updating the flag indicating whether the lock was taken, ensuring that the
finally block will attempt to call Exit if and only if the lock was acquired.

Monitor.Exit tells the CLR that we no longer need exclusive access to whatever
resources we’re synchronizing access to, and if any other threads are waiting inside
Monitor.Enter for the object in question, this will enable one of them to proceed.
The compiler puts this inside a finally block to ensure that whether you exit from
the block by running to the end, returning from the middle, or throwing an excep‐
tion, the lock will be released.

The fact that the lock block calls Monitor.Exit on an exception is a double-edged
sword. On the one hand, it reduces the chances of deadlock by ensuring that locks are
released on failure. On the other hand, if an exception occurs while you’re in the
middle of modifying some shared state, the system may be in an inconsistent state;
releasing locks will allow other threads access to that state, possibly causing further
problems. In some situations, it might have been better to leave locks locked in the
case of an exception—a deadlocked process might do less damage than one that
plows on with corrupt state. A more robust strategy is to write code that guarantees
consistency in the face of exceptions, either by rolling back any changes it has made if
an exception prevents a complete set of updates, or by arranging to change state in an
atomic way (e.g., by putting the new state into a whole new object, and substituting
that for the previous one only once the updated object is fully initialized). But that’s
beyond what the compiler can automate for you.

Waiting and notification

The Monitor class can do more than just ensure that threads take it in turns. It pro‐
vides a way for threads to sit and wait for a notification from some other thread. If a
thread has acquired the monitor for a particular object, it can call Monitor.Wait,
passing in that object. This has two effects: it releases the monitor and causes the
thread to block. It will block until some other thread calls Monitor.Pulse or Pul
seAll for the same object; a thread must have the monitor to be able to call either of
these methods. (Wait, Pulse, and PulseAll all throw an exception if you call them
while not holding the relevant monitor.)

If a thread calls Pulse, this enables one thread waiting in Wait to wake up. Calling
PulseAll enables all of the threads waiting on that object’s monitor to run. In either
case, Monitor.Wait reacquires the monitor before returning, so even if you call
PulseAll, the threads will wake up one at a time—a second thread cannot emerge
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from Wait until the first thread to do so relinquishes the monitor. In fact, no threads
can return from Wait until the thread that called Pulse or PulseAll relinquishes the
lock.

Example 16-10 uses Wait and Pulse to provide a wrapper around a Queue<T> that
causes the thread that retrieves items from the queue to wait if the queue is empty.
(This is for illustration only—if you want this sort of queue, you don’t have to write
your own. Use the built-in BlockingCollection<T>, or the types in System.Thread
ing.Channels.)

Example 16-10. Wait and Pulse

public class MessageQueue<T>
{
    private readonly object _sync = new object();

    private readonly Queue<T> _queue = new Queue<T>();

    public void Post(T message)
    {
        lock (_sync)
        {
            bool wasEmpty = _queue.Count == 0;
            _queue.Enqueue(message);
            if (wasEmpty)
            {
                Monitor.Pulse(_sync);
            }
        }
    }

    public T Get()
    {
        lock (_sync)
        {
            while (_queue.Count == 0)
            {
                Monitor.Wait(_sync);
            }
            return _queue.Dequeue();
        }
    }
}

This example uses the monitor in two ways. It uses it through the lock keyword to
ensure that only one thread at a time uses the Queue<T> that holds queued items. But
it also uses waiting and notification to enable the thread that consumes items to block
efficiently when the queue is empty, and for any thread that adds new items to the
queue to wake up the blocked reader thread.
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Timeouts
Whether you are waiting for a notification or just attempting to acquire the lock, it’s
possible to specify a timeout, indicating that if the operation doesn’t succeed within
the specified time, you would like to give up. For lock acquisition, you use a different
method, TryEnter, but when waiting for notification, you just use a different over‐
load. (There’s no compiler support for this, so you won’t be able to use the lock key‐
word.) In both cases, you can pass either an int representing the maximum time to
wait, in milliseconds, or a TimeSpan value. Both return a bool indicating whether the
operation succeeded.

You could use this to avoid deadlocking the process, but if your code does fail to
acquire a lock within the timeout, this leaves you with the problem of deciding what
to do about that. If your application is unable to acquire a lock it needs, then it can’t
just do whatever work it was going to do regardless. Termination of the process may
be the only realistic option, because deadlock is usually a symptom of a bug, so if it
occurs, your process may already be in a compromised state. That said, some devel‐
opers take a less-than-rigorous approach to lock acquisition, and may regard dead‐
lock as being normal. In this case, it might be viable to abort whatever operation you
were trying, and to either retry the work later, or just log a failure, abandon this par‐
ticular operation, and carry on with whatever else the process was doing. But that
may be a risky strategy.

SpinLock
SpinLock presents a similar logical model to the Monitor class’s Enter and Exit
methods. (It does not support waiting and notification.) It is a value type, so in some
circumstances, it can reduce the number of objects that need to be allocated to sup‐
port locking—Monitor requires a heap-based object. However, it is also simpler: it
only uses a single strategy for handling contention, whereas Monitor starts with the
same strategy as SpinLock, then after a while it will switch to one with higher initial
overhead, but that is more efficient if long waits are involved.

When you call either Enter method (Monitor or SpinLock), if the lock is available it
will be acquired very quickly—the cost is typically a handful of CPU instructions. If
the lock is already held by another thread, the CLR sits in a loop that polls the lock
(i.e., it spins), waiting for it to be released. If the lock is only ever held for a very short
length of time, this can be a very efficient strategy, because it avoids getting the OS
involved, and is extremely fast in the case where the lock is available. Even when
there is contention, spinning can be the most effective strategy on a multicore or
multi-CPU system, because if the lock is only ever held for a very short duration (e.g.,
only for as long as it takes to add two decimals together), the thread will not have to
spin for long before the lock becomes available again.
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4 On machines with just one hardware thread, when SpinLock enters its loop, it tells the OS scheduler that it
wants to yield control of the CPU, so that other threads (hopefully including the one that currently has the
lock) can make progress. SpinLock sometimes does this even on multicore systems to avoid some subtle
problems that excessive spinning can cause.

Where Monitor and SpinLock differ is that Monitor will eventually give up on spin‐
ning, falling back to using the OS scheduler. This will have a cost equivalent to exe‐
cuting many thousands (possibly even hundreds of thousands) of CPU instructions,
which is why Monitor starts off using much the same approach as SpinLock. How‐
ever, if the lock remains unavailable for long, spinning is inefficient—even spinning
for just 1 ms will involve spinning millions of times on modern CPUs, at which point
running thousands of instructions to be able to suspend the thread efficiently looks
like a better bet. (Spinning is also problematic on single-core systems, because spin‐
ning relies on the thread holding the lock to be making progress.4)

SpinLock doesn’t have a fallback strategy. Unlike Monitor, it will spin until either it
successfully acquires the lock, or the timeout (if you specified one) elapses. For this
reason, the documentation recommends that you should not use a SpinLock if you
do certain things while holding the lock, including doing anything else that might
block (e.g., waiting for I/O to complete), or calling other code that might do the
same. It also recommends against calling a method through a mechanism where you
can’t be certain which code will run (e.g., through an interface, a virtual method, or a
delegate), or even allocating memory. If you’re doing anything remotely nontrivial, it
is better to stick with Monitor. However, access to a decimal is sufficiently simple
that it might be suitable for protecting with a SpinLock, as Example 16-11 does.

Example 16-11. Protecting access to a decimal with SpinLock

public class DecimalTotal
{
    private decimal _total;

    private SpinLock _lock;

    public decimal Total
    {
        get
        {
            bool acquiredLock = false;
            try
            {
                _lock.Enter(ref acquiredLock);
                return _total;
            }
            finally
            {
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                if (acquiredLock)
                {
                    _lock.Exit();
                }
            }
        }
    }

    public void Add(decimal value)
    {
        bool acquiredLock = false;
        try
        {
            _lock.Enter(ref acquiredLock);
            _total += value;
        }
        finally
        {
            if (acquiredLock)
            {
                _lock.Exit();
            }
        }
    }
}

We have to write considerably more code than with lock due to the lack of compiler
support. It might not be worth the effort—since Monitor spins to start with, it is
likely to have similar performance, so the only benefit here is that we’ve avoided allo‐
cating an extra heap object to perform locking with (SpinLock is a struct, so it lives
inside the DecimalTotal object’s heap block). You should use a SpinLock only if you
can demonstrate through profiling that under realistic workloads it performs better
than a monitor.

Reader/Writer Locks
The ReaderWriterLockSlim class provides a different locking model than the one
that Monitor and SpinLock present. With ReaderWriterLockSlim, when acquiring a
lock, you specify whether you are a reader or a writer. The lock allows multiple
threads to become readers simultaneously. However, when a thread asks to acquire
the lock as a writer, the lock will temporarily block any further threads that try to
read, and it waits for all threads that were already reading to release their locks before
granting access to the thread that wants to write. Once the writer releases its lock, any
threads that were waiting to read are allowed back in. This enables the writer thread
to get exclusive access, but means that when no writing is occurring, readers can all
proceed in parallel.
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There is also a ReaderWriterLock class. You should not use this,
because it has performance issues even when there is no contention
for the lock, and it also makes suboptimal choices when both
reader and writer threads are waiting to acquire the lock. The
newer ReaderWriterLockSlim class has been around for a very
long time (since .NET 3.5) and is recommended over the older
class in all scenarios. The old class remains purely for backward
compatibility.

This may sound like a good fit with many of the collection classes built into .NET. As
I described earlier, they often support multiple concurrent reader threads, but require
that modification be done exclusively by one thread at a time, and that no readers be
active while modifications are made. However, you should not necessarily make this
lock your first choice when you happen to have a mixture of readers and writers.

Despite the performance improvements that the “slim” lock made over its predeces‐
sor, it still takes longer to acquire this lock than it does to enter a monitor. If you plan
to hold the lock only for a very short duration, it may be better just to use a monitor
—the theoretical improvement offered by greater concurrency may be outweighed by
the extra work required to acquire the lock in the first place. Even if you are holding
the lock for a significant length of time, reader/writer locks offer benefits only if
updates just happen occasionally. If you have a more or less constant stream of
threads all wanting to modify the data, you are unlikely to see any performance
improvement.

As with all performance-motivated choices, if you are considering using a ReaderWri
terLockSlim instead of the simpler alternative of an ordinary monitor, you should
measure performance under a realistic workload with both alternatives to see what
impact, if any, the change has.

Event Objects
Windows’ native API, Win32, has always offered a synchronization primitive called
an event. From a .NET perspective, this name is a bit unfortunate, because it defines
the term to mean something else entirely, as Chapter 9 discussed. In this section,
when I refer to an event, I mean the synchronization primitive, unless I explicitly
qualify it as a .NET event.

The ManualResetEvent class provides a mechanism where one thread can wait for a
notification from another thread. This works differently than the Monitor class’s Wait
and Pulse. For one thing, you do not need to be in possession of a monitor or other
lock to be able to wait for or signal an event. Second, the Monitor class’s pulse meth‐
ods only do anything if at least one other thread is blocked in Monitor.Wait for that
object—if nothing was waiting, then it’s as though the pulse never occurred. But a
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ManualResetEvent remembers its state—once signaled, it won’t return to its
unsignaled state unless you manually reset it by calling Reset (hence the name). This
makes it useful for scenarios where some thread A cannot proceed until some other
thread B has done some work that will take an unpredictable amount of time to com‐
plete. Thread A might have to wait, but it’s possible that thread B will have finished
the work by the time A checks. Example 16-12 uses this technique to perform some
overlapping work.

Example 16-12. Waiting for work to complete with ManualResetEvent

static void LogFailure(string message, string mailServer)
{
    var email = new SmtpClient(mailServer);

    using (var emailSent = new ManualResetEvent(false))
    {
        object sync = new object();
        bool tooLate = false; // Prevent call to Set after a timeout
        email.SendCompleted += (s, e) =>
            { lock(sync) { if (!tooLate) { emailSent.Set(); } } };
        email.SendAsync("logger@example.com", "sysadmin@example.com",
            "Failure Report", "An error occurred: " + message, null);

        LogPersistently(message);

        if (!emailSent.WaitOne(TimeSpan.FromMinutes(1)))
        {
            LogPersistently("Timeout sending email for error: " + message);
        }

        lock (sync)
        {
            tooLate = true;
        }
    }
}

This method sends an error report to a system administrator by email using the
SmtpClient class from the System.Net.Mail namespace. It also calls an internal
method (not shown here) called LogPersistently to record the failure in a local log‐
ging mechanism. Since these are both operations that could take some time, the code
sends the email asynchronously—the SendAsync method returns immediately, and
the class raises a .NET event once the email has been sent. This enables the code to
get on with the call to LogPersistently while the email is being sent.

Having logged the message, the method waits for the email to go out before return‐
ing, which is where the ManualResetEvent comes in. By passing false to the con‐
structor, I’ve put the event into an initial unsignaled state. But in the handler for the
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email SendCompleted .NET event, I call the synchronization event’s Set method,
which will put it into the signaled state. (In production code, I’d also check the .NET
event handler’s argument to see if there was an error, but I’ve omitted that here
because it’s not relevant to the point I’m illustrating.) Finally, I call WaitOne, which
will block until the event is signaled. The SmtpClient might do its job so quickly that
the email has already gone by the time my call to LogPersistently returns. But that’s
OK—in that case, WaitOne returns immediately, because the ManualResetEvent stays
signaled once you call Set. So it doesn’t matter which piece of work finishes first—the
persistent logging or sending the email—in either case, WaitOne will let the thread
continue when the email has been sent. (For the background on this method’s curi‐
ous name, see the next sidebar, “WaitHandle” on page 684.)

WaitHandle
In Windows implementations of .NET, ManualResetEvent is a wrapper around a
Win32 event object. There are several other synchronization classes that are also
wrappers around underlying OS synchronization primitives: AutoResetEvent, Mutex,
and Sempahore. These all derive from a common base class, WaitHandle. (On non-
Windows .NET implementations, the class library just implements equivalent behav‐
ior where directly equivalent OS primitives are not available.)

A WaitHandle can be in one of two states: signaled or not signaled. The exact mean‐
ing of this varies from one primitive to the next. A ManualReset event becomes sig‐
naled when you call Set (and it stays in the signaled state until explicitly unset). A
Mutex is in the signaled state only if no thread currently possesses it. Despite the var‐
iations in interpretation, waiting for a WaitHandle will always block if it is not sig‐
naled, and will not block if it is signaled.

With Win32 synchronization objects, you can either wait for a single item to become
signaled, or you can wait on multiple objects, either until any of them is signaled, or
until all of them are. The WaitHandle class defines WaitOne, WaitAny, and WaitAll
methods corresponding to these three ways of waiting. With primitives where a suc‐
cessful wait has the side effect of acquiring ownership (exclusively in the case of
Mutex, or partially with Semaphore), there can be a problem with attempting to wait
on multiple objects—if two threads both attempt to acquire the same objects but do
so in a different order, deadlock will ensue if these attempts overlap. But WaitAll
deals with that—the order in which you specify the items does not matter, because it
acquires them atomically—it will not allow any of the waits to succeed until they can
all succeed simultaneously. (Of course, if a single thread makes a second call to Wai
tAll, without first releasing all objects acquired in an earlier call, the door will still be
open to deadlock. WaitAll helps only if you can acquire everything you need in a sin‐
gle step.)

684 | Chapter 16: Multithreading



WaitAll does not work on a thread that is using COM’s STA mode because of a limi‐
tation in the underlying Windows API that it depends on. As I described in Chap‐
ter 14, if your program’s entry point is annotated with [STAThread], it will be using
this mode, as will any thread that hosts UI elements.

You can also use a WaitHandle in conjunction with the thread pool. The ThreadPool
class has a RegisterWaitForSingleObject method that accepts any WaitHandle and
invokes the callback you supply when the handle becomes signaled. As I’ll discuss
later, this can be a bad idea for certain kinds of WaitHandle-derived types, such as
Mutex.

There’s also an AutoResetEvent. As soon as a single thread has returned from wait‐
ing for such an event, it automatically reverts to the unsignaled state. Thus, calling
Set on this event will allow at most one thread through. If you call Set once while no
threads are waiting, the event will remain set, so unlike Monitor.Pulse, the notifica‐
tion will not be lost. However, the event does not maintain a count of the number of
outstanding sets—if you call Set twice while no threads are waiting for the event, it
will still allow only the first thread through, resetting immediately.

Both of these event types derive only indirectly from WaitHandle, through the
EventWaitHandle base class. You can use this directly, and it lets you specify manual
or automatic resetting with a constructor argument. But what’s more interesting
about EventWaitHandle is that it lets you work across process boundaries (on Win‐
dows only). The underlying Win32 event objects can be given names, and if you
know the name of an event created by another process, you can open it by passing the
name when constructing an EventWaitHandle. (If no event with the name you spec‐
ify exists yet, your process will be the one that creates it.) No equivalent to named
events exist on Unix, so you will get a PlatformNotSupportedException if you try to
create one in those environments, although you are free to use these types as long as
you don’t attempt to specify a name.

There is also a ManualResetEventSlim class. However, unlike the nonslim reader/
writer, ManualResetEvent has not been superseded by its slim successor because only
the older type supports cross-process use. The ManualResetEventSlim class’s main
benefit is that if your code needs to wait only for a very short time, it can be more
efficient because it will poll (much like a SpinLock) for a while. This saves it from
having to use relatively expensive OS scheduler services. However, it will eventually
give up and fall back to a more heavyweight mechanism. (Even in this case, it’s
marginally more efficient, because it doesn’t need to support cross-process operation,
so it uses a more lightweight mechanism.) There is no slim version of the automatic
event, because automatic reset events are not all that widely used.
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Barrier
In the preceding section, I showed how you can use an event to coordinate concur‐
rent work, enabling one thread to wait until something else has happened before pro‐
ceeding. The class library offers a class that can handle similar kinds of coordination,
but with slightly different semantics. The Barrier class can handle multiple partici‐
pants, and can also support multiple phases, meaning that threads can wait for one
another several times as work progresses. Barrier is symmetric—whereas in
Example 16-12, the event handler calls Set while another thread calls WaitOne, with a
Barrier, all participants call the SignalAndWait method, which effectively combines
the set and wait into one operation.

When a participant calls SignalAndWait, the method will block until all of the partic‐
ipants have called it, at which point they will all be unblocked and free to continue.
The Barrier knows how many participants to expect, because you pass the count as a
constructor argument.

Multiphase operation simply involves going around again. Once the final participant
calls SignalAndWait, releasing the rest, if any thread calls SignalAndWait a second
time, it will block just like before, until all the others call it a second time. The
CurrentPhaseNumber tells you how many times this has occurred so far.

The symmetry makes Barrier a less suitable solution than ManualResetEvent in
Example 16-12, because in that case, only one of the threads really needs to wait.
There’s no benefit in making the SendComplete event handler wait for the persistent
log update to finish—only one of the participants cares when work is complete.
ManualResetEvent supports only a single participant, but that’s not necessarily a rea‐
son to use Barrier. If you want event-style asymmetry with multiple participants,
there’s another approach: countdowns.

CountdownEvent
The CountdownEvent class is similar to an event, but it allows you to specify that it
must be signaled some particular number of times before it allows waiting threads
through. The constructor takes an initial count argument, and you can increase the
count at any time by calling AddCount. You call the Signal method to reduce the
count; by default, it will reduce it by one, but there’s an overload that lets you reduce
it by a specified number.

The Wait method blocks until the count reaches zero. If you want to inspect the cur‐
rent count to see how far there is to go, you can read the CurrentCount property.
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Semaphores
Another count-based system that is widely used in concurrent systems is known as a
semaphore. Windows has native support for this, and .NET’s Semaphore class was
originally designed as a wrapper for it. Like the event wrappers, Semaphore derives
from WaitHandle, and on non-Windows platforms, the behavior is emulated.
Whereas a CountdownEvent lets through waiting threads only once the count gets to
zero, a Semaphore starts blocking threads only when the count gets to zero. You could
use this if you wanted to ensure that no more than a particular number of threads
were performing certain work simultaneously.

Because Semaphore derives from WaitHandle, you call the WaitOne method to wait.
This blocks only if the count is already zero. It decrements the count by one when it
returns. You increment the count by calling Release. You specify the initial count as
a constructor argument, and you must also supply a maximum count—if a call to
Release attempts to set the count above the maximum, it will throw an exception.

As with events, Windows supports the cross-process use of semaphores, so you can
optionally pass a semaphore name as a constructor argument. This will open an exist‐
ing semaphore, or create a new one if a semaphore with the specified name does not
yet exist.

There’s also a SemaphoreSlim class. Like ManualResetEventSlim, this offers a perfor‐
mance benefit in scenarios where threads will not normally have to block for long.
SemaphoreSlim offers two ways to decrement the count. Its Wait method works much
like the Semaphore class’s WaitOne, but it also offers WaitAsync, which returns a Task
that completes once the count is nonzero (and it decrements the count as it com‐
pletes the task). This means you do not need to block a thread while you wait for the
semaphore to become available. Moreover, it means you can use the await keyword
described in Chapter 17 to decrement a semaphore.

Mutex
Windows defines a mutex synchronization primitive for which .NET provides a
wrapper class, Mutex. The name is short for “mutually exclusive,” because only one
thread at a time can be in possession of a mutex—if thread A owns the mutex, thread
B cannot, and vice versa, for example. Of course, this is exactly what the lock key‐
word does for us through the Monitor class, but Mutex offers two advantages. It offers
cross-process support: as with other cross-process synchronization primitives, you
can pass in a name when you construct a mutex. (And unlike all the others, this type
supports naming even on Unix-based platforms.) And with Mutex you can wait for
multiple objects in a single operation.
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The ThreadPool.RegisterWaitForSingleObject method does not
work for a mutex, because Win32 requires mutex ownership to be
tied to a particular thread, and the inner workings of the thread
pool mean that RegisterWaitForSingleObject is unable to deter‐
mine which thread pool thread handles the callback with the
mutex.

You acquire a mutex by calling WaitOne, and if some other thread owns the mutex at
the time, WaitOne will block until that thread calls ReleaseMutex. Once WaitOne
returns successfully, you own the mutex. You must release the mutex from the same
thread on which you acquired it.

There is no “slim” version of the Mutex class. We already have a low-overhead equiv‐
alent, because all .NET objects have the innate ability to provide lightweight mutual
exclusion, thanks to Monitor and the lock keyword.

Interlocked
The Interlocked class is a little different from the other types I’ve described so far in
this section. It supports concurrent access to shared data, but it is not a synchroniza‐
tion primitive. Instead, it defines static methods that provide atomic forms of various
simple operations.

For example, it provides Increment, Decrement, and Add methods, with overloads
supporting int and long values. (These are all similar—incrementing or decrement‐
ing are just addition by 1 or −1.) Addition involves reading a value from some storage
location, calculating a modified value, and storing that back in the same storage loca‐
tion, and if you use normal C# operators to do this, things can go wrong if multiple
threads try to modify the same location simultaneously. If the value is initially 0, and
some thread reads that value and then another thread also reads the value, if both
then add 1 and store the result back, they will both end up writing back 1—two
threads attempted to increment the value, but it went up only by one. The Inter
locked form of these operations prevents this sort of overlap.

Interlocked also offers various methods for swapping values. The Exchange method
takes two arguments: a reference to a value and a value. This returns the value cur‐
rently in the location referred to by the first argument, and also overwrites that loca‐
tion with the value supplied as a second argument, and it performs these two steps as
a single atomic operation. There are overloads supporting int, long, object, float,
double, and a type called IntPtr, which represents an unmanaged pointer. There is
also a generic Exchange<T>, where T can be any reference type.

There is also support for conditional exchange, with the CompareExchange method.
This takes three values—as with Exchange, it takes a reference to some variable you
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wish to modify, and the value you want to replace it with, but it also takes a third
argument: the value you think is already in the storage location. If the value in the
storage location does not match the expected value, this method will not change the
storage location. (It still returns whatever value was in that storage location, whether
it modifies it or not.) It’s actually possible to implement the other Interlocked oper‐
ations I’ve described in terms of this one. Example 16-13 uses it to implement an
interlocked increment operation.

Example 16-13. Using CompareExchange

static int InterlockedIncrement(ref int target)
{
    int current, newValue;
    do
    {
        current = target;
        newValue = current + 1;
    }
    while (Interlocked.CompareExchange(ref target, newValue, current)
            != current);
    return newValue;
}

The pattern would be the same for other operations: read the current value, calculate
the value with which to replace it, and then replace it only if the value doesn’t appear
to have changed in the meantime. If the value changes in between fetching the cur‐
rent value and replacing it, go around again. You need to be a little bit careful here—
even if the CompareExchange succeeds, it’s possible that other threads modified the
value twice between your reading the value and updating it, with the second update
putting things back how they were before the first. With addition and subtraction,
that doesn’t really matter, because it doesn’t affect the outcome, but in general, you
should not presume too much about what a successful update signifies. If you’re in
doubt, it’s often better to stick with one of the more heavyweight synchronization
mechanisms.

The simplest Interlocked operation is the Read method. This takes a ref long, and
reads the value atomically with respect to any other operations on 64-bit values that
you perform through Interlocked. This enables you to read 64-bit values safely—in
general, the CLR does not guarantee that 64-bit reads will be atomic. (In a 64-bit pro‐
cess, they normally will be, but if you want atomicity on 32-bit architectures, you
need to use Interlocked.Read.) There is no overload for 32-bit values, because read‐
ing and writing those is always atomic.

The operations supported by Interlocked correspond to the atomic operations that
most CPUs can support more or less directly. (Some CPU architectures support all
the operations innately, while others support only the compare and exchange, build‐
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ing everything else up out of that. But in any case, these operations are at most a few
instructions.) This means they are reasonably efficient. They are considerably more
costly than performing equivalent noninterlocked operations with ordinary code,
because atomic CPU instructions need to coordinate across all CPU cores (and across
all CPU chips in computers that have multiple physically separate CPUs installed) to
guarantee atomicity. Nonetheless, they incur a fraction of the cost you pay when a
lock statement ends up blocking the thread at the OS level.

These sorts of operations are sometimes described as lock free. This is not entirely
accurate—the computer does acquire locks very briefly at a fairly low level in the
hardware. Atomic read-modify-write operations effectively acquire an exclusive lock
on the computer’s memory for two bus cycles. However, no OS locks are acquired,
the scheduler does not need to get involved, and the locks are held for an extremely
short duration—often for just one machine code instruction. More significantly, the
highly specialized and low-level form of locking used here does not permit holding
onto one lock while waiting to acquire another—code can lock only one thing at a
time. This means that this sort of operation will not deadlock. However, the simplic‐
ity that rules out deadlocks cuts both ways.

The downside of interlocked operations is that the atomicity applies only to
extremely simple operations. It’s very hard to build more complex logic in a way that
works correctly in a multithreaded environment using just Interlocked. It’s easier
and considerably less risky to use the higher-level synchronization primitives,
because those make it fairly easy to protect more complex operations rather than just
individual calculations. You would typically use Interlocked only in extremely
performance-sensitive work, and even then, you should measure carefully to verify
that it’s having the effect you hope—code such as Example 16-13 could in theory loop
any number of times before eventually completing, so it could end up costing you
more than you expect.

One of the biggest challenges with writing correct code when using low-level atomic
operations is that you may encounter problems caused by the way CPU caches work.
Work done by one thread may not become visible instantly to other threads, and in
some cases, memory access may not necessarily occur in the order that your code
specifies. Using higher-level synchronization primitives sidesteps these issues by
enforcing certain ordering constraints, but if you decide instead to use Interlocked
to build your own synchronization mechanisms, you will need to understand the
memory model that .NET defines for when multiple threads access the same memory
simultaneously, and you will typically need to use either the MemoryBarrier method
defined by the Interlocked class or the various methods defined by the Volatile
class to ensure correctness. This is beyond the scope of this book, and it’s also a really
good way to write code that looks like it works but turns out to go wrong under heavy
load (i.e., when it probably matters most), so these sorts of techniques are rarely
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worth the cost. Stick with the other mechanisms I’ve discussed in this chapter unless
you really have no alternative.

Lazy Initialization
When you need an object to be accessible from multiple threads, if it’s possible for
that object to be immutable (i.e., its fields never change after construction), you can
often avoid the need for synchronization. It is always safe for multiple threads to read
from the same location simultaneously—trouble sets in only if the data needs to
change. However, there is one challenge: when and how do you initialize the shared
object? One solution might be to store a reference to the object in a static field initial‐
ized from a static constructor or a field initializer—the CLR guarantees to run the
static initialization for any class just once. However, this might cause the object to be
created earlier than you want. If you perform too much work in static initialization,
this can have an adverse effect on how long it takes your application to start running.

You might want to wait until the object is first needed before initializing it. This is
called lazy initialization. This is not particularly hard to achieve—you can just check
a field to see if it’s null and initialize it if not, using lock to ensure that only one
thread gets to construct the value. However, this is an area in which developers seem
to have a remarkable appetite for showing how clever they are, with the potentially
undesirable corollary of demonstrating that they’re not as clever as they think they
are. The lock keyword works fairly efficiently, but it’s possible to do better by using
Interlocked. However, the subtleties of memory access reordering on multiproces‐
sor systems make it easy to write code that runs quickly, looks clever, and doesn’t
always work. To try to avert this recurring problem, .NET provides two classes to
perform lazy initialization without using lock or other potentially expensive synchro‐
nization primitives. The easiest to use is Lazy<T>.

Lazy<T>

The Lazy<T> class provides a Value property of type T, and it will not create the
instance that Value returns until the first time something reads the property. By
default, Lazy<T> will use the no-arguments constructor for T, but you can provide a
callback argument that lets you supply your own method for creating the instance.

Lazy<T> is able to handle race conditions for you. In fact, you can configure the exact
level of multithreaded protection you require. Since lazy initialization can also be
useful in single-threaded environments, you can disable multithreaded support
entirely (by passing either false or LazyThreadSafetyMode.None as a constructor
argument). But for multithreaded environments, you can choose between the other
two modes in the LazyThreadSafetyMode enumeration. These determine what hap‐
pens if multiple threads all try to read the Value property for the first time more or
less simultaneously. PublicationOnly does not attempt to ensure that only one
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thread creates an object—it only applies any synchronization at the point at which a
thread finishes creating an object. The first thread to complete construction or initial‐
ization gets to supply the object, and the ones produced by any other threads that had
started initialization are all discarded. Once a value is available, all further attempts to
read Value will just return that. If you choose ExecutionAndPublication, only a sin‐
gle thread will be allowed to attempt construction. That may seem less wasteful, but
PublicationOnly offers a potential advantage: because it avoids holding any locks
during initialization, you are less likely to introduce deadlock bugs if the initialization
code itself attempts to acquire any locks. PublicationOnly also handles errors differ‐
ently. If the first initialization attempt throws an exception, other threads that had
begun a construction attempt are given a chance to complete, whereas with Executio
nAndPublication, if the one and only attempt to initialize fails, the exception is
retained and will be thrown each time any code reads Value.

LazyInitializer

The other class supporting lazy initialization is LazyInitializer. This is a static
class, and you use it entirely through its static generic methods. It is marginally more
complex to use than Lazy<T>, but it avoids the need to allocate an extra object in
addition to the lazily allocated instance you require. Example 16-14 shows how to use
it.

Example 16-14. Using LazyInitializer

public class Cache<T>
{
    private static Dictionary<string, T> _d;

    public static IDictionary<string, T> Dictionary =>
        LazyInitializer.EnsureInitialized(ref _d);
}

If the field is null, the EnsureInitialized method constructs an instance of the argu‐
ment type—Dictionary<string, T>, in this case. Otherwise, it will return the value
already in the field. There are some other overloads. You can pass a callback, much as
you can to Lazy<T>. You can also pass a ref bool argument, which it will inspect to
discover whether initialization has already occurred (and it sets this to true when it
performs initialization).

A static field initializer would have given us the same once-and-once-only initializa‐
tion, but might have ended up running far earlier in the process’s lifetime. In a more
complex class with multiple fields, static initialization might even cause unnecessary
work, because it happens for the entire class, so you might end up constructing
objects that don’t get used. This could increase the amount of time it takes for an
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application to start up. LazyInitializer lets you initialize individual fields as and
when they are first used, ensuring that you do only work that is needed.

Other Class Library Concurrency Support
The System.Collections.Concurrent namespace defines various collections that
make more generous guarantees in the face of multithreading than the usual collec‐
tions, meaning you may be able to use them without needing any other synchroniza‐
tion primitives. Take care, though—as always, even though individual operations
may have well-defined behavior in a multithreaded world, that doesn’t necessarily
help you if the operation you need to perform involves multiple steps. You may still
need coordination at a broader scope to guarantee consistency. But in some situa‐
tions, the concurrent collections may be all you need.

Unlike the nonconcurrent collections, ConcurrentDictionary, ConcurrentBag, Con
currentStack, and ConcurrentQueue all support modification of their contents even
while enumeration (e.g., with a foreach loop) of those contents is in progress. The
dictionary provides a live enumerator, in the sense that if values are added or
removed while you’re in the middle of enumerating, the enumerator might show you
some of the added items and it might not show you the removed items. It makes no
firm guarantees, not least because with multithreaded code, when two things happen
on two different threads, it’s not always entirely clear which happened first—the laws
of relativity mean that it may depend on your point of view. This means that it’s pos‐
sible for an enumerator to seem to return an item after that item was removed from
the dictionary. The bag, stack, and queue take a different approach: their enumera‐
tors all take a snapshot and iterate over that, so a foreach loop will see a set of con‐
tents that is consistent with what was in the collection at some point in the past, even
though it may since have changed.

As I already mentioned in Chapter 5, the concurrent collections present APIs that are
similar to their nonconcurrent counterparts, but with some additional members to
support atomic addition and removal of items.

Another part of the class library that can help you deal with concurrency without
needing to make explicit use of synchronization primitives is Rx (the subject of
Chapter 11). It offers various operators that can combine multiple asynchronous
streams together into a single stream. These manage concurrency issues for you—
remember that any single observable will provide observers with items one at a time.
Rx takes the necessary steps to ensure that it stays within these rules even when it
combines inputs from numerous individual streams that are all producing items con‐
currently. It will never ask an observer to deal with more than one thing at a time.

The System.Threading.Channels NuGet package offers types that support producer/
consumer patterns, in which one or more threads generate data, while other threads
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consume that data. You can choose whether channels are buffered, enabling produc‐
ers to get ahead of consumers, and if so, by how much. (The BlockingCollection<T>
in System.Collections.Concurrent also offers this kind of service. However, it is
less flexible, and it does not support the await keyword described in Chapter 17.)

Finally, in multithreaded scenarios it is worth considering the immutable collection
classes, which I described in Chapter 5. These support concurrent access from any
number of threads, and because they are immutable, the question of how to handle
concurrent write access never arises. Obviously, immutability imposes considerable
constraints but if you can find a way to work with these types (and remember, the
built-in string type is immutable, so you already have some experience of working
with immutable data), they can be very useful in some concurrent scenarios.

Tasks
Earlier in this chapter, I showed how to use the Task class to launch work in the
thread pool. This class is more than just a wrapper for the thread pool. Task and the
related types that form the Task Parallel Library (TPL) can handle a wider range of
scenarios. Tasks are particularly important because C#’s asynchronous language fea‐
tures (which are the topic of Chapter 17) are able to work directly with task objects. A
great many APIs in the .NET class library offer task-based asynchronous operation.

Although tasks are the preferred way to use the thread pool, they are not just about
multithreading. The basic abstractions are more flexible than that.

The Task and Task<T> Classes
There are two classes at the heart of the TPL: Task and a class that derives from it,
Task<T>. The Task base class represents some work that may take some time to com‐
plete. Task<T> extends this to represent work that produces a result (of type T) when
it completes. (The nongeneric Task does not produce any result. It’s the asynchro‐
nous equivalent of a void return type.) Notice that these are not concepts that neces‐
sarily involve threads.

Most I/O operations can take a while to complete, and in most cases, the .NET class
library provides task-based APIs for them. Example 16-15 uses an asynchronous
method to fetch the content of a web page as a string. Since it cannot return the string
immediately—it might take a while to download the page—it returns a task instead.

Example 16-15. Task-based web download

var w = new HttpClient();
string url = "https://endjin.com/";
Task<string> webGetTask = w.GetStringAsync(url);
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Most task-based APIs follow a naming convention in which they
end in Async, and if there’s a corresponding synchronous API, it
will have the same name but without the Async suffix. For example,
the Stream class in System.IO, which provides access to streams of
bytes, has a Write method to write bytes to a stream, and that
method is synchronous (i.e., it waits until it finishes its work before
returning). It also offers a WriteAsync method. This does the same
as Write, but because it’s asynchronous, it returns without waiting
for its work to complete. It returns a Task to represent the work;
this convention called the task-based asynchronous pattern (TAP).

That GetStringAsync method does not wait for the download to complete, so it
returns almost immediately. To perform the download, the computer has to send a
message to the relevant server, and then it must wait for a response. Once the request
is on its way, there’s no work for the CPU to do until the response comes in, meaning
that this operation does not need to involve a thread for the majority of the time that
the request is in progress. So this method does not wrap some underlying synchro‐
nous version of the API in a call to Task.Run. In fact, HttpClient doesn’t offer syn‐
chronous equivalents. And with classes that offer I/O APIs in both forms, such as
Stream, the synchronous versions are often wrappers around a fundamentally asyn‐
chronous implementation: when you call a blocking API to perform I/O, it will typi‐
cally perform an asynchronous operation under the covers, and then just block the
calling thread until that work completes.

So, although the Task and Task<T> classes make it very easy to produce tasks that
work by running methods on thread pool threads, they are also able to represent fun‐
damentally asynchronous operations that do not require the use of a thread for most
of their duration. Although it’s not part of the official terminology, I describe this
kind of operation as a threadless task, to distinguish it from tasks that run entirely on
thread pool threads.

ValueTask and ValueTask<T>

Task and Task<T> are pretty flexible, and not just because they can represent both
thread-based and threadless operations. As you’ll see, they offer several mechanisms
for discovering when the work they represent completes, including the ability to
combine multiple tasks into one. Multiple threads can all wait on the same task
simultaneously. You can write caching mechanisms that repeatedly hand out the
same task, even long after the task completes. This is all very convenient, but it means
that these task types also have some overheads. For more constrained cases, .NET
defines less flexible ValueTask and ValueTask<T> types that are more efficient in cer‐
tain circumstances.

Tasks | 695



The most important difference between these types and their ordinary counterparts is
that ValueTask and ValueTask<T> are value types. This is significant in performance-
sensitive code because it can reduce the number of objects that code allocates, reduc‐
ing the amount of time an application spends performing garbage collection work.
You might be thinking that the context switching costs typically involved with con‐
current work are likely to be high enough that the cost of an object allocation will be
the least of your concerns when dealing with asynchronous operations. And while
this is often true, there’s one very important scenario where the GC overhead of
Task<T> can be problematic: operations that sometimes run slowly but usually don’t.

It is very common for I/O APIs to perform buffering to reduce the number of calls
into the OS. If you write a few bytes into a Stream, it will typically put those into a
buffer, and wait until either you’ve written enough data to make it worth sending it to
the OS, or you’ve explicitly called Flush. And it’s also common for reads to be buf‐
fered—if you read a single byte from a file, the OS will typically have to read an entire
sector from the disk (usually at least 4 KB), and that data usually gets saved some‐
where in memory so that when you ask for the second byte, no more I/O needs to
happen. The practical upshot is that if you write a loop that reads data from a file in
relatively small chunks (e.g., one line of text at a time), the majority of read opera‐
tions will complete straightaway because the data being read has already been
fetched.

In these cases where the overwhelming majority of calls into asynchronous APIs
complete immediately, the GC overheads of creating task objects can become signifi‐
cant. This is why .NET Core 2.0 introduced ValueTask and ValueTask<T>. (These are
also available on older versions of .NET via the System.Threading.Tasks.Exten
sions NuGet package, and they are part of .NET Standard 2.1.) These make it possi‐
ble for potentially asynchronous operations to complete immediately without
needing to allocate any objects. In cases where immediate completion is not possible,
these types end up being wrappers for Task or Task<T> objects, at which point the
overheads return, but in cases where only a small fraction of calls need to do that,
these types can offer significant performance boosts, particularly in code that uses the
low-allocation techniques described in Chapter 18.

ValueTask is rarely used, because asynchronous operations that produce no result
can just return the Task.CompletedTask static property, which provides a reusable
task that is already in the completed state, avoiding any GC overhead. But tasks that
need to produce a result generally can’t reuse existing tasks. (There are some excep‐
tions: the .NET class library will often use cached precompleted tasks for Task<bool>,
because there are only two possible outcomes. But for Task<int>, there’s no practical
way to maintain a list of precompleted tasks for every possible result.)

These value task types have some constraints. They are single use: unlike Task and
Task<T>, you must not store these types in a dictionary or a Lazy<T> to provide a
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cached asynchronous value. It is an error to attempt to retrieve the Result of a Value
Task<T> before it has completed. It is also an error to retreive the Result more than
once. In general, you should use a ValueTask or ValueTask<T> with exactly one
await operation (as described in Chapter 17) and then never use it again. (Alterna‐
tively, if necessary, you can escape these restrictions by calling its AsTask method to
obtain a full Task, or Task<T> with all the corresponding overheads, at which point
you should not do anything more with the value task.)

Because the value type tasks were introduced many years after the TPL first
appeared, .NET class libraries often use Task<T> where you might expect to see a Val
ueTask<T>. For example, the Stream class’s ReadAsync methods are all prime candi‐
dates, but because most of those were defined long before ValueTask<T> existed, they
mostly return Task<T>. The recently added overload that accepts a Memory<byte>
instead of a byte[] does return a ValueTask<T>, though, and more generally, where
APIs have been augmented to add support for the new memory-efficient techniques
described in Chapter 18, these will usually return ValueTask<T>. And if you’re in a
performance-sensitive world where the GC overhead of a task is significant, you will
likely want to be using those techniques in any case.

Task creation options

Instead of using Task.Run, you can get more control over certain aspects of a new
thread-based task by creating it with the StartNew method of either Task.Factory or
Task<T>.Factory, depending on whether your task needs to return a result. Some
overloads of StartNew take an argument of the enum type TaskCreationOptions,
which provides some control over how the TPL schedules the task.

The PreferFairness flag asks to opt out of the cache-friendly FIFO scheduling that
the thread pool normally uses for tasks, and instead aims to run the task after any
tasks that have already been scheduled (much like the legacy behavior you get if you
use the ThreadPool class directly).

The LongRunning flag warns the TPL that the task may run for a long time. By
default, the TPL’s scheduler optimizes for relatively short work items—anything up
to a few seconds. This flag indicates that the work might take longer than that, in
which case the TPL may modify its scheduling. If there are too many long-running
tasks, they might use up all the threads, and even though some of the queued work
items might be for much shorter pieces of work, those will still take a long time to
finish, because they’ll have to wait in line behind the slow work before they can even
start. But if the TPL knows which items are likely to run quickly and which are likely
to be slower, it can prioritize them differently to avoid such problems.

The other TaskCreationOptions settings relate to parent/child task relationships and
schedulers, which I’ll describe later.
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Task status

A task goes through a number of states in its lifetime, and you can use the Task class’s
Status property to discover where it has gotten to. This returns a value of the enum
type TaskStatus. If a task completes successfully, the property will return the enu‐
meration’s RanToCompletion value. If the task fails, it will be Faulted. If you cancel a
task using the technique shown in “Cancellation” on page 708, the status will then be
Canceled.

There are several variations on a theme of “in progress,” of which Running is the most
obvious—it means that some thread is currently executing the task. A task represent‐
ing I/O doesn’t typically require a thread while it is in progress, so it never enters that
state—it starts in the WaitingForActivation state and then typically transitions
directly to one of the three final states (RanToCompletion, Faulted, or Canceled). A
thread-based task can also be in this WaitingForActivation state, but only if some‐
thing is preventing it from running, which would typically happen if you set it up to
run only when some other task completes (which I’ll show how to do shortly). A
thread-based task may also be in the WaitingToRun state, which means that it’s in a
queue waiting for a thread pool thread to become available. It’s possible to establish
parent/child relationships between tasks, and a parent that has already finished but
that created some child tasks that are not yet complete will be in the WaitingForChil
drenToComplete state.

Finally, there’s the Created state. You don’t see this very often, because it represents a
thread-based task that you have created but have not yet asked to run. You’ll never
see this with a task created using the task factory’s StartNew method, or with
Task.Run, but you will see this if you construct a new Task directly.

The level of detail in the TaskStatus property may not be very interesting most of the
time, so the Task class defines various simpler bool properties. If you want to know
only whether the task has no more work to do (and don’t care whether it succeeded,
failed, or was cancelled), there’s the IsCompleted property. If you want to check for
failure or cancellation, use IsFaulted or IsCanceled.

Retrieving the result

Suppose you’ve got a Task<T>, either from an API that provides one, or by creating a
thread-based task that returns a value. If the task completes successfully, you are
likely to want to retrieve its result. Predictably enough, you get this from the Result
property. So the task created by Example 16-15 makes the web page content available
in webGetTask.Result.

If you try to read the Result property before the task completes, it will block your
thread until the result is available. (If you have a plain Task, which does not return a
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result, and you would like to wait for that to finish, you can just call Wait instead.) If
the operation then fails, Result throws an exception (as does Wait), although that is
not as straightforward as you might expect, as I will discuss in “Error Handling” on
page 704.

You should avoid using Result on an uncompleted task. In some
scenarios, it risks deadlock. This is particularly common in desktop
applications, because certain work needs to happen on particular
threads, and if you block a thread by reading the Result of an
incomplete task, you might prevent the task from completing. The
task may have been depending indirectly on some other work to
finish, and if that other work needs to be run on the same thread
that you’ve just blocked, you’ve caused a deadlock. Even if you
don’t deadlock, blocking on Result can cause performance issues
by hogging thread pool threads that might otherwise have been
able to get on with useful work. And reading Result in an uncom‐
pleted ValueTask<T> is not permitted.

In most cases, it is far better to use C#’s asynchronous language features to retrieve
the result. These are the subject of the next chapter, but as a preview, Example 16-16
shows how you could use this to get the result of the task that fetches a web page.
(You’ll need to apply the async keyword in front of the method declaration to be able
to use the await keyword.)

Example 16-16. Getting a task’s results with await

string pageContent = await webGetTask;

This may not look like an exciting improvement on simply writing webGet
Task.Result, but as I’ll show in Chapter 17, this code is not quite what it seems—the
C# compiler restructures this statement into a callback-driven state machine that
enables you to get the result without blocking the calling thread. (If the operation
hasn’t finished, the thread returns to the caller, and the remainder of the method
runs some time later when the operation completes.)

If you’re not using the asynchronous language features, how should you discover
when a task has completed? Result or Wait let you just sit and wait for that to hap‐
pen, blocking the thread, but that rather defeats the purpose of using an asynchro‐
nous API in the first place. You will normally want to be notified when the task
completes, and you can do this with a continuation.
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Continuations
Tasks provide various overloads of a method called ContinueWith. This creates a new
thread-based task that will execute when the task on which you called ContinueWith
finishes (whether it does so successfully or with failure or cancellation).
Example 16-17 uses this on the task created in Example 16-15.

Example 16-17. A continuation

webGetTask.ContinueWith(t =>
{
    string webContent = t.Result;
    Console.WriteLine("Web page length: " + webContent.Length);
});

A continuation task is always a thread-based task (regardless of whether its antece‐
dent task was thread-based, I/O-based, or something else). The task gets created as
soon as you call ContinueWith, but does not become runnable until its antecedent
task completes. (It starts out in the WaitingForActivation state.)

A continuation is a task in its own right—ContinueWith returns
either a Task<T> or Task, depending on whether the delegate you
supply returns a result. You can set up a continuation for a contin‐
uation if you want to chain together a sequence of operations.

The method you provide for the continuation (such as the lambda in Example 16-17)
receives the antecedent task as its argument, and I’ve used this to retrieve the result. I
could also have used the webGetTask variable, which is in scope from the containing
method, as it refers to the same task. However, by using the argument, the lambda in
Example 16-17 doesn’t use any variables from its containing method, which enables
the compiler to produce slightly more efficient code—it doesn’t need to create an
object to hold shared variables, and it can reuse the delegate instance it creates
because it doesn’t have to create a context-specific one for each call. This means I
could also easily separate this out into an ordinary noninline method, if I felt that
would make the code easier to read.

You might be thinking that there’s a possible problem in Example 16-17: what if the
download completes extremely quickly, so that webGetTask has already completed
before the code manages to attach the continuation? In fact, that doesn’t matter—if
you call ContinueWith on a task that has already completed, it will still run the con‐
tinuation. It just schedules it immediately. You can attach as many continuations as
you like. All the continuations you attach before the task completes will be scheduled
for execution when it does complete. And any that you attach after the task has com‐
pleted will be scheduled immediately.
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By default, a continuation task will be scheduled for execution on the thread pool like
any other task. However, there are some things you can do to change how it runs.

Continuation options

Some overloads of ContinueWith take an argument of the enum type TaskContinua
tionOptions, which controls how (and whether) your task is scheduled. This
includes all of the same options that are available with TaskCreationOptions, but
adds some others specific to continuations.

You can specify that the continuation should run only in certain circumstances. For
example, the OnlyOnRanToCompletion flag will ensure that the continuation runs
only if the antecedent task succeeds. The OnlyOnFaulted and OnlyOnCanceled flags
have obvious similar meanings. Alternatively, you can specify NotOnRanToComple
tion, which means that the continuation will run only if the task either faults or is
cancelled.

You can create multiple continuations for a single task. So you
could set up one to handle the success case, and another one to
handle failures.

You can also specify ExecuteSynchronously. This indicates that the continuation
should not be scheduled as a separate work item. Normally, when a task completes,
any continuations for that task will be scheduled for execution and will have to wait
until the normal thread pool mechanisms pick the work items out of the queue and
execute them. (This won’t take long if you use the default options—unless you specify
PreferFairness, the LIFO operation the thread pool uses for tasks, which means that
the most recently scheduled items run first.) However, if your completion does only
the tiniest amount of work, the overhead of scheduling it as a completely separate
item may be overkill. So ExecuteSynchronously lets you piggyback the completion
task on the same thread pool work item that ran the antecedent—the TPL will run
this kind of continuation immediately after the antecedent finishes before returning
the thread to the pool. You should use this option only if the continuation will run
quickly.

The LazyCancellation option handles a tricky situation that can occur if you make
tasks cancellable (as described later in “Cancellation” on page 708), and you are using
continuations. If you cancel a task, any continuations will, by default, become runna‐
ble instantly. If the task being cancelled was itself set up as a continuation for another
task that hadn’t yet finished, and if it has a continuation of its own, as Example 16-18
shows, this can have a mildly surprising effect.
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Example 16-18. Cancellation and chained continuations

private static void ShowContinuations()
{
    Task op = Task.Run(DoSomething);
    var cs = new CancellationTokenSource();
    Task onDone = op.ContinueWith(
        _ => Console.WriteLine("Never runs"),
        cs.Token);
    Task andAnotherThing = onDone.ContinueWith(
        _ => Console.WriteLine("Continuation's continuation"));
    cs.Cancel();
}

static void DoSomething()
{
    Thread.Sleep(1000);
    Console.WriteLine("Initial task finishing");
}

This creates a task that will call DoSomething, followed by a cancellable continuation
for that task (the Task in onDone), and then a final task that is a continuation for the
first continuation (andAnotherThing). This code cancels almost immediately, which
is almost certain to happen before the first task completes. The effect of this is that
the final task runs before the first completes. The final andAnotherThing task
becomes runnable when onDone completes, even if that completion was due to
onDone being cancelled. Since there was a chain here—andAnotherThing is a continu‐
ation for onDone which is a continuation for op—it is a bit odd that andAnotherThing
ends up running before op has finished. LazyCancellation changes the behavior so
that the first continuation will not be deemed to have completed until its antecedent
completes, meaning that the final continuation will run only after the first task has
finished.

There’s another mechanism for controlling how tasks execute: you can specify a
scheduler.

Schedulers
All thread-based tasks are executed by a TaskScheduler. By default, you’ll get the
TPL-supplied scheduler that runs work items via the thread pool. However, there are
other kinds of schedulers, and you can even write your own.

The most common reason for selecting a nondefault scheduler is to handle thread
affinity requirements. The TaskScheduler class’s static FromCurrentSynchroniza
tionContext method returns a scheduler based on the current synchronization con‐
text for whichever thread you call the method from. This scheduler will execute all
work via that synchronization context. So, if you call FromCurrentSynchronization
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Context from a UI thread, the resulting scheduler can be used to run tasks that can
safely update the UI. You would typically use this for a continuation—you can run
some task-based asynchronous work, and then hook up a continuation that updates
the UI when that work is complete. Example 16-19 shows this technique in use in the
codebehind file for a window in a WPF application.

Example 16-19. Scheduling a continuation on the UI thread

public partial class MainWindow : Window
{
    public MainWindow()
    {
        InitializeComponent();
    }

    private static readonly HttpClient w = new HttpClient();
    private readonly TaskScheduler _uiScheduler =
        TaskScheduler.FromCurrentSynchronizationContext();

    private void FetchButtonClicked(object sender, RoutedEventArgs e)
    {
        string url = "https://endjin.com/";
        Task<string> webGetTask = w.GetStringAsync(url);

        webGetTask.ContinueWith(t =>
        {
            string webContent = t.Result;
            outputTextBox.Text = webContent;
        },
        _uiScheduler);

    }
}

This uses a field initializer to obtain the scheduler—the constructor for a UI element
runs on the UI thread, so this will get a scheduler for the synchronization context for
the UI thread. A click handler then downloads a web page using the HttpClient
class’s GetStringAsync. This runs asynchronously, so it won’t block the UI thread,
meaning that the application will remain responsive while the download is in pro‐
gress. The method sets up a continuation for the task using an overload of Continue
With that takes a TaskScheduler. This ensures that when the task that gets the
content completes, the lambda passed to ContinueWith runs on the UI thread, so it’s
safe for it to access UI elements.
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While this works perfectly well, the await keyword described in the
next chapter provides a more straightforward solution to this par‐
ticular problem.

The .NET class library provides three built-in kinds of schedulers. There’s the default
one that uses the thread pool, and the one I just showed that uses a synchronization
context. The third is provided by a class called ConcurrentExclusiveSchedulerPair,
and as the name suggests, this provides two schedulers, which it makes available
through properties. The ConcurrentScheduler property returns a scheduler that will
run tasks concurrently much like the default scheduler. The ExclusiveScheduler
property returns a scheduler that can be used to run tasks one at a time, and it will
temporarily suspend the other scheduler while it does so. (This is reminiscent of the
reader/writer synchronization semantics I described earlier in the chapter—it allows
exclusivity when required, but concurrency the rest of the time.)

Error Handling
A Task object indicates when its work has failed by entering the Faulted state. There
will always be at least one exception associated with failure, but the TPL allows com‐
posite tasks—tasks that contain a number of subtasks. This makes it possible for mul‐
tiple failures to occur, and the root task will report them all. Task defines an
Exception property, and its type is AggregateException. You may recall from Chap‐
ter 8 that as well as inheriting the InnerException property from the base Exception
type, AggregateException defines an InnerExceptions property that returns a col‐
lection of exceptions. This is where you will find the complete set of exceptions that
caused the task to fault. (If the task was not a composite task, there will usually be just
one.)

If you attempt to get the Result property or call Wait on a faulted task, it will throw
the same AggregateException as it would return from the Exception property. A
faulted task remembers whether you have used at least one of these members, and if
you have not yet done so, it considers the exception to be unobserved. The TPL uses
finalization to track faulted tasks with unobserved exceptions, and if you allow such a
task to become unreachable, the TaskScheduler will raise its static UnobservedTas
kException event. This gives you one last chance to do something about the excep‐
tion, after which it will be lost.

Custom Threadless Tasks
Many I/O-based APIs return threadless tasks. You can do the same if you want. The
TaskCompletionSource<T> class provides a way to create a Task<T> that does not
have an associated method to run on the thread pool, and instead completes when
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you tell it to. There’s no nongeneric TaskCompletionSource, but there doesn’t need
to be. Task<T> derives from Task, so you can just pick any type argument. By conven‐
tion, most developers use TaskCompletionSource<object> when they don’t need to
provide a return value.

Suppose you’re using a class that does not provide a task-based API, and you’d like to
add a task-based wrapper. The SmtpClient class I used in Example 16-12 supports
the older event-based asynchronous pattern, but not the task-based one.
Example 16-20 uses that API in conjunction with TaskCompletionSource<object> to
provide a task-based wrapper. (And, yes, there are two spellings of Canceled/Cancel
led in there. The TPL consistently uses Canceled, but older APIs exhibit more
variety.)

Example 16-20. Using TaskCompletionSource<T>

public static class SmtpAsyncExtensions
{
    public static Task SendTaskAsync(this SmtpClient mailClient, string from,
                                string recipients, string subject, string body)
    {
        var tcs = new TaskCompletionSource<object>();

        void CompletionHandler(object s, AsyncCompletedEventArgs e)
        {
            mailClient.SendCompleted -= CompletionHandler;
            if (e.Cancelled)
            {
                tcs.SetCanceled();
            }
            else if (e.Error != null)
            {
                tcs.SetException(e.Error);
            }
            else
            {
                tcs.SetResult(null);
            }
        };

        mailClient.SendCompleted += CompletionHandler;
        mailClient.SendAsync(from, recipients, subject, body, null);

        return tcs.Task;
    }
}

The SmtpClient notifies us that the operation is complete by raising an event. The
handler for this event first detaches itself (so that it doesn’t run a second time if
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something uses that same SmtpClient for further work). Then it detects whether the
operation succeeded, was cancelled, or failed, and calls the SetResult, SetCanceled,
or SetException method, respectively, on the TaskCompletionSource<object>. This
will cause the task to transition into the relevant state, and will also take care of run‐
ning any continuations attached to that task. The completion source makes the
threadless Task object it creates available through its Task property, which this
method returns.

Parent/Child Relationships
If a thread-based task’s method creates a new thread-based task, then by default,
there will be no particular relationship between those tasks. However, one of the Task
CreationOptions flags is AttachedToParent, and if you set this, the newly created
task will be a child of the task currently executing. The significance of this is that the
parent task won’t report completion until all its children have completed. (Its own
method also needs to complete, of course.) If any children fault, the parent task will
fault, and it will include all the children’s exceptions in its own AggregateException.

You can also specify the AttachedToParent flag for a continuation. Be aware that this
does not make it a child of its antecedent task. It will be a child of whichever task was
running when ContinueWith was called to create the continuation.

Threadless tasks (e.g., most tasks representing I/O) often cannot be
made children of another task. If you’re creating one yourself
through a TaskCompletionSource<T>, you can do it because that
class has a constructor overload that accepts a TaskCreationOp
tions. However, the majority of .NET APIs that return tasks do
not provide a way to request that the task be a child.

Parent/child relationships are not the only way of creating a task whose outcome is
based on multiple other items.

Composite Tasks
The Task class has static WhenAll and WhenAny methods. Each of these has overloads
that accept either a collection of Task objects or a collection of Task<T> objects as the
only argument. The WhenAll method returns either a Task or a Task<T[]> that com‐
pletes only when all of the tasks provided in the argument have completed (and in the
latter case, the composite task produces an array containing each of the individual
tasks’ results). The WhenAny method returns a Task<Task> or Task<Task<T>> that
completes as soon as the first task completes, providing that task as the result.
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As with a parent task, if any of the tasks that make up a task produced with WhenAll
fail, the exceptions from all of the failed tasks will be available in the composite task’s
AggregateException. (WhenAny does not report errors. It completes as soon as the
first task completes, and you must inspect that to discover if it failed.)

You can attach a continuation to these tasks, but there’s a slightly more direct route.
Instead of creating a composite task with WhenAll or WhenAny and then calling Con
tinueWith on the result, you can just call the ContinueWhenAll or ContinueWhenAny
method of a task factory. Again, these take a collection of Task or Task<T>, but they
also take a method to invoke as the continuation.

Other Asynchronous Patterns
Although the TPL provides the preferred mechanism for exposing asynchronous
APIs, .NET had been around for almost a decade before it was added, so you will
come across older approaches. The longest established form is the Asynchronous
Programming Model (APM). This was introduced in .NET 1.0, so it is widely imple‐
mented, but its use is now discouraged. With this pattern, methods come in pairs:
one to start the work, and a second to collect the results when it is complete.
Example 16-21 shows just such a pair from the Stream class in the System.IO name‐
space, and it also shows the corresponding synchronous method. (Code written today
should use a task-based WriteAsync instead.)

Example 16-21. An APM pair and the corresponding synchronous method

public virtual IAsyncResult BeginWrite(byte[] buffer, int offset, int count,
    AsyncCallback callback, object state) ...
public virtual void EndWrite(IAsyncResult asyncResult) ...

public abstract void Write(byte[] buffer, int offset, int count) ...

Notice that the first three arguments of the BeginWrite method are identical to those
of the Write method. In the APM, the BeginXxx method takes all of the inputs (i.e.,
any normal arguments and any ref arguments, but not out arguments, should any be
present). The EndXxx method provides any outputs, which means the return value,
any ref arguments (because those can pass information either in or out), and any out
arguments.

The BeginXxx method also takes two additional arguments: a delegate of type
AsyncCallback, which will be invoked when the operation completes, and an argu‐
ment of type object that accepts any object you would like to associate with the oper‐
ation (or null if you have no use for this). This method also returns an
IAsyncResult, which represents the asynchronous operation.
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When your completion callback gets invoked, you can call the EndXxx method, pass‐
ing in the same IAsyncResult object returned by the BeginXxx method, and this will
provide the return value if there is one. If the operation failed, the EndXxx method
will throw an exception.

You can wrap APIs that use the APM with a Task. The TaskFactory objects provided
by Task and Task<T> provide FromAsync methods to which you can pass a pair of del‐
egates for the BeginXxx and EndXxx methods, and you also pass any arguments that
the BeginXxx method requires. This will return a Task or Task<T> that represents the
operation.

Another common older pattern is the Event-based Asynchronous Pattern (EAP).
You’ve seen an example in this chapter—it’s what the SmtpClient uses. With this
pattern, a class provides a method that starts the operation and a corresponding event
that it raises when the operation completes. The method and event usually have
related names, such as SendAsync and SendCompleted. An important feature of this
pattern is that the method captures the synchronization context and uses that to raise
the event, meaning that if you use an object that supports this pattern in UI code, it
effectively presents a single-threaded asynchronous model. This makes it much easier
to use than the APM, because you don’t need to write any extra code to get back onto
the UI thread when asynchronous work completes.

There’s no automated mechanism for wrapping the EAP in a task, but as I showed in
Example 16-20, it’s not particularly hard to do.

There’s one more common pattern used in asynchronous code: the awaitable pattern
supported by the C# asynchronous language features (the async and await key‐
words). As I showed in Example 16-16, you can consume a TPL task directly with
these features, but the language does not recognize Task directly, and it’s possible to
await things other than tasks. You can use the await keyword with anything that
implements a particular pattern. I will show this in Chapter 17.

Cancellation
.NET defines a standard mechanism for cancelling slow operations. Cancellable oper‐
ations take an argument of the type CancellationToken, and if you set this into a
cancelled state, the operation will stop early if possible instead of running to comple‐
tion.

The CancellationToken type itself does not offer any methods to initiate cancellation
—the API is designed so that you can tell operations when you want them to be can‐
celled without giving them power to cancel whatever other operations you have asso‐
ciated with the same CancellationToken. The act of cancellation is managed through
a separate object, CancellationTokenSource. As the name suggests, you can use this
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to get hold of any number of CancellationToken instances. If you call the Cancella
tionTokenSource object’s Cancel method, that sets all of the associated Cancella
tionToken instances into a cancelled state.

Some of the synchronization mechanisms I described earlier can be passed a Cancel
lationToken. (The ones that derive from WaitHandle cannot, because the underlying
Windows primitives do not support .NET’s cancellation model. Monitor also does
not support cancellation, but many newer APIs do.) It’s also common for task-based
APIs to take a cancellation token, and the TPL itself also offers overloads of the Start
New and ContinueWith methods that take them. If the task has already started to run,
there’s nothing the TPL can do to cancel it, but if you cancel a task before it begins to
run, the TPL will take it out of the scheduled task queue for you. If you want to be
able to cancel your task after it starts running, you’ll need to write code in the body of
your task that inspects the CancellationToken, and abandons the work if its IsCan
cellationRequested property is true.

Cancellation support is not ubiquitous, because it’s not always possible. Some opera‐
tions simply cannot be cancelled. For example, once a message has been sent out over
the network, you can’t unsend it. Some operations allow work to be cancelled up
until some point of no return has been reached. (If a message is queued up to be sent
but hasn’t actually been sent, then it might not be too late to cancel, for example.)
This means that even when cancellation is offered, it might not do anything. So,
when you use cancellation, you need to be prepared for it not to work.

Parallelism
The .NET class library includes some classes that can work with collections of data
concurrently on multiple threads. There are three ways to do this: the Parallel class,
Parallel LINQ, and TPL Dataflow.

The Parallel Class
The Parallel class offers three static methods: For, Foreach, and Invoke. The last of
those takes an array of delegates and executes all of them, potentially in parallel.
(Whether it decides to use parallelism depends on various factors such as the number
of hardware threads the computer has, how heavily loaded the system is, and how
many items you want it to process.) The For and Foreach methods mimic the C#
loop constructs of the same names, but they will also potentially execute iterations in
parallel.

Example 16-22 illustrates the use of Parallel.For in code that performs a convolu‐
tion of two sets of samples. This is a highly repetitive operation commonly used in
signal processing. (In practice, a fast Fourier transform offers a more efficient way to
perform this work unless the convolution kernel is small, but the complexity of that
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code would have obscured the main subject here, the Parallel class.) It produces
one output sample for each input sample. Each output sample is produced by calcu‐
lating the sum of a series of pairs of values from the two inputs, multiplied together.
For large data sets, this can be time consuming, so it is the sort of work you might
want to speed up by spreading it across multiple processors. Each individual output
sample’s value can be calculated independently of all the others, so it is a good candi‐
date for parallelization.

Example 16-22. Parallel convolution

static float[] ParallelConvolution(float[] input, float[] kernel)
{
    float[] output = new float[input.Length];
    Parallel.For(0, input.Length, i =>
    {
        float total = 0;
        for (int k = 0; k < Math.Min(kernel.Length, i + 1); ++k)
        {
            total += input[i - k] * kernel[k];
        }
        output[i] = total;
    });

    return output;
}

The basic structure of this code is very similar to a pair of nested for loops. I’ve sim‐
ply replaced the outer for loop with a call to Parallel.For. (I’ve not attempted to
parallelize the inner loop—if you make each individual step trivial, Parallel.For will
spend more of its time in housekeeping work than it does running your code.)

The first argument, 0, sets the initial value of the loop counter, and the second sets
the upper limit. The final argument is a delegate that will be invoked once for each
value of the loop counter, and the calls will occur concurrently if the Parallel class’s
heuristics tell it that this is likely to produce a speedup as a result of the work running
in parallel. Running this method with large data sets on a multicore machine causes
all of the available hardware threads to be used to full capacity.

It may be possible to get better performance by partitioning the work in more cache-
friendly ways—naive parallelization can give the impression of high performance by
maxing out all your CPU cores while delivering suboptimal throughput. However,
there is a trade-off between complexity and performance, and the simplicity of the
Parallel class can often provide worthwhile wins for relatively little effort.
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Parallel LINQ
Parallel LINQ is a LINQ provider that works with in-memory information, much like
LINQ to Objects. The System.Linq namespace makes this available as an extension
method called AsParallel defined for any IEnumerable<T> (by the ParallelEnumera
ble class). This returns a ParallelQuery<T>, which will support the usual LINQ
operators.

Any LINQ query built this way provides a ForAll method, which takes a delegate.
When you call this, it invokes the delegate for all of the items that the query pro‐
duces, and it will do so in parallel on multiple threads where possible.

TPL Dataflow
TPL dataflow is a .NET class library feature that lets you construct a graph of objects
that perform some kind of processing on information that flows through them. You
can tell the TPL which of these nodes needs to process information sequentially, and
which are happy to work on multiple blocks of data simultaneously. You push data
into the graph, and the TPL will then manage the process of providing each node
with blocks to process, and it will attempt to optimize the level of parallelism to
match the resources available on your computer.

The dataflow API, which is in the System.Threading.Tasks.Dataflow namespace
(which you’ll find in a NuGet package of the same name), is large and complex and
could have a whole chapter to itself. Sadly, this makes it beyond the scope of this
book. I mention it because it’s worth being aware of for certain kinds of work.

Summary
Threads provide the ability to execute multiple pieces of code simultaneously. On a
computer with multiple CPU execution units (i.e., multiple hardware threads), you
can exploit this potential for parallelism by using multiple software threads. You can
create new software threads explicitly with the Thread class, or you can use either the
thread pool or a parallelization mechanism, such as the Parallel class or Parallel
LINQ, to determine automatically how many threads to use to run the work your
application supplies. Threads can also provide a way to execute multiple concurrent
operations that do not need the CPU the whole time (e.g., waiting for a response
from an external service), but it is often more efficient to perform such work with
asynchronous APIs (where available). The Task Parallel Library (TPL) provides
abstractions that are useful for both kinds of concurrency. It can manage multiple
work items in the thread pool, with support for combining multiple operations and
handling potentially complex error scenarios, and its Task abstraction can also repre‐
sent inherently asynchronous operations. If multiple threads need to use and modify
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shared data structures, you will need to use the synchronization mechanisms offered
by .NET to ensure that the threads can coordinate their work correctly.
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CHAPTER 17

Asynchronous Language Features

C# provides language-level support for using and implementing asynchronous meth‐
ods. Asynchronous APIs are often the most efficient way to use certain services. For
example, most I/O is handled asynchronously inside the OS kernel, because most
peripherals, such as disk controllers or network adapters, are able to do the majority
of their work autonomously. They need the CPU to be involved only at the start and
end of each operation.

Although many of the services offered by operating systems are intrinsically asyn‐
chronous, developers often choose to use them through synchronous APIs (i.e., ones
that do not return until the work is complete). This is a waste of resources, because
they block the thread until the I/O completes. Threads have overheads, and to get the
best performance it’s usually best to have a relatively small number of OS threads.
Ideally, your application would have only as many OS threads as you have hardware
threads, but that’s optimal only if you can ensure that threads only ever block when
there’s no outstanding work for them to do. (Chapter 16 described the difference
between OS threads and hardware threads.) The more threads that get blocked inside
synchronous API calls, the more threads you’ll need to handle your workload, reduc‐
ing efficiency. In performance-sensitive code, asynchronous APIs are useful, because
instead of wasting resources by forcing a thread to sit and wait for I/O to complete, a
thread can kick off the work and then do something else productive in the meantime.

The problem with asynchronous APIs is that they can be significantly more complex
to use than synchronous ones, particularly if you need to coordinate multiple related
operations and deal with errors. This is why developers often chose the less efficient
synchronous alternatives back in the days before any mainstream programming lan‐
guages provided built-in support. In 2012, C# and VB brought such features out of
the research labs, and since then many other popular languages have added analo‐
gous features (most notably JavaScript, which acquired a very similar-looking syntax



in 2016). The asynchronous features in C# make it possible to write code that uses
efficient asynchronous APIs while retaining most of the simplicity of code that uses
simpler synchronous APIs.

The asynchronous features are also useful in some scenarios in which maximizing
throughput is not the primary performance goal. With client-side code, it’s important
to avoid blocking the UI thread to maintain responsiveness, and asynchronous APIs
provide one way to do that. The language support for asynchronous code can handle
thread affinity issues, which greatly simplifies the job of writing highly responsive UI
code.

Asynchronous Keywords: async and await
C# presents its support for asynchronous code through two keywords: async and
await. The first of these is not meant to be used on its own. You put the async key‐
word in a method’s declaration, and this tells the compiler that you intend to use
asynchronous features in the method. If this keyword is not present, you are not
allowed to use the await keyword. This is arguably redundant—the compiler pro‐
duces an error if you attempt to use await without async. If it knows when a
method’s body is trying to use asynchronous features, why do we need to tell it
explicitly? There are two reasons. First, as you’ll see, these features radically change
the behavior of the code the compiler generates, so it’s useful for anyone reading the
code to see a clear indication that the method behaves asynchronously. Second, await
wasn’t always a keyword in C#, so developers were once free to use it as an identifier.
Perhaps Microsoft could have designed the grammar for await so that it acts as a
keyword only in very specific contexts, enabling you to continue to use it as an identi‐
fier in all other scenarios, but the C# team decided to take a slightly more coarse-
grained approach: you cannot use await as an identifier inside an async method, but
it’s a valid identifier anywhere else.

The async keyword does not change the signature of the method. It
determines how the method is compiled, not how it is used.

So the async keyword simply declares your intention to use the await keyword.
(While you mustn’t use await without async, it’s not an error to apply the async
keyword to a method that doesn’t use await. However, it would serve no purpose, so
the compiler will generate a warning if you do this.) Example 17-1 shows a fairly typi‐
cal example. This uses the HttpClient class to request just the headers for a particu‐
lar resource (using the standard HEAD verb that the HTTP protocol defines for this

714

714 | Chapter 17: Asynchronous Language Features



purpose). It then displays the results in a UI control—this method is part of the
codebehind for a UI that includes a TextBox named headerListTextBox.

Example 17-1. Using async and await when fetching HTTP headers

// Note: as you'll see later, async methods usually should not be void
private async void FetchAndShowHeaders(string url, IHttpClientFactory cf)
{
    using (HttpClient w = cf.CreateClient())
    {
        var req = new HttpRequestMessage(HttpMethod.Head, url);
        HttpResponseMessage response =
            await w.SendAsync(req, HttpCompletionOption.ResponseHeadersRead);

        headerListTextBox.Text = response.Headers.ToString();
    }
}

This code contains a single await expression, shown in bold. You use the await key‐
word in an expression that may take some time to produce a result, and it indicates
that the remainder of the method should not execute until that operation is complete.
This sounds a lot like what a blocking, synchronous API does, but the difference is
that an await expression does not block the thread—this code is not quite what it
seems.

The HttpClient class’s SendAsync method returns a Task<HttpResponseMessage>,
and you might be wondering why we wouldn’t just use its Result property. As you
saw in Chapter 16, if the task is not complete, this property blocks the thread until
the result is available (or the task fails, in which case it will throw an exception
instead). However, this is a dangerous thing to do in a UI application: if you block the
UI thread by trying to read the Result of an incomplete task, you will prevent pro‐
gress of any operations that need to run on that thread. Since a lot of the work that UI
applications do needs to happen on the UI thread, blocking that thread in this way
more or less guarantees that deadlock will occur sooner or later, causing the applica‐
tion to freeze. So don’t do that!

Although the await expression in Example 17-1 does something that is logically simi‐
lar to reading Result, it works very differently. If the task’s result is not available
immediately, the await keyword does not make the thread wait, despite what its
name suggests. Instead, it causes the containing method to return. You can use a
debugger to verify that FetchAndShowHeaders returns immediately. For example, if I
call that method from the button click event handler shown in Example 17-2, I can
put a breakpoint on the Debug.WriteLine call in that handler, and another break‐
point on the code in Example 17-1 that will update the headerListTextBox.Text
property.
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Example 17-2. Calling the asynchronous method

private void fetchHeadersButton_Click(object sender, RoutedEventArgs e)
{
    FetchAndShowHeaders("https://endjin.com/", this.clientFactory);
    Debug.WriteLine("Method returned");
}

Running this in the debugger, I find that the code hits the breakpoint on the last
statement of Example 17-2 before it hits the breakpoint on the final statement of
Example 17-1. In other words, the section of Example 17-1 that follows the await
expression runs after the method has returned to its caller. Evidently, the compiler is
somehow arranging for the remainder of the method to be run via a callback that
occurs once the asynchronous operation completes.

Visual Studio’s debugger plays some tricks when you debug asyn‐
chronous methods to enable you to step through them as though
they were normal methods. This is usually helpful, but it can some‐
times conceal the true nature of execution. The debugging steps I
just described were contrived to defeat Visual Studio’s attempts to
be clever, and instead to reveal what is really happening.

Notice that the code in Example 17-1 expects to run on the UI thread because it
modifies the text box’s Text property toward the end. Asynchronous APIs do not
necessarily guarantee to notify you of completion on the same thread on which you
started the work—in fact, most won’t. Despite this, Example 17-1 works as intended,
so as well as converting half of the method to a callback, the await keyword is han‐
dling thread affinity issues for us.

The C# compiler evidently performs some major surgery on your code each time you
use the await keyword. In older versions of C#, if you wanted to use this asynchro‐
nous API and then update the UI, you would need to have written something like
Example 17-3. This uses a technique I showed in Chapter 16: it sets up a continuation
for the task returned by SendAsync, using a TaskScheduler to ensure that the contin‐
uation’s body runs on the UI thread.

Example 17-3. Manual asynchronous coding

private void OldSchoolFetchHeaders(string url, IHttpClientFactory cf)
{
    HttpClient w = cf.CreateClient();
    var req = new HttpRequestMessage(HttpMethod.Head, url);

    var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
    w.SendAsync(req, HttpCompletionOption.ResponseHeadersRead)
        .ContinueWith(sendTask =>
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1 This example is a bit contrived so that I can illustrate how using works in async methods. Disposing an
HttpClient obtained from an IHttpClientFactory is normally optional, and in cases where you new up an
HttpClient directly, it’s better to hang on to it and reuse it, as discussed in “Optional Disposal” on page 339.

        {
            try
            {
                HttpResponseMessage response = sendTask.Result;
                headerListTextBox.Text = response.Headers.ToString();
            }
            finally
            {
                w.Dispose();
            }
        },
        uiScheduler);
}

This is a reasonable way to use the TPL directly, and it has a similar effect to
Example 17-1, but it’s not an exact representation of how the C# compiler transforms
the code. As I’ll show later, await uses a pattern that is supported by, but does not
require, Task or Task<T>. It also generates code that handles early completion (where
the task has already finished by the time you’re ready to wait for it) far more effi‐
ciently than Example 17-3. But before I show the details of what the compiler does, I
want to illustrate some of the problems it solves for you, which is best done by show‐
ing the kind of code you might have written back before this language feature existed.

My current example is pretty simple, because it involves only one asynchronous
operation, but aside from the two steps I’ve already discussed—setting up some kind
of completion callback and ensuring that it runs on the correct thread—I’ve also had
to deal with the using statement that was in Example 17-1. Example 17-3 can’t use
the using keyword, because we want to dispose the HttpClient object only after
we’ve finished with it.1 Calling Dispose shortly before the outer method returns
would not work, because we need to be able to use the object when the continuation
runs, and that will typically happen a fair bit later. So I need to create the object in
one method (the outer one) and then dispose of it in a different method (the nested
one). And because I’m calling Dispose by hand, it’s now my problem to deal with
exceptions, so I’ve had to wrap all of the code I moved into the callback with a try
block, and call Dispose in a finally block. (In fact, I’ve not even done a comprehen‐
sive job—in the unlikely event that either the HttpRequestMessage constructor or the
call that retrieves the task scheduler were to throw an exception, the HttpClient
would not get disposed. I’m handling only the case where the HTTP operation itself
fails.)
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2 As it happens, Example 17-3 does this too, because the TPL captures the execution context for us.

Example 17-3 has used a task scheduler to arrange for the continuation to run via the
SynchronizationContext that was current when the work started. This ensures that
the callback occurs on the correct thread to update the UI. The await keyword can
take care of that for us.

Execution and Synchronization Contexts
When your program’s execution reaches an await expression for an operation that
doesn’t complete immediately, the code generated for that await will ensure that the
current execution context has been captured. (It might not have to do much—if this
is not the first await to block in this method, and if the context hasn’t changed since,
it will have been captured already.) When the asynchronous operation completes, the
remainder of your method will be executed through the execution context.2

As I described in Chapter 16, the execution context handles certain contextual infor‐
mation that needs to flow when one method invokes another (even when it does so
indirectly). But there’s another kind of context that we may be interested in, particu‐
larly when writing UI code: the synchronization context (which was also described in
Chapter 16).

While all await expressions capture the execution context, the decision of whether to
flow synchronization context as well is controlled by the type being awaited. If you
await for a Task, the synchronization context will also be captured by default. Tasks
are not the only thing you can await, and I’ll describe how types can support await
in the section “The await Pattern” on page 729.

Sometimes, you might want to avoid getting the synchronization context involved. If
you want to perform asynchronous work starting from a UI thread, but you have no
particular need to remain on that thread, scheduling every continuation through the
synchronization context is unnecessary overhead. If the asynchronous operation is a
Task or Task<T> (or the equivalent value types, ValueTask or ValueTask<T>), you can
declare that you don’t want this by calling the ConfigureAwait method passing
false. This returns a different representation of the asynchronous operation, and if
you await that instead of the original task, it will ignore the current Synchroniza
tionContext if there is one. (There’s no equivalent mechanism for opting out of the
execution context.) Example 17-4 shows how to use this.

718 | Chapter 17: Asynchronous Language Features



Example 17-4. ConfigureAwait

private async void OnFetchButtonClick(object sender, RoutedEventArgs e)
{
    using (HttpClient w = this.clientFactory.CreateClient())
    using (Stream f = File.Create(fileTextBox.Text))
    {
        Task<Stream> getStreamTask = w.GetStreamAsync(urlTextBox.Text);
        Stream getStream = await getStreamTask.ConfigureAwait(false);

        Task copyTask = getStream.CopyToAsync(f);
        await copyTask.ConfigureAwait(false);
    }
}

This code is a click handler for a button, so it initially runs on a UI thread. It retrieves
the Text property from a couple of text boxes. Then it kicks off some asynchronous
work—fetching the content for a URL and copying the data into a file. It does not use
any UI elements after fetching those two Text properties, so it doesn’t matter if the
remainder of the method runs on some separate thread. By passing false to Config
ureAwait and waiting on the value it returns, we are telling the TPL that we are
happy for it to use whatever thread is convenient to notify us of completion, which in
this case will most likely be a thread pool thread. This will enable the work to com‐
plete more efficiently and more quickly, because it avoids getting the UI thread
involved unnecessarily after each await.

Various asynchronous APIs introduced in Windows as part of the UWP API return
an IAsyncOperation<T> instead of Task<T>. This is because UWP is not .NET-
specific, and it has its own runtime-independent representation for asynchronous
operations that can also be used from C++ and JavaScript. This interface is conceptu‐
ally similar to TPL tasks, and it supports the await pattern, meaning you can use
await with these APIs. However, it does not provide ConfigureAwait. If you want to
do something similar to Example 17-4 with one of these APIs, you can use the AsTask
extension method that wraps an IAsyncOperation<T> as a Task<T>, and you can call
ConfigureAwait on that task instead.
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If you are writing libraries, then in most cases you should call Con
figureAwait(false) anywhere you use await. This is because
continuing via the synchronization context can be expensive, and
in some cases it can introduce the possibility of deadlock occur‐
ring. The only exceptions are when you are doing something that
positively requires the synchronization context to be preserved, or
you know for certain that your library will only ever be used in
application frameworks that do not set up a synchronization con‐
text. (E.g., ASP.NET Core applications do not use synchronization
contexts, so it generally doesn’t matter whether or not you call Con
figureAwait(false) in those.)

Example 17-1 contained just one await expression, and even that turned out to be
fairly complex to reproduce with classic TPL programming. Example 17-4 contains
two, and achieving equivalent behavior without the aid of the await keyword would
require rather more code, because exceptions could occur before the first await, after
the second, or between, and we’d need to call Dispose on the HttpClient and Stream
in any of those cases (as well as in the case where no exception is thrown). However,
things can get considerably more complex than that once flow control gets involved.

Multiple Operations and Loops
Suppose that instead of fetching headers, or just copying the HTTP response body to
a file, I wanted to process the data in the body. If the body is large, retrieving it is an
operation that could require multiple, slow steps. Example 17-5 fetches a web page
gradually.

Example 17-5. Multiple asynchronous operations

private async void FetchAndShowBody(string url, IHttpClientFactory cf)
{
    using (HttpClient w = cf.CreateClient())
    {
        Stream body = await w.GetStreamAsync(url);
        using (var bodyTextReader = new StreamReader(body))
        {
            while (!bodyTextReader.EndOfStream)
            {
                string line = await bodyTextReader.ReadLineAsync();
                bodyTextBox.AppendText(line);
                bodyTextBox.AppendText(Environment.NewLine);
                await Task.Delay(TimeSpan.FromMilliseconds(10));
            }
        }
    }
}
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3 Strictly speaking, I should inspect the HTTP response headers to discover the encoding, and configure the
StreamReader with that. Instead, I’m letting it detect the encoding, which will work well enough for demon‐
stration purposes.

This now contains three await expressions. The first kicks off an HTTP GET request,
and that operation will complete when we get the first part of the response, but the
response will not be complete yet—there may be several megabytes of content to
come. This code presumes that the content will be text, so it wraps the Stream object
that comes back in a StreamReader, which presents the bytes in a stream as text.3 It
then uses that wrapper’s asynchronous ReadLineAsync method to read text a line at a
time from the response. Because data tends to arrive in chunks, reading the first line
may take a while, but the next few calls to this method will probably complete imme‐
diately, because each network packet we receive will typically contain multiple lines.
But if the code can read faster than data arrives over the network, eventually it will
have consumed all the lines that appeared in the first packet, and it will then take a
while before the next line becomes available. So the calls to ReadLineAsync will
return some tasks that are slow, and some that complete immediately. The third
asynchronous operation is a call to Task.Delay. I’ve added this to slow things down
so that I can see the data arriving gradually in the UI. Task.Delay returns a Task that
completes after the specified delay, so this provides an asynchronous equivalent to
Thread.Sleep. (Thread.Sleep blocks the calling thread, but await Task.Delay

introduces a delay without blocking the thread.)

I’ve put each await expression in a separate statement, but this is
not a requirement. It’s perfectly legal to write expressions of the
form (await t1) + (await t2). (You can omit the parentheses if
you like, because await has higher precedence than addition; I pre‐
fer the visual emphasis they provide here.)

I’m not going to show you the complete pre-async equivalent of Example 17-5,
because it would be enormous, but I’ll describe some of the problems. First, we’ve got
a loop with a body that contains two await blocks. To produce something equivalent
with Task and callbacks means building your own loop constructs, because the code
for the loop ends up being split across three methods: the one that starts the loop
running (which would be the nested method acting as the continuation callback for
GetStreamAsync), and the two callbacks that handle the completion of ReadLineA
sync and Task.Delay. You can solve this by having a local method that starts a new
iteration and calling that from two places: the point at which you want to start the
loop, and again in the Task.Delay continuation to kick off the next iteration.
Example 17-6 shows this technique, but it illustrates just one aspect of what we’re
expecting the compiler to do for us; it is not a complete alternative to Example 17-5.
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Example 17-6. An incomplete manual asynchronous loop

private void IncompleteOldSchoolFetchAndShowBody(
    string url, IHttpClientFactory cf)
{
    HttpClient w = cf.CreateClient();
    var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext();
    w.GetStreamAsync(url).ContinueWith(getStreamTask =>
    {
        Stream body = getStreamTask.Result;
        var bodyTextReader = new StreamReader(body);

        StartNextIteration();

        void StartNextIteration()
        {
            if (!bodyTextReader.EndOfStream)
            {
                bodyTextReader.ReadLineAsync().ContinueWith(readLineTask =>
                    {
                        string line = readLineTask.Result;

                        bodyTextBox.AppendText(line);
                        bodyTextBox.AppendText(Environment.NewLine);

                        Task.Delay(TimeSpan.FromMilliseconds(10))
                            .ContinueWith(
                                _ => StartNextIteration(), uiScheduler);
                    },
                uiScheduler);
            }
        };
    },
        uiScheduler);
}

This code works after a fashion, but it doesn’t even attempt to dispose any of the
resources it uses. There are several places in which failure could occur, so we can’t
just put a single using block or try/finally pair in to clean things up. And even
without that additional complication, the code is barely recognizable—it’s not obvi‐
ous that this is attempting to perform the same basic operations as Example 17-5.
With proper error handling, it would be completely unreadable. In practice, it would
probably be easier to take a different approach entirely, writing a class that imple‐
ments a state machine to keep track of where the work has gotten to. That will proba‐
bly make it easier to produce code that operates correctly, but it’s not going to make
it any easier for someone reading your code to understand that what they’re looking
at is really little more than a loop at heart.

No wonder so many developers used to prefer synchronous APIs. But C# lets us write
asynchronous code that has almost exactly the same structure as the synchronous
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equivalent, giving us all of the performance and responsiveness benefits of asynchro‐
nous code without the pain. That’s the main benefit of async and await in a nutshell.

Consuming and producing asynchronous sequences

Example 17-5 showed a while loop, and as you’d expect, you’re free to use other
kinds of loops such as for and foreach. However, foreach can introduce a subtle
problem: what happens if the collection you iterate over needs to perform slow oper‐
ations? This doesn’t arise for collection types such as arrays or HashSet<T> where all
the collection’s items are already in memory, but what about the IEnumera
ble<string> returned by File.ReadLines? That’s an obvious candidate for asyn‐
chronous operation, but in practice, it will just block your thread each time it needs
to wait for more data to arrive from storage. And that’s because the pattern expected
by foreach simply doesn’t support asynchronous operation. The heart of the prob‐
lem is the method foreach will call to move to the next item—it expects the enumer‐
ator (often, but not always an implementation of IEnumerator<T>) to provide a
MoveNext method like the one shown in Example 17-7.

Example 17-7. The non-async-friendly IEnumerator.MoveNext

bool MoveNext();

If more items are forthcoming but are not yet available, collections have no choice
but to block the thread, not returning from MoveNext until the data arrives. To fix
this, C# 8.0 introduces a new pattern. There are corresponding new types in .NET
Core 3.0’s class library and .NET Standard 2.1, shown in Example 17-8 (first intro‐
duced in Chapter 5), that embody this new pattern. As with the synchronous IEnumer
able<T>, foreach doesn’t strictly require these exact types. Anything offering
members of the same signature will work.

Example 17-8. IAsyncEnumerable<T> and IAsyncEnumerator<T>

public interface IAsyncEnumerable<out T>
{
    IAsyncEnumerator<T> GetAsyncEnumerator(
        CancellationToken cancellationToken = default);
}

public interface IAsyncEnumerator<out T> : IAsyncDisposable
{
    T Current { get; }

    ValueTask<bool> MoveNextAsync();
}
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Conceptually this is identical to the synchronous pattern: an asynchronous foreach
will ask the collection object for an enumerator, and will repeatedly ask it to advance
to the next item, executing the loop body with the value returned by Current each
time, until the enumerator indicates that there are no more items. The main differ‐
ence is that the synchronous MoveNext has been replaced by MoveNextAsync, which
returns an awaitable ValueTask<T>. (The IAsyncEnumerable<T> interface also pro‐
vides support for passing in a cancellation token, although an asynchronous foreach
won’t use that itself.)

To consume an enumerable source that implements this pattern, you must put the
await keyword in front of the foreach. C# can also help you to implement this pat‐
tern: Chapter 5 showed how you can use the yield keyword in an iterator method to
implement IEnumerable<T>, but you can also return an IAsyncEnumerable<T>. 
Example 17-9 shows both implementation and consumption of IAsyncEnumera
ble<T> in action.

Example 17-9. Consuming and producing asynchronous enumerables

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;

namespace AsyncEnum
{
    internal static class Program
    {
        private static async Task Main(string[] args)
        {
            await foreach (string line in ReadLinesAsync(args[0]))
            {
                Console.WriteLine(line);
            }
        }

        private static async IAsyncEnumerable<string> ReadLinesAsync(string path)
        {
            using (var bodyTextReader = new StreamReader(path))
            {
                while (!bodyTextReader.EndOfStream)
                {
                    string line = await bodyTextReader.ReadLineAsync();
                    yield return line;
                }
            }
        }
    }
}
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As this example shows, you can make the Main method of a C#
program async. You must return either a Task or Task<int>. (The
latter lets you produce a nonzero exit code if you need to.)
The .NET runtime doesn’t support asynchronous entry points, so
the C# compiler will generate a hidden method that acts as the real
entry point, which calls your asynchronous Main, and then blocks
until the task it returns completes.

Since this language support makes creating and using IAsyncEnumerable<T> very
similar to working with IEnumerable<T>, you might be wondering whether there are
asynchronous versions of the various LINQ operators described in Chapter 10.
Unlike LINQ to Objects, IAsyncEnumerable<T> implementations are not in the parts
of the class library built into .NET or .NET Standard, but Microsoft does supply a
suitable NuGet package. If you add a reference to the System.Linq.Async package,
and add a using System.Linq; declaration, all the LINQ operators will be available
on IAsyncEnumerable<T> expressions.

While we’re looking at asynchronous equivalents of widely implemented types, we
should look at IAsyncDisposable.

Asynchronous disposal

As Chapter 7 described, the IDisposable interface is implemented by types that need
to perform some sort of cleanup promptly, such as closing an open handle, and there
is language support in the form of using statements. But what if the cleanup involves
potentially slow work, such as flushing data out to disk? .NET Core 3.0 and .NET
Standard 2.1 introduce a new interface, IAsyncDisposable, for this scenario. As
Example 17-10 shows, C# 8.0 adds support for it: you can put the await keyword in
front of a using statement to consume an asynchronously disposable resource. (You
can also put await in front of a using declaration.)

Example 17-10. Consuming and implementing IAsyncDisposable

using System;
using System.IO;
using System.Threading.Tasks;

namespace AsyncDispose
{
    class Program
    {
        static async Task Main(string[] args)
        {
            await using (var w = new DiagnosticWriter(@"c:\temp\log.txt"))
            {
                await w.LogAsync("Test");
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            }
        }
    }

    class DiagnosticWriter : IAsyncDisposable
    {
        private StreamWriter fs;

        public DiagnosticWriter(string path)
        {
            fs = new StreamWriter(path);
        }

        public Task LogAsync(string message) => fs.WriteLineAsync(message);

        public async ValueTask DisposeAsync()
        {
            if (fs != null)
            {
                await fs.FlushAsync();
                fs = null;
            }
        }
    }
}

Although the await keyword appears in front of the using state‐
ment, the potentially slow operation that it awaits happens when
execution leaves the using statement’s block. This is unavoidable
since using statements and declarations effectively hide the call to
Dispose.

Example 17-10 also shows how to implement IAsyncDisposable. Whereas the syn‐
chronous IDisposable defines a single Dispose method, its asynchronous counter‐
part defines a single DisposeAsync method that returns a ValueTask. This enables us
to annotate the method with async. An async using statement will ensure that the
task returned by DisposeAsync completes at the end of its block before execution
continues. You may have noticed that we’ve used a few different return types for
async methods. Iterators are a special case, just as they are in synchronous code, but
what about these methods that return various task types?

Returning a Task
Any method that uses await could itself take a certain amount of time to run, so as
well as being able to consume asynchronous APIs, you will usually also want to
present an asynchronous public face. The C# compiler enables methods marked with
the async keyword to return an object that represents the asynchronous work in pro‐
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gress. Instead of returning void, you can return a Task, or you can return a Task<T>,
where T is any type. This provides callers with a way to discover the status of the work
your method performs, the opportunity to attach continuations, and if you use
Task<T>, a way to get the result. Alternatively, you can return the value type equiva‐
lents, ValueTask and ValueTask<T>. Returning any of these means that if your
method is called from another async method, it can use await to wait for your
method to complete and, if applicable, to collect its result.

Returning a task is almost always preferable to void because with a void return type,
there’s no way for callers to know when your method has really finished, or to dis‐
cover when it throws an exception. (Asynchronous methods can continue to run
after returning—in fact, that’s the whole point—so by the time you throw an excep‐
tion, the original caller will probably not be on the stack.) By returning a task object,
you provide the compiler with a way to make exceptions available and, where appli‐
cable, a way to provide a result.

Returning a task is so trivially easy that there’s very little reason not to. To modify the
method in Example 17-5 to return a task, I only need to make a single change. I make
the return type Task instead of void, as shown in Example 17-11, and the rest of the
code can remain exactly the same.

Example 17-11. Returning a Task

private async Task FetchAndShowBody(string url, IHttpClientFactory cf)
// ... as before

The compiler automatically generates the code required to produce a Task or Value
Task object and set it into a completed or faulted state when the method either
returns or throws an exception. And if you want to return a result from your task,
that’s also very easy. Simply make the return type Task<T> or ValueTask<T>, and
then you can use the return keyword as though your method’s return type were just
T, as Example 17-12 shows.

Example 17-12. Returning a Task<T>

public static async Task<string> GetServerHeader(
    string url, IHttpClientFactory cf)
{
    using (HttpClient w = cf.CreateClient())
    {
        var request = new HttpRequestMessage(HttpMethod.Head, url);
        HttpResponseMessage response = await w.SendAsync(
            request, HttpCompletionOption.ResponseHeadersRead);

        string result = null;
        IEnumerable<string> values;
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        if (response.Headers.TryGetValues("Server", out values))
        {
            result = values.FirstOrDefault();
        }
        return result;
    }
}

This fetches HTTP headers asynchronously in the same way as Example 17-1, but
instead of displaying the results, this picks out the value of the first Server: header
and makes that the result of the Task<string> that this method returns. As you can
see, the return statement just returns a string, even though the method’s return
type is Task<string>. The compiler generates code that completes the task and
arranges for that string to be the result. With either a Task or Task<T> return type,
the generated code produces a task similar to the kind you would get using TaskCom
pletionSource<T>, as described in Chapter 16.

Just as the await keyword can consume any asynchronous method
that fits a particular pattern (described later), C# offers the same
flexibility when it comes to implementing an asynchronous
method. You are not limited to Task, Task<T>, ValueTask, and Val
ueTask<T>. You can return any type that meets two conditions: it
must be annotated with the AsyncMethodBuilder attribute, identi‐
fying a class that the compiler can use to manage the progress and
completion of the task, and it must also offer a GetAwaiter method
that returns a type implementing the ICriticalNotifyCompletion
interface.

There’s very little downside to returning one of the built-in task types. Callers are not
obliged to do anything with it, so your method will be just as easy to use as a void
method, but with the added advantage that a task is available to callers that want one.
About the only reason for returning void would be if some external constraint forces
your method to have a particular signature. For example, most event handlers are
required to have a return type of void. But unless you are forced to use it, void is not
a recommended return type for an asynchronous method.

Applying async to Nested Methods
In the examples shown so far, I have applied the async keyword to ordinary methods.
You can also use it on anonymous functions (either anonymous methods or lamb‐
das) and local functions. For example, if you’re writing a program that creates UI ele‐
ments programmatically, you may find it convenient to attach event handlers written
as lambdas, and you might want to make some of those asynchronous, as
Example 17-13 does.
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Example 17-13. An asynchronous lambda

okButton.Click += async (s, e) =>
{
    using (HttpClient w = this.clientFactory.CreateClient())
    {
        infoTextBlock.Text = await w.GetStringAsync(uriTextBox.Text);
    }
};

This has nothing to do with asynchronous delegate invocation, the
now-deprecated technique I mentioned in Chapter 9 for using the
thread pool that used to be popular before anonymous methods
and the TPL provided better alternatives.

The await Pattern
The majority of the asynchronous APIs that support the await keyword will return a
TPL task of some kind. However, C# does not absolutely require this. It will await
anything that implements a particular pattern. (This is how UWP applications are
able to use await even though APIs in that framework do not return TPL tasks.)
Moreover, although Task supports this pattern, the way it works means that the com‐
piler uses tasks in a slightly different way than you would when using the TPL
directly—this is partly why I said earlier that the code showing task-based asynchro‐
nous equivalents to await-based code did not represent exactly what the compiler
does. In this section, I’m going to show how the compiler uses tasks and other types
that support await, to better illustrate how it really works.

I’ll create a custom implementation of the await pattern to show what the C# com‐
piler expects. Example 17-14 shows an asynchronous method, UseCustomAsync, that
consumes this custom implementation. It assigns the result of the await expression
into a string, so it clearly expects the asynchronous operation to produce a string
as its output. It calls a method, CustomAsync, which returns that implementation of
the pattern. As you can see, this is not a Task<string>.

Example 17-14. Calling a custom awaitable implementation

static async Task UseCustomAsync()
{
    string result = await CustomAsync();
    Console.WriteLine(result);
}

public static MyAwaitableType CustomAsync()
{
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    return new MyAwaitableType();
}

The compiler expects the await keyword’s operand to be a type that provides a
method called GetAwaiter. This can be an ordinary instance member or an extension
method. (So it is possible to make await work with a type that does not support it
innately by defining a suitable extension method.) This method must return an object
or value, known as an awaiter, that does three things.

First, the awaiter must provide a bool property called IsCompleted. The code that the
compiler generates for the await uses this to discover whether the operation has
already finished. In situations where no slow work needs to be done (e.g., when a call
to ReadAsync on a Stream can be handled immediately with data that the stream
already has in a buffer), it would be a waste to set up a callback. So await avoids cre‐
ating an unnecessary delegate if the IsCompleted property returns true, and it will
just continue straight on with the remainder of the method.

The compiler also requires a way to get the result once the work is complete, so the
awaiter must have a GetResult method. Its return type defines the result type of the
operation—it will be the type of the await expression. (If there is no result, the return
type is void. GetResult still needs to be present, because it is responsible for throw‐
ing exceptions if the operation fails.) Since Example 17-14 assigns the result of the
await into a variable of type string, the GetResult method of the awaiter returned
by the MyAwaitableType class’s GetAwaiter must be string (or some type implicitly
convertible to string).

Finally, the compiler needs to be able to supply a callback. If IsCompleted returns
false, indicating that the operation is not yet complete, the code generated for the
await expression will create a delegate that will run the rest of the method. It needs to
be able to pass that to the awaiter. (This is similar to passing a delegate to a task’s
ContinueWith method.) For this, the compiler requires not just a method, but also an
interface. You are required to implement INotifyCompletion, and there’s an
optional interface that it’s recommended you also implement where possible called
ICriticalNotifyCompletion. These do similar things: each defines a single method
(OnCompleted and UnsafeOnCompleted, respectively) that takes a single Action dele‐
gate, and the awaiter must invoke this delegate once the operation completes. The
distinction between these two interfaces and their corresponding methods is that the
first requires the awaiter to flow the current execution context to the target method,
whereas the latter does not. The .NET class library features that the C# compiler uses
to help build asynchronous methods always flow the execution context for you, so the
generated code typically calls UnsafeOnCompleted where available to avoid flowing it
twice. (If the compiler used OnCompleted, the awaiter would flow context too.) How‐
ever, on .NET Framework, you’ll find that security constraints may prevent the use of

730 | Chapter 17: Asynchronous Language Features



UnsafeOnCompleted. (.NET Framework had a concept of untrusted code. Code from
potentially untrustworthy origins—perhaps because it was downloaded from the
internet—would be subject to various constraints. This concept was dropped in .NET
Core, but various vestiges remain, such as this design detail of asynchronous opera‐
tions.) Because UnsafeOnCompleted does not flow execution context, untrusted code
must not be allowed to call it, because that would provide a way to bypass certain
security mechanisms. .NET Framework implementations of UnsafeOnCompleted pro‐
vided for the various task types is marked with the SecurityCriticalAttribute,
which means that only fully trusted code can call it. We need OnCompleted so that
partially trusted code is able to use the awaiter.

Example 17-15 shows the minimum viable implementation of the awaiter pattern.
This is oversimplified, because it always completes synchronously, so its OnCompleted
method doesn’t do anything. In fact, when used as the await pattern is meant to be
used, the method will never be called, which is why I’ve made it throw an exception.
However, although this example is unrealistically simple, it will serve to illustrate
what await does.

Example 17-15. An excessively simple await pattern implementation

public class MyAwaitableType
{
    public MinimalAwaiter GetAwaiter()
    {
        return new MinimalAwaiter();
    }

    public class MinimalAwaiter : INotifyCompletion
    {
        public bool IsCompleted => true;

        public string GetResult() => "This is a result";

        public void OnCompleted(Action continuation)
        {
            throw new NotImplementedException();
        }
    }
}

With this code in place, we can see what Example 17-14 will do. It will call GetA
waiter on the MyAwaitableType instance returned by the CustomAsync method.
Then it will test the awaiter’s IsCompleted property, and if it’s true (which it will be),
it will run the rest of the method immediately. The compiler doesn’t know IsComple
ted will always be true in this case, so it generates code to handle the false case.
This will create a delegate that, when invoked, will run the rest of the method, and
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pass that delegate to the waiter’s OnCompleted method. (I’ve not provided UnsafeOn
Completed here, so it is forced to use OnCompleted.) Example 17-16 shows code that
does all of this.

Example 17-16. A very rough approximation of what await does

static void ManualUseCustomAsync()
{
    var awaiter = CustomAsync().GetAwaiter();
    if (awaiter.IsCompleted)
    {
        TheRest(awaiter);
    }
    else
    {
        awaiter.OnCompleted(() => TheRest(awaiter));
    }
}

private static void TheRest(MyAwaitableType.MinimalAwaiter awaiter)
{
    string result = awaiter.GetResult();
    Console.WriteLine(result);
}

I’ve split the method into two pieces, because the C# compiler avoids creating a dele‐
gate in the case where IsCompleted is true, and I wanted to do the same. However,
this is not quite what the C# compiler does—it also manages to avoid creating an
extra method for each await statement, but this means it has to create considerably
more complex code. In fact, for methods that just contain a single await, it introdu‐
ces rather more overhead than Example 17-16. However, once the number of await
expressions starts to increase, the complexity pays off, because the compiler does not
need to add any further methods. Example 17-17 shows something closer to what the
compiler does.

Example 17-17. A slightly closer approximation to how await works

private class ManualUseCustomAsyncState
{
    private int state;
    private MyAwaitableType.MinimalAwaiter awaiter;

    public void MoveNext()
    {
        if (state == 0)
        {
            awaiter = CustomAsync().GetAwaiter();
            if (!awaiter.IsCompleted)
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            {
                state = 1;
                awaiter.OnCompleted(MoveNext);
                return;
            }
        }
        string result = awaiter.GetResult();
        Console.WriteLine(result);
    }
}

static void ManualUseCustomAsync()
{
    var s = new ManualUseCustomAsyncState();
    s.MoveNext();
}

This is still simpler than the real code, but it shows the basic strategy: the compiler
generates a nested type that acts as a state machine. This has a field (state) that keeps
track of where the method has got to so far, and it also contains fields corresponding
to the method’s local variables. (Just the awaiter variable in this example.) When an
asynchronous operation does not block (i.e., its IsCompleted returns true immedi‐
ately), the method can just continue to the next part, but once it encounters an opera‐
tion that needs some time, it updates the state variable to remember where it is, and
then uses the relevant awaiter’s OnCompleted method. Notice that the method it asks
to be called on completion is the same one that is already running: MoveNext. And
this continues to be the case no matter how many awaits you need to perform—
every completion callback invokes the same method, the class simply remembers how
far it had already gotten, and the method picks up from there.

I won’t show the real generated code. It is borderline unreadable, because it contains
a lot of unspeakable identifiers. (Remember from Chapter 3 that when the C# com‐
piler needs to generate items with identifiers that must not collide with or be directly
visible to our code, it creates a name that the runtime considers legal, but that is not
legal in C#; this is called an unspeakable name.) Moreover, the compiler-generated
code uses various helper classes from the System.Runtime.CompilerServices name‐
space that are intended for use only from asynchronous methods to manage things
like determining which of the completion interfaces the awaiter supports and han‐
dling the related execution context flow. Also, if the method returns a task, there are
additional helpers to create and update that. But when it comes to understanding the
nature of the relationship between an awaitable type and the code the compiler pro‐
duces for an await expression, Example 17-17 gives a fair impression.
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Error Handling
The await keyword deals with exceptions much as you’d hope it would: if an asyn‐
chronous operation fails, the exception emerges from the await expression that was
consuming that operation. The general principle that asynchronous code can be
structured in the same way as ordinary synchronous code continues to apply in the
face of exceptions, and the compiler does whatever work is required to make that
possible.

Example 17-18 contains two asynchronous operations, one of which occurs in a loop.
This is similar to Example 17-5. It does something a bit different with the content it
fetches, but most importantly, it returns a task. This provides a place for an error to
go if any of the operations should fail.

Example 17-18. Multiple potential points of failure

private static async Task<string> FindLongestLineAsync(
    string url, IHttpClientFactory cf)
{
    using (HttpClient w = cf.CreateClient())
    {
        Stream body = await w.GetStreamAsync(url);
        using (var bodyTextReader = new StreamReader(body))
        {
            string longestLine = string.Empty;
            while (!bodyTextReader.EndOfStream)
            {
                string line = await bodyTextReader.ReadLineAsync();
                if (longestLine.Length > line.Length)
                {
                    longestLine = line;
                }
            }
            return longestLine;
        }
    }
}

Exceptions are potentially challenging with asynchronous operations because by the
time a failure occurs, the method call that originally started the work is likely to have
returned. The FindLongestLineAsync method in this example will usually return as
soon as it executes the first await expression. (It’s possible that it won’t—if the rele‐
vant resource is in the local HTTP cache, or if the IHttpClientFactory returns a cli‐
ent configured as a fake that never makes any real requests, this operation could
succeed immediately. But typically, that operation will take some time, causing the
method to return.) Suppose this operation succeeds and the rest of the method starts
to run, but partway through the loop that retrieves the body of the response, the
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computer loses network connectivity. This will cause one of the operations started by
ReadLineAsync to fail.

An exception will emerge from the await for that operation. There is no exception
handling in this method, so what should happen next? Normally, you’d expect the
exception to start working its way up the stack, but what’s above this method on the
stack? It almost certainly won’t be the code that originally called it—remember, the
method will usually return as soon as it hits the first await, so at this stage, we’re run‐
ning as a result of being called back by the awaiter for the task returned by ReadLineA
sync. Chances are, we’ll be running on some thread from the thread pool, and the
code directly above us in the stack will be part of the task awaiter. This won’t know
what to do with our exception.

But the exception does not propagate up the stack. When an exception goes unhan‐
dled in an async method that returns a task, the compiler-generated code catches it
and puts the task returned by that method into a faulted state (which will in turn
mean that anything that was waiting for that task can now continue). If the code that
called FindLongestLineAsync is working directly with the TPL, it will be able to see
the exception by detecting that faulted state and retrieving the task’s Exception prop‐
erty. Alternatively, it can either call Wait or fetch the task’s Result property, and in
either case, the task will throw an AggregateException containing the original
exception. But if the code calling FindLongestLineAsync uses await on the task we
return, the exception gets rethrown from that. From the calling code’s point of view,
it looks just like the exception emerged as it would normally, as Example 17-19
shows.

Example 17-19. Handling exceptions from await

try
{
    string longest = await FindLongestLineAsync(
        "http://192.168.22.1/", this.clientFactory);
    Console.WriteLine("Longest line: " + longest);
}
catch (HttpRequestException x)
{
    Console.WriteLine("Error fetching page: " + x.Message);
}

This is almost deceptively simple. Remember that the compiler performs substantial
restructuring of the code around each await, and the execution of what looks like a
single method may involve multiple calls in practice. So preserving the semantics of
even a simple exception handling block like this (or related constructs, such as a
using statement) is nontrivial. If you have ever attempted to write equivalent error
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handling for asynchronous work without the help of the compiler, you’ll appreciate
how much C# is doing for you here.

The await does not rethrow the AggregateException provided by
the task’s Exception property. It rethrows the original exception.
This enables async methods to handle the error in the same way
synchronous code would.

Validating Arguments
There’s one potentially surprising aspect of the way C# automatically reports excep‐
tions through the task your asynchronous method returns. It means that code such as
that in Example 17-20 doesn’t do what you might expect.

Example 17-20. Potentially surprising argument validation

public async Task<string> FindLongestLineAsync(string url)
{
    if (url == null)
    {
        throw new ArgumentNullException("url");
    }
    ...

Inside an async method, the compiler treats all exceptions in the same way: none are
allowed to pass up the stack as they would with a normal method, and they will
always be reported by faulting the returned task. This is true even of exceptions
thrown before the first await. In this example, the argument validation happens
before the method does anything else, so at that stage, we will still be running on the
original caller’s thread. You might have thought that an argument exception thrown
by this part of the code would propagate directly back to the caller. In fact, the caller
will see a nonexceptional return, producing a task that is in a faulted state.

If the calling method immediately calls await on the return task, this won’t matter
much—it will see the exception in any case. But some code may choose not to wait
immediately, in which case it won’t see the argument exception until later. The com‐
mon convention for simple argument validation exceptions is that if the caller has
clearly made a programming error, we should throw an exception immediately, but
this code doesn’t do that.
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If it’s not possible to determine whether a particular argument is
valid without performing slow work, you will not be able to con‐
form to this convention if you want a truly asynchronous method.
In that case, you would need to decide whether you would rather
have the method block until it can validate all arguments, or have
argument exceptions be reported via the returned task instead of
being thrown immediately.

In cases where you want to throw this kind of exception straightaway (e.g., because
it’s being called from code that does not immediately await the result, and you’d like
to discover the problem as soon as possible), the usual technique is to write a normal
method that validates the arguments before calling an async method that does the
work, and to make that second method either private or local. (You would have to do
something similar to perform immediate argument validation with iterators too, inci‐
dentally. Iterators were described in Chapter 5.) Example 17-21 shows such a public
wrapper method and the start of the method it calls to do the real work.

Example 17-21. Validating arguments for async methods

public static Task<string> FindLongestLineAsync(string url)
{
    if (url == null)
    {
        throw new ArgumentNullException("url");
    }
    return FindLongestLineCore(url);

    static async Task<string> FindLongestLineCore(string url)
    {
        ...
    }
}

Because the public method is not marked with async, any exceptions it throws will
propagate directly to the caller. But any failures that occur once the work is underway
in the local method will be reported through the task.

I’ve chosen to forward the url argument to the local method. I didn’t have to,
because a local method can access its containing method’s variables. However, rely‐
ing on that causes the compiler to create a type to hold the locals to share them across
the methods. Where possible, it will make this a value type, passing it by reference to
the inner type, but in cases where the inner method’s scope might outlive the outer
method, it can’t do that. And since the local method here is async, it is likely to con‐
tinue to run long after the outer method’s stack frame no longer exists, so this would
cause the compiler to create a reference type just to hold that url argument. By pass‐
ing the argument in, we avoid this (and I’ve marked the method as static to indicate
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that this is my intent—this means the compiler will produce an error if I inadver‐
tently use anything from the outer method in the local one). The compiler will proba‐
bly still have to create an object to hold on to local variables in the inner method
during asynchronous execution, but at least we’ve avoided creating more objects than
necessary.

Singular and Multiple Exceptions
As Chapter 16 showed, the TPL defines a model for reporting multiple errors—a
task’s Exception property returns an AggregateException. Even if there is only a
single failure, you still have to extract it from its containing AggregateException.
However, if you use the await keyword, it does this for you—as you saw in
Example 17-19, it retrieves the first exception in the InnerExceptions and rethrows
that.

This is handy when the operation can produce only a single failure—it saves you
from having to write additional code to handle the aggregate exception and then dig
out the contents. (If you’re using a task returned by an async method, it will never
contain more than one exception.) However, it does present a problem if you’re
working with composite tasks that can fail in multiple ways simultaneously. For
example, Task.WhenAll takes a collection of tasks and returns a single task that com‐
pletes only when all its constituent tasks complete. If some of them complete by fail‐
ing, you’ll get an AggregateException that contains multiple errors. If you use await
with such an operation, it will throw only the first of those exceptions back to you.

The usual TPL mechanisms—the Wait method or the Result property—provide the
complete set of errors (by throwing the AggregateException itself instead of its first
inner exception), but they both block the thread if the task is not yet complete. What
if you want the efficient asynchronous operation of await, which uses threads only
when there’s something for them to do, but you still want to see all the errors?
Example 17-22 shows one approach.

Example 17-22. Throwless awaiting followed by Wait

static async Task CatchAll(Task[] ts)
{
    try
    {
        var t = Task.WhenAll(ts);
        await t.ContinueWith(
                    x => {},
                    TaskContinuationOptions.ExecuteSynchronously);
        t.Wait();
    }
    catch (AggregateException all)
    {

738 | Chapter 17: Asynchronous Language Features



        Console.WriteLine(all);
    }
}

This uses await to take advantage of the efficient nature of asynchronous C# meth‐
ods, but instead of calling await on the composite task itself, it sets up a continuation.
A continuation can complete successfully when its antecedent completes, regardless
of whether the antecedent succeeded or failed. This continuation has an empty body,
so there’s nothing to go wrong, which means that the await will not throw here. The
call to Wait will throw an AggregateException if anything failed, enabling the catch
block to see all of the exceptions. And because we call Wait only after the await com‐
pletes, we know the task is already finished, so the call will not block.

The one downside of this is that it ends up setting up a whole extra task just so we can
wait without hitting an exception. I’ve configured the continuation to execute syn‐
chronously, so this will avoid scheduling a second piece of work via the thread pool,
but there’s still a somewhat unsatisfactory waste of resources here. A messier but
more efficient approach would be to use await in the usual way, but to write an
exception handler that checks to see if there were other exceptions, as shown in
Example 17-23.

Example 17-23. Looking for additional exceptions

static async Task CatchAll(Task[] ts)
{
    Task t = null;
    try
    {
        t = Task.WhenAll(ts);
        await t;
    }
    catch (Exception first)
    {
        Console.WriteLine(first);

        if (t != null && t.Exception.InnerExceptions.Count > 1)
        {
            Console.WriteLine("I've found some more:");
            Console.WriteLine(t.Exception);
        }
    }
}

This avoids creating an extra task, but the downside is that the exception handling
looks a little odd.
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Concurrent Operations and Missed Exceptions
The most straightforward way to use await is to do one thing after another, just as
you would with synchronous code. Although doing work strictly sequentially may
not sound like it takes full advantage of the potential of asynchronous code, it does
make much more efficient use of the available threads than the synchronous equiva‐
lent, and it also works well in client-side UI code, leaving the UI thread free to
respond to input even while work is then in progress. However, you might want to go
further.

It is possible to kick off multiple pieces of work simultaneously. You can call an asyn‐
chronous API, and instead of using await immediately, you can store the result in a
variable and then start another piece of work before waiting for both. Although this is
a viable technique, and might reduce the overall execution time of your operations,
there’s a trap for the unwary, shown in Example 17-24.

Example 17-24. How not to run multiple concurrent operations

static async Task GetSeveral(IHttpClientFactory cf)
{
    using (HttpClient w = cf.CreateClient())
    {
        w.MaxResponseContentBufferSize = 2_000_000;

        Task<string> g1 = w.GetStringAsync("https://endjin.com/");
        Task<string> g2 = w.GetStringAsync("https://oreilly.com");

        // BAD!
        Console.WriteLine((await g1).Length);
        Console.WriteLine((await g2).Length);
    }
}

This fetches content from two URLs concurrently. Having started both pieces of
work, it uses two await expressions to collect the results of each and to display the
lengths of the resulting strings. If the operations succeed, this will work, but it doesn’t
handle errors well. If the first operation fails, the code will never get as far as execut‐
ing the second await. This means that if the second operation also fails, nothing will
look at the exception it throws. Eventually, the TPL will detect that the exception has
gone unobserved, which will result in the UnobservedTaskException event being
raised. (Chapter 16 discussed the TPL’s unobserved exception handling.) The prob‐
lem is that this will happen only very occasionally—it requires both operations to fail
in quick succession—so it’s something that would be very easy to miss in testing.

You could avoid this with careful exception handling—you could catch any excep‐
tions that emerge from the first await before going on to execute the second, for
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example. Alternatively, you could use Task.WhenAll to wait for all the tasks as a sin‐
gle operation—this will produce a faulted task with an AggregateException if any‐
thing fails, enabling you to see all errors. Of course, as you saw in the preceding
section, multiple failures of this kind are awkward to deal with when you’re using
await. But if you want to launch multiple asynchronous operations and have them all
in flight simultaneously, you’re going to need more complex code to coordinate the
results than you would do when performing work sequentially. Even so, the await
and async keywords still make life much easier.

Summary
Asynchronous operations do not block the thread from which they are invoked, mak‐
ing them more efficient than synchronous APIs, which is particularly important on
heavily loaded machines. This also makes them suitable for use on the client side,
because they enable you to perform long-running work without causing the UI to
become unresponsive. Without language support, asynchronous operations can be
complex to use correctly, particularly when handling errors across multiple related
operations. C#’s await keyword enables you to write asynchronous code in a style
that looks just like normal synchronous code. It gets a little more complex if you
want a single method to manage multiple concurrent operations, but even if you
write an asynchronous method that does things strictly in order, you will get the ben‐
efits of making much more efficient use of threads in a server application—it will be
able to support more simultaneous users, because each individual operation uses
fewer resources—and on the client side, you’ll get the benefit of a more responsive
UI.

Methods that use await must be marked with the async keyword and should usually
return one of Task, Task<T>, ValueTask, or ValueTask<T>. (C# allows a void return
type, but you would normally use this only when you have no choice.) The compiler
will arrange for this task to complete successfully once your method returns, or to
complete with a fault if your method fails at any point in its execution. Because await
can consume any Task or Task<T>, this makes it easy to split asynchronous logic
across multiple methods, because a high-level method can await a lower-level async
method. Usually, the work eventually ends up being performed by some task-based
API, but it doesn’t have to be, because await only demands a certain pattern—it will
accept any expression on which you can invoke a GetWaiter method to obtain a suit‐
able type.
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CHAPTER 18

Memory Efficiency

As Chapter 7 described, the CLR is able to perform automatic memory management
thanks to its garbage collector (GC). This comes at a price: when a CPU spends time
on garbage collection, that stops it from getting on with more productive work. On
laptops and phones, GC work drains power from the battery. In a cloud computing
environment where you may be paying for CPU time based on consumption, extra
work for the CPU corresponds directly to increased costs. More subtly, on a com‐
puter with many cores, spending too much time in the GC can dramatically reduce
throughput, because many of the cores may end up blocked, waiting for the GC to
complete before they can proceed.

In many cases, these effects will be small enough not to cause visible problems. How‐
ever, when certain kinds of programs experience heavy load, GC costs can come to
dominate the overall execution time. In particular, if you write code that performs
relatively simple but highly repetitive processing, GC overhead can have a substantial
impact on throughput.

As Microsoft’s ASP.NET Core team worked to improve the performance of their web
server framework, in early versions they frequently ran into hard limits due to GC
overhead. To enable .NET applications to break through these barriers, C# 7.2 intro‐
duced various features that can enable dramatic reductions in the number of alloca‐
tions. Fewer allocations means fewer blocks of memory for the GC to recover, so this
translates directly to lower GC overhead. Version 3.0 of ASP.NET Core started mak‐
ing extensive use of these features. This version improves performance across the
board, but for the simplest performance benchmark, known as plaintext (part of the
TechEmpower suite of web performance tests), this release improves the request han‐
dling rate by over 25%.

In some specialized scenarios, the differences can be more dramatic. In 2019, I
worked on a project that processed diagnostic information from a broadband pro‐
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vider’s networking equipment (in the form of RADIUS packets). Adopting the tech‐
niques described in this chapter boosted the rate at which a single CPU core in our
system could process the messages from around 300,000/s to about 7 million/s.

There is a price to pay, of course: these GC-efficient techniques add significant com‐
plication to your code. And the payoff won’t always be so large—although ASP.NET
Core 3.0 improves over the previous version on all benchmarks, only the simplest
shows a 25% boost. The practical improvement will really depend on the nature of
your workload, and for some applications you might find that applying these techni‐
ques delivers no measurable improvement. So before you even consider using them,
you should use performance monitoring tools to find out how much time your code
spends in the GC. If it’s only a few percent, then you might not be able to realize
order-of-magnitude improvements. But if testing suggests that there’s room for sig‐
nificant improvement, the next step is to ask whether the techniques in this chapter
are likely to help. So let’s start by exploring exactly how these new techniques can
help you reduce GC overhead.

(Don’t) Copy That
The way to reduce GC overhead is to allocate less memory on the heap. And the most
important technique for minimizing allocations is to avoid making copies of data.
For example, consider the URL http://example.com/books/1323?edition=6&for‐
mat=pdf. There are several elements of interest in here, such as the protocol (http),
the hostname (example.com), or the query string. The latter has its own structure: it
is a sequence of name/value pairs. The obvious way to work with a URL in .NET is to
use the System.Uri type, as Example 18-1 shows.

Example 18-1. Deconstructing a URL

var uri = new Uri("http://example.com/books/1323?edition=6&format=pdf");
Console.WriteLine(uri.Scheme);
Console.WriteLine(uri.Host);
Console.WriteLine(uri.AbsolutePath);
Console.WriteLine(uri.Query);

It produces the following output:

http
example.com
/books/1323
?edition=6&format=pdf

This is convenient, but by getting the values of these four properties we have forced
the Uri to provide four string objects in addition to the original one. You could
imagine a smart implementation of Uri that recognized certain standard values for
Scheme, such as http and that always returned the same string instance for these
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instead of allocating new ones, but for all the other parts, it’s likely to have to allocate
new strings on the heap.

There is another way. Instead of creating new string objects for each section, we
could take advantage of the fact that all of the information we want was already in the
string containing the whole URL. There’s no need to copy each section into a new
string, when instead we can just keep track of the position and lengths of the relevant
sections within the string. Instead of creating a string for each section, we would need
just two numbers. And since we can represent numbers using value types (e.g., int,
or, for very long strings, long), we don’t need any additional objects on the heap
beyond the single string with the full URL. For example, the scheme (http) is at posi‐
tion 0 and has length 4. Figure 18-1 shows each of the elements by their offset and
position within the string.

Figure 18-1. URL substrings

This works, but already we can see the first problem with working this way: it is
somewhat awkward. Instead of representing, say, the Host with a convenient string
object, which is easily understood and readily inspected in the debugger, we now
have a pair of numbers, and as developers, we now have to remember which string
they point into. It’s not rocket science, but it makes it slightly harder to understand
our code, and easier to introduce bugs. But there’s a payoff: instead of five strings (the
original URL and the four properties), we just have one. And if you’re trying to pro‐
cess millions of events each second, that could easily be worth the effort.

Obviously this technique would work for a more fine-grained structure too. The off‐
set and position (25, 4) locates the text 1323 in this URL. We might want to parse
that as an int. But at this point we run into the second problem with this style of
working: it is not widely supported in .NET libraries. The usual way to parse text into
an int is to use the int type’s static Parse or TryParse methods. Unfortunately, these
do not provide overloads that accept a position or offset within a string. They
require a string containing only the number to be parsed. This means you end up
writing code such as Example 18-2.
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Example 18-2. Defeating the point of the exercise by using Substring

string uriString = "http://example.com/books/1323?edition=6&format=pdf";
int id = int.Parse(uriString.Substring(25, 4));

This works, but by using Substring to go from our (offset, length) representation
back to the plain string that int.Parse wants, we’ve allocated a new string. The
whole point of this exercise was to reduce allocations, so this doesn’t seem like pro‐
gress. One solution might be for Microsoft to go through the entire .NET API surface
area, adding overloads that accept offset and length parameters in any situation
where we might want to work with something in the middle of something else (either
a substring, as in this example, or perhaps a subrange of an array). In fact, there are
examples of this already: the Stream API for working with byte streams has various
methods that accept a byte[] array and also offset and length arguments to indicate
exactly which part of the array you want to work with.

However, there’s one more problem with this technique: it is inflexible about the type
of container that the data lives in. Microsoft could add an overload to int.Parse that
takes a string, an offset, and a length, but it would only be able to parse data inside a
string. What if the data happens to be in a char[]? In that case you’d have to con‐
vert it to a string first, at which point we’re back to additional allocations. Alterna‐
tively, every API that wants to support this approach would need multiple overloads
to support all the containers that anyone might want to use, each potentially requir‐
ing a different implementation of the same basic method.

More subtly, what if the data you have is currently in memory that’s not on the CLR’s
heap? This is a particularly important question when it comes to the performance of
servers that accept requests over the network (e.g., a web server). Sometimes it is not
possible to arrange for data received by a network card to be delivered directly into
memory on .NET’s heap. Also, some forms of interprocess communication involve
arranging for the OS to map a particular region of memory into two different pro‐
cesses’ address spaces. The .NET heap is local to the process and cannot use such
memory.

C# has always supported use of external memory through unsafe code, which enables
you to work with raw unmanaged pointers that work in a similar way to pointers in
the C and C++ languages. However, there are a couple of problems with these. First,
they would add yet another entry to the list of overloads that everything would need
to support in a world where we can parse data in place. Second, code using pointers
cannot pass .NET’s type safety verification rules. This means it becomes possible to
make certain kinds of programming errors that are normally impossible in C#. It may
also mean that the code will not be allowed to run in certain scenarios, since the loss
of type safety would enable unsafe code to bypass certain security constraints.
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To summarize, it has always been possible to reduce allocations and copying in .NET
by working with offsets and lengths, and either a reference to a containing string or
array, or an unmanaged pointer to memory, but there was considerable room for
improvement on these fronts:

• Convenience
• Wide support across .NET APIs
• Unified, safe handling of

— Strings
— Arrays
— Unmanaged memory

But since C# 7.2, we’ve been able to use a type that addresses all three points:
Span<T>. (See the next sidebar, “Support Across Language and Runtime Versions”,
for more information on how the features described in this chapter relate to C# lan‐
guage and .NET runtime versions.)

Support Across Language and Runtime Versions
You might be surprised that I’ve said that a particular version of C# (7.2) introduced
a new type. Generally speaking, new types are defined in libraries so they’re not tied
to any particular version of C#, and superficially, it’s true that Span<T> is just another
type. It has been part of the core libraries that ship with .NET Core since v2.1, and
there’s a NuGet package, System.Memory, enabling you to use it in the .NET Frame‐
work. It’s also available to any library that targets .NET Standard 2.1.

But while Span<T> is just another type, it requires C# 7.2 or later because it is defined
as a ref struct. Older versions of C# do not support ref struct, so they are unable
to use Span<T>.

Be aware that the effectiveness of the techniques in this chapter depends on which
version of .NET you are using. Although the System.Memory NuGet package makes it
possible to use the types discussed in this chapter in programs that run on the .NET
Framework, you end up with a slightly different implementation than the one you
will get when running the exact same code on .NET Core 2.1 or later. Starting with
that version, .NET Core recognizes Span<T> and related types, and provides special
optimizations. This is critical to the high performance offered by the features dis‐
cussed in this chapter.

The latest version of the .NET Framework at the time of writing (version 4.8) lacks
the Span<T> optimizations, and Microsoft has no plans to add them in future versions
because the .NET Framework is superseded by .NET Core. Code using these techni‐
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1 Depending on which version of .NET you’re running on, the first two items may be combined. .NET Core
does not store the pointer and offset separately: instead it just points directly to the data of interest. The ver‐
sion of Span<T> available for .NET Framework needs to maintain the pointer separately to ensure garbage
collection handles spans correctly, because its CLR does not have the same modifications for supporting
spans that .NET Core has.

ques works correctly on .NET Framework, but if you want to reap the full perfor‐
mance benefits of these techniques, you’ll need to run on .NET Core.

Representing Sequential Elements with Span<T>
The System.Span<T> value type represents a sequence of elements of type T stored
contiguously in memory. Those elements can live inside an array, a string, a managed
block of memory allocated in a stack frame, or unmanaged memory. Let’s look at
how Span<T> addresses each of the requirements enumerated in the preceding
section.

A Span<T> encapsulates three things: a pointer or reference to the containing mem‐
ory (e.g., the string or array), the position of the data within that memory, and its
length.1 To access the contents of a span, you use it much as you would an array, as
Example 18-3 shows. This makes it much more convenient to use than ad hoc techni‐
ques in which you define a couple of int variables and have to remember what they
refer to.

Example 18-3. Iterating over a Span<int>

public static int SumSpan(ReadOnlySpan<int> span)
{
    int sum = 0;
    for (int i = 0; i < span.Length; ++i)
    {
        sum += span[i];
    }
    return sum;
}

Since a Span<T> knows its own length, its indexer checks that the index is in range,
just as the built-in array type does. And if you are running on .NET Core, the perfor‐
mance is very similar to using a built-in array. This includes the optimizations that
detect certain loop patterns—for example, the CLR will recognize the code above as a
loop that iterates over the entire contents, enabling it to generate code that doesn’t
need to check that the index is in range each time around the loop. In some cases it is
even able to generate code that uses the vector-oriented instructions available in
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some CPUs to accelerate the loop. (On .NET Framework, Span<T> is a little slower
than an array, because its CLR does not include the optimizations that were added
in .NET Core to support Span<T>.)

You may have noticed that the method in Example 18-3 takes a ReadOnlySpan<T>.
This is a close relative of Span<T>, and there is an implicit conversion enabling you to
pass any Span<T> to a method that takes a ReadOnlySpan<T>. The read-only form
enables a method to declare clearly that it will only read from the span, and not write
to it. (This is enforced by the fact that the read-only form’s indexer offers just a get
accessor, and no set.)

Whenever you write a method that works with a span and that
does not mean to modify it, you should use ReadOnlySpan<T>.

There are implicit conversions from the various supported containers to Span<T>
(and also to ReadOnlySpan<T>). For example, Example 18-4 passes an array to the
SumSpan method.

Example 18-4. Passing an int[] as a ReadOnlySpan<int>

Console.WriteLine(SumSpan(new int[] { 1, 2, 3 }));

Of course, we’ve gone and allocated an array on the heap there, so this particular
example defeats the whole point of using spans, but if you already have an array to
hand, this is a useful technique. Span<T> also works with stack-allocated arrays, as
Example 18-5 shows. (The stackalloc keyword enables you to create an array in
memory allocated on the current stack frame.)

Example 18-5. Passing a stack-allocated array as a ReadOnlySpan<int>

Span<int> numbers = stackalloc int[] { 1, 2, 3 };
Console.WriteLine(SumSpan(numbers));

Normally, C# won’t allow you to use stackalloc outside of code marked as unsafe.
The keyword allocates memory on the current method’s stack frame, and it does not
create a real array object. (Arrays are reference types, so they must live on the GC
heap. A stackalloc expression produces a pointer type, because it produces plain
memory without the usual .NET object headers. In this case, it would be an int*. You
can only use pointer types directly in unsafe code blocks.) However, the compiler
makes an exception to this rule if you assign the pointer produced by a stackalloc
expression directly into a span. This is permitted because spans impose bounds
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2 That said, it is possible to perform this kind of conversion explicitly—the MemoryMarshal class offers methods
that can take a span of one type and return another span that provides a view over the same underlying mem‐
ory, but is interpreted as containing a different element type. But it is unlikely to be useful in this case: con‐
verting a ReadOnlySpan<char> to a ReadOnlySpan<int> would produce a span with half the number of
elements, where each int contained pairs of adjacent char values.

checking, preventing undetected out-of-range access errors of the kind that normally
make pointers unsafe. Also, the fact that Span<T> and ReadOnlySpan<T> are both ref
struct types ensures that a span cannot outlive its containing stack frame, guaran‐
teeing that the stack frame on which the stack-allocated memory lives will not vanish
while there are still outstanding references to it. (.NET’s type safety verification rules
include special handling for spans.)

Earlier I mentioned that spans can refer to strings as well as arrays. However, we can’t
pass a string to this SumSpan for the simple reason that it requires a span with an
element type of int, whereas a string is a sequence of char values. int and char
have different sizes—they take 4 and 2 bytes each, respectively. Although an implicit
conversion exists between the two (meaning you can assign a char value into an int
variable, giving you the Unicode value of the char) that does not make a ReadOnly
Span<char> implicitly compatible with a ReadOnlySpan<int>.2 Remember, the entire
point of spans is that they provide a view into a block of data without needing to copy
or modify that data; since int and char have different sizes, converting a char[] to
an int[] array would double its size. However, if we were to write a method accept‐
ing a ReadOnlySpan<char>, we would be able to pass it a string, a char[] array, a
stackalloc char[], or an unmanaged pointer of type char* (because the in-
memory representation of a particular span of characters within each of these is the
same).

Since strings are immutable in .NET, you cannot convert a string
to a Span<char>. You can only convert it to a ReadOnly

Span<char>.

We’ve examined two of our requirements from the preceding section: Span<T> is eas‐
ier to use than ad hoc storing of an offset and length, and it makes it possible to write
a single method that can work with data in arrays, strings, the stack, or unmanaged
memory. This leaves our final requirement: widespread support throughout .NET
class libraries. As Example 18-6 shows, it is now supported in int.Parse, enabling us
to fix the problem shown in Example 18-2.
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Example 18-6. Parsing integers in a string using Span<char>

string uriString = "http://example.com/books/1323?edition=6&format=pdf";
int id = int.Parse(uriString.AsSpan(25, 4));

New overloads such as this one that accept a span where previously only a string or
perhaps an array would be accepted are now very common. However, be aware that
this is a work in progress. Span<T> is a relatively new type (it was introduced in
2018; .NET has been around since 2002), so there will inevitably be many third-party
libraries that do not yet support it, and perhaps never will. Even Microsoft’s own
framework class libraries did not provide ubiquitous support for it in .NET Core 2.1,
the first version to support Span<T>. However, it is becoming increasingly well sup‐
ported, and the situation will only improve.

Utility Methods
In addition to the array-like indexer and Length properties, Span<T> offers a few use‐
ful methods. The Clear and Fill methods provide convenient ways to initialize all
the elements in a span either to the default value for the element type, or a specific
value. Obviously, these are not available on ReadOnlySpan<T>.

You may sometimes encounter situations in which you have a span and you need to
pass its contents to a method that requires an array. Obviously there’s no avoiding an
allocation in this case, but if you need to do it, you can use the ToArray method.

Spans (both normal and read-only) also offer a TryCopyTo method, which takes as its
argument a (non-read-only) span of the same element type. This allows you to copy
data between spans. This method handles scenarios where the source and target
spans refer to overlapping ranges within the same container.

Stack Only
The Span<T> and ReadOnlySpan<T> types are both declared as ref struct. This
means that not only are they value types, they are value types that can live only on the
stack. So you cannot have fields with span types in a class, or any struct that is not
also a ref struct. This also imposes some potentially more surprising restrictions.
For example, it means you cannot use a span in a variable in an async method.
(These store all their variables as fields in a hidden type, enabling them to live on the
heap, because asynchronous methods often need to outlive their original stack frame.
In fact, these methods can even switch to a completely different stack altogether,
because asynchronous methods can end up running on different threads as their exe‐
cution progresses.) For similar reasons, there are restrictions on using spans in
anonymous functions and in iterator methods. You use them in local methods, and
you can even declare a ref struct variable in the outer method and use it from the
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nested one, but with one restriction: you must not create a delegate that refers to that
local method, because this would cause the compiler to move shared variables into an
object that lives on the heap. (See Chapter 9 for details.)

This restriction is necessary for .NET to be able to offer the combination of array-like
performance, type safety, and the flexibility to work with multiple different contain‐
ers. For situations in which this stack-only limitation is problematic, we have the Mem
ory<T> type.

Representing Sequential Elements with Memory<T>
The Memory<T> type and its counterpart, ReadOnlyMemory<T>, represent the same
basic concept as Span<T> and ReadOnlySpan<T>: these types provide a uniform view
over a contiguous sequence of elements of type T that could reside in an array,
unmanaged memory, or, if the element type is char, a string. But unlike spans, these
are not ref struct types, so they can be used anywhere. The downside is that this
means they cannot offer the same high performance as spans. (It also means you can‐
not create a Memory<T> that refers to stackalloc memory.)

You can convert a Memory<T> to a Span<T>, and likewise a ReadOnlyMemory<T> to a
ReadOnlySpan<T>. This makes these memory types useful when you want something
span-like, but in a context where spans are not allowed (e.g., in an asynchronous
method).

The conversion to a span has a cost. It is not massive, but it is sig‐
nificantly higher than the cost of accessing an individual element in
a span. (In particular, many of the optimizations that make spans
attractive only become effective with repeated use of the same
span.) So if you are going to read or write elements in a Memory<T>
in a loop, you should perform the conversion to Span<T> just once,
outside of the loop, rather than doing it each time around. If you
can work entirely with spans, you should do so since they offer the
best performance. (And if you are not concerned with perfor‐
mance, then this is not the chapter for you!)

ReadOnlySequence<T>
The types we’ve looked at so far in this chapter all represent contiguous blocks of
memory. Unfortunately, data doesn’t always neatly present itself to us in the most
convenient possible form. For example, on a busy server that is handling many con‐
current requests, the network messages for requests in progress often become inter‐
leaved—if a particular request is large enough to need to be split across two network
packets, it’s entirely possible that after receiving the first but before receiving the sec‐
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ond of these, one or more packets for other, unrelated requests could arrive. So by the
time we come to process the contents of the request, it might be split across two dif‐
ferent chunks of memory. Since span and memory values can each represent only a
contiguous range of elements, .NET provides another type, ReadOnlySequence, to
represent data that is conceptually a single sequence, but that has been split into mul‐
tiple ranges.

There is no corresponding Sequence<T>. Unlike spans and mem‐
ory, this particular abstraction is available only in read-only form.
That’s because it’s common to need to deal with fragmented data
as a reader, where you don’t control where the data lives, but if you
are producing data, you are more likely to be in a position to con‐
trol where it goes.

Now that we’ve seen the main types for working with data while minimizing the
number of allocations, let’s look at how these can all work together to handle high
volumes of data. To coordinate this kind of processing, we need to look at one more
feature: pipelines.

Processing Data Streams with Pipelines
Everything we’re looking at in this chapter is designed to enable safe, efficient pro‐
cessing of large volumes of data. The types we’ve seen so far all represent information
that is already in memory. We also need to think about how that data is going to get
into memory in the first place. The preceding section hinted at the fact that this can
be somewhat messy. The data will very often be split into chunks, and not in a way
designed for the convenience of the code processing the data, because it will likely be
arriving either over a network or from a disk. If we’re to realize the performance ben‐
efits made possible by Span<T> and its related types, we need to pay close attention to
the job of getting data into memory in the first place, and the way in which this data
fetching process cooperates with the code that processes the data. Even if you are
only going to be writing code that consumes data—perhaps you are relying on a
framework such as ASP.NET Core to get the data into memory for you—it is impor‐
tant to understand how this process works.

The System.Io.Pipelines NuGet package defines a set of types in a namespace of
the same name that provide a high-performance system for loading data from some
source that tends to split data into inconveniently sized chunks, and passing that data
over to code that wants to be able to process it in situ using spans. Figure 18-2 shows
the main participants in a pipeline-based process.
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3 It is a ValueTask<ReadResult> because the purpose of this exercise is to minimize allocations. ValueTask<T>
was described in Chapter 16.

Figure 18-2. Pipeline overview

At the heart of this is the Pipe class. It offers two properties: Writer and Reader. The
first returns a PipeWriter, which is used by the code that loads the data into mem‐
ory. (This often doesn’t need to be application-specific. For example, in a web appli‐
cation you can let ASP.NET Core control the writer on your behalf.) The Reader
property’s type is, predictably, PipeReader, and this is most likely to be the part your
code interacts with.

The basic process for reading data from a pipe is as follows. First, you call PipeR
eader.ReadAsync. This returns a task,3 because if no data is available yet, you will
need to wait until the data source supplies the writer with some data. Once data is
available, the task will provide a ReadResult object. This supplies a ReadOnlySe
quence<T>, which presents the available data as one or more ReadOnlySpan<T> val‐
ues. The number of spans will depend on how fragmented the data is. If it’s all
conveniently in one place in memory, there will be just one span, but code using a
reader needs to be able to cope with more. Your code should then process as much of
the available data as it can. Once it has done this, it calls the reader’s AdvanceTo to tell
it how much of the data your code has been able to process. Then, if the ReadRe
sult.IsComplete property is false, we will repeat these steps again from the call to
ReadAsync.

An important detail of this is that we are allowed to tell the PipeReader that we
couldn’t process everything it gave us. This would normally be because the informa‐
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tion got sliced into pieces, and we need to see some of the next chunk before we can
fully process everything in the current one. For example, a JSON message large
enough to need to be split across several network packets will probably end up with
splits in inconvenient places. So you might find that the first chunk looks like this:

{"property1":"value1","prope

And the second like this:

rty2":42}

In practice the chunks would be bigger, but this illustrates the basic problem: the
chunks that a PipeReader returns are likely to slice across the middle of important
features. With most .NET APIs you never have to deal with this kind of mess because
everything has been cleaned up and reassembled by the time you see it, but the price
you pay for that is the allocation of new strings to hold the recombined results. If you
want to avoid those allocations, you have to handle these challenges.

There are a couple of ways to deal with this. One is for code reading data to maintain
enough state to be able to stop and later restart at any point in the sequence. So code
processing this JSON might choose to remember that it is partway through an object,
and that it’s in the middle of processing a property whose name starts with “prope.”
But PipeReader offers an alternative. Code processing these examples could report
with its call to AdvanceTo that it has consumed everything up to the first comma. If
you do that, the Pipe will remember that we’re not yet finished with this first block,
and when the next call to ReadAsync completes, the ReadOnlySequence<T> in ReadRe
sult.Buffer will now include at least two spans: the first span will point into the
same block of memory as last time, but now its offset will be set to where we got to
last time—that first span will refer to the "prope text at the end of the first block. And
then the second span will refer to the text in the second chunk.

The advantage of this second approach is that the code processing the data doesn’t
need to remember as much between calls to ReadAsync, because it knows it’ll be able
to go back and look at the previously unprocessed data again once the next chunk
arrives, at which point it should now be able to make sense of it.

In practice, this particular example is fairly easy to cope with because there’s a type in
the class library called Utf8JsonReader that can handle all the awkward details
around chunk boundaries for us. Let’s look at a real example.

Processing JSON in ASP.NET Core
Suppose you are developing a web service that needs to handle HTTP requests con‐
taining JSON. This is a pretty common scenario. Example 18-7 shows the typical way
to do this in ASP.NET Core. This is reasonably straightforward, but it does not use
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any of the low-allocation mechanisms discussed in this chapter, so this forces
ASP.NET Core to allocate multiple objects for each request.

Example 18-7. Handling JSON in HTTP requests

[HttpPost]
[Route("/jobs/create")]
public void CreateJob([FromBody] JobDescription requestBody)
{
    switch (requestBody.JobCategory)
    {
        case "arduous":
            CreateArduousJob(requestBody.DepartmentId);
            break;

        case "tedious":
            CreateTediousJob(requestBody.DepartmentId);
            break;
    }
}

public class JobDescription
{
    public int DepartmentId { get; set; }
    public string JobCategory { get; set; }
}

Before we look at how to change it, in case you’re not familiar with ASP.NET Core, I
will quickly explain what’s happening in this example. The CreateJob method is
annotated with attributes telling ASP.NET Core that this will handle HTTP POST
requests where the URL path is /jobs/create. The [FromBody] attribute on the
method’s argument indicates that we expect the body of the request to contain data in
the form described by the JobDescription class. ASP.NET Core can be configured to
handle various data formats, but if you go with the defaults, it will expect JSON.

This example is therefore telling ASP.NET Core that for each POST request
to /jobs/create, it should construct a JobDescription object, populating its Depart
mentId and JobCategory from properties of the same name in JSON in the incoming
request body.

In other words, we’re asking ASP.NET Core to allocate two objects—a JobDescrip
tion and a string—for each request, each of which will contain copies of informa‐
tion that was in the body of the incoming request. (The other property,
DepartmentId is an int, and since that’s a value type, it lives inside the JobDescrip
tion object.) And for most applications that will be fine—a couple of allocations is
not normally anything to worry about in the course of handling a single web request.
However, in more realistic examples with more complex requests, we might then be
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looking at a much larger number of properties, and if you need to handle a very high
volume of requests, the copying of data into a string for each property can start to
cause enough extra work for the GC that it becomes a performance problem.

Example 18-8 shows how we can avoid these allocations using the various features
described in the preceding sections of this chapter. It makes the code a good deal
more complex, demonstrating why you should only apply these kinds of techniques
in cases where you have established that GC overhead is high enough that the extra
development effort is justified by the performance improvements.

Example 18-8. Handling JSON without allocations

private static readonly byte[] Utf8TextJobCategory =
    Encoding.UTF8.GetBytes("JobCategory");
private static readonly byte[] Utf8TextDepartmentId =
    Encoding.UTF8.GetBytes("DepartmentId");
private static readonly byte[] Utf8TextArduous = Encoding.UTF8.GetBytes("arduous");
private static readonly byte[] Utf8TextTedious = Encoding.UTF8.GetBytes("tedious");

[HttpPost]
[Route("/jobs/create")]
public async ValueTask CreateJobFrugalAsync()
{
    bool inDepartmentIdProperty = false;
    bool inJobCategoryProperty = false;
    int? departmentId = null;
    bool? isArduous = null;

    PipeReader reader = this.Request.BodyReader;
    JsonReaderState jsonState = default;
    while (true)
    {
        ReadResult result = await reader.ReadAsync().ConfigureAwait(false);
        jsonState = ProcessBuffer(
            result,
            jsonState,
            out SequencePosition position);

        if (departmentId.HasValue && isArduous.HasValue)
        {
            if (isArduous.Value)
            {
                CreateArduousJob(departmentId.Value);
            }
            else
            {
                CreateTediousJob(departmentId.Value);
            }

            return;
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        }

        reader.AdvanceTo(position);

        if (result.IsCompleted)
        {
            break;
        }
    }

    JsonReaderState ProcessBuffer(
        in ReadResult result,
        in JsonReaderState jsonState,
        out SequencePosition position)
    {
        // This is a ref struct, so this has no GC overhead
        var r = new Utf8JsonReader(result.Buffer, result.IsCompleted, jsonState);

        while (r.Read())
        {
            if (inDepartmentIdProperty)
            {
                if (r.TokenType == JsonTokenType.Number)
                {
                    if (r.TryGetInt32(out int v))
                    {
                        departmentId = v;
                    }
                }
            }
            else if (inJobCategoryProperty)
            {
                if (r.TokenType == JsonTokenType.String)
                {
                    if (r.ValueSpan.SequenceEqual(Utf8TextArduous))
                    {
                        isArduous = true;
                    }
                    else if (r.ValueSpan.SequenceEqual(Utf8TextTedious))
                    {
                        isArduous = false;
                    }
                }
            }

            inDepartmentIdProperty = false;
            inJobCategoryProperty = false;

            if (r.TokenType == JsonTokenType.PropertyName)
            {
                if (r.ValueSpan.SequenceEqual(Utf8TextJobCategory))
                {
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                    inJobCategoryProperty = true;
                }
                else if (r.ValueSpan.SequenceEqual(Utf8TextDepartmentId))
                {
                    inDepartmentIdProperty = true;
                }
            }
        }

        position = r.Position;
        return r.CurrentState;
    }
}

Instead of defining an argument with a [FromBody] attribute, this method works
directly with the this.Request.BodyReader property. (Inside an ASP.NET Core
MVC controller class, this.Request returns an object representing the request being
handled.) This property’s type is PipeReader, the consumer side of a Pipe. ASP.NET
Core creates the pipe, and it manages the data production side, feeding data from
incoming requests into the associated PipeWriter.

As the property name suggests, this particular PipeReader enables us to read the con‐
tents of the HTTP request’s body. By reading the data this way, we make it possible
for ASP.NET Core to present the request body to us in situ: our code will be able to
read the data directly from wherever it happened to end up in memory once the com‐
puter’s network card received it. (In other words, no copies, and no additional
garbage collection overhead.)

The while loop in CreateJobFrugalAsync performs the same process you’ll see with
any code that reads data from a PipeReader: it calls ReadAsync, processes the data
that returns, and calls AdvanceTo to let the PipeReader know how much of that data
it was able to process. We then check the IsComplete property of the ReadResult
returned by ReadAsync, and if that is false then we go round one more time.

Example 18-8 uses the Utf8JsonReader type to read the data. As the name suggests,
this works directly with text in UTF-8 encoding. This alone can provide a significant
performance improvement: JSON messages are commonly sent with this encoding,
but .NET strings use UTF-16. So one of the jobs that the simpler Example 18-7 forced
ASP.NET to do was convert any strings from UTF-8 to UTF-16. On the other hand,
we’ve lost some flexibility. The simpler, slower approach has the benefit of being able
to adapt to incoming requests in more formats: if a client chose to send its request in
something other than UTF-8—perhaps UTF-16 or UCS-32, or even a non-Unicode
encoding such as ISO-8859-1—our handler could cope with any of them, because
ASP.NET Core can do the string conversions for us. But since Example 18-8 works
directly with the data in the form the client transmitted, using a type that only under‐
stands UTF-8, we have traded off that flexibility in exchange for higher performance.
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Utf8JsonReader is able to handle the tricky chunking issues for us—if an incoming
request ends up being split across multiple buffers in memory because it was too
large to fit in a single network packet, Utf8JsonReader is able to cope. In the event of
an unhelpfully placed split, it will process what it can, and then the JsonReaderState
value it returns through its CurrentState will report a Position indicating the first
unprocessed character. We pass this to PipeReader.AdvanceTo. The next call to
PipeReader.ReadAsync will return only when there is more data, but its ReadRe
sult.Buffer will also include the previously unconsumed data.

Like the ReadOnlySpan<T> type it uses internally when reading data, Utf8JsonReader
is a ref struct type, meaning that it cannot live on the heap. This means it cannot
be used in an async method, because async methods store all of their local variables
on the heap. That is why this example has a separate method, ProcessBuffer. The
outer CreateJobFrugalAsync method has to be async because the streaming nature
of the PipeReader type means that its ReadAsync method requires us to use await.
But the Utf8JsonReader cannot be used in an async method, so we end up having to
split our logic across two methods.

When splitting your pipeline processing into an outer async reader
loop and an inner method that avoids async in order to use ref
struct types, it can be convenient to make the inner method a
local method as Example 18-8 does. This enables it to access vari‐
ables declared in the outer method. You might be wondering
whether this causes a hidden extra allocation—to enable sharing of
variables in this way, the compiler generates a type, storing shared
variables in fields in that type and not as conventional stack-based
variables. With lambdas and other anonymous methods, this type
will indeed cause an additional allocation, because it needs to be a
heap-based type so that it can outlive the parent method. However,
with local methods, the compiler uses a struct to hold the shared
variables, which it passes by reference to the inner method, thus
avoiding any extra allocation. This is possible because the compiler
can determine that all calls to the local method will return before
the outer method returns.

When using Utf8JsonReader, our code has to be prepared to receive the content in
whatever order it happens to arrive. We can’t write code that tries to read the proper‐
ties in an order that is convenient for us, because that would rely on something hold‐
ing those properties and their values in memory. (If you tried to rely on going back to
the underlying data to retrieve particular properties on demand, you might find that
the property you wanted was in an earlier chunk that’s no longer available.) This
defeats the whole goal of minimizing allocations. If you want to avoid allocations,
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your code needs to be flexible enough to handle the properties in whatever order they
appear.

So the ProcessBuffer code in Example 18-8 just looks at each JSON element as it
comes, and works out whether it’s of interest. This means that when looking for par‐
ticular property values, we have to notice the PropertyName element, and then
remember that this was the last thing we saw, so that we know how to handle the
Number or String element that follows, containing the value.

One strikingly odd feature of this code is the way it checks for particular strings. It
needs to recognize properties of interest (JobCategory and DepartmentId in this
example). But we can’t just use normal string comparison. While it’s possible to
retrieve property names and string values as .NET strings, doing so defeats the main
purpose of using Utf8JsonReader: if you obtain a string, the CLR has to allocate
space for that string on the heap, and will eventually have to garbage collect the mem‐
ory. (In this example, every acceptable incoming string is known in advance. In some
scenarios there will be user-supplied strings whose values you will need to perform
further processing on, and in those cases, you may just need to accept the costs of
allocating an actual string.) So instead we end up performing binary comparisons.
Notice that we’re working entirely in UTF-8 encoding, and not the UTF-16 encoding
used by .NET’s string type. (The various static fields, such as Utf8TextJobCategory
and Utf8TextDepartmentId, are all byte arrays created through Encoding.UTF8 from
the System.Text namespace.) That’s because all of this code works directly against
the request’s payload in the form in which it arrived over the network, in order to
avoid unnecessary copying.

Summary
APIs that break data down into the constituent components can be very convenient
to use, but this convenience comes at a price. Each time we want some subelement
represented either as a string or a child object, we cause another object to be allocated
on the GC heap. The cumulative cost of these allocations (and the corresponding
work to recover the memory once they are no longer in use) can be damaging in
some very performance-sensitive applications. They can also be significant in cloud
applications or high-volume data processing, where you might be paying for the
amount of processing work you do—reducing CPU or memory usage can have a
nontrivial effect on cost.

The Span<T> type and the related types discussed in this chapter make it possible to
work with data wherever it already resides in memory. This typically requires rather
more complex code, but in cases where the payoff justifies the work, these features
make it possible for C# to tackle whole classes of problems for which it would previ‐
ously have been too slow.
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non-nullable references, 115-122
nonconcurrent GC mode, 322
not null constraints, 204
NotImplementedException, 369
NotSupportedException, 369
NuGet, 10, 19-21, 559
null coalescing operator, 85
null forgiving operator, 119
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destructors and finalization, 328-331
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ordering, LINQ operators for, 443-445
out parameter, 148-150
overloading, 158-159
override keyword, 289

P
Parallel class, 709
Parallel LINQ (PLINQ), 473
parallelism, multithreading, 709-711

Parallel class, 709
Parallel LINQ, 711
TPL dataflow, 711

ParameterInfo class, 584
parameters, arguments versus, 147

params keyword, 159-161
parent/child relationships, multithreading tasks

and, 706
partial methods, 190
partial type declaration, 190
Pascal casing, 107
Path class, 641-643
patterns, 96-103

in expressions, 101-103
when clause with, 100

PE (Portable Executable) file format, 540
pinned blocks, 325-327
pipelines

processing data streams with, 753-761
processing JSON in ASP.NET core, 753-761

PLINQ (Parallel LINQ), 473
Point struct, 169-171
pointers, 187
Portable Executable (PE) file format, 540
Position property (Stream), 616, 621
positional patterns, 97-99
preamble, 632
precedence, rules of, 50

(see also ordering)
Predicate<T> delegate type, 376-377

anonymous functions and, 394
creating a delegate, 378-381
implied meaning, 386
type compatibility, 387-388
Where operator and, 436

preprocessing directives, 54-59
#error and #warning, 56
#line, 56
#nullable, 58
#pragma, 57
#region and #endregion, 58
compilation symbols, 54-56

project files, 13
project, Visual Studio, 12
projection, Select operator and, 440
properties, 165-171

indexers, 171
mutable value types and, 169-171

property patterns, 99
PropertyInfo type, 584
protected internal members, 282
protected members, 282
protected private members, 282
public key token, 555
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Public Signing, 557

Q
query expressions, 418-427

defined, 417
expansion of, 421-423
supporting, 423-427

query operators, Rx, 505-516
Amb operator, 515
DistinctUntilChanged, 516
Merge, 505
Scan operator, 513
windowing operators, 507-514

queues, 261

R
range operator, 246, 249-252
Range struct, 249-252
range type

supporting index and range in your own
types, 252-254

System.Range and, 249-252
reachability

availability versus, 312
defined, 305
determining, 306-308

reactive extensions (Rx), 473, 475-537
.NET events, 526-528
adaptation, 524-530
asynchronous APIs, 528-530
basics, 475
fundamental interfaces, 477-486
IAsyncEnumerable<T>, 524-526
IEnumerable<T>, 524-526
IObservable<T>, 479-486
IObserver<T>, 477-479
LINQ queries, 494-505
publishing and subscribing with delegates,

486-491
query operators, 505-516
schedulers, 517-521
sequence builders, 491-494
subjects, 521-524
timed operations, 530-536

Read method, 614-616, 689
ReadByte method, 616
ReaderWriterLock class, 682
ReaderWriterLockSlim class, 681
readonly keyword, 131, 133

ReadOnlyCollection<T> class, 245
ReadOnlyMemory<T> type, 752
ReadOnlySequence<T> type, 752
reclaiming memory, 314-320
rectangular arrays, 227-229
recursive patterns, 98
ref keyword, 153
reference conversions, 269, 278, 342, 377, 387
reference types, 111-122
reference variables, 154-156
references, 27

in C# context, 304
libraries and, 19-21, 27

reflection, 567-588
Assembly, 569-573
EventInfo, 585
FieldInfo, 584
MemberInfo, 574-576
MethodBase, ConstructorInfo, and Meth‐

odInfo, 582-584
Module, 573
ParameterInfo, 584
PropertyInfo, 584
reflection contexts, 585-588
Type and TypeInfo, 577-582
types, 568-585

reflection contexts, 585-588
reflection-only load, 610
relational operators, 83
remove methods (events), 409-411
ReplaySubject<T> class, 523
resizing arrays, 230
ResourceManager class, 561-565
Result property, 698
rethrowing exceptions, 363-367
return codes, exceptions versus, 347
root references, 306
rules of precedence, 50

(see also ordering)
runtime package store, 551
Rx (see reactive extensions)
Rx LINQ queries, 494-505

aggregation and other single-value opera‐
tors, 503

Concat operator, 504
grouping operators, 496-497
join operators, 498-503
SelectMany operator, 503
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S
Sample operator, 534
satellite resource assemblies, 564
Scan operator, 513
schedulers (Rx), 517-521

built-in schedulers, 520
ObserveOn extension method, 518
passing schedulers explicitly, 519
specifying, 518-520
SubscribeOn extension method, 519

schedulers (thread-based tasks), 702
scope

local variable instances, 43
of variable, 40-44
variable name ambiguity, 41-43

sealed classes, 292-294
sealed methods, 292-294
searching arrays, 218-225
seed, 453
Seek method, 616
Select operator

data shaping and anonymous types, 438-439
LINQ operators, 437-440
projection and mapping, 440

selection statements, 44
SelectMany operator, 440-443, 503
self-contained applications, 548
Semaphore class, 687
semaphores, 687
sequence builders, Rx, 491-494

empty, 491
generate, 493
never, 491
range, 492
repeat, 492
return, 492
throw, 492

sequence generation, LINQ, 471
sequence interfaces, 233-239
SequenceEqual operator, 459
sequences

implementing, 239-246
implementing IEnumerable<T> with itera‐

tors, 240-244
serialization, 645-654

BinaryReader, BinaryWriter, BinaryPrimi‐
tives, 646

CLR serialization, 647-648
JSON.NET, 649-654

Utf8JsonReader, 759-761
server GC mode, 322
set operations, LINQ, 457
sets, 259-261
short weak reference, 314
simple name, 555
simple program, creating, 15-32

adding a project to an existing solution, 17
classes, 29
namespaces, 25-29
performing a unit test, 31
program entry point, 30
referencing external libraries, 19-21
referencing one project from another, 18
starting from scratch, 15-17
writing a unit test, 21-25

simultaneous multithreading (SMT), 656
Single operator, 448
single-line comments, 52
single-precision numbers, 60
single-threaded apartment (STA), 605
slicing, 267
SMT (simultaneous multithreading), 656
Solution Explorer, 13
solutions (in Visual Studio), 13-14

(see also simple program, creating)
sorted dictionaries, 258
sorted sets, 260
sorting arrays, 218-225
Span<T> type, 251, 748-752
SpinLock struct, 679-681
STA (single-threaded apartment), 605
stacks, 261
standards, 6-11
state, thread-local storage and, 660-662
statements, 44
STAThread attribute, 604
static classes, 110
static constructors, 141-145
static members, 108-110
static methods, 30
static typing, 34
Status property, 698
storage, thread-local, 660-662
Stream class, 614-623

asynchronous operation, 620
concrete types, 621
copying, 618
disposal, 619
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flushing, 617
length, 619
position and seeking, 616
usage styles, 622

StreamReader type, 627
character encoding, 628-632
exception handling, 354
exception thrown by, 351

streams, 613
StreamWriter type, 627, 628-632
string interpolation, 72-74
string literals, 46, 74-76
string type, 70-76

formatting data in, 72-74
immutability of, 71
verbatim string literals, 74-76

string.Format method, 159
StringInfo class, 71
StringReader type, 627
strings

formatting data in, 72-74
immutability of, 71
verbatim string literals, 74-76

StringWriter type, 627
structs, 122-133

copying, 112
events and, 177
guaranteeing immutability, 131
when to write a value type, 127-131

Subject<T> class, 521-522
subjects, Rx, 521-524

AsyncSubject<T>, 524
BehaviorSubject<T> class, 523
ReplaySubject<T> class, 523
Subject<T> class, 521-522

SubscribeOn extension method, 519
subsystems, .exe files and, 543
SuppressFinalize method, 330
switch statements

enums with, 184
multiple choice with, 89-91

synchronization context, 718-720
synchronization, multithreading and, 671-694

Barrier class, 686
class library concurrency support, 693
CountdownEvent class, 686
event objects, 682-685
Event objects, 682-685
Interlocked class, 688-691

lazy initialization, 691-693
Lazy<T> class, 691
LazyInitializer class, 692
lock keyword expansion, 676
monitors and the lock keyword, 673-679
mutex, 687
reader/writer locks, 681
semaphores, 687
SpinLock struct, 679-681
timeouts, 679
waiting and notification, 677

SynchronizationContext class
about, 668-670
ExecutionContext class and, 670-671

System.Collections.Concurrent namespace, 693
System.Io.Pipelines package, 753-755
System.Object, 280
System.ValueType, 299

T
target (in Visual Studio), 12
Task and Task<T> classes, 694-707

composite tasks, 706
continuations, 700-702
creation options, 697
custom threadless tasks, 704
error handling, 704
launching thread pool work with, 665
parent/child relationships, 706
Result property, 698
retrieving the result, 698
returning, 726-728
schedulers, 702
Status property, 698
ValueTask and ValueTask<T>, 695

TaskCompletionSource<T> class, 704
TaskPoolScheduler, 520
TaskScheduler class, 702
templates, generics versus, 209-211
ternary operator (see conditional operator)
testing (see unit test)
text-oriented types, 624-632

concrete reader and writer types, 626-628
encoding, 628-632
TextReader and TextWriter, 624-626

TextReader class, 624-626
TextWriter class, 624-626
thread affinity, 668-671
Thread class, 663-664
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thread pool, 665-668
I/O completion threads, 667
launching with Task, 665
thread creation heuristics, 666

thread-local storage, 660-662
ThreadLocal<T> class, 661
ThreadPoolScheduler, 520
threads, 655-671

hardware threads, 656
thread affinity and SynchronizationContext,

668-671
Thread class, 663-664
thread pool, 665-668
thread-local storage, 660-662
variables and shared state, 657-662

threshold variable, 397
Throttle operator, 534
throwing exceptions, 362-367

FailFast method, 367
rethrowing exceptions, 363-367

timed operations, Rx, 530-536
Delay, 536
DelaySubscription, 536
Interval, 530-532
Sample, 534
Throttle, 534
TimeInterval, 533
Timeout, 534
Timer, 532
Timestamp, 532
windowing operators, 535

TimeInterval operator, 533
Timeout operator, 534
timeouts, 679
Timestamp operator, 532
ToDictionary operator, 469
Trace class, 55
true keyword, 70
true operator, 176
try blocks

exception handling, 354
nested, 359

TryParse method, 348
tuple patterns, 96
tuples, 76-79, 188

anonymous types versus, 189
basics, 76-79
deconstruction, 78
generics and, 208

Tx (LINQ to logs and traces), 474
type arguments, 193
Type class

generics, 581
generics and, 194-196
reflection and, 577-582

type constraints, 197-200
reference type constraints, 200-203
value type constraints, 203

type forwarding, 546
type identity

assemblies and, 544-547
extern aliases, 546

type inference, 207
type parameters, 193
type patterns

about, 97
var patterns versus, 98

TypeInfo class, 577-582
types, 105-191

(see also specific types)
anonymous, 187-189
character, 70-76
classes, 105-122
delegates, 385-387
enums, 184-187
exception types, 367-372
interfaces, 179-183
members, 133-179
nested, 178
numeric, 59-70
partial types and methods, 190
reflection, 568-585
string, 70-76
structs, 122-133
text-oriented (see text-oriented types)
tuples, 76-79

U
unbound type declaration, 194
unhandled exceptions, 372-374
Unicode, 35, 70

encoding, 628-632
unit test

performing a test, 31
writing, 21-25

universal quantifier, 447
Universal Windows Platform (UWP), 551
unmanaged constraints, 203
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unsafe code, 746
unspeakable names, 188, 398, 733
using declaration, 334
using directive, 25
using statement, 333, 725
Utf8JsonReader type, 759-761
UWP (Universal Windows Platform), 551

V
vacuous truth, 447
value type

constraints, 203
properties and mutable value types, 169-171
unmanaged constraints, 203
when to write, 127-131

ValueTask and ValueTask<T> types, 695
ValueTuple<T> type, 208
ValueType, 299
var keyword, 36-38

positional pattern with, 98
with variables holding LINQ queries, 421

var patterns, type patterns versus, 98
variables

captured, 396-403
declaring with var, 37
in C# specification, 34
local, 34-44
local variable instances, 43
name ambiguity, 41-43
reference variables and return values,

154-156
scope, 40-44

verbatim string literals, 74-76
versioning

assembly names, 558-561
inheritance and library versioning, 286-292
version numbers and assembly loading, 560

Virtual Execution System (VES), 7
virtual methods, 283-292

abstract methods, 285
hidden methods versus, 289
inheritance and library versioning, 286-292
interfaces versus, 285

Visual Basic, 6
Visual Studio

#region and #endregion, 58
adding a project to an existing solution, 17
anatomy of a simple program, 15-32
assemblies and, 539
basics, 11-14
constructor generation, 297
creating a new program in, 15-17
referencing external libraries, 19-21
writing a unit test, 21-25

Visual Studio Code, 12
Visual Studio for Mac, 12

W
WaitHandle class, 684
weak references, 311-314
WER (Windows Error Reporting), 364
when clause, patterns with, 100
Where operator, 434-436
while loops, 91
whitespace, 53
Window operator, 510-514
windowing operators, 507-514

Buffer operator, 507-510
demarcating windows with observables, 513
time-based overloads, 535
Window operator, 510-514

Windows Error Reporting (WER), 364
workstation GC mode, 321
Write method, 616, 626

X
Xamarin, 8, 12
XML, 6

Z
zero, division by, 353
zero-argument constructors, 137-138
zero-like values, 205-206
Zip operator, 458
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