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Preface

This book provides a fundamental introduction to numericai analysis suitable for un
dergraduate students in mathematics, computer science, physical sciences, and engi-
neering. It is assumed that the reader is familiar with calculus and has taken a struc-
tured programming course. The text has enough material fitted modularly for either a
single-term course or a year sequence, in short, the book contains enough material so
instructors will be able to select topics appropriate to their needs.

Students of various backgrounds should tir.d numerical methods quite interesting
and useful, and this is kept in mind throughout the book. Thus, there is a wide vari-
ety of examples and problems that help to sharpen one's skill in both the theory and
practice of numerical analysis. Computer calculations are presented in the form of ta-
bles and graphs whenever possible so that the resulting numerical approximations arc
easier to visualize and interpret. MATLAB programs are the vehicle for presenting the
underlying numerical algorithms.

Empbhasis is placed on understanding why numerical methods work and their lim-
itations. This is challenging and involves a balance between theory, error analysis,
and readability. An error analysis for each method is presented in a fashion that is
appropriate for the method at hand, yet does not turn off the reader. A mathematical
derivation foreach method is given that uses elementary results and builds ihe student's
understanding of calculus. Computer assignments using MATLAB give students an
opportunity to practice their skills at scientific programming.

Shorter numerical exercises can be carried out with a pocket calculator/computer,
and the longer ones can be done using MATLAB subroutines. Il is left for the instruc-
tor to guide the students regarding the pedagogical use of numerical computations
Each instructor can make assignment that are appropriate to the available comput
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viii  PRtFACE

mg resources. Experimentation with the MATLAB subroutine libraries is encouraged.
These.materials can be used to assist students in the completion of the numerical anal-
ysis component of computer laboratory exercises.

This Third Edition grows out of much polishing of the narrative for the Second
Edition. For example, the QR method has been added to the chapter on Eigenvalues
and Eigenvectors. New to this edition is the explicit use of the software MATLAB.
An appendix gives an introduction to MATLAB syntax, Examples have been added
throughout the text with MATLAB and complete MATLAB programs are given in
each section. An instructor's disk is available upon request from tiie publisher.

Previously we took the altitude that any software program that students mastered
would work fine. However, many students entering this course have yet to master a
programming language (computer science students excepted). MATLAB has become
the tool of nearly all engineers and applied rnatnematicians, and its newest versions
have improved the programming aspects. So we think that students will have an easier
and more productive lime in this MATLAB version of our text.
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Preliminaries

Consider the function fix) = cos(jr), its derivative f'{x) = —sinU). and its an-
tiderivative F(x) = sin(jc) + C. These fonnulas were studied in calculus. The former
is used to determine the slopem = /'(jto) of the curve.y = /(.v> ata point (.ro, /(nro)).
and the latter is used lo compute the area under ihe curve fora < x <b.

The slope at the point 0/2, 0) ism = fiit/l) — - 1land can be used to find the
tangent line at this point (see Figure 1.1(a)):

1.0
05

0,0

Figure 11 (a) The tangent line to
the curve v = cos(n | at the poini
(n-2.0). '

-0.5



2 Chap 1 Preliminaries

1.0

0.5

0.0

Figure 11 (h) The area under the
curve y —cos(jt) over the interval
[0.jr/2).

-05m

The area under the carve for 0 < x £ jt/2 is computed using an integral (see Fig-
ure 1.1(b)):

area — | cosfjtldx = F (—'l - F(0) —sin (—\ —0 — 1

These are some of the results that we will need to use from calculus.

Review of Calculus

It is assumed that the reader is familiar with the notation and subject matter covered in
the undergraduate calculus sequence. This should have included the topics of limits,
continuity, differentiation, integration, sequencer, and series. Throughout the book we
refer to the following results.

Limits and Continuity

Definition 1.1. Assume that fix) is defined on a set S of real numbers. Then / is
said to have the limit L atn = .vo, and we write

0 lim f(x) = I..

if, given any e > 0, there exists a 5 > 0 such that, wheneverx e S, 0 < U —Jtol < 5
implies that /(n) - L] < t. When the k-increment notation Xx — xg + h is used,
equation (1) becomes

@) lim fUo +h) —L. A
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Definition 1.2. Assume that f(x) is defined on a set 5 of real numbers and leijto € S.
Then / is said to be continuous at x -wxo if

®3) Jim fix) = /(xu)

The function / is said ty be continuous on S if it is continuous at each pointx e b.
The notation C(S') stands for the set of all functions / such that / and its first n
derivatives are continuous on S. When S is an interval, say [a, b], then the notation
Cla, ] is used. As an example, consider the function fix) = x4/i on the inter-

val [—1, }]. Clearly, fix) aad f'(*) — (4/3)-r21 are continuous on I—I, 1). while
f"(x) — (4/9)x~2/3is not continuous at x = 0. A
Definition 1.3. Suppose that is an infinite sequence. Then the sequence is

said to have the limit L. and we write

4) nl_l)mocxn — 1,

if, given any e > 0, there exists a positive integer iV — iV (t) such thatn > |V impfres

that Jjc, —L\ < e. a
When a sequence has a limit, we say that it is a convergent sequence. Another

commonly used notation is "x,, > L asn —y 30.” Equation (4) is equivalent to

() lim (*, L)=o0.

Thus we can view the sequence —\x,, - L}*»" as an error sequence. The
following theorem relates the concepts of continuiry and convergent sequence.

Theorem 1.1. Assume that / U) is defined on the set 5 and xo € S. The following
statements are equivalent:

(a) The function / is continuous at x3.
(b) If lim x, - Jo.then lim /(x,,) = f(xo>-
n-+0u n-*oc

Theorem 1.2 (Intermediate Value Theorem), Assume that/ e C[a,b]and L is
any number between /(a) and f(b). Then there exists a number c, with ¢ e (a, h),
Such that /(cj = L.

Example 1.1. The function / (*) —cos(* —1) is continuous over [0, 1], and the constant
I —0.8 e (cos(0), cos(l)). The solution to fix) = 0.8 over {0.11 is ci = 0.356499.
Similarly, f(x) is continuous over [1,2.5J,and L = 0.8 e (cos(2.J), cos(l)). The solution
to f(x) = 0.8 over [1, 2.5] is @2 — 1.643502, These two oases art: shown in Figure 1.2. m
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Figure 1.2 The intermediate
theorem applied to the function
f(x) = cos(n —1) over [0, 1] and
over the interval [1, 2.5].

Figure 1.3 The extreme vs
theorem applied to the functii
fix) ~ 354-59.5n —66.5x"
over the interval [0, 3].

Theorem 1*3 (Extreme Value Theorem fora Continuous Function). Assume that
/ g C[a, b], Then there exists a lower bound Mi, an upper bound M2, and two
numbers x\, X2 e [a, b] such that

@) M[ = f{xj) <fix) < /(X2 = M2 whenever x € [a, b]
We sometimes express this by writing

(8 M =fix)= min {GH} and  M2=/(*2)= max{/(x).

Differentiable Functions

Definition 1.4. Assume that fix) is defined on an open interval containing xq. Then
/ is said to be differentiable at x$ if

9 lim /U )- [a0i
©) il—m )2—XO :
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exists. When this limit exists, it is denoted by f\x 0) and is called the derivative of /
at jed An equivalent way to express this limit is to use the A-increment notation:

(10) hm fixo + h) - f(xc)_ i 'Uo).4

A function that has a derivative at each point in a sc: 5 is said to be differentiable
on S. Note that, the numberm = f'(xj) is the slope of the tangent line to the graph of
the function y = /(jc) at the point Uo, / (#0)). +

Theorem 1.4. If/ (jr) is differentiable at x = .to. then fix) is continuous at jt = no-

It follows from Theorem 1.3 that, if a function / is differentiable on a closed
interval |a, b], then its extreme values occur at the end points of the interval or at the
critical points (solutions of f\x) = 0) in the open interval (a, b).

Example 1,2, Thefunction/ (jt) = 15ar -66.5.ir2'<-59.5jt -t-35 is differentiable on (0, 3].
The solutions to fix) = 45.r2—123jt t- 59.5 = 0 are jri = 0.54955 and.*2 = 2 40601.
The maximum and minimum values of / on [0. 3] are:

min|/(0), /(3), /(*1), fix2» = min(35. 20. 50.10438, 2.11850) = 2.11 S50
and

max(/(0), /(3), f{x\), fix2)J = max(35, 20, 50.10438, 2.11850S = 50.10438. m

Theorem 1.5 <Rolle’sTheorem). Assumethai/ € (4a, andihat/4 x > fov
allx e (a, b). If/(a) = fib) = 0, then there exists a number ¢, with ¢ ¢ (a, b). such
that f(c) = 0.

Theorem 1.6 (Mean Value Theorem). Assume thai / e C[a, b\ and that fix)
exists forall x e (a,b). Then there exists a number c, with ¢ e (a, b), such that

on
b—a
Geometrically, the Mean Value Theorem says that there is at least one number
c e {a, b) such that the slope of the tangent line to the graph ofy = fix) at the point
(c, /(c)} equals the slope of the secant line through the points (1. /(a)) and (b, fib)).

Example 1.3.  The function fix) = sin(*)is continuous on the closed interval |0.1,2.1J]
and differentiable on the open interval (0.1,2.1). Thus, by the Mean Value Theorem, there
is a number c such that
/(2.1) -/(0.1) 0863209- 0.099833
(c'~ ~ ar = - rrrofl--—----- =0-381688.

Hie solution to f'(c) = costr) = 0.381688 in the interval (0.1, 2.1) is ¢ 1.179174.
"be graphs of fix), the secant line y = 0.381638n- mm0.099833, and the tangent line
== (0.381688* t 0.474215 are shown in Figure 1.4. ]
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X
a 0.5 10 ¢ 15 20b

Figure 1.4 The mean value theorem applied to f(x) =
sin(jr) over the interval (0.1,2.1J.

Theorem 1.7 (Generalized Rolle’s Theorem). Assume that/ e C[a, b] and that
f'(x), f"(x),..., I (n4*> exist over (a, b) and xqg, x\........ X, € [a,b]. Iff{xj) = 0
forj = 0, n.then there exists a numberc, with ¢ € (a, b), such that f —fc) = 0.

Integrals

Theorem 1.8 (First Fundamental Theorem). If/ iscontinuous over [a, b] and F
is any antiderivative of fan [a, b), then

(12)

Theorem 1.9 (Second Fundamental Theorem). If/ is continuous over [a, b] and
x € {a, b), then

(13)

Example 1.4. The function fix) = cos(x) satisfies the hypotheses of Theorem ],9 over
the interval [0, /2], thus by the chain rule

Theorem 1.10 (Mean Value Theorem for Integrals). Assume that/ € C[a, b\.
Then there exists a number ¢, with ¢ e (a, b), such that

The value /(c) is the average value of / over the interval [a, ft].
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Y " ~1(x)
0.8 A
0.6 -
0.4
0.2 Figure 1.5 The mean value
theorem for integrals applied to
00 m —> unm * f{x) = sin(jc) + j sin(3.t) over the
0.0 0.5 1.0 15 2.0 25 interval [0,2.5].

Example 1.5. The function f (x) = sin(;t) m j sin(3.c) satisfies the hypotheses of The-
orem 1.10 over the interval [0, 2.5]. An antiderivative of /{x) is Fix) = —cos(c) —
5 cos(3jc). Tbe average value of the function f (*) over the interval [0,2.5] is:

L cas F(2.5)-F(0) 0.762629-(-1.111111)
filo)dX 2.5 2.5
1873740 _ 4 749496.

25

There arc three solutions to the equation /(c) = 0.749496 over the interval [0,2.5]:
ci = 0.440566, 2 - 1.268010, and c3 = 1.873583. The area of the rectangle with
base b —a = 2.5 and height f(cj) — 0.749496 is f(cj)(b —a) = 1.873740. The area
of the rectangle has the same numerical value as the integral of f(x) taken over the inter-
val [0, 2.5]. A comparison of the area under the curvey = fix) and that of the rectangle
can be seen in Figure 1.5. |

Theorem 1.11 (Weighted Integral Mean Value Theorem). Assume that /, g €
C[a, b] and g(jc) > 0 forx € [a, b\. Then there exists a number c, with ¢ e (a, b),
such that

Example 1.6. The functions fix) = sin(.r) and g(x) = x2 satisfy the hypotheses of
Theorem 1.11 over the interval [0, jt/2]. Thus there exists a number ¢ such that

= 0.883631

ore = sin_1(0.883631) = 1.08356. *
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Series

Definition 1.5. Lei (an}”| ~ 3 sequence. Then an is an infinite series. The

nth partial sum is Sn = £*_] «*. The infinite scries converges if and only if the
sequence {Sn)JHi converges to a limit 5, that is.

/15) «Ii_gbos,, = l_,l_;repjfc:' at = S.

[faseries does not converge, we say that it diverges.

1
Example 1.7. Consider the infinite sequence {an}’ j = Then the «th
) : n(n + 1)
partial sum is
s ='T— L  ~r1 (][ 1 Ui 1
" fatdt+ij k+ U a+1"'

herefore, the nun of the infinite seriesis
- i = im R — =
S nllrlnx sn al!voc Q ! My

Theorem 1.12 (Taylor’s Theorem). Assume that / e Cn+,[a,i>] and let xq e
[a, b]. Then, for every x € (a. b), there exists a number ¢ = c(x) (the value of ¢
depends on the value of x) that lies between *o and x such that

(16) _f(x) — P,,(x) + Rn(x).
where
(17) px)- ~ ("~ {n
t-=0
ind
(18) Rn (x) — / Wb(c)(x - Xﬂ)rHI
(n+ 1)

Example 1.8. The function f(x) = sin(r) satisfies the hypotheses of Theorem 1.12. 1l
Tayloi polynomial Pn(x) of degreen = 9 expanded about xn = 0 is obtained bv evaluatirv



SEC, 1.1 Review of Calculus

Figure 1,6 The graph of f(x) = sin<>) and the Taylor
polynomial P(x) —x —*3/3! +jc5/5! - x1p\ +nr9/9l.

(be following derivatives at x = 0 and substituting the numerical values into formula (1'

/(jc) = sin(jc), /(0)= 0,
(%) = <), I'(0) = 1,
f'\x) = - sinU). /"(0)= 0,

f I13I(x) - -cos(x), fa)@o)--1,

f (Qx) = cos(j), f<9,(0)=1.

B(x) * 31T 5 T + 9!

N graph of both / and Ri) over the interval [0,21T] is shown in Figure 1.6,

Corollary 1.1. If P,,(x) is the Taylor polynomial of degree n given in Theorem 1.12,
fhfn
19) "V o) - [ W K- O L. mn.

Evaluation of a Polynomial

Let the polynomial P(x) ot degree n have the form

(20) P(x) - n,x" +an_jjrn_I H----—-- i-a2X2+ aix + ao-
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Hamer's method or synthetic division is a technique for evaluating polynomials. It
can be thought of as nested multiplication. For example, a fifth-degree polynomial can
be written m the nested multiplication form

PsU) = ((({o$x + i4)n + «3)ar -i-ai)x —a])x + an.

Theorem 1.13 (Horner’s Method for Polynomial Evaluation). Assume that P(x)
is the polynomial given in equation (20) and* = c is a number for which P(c) is to be
evaluated.

Set bn = a,, and compute

(21) bK=ai <i.i for x=wun—11a —2, ..,, 1 0:

then bo  P{c). Moreover, if

(22) Qo(*) = bnx’I~" -rb,,-ixm2+ -t M 2 ~Inx + b\,
then
(23) P(x) = - ¢)QO0{x) + Ro,

where Qo(x) is the quotient polynomial of degreen — 1 and Rq = bo = P(c) is the
remainder.

Proof, Substituting the right side of equation (22) for Qq(x) and bo for #o in equa-
tion (23) yields

(x - ¢)(b,,xn~I - bn" x "~2 H--—- hb3xr +brx + bt) -t-fco
brxn -1 (b,-.] = cb,)xn~" H-=-+ (br - cbj)x2

+ (bj - cbo)x + (bo —ch\).

P(x)

(24)

The numbers  are determined by comparing the coefficients of n* in equations (20)
and (24), as shown in Table 1.1.

The value P(c) = bo is easily obtained by substituting x = c into equation (22)
and using the fact that Rq = bo:

(25) P(c) = (c-c)QOtc)"RO= hO. .

The recursive formula for bk given in (21) is easy to implement with a computer.
A simple algorithm is
bin) = ain):
forh=n- 1:—1:0
b(k) —«(*) -F-c *b(k —1):
end
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TbbleM  Coefficients bt far Horner’s Method

i Comparing (20) and (24) Solving for bt

xn = =th ktx

x*~1 «B-1 =*n-i ai>n *.r-l =iin-! +C&N
xk “t =bic~cbl+] “m=j<i+cfrt+l
x° W =bn~cb[ o= ao + c*t

Table 1.2 Homer’s Table for the Synthetic Division Process

Input | a,, a,-1 an2 - a* *em a2 at oq
X xb,,  xb,-1 xbt-ti xb-j  xb2 xb]
b,, b,-1 bn- 2 A* & £i
Output

When Horner’s method is performed by hand, it is easier to write the coefficients of
P(x) on a line and perform the calculation bt = a* + cb*-n below ak zna column.
The format for this procedure is illustrated in Table 1.2.

Example 1.9.  Use synthetic division (Homer’s method) to find P{3) for the polynomial

p(x) —x5- 6x4+ 8w3~Zx| + 4x - 40.

as 04 «3 a2 ni (X1)
Input ] -6 8 8 4 -40
*=3 3 -9 -3 15 57
—
1 -3 -1 5 19 = 2=
bs bi, fa bi Output

Therefore, />(3) = 17 "



12

Chap. |  PHk(.:mr.\awe5

Exercises for Review of Calculus

1

10.

11

(@ Find L —Ilim,! -+ 1>/(2n —1!|. Then determine jf,, (= |L x,,] and find
Aim,, .00 «i-

(b) FindZ. = lLro4-i.oo(2n*-*-6n-- 1j/(4n2+2n+1). Then determine {<,] = \L-x,,\
and find limn-voct,,.

. Let be a sequence such that lim,,-+txiJ* = 2.

(@) Find lim,—» sinUnl. (b) Find limn-+~In (").

Fine the number(s) c referred to in the intermediate value theorem for each function
over the indicated interval and lor the given value of I..

@ /()= —x2+2x -t3over[--1,0] usingL = 2

(b) fix) = \g'2- - 2over[6,8]usingL = 3

. hind the upper and lower bounds referred to in the extreme value theorem for each

function over die indicated interval.

fa) f(x) =n2- 3x + lover|—L1,2]

(b) fix) = cos'(jt) - sin<*) over[0, 2n]

Find the numbers', c referred to in Rolle’s theorem tor each function over the indi-
cated interval,

(@ f(x) =x4- 4x2over |2, 2]

(bj fix) = sin(jr) + sin(2*) over |0, 2it]

Find the number(s) c referred to in the mean value theorem for each function over the
indicated interval.

(a) [/f.r) ~ yi over|0,4]

X2
b) fix) - ---- 10, 1]
(b) fix) Z 1over ]

. Apply the generalized Rolle’s theorem to fix) = x(x —1)0 —3) over [0,3].

. Apply the first fundamental theorem of calculus to each function over the indicated

interval.
(a) fix) = xexover (0. 2]
3x
Ib) /U)= Xi--+---10ver[-],]]

. Apply the second fundamental theorem of calculus to each function.

(@ X /o ,rcos(friU ,b)  dx /I e'~dt

Find the Humberts) c referred to in the mean value theorem for integrals for each
function, over the indicated interval.

(@) [/ Ix) = 6. over |[—3. 4]

Ib) fix) = x C05(/1) over 10. 3jr/2]

Find the sum of each sequence or series.
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12. Find the Taylor polynomial of degree n -m 4 for each function expanded about tin
given value of xq.
(@ /U)=ilr,*o=1
(b) f(x) =n5+ 4n2+ 3x+ Lgo=0
(c) [/(n) = cos(jf),*0o= 0
13. Giventhat f(x) = sin(jc) and P{x) = x - J3/3!-f xs/5\ —x 7/7\ + x Y9\, Show tl: j
»*>{0) = / (*)(0) fort = 1,2........ 9.
14. Use synthetic division (Homer’s method) to find P(c).
(@ P(X)=x*+x3—13*2—x —12,c =3
(b) P(x) =2x7+x6+x5-2xn-x +23,c=-1

15. Find the average area of all circles centered at the origin with radii between 1and 3.

16. Assume that a polynomial, P(x), has n real roots in the interval [a, b]. Show tha
P .n~v,(x) has at least one real root in the interval [a, b'}.

17. Assume that /, and /" are defined on the interval [e.b]\ f(a) = f(b) = 0; am
/(c) > 0forc € (a, b). Show that there isa numberd e (a, b) suchthatf"(d) <0

Binary Numbers

Human beings do arithmetic using the decimal {base 10) number system. Most com
puters do arithmetic using the binary (base 2) number system. It may seem otherwise
since commun:cation with the computer (input/output) is in base 10 numbers. Thi:
transparency does not mean that the computer uses base 10. In fact, it converts input,
to base 2 (or perhaps base 16), then performs base 2 arithmetic, and finally translate
the answer into base 10 before it displays a result. Some experimentation is require)
to verify this. One computer with nine decimal digits of accuracy gave the answer

100.000
(1) 0.1 =9999.99447.

Here the intent was to add the number A repeatedly 100, 000 limes. The mathematics
answer is exactly 10.000. One goal is to understand the reason for (he computer’s ap
parently flawed calculation. At the end of this section, it will be shown how somethin;
is iosi when the computer translates the decimal fraction  into a binary number.
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Binary Numbers

Base 10numbers arc used for most mathematical purposes. For illustration, the number
1563 is expressible in expandedform as

1563 = (1 Xtob - (5 X 102; + (6 x 101) + (3 x 10°).

In general, let N denote a positive integer; then the digits ao. <*, . me, ak exist so that
N has the base 10 expansion

N — (5 x 10%) mm(at-:i x 10%"™) + sme-r (aj x 101) -t (0 x 10°),

where the digits a* are chosen from [0, 1........ 8,9} Thus N is expressed in decimal
noration as

(2) N = mmm ra\aoten (decimal)
If it is understood that 10 is the base, then (2) is written as
N = » -f2ii180.

For example, we understand that 1563 = 1563fer..
Using powers of 2, the number 1563 can be written

1563 = (Ix 2100+ (1 x 29)+ (0 x 28) + (0 x 27) + (0 x 26)
3) -(0 x25)+ (I x24)+ (I x 23)+ (0x 22) + (1 x 21)
+ (1 x 2°).
This can be verified by performing the calculation
1563= 1024+ 512+ 16+ 8+ 2+1.

in general, let N denote a positive integer; the digits bo, b]........ bj existso that N
has the base 2 expansion

<4) N = [bj x 23) + {bj-1 x 2J~1) + mem+ (1, x 21) + (bo x 2°),
where each digit k, is cither a0 or 1. Thus N is expressed in binary notation as
(5) '=Dbjbj-\mmbrbhbbio (binary).
Using the notation (5) and the result in (3) yields

1563 = 1100001101W

Remarks. The word "two” will always be used as a subscript at the end of a binary
number. This will enable the reader to distinguish binary numbers from the ordinary
base 10 usage. Thus 111 means one hundred eleven, whereas 111 two stands for seven.
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It is usually the case that the binary representation for N will require more digits
than the decimal representation. This is due to the fact that powers of 2 grow much
more slowly than do powers of 10.

An efficient algorithm for finding the base 2 representation of the integer /T can be
derived from equation (4). Dividing both sides of (4) by 2 yields

©) y = (bj x 2J-")t ibj-i X 2J'2) 4-———- i fb, X2°) + J.

Hence the remainder, upon dividing N by 2, is the digit be,, Now determir.e h',. U '6.>
is written as N/2 = Qq + bo/2, then

7) Qo = (bj x 2J-1) + (bj-i x 21“2J+ sem* (b x 21) + (bi x 2°>.

Now divide both sides of (7) by 2 to get

Q =(b,x 23-2)- X2y~3) + m-+ (b2x 2°) H b~.

Hence the remainder, upon dividing Qqgby 2, is the digit b\. This process is continued
and generates sequences {€”} and (JT¥} of quotients and remainders, respectively. The
process is terminated when an integer J is found such that Qj = 0. The sequences
obey the following formulas:

N =2Qo-bo
Qo=2Q, ~bx
®)
Qj-2 = 2Qj-i +bj-i
Qs-i=2Qj+b, {Qj = Q.

Example 1.10. Show how to obtain 1563 = 1100001101 Itwo.
Start with N = 1563 and construct the quotients and remainders according to the
equations in (8):

1563 =2x 781+ 1, bo=1I
781 =2x390+1 b=1
390=2x 195+ 0, £2=0
195=2x 97+ 1 h =1
97=2x 48+ 1, *4=1
48=2x 24 0. *=0
24=2x 12+0, bb=
12=2x 6+0, =0
6=2x 3+0, bg=
3=2x 1+ 1 bg=]
I=2x 0+ 1 bio—I.
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Thus the binary representation for 1563 is

1563 = b\obdu, ==-b 2bifeoi*o = 1100001101 Itwo, a

Sequences and Series

When rational numbers are expressed ir. decimal form, it is often the case that infinitely
many digits are required. A familiar example is

(C)] | = 0.3.

Here the symbol 3 means that the digit 3 is repeated forever to form an infinite repeating
decimal. It is understood that 10 is the base in (9). Moreover, it is the mathematical
intent that (9) is the shorthand notation for the infinite series

5= (3x 10 °) +(3 x 10-2) o+ (3 X 10-4) + mm

"0) -boor* 4
*=1
If only a finite number of digits is displayed, then an approximation to 1/3 is obtained.
For example, 1/3 * 0.333 = 333/1000. The error in this approximation is 1/3000.
Using (10), the reader can verify that 1/3 = 0.333 —1/3000.
Itis important to understand the expansion in (10). A naive approach is to multiply
both sides by 10 and then subtract.

10S=3 + (3x10 )+ (3x 10-3) + omm+ (3 X 10-n) + eem
-5 = - 3x1Q-)- (3x 10~2) —-------- Bx HIM")--mmmm-

9S =3+ (0x 10“1)+ (0 x tO-2) --------- KO x 10 ") + wm
Therefore, S = 3/9 = 1/3. The theorems necessary to justify taking the difference
between two infinite series car. be found in most calculus books. A review of a few of

the concepts follows, and the reader may war.t to refer to a standard text on calculus to
fill m all the details.

Definition 1.6 (Geometric Series). The infinite series

PC
(11) Noerm=cfer+ CM24- mme—crr+ mm
n-0

wherec @ 0and r ® 0, is called &jeometric series with ratio r. A



Sec. 1.2 Binary Numbers 17

Theorem 1.14 (Geometric Series). The geometric series has the following proper-
ties:

12
n=0

(13) If W > 1, then the series diverges.

Proof. The summation formula for a finite geometric series is

1—r
To establish (12), observe that
<15) [r <1 implies that lim r"+1 = 0.
«—p0OC

Taking the limitas n —moc, use (14) and (15) to get

By equation <15) of Section 1.1, the limit above establishes (12).
When r| > 1, the sequence \rn~1) does not converge. Hence the sequence {S,.}
in (14) does noi tend to a limit. Therefore, (13) is established. .

Equation (12) in Theorem 1.14 represents an efficient way to convert an infinite
repeating decimal into a fraction.

Example 1.11.

0.3 =

-3 - 3(10) -*
JtOm

Binary Fractions

Binary (base 2) fractions can be expressed as sums involving negative powers of 2. Ef
N is a real number that lies in the range 0 < R < 1, there exist digits d\, di, eem
d,,,... so that

(16) R= (di x2-:)~(d2x2 2)+ eeet (dBx 2-") - mme

where d, € {0, 1). We usually express the quantity on the right side of (16) in the
binary fraction notation

a7 R —Q.d\d2' ‘min ® 'tw0
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There are many real numbers whose binary representation requires infinitely many
digits. The fraction 7 /10can be expressed as 0.7 in base 10, yet its base 2 representa-

tion requires infinitely many digits:
(18) N-oatm tw

The binary fraction in (18) is a repeating fraction where the group of four digits 0110

is repeated forever.
An efficient algorithm for finding base 2 representations can now be developed. If

both sides of (16) are multiplied by 2, the resuit is
(19) 2R =di +<Ne x2_1)4 - . . . X 2-",)+ mem).

The quantity in parentheses on the right side of (19) is a positive number and is less
than 1 Therefore d\ is the integer part of 2R, denoted d\ = in (2R). To continue the
process, take the fractional part of (19) and write

(20) F[ = frac(2/?i = (d2x 2" ') + -mm+ (dn x 2“"" ") + eme,

where frac(2/J) is the fractional part of the real number 2R. Multiplication of both
sides of (20) by 2 results in

(21) 2Fi = d2+ ((dbx 2 ' ") T - + (4X 2_a+2)+ mem).

Now take the integer part of (21) and obtain d2 =mint(2F|).
The process is continued, possibly ad infinitum (if R has an infinite nonrepeating
base 2 representation), and two sequences {dt| and {/>] are recursiveiy generated.

dk -="aA(2Fk--J.
A *i = frac(2Ft_i).

where d\ = int(2/f) and F\ — frac(2tf). The binary decimal representation of R is
then given by the convergent geometric series

R=2>(2)4
j=1

Example 1.12. The binary decimal representation of 7/10 given in (18) was found usmg
the formulas in (22). Let R = 7/10 e 0.7; then

2R 14 di = int(1.4) = 1 F\ = tract 1.4) = 0.4
2F, - 08 d2=int(0.8) = 0 F2= fract0.8) =0.8
2F2= 16 dj = int(1.6) = 1 Fi —frac(1.6) —0.6
2Fi = 1.2 di = int(1.2) = 1 Fi » frac(1.2)= 0.2
2b =0.4 rfj = int(0.4) r=0 F$ = frac(0.4) = 04

=08 df, = int(0.8) = 0 fft —frac(0.8) =08

2Ff,= 1.6 4 :ini(16)= 1 F! = fraclUi) =06
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Note that 2Fj — 1.6 = 2 Ft- The patterns dt = dk~A and F\ = F*+4 will occur for k = 2,
3.4, .. Thus 7/10 = O.IOTTOnvo- ]

Geometric series can be used to find the base 10 rational number tha: a binary
number represents.
Example 1.13. Find the base 10 rational number that the binary number 0.01 mc repre-
sents,. In expanded form,

00lwo= (0x2'1)+ (1 x2~2)~ (0 x 2-3}4 N x 2“4) t- mm

00 ocC
= £ (2-2i=-1li-IJr(2-2t
k=1 i=0

Binary Shifting
If a rational number that is equivalent to an infinite repeating binary expansion is to be
found, then a shift in the digits can be helpful. For example, let S be given by

{21 s = 0.000001 iGOOvom

Multiplying both sides of (23) by 2; will shift the binary point five places to the right,
and 32S has the form

(24) 325 = O.TTOOO™,

Similarly multiplying both sides of (23) by 2 ICwill shift the binary point ten places to
the right iind 10245 has the form
(25) 10245= 11000. I1 COOwo-

The result of naively taking the differences between the left- and right-hand sides of
(24) and (2.5) is 9925 = 1000”0 or 9925 = 24, since 11000.wo m 24, Therefore.
S - 8/33.

Scientific Notation
A s'.a;kbiil way to present a real number, called scientific notation, is obtained by
sin lung tiic decimal point and supplying an appropriate power of 10. For example,

0.0000747 = 7.47 x 10~5,
31.4159265 = 3.14159265 x 10.
9,700,000,000 = 9.7 x 109.
In chemistry, an important constant is Avogadro’s number, which is 6.02252 x 1023. It

is the number of atoms in the gram atomic weight of an element. In computer science,
IK _ 1.024 x 103.
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Table 1.3  Decimal Equivalents for a Set of Binaiy Numbers with 4-Bit Mantissa and
Exponent of n = —3, —2........ 3,4

Exponent:

Mantissa n=-—3 n=-2 n=-1 n=0 n=1 n—2 n= n—4
0.1000mo  0.0625 0.125 0.25 0.5 | 2 4 8
0.100lwo  0.0703125 0.140625 0.28125 05625 1125 2.25 45 9
oloicwo 0.078125  0.15625 0.3125 0.625 125 25 5 10
0.1011(wo  0.0859375 0.171875 0.34375 0.6875 1375 275 55
0.1100mo  0.09375 0.1875 0.375 0.75 15 3 6

0.1l0ltwo  0.1015625 0.203125 0.40625 0.8125 1625 3.25 6.5
01110W0 0.109375  0.21875  0.4375 0.875 175 3.5 7
O.llltwo ~ 0.1171875  0.234375  0.46875 09375 1875 375 7.5

GRBERER

Machine Numbers

Computers use a normalized floating-point binary representation for real numbers.
This means that the mathematical quantity x is not actually stored in the computer.
Instead, the computer stores a binary approximation to x:

(26) Xx*+qx2".

The number g is the mantissa and it is a finite binary expression satisfying the inequal-
ity J/2 5 g < 1 The integer n is called the exponent.

In a computer, only a small subset of the real number system is used. Typically, this
subset contains only a portion of the binary numbers suggested by (26). The number
of binary digits is restricted in both the numbers q and n. For example, consider the
set of all positive real numbers of the form

(27) 0.d\d 20 3dAWO x 2n,

where d\ = land d2 "3, and are eitherOor 1,and n € {3, —2, —1,0, 1,2, 3,4).
There are eight choices for the mantissa and eight choices for the exponentin (27), and
this produces a set of 64 numbers:

(28) {0.1000,wo x 2-3,0.1001two x 2~3,... ,0.1110,wo x 24,0.1M 1N x 24}.

The decimal forms of these 64 numbers are given in Table 1.3. It is important to leam
that when the mantissa and exponent in (27) are restricted the computer has a limited
number of values it chooses from to store as an approximation to the real number x.
What would happen if a computer had only a 4-bit mantissa and was restricted
to perform the computation + + Assume that the computer rounds all real

numbers to the closest binary number in Table 1.3. At each step the reader can look at
the table to see that the best approximation is being used.
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A » O.IOW x2%3 = 0.01101d0x 2“2
(29) A ss 0.1101No x 2“2 = O.lI0lwo x 2~2
"5 0.00UIltwo x 2-1.

The computer must decide how to store the number 0.0011 I"0 x 2-2. Assume that n
is rounded to 0.10I0two x 2_i. The next step is
/5 =» 0.1010,™ x 2-' = 0.10WLN® x 2~
(30) i % 0101INox 2'2 = 0.01011"~ x 2-'
O.lltwo x 2_1.
The computer must decide how to store the number 0.1 111 ltwo x 2 _1. Since rounding

is assumed to take place, it stores O.IO0O00wo x 2°. Therefore, the computer’s solution
to the addition problem is

(31) ~ & 0.10000Mmo X 2°.

The error in the computer’s calculation is
(32) 5 0.10000two sa 0.466667 - 0.500000 =»0.033333.

Expressed as a percentage of 7/15, this amounts to 7.14%.

Computer Accuracy

To store numbers accurately, computers must have floating-point binary numbers with
at least 24 binary bits used for the mantissa; this translates to about seven decimal
places. If a 32-bit mantissa is used, numbers with nine decimal places can be stored.
Now, again, consider the difficulty encountered in (1) at the beginning of the section,
when a computer added 1/10 repeatedly.

Suppose that the mantissa q in (26) contains 32 binary bits. The condition /2 < q
implies that the first digit is d\ = 1. Hence q has the form

(33) g = O.bIr"3 *=-A3iA32two-

When fractions are represented in binary form, it is often the case that infinitely
many digits are required. An example is

(34)
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When the 32-bit mantissa is used, truncation occurs and the computer uses the internal
approximation

(35) «=0.110011001100110011001100110011(XW0 x 2-3.

The error in the approximation in (35), the difference between (34) and (35) is
(36) 0.UOO"0 x 2-35  2.328306437 x 10~u .

Because of (36), the computer must be in error when it sums the 100,000 addends
of 1/10 in (1). The error must be greater than (100,000)(2.328306437 x 10~n) =
2.328306437 x 10~6. Indeed, there is a much larger error, Occasionatfy, the partial
sum could be rounded up or down. Also, as the sum grows, the latter addends of 1/10
are small compared to the current size of the sum, and their contribution is truncated
more severely. The compounding effect of these errors actually produced the error
10,000 - 9999,99447 = 5,53 x 10“3.

Computer Floating-point Numbers
Computers have both an integer mode and afloating-pointmode for representing num-
bers. The integer mode is used for performing calculations that are known to be integer
valued and has limited usage for numerical analysis. Floating-point numbers are used
for scientific and engineering applications. It must be understood that any computer
implementation ofequation (26) piaces restrictions on the number of digits used in the
mantissa g, and that the range of possible exponents n must be limited.

Computers that use 32 bits to represent single-precision real numbers use 8 bits
for the exponent and 24 bits for the mantissa. They can represent real numbers with
magnitudes in the range

2.938736£ - 39 to 1.701412£ + 38

(i.e., 2-12S to 2127) with six decimal digits of numerical precision (e.g., 2~23 = 1.2 x
10' 7).

Computers that use 48 bits to represent single-precision real numbers might use
8 bits for the exponent and 40 bits for the mantissa. They can represent real numbers
in the range

2.9387358771£ —39 to  1.7014118346E + 38
(i.e., 2" 128 to 2127) with 11 decimal digits of numerical precision (e.g., 2-39 = 1.8 x
10',2).
If the computer has 64-bit double-precision real numbers, it might use 11 bits for
the exponentand 53 bits for the mantissa. They can represent real numbers in the range

5.562684646268003£ —309 to  8.988465674311580£ + 307

(i.e., 2~1024 to 21023) with about 16 decimal digits of numerical precision (e.g., 2~52 =
2.2 x 10-16).
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Exercises for Binary Numbers

10.

11

12.

. Use a computer to accumulate the following sums. The intent is to have the computer

do repeated subtractions. Do not use the multiplication shortcut.
(a) 10,000- T ™'0000-1 (b) 10,000- T.T/1°°0-125

. Use equations (4) and (5) to convert the following binary numbers to decimal

(base 10) form.
(a) IOIOItwo (b)  IOOOttvo
(c) 11111110mo0 (d) 1000000111,wo

. Use equations (16) and (17) to convert the following binary fractions to decimal

(base 10) form.

(a) 0.1101Itwo (b) 0.I0I0lwo
(c) 0.101010Uo (d) 0.110110110tm0

. Convert the following binary numbers to decimal (base 10) form.

(a) 1.0110101,wo (b) H.00l00I000ItwWo

. The numbers in Exercise 4 are approximately -J2 and >k Find the error in them

approximations, that is, find
(@ -/ - 1.0110101,wo (Use V2 = 1.41421356237309 -¢)
(b) n - 11.0010010001two (Use = 3.14159265358979 m -)

. Follow Example 1.10 and convert the following to binary numbers.

(a) 23 (b) 87 (c) 378 (d) 2388

. Follow Example 1.12 and convert the following to a binary fraction of the form
0,d\d2 “ * «"mwo-
(@) 7/16 (b) 13/16 (c) 23/32 (d) 75/128

. Follow Example 1.12 and convert the following to an infinite repeating binary frac-
tion.
(a) 1/10 (b) 173 (c) 17

. For the following seven-digit binary approximations, find the error in the approxima-

tion R —0.<i|rf2/3"4 56" Ttwo-

(a) 1/10~ 0.0001100two fl>)  1/7 «s 0.00l00I0Uo

Show that the binary expansion 1/7 = 0.001 M0 is equivalentto | = | + gj+jy7 +
=+ Use Theorem 1.14 to establish this expansion.

Show that the binary expansion 1/5 = 0.001 ltwo is equivalentto 5 —  + 555 +
31, H----. Use Theorem 1.14 to establish this expansion.

Prove that any number 2~N, where N is a positive integer, can be represented as a
decimal number that has N digits, thatis, 2~N = O.di&di me"jv- Hint. /2 = 0.5,
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13.

14.

15.

16.

17.
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(Jse Table 1.3 to determine what happens when a computer with a 4-bit mantissa
performs the following calculations.

(1r+?)+E (tc+ i)+ 3

© o)t « (re+s) +7

Show that when 2 is replaced by 3 in all the formulas in (8) the resultis a method for
finding the base 3 expansion of a positive integer. Express the following integers in
base 3.

(a) 10 <b) 23 (c) 421 (d) 1784

Show that when 2 is replaced by 3 in (22) the result is a method for finding the base 3
expansion of a positive number R that lies in the interval 0 < R < 1. Express the
following numbers in base 3.

(a) 113 (b) 1/2 (c) 1/10 (d) 11/27

Show that when 2 is replaced by 5 in all the formulas in (8) the result is a method for
finding the base 5 expansion of a positive integer. Express the following integers in
base 5.

(@ 10 (b) 35 (c) 721 (d)y 734

Show that when 2 is replaced by 5 in (22) the result is a method for finding the base 5
expansion of a positive number R that lies in the interval 0 < R < 1. Express the
following numbers in base 5.

@ 1713 (b) 1/2 (c) 1/10 (d) 154/625

Error Analysis

In the practice of numerical analysis itis important to be aware that computed solutions
are not exact mathematical solutions. The precision of a numerical solution can be
diminished in several subtle ways. Understanding these difficulties can often guide the
practitioner in the proper implementation and/or developmentofnumerical algorithms.

Definition 1.7. Suppose that p is an approximation to p. The absolute error is
EP =s\p—p], and the relative error is Rp = jp —p\j\p\, provided thatp ¢ 0. A

The error is simply the difference between the true value and the approximate

value, whereas the relative error is a portion of the true value.

Example 1.14.  Find the error and relative error in the following three cases. Letx —
3.141592 and * = 3.14; then the error is

(1a)

and

Ex = |x-?i = |3.141592- 3.14| = 0.001592,
the relative error is

Rx = des21 _ 0.00L w).00507.
| 3141592
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Lety = 1,000,000andy - 999,9%; then the erroris

(Ib) Ey Iy —y] ~ 11,000,000 —999, 996| = 4,

and the relative error is

P=MTn s A = 0.000004.
* v| 1,000,000

Letz = 0.000012 and T = 0.000009; then the error is
(Ic) Ez=\z- zj - 10.000012 - 0.0000091 = 0.000003,

and the relative error is

lz-z1 0.000003
rooon 0.000012

In case (la), there is not too much difference between Ex and Rx, and either could
be used to determine the accuracy of ?. In case (1b), the value ofy is of magnitude 106,
the error Ey is large, and the relative error Ry is small. In this case, 'y would probably
be considered a good approximation to y. In case (Ic), r is of magnitude 10-6 and
the error Ez is the smallest of all three cases, but the relative error Rz is the largest.
In terms of percentage, it amounts to 25%, and thus r"is a bad approximation to z.
Observe that as jpj moves away from J (greater than or less than) the relative error Rp
is a better indicator of the accuracy of the approximation than Ep. Relative error is
preferred for floating-point representations since it deals directly with the mantissa.

Definition 1.8. The number p is said to approximate ptod significant digits ifd is
the largest positive integer for which

Example 1.15. Determine the number of significant digits for the approximations in
Example 1.14.

(3a) Ifx = 3.141592 and * = 3.14, then \x —x]/\x\ = 0.000507 < 10- 2/2. Therefore,
X approximates x to two significant digits.

(3b) If y = -1,000,000 and y = 999,996, then \y - y\j\y\ = 0.000004 < \0'5[,.
Therefore, § approximatesy to five significant digits.

(3c) Ifr = 0.000012 andt = 0.000009, then \z -r |/|r| = 0.25 < 10~°/2. Therefore,?
approximates z to no significant digits. ]
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Figure 1.7 The graphs of > =
H{ic) —*2,y — and the area
under the curve for 0 < x < /.

Truncation Error

The riotio;i of truncation prmr usually refers to errors introduced when a more com
plicated mathematical expression is “replaced” with a more elementary formula. This
terminology originares from the technique of replacing a nnr.plicated function with a
truncated Taylor series. For example, die infinite Taylor series
V- _ ¥4 A/G *& Azzf\
cx =1 *ji+ —+
2! 3 41 n—
might be replaced with just the first lire terms J t-x2+ + y-  j?. This might be
done when approximating an integral numerically.

Example i.16. Given that/Q/2e*2dx = 0.544987104184 - p, determine the accuracy
of the approximation obtained by replacing the integrand fix) = e*2with the truncated

Taylor series ft(Jr) ~1-2Jf2+ ir + 3T+ ir
Term-by-term integration produces

r13/ , ré4 x8\ xI xb x1 x9 \ 1=1,2
i (l*r + N +'|'[+/\)/\=/\ +T+/\ +7LU+/\ ),F_O
J L 1 J
~ 2" 24 + 7320 + 5376 ' 110,592
2.109,491 _

- SIS 0544986720817 = p.
1,870,720 y

Since IU_5/2 > \p-p\I\p\ = 7.03442x 10_/> 10_6/2,theappruxiiualiuu JJagiecs with

the true answer p —0.544987104184 to five significant digits. The graphs o: fix | —r1
andy = Pr(x) and the area underthe curve forO < i < 1/2 are shown in Figure 1.7 =
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Round-Off Error

A computer's representation of real numbers is limited to the tixed precision of the
mantissa. Tiue vaiues are sometimes not stored exactly by a computer s represen-
ts’on TTmn is filled round-off error. Lu the preceding section ihe real number
i. 10 0.0001 l,wo was truncated when it was stored in a computet. The actual num-
net ili.it is stored in the computer may undergo chopping or rounding of ihe la st digit.
Therefore, since the computer hardware works with only a limited number of digits in
machine numbers, rounding errors are introduced and propagated in successive com-
puta:io;is.

Chopping off Versus Rounding Off

(Consider any real number p thal is expressed in anormalized decimalform'.
(4) p = i.0.d[d>di mm ... x 10"

where | < di <9and0 <d, <9 furj > 1 Suppose that k is the maximum number
cfdei imal digits earned in the floating-poini computations of a computer; then the real
number p is represented by /~-bcp(a). which is given by

™) Ncbop(P) =~ 0-didzdi .. ,dk x 10"

uherv : < i\ <9and 0 <dj <9fori <j <k The number fichopip) is called
lic choppedfloating-point representation of p. In this case the Ath digit of / /ceop(p)
agrees with the Ath digit of p. An alternative i-digit rcprescmation is ihr rounded
ftvcilin®-point representation (p). which :s given by

T) / lroura)P) ~ ...nox \0".

Niiere 1< <i < 9and 0 < dj <9 for 1 < j < k and the iast digit, r*. is obtained
by rounding the number d*dk <i<4-2 mmmto :he nearest integer. For example, the real
number

22
P= 1 = 3.1428571428?)/142X"7 ...

bas the following six digit representations:

/W A = 0J14285 * 1)I-
/Und(P) =0.314286 * 10".

Jit common pH-poses the chopping and rounding would be written as 3.14285 and
3.14286. respectively. The reader should note that essentially all computers use souse
form of the rounded floating point representation method.
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Loss of Significance

Consider the two numbers p — 3,1415926536 and q = 3.1415957341, which are
nearly equal and both carry 11 decimal digits of precision. Suppose that their differ-
ence is formed: p —g = —0.0000030805. Since the first six digits of p and q are
the same, their difference p —q contains only five decimal digits of precision. This
phenomenon is called loss o fsignificance or subtractive cancellation. This reduction
in the precision of the final computed answer can creep in when it is not suspected.

Example 1.17. Compare the results of calculating /(500) and #(500) using six digits
and rounding. The functionsare fix) = x (V*+ 1— x)andg(x) = For the

first function,,

/(500) = 500 (4/501 - VSOO)
500(22.3830 - 22.3607) = 500(0.0223) = 11.1500

Forg(x),

500
5(500) = -= = 2o —
41X + 7500

500 500
22.3830 + 22.3607  44.7437

= 11.1748.

The second function, #(*), is algebraically equivalent to /(*), as shown by the computa-
tion

fo\ — XA X+ 1~ + 1+
VAT L'
x((VITT)2- ("~ 2

oJx + 1+ fx
X

n*TT + sfx’

The answer, g(500) = 11.1748, involves less error and is the same as that obtained by
rounding the true answer 11.174755300747198... to six digits. [ ]

The reader is encouraged to study Exercise 12 on how to avoid loss of significance
in the quadratic formula. The next example shows that a truncated Taylor series will
sometimes help avoid the loss of significance error.

Example 1.18. Compare the results of calculating /(0.01) and P(0.01) using six digits
and rounding, where

fx — 1 —X 1 X X~
[« = — 72— “d plO=r+6+5"
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The function P(x) is the Taylor polynomial of degree n = 2 for f(x) expanded about
x —0.
For the first function

/(0.01)= ** '-1-°-°j = 1010050- 1-0.01 = 0.5.
001)2 0.001

For the second function

. 1 001 0.001
moi).- +— + —

= 0.5+ 0.001667 + 0.000004 = 0.501671.

The answer P{0.01) = 0.501671 contains less error and is the same as that obtained by
rounding the true answer 0.50167084168057542... to six digits. ]

For polynomial evaluation, the rearrangement of terms into nested multiplication form
will sometimes produce a better result.

Example 1.19. Let P(x) = xr —3x2+ 3x —land Q(x) = ((x - 3)x +3)* - 1
Use three-digit rounding arithmetic to compute approximations to P(2A9) and Q{2.19).
Compare them with the true values, P(2A9) —6(2.19) = 1.685159.

142.19) « (2.19)3- 3(2.19)2+ 3(2.19) - 1
= 105- 144+ 657 —1= 167.
2(2.19)  ((2.19 —3)2.19 + 3)2.19 —1= 1.69.

The errors are 0.015159 and —0.004841, respectively. Thus the approximation 6(2.19) »
1.69 has less error. Exercise 6 explores the situation near the root of this polynomial. ]

0ihN) Order of Approximation

Clearly the sequences | » J ~and JEJ ~are both converging to zero. In addition, it

should be observed that the first sequence is converging to zero more rapidly than the
second sequence. In the coming chapters some special terminology and notation will
be used to describe how rapidly a sequence is converging.

Definition 1.9. The function /(h) is said to be big Ok of gih), denoted /(h) =
0(g(h)), if there exist constants C and c such that

7) I/(A)] < C\g{h)\  whenever h < c. A

Example 1.20. Consider the functionsj u) = xr +1 and g(x) = xI. Sinceil < mland
1< x3forx > 1,it followsthatx1+ 1< 2x3fort > 1 Therefore, fix) —0(g(x)). =
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The big Oh notation provides a useful way ofdescribing the rate of growth ofa function
in terms of well known elementary functions U", jc1,'L ax, logajc, etc.).
The rate of convergence of sequences can be described in a similar manner.

Definition 1.10. Let Un)£l| and { be two sequences. The sequence (xn| is
said to be of order big Oh of {>m} denoted xn — 0(y,,), if there exist constants C
and ;V such that

(8) \Xn| < C|vi whenever n > N. a

Example 1.21. nhIF = ° (O ’since
Ofien a function /(h) is approximated by a function p(h) and the error bound is
known to be This leads to the following definition.

Definition 1.11. Assume that f(h) is approximated by the function pih) and that
there exisi areal constant M > 0 and a positive integer u so that

) ¥ :f'ulp(h)\i M for sufficiéntly small h.

C
We say that p{h) approximates f(h) with order of approximation f>(hn) and write
(10) f(h) = p(h) + 0 (h"). a

When relation (9) is rewritten in the form\fih) —p(A)i < M|hn|, we see that the
notation 0(h") stands in place of the error bound M\hn\. The following results show
how to apply the definition to simple combinations of two functions.

Theorem 1.15. Assume that f(h) = p(h) + 0(hn),g(h) = q(h) + 0{/i'n), and
r —min{m, «}. Then

(11) f(h) +g(h) —p(h) 1q(h) + O (fir),

(12) J(h)K(h) = P(h)q(h)+ 0(h").

and

(13) _géh) q{h)) t 0(hr) provided that g(h) ¢ 0 and q{h) 0.

It is instructive to consider /»{*) to be the nth Taylor polynumial approximation
of /(n); then the remainder term is simply designated Oih" n ), which stands for the
presence of omitted terms starting with the power hn+l. The remainder term converge;»
to rero with the same rapidity that A" '1rnnverges to zero as h approaches zero, as
expressed in the relationship

(14) 0(h"~")  Affintl A+
m+ !
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for sufficiently small h. Hence the notation O (hn™ 1) stands in place rtf the quantity
A/ft' +1, where M is a constant or "behaves like a constant.”

Theorem 1.16 (Taylor’s Theorem). Assume that / € Cn+i\a,b]. If both xq and
& i'o+ hliein [a, b], then

(Hi /Uo-t-A) = £ h«+ 0 (h*+").

The following example illustrates the above theorems. The computations use the
addition properties (i) 0(hp) + 0(hp) = 0{h?), (ii) 0(Ap) + 0(A4) — 0{hr),
where r — min{p, q), and the multiplicative property (iii) 0 (hp)0(hqg) = 0 (hs),
wherej —p \ q.

Example 1.22. Consider the Taylor polynomial expansions

f*- 1+ Ar—+ — -f0O(h4) and cos(A) = 1- — + — mmO(ft6)

Determine the order of approximation for their sum and product.
Bor the sum we have

5 +coS(A) = i+ a+ ~ + A +0(A)+1-~ A - 0(hb)

B 7}
=2 th+ — + Oihd) + -- + 0(AB).
3l 41

Since Oih') t jr = 0(h4)and 0(h4) + Oih6) = Oih4), this reduces to
h y
eh+cos{A) 2+ ft+ — FO(iid),

and {he order of approximation is Oik'J).
The product is treated similarly.

+ 0 (h*)0(h6)
A 5M M A6 hl
+ 3 24 24+ 48 + N4
4 0(hb) + OCA4) + 0(J1n)0(J16).
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Since <7(A4)0 (/t6) = 0{h 10) and

the preceding equation is simplified to yield

and the order of approximation is O (h4). XK

Order of Convergence of a Sequence

Numerical approximations are often arrived at by computing a sequence of approxi-
mations that get closer and closer to the desired answer. The definition of big Oh for
sequences was given in Definition 1.10, and the definition of order of convergence for
a sequence is analogous to that given for functions sn Definition J,J1.

Definition 1,12. Suppose that lim ,,x,, — x and {rnj*_, is a sequence with
HIMH#~000i — 0. We say that W I* j converges to x with the order of conver-
gence O (/-,,], if there exists a constant K > 0 such that

——m—- < K for n sufficiently large.
This is indicated by writing x,, = x + 0{r,,), or x,, —@ x with order of convvr-
gence O (rn). A

Example 1.23. Leixn -- cos(nj/>i2ami r,, = 1/n2;then limn-n» xr, = 0 with arate of
convergence (K /n 2L This followsimmediately fromthelelaxkm

Icos(n)/n2(
= |cos(rt)] < I  for all n.
~Jn7l

Propagation of Error

Let us investigate how error might be propagated in successive computations, Con ider
the addition of two numbers p and q (the true values) with the approximate values p
and g. which contain errors and respectively. Starting with p —p + t and
g = q+€q, the sum is

P+q- {p+E€p)+ (q+e9)= (p+q)+ (ep-fe)

Hence, for addition, the error in the sum is the sum of the errors in the addends.
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The propagation of error in multiplication is more complicated. The product is

(1t pg = {p + (p)(p + £0) = pq + ptq + Qfp + <pq-

Hence, if p and q are larger than 1in absolute value, terms ptqg and gcr show that there
is 3 possibility of magnification of the original errors ep and cq. Insights are gained if
wt look <t the relative error. Rearrange the terms in (17) to get

(i) pPg-pgq = p€d+qtp + tptd.

Suppose that p ® 0 and g ¢ 0; then we can divide (18) by pqg to obtain the relative
error in the product pq:

(19) fii —pg~ PU _ P(g+ lle? + *p*tl _ Peq + p + "pg
rq pq pq pq pq Pq

Funherfnore, suppose that p and q are good approximations for p ar.d g\ then
pfp \,414 ~ l.and RpRq = (ep/'p)(eq/q) =0 (Rp and Rq are the relative errors
in ttje approximations pand g). Then making these substitutions into (19) yielcK ne
simplified relationship

Rpg = PY~ pg >~ 4-0= R4+ Rp.
pq A p

Thi4 SViows that the relative error in the product pq is approximately the sum of the
relativeerrors in the approximations p and q.

Often an initial error will be propagated in a sequence of calculations. A quality
th#tis desirable for any numerical process is that a small error in the initial conditions
will produce s;n;:ll changes in the final result. An algorithm with this feature is called
SttbU\ otherwise, it is called unstable. Whenever possible we shall choose methods
thstare stable, Ihe following definition is used to describe ihe propagation of error.

Definition 1.13. Suppose that e represents an initial error and f (n) represents the
?ro*HI of tlie enor after n steps. If le(n)] ne.the growth oferror is said to be linear.
If (a)\ » Kne. the growth of error is called exponential. If K > 1, the exponential
error grov/i without bound as n *m o, and if 0 < K < 1, the exponential error
dir.tnishei to zero as n —moc. n

~be tie<ttwo examples show how an initial error can propagate in either a stable
or an unstable fa.shion. In the first example, three algorithms are introduced. Each
algorithm recursively generates the same sequence. Then, in the second example, small
changes will be made to the initial conditions and the propagation of error will he

3niidro!
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Table 1.4  The Sequence {x,,) = {!/3"}and the Approximations [r,.}, (p.} and }

n % m Pn [0S

0 1= 1.0000000000 0.9999600000 1.0000000000 1.0000000000
1 7=0.3333333333 0.3333200000 0.3333200000 0.3333200000
2 $=0.1111111111 0.1111066667 0.1110933330 0.1110666667
3 ~ =0.0370370370 0.0370355556 0.0370177778 0.0369022222
4 7=0.0123456790 0.0123451852 0.0123259259 0.0119407407
5 2"-=0.0041152263 0,0041150617 0.0040953086 0.0029002469
6 ,=0.0013717421 0.0013716872 0.0013517695 -0.0022732510

7 57=0.0004572474 0.0004572291 0.0004372565 -0.0104777503

8 =0.0001524158 0.0001524097 0.0001324188 -0.0326525834

9 =0.0000508053 0.0000508032 0.0000308063 -0.0983641945

10 557=0.0000169351 0.0000169344 -0.0000030646 -0.2952280648

Example 1.24. Show that the following three schemes can be used with infinite-precision
arithmetic to recursively generate the terms in the sequence {1/3n}£1,,.

(217a) ro=1 and M= ~r,-1 forn = 1,2,...,
o1 4 1

(21b) po=l,pi = -, and p,, = jP4-i - jPn-2 forn = 2,3,..
. 1 10

(21c) qO=l,qi =y and @, - y<?a-1- §n-2 forn = 2,3.......

Formula (21a) is obvious. In (2ib) the difference equation has the general solution p. =
A (1/3")+ B. This can be verified by direct substitution:

Setting A = 1and B = 0 will generate the desired sequence. In (21c) the difference
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Table 1.5 The Error Sequences {*, —,,), [X, —p..], and [xn —q,.}

=

% fn

0.0000400000
0.0000133333
0.0000044444
0.0000014815
0.0000004938
0.0000001646
0.0000000549
0.0000000183
0.0000000061
0.0000000020
0.0000000007

B@m\nmmbwwpo

*e ~ Pn
0.0000000000
0.0000133333
0.0000177778
0.0000192593
0.0000197531
0.0000199177
0.0000199726
0.0000199909
0.0000199970
0.0000199990
0.0000199997

35

*n ....,Q']
0.0000000000
0.0000013333
0.0000444444
0.0001348148
0.0004049383
0.0012149794
0.0036449931
0.0109349977
0.0328049992
0.0984149998
0.2952449999

equation has the general solution g,, = A(1/3n) + B3n. This too is verified by substitution;

2, r~ ("

=(? -1])n-"'10- |,3"

+83- ) - (

=A+ +B3n=c¢,.

Staffing A= 1and 5 = 0 generates the required sequence.

Example 1,25.  Generate approximations to the sequence {xn) =

schemes

:223a) r0=0.99996 and rn=

4 1
J22b) po = 1,pi =0.33332, and pa= -Pn-i - -pn-2 for n

;22¢) go= I,(ji = 0.33332, and q, = -y*n-i - gn-I

+r3-)

{1/3") using the

1
N
w

=2 3

in (22a) the initial error in ro is 0.00004, and in (22b) and (22c) the initial errors in pi

ind gi are 0.000013. Investigate the propagation of error for each scheme.

Table 1.4 gives the first ten numerical approximations for each sequence, and Table 1.5
lives the error in each formula. The error for {r,, } is stable and decreases in an exponential
manner. The error for {p,,} is stable. The error for {q,, (is unstable and grows at an expo-
nential rate. Although the error for \pn) is stable, the terms pn >m 0 asn —»00, so that
the error eventually dominates and the terms past pg have no significant digits. Figures 1.8,

1.9, and 1.10 show the errors in |r,,), {p,.}, and [gn], respectively.
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0.000015
0.000010
0.000005

2 " 8 10

Figure 1.8 A stable decreasing error sequence

X,~PA

0.000020 Lo
0.000015
0.000010
0.000005

2 4 6 10

Figure 1.9 A stable error sequence {x,, —p,.}-

Uncertainty in Data

Data from real-world problems contain uncertainty or error. This type of error is re-
ferred to as noise. It will affect the accuracy of any numerical computation that is based
on the data. An improvement of precision is not accomplished by performing succes-
sive computations using noisy data. Hence, if you start with data with d significant
digits of accuracy, then the result of a computation should be reported in d significant
digits of accuracy. For example, suppose that the data p\ = 4,152 and p2 —0,07931
both have four significant digits of accuracy. Then it is tempting to report all the digits
that appear on your calculator (i.e., p\ + pi —4.23131). This is an oversight, because

0.3
0.2
0.1 -
t t T -T - * e _
2 4 6 8 O

Figure 1.10 An unstable increasing error sequence {*, - 0,,).
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you should not report conclusions from noisy data that have more significant digits
than the original data. The proper answer in this situation is pi + P2=4.231.

Exercises for Error Analysis

1. Find the error Ex and relative error Rx. Also determine the number of significant
digits in the approximation.
(a) jc= 2.71828182,x = 2.7182
(b) y = 98,350,y =98, OO
(c) r = 0.000068,z = 0.00006

2. Complete the following computation

f' AN f' A _E 3( n-

Ledel [l + X atjox=r
State what type of error is present in this situation. Compare your answer with the
true value p —0.2553074606.

3. (@) Consider the data p\ = 1.414 and /n = 0.09125, which have four significant
digits of accuracy. Determine the proper answer for the sum p\ + pi and the
product p\p 2.
(b) Consider the data pi = 31.415 and P2 = 0.027182, which have five significant
digits of accuracy. Determine the proper answer for the sum p\ + p2and the
product P\P 2-

4. Complete the following computation and state what type of error is present in this

situation.

sin{f+0.00001)-sin (f) 0.70711385222 -0.70710678119
w 0.00001 - 0.00001

In(2 + 0.00005) - In<2) _ 0.69317218025 - 0.69314718056

0.00005 ~ 0.00005 ~ "

5. Sometimes the loss of significance error can be-avoided by rearranging terms in the
function using a known identity from trigonometry or algebra. Find an equivalent
formula for the following functions that avoids a loss of significance.

(@ In(* + 1) —In(*) for large i

(b) -Ix1+ 1- x forlargex

() cos2(*) —sin2(jr) forx  ?r/4

@ / 1+ cos(jc)

6. Polynomial Evaluation, Let P(x) = x3—3x2+3x~ 1, Q(x) = ((& —3)jct+ 3)jc—1,
and R{x) —(x —1)3.

(a) Use four-digitrounding arithmetic and compute P (2.72), Q(2.72), and R(2.72).

In the computation of P(x), assume that (2.72)3 = 20,12 and (2.72)2 = 7.398.

forx «en
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<b) Use four-digit rounding arithmetic and compute P{0.975), £>(0.975), and
N1(0.975). Jn the compulation of P(x), assume that (0.975)3 = 0.9268 and
(0.975)2 = 0.9506-

. Use three-digit rounding arithmetic to compute the following sums (sum in the given
order):
(@ ELI1 $) LLib=e

. Discuss the propagation of error for the following:
(a) The sum of three numbers:

p+g+r = (p+fp)+ Gg+fqg) + (r+fr),
(b) The quotient of two numbers: E: 4—nm

q+7q
(c) The product of three numbers:

par = (p + ep)(q-t-f,) (r+fr).
. Given the Taylor polynomial expansions

Th = 1+h +h2+h3+ 0 (h4)

and
cos(A) = 1- A + 0 (h6).
Determine the order of approximation for their sum and product.

. Given the Taylor polynomial expansions

ef) k2 [13 + [14

=l+h+ - + 0(hS)

and
sin{/i) = h - 3, 0(h5).

Determine the order of approximation for their sum and product.

. Given the Taylor polynomial expansions

h2 h4
cos(ft) — + 0(A0)

and
sin(A) = h —~ N+ 0(h7).

Determine the order of approximation for their sum and product.
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Improving the Quadratic Formula. Assume thata ® Oandb2—4ac > 0 and consider
the equation ax2+bx+c = 0. The roots can be computed with the quadratic formulas

. —b + -Jb2 —4ac ~b —sjbl —4ac
(] X = —mmn o] and X2 = —--ms i .
2 a 2a

Show that these roots can be calculated with the equivalent formulas

o) Xl = w2 and B = e 20
b+ 'Jb2—4ac b —-J\p- —4ac

Hint. Rationalize the numerators in (i). Remark. Inthe cases when \b\ ~ ~Jb2 —4ac,

one must proceed with caution to avoid loss of precision due to a catastrophic can-

cellation. I1f b > 0, then ai should be computed with formula (ii) and X2 should be

computed using (i). However, if b < 0, then x\ should be computed using (i) and X2

should be computed using (ii).

Use the appropriate formula for x\ and X2 mentioned in Exercise 12 to find the roots

of the following quadratic equations.

(&) x2—1,000001*+1 =0

(b) x2- 10,000.0001* + 1=0

(c) x2- 100,000.00001n1+ 1=0

(d) x1—1,000,000.000001n+ 1=0

Algorithms and Programs

1. Use the results of Exercises 12 and 13 to construct an algorithm and MATLAB pro-

gram that will accurately compute the roots of a quadratic equation in all situations,
including the troublesome ones when \b\ == —4ac.

Follow Example 1.25 and generate the first ten numerical approximations for each
of the following three difference equations. In each case a small initial error is in-
troduced. If there were no initial error, then each of the difference equations would
generate the sequence {l/2n}*_f, Produce output analogous to Tables 1.4 and 1.5 and
Figures 1.8, 1.9, and 1.10.

(@) ro~ 0.994andr,, = [rHb forn=12,...

(b) po= L Pi=0497,andp,, =\pn-\ - Pn-2, forn=23__
(¢) go= 1,9\ =0.497,andq,, = 8, i - q,-2, forn=24,...



The Solution of Nonlinear
Equations fix) =0

Consider the physical problem that involves a spherical ball of radius r that is sub-
merged to a depth d in water (see Figure 2.1). Assume that the ball is constructed from
a variety of longleaf pine that has a density of p — 0.638 and that its radius measures
r = 10 cm. How much of the ball will be submerged when it is placed in water?

The mass Mw of water displaced when a sphere is submerged to a depth d is

and the mass of the ball is Mt, = 4xr3p/3. Applying Archimedes’ law Mw = Mb,
produces the following equation that must be solved:

n(d3—3d2r + 4r3fl) o
3 =

Figure 2.1 The portion of a
sphere of radius r that is to be sub-
merged to a depth d.

40
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In our case (with r ~ 10 and p = 0.638) this equation becomes

*(2552-30d2+ d3)
3 -

The graph of the cubic polynomial y = 2552 —30d 2 + d 3is shown in Figure 2.1
from it one can see that the solution lies near the value d = 12.

The goal of this chapter is to develop a variety of methods for finding numc
approximations for the roots of an equation. For example, the bisection method <
be applied to obtain the three roots d\ = —8.17607212, ¢ = 11.86150151
di = 26.31457061. The firstroot”i is not a feasible solution for this problem, be<
d cannot be negative. The third root dj is larger than the diameter of the sphere ;
is not the desired solution. The root "2 = 11.86150151 lies in the interval [0, 20
is the proper solution. Its magnitude is reasonable because a little more than out
of the sphere must be submerged.

Iteration for Solving x —g(x)

A fundamental principle in computer science is iteration. As the name sugge
process is repeated until an answer is achieved. lterative techniques are used &
roots of equations, solutions of linear and nonlinear systems of equations, and soli
of differential equations. In this section we study the process of iteration using ref
substitution.

A rule or function g(x) for computing successive terms is needed, together '
starting value pu. Then a sequence of values {p*J is obtained using the iterativ
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Pi yi = g{pO- 1be sequence has the pattern

po (starting value}
Pi = g(PO)
P2~ g(pi)
@
Pk = g(Pk-1)
Pk-1= glpk)

What can we leani from an unending sequence of numbers? If the numbers lend
lo a limit, we feel that something has been achieved. But what if the numbers diverge
or are periodic? The next example addresses this situation.

Example 2.1. The iterative rule pa = land p*+1= | 001pt fork = 0, I,... produces
a divergent sequence. The first 1Q0terms look as follows:

pi = 1.00Ipo = (1-001)(1000000)= 1,001000,
P2 = 1.001Pi = (1.000(1.001000)* 1.002001,
P3 = 1.001p2 = (1.001)(1.002001) = 1.003003,

ploo = 1.001p99= (1.001)'1.104012)= 1.105:16.

The process can be continued indefinitely, and it is easily shown that Jimn_oup,, = -mex;.
In Chapier 9 we will see that the sequence {p*J is a numerical solution to the differential
equation y’ - 0.001y. The soluuon is known to be y(x) = e000>1. Indeed, if we compare
the 100th term m the sequence wiih y (100), we see that pkio = 1.105} 16  1.105171 =

= y(100). * ]

In this section we are concerned with the types of functions g(x) that produce
convergent sequences jp*].

Finding Fixed Points

Definition 2.1 (Fixed Point). Afixed point of a function g(x) is a real number P
such that P = g(P). a.

Geometrically, ths fixed points of a function y = g(x) are the points of intersection
ofy = #{*)and y = x.

Definition 2.2 (Fixed-point lteration). The iteration p,,+L = g(pn) forn — 0,
I,... is calledfixed-pointiteration. a
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Theorem 2.1.  Assume that g is a continuous function and that { p ,, ()is asequence
by fixed-point iteration. If p,, = P, then P is a fixed point of gtr).

fijrogf. 1 p,, =7 /> then 111" X p,,+) = P. U follows from this result, the
continuity of g, and ihe relation p,,+] = g (p,,) that

r2n g(P) = g(mﬁi‘gc />*) = lim g(pr) = n!yrgc p,,"\ = P.

>l—fc-oc

"TWrefore, P isa fixed point of g(x). .

Example2.2. Consider ih:- convergent iteration
po=05 and pi+]=e~H fori —0.1...
10 terms are obtained by the calculations

P] =e (0500000 = 0.606531
p2 = e-0(io«3l = 0.545239
p3 = e-°-%239 = 0.579703

pd= e~ ° A T = 0567560
PW = tf-«-«7J60 _ 0.566907

The sequence is converging, and further calculations reveal that

lim p, kK 0.567143....
ft—'0C

Tfcubwe have found an approximation for the fixed point of the function y = t'~x. ]

The following two theorems establish conditions for the existence of a fixed point
*>dthe convergence of the fixed-point iteration process to a fixed point.

Th«orern2*2.  Assume that g € C\a, b).

{3) Iftde range of the mapping y = g(xf satisfiesy e [a b\for all x e 7. b\, [hen
j his afixed point in [a, b].

£4) Furthermore, suppose that g'(x) is defined over (a, b) and that a positive constant
A < lexists with [g*'(*)i <~ < 1forall x 6 (a, b), then g has a ur.ique fixed
point P in [a. b].
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Proofof (3). If g(a) — a or g(b) — b, the assertion is true. Otherwise, the values
of g(a) and g(b) must satisfy g(a) 6 (a, b] and g(b) e [a, b). The function f(x) =
X ~ 800 has the property that

f(a) = a- g(a) <0 and f (b) = b —g@b) > 0.

Now apply Theorem 1.2, the Intermediate Value Theorem, to f(x), with the constant
L = 0, and conclude that there exists a number P with P e (a, b) so that f(P) = O,
Therefore, P = g(P) and P is the desired fixed point of g(x).

Proofof(4). Now we must show that this solution is unique. By way of contradic-
tion, let us make the additional assumption that there exist two fixed points Pi and Pi.
Now apply Theorem 1.6, the Mean Value Theorem, and conclude that there exists a
numberd e (a, b) so that

) g'qdy = 96PD - 8(PD)
P2-P 1

Next, use the facts that g(P\) = P\ and g(Pi) = Pi to simplify the right side of
equation (5) and obtain

But this contradicts the hypothesis in (4) that 1g'O0Ol < 1 over (a, b), so it is not
possible for two fixed points to exist. Therefore, g(x) has a unique fixed point P
in [a, b]under the conditions given in (4). .

Example 2.3.  Apply Theorem 2.2 to rigorously show that g(x) = cos(,r) has a unique
fixed point in [0, 1].

Clearly, g e C[0, 1]. Secondly, g(x) = cosfx) is a decreasing function on [0, 1], thus
itsrange on [0, 1] is [cos(l), 1] ¢ [0, 1]. Thus condition (3) of Theorem 2.2 is satisfied and

g has a fixed [joint in [0, 1]. Finally, ifx € (0, 1), then \g'(x)\ = | —sin(*)| = sin(;t) <
sin(l) < 0,8415 < 1 Thus K = sin(l) < 1, condition (4) of Theorem 2.2 is satisfied, and
g has a unique fixed pointin [0, 1]. [ ]

We can now state a theorem that can be used to determine whether the fixed-point
iteration process given in (1) will produce a convergent or divergent sequence.

Theorem 2.3 (Fixed-point Theorem). Assume that (i) g, ' e C[a, b), (ii) ATis a
positive constant, (iii) po € (a, b), and (iv) g{x) e [a, b] for all & e [a, b\.

(6) If |g'00] < K < 1forall x e [a,bj, then the iteration pn = g(p,,-i) will
converge to the unique fixed point P e [a, b]. In this case, P is said to be an
attractive fixed point.

(7) If 1#001 > 1 forall * e [a,b], then the iteration pn = g{p,i-\) will not
converge to P. In this case, P is said to be a repelling fixed point and the iteration
exhibits local divergence.
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(N VA R, P A, — -
— | [ !
a P, P PO b

Figure 2.3 The relationship among P, po, Pi, \P —pol,
and |P - pil.

Remark 1 Itis assumed that po ® P in statement (1).
Remark?2. Because g is continuous on an interval containing P, ii is permissible to use
the simpler criterion K < land \g’(P)'- > 1in (6) and (7), respectively.

Proof. We first show that the points {p,, ail lie in (a, b). Starting with po, we
apply Theorem 1.6, the Mean Value Theorem. There exists a value co e (a, b) so that

0. \P - P\I= Is(™) - g(po)l - |g'(co)(/>- po)l
= P - Pftl< K[P - pol < \P - pd.

Therefore, pi is no further from P than prj was, and it follows that p\ e (a. b) (see
Figure 2.3). In general, suppose that p,,-\ e {a, b)\ then

\P = IS(M) -«(Pn-i)l = 1g'(c,-i)(P - Pn-i)l
= - Pn-ll < X|p - pu_ll <[P - p,-\\.

Therefore, pn e (a, b) and hence, by induction, all the points {p,,}£10 lie in (a, ft).
To complete the proofof (6), we will show that

(10) n!%Q(/>_|:O'
First, a proof by induction will establish the inequality
(11) \P-Pn\<Kn\P-poO\

The case n — 1follows from the details in relation (8). Using the induction hypothesis
IP —Pn-i 15 Kn~11P —pol and the ideas in (9), we obtain

Ip - Pn\ < K\p - Pn~i\5 /fAT"-V - Pol = Kn\p - pol-

Thus, by induction, inequality (11) holds for all n. Since 0 < K < 1, the term K"
goes to zero as n goes to infinity. Hence

(12) 0< /_l_i%\P-p,,K n%Kn\P' p0| = 0.

The limitof \P —p,,\ is squeezed between zero on the left and zero on the right, so we
can conclude that Hwn-t0o IP ~ Pn\ =0- Thus lim,,-,*» p,, = P and, by Theorem 2.1,
the iteration pn = g(pn- 1) converges to the fixed point P. Therefore, statement (6) of
Theorem 2.3 is proved. We leave statement (7) for the reader to investigate. .
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Corollary 2.1. Assume that g satisfies the hypothesis given in (6) of Theorem 2.3,
Bounds for the ertor involved when using p,, to approximate P are given by

(13) \P ~ Pn\ < Kn\P - po\ for all n>1,
and
(14) \p - Pn\< K"\pL : poi for all n > 1,

1—n
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Figure 2.5 (a) Monotone divei-
gence when 1< g'(P).

Figure 2.5 (b) Divergent oscitla
tion when g’(P) < —L.

Graphical Interpretation of Fixed-point Iteration

Since we seek a fixed point P to g(x), it is necessary that the graph of the curve
y — g(x) and the line y — x intersect at the point (P, P). Two simple types of
convergent iteration, monotone and oscillating, are illustrated in Figure 2.4(a) and (b),
respectively.

To visualize the process, start at po on the jc-axis and move vertically to the point
(po, Pi) = (po, g(po)) on the curve v = g(x). Then move horizontally from (po, P\)
to the point (pi, pi) on the line y — x. Finally, move vertically downward to pi on
the jt-axis. The recursion pn+\ = g(p,,) is used to construct the point (p,,, pn+i) on
the graph, then a horizontal motion locates (pn+i, p,,+i) on the line y = x, and then a
vertical movement ends up at p,,+1on the ,r-axis. The situation is shown in Figure 2.4.



48 Chap.2 The Solution of Nonlinear Equations /(jt=0

If |g"{P)\ > 1, then the iteration pn+] = g(p,,) produces a sequence that diverges
away from P. The two simple types of divergent iteration, monotone and oscillating,

are illustrated in Figure 2.5(a) and (b), respectively.

Example2.4. Considerthe iteration p,,+i = g(p,,) when the functiong(x) = 1+x-,r2/4
is used. The fixed points can be found by solving the equation x = g(x). The two solutions
(fixed points of g) arex = -2 and x = 2. The derivative of the functionis g'(x) = 1—x/2,
and there are only two cases to consider.

Cased): P=-2 Case (ii): p=2
Start with po= —2.05 Start with PO= 16
then get pi =-2.100625 then get =196

P2= - 2.20378135 P2=1.9996

p3= -2.41794441 pj = 1.99999996

Higgp-» = - oo i pn=2.

Since tg'(x)l > j on £-3, -1], by The- Since |g'(*)| < £ on [1,3], by Theo-
orem 2.3, the sequence will not converge Em 22_3, the sequence will converge to
toP = -2. =L

Theorem 2.3 does not state what will happen when g'(P) = 1. The next example
has been specially constructed so that the sequence {pn) converges whenever po > P
and it diverges if we choose po < P.

Example 2.5. Considerthe iteration p,,+\ — g(pn) when the function g(x) = 2(x —1)1/2
for* > lisused. Only one fixed point P = 2 exists. The derivativeis g'(x) = \/(x —I)1/2

and g'(2) = 1, so Theorem 2.3 does not apply. Tbere are two cases to consider when the
starting value lies to the leftorrightof P = 2.
Case (i): Startwith po = 1.5, Case (UB. Start po=1.5,
then get pi = 1.41421356 then get pi = 2.44948974
p2 = 1.28718851 P2 =2.40789513
p3= 107179943 P3 = 2.37309514
PA=0.53590832 M= 2.34358284
ps=2(-0.46409168)1'2. nl-i>r>TR/| pn=2
Since pi lies outside the domain of This sequence is converging too slowly
g(x), the term p$ cannot be computed. to the value P = 2; indeed, Piooco =

2.00398714.
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Absolute and Relative Error Considerations

In Example 2,5, case (ii), the sequence converges slowly, and after 1000 iterations the
three consecutive terms are

Pmoo = 2.00398714, ptool —2.00398317, and Pxw = 2.00397921.

This should not be disturbing; after all, we could compute a few thousand more terms
and find a better approximation! But what about a criterion for stopping the iteration?
Notice thatif we use the difference between consecutive terms,

Ipiooi - />10021 = 12.00398317 - 2.003979211= 0.00000396.
Yet the absolute error in the approximation piooo is known to be
\P ~ Pioool = 12.00000000 - 2.003987141 = 0.00398714.

This is about 1000 times larger than Ipiooi - P 1002l and it shows that closeness of
consecutive terms does not guarantee that accuracy has been achieved. But it is usually
the only criterion available and is often used to terminate an iterative procedure.

Program 2.1 (Fixed-Point Iteration). To approximate a solution to the equation
jc = g(x) starting with the initial guess po and iterating p,,+\ —g(pn)-
function [k,p,err,PJlixpt(g,pO,tol,maxi)

Input - g is tbe iteration function input as a string ’g’
i, - p0 is the initial guess for the fixed point

% - tol is the tolerance

', - maxi is the maximum number of iterations

XOutput - k is the number of iterations that vere carried out
X - p is the approximation to the fixed point

% - err is the error in the approximation

% - P contains the sequence {pn}

PU)= pO;

for kE2:maxl
P(ls) eval(g,P(k-1));
err“abe(P(k)-P(k-1));
relerr=err/(abs(P(k))+eps);

p=P(k);
if (errctol) | (relerr<tol).break;end
end
if Kk == maxi
dispC’maximum number of iterations exceededl)
end
P-P;

Remark. When using the user-defined function fixpt, it is necessary to input the
M-file g.m as a string: g’ (see MATLAB Appendix).
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Exercises for Iteration for Solving X = g(x)

1. Determine rigorously if each function has a unique fixed point on the given interval

(follow Example 2.3).

(@ g(x) = 1—x2/4 on [0, 1]
(b) g(x) = 2~xon |0, 1]

() g{x) = \/Ixon [05,5.2]

. Investigate the nature of the fixed-point iteration when

g(x) = -4 + 4* - ~x2,

(a) Solve g(x) = x and show that P = 2 and P = 4 are fixed points.

(b) Use the starting value pa ~ 1.9 and compute pi, pi- and p>.

(c) Use the starting value po = 3.8 and compute pi, pi, and p3.

(d) Find the errors Ek and relative errors Rt for the values p* in parts (b) and (c).
(e) Whatconclusions can be drawn from Theorem 2.3?

. Graph g(x), the line y = x, and the given fixed point P on the same coordinate

system. Using the given starting value po, compute pi and P2- Construct figures
similar to Figures 2.4 and 2.5. Based on your graph, determine geometrically if fixed-
point iteration converges.

(@ g(x) =@®+x)I/12,P ~ 3,and po =7

(b) g(j) =1+ 2/x,P =2andpo =4

() g{x) =xr/b, P =3 and po = 35

(d) g(x) ——x2+ 2x + 2, P —2,and po = 25

. Letg(x) = x2+ x - 4. Can fixed-point iteration be used to find the solution(s) to the

equation x = g(x)7 Why?

. Letg(x) = xcos(x). Solve x = g(x) and find all the fixed points of g (there are in-

finitely many). Can fixed-point iteration be used to find the solution(s) to the equation
X = g(x)7 Why?

. Suppose thatg(*) and g'(x) are defined and continuouson (a, 6); po, pi, p2 € {a,b)\

and pi = g(po) and P2 = g(p 1. Also, assume that there exists a constant K such
that |g'00| < K. Show that \pi —pi| < K\p\ —po\. Hint. Use the Mean Value
Theorem.

. Suppose that g(x) and g'(x) are continuous on (a, b) and that |g'(*)] > 1 on this

interval. Ifthe fixed point P and the initial approximations po and pi lie in the interval
(a, b), then show that p\ = g(po) implies that \Ei\= \P —ps| > \P —po\ = |Eol-
Hence statement (7) of Theorem 2.3 is established (local divergence).

. Letg(x) = —0.0001a:2+ x and po = 1, and consider fixed-point iteration.

(a) Showthatpo > pi > mm> Pn > Pn+i > +mm
(b) Show that pn > 0 forall n.
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(c) Since the sequence {p,,} is decreasing and bounded below, it has a limit. What
is the limit?
9. Letg(x) —05.x+ 1.5 and po = 4, and consider fixed-point iteration,
(a) Show that the fixed pointis P = 3.
(b) Show that |P —p,\ = \P —p,,_s|/2 forn = 1,2, 3,...
(c) Show that |[P —p,| = \P —poV/2nforn =1,2,3,
10. Let g(x) —x/2, and consider fixed-point iteration.
(a) Find the quantity \pk+i - pk\/\pk+i\.
(b) Discuss what will happen if only the relative error stopping criterion were used
in Program 2.1,

11. For fixed-point iteration, discuss why it is an advantage to have g'(P') 0.

Algorithms and Programs

1. Use Program 2.1 to approximate the fixed points (if any) of each function. Answers
should be accurate to 12 decimal places. Produce a graph of each function and the
line y = x that clearly shows any fixed points.

(@ g(x) =xi- 3*3- 2x2+ 2
(b) g(x) = cos(sin(n))

() &(x) =x2 sin(.i-f0,15)
(d) g(x) = xx~cos®

2 Bracketing Methods for Locating a Root

Consider a familiar topic of interest. Suppose that you save money by making regular
monthly deposits P and the annual interest rate is I; then the total amount A after N
deposits is

(L A= ,>+a(1+1 )+P(L+1)r+. .. +P(1+zx)"".

The first term on the right side of equation (1) is the last payment. Then the next-to-last
payment, which has earned one period of interest, contributes P (I + The second-

from-last payment has earned two periods of interest and contributes P (I + ") 2, and
so on. Finally, the last payment, which has earned interest for N —1 periods, contributes

P (I + p-)N 1toward the total. Recall that the formula for the sum of the N terms of
a geometric series is

2) 1+ r+r2+ r3H-—- hr"-1 =7
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We can write (1) in the form
A=P

and use the substitutionr = (1 + //12) in (2) to obtain

This can be simplified to obtain the annuity-due equation,

r3)

The following example uses the annuity-due equation and requires a sequence of
repeated calculations to find an answer.

Example 2.6. You save $250 per month for 20 years and desire that the total value of
all payments and interest is $250, 000 at the end of the 20 years. What interest rate | is
needed to achieve your goal? If we hold N = 240 fixed, then A is a function of | alone;
that is A = A(I), We will start with two guesses, /o = 0.12 and /] =0.13, and perform a
sequence of calculations to narrow down the final answer. Starting with Iq= 0.12 yields

= 247,314.
Since this value is a little short of the goal, we nexttry /1 =0.13:
= 282,311.
This is a little high, so we try the value in the middle 1j = 0,125:
= 264,623.

This is again high and we conclude that the desired rate lies in the interval [0.12, 0.125]
The next guess is the midpoint 13 = 0.1225:

250

A(0.1225) = = 255, 803,
0.1225/12

This is high and the interval is now narrowed to [0.12, 0.1225]. Our last calculation uses
the midpoint approximation /4 =0.12125:

250

A(0.12125) = 0.12125/12 = 251,518.
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(a./(a)) (a.fa))
(a) Iff(a) and/(c) have (b) Iff(c) andf(b) have
, opposite signs then opposite signs then
squeeze from the right. squeeze from the left.

Figure 2.6  The decision process for the bisection process.

Further iterations can be done to obtain as many significant digits as required. The
purpose of this example was to find the value of | that produced a specified level L of the
function value, that is to find a solution to All) = L. It is standard practice to place the
constant L on the left and solve the equation A(/) —L = 0. ]

Definition 2.3 (Root of an Equation, Zero of a Function). Assume that /(jc) is a
continuous function. Any numberr for which / (r) = Oiscalled arootofthe equation
f{x) — 0. Also, we say r is azero ofthefunction f(x). a.

For example, the equation 2x2+ 51 —3 = 0 has two real roots r\ = 0.5 and
M = - 3, whereas the corresponding function / (jt) = 2jc2+ 5x - 3= (2jc- 1)(jc+ 3)
has two real zeros, r\ = 0.5 and rj = —3.

The Bisection Method of Bolzano

In this section we develop our first bracketing method for finding a zero ofa continuous
function. We must start with an initial interval [a, b], where f(a) and fib) have
opposite signs. Since the graph 'y = fix) ofa continuous function is unbroken, it will
cross the x-axis ata zero jc = r that lies somewhere in the interval (see Figure 2.6). The
bisection method systematically moves the end points of the interval closer and closer
together until we obtain an interval of arbitrarily small width that brackets the zero.
The decision step for this process of interval halving is first to choose the midpoint
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c = (a + b)/2 and then to analyze the three possibilities that might arise:

4) If f(a) and f(c) have opposite signs, a zero lies in [a. c].
5) If /(c) and /(b) have opposite signs, a zero lies in [c, b],
(6) If/(r) = 0, then the zero is c.

Ifeither case (41 or (5) occurs, we have fotnd an interval half as wide as the original
interval that contains the root, and we are “squeezing down on if’ (see Figure 2.6). To
continue the process, relabel the new smaller interval \a,b] and repeat the process until
the interval is as small as desired. Since the bisection process involves sequences of
nested intervals and their midpoints, we will use the following notation to keep track
of the details in the process:

[aro, bol is Jhe starting interval and co = is the midpoint.

[til Wb i] is the second interval, which brackets the zero r, anc ri is its midpoint;
(7) :he interval [w . b\] is half as wide as ko> "ol-

After arriving at the nth interval [a,,.b,,], which brackets r and has midpoint

cn. the interval [an+b b.,+1] is constructed, which also brackets r and is half

as wide as [a,,, /2,]m

It is left as an exercise for the reader to show that the sequence of left end points is
increasing and the sequence of right end points is decreasing; that is,

(€] Qi<a\s mmm< aK <mmE< T b,, <smme<m b\ < ho,

wherec,, = .and if f (an~i)f(bn+1) < 0, then

9) \a,,+), b,,+}] = [a,,, C,,] or [a,,*ubK*\] = [Cn<bn\  for all n.

Theorem 2.4 (Bisection Theorem). Assume :ha: f e Cla, b] and that there exists
a number r e \a, b\ such that /(r) = 0. If f(a) and f(b) have opposite signs‘and
[cn}J 10 represents the sequence of midpoints generated by the bisection process of (8)
and (9), then

b
i

-a
(10) “me n-T  forn=0, L.

and therefore the sequer.ee Un) ” 0 converges to the zero x = r; that is,
(11) lim ¢, —r.
n-to o

Proof.  Since both the zero r and the midpoint c,, lie in the interval \a,,, bn], the dis-
tance between c,, and r cannot be greater than half the width of this interval (see Fig-
ure 2.7). Thus

(12) \r-c,,\+ bn~ an for all n.
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o - e
C*

Figure'2.7 The root r and midpoint c,, of [a,,b,,] for the
bisection mcthod-

Observe that the successive interval widths form the pattern

2 ” 21

It is left as an exercise for the reader to use mathematical induction and show thai

03) b, un— P%a°
Combining (12) and (13) results in

bl - di
(14) Ir —en-< - ]° ror all n.

Now an argument similar to the one given in Theorem 2.3 can be used to show that
(14) implies that the sequence {c4}ji0 converges to r and the proof of the theorem is
complete. .

Example 2.7. The function h(x) = x sin(n) occurs in the study of undamped forced
oscillations. Find the value of x that lies in the interval [0, 2], where the function takes on
the value h(x) = ! (the function sin(.v) is evaluated in radians).

We use the bisection method to find a zero of the function f(x) = x sinf.v) 1. Starting
withao = Oand ba = 2, we compute

/(())=-1.000000 and /(2) = 0.818595,

so a root oi f{x) = O lies in the interval [0.2|. At the midpoint co = L we find that
/(1) = -0.158529. Hence the function changes sign on [co. 60] = [1, 2].

To continue, we squeeze from the left and set a\ = eg and b\ = by. The midpoint
isci = 15and f(ci) = 0.496242. Now, /(1) = -0.158529 and /(1.5) = 0.496242
imply that the root lies in the interval [«i.o ]= [1.0,1.5]. The nextdecision is to squeeze
from the right and set «2 = ai ai|d hi = c;. In this manner we obtain a sequence {c*) that
converges to /m*»!1.114157141.A sample calculation is given in Table 2.1. ]



Tkble 2.1  Bisection Method Solution of x sin(.r) —1=0

Left Right Function value,

K end paint, a* Midpoint, C[ end point, bt I(c*)

0 0 1 2. —0.158529
1 1.0 15 2.0 0.496242
2 1.00 125 150 0.186231
3 1,000 1125 1.250 0.015051
4 1.0000 1.0625 1.1250 -0.071827
5 1.06250 1.09375 1.12500 -0.028362
6 1.093750 1.109375 1.125000 -0.006643
7 1.1093750 1.1171875 1.1250000 0.004208
8 1. 10937500 111328125 1.1171S750 -0.001216

N virtue of the bisection method is that formula CIO) provides a predetermined
estimate for the accuracy of the computed solution. In Example 2,7 the width of the
starting interval was bo - m — 2. Suppose that Table 2.1 were continued to the
thirty-first iterate; then, by (10), the error bound would be it-ii < (2 —0)/23 %
4.656613 x 10“jD. Hence cjj would be an approximation lo r with nine decimal places
of accuracy. The number N of repeated bisections needed to guarantee that the .Vth
midpoint <v is an approximation to a zero and has an error less than the preassigned
value S is

W . AIn(b-d)-In(5)\
’15) lll‘llll ______ Em_

The proof of this formula is left as an exercise.

Another popular algorithm is the method offalse position or the regula falsi
method. It was developed because the bisection method converges at a fairly slow
speed. As before, we assume that fia) and f{b) have opposite signs. Tne bisection
method used the midpoint of the interval (a, 3 as the next iterate. A better approxi-
mation is obtained if we find the point (r, 0) where the secant line L joining the points
(a, f (a)) and (i, f(b)) crosses the n-axis (see Figure 2.8). To find the value c, we
write down two versions of the slope m of the line L:

q6) [(»)-1<«>
where the points (a, /(a)) and (b, f(b)) are used, and

7 M - e —



Ib, fib))

(a) If4a) and/(c) have (b) Iff(c) and f(b) have
opposite signs then opposite signs then
squeeze froir. the right. squeeze from the left.

Figure 2.8 The decision process for the false position method.

where tiie points (c, 0) and (b, f(b)) are used.
Equating lhe slopes in (16) and (17), we have

/(b)-f(@ _ 0- fib)
b-a c-b

which is easily solved for c to get

f(h)(b-a)
(18) c=b~ Ay - Jia)
The three possibilities are (he same as before:
(19) If f{a) and /(c) have opposite signs, a zero lies in [a, <]
(20) M j Ic) and fib) have opposite signs, a zero lies in (c, H
(21) Iff(c) —O0, then (he zero is c.

Convergence of the False Position Method

The decision process implied by (19) and (20) along with (18) is used to construct
a sequence of intervals ('a,, bn)\ each of which brackets the zero. At each step ttu-
approximation of ihe zeror is

_ f(bn)(b,,-a n)

(22)
cn~ " f(bn)- f{a,)
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Figure 2.9 The stationaiy endpoint for the false position
method.

and it can be proved that the sequence Ic,'t will converge to r. Bui beware; although
the interval width bt, —a,, is getting smaller, it is possible that it may not go to zero. If
the graph of y = fix") is concave near (r, 0), one of the end points becomes fixed and
the oilier one marches into (he solution (see Figure 2.9).

Mow we rework the solution to x sinU) — 1= 0 using the method of false posi-
tion and observe that it converges faster than the bisection method. Also, notice that
\b,, —a,, )*L0 does not go to zero.

Example 2,8. Vise the false position method to find the rootofx sin(x) -1 = 0 thatis
located in the interval [0, 2] {the function sin(jc) is evaluated in radians).
Starting with «0 = 0 and be = 2, we have /{0) = —1.00000000 and /(2) =
0.8185948S, so a root ties in the interval [0,2). Using formula (22), we get
0.81859485(2 —0)
= 1.09975017 and /(co) = -0.02001921.
0.81859485-(-1)

The function changes sign on the interval [eg, 30j = [3.09975017,2), so we squeezeino T
the leftand setq; —coand bt = bo- Formula (22) produces the next approximation;
0.81859485(2 - 1.09975017)

- = 1.32124074
a -~ 0.81859485 - (-0.02001927)

and

/(O) =0.00983461.

Next /(>k) changes sign on [ab ct] = f1.09975017, 1.121240741.and the next decision is
to squeeze from the right and set ai = a\ and h2 = ci. A summary of the calculations is
given in Table 2.2. [ ]

The termination criterion used in the bisection method is not useful for the false
position method and may result in an infinite loop. The closeness of consecutive iter-
ates and the size of \f (cny are both used in the termination criterion for Program 2.3.
In section 2.3 we discuss the reasons for this choice.
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Ikble Z2  False Position Method Solution ofx sinU) -1 = 0

Left Right Function value,
* end point, Midpoint, a endpoint, bji /(<)
0 0.00000000 1.09975017 2.00000000 -0.02001921
1 1.09975017- 1.12124074 2.00000000 0.00983461
2 1.09975017 1.11416120 1.12124074 0.00000563
3 1.09975017 1.11415714 1.11416120 0.00000000

I Program 22 (Bisection Method). Toapproximate aroot of the equation fix') —
in the interval fa, b). Proceed with the method only if f (i) is continuous and f(a) J
| and / (ft) have opposite signs.

function [c.erx ,yc]“bisect(i,a,b,delta)
/.nput - f is the function input as a string ’£
I - aand b are the left and right end points

1. - delta is the tolerance

'/.Cutput - c is the zero

b4 - yc*f(c)

', - err is the error estimate for c¢

ya=°feval(f ,a) ;
yb=feval(f,b);
if ya*yb>0,break,end
maxl=l+round( (logCb-a)-log(.delta))/103(2)) ;
for k=1l:taxl
c=(a+b)/2;
yc»feval(f,c);
if ycMO
a*=c;
b=c;
eleeif yb*yc>0
b=c;
yb»yc;
else
a=c;
ya=yc;
end
if b-a < delta, break,end
end
c=(a+b)/2;
err=absCb-a);
yc=feval(f,c),
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Program 2.3 (False Position or Regula Falsi Method). To approximate a root of
the equation f(x) = 0 in the interval [a, b]. Proceed with the method only if / (1)
| is continuous and f{a) and f(b) have opposite signs. j
function [e,err,yc]=regula(f,a,b,delta,epsilon,maxi)

/.lnput - f is the function input as a string ’'f’

7, - a and b are the left and right end points

. - delta is the tolerance for the zero

% - epsilon is the tolerance for the value of f at the zero
% - maxi is the maximum number of iterations

/.Output- c is the zero

7 - yc=f(c)

7, - err is the error estimate for c

ya=feval(f,i) ;
yb=feval(f,b);
if ya*yb>0
disp(’Note: f(a)*f(b)>0"),
break,
end
for k=I:maxl
dx=yb*(b-a)/ (yb-ya);
C'b-dx;
ac“c-a;
yc=fevalCf,c);
if yc-=0,break;
elseif yb*yc>0
b*c;
yb=yc;
else
a=c;
ya=yc;
end
dx=min(abs(dx),ac);
if abs(dx)<delta,break,end
if abs(yc)<epsilon,break,end
end

c,
err=abs(b-a)/2;
yc=fevalff,c) ;
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Exercises for Bracketing Methods

In Exercises 1and 2, find an approximation for the interest rate | that will yield the total
annuity value A if 240 monthly payments P are made. Use the two starting values for |
and compute the next three approximations using the bisection method.

1. P =$275, A =$250,000, 10= 0.11, h = 0.12

2. P =$325, A =$400,000, /0= 0.13, h =0.14

3. For each function, find an interval [a, b] so that f(a) and f(b) have opposite signs.
@ f(x)=e*-2-x
(b) f(x) = cos(x) + 1—x

(c) f(x) = In(jc) - 5+0r
(d) /(*) = c2- 10* +23

In Exercises 4 through 7 start with [0o, 2>d and use the false position method to compute
co, ci, @, and c3.

4. e —2—%=0,[a0,bQ = [24, -1.6]

. cos(x) + 1—x = 0, [ao, bo] = [0.8, 1.6]

. In(x) —5 + x = 0, [ao, bo] = [3.2, 4.0]

. x2—1H0g + 23 = 0, [a0, 34 = [6.0, 6.8]

. Denote the intervals that arise in the bisection method by [ao0.”0], [tii,b\], ....

5
6
7
8

(a) Show thatiio<lii| < mm<a, <mmm and that eem< b,, < mm< bi < bo-
(b) Show thath,, - a,, = (ba—ao0)/2".
(c) Let the midpoint of each interval be c,, = (a,, +b,,)/2. Show that

lim a,,= lim c,, — lim b,,.
n->® A-t0o Nn-»00
Hint. Review convergence of monotone sequences in your calculus book.

9. What will happen if the bisection method is used with the function f(x) = 1/(x —2)

and
(a) theinterval is [3, 7]? (b) theinterval is [1,7]?
10. What will happen if the bisection method is used with the function f(x) = tan(jc)
and
(a) theinterval is [3,4]? (b) the interval is [1, 3]?

11. Suppose that the bisection method is used to find a zero of f(x) in the interval [2, 7J.
How many times must this interval be bisected to guarantee that the approximation
Cfj has an accuracy of5 x 10-9?

12. Show that formula (22) for the false position method is algebraically equivalent to
__ On/(bn) —bnf (tin)
h~  fibn) - f(an)
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13.

14.

15.
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Establish formula (15) for determining the number of iterations required in the bisec-
tion method. Hint. Use |b —al|/2 n+l < &and take logarithms.

The polynomial fix) = (jr—1)3(*—2)(jc-3) has three zeros: x = 1ofmultiplicity 3
and x = 2and x — 3. each of multiplicity 1. If oo and bo are any two real numbers
such that tfo < land £0 > .1, then f (atyif (bo) < 0. Thus, on the interval lao,bg]
the bisection method will converge to one of the three zeros. 1fao < land bo > 3
are selected such that c,, = is not equal to 1, 2, or 3 for any n = 1, then the
bisection method will never converge to which zero(s)? Why?

If a polynomial, f(x), has an odd number of real zeros in the interval [ao, bo], and
each of the zeros is of odd multiplicity, then f(ao)f(bo) < 0, and the bisection
method will converge to one of the zeros. If oo < 1and ho > 3 arc selected such that
¢,, = ANlHx is not equal to any of the zeros of fix) forany n > I, then the bisection
method will never converge to which zero(s)? Why?

Algorithms and Programs

. Find an approximation (accurate to 10 decimal places) for the interest rate | that will

yield a total annuity value of $500, 000 if 240 monthly payments of $300 are made.

. Consider a spherical ball of radius r = 15 cm that is constructed from a variety

of white oak that has a density of p = 0.710. How much of the ball (accurate to
8 decimal places) will be submerged when it is placed in water?

. Modify Programs 2.2 and 2.3 to output a matrix analogous to Tables 2.1 and 2,2,

respectively (i.e., the first row of the matrix would be [0 oo co io f('-0)]).

. Use your programs from Problem 3 to approximate the three smallest positive roots

ofx = tan(.v) (accurate to 8 decimal places).

. A unit sphere is cut into two segments by a plane. One segment has three times the

volume of the other. Determine the distance x of the plane from the center of "the
sphere (accurate to 10 decimal places).

Initial Approximation and Convergence Criteria

The bracketing methods depend on finding an interval [a, b] so that f(a) and / (b) have
opposite signs. Once the interval has been found, no matter how large, the iterations
will proceed until aroot is found. Hence these methods are called globally convergent.
However, if fix) = 0 has several roots in [a, b], then a different starting interval musl
be used to find each root. It is not easy to locate these smaller intervals on which / (jc)

changes sign.

In Section 2.4 we develop the Newton-Raphson method and the secant method for

solving fix) =0. Both of these methods require that a close approximation to the rooi
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be given to guarantee convergence. Hence these methods are called locally converge/it.
They usually converge more rapidly than do global ones. Some hybrid algorithms start
with a globally convergent method and switph to a locally convergent method when
the iteration gets close to a root.

If the computation of roots is one part of a larger project, then a leisurely pace
is suggested and the first thing to do is graph the function. We can view the graph
y = f(x) and make decisions based on what it looks like (concavity, slope, oscillatory
behavior, local extrema, inflection points, etc.). But more important, if the coordinates
of points on the graph are available, they can be analyzed and the approximate location
of roots determined. These approximations can then be used as starting values in our
root-finding algorithms.

We must proceed carefully. Computer software packages use graphics software of
varying sophistication. Suppose that a computer is used to graphy = f(x) on [a, b].
Typically, the interval is partitioned into N + 1 equally spaced points: a — x0 <
X] < -mm< jgv = b and the function values yk — f (-**) computed. Then either a
line segment or a “fitted curve” are plotted between consecutive points (X ]. yg—i)
and {xk, yk) fork — 1,2....... N. There must be enough points so that we do not
miss a root in a portion of the curve where the function is changing rapidly. If f(x)
is continuous and two adjacent points U i-b and v.O lie on opposite sides
of the graxis, then the Intermediate Value Theorem implies that at least one root lies
in the interval [Xk-\,xk]- But if there is a root, or even several closely spaced roots,
in the interval and the two adjacent points (jCt-b » -i) and (jr*. W ) lie on
the same side of the n-axis, then the computer-generated graph would not indicate a
situation where the Intermediate Value Theorem is applicable. The graph produced by
the computer will not be a true representation of the actual graph of the function /.
It is not unusual for functions to have “closely” spaced roots; that is, roots where the
graph touches but does not cross the gr-axis, or roots “close” to a vertical asymptote.
Such characteristics of a function need to be considered when applying any numerical
root-finding algorithm.

Finally, near two closely spaced rqots or near adouble root, the computer-generated
curve between (y-..i, yt-\) and (xi-, W) may fail to cross or touch the n-axis. |If
I/U i)l is smaller than a preassigned value e (i.e.,/(j;t) 0), then x&is a tentative
approximate root. But the graph may be close to zero over a wide range of values near
*b and thus xt may not be close to an actual root. Hence we add the requirement that
the slope change sign near (g*, y*); that is, Tei = X(élfj't-]j and = Jt;+|1'_ must
have opposite signs. Since x* xK~\ > 0 and x"+i —Xk >0, itis not necessary to use
the difference quotients, and it will suffice to check to see if the differences yk —>1-1
and i —y” change sign. In this case, Xk is the approximate root. Unfortunately,
we cannot guarantee that this starting value will produce a convergent sequence. If the
graphofy = f (n) has a local minimum (or maximum) that is extremely close to zero,
then it is possible that xt- will be reported as an approximate root when /(jt*) « 0,
although xk may not be close to a mot.
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Table 2.3  Finding Approximate Locations for Roots

Function values

X n-1
-12  -3.125
-0.9  -0.968
-0.6 0.361
-0.3 1.024

0.0 1.183

0.3 1.000

0.6 0.637

0.9 0.256

t.2 0.019

Example 2.9.

¥

-0.968
0.361
1.024
1183
1.000
0.637
0.256
0.019
0.088

Differences iny

- Y1
2.157
1.329
0.663
0.159

-0.183

-0.363

-0.381

-0.237
0.069

The Solution of Nonlinear Equations f(x) =0

Significant changes

Yiee 1-YK in/(x) or '(x)

1.329
0.663
0.159
-0.183
-0.363
-0.381
-0.237
0.069
0.537

f changes sign in Ixk-I-

f* changes sign near 4,

f changes sign near

Figure 2.10 The graph of the cu-
bic polynomial y —x3—jc2- x + |

Find the approximate location of the roots 0f x3—x2 —x 4- 1= 0 on the

interval [—1.2, 1.2]. For illustration, choose N = 8 and look at Table 2.3.

The three abscissas for consideration are —1.05, —0.3, and 0.9. Because f(x) changes
sign on the interval [—1.2, —0.9], the value -1.05 is an approximate root; indeed.
/(—1.05) = —0.210.

Although the slope changes sign near —0.3, we find that /(—9.3) = 1.183; hence
—0.3 is not near a root. Finally, the slope changes sign near 0.9 and/(0.9) = 0.019, so 0.9
is an approximate root (see Figure 2.10)
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Yy

Figure 2.11 (a) The horizontal convergence band for locating a solution to
fix) = 0.

Checking for Convergence

A graph can be used to see the approximate location of a root, but an algorithm must be
used to compute a value pn that is an acceptable computer solution. lteration is often
used to produce a sequence {pk}that converges to a root p, and a termination criterion
or strategy must be designed ahead of time so that the computer wiVi stop when an
accurate approximation is reached. Since the goal is to solve /(x) = 0, the final value
pn should have the property that |[/(pn)| <e.

The usercan supply a tolerance value e for the size of \f{ pn)\and then an iterative
process produces points Pk = (pit, f(.Pk)) until the last point P,, lies in the horizontal
band bounded by the linesy = +e and y = —6, as shown in Figure 2.11(a). This
criterion is useful if the user is trying to solve h{x) — L by applying a root-finding
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algorithm to the function /(*) = h(x) —L.

Another termination criterion involves the abscissas, and we can try to detetrmftfc if
the sequence [pk | is converging. If we draw the vertical linesx = p+Sand < p
on each side of jc = p, we could decide to stop the iteration when the p : Pn lies
between these two vertical lines, as shown in Figure 2.11(b).

The latter criterion is often desired, but it is difficult to implement because it in
volves the unknown solution p. We adapt this idea and terminate further calculation
when the consecutive iterates pn | and p,, are sufficiently close or if they agree withm
M significant digits.

Sometimes the user of an algorithm will be satisfied if p,, « pn_[ and other times

when f{pn) » 0. Correct logical reasoning is required to understand the conse-
quences. If we require that )pn —p] < S and \f(pn)| < s, the point P,, will be
located in the rectangular region about the solution (p, 0), as shown in Figure 2.12(
If we stipulate that pn —p\ < $ or ® (p,)\ < e, the point Pn could be located
anywhere in the region formed by the union of the horizontal and vertical stripes, as
shown in Figure 2.12(b), The size of the tolerances &and e are crucial. If the tol-
erances are chosen too small, iteration may continue forever. They should be chosen
about 100 times larger than 10~M, where M is the number of decimal digits in the
computer’s floating-point numbers. The closeness of the abscissas is checked with one
of the criteria

\p,, —p,,-ii < 8 (estimate for the absolute error)
or

— Enzll <$  (estimate for the relative error).
\Pn\ + I/»n-il

The closeness of the oidvnate is i&ualty checked by \/((PnM < €.

Troublesome Functions

A computer solution to f(x) — 0 will almost always be in error due i

and/or instability in the calculations. If the graph y = f(x) is steep iwai cise roor
{p, 0), then the root-finding problem is well conditioned (i.e., a solution with several
significant digits is easy to obtain). If the graphy = f(x) is shallow near (p. 0), thers
the root-finding problem is ill conditioned (i.e., the computed root may have mb a few
significant digits). This occurs when / (x) has a multiple root at p. This is discussed
further in the next section.



Sec.2.3 Initial Approximation and Convergence Criteria

Figure2.12 (b) The unbounded region defined by |;t —p\ <3 OR |y| <e.
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Program 2.4 (Approximate Location of Roots). To roughly estimate the loca-
tions of the roots of the equation f(x) = 0 over the interval \a,b], by using the
equally spaced sample points (xu, /(-**)) and the following criteria:

(0 OMt-iH}"™*) < 0.or

(i) |y*| < e and (y* - y*-i)Cy*+i - y/t) < 0.
That is, either /(**-1) and f(xt) have opposite signs or |/(nc*)| is small and the
slope of the curve y = f(x) changes sign near (x*, f (jc*)).

function R “ approot (X,epsilon)

7, Input - f is the object function saved as an M-file named f.m
¥, - X is the vector of abscissas

kA - epsilon is the tolerance

/. Output - R is the vector of approximate roots

Y =f(X);

yrange = max(Y)-min(Y);
epsilon2 = yrange*epsilon;
n=length(X);
m=0 ;
X(n+h)=X(n) ;
Y (n+1)=Y(n);
for k=2:n,
it Y (k-)*Y (k)<=0,
W=+l ;
R(m)=(X(k-)+X(k))/2;
end
5= (Y (K)-Y (k-1))* (Y (k+1)-Y (K));
if (abs(Y(k)) < epsilon2) & (s<=0),
m=m+1;
R(m)=X(k);
end
end

Example 2.10. Use approot to find approximate locations for the roots of /(x) =
sin(cosQr3)) in the interval [—2, 2]. Firstsave / as an M-file named f.m. Since the results
will be used as initial approximations for a root-finding algorithm, we will construct X so
that the approximations will be accurate to 4 decimal places.

»X=-2:.001:2;

»approot (X,0.00001)

ans=

-1.9875 -1.6765 -1.1625 1.1625 1.6765 1.9875



Sec. 2.3 Initial Approximation and Convergence Criteria 69

Comparing the results with the graph of /, we now have good initial approximations for
one of our root-finding algorithms. [ ]

Exercises for Initial Approximation

In Exercises 1 through 6 use a computer or graphics calculator to graphically determine
the approximate location of the roots of /0:) = 0 in the given interval. In each case,
determine an interval [a, b\ over which Programs 2.2 and 2,3 could be used to determine
theroots (i.e., / (a)f(b) < 0),

1 f(x) s x2—elfor—=2<x<2

2. f(x) ~ x —cos(n) for=2<x <2

3. f(x) =t sin(jr) —2cos(jc) for-2 <x < 2

4. /(x) = cos(x) + (1 +AC2) " 1for—=2 < jf < 2

5. f(x) = (x - 2)2- In(jr) for0.5 <x <45

6. fix) = 2x —tan(jc) for—1.4 <x < 1.4

Algorithms and Programs

In Problems 1and 2 use a computer or graphics calculator and Program 2.4 to approximate
the real roots, to 4 decimal places, of each function over the given interval. Then use
Program 2.2 or Program 2.3 to approximate each root to 12 decimal places.
1. /00 = 1,000,000n:3- 111,000n:2+ LWWOn: ~ 1for-2 << 2
2. f(x) = 5jc'> —38jc9 + 21x&- 5jtx6 —3jtjc5 —5n:2 +m8n —3 for —15 < x < 15.
3. A computer program that plots the graph of y = f(x) over the interval [a, b] using
the points (jco, >b). (jci, Vi)...., and Ot,v, y,v) usually scales the vertical height of
the graph, and a procedure must be written to determine the minimum and maximum
values of / over the interval.
(a) Construct an algorithm that will find the values Kmex = niax*y*:} and ymjn =
mjn={yt }
(b)  Write a MATLAB program that will find the approximate location and value of
the extreme values of f(x) on the interval [a, b].
(c) Use your program from part (b) to find the approximate location and value of
the extreme values of the functions in Problems 1and 2. Compare your approx-
imations with the actual values.
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Newton-Raphson and Secant Methods
Slope Methods for Finding Roots

If fU'h f\x), and }"{x) are continuous near a root p, then this extra information
regarding the nature of fix) can be used 10 develop algorithms that will produce se-
quences I/?7*} that converge faster to p than either the bisection or false position method.
The Newton-Raphson (or simply Newton's) method is one of the most useful and best
known algorithms that relies on the continuity of f r(x) and f"{x). We shall introduce
it graphically and then give a more rigorous treatment based on the Taylor polynomial.

Assume that the initial approximation po is near the root p. 'ben the graph of
v =/ 00 intersects the n-axis at the point (p, 0). and the point (po, f(po)) lies on the
curve near ihe poiiU (p, 0) fsee Figure 2. J3). Define pi to be the point ofintersection of
the .x-axis and the line tangent to the curve at the point (po, /(po))- Then Figure 2.13
shows that pi will be closer to p than p3in this case. An equation relating pi and pu
can be found if we write down two versions for the slope of the tangent line L:

0~ /(Po)
Pi - Po
which is the slope of the line through (p], 0) and (po, /(po0)), and

()

which is the slope at the point (po. /(po))- Equating the values of the slope m in
equations (1) and (2) and solving for p\ results in

1(PQ)

?3) P\ = Pa ~ r (o)

Figure 2.13 The geometric construction of p\ and pr for
the Newton-Raphson method.
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The process above can be repeated to obtain a sequence {pi}that converges to p.
We now make these ideas more precise.

Theorem 2.5 (Newtoii'Raphson Theorem). Assume that / e C2]a. b\ and there
exists a number p e \a,b], where f{p) 0. If f'(p) & O, then there existsa S > 0
such that the sequence (p*!£10 defined by ihe iteration

4> k" k--i) = Pk -1 ~ k~]\ for fc=1, 2, ...
( pk " g(pk--i) P ]i)
will converge to p for any initial approximation po € [p —S. p + W

Remark. The function g(x) defined by formula

is called the Newton-Raphson iteration function. Since / (p) = O, it is easy to see
that g(p) = p. Thus the Newton-Raphson iteration for finding the root of the equation
/U ) = 0is accomplished by finding a fixed point of the function g (x).

Proof. The geometric construction of p\ shown in Figure 2.13 does not help in un-
derstanding why po needs to be close to p or why the continuity of f" (x) is essential.
Our analysis starts with the Taylor polynomial of degree n = 1and its remainder term:

(6) fix) - f{po) + /' (po)(x - pa) + "

where ¢ lies somewhere between po and x. Substituting x = p into equation (6) and
using the factthat f(p) =0 produces

<7) 0= f{po) + fipoHp ~ Po) + '

If /%> is close enough to p, the last term on the right side of (7) will be small com-
pared to the sum of the first two terms. Hence i: can be neglected and we can use the
approximation

)] 0ss/ (po) + fiPoKp ~ Po)-

Solving for p in equation (8), we get p & po — f(po)/f(po)- This is used to define
the r.esy approximation p ] to the root

f(Po)
) p\ -

f (Po)

When pk ;is used in place of pq in equation (9), rhe general rule (4) is established. For
most applications this is all that needs to be understood. However, to fully comprehend-
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what is happening, we need to consider the fixed-point iteration function and apply
Theorem 2.2 in our situation. The key is in the analysis of g'(x):

, frwwe - f)f(x) 1)/ (F)

8 ifl{x))2 (fix))2 =
By hypothesis, f(p) = 0; thus g'(p) = 0. Since g'(p) = 0 and g ()l is continuous, it
is possible to find a $> 0 so that the hypothesis < lofTheorem 2.2 is satisfied

on (p —5 p + S). Therefore, a sufficient condition for po to initialize a convergent
sequence {p*}£i0, which converges to a root of f(x) = 0, isthatpo € ip- S, p +9S)
and that S be chosen so that

OO 700N

(10) 1 forall xe (p-8,p+i)

Corollary 2.2 (Newton’s Iteration for Finding Square Roots). Assume that A >0
is a real number and let po > 0 be an initial approximation to \l'a . Define the sequence
{Pk} ") using the recursive rule

A
Pk-1 +
(11) pk = - N= L for * =1 2, ....
Then the sequence convergesto VA ; thatis, lim,,>c pk = y/~A

Outline of Proof.  Start with the function f (x) = x2—A, and notice that the roots of
the equationx2—A = 0 are £ v X Now use f(x) and the derivative fix) in formula
(5) and write down the Newton-Raphson iteration formula

f(x) _ x2- A

02) go0 = x - fix)_x 7

This formula can be simplified to obtain

* 4+ T

(13) 9(x) =

When g(x) in (13) is used to define the recursive iteration in (4), the result is formula
(11). It can be proved that the sequence that is generated in (11) will converge for any
starting value p$ > 0. The details are left for the exercises. .

An important point of Corollary 2.2 is the fact that the iteration function gix)
involved only the arithmetic operations , X, and /. 1fg(x) had involved the cal-
culation of a square root, we would be caught in the circular reasoning that being able
to calculate the square root would permit you to recursively define a sequence that will
converge to -Ja . For this reason, f(x) —x1—A was chosen, because it involved onh
the arithmetic operations.
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Example 2.11.  Use Newton’s square -root algorithm to find V5.
Starting with po ~ 2 and using formula (11), we compute

PIN = 225

2L 5A25=2236LW LU

2
_2.36067978 + 5/2.236067978_ 2-55’:68&%%%

Further iterations produce pk s» 2.236067978 tor k > 4, so we see that convergence
accurate to nine decimal places has been achieved. ]

Now let us turn to a familiar problem from elementary physics and see why de-
termining the location of a root is an important task. Suppose that a projectile is fired
from the origin with an angle of elevation bo and initial velocity no. In elementary
courses, air resistance is neglected and we learn that the heighty — y (/) and the dis-
tance traveled x = xU), measured in feet, obey the rules

(14) y = vyt — 1612 and  x - vxt,

where ihe horizontal and vertical components of the initial velocity are vx  ug cos(bo)
and rv = vosini'fty), respectively. The mathematical rrjodel expressed by the rules
in (14) is easy to work with, but tends to give too high an altitude and too long a range
for the projectile’s path. If we make the additional assumption chat the air resistance is
proportional to the velocity, the equations of motion become

(15) y = f(t) = (Cvy + 32C2) (I - <Ir/C) - 32Cr
and
(16) X = r(r) = Cu* "1 —e~"c¥,

where C = ntfk and K is the coefficient of air resistance and m is the mass of the
projectile. A larger value of C will result in a higher maximum altitude and a longer
range for the projectile. The graph of a flight path of a projectile when air resistance is
considered is shown in Figure 2.14. Ibis improved model is more realistic, butrequires
the use of a root-finding algorithm for solving /(/) = 0 to determine the elapsed time
until the projectile hits the ground. The elementary model in (14) does not require a
sophisticated procedure to find the elapsed time.



74 Chap.2 The Solution of Nonlinear Equations /(*) = 0

Figure 2.14 Path of a projectile
with air resistance considered.

Table 2.4  Finding the Time When die Height /(f) Is Zero

K Time, pK Pk+1 ~ Pk Height, f{pk)

0 8.00000000 0.79773101 83.22097200

1 8.79773101 -0.05530160 —6.68369700

2 8.74242941 -0.00025475 -0.03050700

3 8.74217467 -0.00000001 -0.00000100

4 8.74217466 0.00000000 0.00000000
Example 2.12. A projectile is fired with an angle of elevation =~ —45° vy = vx =

160 ft/sec, and C = 10. Find the elapsed time until impact and find the range.

Using formulas (15) and (16), the equations of motion are * = f(t) = 4800(1
e~y 10 _ 320,and x = r(/) = 1600(1 - Since /(8) = 83.220972 and /(9)
—31.534367, we will use the initial guess po = 8. The derivative is = 4&0e~,/|°m

320, and its value /Ypo) = / 48) -m—104.3220972 is used in formula (4) to get

83.22097200
=10432209"=«"~731010.

A summary of the calculation is given in Table 2.4.
The value pt has eight decimal places of accuracy, and the time until impactist -
8.74217466 seconds. The range can now be computed using r(t), and we get

r(8.74217466) = 1600 (I - e-°-*742766) = 932.4986302ft.

The Division-by-Zero Error

One obvious pitfall of the Newton-Raphson method is the possibility of division by
zero in formula (4), which would occurif f'(Pk-i) =0. Program 2.5 has a procedure
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to check for this situation, but what use is the last calculated approximation pk-\ in
this case? It is quite possible that / (p*—t) is sufficiently close to zero and that pt_i
is an acceptable approximation to the root. We now investigate this situation and will
uncover an interesting fact, that is, how fast the iteration converges.

Definition 2.4 (Order of a Root). Assume that f(x) and its derivatives
Y CA¥)(jc) are defined and continuous on an interval about x = p. We say that
f(x) —O0hasarootoforder M atx = p ifand only if

an
fip) —0, f'ip) =0, ..., fW-V{p)=Q and f(M)(p)" 0.
A root of order M — 1is often called a simple root, and if M > I, it is called a

multiple root. A root of order M = 2 is sometimes called a double root, and so on.
The next result will illuminate these concepts. A

Lemma 2.1. If the equation / (jc) = 0 has a root of order M at x = p, then there
exists a continuous function h(x) so that f(x) can be expressed as the product

(18) fix) = (x - p)Mh(x), where h(p) ¢ O.

Example 2.13. The function f(x) = x3—3x + 2 has a simplerootatp = —2 and a
double rootat p = 1. This can be verified by considering the derivatives f'(x) = bx1—3
and f*(x) — bx. At the valuep = —2, we have /(—2) = Oand /'(—2) = 9, so

M = 1in Definition 2.4; hence p = —2 is a simple root. For the value p — 1, we have
/(1) = 0,/'(1) = 0.and /"(1) = 6,50 M = 2 in Definition 2.4; hence p = lis adouble
root. Also, notice that f(x) has the factorization f(x) — (x + 2)(x —1)2. ]

Speed of Convergence

The distinguishing property we seek is the following. If p is a simple rootof/(x) = 0.
Newton’s method will converge rapidly, and the number of accurate decimal places
(roughly) doubles with each iteration. On the other hand, if p is a multiple root, the
error in each successive approximation is a fraction of the previous error. To make
this precise, we define the order of convergence. This is a measure of how rapidly a
sequence converges.

Definition 2.5 (Order of Convergence). Assume that {pn}*LO converges to p and
setE,, = p —Pn forn > 0. If two positive constants A ¢ 0 and R > 0 exist, and

(19)
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Table 25 Newton’s Method Converges Quadratically at a Simple Root

K B —p_
Pk Pk+1- Pk Fk—P — Pk \EKL2

0 —2,400000000 0.323809524 0.400000000 0.476190475

1 -2.076190476 0.072594465 0.076190476 0.619469086

2 —2.003596011 0.003587422 0.003596011 0.664202613

3 -2.000008589 0.000008589 0.000008589

4 -2.000000000 0.000000000 0.000000000

then the sequence is said to converge to p with order of convergence R. The num-
ber A is called the asymptotic error constant. The cases R = 1, 2 are given special

consideration.

(20) If R — 1, the convergence of [pni”i o is called linear.

(21) If 4 = 2, the convergence of {pn}*Lo is called quadratic. A
If R is large, the sequence {p,,} converges rapidly to p; that is, relation (19) implies

that for large values of n we have the approximation iF,I+\|  A\E,,\R. For example,

supposethat R = 2 and |4,]| ~ 10~2;then we would expect that [En+11 A x 10"

Some sequences converge at a rate that is not an integer, and we will see that the
order of convergence of the secant method is R = (1 + V5)/2 1.618033989.

Example 2.14 (Quadratic Convergence at a Simple Root). Start with po = —2.4
and use Newton-Raphson iteration to find the root p — —2 of the polynomial f(x) =
3r + 2. The iteration formula for computing {pk} is

22) Pk = g(Pk-i) = 2 B L w7
3Pk-1- 3
Using formula (21) to check for quadratic convergence, we get the values in Table 2.5. >

A detailed look at the rate of convergence in Example 2.14 will reveal that the error
in each successive iteration is proportional to the square of the error in the previous
iteration. That is,

\p-Pk+\\~ A\p- p/d2.
Adhere A = 2/3. To check this, we use
\p - py| = 0.000008589 and \p - p2\2= ]0.00359601112 = 0.000012931

and it is easy to see that

) .
\p - pz\ = 0.000008589 A 0.000008621 = ~\p - p2\2.
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Tfeble2.6  Newton’s Method Converges Linearly at a Double Root

K Pk Pk+1~ Pi Fk~ P~ Pk
IEkt

0 1.200000000 -0.096969697 —0.200000000 0.515151515
1 1103030303 -0.050673883 -0.103030303 0.508165253
2 1.052356420 -0.025955609 —0.052356420 0.496751115
3 1.0264008r1 —0.01314308J —0.026400811 0.509753688
4 1013257730 -0.006614311 -0.013257730 0.501097775
5 1.006643419 -0.003318055 -0.006643419 0.500550093

Example 2.15 (Linear Convergence ata Double Root).  Start with po ~ 1.2 and use
Newton-Raphson iteration to find the double root p = 1 of the polynomial / (t) - v3—
X+ 2.

Using formula (20) to check for linear convergence, we get the values in Table 2.6. =

Notice that the Newton-Raphson method is converging to the double root, but at
a slow rate. The values of f(Pk) in Example 2.15 go to zero faster than the values
of f'(Pk), so the quotient f(pk)/f (pk) in formula (4) is defined when pk ¢ p.
The sequence is converging linearly, and the error is decreasing by a factor of approx-
imately 1/2 with each successive iteration. The following theorem summarizes the
performance of Newton’s method on simple and doable wots.

Theorem 2.6 (Convergence Rate for Newton-Raphson Iteration). Assume that
Newton-Raphson iteration produces a sequence {psa}" 0 that converges to the root p
of the function / (*)- If p is a simple root, convergence is quadratic and

(23) \E,,+j| » 2|7'(p)| fer ” suffscienrdy laj*e-

If p is a multiple root of order M, convergence is linear and

M —1
(24) \En+i\ ~ -'\57~IEnI for n sufficiently large.

Pitfalls

The division-by-zero error was easy to anticipate, but there are other difficulties that
are not so easy to spot. Suppose that the function is f(x) — x2 - 4x + 5; then the
sequence {p*} of real numbers generated by formula (4) will wander back and forth
from left to right and not converge. A simple analysis of the situation reveals that
f{x) > 0 and has no real roots.
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Yy

Figure 2.15 (a) Newton-Raphson iteration for / (x) =
xe 1can produce a divergent sequence.

Sometimes the initial approximation po is too far away from the desired root and
the sequence 1/<}converges to some other root. This usually happens when the slope
f'ipo) is small and the tangent line to the curve y = /(jc) is nearly horizontal. For
example, if f(x) = cos(n) and we seek the root p = njl and start with = 3,
calculation reveals that p\ = —4.01525255, p2 = —4.85265757,..., and {p%) will
converge to a different root —3zr/2 ~ —4,71238898.

Suppose that / (jc) is positive and monotone decreasing on the unbounded interval
[a, co) and po > a; then the sequence {pt} might diverge to +0o. For example, if
f(x) = xe~x and po = 2.0, then

p\ = 4.0, pi - 5.333333333, pls = 19.723549434...............

and {pk} diverges slowly to +oo (see Figure 2.15(a)). This particular function has
another surprising problem. The value oi j (jc) goes to zero rapidly as jc gets large, for
example, f(pis) — 0.0000000536, and it is possible that pis could be mistaken for
a root. For this reason we designed stopping criterion in Program 2.5 to involve the
relative error 2|p*+i —p*|/(|p*(-(-10~6), and when k = 15, this value is 0.106817, so
the tolerance S = 10-6 will help guard against reporting a false root.

Another phenomenon, cycling, occurs when the terms in the sequence {pk} tend to
repeat or almost repeat. Forexample, if/(jc) = jc3—jc—3 and the initial approximation
is po = 0, then the sequence is

-3.000000, P2 = -1.961538, /13 = —1.147176, p4= -0.006579,
-3.000389, pe = -1.961818, p7 = -1.147430,

Pi
p5

and we are stuck in a cycle where pk+4 ~ Pk fork —O0, 1, ... (see Figure 2.15(b)),
But if the starting value po is sufficiently close to the rootp n 1.671699881, then {p*}
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Figure 2.15 (b) Newton-Raphson iteration for f(x) =
x3—x —3 can produce a cyclic sequence.

Figure 2.15 (c) Newton-Raphson iteration for fix) —
arctan (x) can produce a divergent oscillating sequence.

converges. If po = 2, the sequence converges: p\ = 1.72727272, p2 — 1.67369173.
pb= 1.671702570,and p4 = 1.671699881.

When |g'(x)\ > 1on an interval containing the root p, there is a chance of di-
vergent oscillation. For example, let f(x) = arctan(j:); then the Newton-Raphson
iteration function is g(x) = x —(1 + x 2) arctan(jr), and g'(x) = —2x arctan(jr). If the
starting value po = 1-45 is chosen, then

Pi = -1.550263297, p2= 1.845931751, p3 = -2.889109054,

etc, (see Figure 2.15(c)). But if the starting value is sufficiently close to the root p = 0,
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Figure 2.16 The geometric construction of p2 for the se-
cant method.

a convergent sequence results. If po = 0.5, then
pi = -0.079559511, P2 = 0.000335302, p3= 0.000000000.

The situations above point to the fact that we must be honest in reporting an answer.
Sometimes the sequence does not converge. It is not always the case that after N
iterations a solution is found. The user of a root-finding algorithm needs to be warned
of the situation when a root is not found. If there is other information concerning
the context of the problem, then it is less likeiy that an erroneous root will be found.
Sometimes f(x) has a definite interval in which a root is meaningful. If knowledge
of the behavior of the function or an “accurate” graph is available, then it is easier to
choose po-

The Secant Method

The Newton-Raphson algorithm requires the evaluation of two functions per iteration,
/ {pt:- 1) and f'ipk-1)mTraditionally, the calculation ofderivatives of elementary func-
tions could involve considerable effort. But, with modem computer algebra software
packages, this has become less of an issue. Still many functions have nonelementary
forms (integrals, sums, etc.), and it is desirable to have a method that converges almost
as fast as Newton’s method yet involves only evaluations of fix) and not of f'(x).
The secant method will require only one evaluation of f(x) per step and at a simple
root has an order of convergence R -s 1.618033989. It is almost as fast as Newton’s
method, which has order 2.

The formula involved in the secant method is the same one that was used in the
regula falsi method, except that the logical decisions regarding how to define each
succeeding term are different. Two initial points (po,/ (po)) and (pi, /(pi)) near
the point (p, 0) are needed, as shown in Figure 2.16. Define p2 to be the abscissa
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Table 2.7  Convergence of the Secant Method at a Simple Root

K [Ei+j!
Pk Pk+l ~ Pk Ek = P~ Pk |£i]1.618

0 —2.600000000 0.200000000 0.600000000 0.914152831
1 -2.400000000 0.293401015 0.400000000 0.469497765
2 -2.106598985 0.083957573 0.106598985 0.847290012
3 -2.022641412 0.021130314 0.022641412 0.693608922
4 -2.001511098 0.001488561 0.001511098 0.825841116
5 -2,000022537 0.000022515 0.000022537 0.727100987
6 -2.000000022 0.000000022 0.000000022

7 -2,000000000 0.000000000 0.000000000

of the point of intersection of the line through these two points and the n-axis; then
Figure 2.16 shows that p2 will be closer to p than to either po or pi. The equation
relating p2, pi, and po is found by considering the slope

25) ne [Dcfipo) a0 f(pY)

The values of m in (25) are the slope of the secant line through the first two approxi-
mations and the slope of the line through (pi,/(pi)) and (p2,0), respectively. Set tilt-
right-hand sides equal in (25) and solve for pi = g{p\, po) and get

f7(PI)(PI~PO)

fiP 1)~ /(po)

The general term is given by the two-point iteration formula

f(pk)(pk ~ Pk-i)

fiPk) - f(pk-1)

(26) pz = £(P1,Po) = Pi ~

(27) pt+i = g{pk, Pk-i) — Pk

Example 2.16 (Secant Method at a Simple Root). Start with po = —2.6 ;md
p\ = —2.4 and use the secant method to find the root p = —2 of the polynomial function
/Cr) = *3- 3n+ 2.
In this case the iteration formula (27) is
«0* (F’t“3pl + 2)(p*-p*_i)
]

(28) Pkti = g(Pk, Pk-i) = Pkommlimngi 0P P20
Pk - Pk 1~ 3P* + 3P*-j

Thitcan be algebraically manipulated to obtain

ren\, % PkPk-i + Pkpk | "2
(29) P*+1= g(pt, Pk-i) = 2% 2T
pi + PkPk-i + p~_, - 3

The sequence of iterates is given in Table 2.7. |
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There is a relationship between the secant method and Newton’s method. For a
polynomial function / (jc), the secant method two-point formula pk+i = g{pk, Pk-i)
will reduce to Newton’s one-point formula Pk+l ~ gipk) if Pk is replaced by pt-i-
Indeed, if we replace p* by Pk-\ in (29), then the right side becomes the same as the
right side of (22) in Example 2.14.

Proofs aboutthe rate of convergence ofthe secantmethod can be found in advanced
texts on numerical analysis. Let us state that the error terms satisfy the relationship

(30) [%+1]* |£ * [LU8
2/'(p)

where the order of convergenceis R = (1 + */5)/2  1.618 and the relation in (30) is
valid only at simple roots.
To check this, we make use of Example 2.16 and the specific values

|p - P51= 0.000022537

jp - p4lw = 0.0015110981618= 0.000027296,

and
A

[/"(-2)/2/'(-2)]|0618= (2/3)°'w = 0.77S351205.
Combine hese and it is easy to see that

Ip - ps|= 0.000022537 »0.000021246= A\p - p " w

Accelerated Convergence

We could hope that there are root-finding techniques that converge faster than linearly
when p is arootoforder M. Our final result shows that a modification can be made to
Newton’s method so that convergence becomes quadratic at a multiple root.

Theorem 2.7 (Acceleration of Newton-Raphson Iteration). Suppose that the
Newton-Raphson algorithm produces a sequence that converges linearly to the root
x = p of order M > 1 Then the Newton-Raphson iteration formula

Mf(pk-i
(31) pk = Pk-1 LA

will produce a sequence {pt]*_0 that converges quadratically to p.
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Table 2.8 Acceleration of Convergence at a Double Rool

K 4 - = p-~
Pk P*+l - Pk Ek = P~Pk \EKQ2
0 1.200000000 -0.193939394 - 0.200000000 0.151515150
1 1.006060606 -0.006054519 -0.006060606 0.165718578
2 1.000006087 -0.000006087 -0.000006087
3 1.000000000 0.000000000 0.000000000
Tabl*2.9 Comparison of the Speed of Convergence
Special Relation between

Method considerations successive error terms
Bisection Ek+1as MEK\
Regula falsi Ek+1 8 >4"*1
Secant method Multiple root A1 A\Ek\
Newton-Raphson Multiple root £x+] N A|E*|
Secant method Simple root Ek+l ssA1S*11618
Newton-Raphson Simple root Ek+1 = A\Ek\2
Accelerated Multiple root Ek+l * A\EKk\2

Newton-Raphson

Example 2.17 (Acceleration of Convergence at a Double Root). ~ Start with po = 1.2
m i use accelerated Newton-Raphson iteration to find the double root p = 1of/(x) =
X - 3x + 2.

Since M — 2, the acceleration formula (31) becomes

Pk - Pkl - 2/_(p/t—l) _ pl-\+bpk-\~4
f (Pk-1) 3pn-3

and we obtain the values in Table 2.8. |

Table 2.9 compares the speed of convergence of the various root-finding methods
that we have studied so far. The value of the constant A is different for each method.
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1Program 2.5 (Newton-Raphson Iteration). Toapproximate arootoff (x) = 0 j
given one initial approximation po and using the iteration

pk = PraA~F P k=12 |
f (Pk~I) !
fnnction [pO,err,kK,y]=newton (f ,df ,po,delta,epsilon,maxl)
[{Input - f is the object function input as a string ’f*
Y, m - df is the derivative of f input as a string ’'df’
- pO is the initial approximation to a zero of f

VA - delta is the tolerance for pO
\Y% - epsilon is tbe tolerance for the function values y
% - maxi is the maximum number of iterations
'/.Output - pO is the Newton-Raphson approximation to the zero
% - err is the error estimate for pO
% - K is the number of iterations
¥. - y is the function value f (pO)

for ksl:maxl

pi=pQ-feval(f,pO)/feval(df,p0) «

err*=abs(pl-pO);

relerr=2*err/(abs(pl)+delta);

pO-pl;

y=feval(f,p0);

if (err<delta) /(r&lerr<delta) I(abs(y) Cepsilon),break, and
end

Program 2.6 (Secant Method). To approximate a root of f(x) = 0 given two
initial approximations po and pi and using the iteration

Pk+l = PK - ‘f']P_kK.E_‘f_'_ _ 1,)
fiPk) - fiPk-i)

function [pl,err,k,y]=secant(f,pO.pl,delta,epsilon,maxi)

Xlnput - f is the object function input as a string 'f*

X - pO and pi &re the initial approximations to a zero
7. - delta is the tolerance for pi

'/, - epsilon is the tolerance for the function values y
¥, - maxi is the maximum number of iterations

f.Output - pi is the secant method approximation to the zero
% - err is the error estimate for pi

Y - K is the number of iterations

yA - y ia the function value f(pl)

for k=I:maxl
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p2=pl-feval(f,p)*(pl-pO)/(feval(f,pl)-feval(f,p0));

err=abs(p2-pl);

relerr=2*err/(abs(p2)+delta);

pO=pl;

pl=p2;

y=feval(f ,pl) y

if (err<delta)l(relerr<delta)l(abs(y)<epsilon).break,end
end

Exercises for Newton-Raphson and Secant Methods

For problems involving calculations, you can use either a calculator or computer.

1. Let/00 =x2- x + 2
(a) Find the Newton-Raphson formula pt = g(pk- 1).
(b) Start with po = —1.5 and find p 1( pr, and p3.

2. Let/00 =x2-x-3.
(a) Find the Newton-Raphson formula pk = g(pk-i).
(b) Startwith po = 1.6 and find p\, pr, and p3.
(c) Start with po = 0.0 and find p\, pi, p3, and pu. What do you conjecture about
this sequence?
3. Let/00 = (x- 2)\
(a) Find the Newton-Raphson formula pk = g(Pk-i).
(b) Startwith po = 2.1 and find pi, pi, pr, and p4.
(c) Isthe sequence converging quadratically or linearly?
4. Let f(x) = x3—3x —2
(a) Findthe Newton-Raphson formula p* = x(pk-i).
(b) Start with po = 2.1 and find pi, pi, p3, and pu.
(c) Isthe sequence converging quadratically or linearly?
5. Consider the function / OO = cost*).
(a) Find the Newton-Raphson formula p* = g(p*-i).
(Jj) We want to find the root p = 3n-/2. Can we use po = 3? Why?
(L, We want to find the root p = 31r/2. Can we use po —5? Why?

6. Coasider the function /CO = arctanOO.
(a) Find the Newton-Raphson formula pk = g(pk-1)-
(b) If po = 1-0, then find p\, pi, p3, and P4- What is limn-»» Pt?
(c) Ifpo = 2.0, then find pi, pj, p3, and /34 What is limn-).» Pk!
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Consider the function / (x) = xe~Xx.

(a) Find the Newton-Raphson formula pk = giPk-i).

(b) If po= 0.2, then find pi, P2, p3, and P4- What is lim,,"oo0 Pk ?
(c) If po = 20, then find pb pr, p3, and p$. What is lim,,_,00 p*?
(d) What is the value of fipf) in part (c)?

In Exercises 8 through 10, use the secant method and formula (27) and compute the ne\i
two iterates p2and ps.

8.
9.
10.
11.

12.

13.

14.
15.

16.
17.

18.

Let f(x) = x2—2x — 1 Startwith po = 2.6 and p\ = 2.5.

Let fix) = x2- x —3. Start with po = 1.7 and pi = 1.67.

Let f(x) —n3—x + 2. Start with po = —1.5 and pi = —1.52.

Cube-root algorithm.  Start with fix) = jc3—A, where A is any real number, and
derive the recursive formula

2pk-i + Alp\_i x
p= LA k=18

Consider fix) = x N —A, where JI' is a positive integer.

(a) What real values are the solution to f(x) =0 for the various choices of N and
A that can arise?

(b) Derive the recursive formula

ON -\) Pk-1+ A/PN-iX {or ‘=

12 ..
N

pk =

for finding the .Vth root of A.

Can Newton-Raphson iteration be used to solve f(x) = 0if f(x) = x2—14* -I-50?

Why?

Can Newton-Raphson iteration be used to solve fix) —O0if j'(x) = *1;,;i? Why?

Can Newton-Raphson iteration be used to solve fix) = 0 if fix) = (x —3)1/2 and

the starting value is po = 4? Why?

Establish the limit of the sequence in (11).

Prove that the sequence {p"} in equation (4) of Theorem 2.5 converges to p. Use the

following steps.

(a) Show that if p is a fixed point of g (,c) in equation (5) then p is a zero of f(x).

(b) If pis azero of f(x) and f'(p) & O, show that g'ip) = 0. Use part (b) and
Theorem 2.3 to show that the sequence [pk] in equation (4) convergesto p.

Prove equation (23) of Theorem 2.6. Use the following steps. By Theorem 1.11, we
can expand fix) abouta = pk to get

1(*) = fiPk) + £ (PK)(x - PK) + jf'(.CK)(x - pK)T.
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19.

20.

21.

22.

Since p is a zero of fix), we .setx = p and obtain

0 = f{pk) + f'{pt)(p ~ Pk) + - Pk)2-

(a) Now assume that fix) @ 0 forall;c nearthe root p. Use the facts given above
and f'(pk) @ 0 to show that

. f(Pk) ~f"(Ck) 2

P-Pb+ y = \g(ﬁk‘g (p ~ Pk>-
(b) Assume that fix) and fix ) do notchange too rapidly so that we can use t'v
approximations f'(pk) ~ f'(p) and /" (n) Now use pan (a) to get

Ek+* - i m Ek-

Suppose that A is a positive real number.

(a) Show that A has the representation A = q x 12™ where 1/4 < g < landm is
an integer,

(b) Use part (a) to show that the square root is AY2 = qI2 x 2m. Remark. Let
po = (29 + 1)/3, where 1/4 < g < 1, and use Newton’s formula (11). After
three iterations, p3 will be an approximation to ql/1 with a precision of 24
binary digits. This is the algorithm that is often used in the computer’s hardware
to compute square roots.

(a) Show that formula (27) for the secant method is algebraically equivalent to
_ Pk-If(Pk) ~ Pkf(Pk-1
Pk+l f(Pk)-f(Pk-2

(b) Explain why loss of significance in subtraction makes this formula inferior for
computational purposes to the one given in formula (27).

Suppose that p is a root of order M — 2 for fix) = 0. Prove that the accelerated
Newton-Raphson iteration

2/(p*-i)
Pl - P 1=t

converges quadratically (see Exercise 18).

Haileys method is another way to speed up convergence of Newton’s method. The
Hailey iteration formula is

X fix) ( 2('(*)21
The term in brackets is the modification of the Newton-Raphson formula. Hailey’s
method will yield cubic convergence (R = 3) at simple zeros of fix).

(a) Start with fix) = x2 —A and find Hailey’s iteration formula gix) for find-
ing Va. Use pa~ 2toapproximate >/5 and compute p\, pr, and />3.



88 Chap.2 The Solution of Nonlinear Equations /(*) = 0

(b) start with /(*) = x3—3jc + 2 and find Hailey’s iteration formula g(x). Use
po = —2.4 and compute pi, P2, and p3.
23. A modified Newton-Raphson method for multiple roots. If p is a root of multiplic-
ity M, then /0) = (@ —p)Mq(x), where q(p) @ 0.
(a) Show thatk(x) = f{x)/f'(x) hasa simple root at p.
() show that when the Newton-Raphson method is applied to finding the simple
root p of h(x) we getg(x) —x —h(x)/h’(x), which becomes

- 1)
X (f'M)2- f(x)f4x)'

(c) The iteration using g(*) in part (b) converges quadratically to p. Explain why
this happens.

(d) Zero is a root of multiplicity 3 for the function fix) = sin(jc3). Start with
po = 1 and compute pi, p2, and p3 using the modified Newton-Raphson
method.

24. Suppose that an iterative method for solving fix) = 0 produces the following four
consecutive error terms (see Example 2.11): £0 = 0.400000, £1 —0.043797, E2 =
0.000062, and £3 — 0.000000. Estimate the asymptotic error constant A and the
order of convergence R of the sequence generated by the iterative method.

Algorithms and Programs

1. Modify Programs 2.5 and 2.6 to display an appropriate error message when (i) di-
vision by zero occurs in (4) or (27), respectively, or (ii) the maximum number >
iterations, maxi, is exceeded.

2. It is often instructive to display the terms in the sequences generated by (4) and (27)
(i.e., the second column of Table 2.4). Modify Programs 2.5 and 2,6 to display ihe
sequences generated by (4) and (27), respectively.

3. Modify Program 2.5 to use Newton’s square-root algorithm to approximate each
the following square roots to 10 decimal places.

(a) Start with po = 3 and approximate ¥ 8.
(b) start with po = 10 and approximate VIT-
(c) Startwith po = —3 and approximate —v/8-

4. Modify Program 2.5 Guse the cube-root algorithm in Exercise 11 to approximute
each of the following cube roots to 10 decimal places.
(@) Start with po = 2 and approximate 7 1'3.

(b) startwith po = 6 and approximate 20013.
(c) Startwith po = - 2 and approximate (—7) 3.
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5. Modify Program 2.5 to use the accelerated Newton-Raphson algorithm in Theo-

.

rem 2.7 to find the root p of order M of each of the following functions.
(@ fix) = (x—2)5M = 5 p —2; start with po = 1.

(b) /(*) = sinOr3), M — 3, p = 0O; start with po = 1

() f(x) = (t—D1In(x), M = 2,p —1; start with po —2.

. Modify Program 2.5 to use Hailey’s method in Exercise 22 to find the. simple zero of

f(x) =x3—3x + 2, using po = —2.4.

. Suppose that the equations of motion for a projectile are

= /(r) = 9600(1 - e~/15) - 480/
X = r(t) = 2400(1 —e~,/15).

<

(a) Find the elapsed time until impact accurate to 10 decimal places.

(b) Find the range accurate to 1Q decimal places.

. (@) Find the point on the parabolay = x2that is closest to the point (3, 1) accurate

to 10 decimal places.

(b) Find the point on the graph of y = sin(jc —sin(x)) that is closest to the point
(2.1,0.5) accurate to 10 decimal places.

() Find the value of x at which the minimum vertical distance between the graphs
of / (xj = x2+ 2 and g(x) = (x/5) —sin00 occurs accurate to 10 decimal
places.

An open-top box is constructed from a rectangular piece of sheet metal measuring 10
by 16 inches. Squares of what size (accurateto 0.000QQQO001 inch) should be. cvAfrom
the corners if the volume of the box is to be 100 cubic inches?

A catenary is the curve formed by a hanging cable. Assume that the lowest point is
(0,0); then the formula for the catenary isy — C cos'nur/C) —C. To determine the
catenary that goes through (+a, b) we must solve the equationb = C cosh(a/C) —C
for C.

(b Show that the catenary through (£10,6) is v = 9.1889cosh(jc/9.1889) —
9.1&89.

(b) Find the catenary that passes through (£12, 5).
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Aitken’s Process and Steffensen’s and Muller’s
Methods (Optional)

In Section 2.4 we saw that Newton’s method converged slowly at a multiple root and
the sequence of iterates {pt} exhibited linear convergence. Theorem 2.7 showed how
to speed up convergence, but it depends on knowing the order of the root in advance.

Aitken’s Process

A technique called Aitken’s Alprocess can be used to speed up convergence of any
sequence that is linearly convergent. In order to proceed, we will need a definition.

Definition 2,6. Given the sequence {p,, define the forward difference Ap,, by
(1) Apn = pn+j- pn for n > 0.

Higher powers [1* pn are defined recursively by

(2) &kpn= A*-1(4bl for kK >2. i

Theorem 2.8 (Aitken’s Acceleration). Assume that the sequence {pn}'LQ con-
verges linearly to the limit p and that p —p,, ¢ O forall n >0. If there exists a
real number A with |A| < 1such that

3) lim P~ Pn+i = A,
P-Pn
then the sequence defined by
Pn)2 Pn+\~Pn)2
@) an = pn-----’%z--?- . (Pn ")

Pn+2 - 2pn+]+ Pn
converges to p faster than {pn¥'L0, in the sense that

(5) im 4T o

P - Pn
Proof. We will show how to derive formula (4) and will leave the proofof (5) as an
exercise. Since the terms in (3) are approaching a limit, we can write

(6) P—PN+l_ o and- --I?--:--P-r-]i-zft; A when n is large

P —pn P —Pn+l
The relations in (6) imply that

0) (P- Pn+l)2« (p - Pn+2)(P - Pn) m
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Table 2.10 Linearly Convergent Sequence (p,,}

n Pn En —Pn~ P A £"

1 0.606530660 0.039387369  —9.586616609
2 0.545239212  -0.021904079 -0.556119357
3 0.579703095 0.012559805 -0.573400269
4 0.560064628 -0.007078663 -0.563596551
5 0.571172149 0.004028859 -0.569155345
6 0.564862947 -0.002280343 -0.566002341

Table 2.11  Derived Sequence Ignl Using
Aitken’s Process

n (0] 4a~ P

1 0.567298989 0.000155699
2 0.567193142 0.000049852
3 0.567159364 0.000016074
4 0.567148453 0.000005163
5 0.567144952 0.000001662
6 0.567143825 0.000000534

When both sides of (7) are expanded and the terms p 2 are canceled, the result is

/o\
® e =qgn forn=0,1.....

Pn+2  2,Pn+1+ Pn
The formula in (8) is used to define the term q,,. It can be rearranged algebraically to
obtain formula (4), which has less error propagation when computer calculations are
made. .

Example 2.18. Show that the sequence {pn}in Example 2.2 exhibits linear convergence,
and show that the sequence {q,,} obtained by Aitken’s A2 process converges faster.

The sequence {p,,} was obtained by fixed-point iteration using the function g(x) =
e~x and starting with po ~ 0.5. After convergence has been achieved, the limit is P
0.567143290. The values p,, and gn are given in Tables 2.10and2.11. For illustration, the

value of £iis given by the calculation
P2 - Pi)2
A= Pi ( ) .
Pb~ 2p2 + pi

= 0.606530660- ( 8@&4@.: 0.567298989.
0.095755331
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y=/W
(Pi./(Pi))

Figure 2.17 The starting approximations po, pi, and P2 for Muller’s method, and the
differences Aoand hi.

Although the sequence [gn\ in Table 2.11 converges linearly, it converges faster
than [pn} in the sense of Theorem 2.8, and usually Aitken’s method gives a better
improvement than this. When Aitken's process is combined with fixed-point iteration,
the result is called Steffensen’ acceleration. The details are given in Program 2.7 and
in the exercises.

Muller’s Method
Muller’s method is a generalization of the secant method, in the sense that it doe
not require the derivative of the function. It is an iterative method that requires threL
starting points (po, f(po)), ip\, f(pi)), and (p2,fipiY| A parabola is constructed
that passes through the three points; then the quadratic formula is used to find a rooi
of the quadratic for the next approximation. It has been proved that near a simple
root Muller’s method converges faster than the secant method and almost as fast a
Newton’s method. The method can be used to find real or complex zeros of a function
and can be programmed to use complex arithmetic.

Without loss of generality, we assume that pi is the best approximation to thv
root and consider the parabola through the three starting values, shown in Figure 2.17
Make the change of variable

9) t=X- p2,

and use the difference

(10) fto= Po- P2 and hi = p\ —pi-
Consider the quadratic polynomial involving the variable t:

(o y = at2+ bt + c.
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Each pointis used to obtain an equation involving a, b, and c:

At / = io: allg + bfiQ+ ¢ — /o,
(12) aftj + bk + ¢ = _f,
At t —0: a02+ bO + ¢ = [r-

From the third equation in (12), we see that
(13) c= /2.

Substituting (13) into the first two equations in (12) and using the definition <= fo~c
and e\ = fi —c resultsin the linear system

ah% + AA0= /o - ¢ = &0,

(14) .
ahf + bhi -fi ~c =eb

Solving the linear system for a and b results in

eohi —e@o

h\hl - Aofl|
15 " eih\-eoh\
(15) _

h\hl-hoh\

The quadratic formula is used to find the roots t = zi, zj of (11):

—2C

(16) r= -
fcx -Yb2 —4ac

Formula (16) is equivalent to the standard formula for the roots of a quadratic and is
better in this case because we know thatc = /r-

To ensure stability of the method, we choose the root in (16) that has the smallest
absolute value. Ifb > 0, use the positive sign with the square root, and if b < 0, use
the negative sign. Then pj is shown in Figure 2.17 and is given by

()] Pr=pr+r.

To update the iterates, choose po and pi to be the two values selected from among
{po, pi pb}thatlie closestto pr (i.e., throw out the one that is farthest away). Then re-
place /"M ith p3. Although alot ofauxiliary calculations are done in Muller’s method,
it only requires one function evaluation per iteration.

If Muller’s method is used to find the real roots of / (jr) = 0, it is possible that
one may encounter complex approximations, because the roots of the quadratic in (16)
might be complex (nonzero imaginary components). In these cases the imaginary com-
ponents will have a small magnitude and can be set equal to zero so thatthe calculations
proceed with real numbers.
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Table2.12  Comparison of Convergences near a Simple Root

Secant Muller's Newton’s Steffensen
K method method method with Newton
0 -2.600000000 -2.600000000 -2.400000000 -2.400000000
1 -2.400000000 -2.500000000 -2.076190476 -2.076190476
2 -2.106598985 -2.400000000 -2.003596011 -2.003596011
3 -2.022641412 -1.985275287 -2.000008589 -1.982618143
4 -2,001511098 —2.000334062 - 2.000000000 -2.000204982
5 -2.000022537 -2.000000218 -2.000000028
6 - 2.000000022 - 2.000000000 -2,000002389
7 - 2.000000000 - 2.000000000

Comparison of Methods

Steffensen’s method can be used together with the Newton-Raphson fixed-point func-
tion g(x) = x —f(x)/f'(x). In the next two examples we look at the roots of
the polynomial f(x) = x3- 3x m 2. The Newton-Raphson function is g(x) =
(2x3 —2)/(3jt2 —3). When this function is used in Program 2.7, we get the calcula-
tions under the heading Steffensen with Newton in Tables 2.12 and 2.13. For example,
starting with po = -2.4, we would compute

(18) pi = g(p0) = -2.076190476,
and
(19) p2 = g{p\) = -2.003596011.

Then Aitken’s improvement will give p3 = —1.982618143.

Example 2.19 (Convergence near a Simple Root). This is a comparison of methods
for the function f(x) = jc3—3x + 2 near the simple rootp = —2.

Newton’s method and the secant method for this function were given in Examples 2.14
and 2.16, respectively. Table 2.12 provides a summaiy of calculations for the methods. m

Example 2.20 (Convergencenear a Double Root). This is a comparison of the methods
for the function f(x) = —3jc + 2 near the double root p = 1 Table 2.13 provides u
summary of calculations. w

Newton’ method is the best choice for finding a simple root (see Table 2.12). ATj
double root, either Muller’s method or Steffensen’s method with the Newton-Raphson
formulais a good choice (see Table 2.13). Note in the Aitken’s acceleration formula (£
that division by zero can occur as the sequence {/?*} converges. In this case, the last
calculated approximation to zero should be used as the approximation to the zero of j
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Table 2.13  Comparison of Convergence Near a Double Root

Secant Muller’s Newton’s Steffensen
A method method method with Newton
0 1.400000000 1.400000000 1.200000000 1.200000000
t 1.200000000 1.300000000 1.103030303 1.103030303
r 1.138461538 1,200000000 1.052356417 1.052356417
3 1.083873738 1.003076923 1.026400814 0,996890433
4 1.053093854 1.003838922 1.013257734 0.998446023
5 1.032853156 1.000027140 1.006643418 0.999223213
6 1.020429426 0.999997914 1.003325375 0.999999193
7 1.012648627 0.999999747 1.001663607 0.999999597
S 1.007832124 1.000000000 1.000832034 0.999999798
9 1.004844757 1.000416075 0.999999999

In the following program the sequence tptj, generated by Steffensen’s method
with the Newton-Raphson formula, is stored in a matrix Q that has maxi rows and
three columns. The first column of Q contains the initial approximation to the root,
po. and the terms p3, Pf,, mmm Pvk, mmmgenerated by Aitken’s acceleration method (4).
The second and third columns of Q contain the terms generated by Newton’s method.
The stopping criteria in the program are based on the difference between consecutive
terms from the first column of Q.

Program 2.7 (Steffensen’s Acceleration). To quickly find a solution of the fixed-
point equation x = g(x) given an initial approximation po; where it is assumed
that both g(x) and g'(x) are continuous, < 1, and that ordinary fixed-point
iteration converges slowly (linearly) to p.

function [p,Q ]=steff(f,df,p0,delta,epsilon,maxi)

7.nput - f is the object function input as a string ’'i‘

% - df is the derivative of f input as a string ’'df*
% - pO is the initial approximation to a zero of f

X - delta is the tolerance for pO

', - epsilon is the tolerance for the function values y

i - maxi is the maximum number of iterations
AOutput - p is the Steffensen approximation to the zero
% - Q is the matrix containing the Steffensen.

NInitialize the matrix R
E*zeroS(maxi, 3):
R(I,H)=pO;
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for

end
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K“l:maxl

for j**2:3
"/.Denominator in Newton-Raphson method is calculated
nrdenom-feval(df, R(k,j - 1) >;

NCalculate Neirton-Rapheon approximations

if nrdenom““0
‘division by zero in Newton-Raphson method’
"break

else
R(k,j)=R(k,j-1)-Eeval(f,R(k,j-1)>/nrdenom;

end

/.Denominator in Aitken's Acceleration process calculate
aadenor=a(k,3) -2* 4 (k,2)+E(K,1);

YCalculate Aitken's Acceleration approximations
if aadenom*=0
'division by zero in Aitken's Acceleration’
break
else
R(k+i,l)-R(k,I)-(R(k,2)-RCk,l))'2/aadenom;
end

end

KEnd program if division by zero occurrei
if Inrdencm«“0O)t(aadenom==Q)

break
end

'/.Stopping criteria are evaluated
err«abs(R(k,1)-R(k+1,1));
relerr=err/(abs(R(k+I,1))+delta);
y=feval(f,R(k+I,1)s;
if (err<delta)l(relerr<delta)l(y<epsilon)
% p and the matrix 3 are determined
p-R(k+1.1);
Q-RC :k+1, :/;
break
end
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Program 2.8 (Muller’s Method). To find a root of the equation f(x) = 0 given
three distinct initial approximations po, p\, and pr.

function [p.,y,err]l-nmller(f,pO.pl,p2,delta epsilon,maxi)

Y.Input - f ie the object function input as a string ‘f1l
n - pO, pi, and p2 are the initial approximations
- delta is the tolerance for pO, pi, and p2
% - epsilon the the tolerance for the function values y

- mail is the maximum number of iterations
/0utput - p is the Muller approximation to the zero of f
YA - y is the. function value y * f (p)

VA - err is the error in the approximation of p.

'/.Initialize the matrices P and ¥
P=[pO pi p2j ;
¥*feval(f,P);
/.Calculate a and b in formula (15)
for k=I:maxl
hO=P()-P(3);hI»P(2)-P(3);eO0-Y(I)-Y(3);al-Y (2>-Y(3);c=Y(3);
denom=hI*hO*“2-hO*hl~2;
a=(a0*bl -e i*h.0) /denom;
b=(el+h0O"2-eO*hl"2) /denom;
7/.Suppresa any complex roots
if b'2-4*a*c >0
disc*aqrt(b‘2-4*a*c);
else
disc*0;
end
7/.Find tbe smallest root of (17}
if b<O
disc*-disc;
end
=-2*c/Cb+disc);
p=P(3)+z;
7/.Sort the entries of P to find the two closest to p
if abs(p-P(2))<absCp-P(l))
Q(tNe(2) P (1) P(3)I:
P=Q;
Y=feval(f,P:;
end
if abs(p-P(3))<abs(p-P(2))
R=[P(1) 2(3) P(2)j ;
P-R;
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Y=feval(f,P);

end

‘/.Replace the entry ol P that was farthest from p with p

P(3)=p;

Y(@3) = feval(f,P(3));

y=Y(@3);

‘/.Determine stopping criteria

err=abs(z);

relerr=err/(abs(p)+delta);

if (err<delta)l(relerr<delta)l(abs(y)<epsilon)
break

end

end

Exercises for Aitken’s, Steffensen’s, and Muller’s Methods

1. Find Ap,,, where

(@) pn=5 (b) pn=6n+2 (¢) p,=n(n+1)
2. Letp,, = 2r? + 1 Find Affp,,. where
(@ k=2 b)) k=3 (c) k=4

3. Letp,, — 12", Show that gn — O for all n, where q,, is given by formula (4).

4. Letpn= I/n. Showthatgn = 2/(2n 2) for all u; hence there is little acceleration
of convergence. Does {/>,}converge to O linearly? Why?

5. Letpn= 1/(2" - 1). Show thatqn = 1/ (4n+l - 1) forall n.

6. The sequence p,, = 1/(4” + 4_n) converges linearly to 0. Use Aitken’s formula (4)
to find g\, g%and qi, and hence speed up the convergence.

Pa gn
0.5 -0.26437542
0.23529412
0.06225681
0.01562119
0.00390619
0.00097656

GO PR WN O =

7. The sequence {p,,} generated by fixed-point iteration starting with po = 2.5 and using
the function g(x) = (6 + jt)¥2 converges linearly to p = 3. Use Aitken’s formula
(@) to find q|, g2, and gi, and hence speed up the convergence.
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The sequence {p,,\ generated by fixed-point iteration, starting with po = 3.14, and
using the function g(x) = InO) r 2 converges linearly to p = 3.1419322. Use
Aitken’s formula(4) to findq\,qi, and 93, and hence speed up the convergence.

. For the equation cos(x) —1 = 0, the Newton-Raphson function is g(x) = x — (1 —

cos(ic))/ Sin(x) = x — tan(jr/2). Use Steffensen’s algorithm with g(x) and start with
po = 0-5, and find pi, pr, and p3; then find pa, ps, and p6-

Convergence of series. Aitken's method can be used to speed up the convergence of

a series. If the nth partial sum of the series is

n

So= ‘
k-1

show that the derived series using Aitken’s method is

In Exercises 11 through 14, apply Aitken’s method and the results of Exercise 10 to spued
up the convergence of the series.

11
12.
13.

14.
15.

16.

17.

18.

19.

sn= EJUw-W)*

S, —E U 4*4t

S,= YlIIA\ 2t

s,, = 53ji=1 A

Use Muller’s method to find the root of f(x) = x3 —x —2. Start with po = 1.0,

Pi = 1.2,and pr = 1.4 and find p3, p4, and ps.

Use Muller’s method to find the root of f(x) = 4x2 —ex. Start, vnth po — 4.0,
pi = 4.1, and p2 = 4.2 and find p3, p4, and ps.

Let {p,.} and \gn) be any two sequences of real numbers. Show that

(@ A(p,+a.,) = Ap, + Aagn

® apnan) = p.+1Aq, + 0.Ap,

Start with formula (8), add the terms pn+2 and —pn+2 to the right side, and show that
an equivalent formula is

_ iPn+2 ~ Pn+l)2
p=~ Pn+t2 - --— = gn-

Pn+2  £Pn+\  Pn
Assume that the error in an iteration process satisfies the relation En+1 = KE,, for
some constant K and |[JT] < 1.
(a) Find an expression for En that involves Eq, K, and n.
(b) Find an expression for the smallest integer N so that |Enr| < 10-8.
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Algorithms and Programs

1. Use Steffensen’s method with the initial approximation po = 0.5 to approximate the
zero of f(x) = x —sin(x) accurate to 10 decimal places.

2. Use Steffensen’s method with the initial approximation po = 0.5 to approximate the
zero of f(x) = sin{*3) closest to 0.5 accurate to 10 decimal places.

3. Use Muller’s method with the initial approximations po = 1.5, pi = 1.4, and
P2— 1.3 to find a zero of f{x) = 1+ 2x —tanO) accurate to 12 decimal places.

4. In Program 2.8 (Muller’s method) a 1 x 3 matrix P is initialized with po, pi, and pi.
Then at the end of the loop, one of the values po, p u or P2 is replaced with the new
approximation to the zero. This process is continued until the stopping criteria are
satisfied, say at Kk = K. Modify Program 2.8 so that, in addition to p and err, a
(K + 1) x 3 matrix Q is produced such that the first row of Q contains the 1 x 3
matrix P with the initial approximations to the zero, and the Jfdh row of Q contains
the fcth set of three approximations to the zero.

Use this modification of Program 2.8 with the initial approximations po = 2.4,
pi = 23, and p2 = 2.2 to find a zero of / (jc) = 3cos(x) + 2sin(jc) accurate to
8 decimal places.



The Solution of Linear Systems
AX = B

Three planes form the boundary of a solid in the first octant, which is shown in Fig-
ure 3.1. Suppose that the equations for these planes are

5+ y+r=25
4

Xx+y+ 3r=3

X+ 4y +t

What are the coordinates of the point of intersection of the three planes? Gaussian
elimination can be used to find the solution of the linear system

x = 0.76, > = 0.68, and z —0.52.

In this chapter we develop numerical methods for solving systems of linear equations.

Introduction to Vectors and Matrices

A real /V-dimensional vector X is an ordered set of N real numbers and is usually
written in the coordinate form

1) —— Xn).

Here the numbers x\, xr, mmm>and x N are called the components of X. The set con-
sisting of all ~-dimensional vectors is called N’dimensional space. When a vector is
used to denote a point or position in space, it is called a position vector. When it is

101
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used to denote a movement between two points in space, it is called a displacement
vector.

Let another vectorbe Y = <j],y2, ..., yn/)- The two vectors X and Y are said to
be equal if and only if each corresponding coordinate is the same; that is,
(2) X=Y if and only if Xj =yj forj =12, ..., N

The sum of the vectors X and Y is computed component by component, using the
definition

(3) x+ Y= (xi + YLl x2+ Y 2 Xfl + yN).

The negative of the vector X is obtained by replacing each coordinate with its
negative:

4) -X = (], -x2 m., -xN).
The difference I —X is formed by taking the difference in each coordinate:

(5) Y- X = (yi- xi,y2- x2..... YM-XH).
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Vectors in W-dimensional space obey the algebraic property
®) Y —X —Y + (-4n).

If ¢ is a real number (scalar), we define scalar multiplication ¢X as follows:
7 cX = (cjci, €x2,. . cxu).

Ifc and d are scalars, then the weighted sum ¢X + dY iscalled a Unear combina-
tion of X and Y, and we write

(8) cX +dY = (cxi+ dy\,cxi + dyi, cag + dyn).

The dotproduct of the two vectors X and Y is a scalar quantity (real number)
defined by the equation

9) X mYy = jciyj + X2¥2 H----+ xNyN.
The norm (or length) of the vector X is defined by
(H0) WXW = (x\+xI + ---+xl)]l2.

Equation (10) is refeired to as the Euclidean norm (or length) of the vector X.
Scalar multiplication ¢X stretches the vector X when Jc| > 1 and shrinks the
vector when )c| < 1. This is shown by using equation (10):
ji NeX\ = (c2x? + c2x\ Jh—--- Lc2xR)u2
= \e\(XRE + x2+ ---+xjl)*2 = \cU\XI

An important relationship exists between the dot product and norm of a vector. If
both sides of equation (10) are squared and equation (9) is used, with ¥ being replaced
with X, we have

(12 WXW2 = xf+ x| + ---+xB = X-X.

If X and Y are position vectors that locate the two points (x\,xr,.. ,,x#) and
fyi,¥b -«+. V\v) in N1'-dimensional space, then the displacement vector from X to Y
isgiven by the difference

(13) Y —X (displacement from position X to position ¥).

Notice that if a particle starts at the position X and moves through the displacement
Y - X, its new position is ¥. This can be obtained by the following vector sum:

04) Y= X+ (Y-X).

Using equations (10) and (13), we can write down the formula for the distance
between two points in /V-space.
(15) [1Y -~|| = (Cyi - xi)2+ (y2- x2)2+ -—- MY *-**)2) 1m

When the distance between points is computed using formula (15), we say that the
pointy lie in N-dimensional Euclidean space.
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Example 3.1. LetX = (2, —3,5,—)and Y = (6,1, 2, —4). The concepts mentioned
above are now illustrated for vectors in 4-space.

Sum X+Y=(8-2,7-5)

Difference X-Y=(4,-4,3,3

Scalar multiple BbX = (6,-9, 15, -3)

Length IAN = (4+ 9+ 25+ 1)12= 39172

Dot product n-y —12—-3+10 + 4= 23
Displacement from X to Y Y- A=(4,4,-3,-3)

Distance from X to Y [[Y-Nr|| = (16+ 16+ 9+ 9)|/r = 5012

It is sometimes useful to write vectors as columns instead of rows. For example,

Xi Y1l

X2 Y2
(16) X = and Y --

XN yN

Then the linear combination ¢X + dY is

cxi+ dyi

cx2 + dyi
17) cX +dY =

cxN + dyN

By choosing ¢ and d appropriately in equation (17), we have the sum XX + 1F,
the difference 1X — 1Y, and the scalar multiple cX + 0Y. We use the superscript “'",
for transpose to indicate that arow vector should be converted to a column vector, and
vice versa.

X1 Xi
X2 X2

(18) (jri, &2, . XN)' = and = C*b X2 XN).
J n _XN_

The set of vectors has a zero element 0, which is defined by
(19) 0= (0,0..... 0).

Theorem 3.1 (Vector Algebra). Suppose that X, Y, and Z are /V-dimensional vec-
tors and a and b are scalars (real numbers). The following properties of vector addition
and scalar multiplication hold:

20) Y+ X —X +Y commutative property
21) 0+ ¥= ¥+ 0 additive identity



Sec.3.1 Introduction to Vectors and Matrices 1(»5

22) X - X =X+ (-X) =0 additive inverse

23) (X+Y)+Z=X+(Y+ 2 associative property

(24) (a+b)X =aX+bX distributive property for scalars
(25) a(X+Y)=aXx+ay distributive property for vectors
(26) a(bX) = (ab)X associative property for scalars

Matrices and Two-dimensional Arrays

A matrix is a rectangular array of numbers that is arranged systematically in rows and
columns. A matrix having M rows and N columns is called an M x N (read “M by N")
matrix. The capital letter A denotes a matrix, and the lowercase subscripted letter «rj
denotes one of the numbers forming the matrix. We write

27) A = [a,j]MxN for 1<i<M,1<j <N,

where a,j is the number in location (i, j) (i.e., stored in the /'th row and Yth column
of the matrix). We refer to a,j as the element in location O, j). In expanded form we
write

« si «l2 . aij ee a\N
«@ «22 aij w @V
an an u aij EE «;n
agn  «W = <AV
T
column j

The rows of the M x N matrix A are TV-dimensional vectors:
(29) V- = (an,ai2......... aiN) for /=12, ..., M.

The row vectors in (29) can also be viewed as 1x N matrices. Here we have sliced
the M x N matrix A into M pieces (submatrices) thatare 1 x N matrices.

In this case we could express A asan M x 1 matrix consisting of the 1 x N row
matrices V ,; that is,

v
V2
(30) A =[V|] v2 Vi "

Y™
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Similarly, the columns ofthe M x N matrix A are M X 1matrices:

an ~au~ a\N
a2] 02} aN

31 Ci = Ci = =
(31) ai ' ! al e QIN
omn

In this case we could express A as a 1 x N matrix consisting ofthe M x 1column
matrices Cj :

(32) A=[C, C2 mm Cj carl.
Example 3.2. Identify the row and column matrices associated with the 4 x 3 matrix

-2 r

The four row matricesare Vj = [2 4 9],v2=[5 — 1I],v3=[0 —3 §],
and V4 = [4 6 —5]. The three column matrices are

ll_2 4 g

o 5 .7 _ 1
Ci= 0 Ci-= .3 and C3= 8
-4 6 -5

Notice how A can be represented with these matrices:

Vi
A= f =[C, C2 cC3]-
v4
Let A = x/1.and B = be two matrices of the same dimension.

The two matrices A and B are said to be equal if and only if each corresponding
element is the same; that is,

(33) A=B if and only if au = bjj for 1<i<M, 1<j <N.

The sum of the two M x N matrices A and B is computed element by element,
using the definition

(34) A+ B = [ay + for 1<i <M, I <j <N
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The negative of the matrix A is obtained by replacing each element with its nega-
tive:
(35) -A —1 aij*MxN for 1<i<Af, 1<j <N.

The difference A —B is formed by taking the difference of corresponding coordi-
nates:

(36) A-B=[an- bplpyy for 1<i<M, 1<j <N
If c is a real number (scalar), we define scalar multiplication cA as follows:
37) cA = [catj]JMxN for 1</ <M, 1<j <N.

If p and q are scalars, the weighted sum pA + gB is called a linear combination
of the matrices A and B, and we write

(38) pA + gB = Ipaij + gqbjjJMxN for 1< (<M, 1<j <N
The zero matrix of order M x N consists of all zeros:
(39) 0 = [0]Mx*.

Example 3.3. Find the scalar multiples 2A and 3B and the linear combination 2A —3B
for the matrices

-1 2 -2 3

A= 7 5 and 8 = 1 -4

3 -4 -9 7

Using formula (37), we obtain
-2 4' ' -6 9'
2A = 14 10 and 30 = 3 -12
6 —8 -27 21
The linear combination 2A — 3B is now found:

—2 H'6 4-9" ‘4 -5
2A-3B 14-3 10+12 = 11 22
_6+27 -8-21 33 -29

Theorem 3.2 (Matrix Addition). Suppose that A, B, and C are M x N matrices
and p and q are scalars. The following properties of matrix addition and scalar multi-
plication hold:

(400 B+A~ A+ B commutative property

(41) 0+ A=A+0 additive identity

42) A-A =A+(-A)=0 additive inverse

(43) (A+B)+C=A+ (B+ C) associative property

(44) (p +q)A=pA+gA distributive property for scalars
(45) p(A + B) = pA + pB distributive property for matrices

(46) p{qA) = (pq)A associative property for scalars
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Exercises for Introduction to Vectors and Matrices

The reader is encouraged to carry out ihe following exercises by hand and with MATLAB.

1. Giventhevectors X and Y, find (all T ¥, (b) X - ¥, (c) 3X. (d) WX\\, (e) 7Y - 4X,
if) Nlmy, and (@>]|7Y - 4* 1
() A'= (3,-4)andyY = (-2,8)
(O /1= (-6.32)andyY = (-8,5. 1)
(iii) X = (4, -8, L)anny = (1,-12, - 11)
(iv) X=(1,-2,4,2)andyY = (3 -5, -4,0)

2. Using the law of cosines, it can be shown that the angle B between two vectors X and
Y is given by the relation

Find the angle, in radians, between the following vectors:
(@ X=¢C-632)andyY = (2,-2,)
(b> X = (4,-8, Hand ¥ =(3,4,12)
3. Two vectors .land ¥ are said to be orthogonal (perpendicuiar) if the angle between
them is n /2.
(@) Prove that X and ¥ are orthogonal if and only if X mY = 0.

Use part (a) to determine if the following vectors are orthogonal.

(bj J=(-6,4.2andyY = (6.5,8)

(c) X =(-4,8,3andy = (2,5, 16)

d) X=(5,7,2andyY = (4, 1,6)

(e) Find two different vectors that are orthogonal to X —(1, 2, —5).
4. Find (a) A + B, (b) A —B. and (c) 3A —28 for the matrices

r-1 9 4 r—4 9 21
A= 2-3 -6 , B=1]233-5 I».
0 5 7

5. The transpose of an M x JT matrix [, denoted A\ is the N x M matrix obt.nm.-J
from A by converting the rows of A to columns of A'. That is, if A — e LK
A' —I1AyJ/vx«' thicn the elements satisfy the relation

bji = aj for l+i<M,1<j <N.

Find (he transpose of the following matrices,
-2 5 124

4 9
. 14 -1
(a) 7 0 6 (b):f

o NN
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6. The square matrix A of dimension N x N is said to be symmetric if A = A" (see
Exercise 5 for the definition of A"). Determine whether the following square matrices

are symmetric.

1 -7 4 a7
® -7 20 O o 2-7
4 03 3 0 4
(© A = [aijlNxy, whereay = =3
i~U+j ioj
(d) A —{aij]kkiv, whereo;,- = cosOV) =]
ij-) «@j

7. Prove statements (20), (24), and (25) in Theorem 3.1.

Properties of Vectors and Matrices

A linear combination of the variables xi, xj ........ *n isasum
(1) a\x\+arxr/l -—--=----- aNXN

where at is the coefficient of jet fork = 1T2........ N.
A linear equation in *1,x2, . mm is obtained by requiring the linear combination
in (1) to take on a prescribed value b; that is,

(2) alxl  a2x2 H------ haNxN =
Systems of linear equations arise frequently, and it' M equations in N unknowns
are given, we write
ny*l i-a\2Xi +--- + a\,\\xi = h]
a2\x\  + a2x2 + ---- \-a2NXfj = b2

3 : : :
@ an*) +O0OkiX2 m+-—--%atNxs =bk

awiJfi -\-iM2x 2 H--—-- r = by.
To keep track of the different coefficients in each equation, it is necessary to use the
two Mscripts (k, j). The first subscript locates equation k and the second subscripi

locates the variable jrA.
A solution to (3) is a set of numerical values jri, x2. .. m xy that satisfies all the
equations in (3) simultaneously. Hence a solution can be viewed as an /V-dimensional

vector:

(4) A = (x\.X2... xN).
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Example 3.4. Concrete (used for sidewalks, etc.) is a mixture of portland cement, sand,
and gravel. A distributor has three batches available for contractors. Batch 1 contains ce-
ment, sand, and gravel mixed in the proportions 1/8, 3/8,4/8; batch 2 has the proportions
2/10, 5/10,3/10; and batch 3 has the proportions 2/5, 3/5, 0/5.

Let x i, X2l and *3 denote the amount (in cubic yards) to be used from each batch to
form a mixture of 10 cubic yards. Also, suppose that the mixture is to contain bj —2.3,
£2 = 4.8, and bj = 2.9 cubic yards of portland cement, sand, and gravel, respectively.
Then the system of linear equations of the ingredients is

0.125x 1+ 0.200%2 + 0.400*3 = 2.3  (cement)
() 0.375%1 + 0.500*2 + 0.600*3 *=4.8  (sand)
0.500*] + 0.300%2 + 0.000*3 = 2.9 (gravel)

The solution to the linear system (5) is " = 4, xj = 3, and *3 = 3, which can be verified
by direct substitution into the equations'.

(0.125)(4) + (0.200X3) + (0.400)(3) = 2.3
(0.375) (4) + (0.500) (3) + (0.600)(3) = 4.8
(0.500)(4) + (0.300)(3) + (0.000X3) = 2.9 .

Matrix Multiplication

Definition 3.1. If A = 1<3g]l.m*n' and B = 0*/]jvx/> are two matrices with the
property that A has as many columns as B has rows, then the matrix product AB is
defined to be the matrix C of dimension M x P:

(6) AB —C —[ciyIMxP,

where the element c,y of C is given by the dot product of the (th row of A and the yth
column of B:

©) Cjj - Y'awbk] = ayb\j + ai2f2j H—-—-+atNbvj

fori= 1,2, Mandj = 1,2,..., P.

Example 3.5. Find the product C = AB for the following matrices, and tell why BA is

not defined.
_ 23 201
A= 1 4 _é 8 -6

The matrix A has two columns and B has two rows, so the matrix product AB is
defined. The productofa2 x 2and a2 x 3 matrix is a 2 x 3 matrix. Computation reveals
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that
AB 2 3][5 -2 "
-1 4.3 8 -6j
10+9 -4+ 24 2-18 20 -16

-5+ 12 2+ 32 -1-24|/| 34 25 - ©

When an attempt is made to form the product BA, we discover that the dimensions are
not compatible in this order because the rows of B ate three-dimensional vectors and the
columns of A are two-dimensional vectors. Hence the dot product of the jth row of B and
the fcth column of A is not defined. [

If it happens that AB = BA, we say that A and B commute. Most often, even
when AB and B A are both defined, the products are not necessarily the same.

We now discuss how to use matrices to represent a linear system of equations.
The linear equations in (3) can be written as a matrix product. The coefficients akj
are stored in a matrix A (called the coefficient matrix) of dimension M x N, and the
unknowns xj are stored in a matrix X of dimension N xi. The constants bk are stored
in a matrix B of dimension M x 1. It is conventional to use column matrices for both
X and B and write

«11 au | «l; " auw Xi ry
021 022 wmw @a2j - m 02N *2 b2
AX = : . - B
® ok Ok - * OkN Xj bJ

Lami  Q-m2 .« aMj = m

The matrix multiplication AX = B in (8) is reminiscent of the dot product for
ordinary vectors, because each element bk in B is the result obtained by taking the dot
product of row K in matrix A with the column matrix X.

Example 3.6. Express the system of linear equations (5) in Example 3.4 as a matrix
product. Use matrix multiplication to verify that [4 3 3]* is the solution of (5):

“0.125 0.200 0.400* "2.3"
0375 0500 0600 -, ® 4.8
0500 0.300 0.000 .5 2.9

To verify that [4 3 3] is the solution of (5), we must show that A[4 3 3] =
[23 48 2.9]:

'0.125 0.200 0.400" '4° "05+0.6+ 1.2" 2.3
0.375 0.500 0600 3 = 15+ 1.5+ 18 4.8
0.500 0.300 0.000 3 20+ 0.9+ 0.0 2.9
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Some Special Matrices

The M x N matrix whose elements arc all zero is called the zero matrix ofdimen-
sion M x N and is denoted bv

(10 0= fOlmy«k-

When the dimension is clear, we use 0 lo denote the zero matrix.
The identity matrix oforder N is the square matrix given by

1 whenj —j,

(11) fv = where U o hen i/ .

I is the multiplicative identity, as illustrated in the next example.

Example 3.7. Let A be a2 x 3 matrix. Then 1rA = J1/4 —A. Multiplication of A on
the left by 12 results in

fl. 0 an i n13 _ auy+O \Bi24+0 an+0 _4p
[0 1 971 aj2 «23 021 + 0 022+0 «23+0

Multiplication of A on the right by /3 results in

_[an +070 0+ai2+0 O+ O—i
|2t+0 —0 0+ (120 0+40+1 -

Tail *12 a13

0 o
10
021 a2 e 0 1

co*r

Some properties of matrix muliiplication are given in the following theorem.

Theorem 3.3 (Matrix Multiplication). Suppose that c is a scalar and that A. B.
and C are matrices such thar the indicated sums and products are defined: then

(12) (AB)C = A(BC) associativity of matrix multiplication
(13) 1A = Al —A identity matrix

(14) A(B + C) = AB + AC left distributive property

(15) (A +B)C-AC +BC right distributive property

(16) ,-(AB) - (cA)B = A(cB) scalar associative property

The Inverse of a Nonsingular Matrix

The concept of an inverse applies to matrices, but special atiention must be given. Ai.
N x N matrix A is called nonsingular or invertible if there exists an iV x N matrix R

such that

17) AB —BA —/.
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If no such matrix B can be found, A is said to be singular. When B can be found
and (17) holds, wc usually write B = A -1 and use the familiar relation

(18) AA'1—A A if A is nonsingular.

It is easy to show that at most one matrix B can he found that satisfies relation (17).
Suppose that C is also an inverse of A (i.e., AC — CA = 1). Then properties (12)
and (13) can be used to obtain

C —1C —(BA)C = B(AC) = Bl = B.

Determinants

The determinant of a square matrix A is a scalar quantity (real number) and is denoted
by det(A) or |[A\. If A isa N x N matrix

on «12 -'m
ar\ a2 = 02N
A =
_ajvi afif2 -
then it is customary to write
«1 an A14
21 022 a2N
det(A) =
an2 L]

Although the notation for a determinant may look like a matrix, its properties are com-
pletely different. For one, the determinant is a scalar quantity (real number). The
definition of det(A) found in most linear algebra textbooks is not tractable for compu-
tation when N > 3. We will review how to compute determinants using the cofactor
expansion method. Evaluation of higher-order determinants is done using Gaussian
elimination and is mentioned in the body of Program 3.3.

If A —[a,j] isa 1 k 1matrix, we define dct(A) =—au. If A = [a,;J* *.v, where
bl >2 then let M,j be the determinant ofthe N 1x N —1submatrix of A obtained
bydeleting the /th row and /th column of A. The determinant M t) is said to be liic
minor of aij. The cofactor A4 of a4 is defined as A* = {—I)'~->M,j. Then the
determinant of an TV x N matrix A is given by

v
09) det(A) = (fth row expansion)
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or

(20) det(A) = 'Y'jajjAij O'th column expansion).
i=i

Applying forravsla (19), with i = 1, to the 2 x 2 matrix

A = all  «52
A2l an

we see that detA — ayay —in12#2b The following example illustrates how to use
formulas (19) and (20) to recursively reduce the calculation of the determinant of an
N x N matrix to the calculation of a numberof2 x 2 determinants.

Example 3.8. Use formula (19) with i = land formula (20) with j = 2 to calculate the
determinant of the matrix
'2 3 8
A= -4 5 -1
7-6 9

Using formula (19) with i = 1, we obtain

B 5 -1 - —4

eth=@) 6 9-@ 7 o+@®B\ 7
= (2)(45- 6) - (3)(-36 + 7)+ (8)(24 - 35)
= 77.

Using formula (20) with j = 2, we obtain

det(A) = -(3) j- ~ + 9(~<-6>_4 _i
= 77.

The following theorem gives sufficient conditions for the existence and uniqueness
of solutions of the linear system AX = B for square coefficient matrices.

Theorem 3.4.

Assume that A is an JV x. N matrix. The following statements are
squivalent.

(21) Given any N x 1 matrix B, the linear system AX — B has a unique solution.
(22) The matrix A is nonsingular (i.e., A-1 exists).

(23) The system of equations AX = 0 has the unique solution A' = 0.

(24) det(A) & 0.
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Theorems 3.3 and 3.4 help relate matrix algebra to ordinary algebra. If state-
ment (21) is true, then statement (22) together with properties (12) and (13) give the
following line of reasoning:

(25) AX =B implies A_IAX = which implies X=A~"B-
Example 3.9. Use the inverse matrix
A-i-U 4 "4
" 5L-7 3.

and the reasoning in (25) to solve (he linear system AX = B:

Using (25), we get

4 12 1
X = A~IB = 7
oas-s K

Remark. In practice we never numerically calculate the inverse of a nonsingular
matrix or the determinant of a square matrix. These concepts are used as theoretical
“tools” to establish the existence and uniqueness of solutions or as a means to alge-
braically express the solution of a linear system (as in Example 3.9).

Plane Rotations

Supposethat Aisa3x 3matrixand U = [or y z\ isa 3x 1matrix; then the product
V = AV is another 3 x 1 matrix. This is an example of a linear transformation, and
applications are found in the area of computer graphics. The matrix U is equivalent
to the positional vector U = (X, vy, z), which represents the coordinates of a point in
three-dimensional space. Consider three special matrices:

‘10 0
(26) * («) = 0 cos(a) —sin(a)
0 sin(a) cos(a)

cos(®) 0 sin(/3)

(27) Rytfi) = 0 10
- sin(/5) 0 cos(jS)
cos(k) —sin(y) O
(28) Rz(v) = SuUIn) Cco8(y) O
0 0 I



116 Chap, 3 The Solution of Linear Systems AX = B

Table 3.1 Coordinates of the Vertices of a Cube under Successive Rotations

" V = RZ(")U
(0,0,0)' (0.000000,0.000000,0)’ (0.000000,0.000000, 0.000000)
(1,0, 0/ (0.707107, 0.707107,0)’ (0.612372,0.707107, -0.353553)'
to, 1,0)’ (—0.707107,0.707107,0)’ (—0.612372, 0.707107, 0.353553)’
(0,0, 1y (0.000000, 0.000000, 1) (0.500000, 0.000000, 0.866025)'
@, 1,0)" (0.000000, 1.414214,0)' (0.000000, 1.414214, 0.000000)'
(1,0,1) (0.707107, 0.707107, 1y (1.112372,0.707107,0.512472)'
©, 1, 1¥ (-0.707107,0.707107, 1y (-0.112372,0.707107, 1.219579)
(1,11 (0.000000, 1.414214,1)' (0.500000, 1.414214, 0.866025)'

These matrices Rx(a), Ry(fi), and Rz(y) 316 used to rotate points about the x~, y-,
and r-axes through the angles a, /?, and y, respectively. The inverses arc Rx(—a),
Ry(-fi), and Rz(—y) and they rotate space about the x-, y-, and r-axes through the
angles —a, —fi, and —y, respectively. The next example illustrates the situation, and
further investigations are left for the reader.

Example 3.10. A unit cube is situated in the first octant with one vertex at the origin.
First, rotate the cube through an angle jt/4 about the z-axis; then rotate this image through
an angle 4 /6 about the y-axis. Find the images of all eight vertices of the cube.

The first rotation is given by the transformation

/T cos(f) -sin(f) o°
41 sin(f) cos(f) o
0 0 1

'0.707107 --0.707107 0.000000" x
= 0.707107 0.707107 0.000000 Yy
0.000000  0.000000 1.000000 z

Then the second rotation is given by

costf ) 0 sin(f)
W 0 1 0
_-sin(]) 0 cos(®)_

0.866025 0.000000 0.500000
0.000000 1.000000 0.000000
-0.500000 0.000000 0.866025

The composition of the two rotations is

0.612372 -0.612372 0.500000'
w 0.707107 0.707107 0.000000 \y
-0.353553 0.353553 0.866025
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@ ®) ic)

Figure 3/1 (a) The original starting cube, (b) V = Jr(s/4){/. Rotation about
the r-axis. (¢) W = Ry(x/6)V. Rotation about the y-axis.

Numerical computations for the coordinates of the vertices of the starting cube are given in
Table 3.1 (as positional vectors), and the images of these cubes are shown in Figure 3.2(a)
through (c). ]

MATLAB

The MATLAB functions det(A) and iav(A) calculate the determinant and inverse
(if A is invertible), respectively, of a square matrix A.

Example3.11. Use MATLAB to solve the linear system in Example 3.6. Use the inverse
matrix method described in (25).
First we verify that A is nonsingular by showing that det(A) ¢ 0 (Theorem 3.4).

»A=[0.125 0.200 0,400;0.376 0.500 0.600;0.500 0.300 0.000];
»det (A)
ans=

-0.0175

Following the reasoning in (25), the solution of AX = B is X = A~IB.
»X=inv(A)*[2.3 4.8 2.9]’
X=

4.0000

3.0000

3.0000

We can check our solution by verifying that AX = B.
»B=A*X
B=
2.3000
4.8000
2.9000 L]
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Exercises for Properties of Vectors and Matrices
The reader is encouraged to carry out the following exercises by hand and with MATLAB.

1. Find AB and BA for the following matrices:

32
A= T4 B

2. Find AB and BA for the following matrices

. 3 o]
-g g, B= - 5
'C 3 .2
3. Let A, B,and C be given by
_ 31 _ v 1 =
AZo04 BT x4 C=5

(@ Find (AB)C and A(BC).

(O Find A(B + C) and AB + AC. .

(c) Find (A + B)C and AC + BC.

(d) Find (AB)" and BA".

We use the notation A2 = AA. Find A2 and B2 for the following matrices:

" i 2 0 6
A= : 1 , B= -1 5 -4
5 2 3 -5 2
S. Find the determinant of the following matrices, if it exists.
2 0 =6
@ ® 1 5 —4
3-5 2
1 2 .
© 3 4 ()] 0
00 0

6. Show that Rx(a)Rx(—a) — 1 by direct multiplication of the matrices Rx(a) and
Rx(—a); (see formula (26)).

7. (a) Show that Rx(ct)Ry(0) =

cos(/?) 0 sin(™)
sin(j6) sin(a)  cos(af) —coa(A) sin(a)
—cos(a) sin(®)  sinCof)  cosOS) cos(a)

(see formulas (26) and (27)).
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12.

13.

14.

15.
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(b) Show that Ry (fi)Rx (a) =

cos(/?)  sin(/?)sin(a) cos(a) sin(*3)
0 cos(or) - sin(a)
—sin(a) cos(”) sin(a) cos(£)cos(a)

. If Aand B are nonsingular N x N matricesand C = AB, showthatC-1 = B~]A'

Hint. Use the associative property of matrix multiplication.

. Prove statements (13) and (16) of Theorem 3,3.
10.

Let Abean M x N matrix and X an N x 1matrix.

(@ How many multiplications are needed to calculate A X ?

(b) How many additions are needed to calculate AX"?

Let A be an M x N matrix, and let B and C be N x P matrices. Prove the left
distributive law for matrix multiplication: A(B + C) = AB 4- AC.

Let A and B be M x N matrices, and let C be a N x P matrix. Prove the right
distributive law for matrix multiplication: (A + B)C = AC + BC.
Find XX" and X'X, where X = [I  —1 2]. Note. X is the transpose of X.

Let AbeaM xJ1 1matrix and B a N x P matrix. Prove that (AB)’= B'A’. Hint. Let
C = AB and show, using the definition of matrix multiplication, thatthe (i, 7)th entry
of C' equals the (1, j)th entry of B'A".

Use the result of Exercise 14 and the associative property of matrix multiplication to
show that (ABC)’ = C'B'A".

Algorithms and Programs

The first column of Table 3.1 contains the coordinates of the vertices of a unit cube situated
in the first octant with one vertex at the origin. Note that all eight vertices can be stored in
a matrix V of dimension 8 x 3, where each row represents the coordinates of one of the
vertices. It follows from Exercise 14 that the product of U and the transpose of Rz(jt/4)
will produce a matrix of dimension 8 x 3 (representing the second column of Table 3.1,
where eech row represents the transformation of the corresponding row in V). Combining
this idea with Exercise 15, it follows that the coordinates of the vertices of a cube under
any number of successive rotations can be represented by a matrix product.

1

A unit cube is situated in the first octant with one vertex at the origin. First, rotate
the cube through an angle of it/ 6 about the y-axis; then rotate this image through an
angle of Tr/4 about the r-axis. Find the images of all eight vertices of the starting
cube. Compare this result with the result in Example 3.10
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Figure 3.3 (a) The original starting cube, (b) V = Ry(]Jr/6)U. Rotation about
the y-axis. (c) W = R,(njA)V. Rotation about the r-axis.

What is different? Explain your answer using the fact that, in general, matrix mul-
tiplication is not commutative. (See Figure 3.3(a) to (c)). Use the plot3 command to
plot each of the three cubes.

2. A unit cube is situated in the first octant with one vertex at the origin. First, rotate
the cube through an angle of jt/12 about the ;e-axis; then rotate this image through
an angle of jt/6 about the r-axis. Find the images of all eight vertices of the starting
cube. Use the plot3 command to plot each of the three cubes.

3. The tetrahedron with vertices at (0,0, 0), (1,0, 0), (0, 1,0), and (0, O, 1) is first ro-
tated through an angle of 0.15 radian about the y-axis, then through an angle of
—1.5 radians about the r-axis, and finally through an angle of 2.7 radians about the
jr-axis. Find the images of all four vertices. Use the plot3 command to plot each of
the four images.

Upper-triangular Linear Systems

We will now develop the back-substitution algorithm, which is useful for solving a lin-
ear system of equations that has an upper-triangular coefficient matrix. This algorithm
will be incorporated in the algorithm for solving a general linear system in Section 3 4

Definition 3.2. An N k N matrix A —[a,jj is called upper triangular provided thai
the elements satisfy aij = 0 whenever/ > j. The N x N matrix A = [ajj] is called
lower triangular provided that aj- = 0 wheneverr < j.

We will develop a method for constructing the solution to upper-triangular linear
systems of equations and leave the investigation of lower-triangular systems to the
reader. If A is an upper-triangular matrix, then AX — B is said to be an upper-
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triangular system of linear equations and has the form
auXi+ai2X2+ai3X-i N------- b + a\sXN—bi
C22X2+a23)C) H------ t  a2S-\XN~I + a2SXN=b2
Nmomeen m AIY--KNV-L+ ailvxN = bAi
tD
ENHN—ixn— + aw-inXn = Ajv-i
ONNXN — btf.

Theorem 3.5 (Back Substitution). Suppose that AX = B is an upper-triangular
system with the form given in (1). If

) akkp o for k=1, 2, ..., N,
then there exists a unique solution to (1).
Constructive Proof.  The solution is easy to find. The last equation involves only xn,

so we solve it first:

3) XN - — =m
MV
Now xn is known and it can be used in the next-to-last equation:

4 N . A
@ -t am-1L1~\

Now xn and xn~i are used to find x s - 2-

12 ) bu~7 —0-N~2N~IXN-1 ~ ON-2NXN

®) et aN-ZN-2

Once the values xn, = *i+i are known, the general step is

(6) xk = akjXj fork=N- 1, N-2, ..., L
&Kk

The uniqueness of the solution is easy to see. The jVth equation implies that
bbl/aNN is the only possible value of XN. Then finite induction is used to establish
thatxn-i, Xn-2> are unique. .

Example 3.12. Use back substitution to solve the linear system
4% —X2 + 2*3 + 3x4 = 20
—2X2 + X3 —4x4 = —1

&G+ 5x4= 4
¥ — .
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Solving for X4 in the last equation yields
*4=N=2.

Using X4 —2 in the third equation, we obtain

4-5Q2)
— --1

Now x3 = —land *4 = 2 are used to find Xj in the second equation;

e DI AD)

Finally, xi is obtained using the first equation:

=120+ H4) —2(=D) - 32)_,

The condition that akk ¢ 0 is essential because equation (6) involves division
by ay. Ifthis requirement is not fulfilled, either no solution exists or infinitely many
solutions exist.

Example 3.13. Show that there is no solution to the linear system

4ic] —xj +2x3+ 3*4 = 20
O12+ 7X3~ 4x4 = -7
L 6*3 + 5(4= 4
3= 6.
Using the last equation in (7), we must have *4 = 2, which is substituted into the second
and third equations to obtain

7x3- 8= —
AN 6x3+ 10= 4.
The first equation in (8) implies that *3 = 1/7, and the second equation imp: : ihat

*3 = —1 This contradiction leads to the conclusion that there is no solution to n.- lin-
ear system (7). *

Example 3.14. Show that there are infinitely many solutions to

Ixi —X2+ 203+ 3X4 = 20

0X2+ 7x2 + 0*4 = 4

n 6x3+ 5*4 = 4
3xX4= 6.
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Using the last equation in (9), we must have X4 = 2, which is substituted into the second
and third equations to get *3 = —I, which checks out in both equations. But only two
values *3 and *4 have been obtained from the second Through fourth equations, and when
they are substituted into the first equation of (9), the result is

(10) X2 = 4jcj —16,

which has infinitely many solutions; hence (9) has infinitely many solutions. Ifwe choose a
value of x{ in (10), then the value of x 2 is uniquely determined. For example, if we include
the equation *1 = 2 in the system (9), then from (10) we compute x2 = —8. a

Theorem 3.4 states that the linear system AX = B, where A isan N x N matrix,
has a unique solution if and only if det(A) @ 0. The following theorem states that
if any entry on the main diagonal of an upper- or lower-triangular matrix is zero then
det(A) = 0. Thus, by inspecting the coefficient matrices in the previous three exam-
ples, it is clear that the system in Example 3,12 has a unique solution, and the systems
in Examples 3.13 and 3.14 do not have unique solutions. The proof of Theorem 3.6
can be found in most introductory linear algebra textbooks.

Theorem 3.6. Ifthe N x N matrix A = [a,/J is either upper or lower triangular, then

N
11) det(A) = VINO2 +m<thn = f~[aii-
[F1
The value of the determinant for the coefficient matrix in Example 3.12 is detA =
4(—2)(6)(3) — —144. The values of the determinants of the coefficient matrices in
Example 3.13 and 3.14 are both 4(0)(6)(3) = 0.
The following program will solve the upper-triangular system (1) by the method
of back substitution, provided a** ¢ 0 fork = 1,2,..., N.

Program 3.1 (Back Substitution). To solve the upper-triangular system AX = B
by the method of back substitution. Proceed with the method only if all the diagonal
elements are nonzero. First compute XM = &n/«n,\' and then use the rule

Xk = bk~ ~ id~ }ad XL for K=N - UN—2, ..., 1
BKK
function X=backsub(A,B)
Input - Ais an n x n upper-triangular nonsingular matrix
X - Bis an n x 1 matrix
V,Output - X is the solution to the linear system AX=B
XFind the dimension of B and initialize X
n=length(B);
X»zeros(n,l);
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X(n)=B(n)/A(n,c.) ;
for x=n-1:-1:1

X(k)“(B(k)-A(k,k+1:n)*X (k+I:n))/A(k,HO;
end

Exercises for Upper-triangular Linear Systems

In Exercises 1through 3, solve the upper-triangular system and find the value of the dete:
minant of the coefficient matrix.

1 3% —Ix2+ *3— *«= 8 2. - 32- 73+ Xi—-14
4X2 — *3 + 2X4 — —3 11x2 + 9x3 + 5x* = 22
2*3+ 3* = 1 3*3- 13*4= -11
5*4= 15 7*4= 14
3. 4%}- *2+ 2%3+ 2%4 - * j= 4
—2*2 + 6*3+ 2*4 + 7*5 = 0
*3 - *4- 2*5= 3
. 2%4- +5=10
3*5= 6
4. (a) Consider the two upper-triangular matrices
All an  «13 ‘b bn b\i
A= 0 ar <= and B= o b2 sz
0 0 33 0 0 b
Show that their product C = AB is also upper triangular.
(b) Let A and B betwo N x N upper-triangular matrices. Show that their produ.:

is also upper triangular.
5. Solve the lower-triangular system AX = B and find del{A).

2Xj =6
—*i + 4%2 =5
3*; - 2x2 —*3 =4

Xi —2Xi + 6*3+ 3*4 = 2

6. Solve the lower-triangular system AX = B and find det(.4).

5%i =-10

*i + 3x2 = 4
3% + 4%2 + 2*3 = 2
—*i + 3x2 — 6*3 - *4 = 5
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7. Show that back substitution requires N divisions, (J12 —;V)/2 multiplications, and
(N2 —N)/2 additions or subtractions. Hint. You can use the formula

A

bI\

Algorithms and Programs

1. Use Program 3.1 to solve the system UX = B where,
= and ny = [N>

and B = (Ai.liOxi and by, =s ran(;J.

2. Forward-subsfi‘tution algorithm. A linear system AX = B is called lower triangular
provided that at] = 0 when i < j. Construct a program forsub, analogous to
Program 3.1, to solve the following lower-triangular system. Remark. This program
will be used in Section 3.5.

a)Xi =p\
<21 + Sy 247 = br
ajiri + a2+  <3%3 = b$
ar-ux] + aN-\2*2 +apr_13n3 4----- \-au-1n-\xn-i = bubi- i
awxj+ ay2xr+ a”3n3H -—-—-—- I ayy-\xy-\ 4-onnxn = by

3. Use f orsub to solve the system LX = B, where

L = [/yOroxto and \ ~ ;( and B = [fcjibQx! andft,i=i.
' <

Gaussian Elimination and Pivoting

In this section we develop a scheme for solving a general system AX = B of N
equations and N unknowns. The goal is to construct an equivalent upper-triangular
system UX = Y that can be solved by ihe method of Section 3.3.

Two linear systems of dimension N x N are said to be equivalent provided that
tlieir solution sets are the same. Theorems from linear algebra show that when certain
transformations are applied to a given system the solution sets dD not change.
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Theorem 3.7 (Elementary Transformations). The following operations applied to
a linear system yield an equivalent system:

(1) Interchanges: The order of two equations can be changed.

(2) Scaling: Multiplying an equation by a nonzero constant.

(3) Replacement: An equation can be replaced by the sum of itself and
a nonzero multiple of any other equation.

It is common to use (3) by replacing an equation with the difference of that equa-
tion and a multiple of another equation. These concepts are illustrated in the next
example.

Example 3.15. Find the parabolay = A + Bx + Cx2that passes through the three points
1, 1), (2,-1), and (3, 1).

For each point we obtain an equation relating the value of X to the value of y. The
result is the linear system

A+ B+ C= 1 at(1,1)
() A+2B+4C =-\  at(2,-1)
A+3B+9C= 1 at(3,1).

The variable A is eliminated from the second and third equations by subtracting the
first equation from them. This is an application of the replacement transformation (3), and
the resulting equivalent linear system is

AHB+F C~ 1
) fi + 3C ——2
IB 4-8C= O

The variable B is eliminated from the third equation in (5) by subtracting from it tv, o times
the second equation. We arrive at the equivalent upper-triangular system:

A+B+ C= 1
(6) B+3C =2
2C= 4

The back-substitution algorithm is now used to find the coefficients C = 4/2 = 2, B =
—2 —3(2) = -8, and A = 1—(—8) —2 = 7, and the equation of the parabola
y=7- 8x+ 2x7. 1

It is efficient to store all the coefficients of the linear system AX = B in an arnn
of dimension N x (N + 1). The coefficients of B are stored in column /V+ 1 of tlu
array (i.e., a*w+i = &9 Each row contains all the coefficients necessary to represens
an equation in the linear system. The augmented matrix is denoted \A\B] and tlv
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linear system is represented as follows:

ait  «12 e aA> b\ !

«@l 92 "' «N  br
0) [A\B] ;

<Nl sg2 ' ANN by

The system AX = B, with augmented matrix given in (7), can be solved by per-
forming row operations on the augmented matrix [A\B], The variables xt are place-
holders for the coefficients and can be omitted until the end of the calculation.

Theorem 3.8 (Elementary Row Operations). The following operations applied to
the augmented matrix (7) yield an equivalent linear system.

(S) Interchanges: The order of two rows can be changed.
(9) Scaling: Multiplying a row by a nonzero constant.

(10) Replacement; The row can be replaced by the sum of that row and
a nonzero multiple of any other row; that is:
rowr = row, —mrp X rowp.

It is common to use (10) by replacing a row with the difference of that row and a
multiple of another row.

Definition 3.3 (Pivot). The number arr in the coefficient matrix A that is used to
eliminate a*r, where Kk —r + 1, f + 2, ..., N, is called the rthpivotal element, and
the rth row is called the pivot row. a

The following example illustrates how to use the operations in Theorem 3.8 to
obtain an equivalent upper-triangular system VX = ¥ from a linear system AX —B
where A'isan N x N matrix.

Example 3.16. Express the following system in augmented matrix form and find an
equivalent upper-triangular system and the solution.
Xi + 2x2+ *3+4%4 = 13
2Xi + OX2 + 4*3 + 3*4 = 28
A% + 272+ 2%3+ *4 =20
-3*1 + *2 4+ 3*3+ 2*4= 6.

Ihe augmented matrix is

pivot -* 12 14 13"
ma=2 2 0 4 3 28
m3l = 4 4 2 2 1 2
m4] =-3 -3 1.3 2 6
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The first row is used to eliminate elements in the first column below the diagonal.
We refer to the first row as the pivotal row and the elementan = 1is called the pivotal
element. The values Tl are the multiples of row 1 that are to be subtracted from row K for
k = 2,3,4. The result after elimination is

ml 2 1 4 13"
pivot — 0 -4 2 -5 2
M2 = 15 0 -6 -2 -15 -32
umw= -7 0 7 6 14 45

The second row is used to eliminate elements in the second column that lie below the
diagonal. The second row is the pivotal row and the values T 1 are the multiples of row 2
that are to be subtracted from row K for K = 3,4. The result after elimination is

1 2 1 4 13
0 -4 2 -5 2
pivot — 0 0 -5 -75 -35
fttd3=—19 0 0 95 525 485
Finally, the multiple «143 = —1.9 of the third row is subtracted from the fourth row. and

the result is the upper-triangular system

1 2 1 4 13"
m 0 -4 2 -5 2

0 0 -5 -75 -35

0 0 0 -9 -18

The back-substitution algorithm can be used to solve (11), and we get
X4 = 2, *3 =4, X2 — —1, Jfi = 3.

The process described above is called Gaussian elimination and must be modified
so that it can be used in most circumstances. If a** = 0, row K cannot be used to
eliminate the elements in column K, and row K must be interchanged with some row
below the diagonal to obtain a nonzero pivot element. If this cannot be done, then the
coefficient matrix of the system of linear equations is nonsingular, and the system does
not have a unique solution.

Theorem 3.9 (Gaussian Elimination with Back Substitution). If Aisan N x N
nonsingular matrix, then there exists a system UX = Y, equivalentto AX — B, where
U is an upper-triangular matrix with utt @ 0. After U and Y are constructed, back
substitution can be used to solve UX =Y for X.
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Proof. We will use the augmented matrix with B stored incolumn N + 1
qr 4> ms 4* . ra@,,
41) 43 me 42 BN+l
ax = AN 47 a®m @ 3 _ . -8

fill UNN XN an W+l

Then we will construct an equivalent upper-triangular system UX = ¥:

4y 1@ B4y o-xr Ta@l
0 an) 4?7 .a 42 x afRe1
ux = 0 0 8 - = 2[R 3= e3jv+i =Y,
0 0 0 m. g XN A

Step 1. Store the coefficients in the augmented matrix. The superscript on a*c] means
that this is the first time that a number is stored in location (r, c):

‘4|_ 4’) o 42 a4 1
o 42 47 a2
> 4 .. 474

% w4V

Step 2. If necessary, switch rows so that a, 31 ¢ 0; then eliminate X\ in rows 2
through N. In this process, mr\ is the multiple of row 1 that is subtracted from row r.

forr —2:N
"vi = aM)/aSi);
I = 0;

forc=2:N + 1'
ar((zz) :arg) ~mr\ *aﬂ)';
end
end
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The new elements are written a® to indicate that this is the second time that a
number has been stored in the matrix at location (r, c). The result after step 2 is

| ] agz) “o«l2 QW\I+| 1
0 ajy . % g +i
0 IR ag . s MG

0 a@® aN3 ' m C afeN+1

Step 3. If necessary, switch the second row with some row below it so that
¢ O; then eliminate X2 in rows 3 through N. In this process, mr2 is the multi-
ple of row 2 that is subtracted from row r,

forr=3:N
mr2 = af2laih
ai =0

forc=3:N+1

Q@ ax - Tr2*
end
end

The new elements are written at? to indicate that this is the third time that a um
ber has been stored in the matrix at location (r, c). The result after step 3 is

™ a(f) «ii* 8y = +
0 a) mgy a4
0 0 W v W

0 0 ap =m=afy a®d

Step p + 1 This is the general step. If necessary, switch row p with some row
beneath it so that app’ & 0; then eliminate xp in rows p + 1through N. Here Mp 18
the multiple of row p that is subtracted from row r.

forr=p+ 1:N
mrp = a\pjafp\

a£B+y> - i
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forc=p+1:N+1
a’O+i) ,0).

end
end

The final result after xs-\ has been eliminated from row N is

©o«u aﬁ) ™ “1IN+1
0 aé%) * § « ¢ «8 aiz}hl
0 0 a®) -am 5] AdHirm

aw
0 0 0 - ®magy  ann+\

The upper-triangularization process is now complete.
Since A is nonsingular, when row operations are performed the successive matrices

are also nonsingular. This guarantees thatakk ¢ O for all K in the construction process.
Hence back substitution can be used to solve UX = Y for X, and the theorem is prove.

Pivoting to Avoid afp = 0

Ifafp = 0, row p cannot be used to eliminate the elements in column p below the

main diagonal. It is necessary to find row k, where akp' ¢ 0 and K > p, and then in-
terchange row p and row K so that a nonzero pivot element is obtained. This process is
called pivoting, and the criterion for deciding which row to choose is called a pivoting

strategy. The trivial pivoting strategy is as follows. If app ¢ 0, do not switch rows.
Ifapp = 0, locate the first row below p in which akj ¢ 0 and switch rows K and p.

This will result in a new element ajfp ¢ 0, which is a nonzero pivot element.

Pivoting to Reduce Error

Because the computer uses fixed-precision arithmetic, it is possible that a small error
will be introduced each time that an arithmetic operation is performed. The following
example illustrates how the use of the trivial pivoting strategy in Gaussian elimination
can lead to significant error in the solution of a linear system of equations.
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Example 3.17. The values *1 = *2 = 1.000 are the solutions to

1.133*1+5.281*2 = 6.414
(12) 24.14n - 1.210*2 = 22.93.
Use four-digit arithmetic (see Exercises 6 and 7 in Section 1.3) and Gaussian elimination
with trivial pivoting to find a computed approximate solution to the system.

The multiple Ty = 24,14/1.133 = 21.31 ofrow 1is to be subtracted from row 2 to
obtain the upper-triangular system. Using four digits in the calculations, we obtain the new
coefficients

a® = -1.210- 21.31(5.281)= -1.210- 1125= -113.7

a® = 2293- 21.31(6.414)= 22.93- 136.7 = -113.8.
The computed upper-triangular system is

1.133*1 + 5.281*2 = 6.414
-113.7*2= -113.8.

Back substitution is used to compute *2 = —113.8/(—113.7) = 1.001, and *i = (6.414 —
5.281(1.001))/(1.133) = (6.414- 5.286)/(l. 133) = 0.9956. a

The error in the solution of the linear system (12) is due to the magnitude of the
multiplier m2i =21.31. In the next example the magnitude of the multiplier mzi is
reduced by first interchanging the first and second equations in the linear system (12)
and then using the trivial pivoting strategy in Gaussian elimination to solve the system.

Example 3.18.  Use four-digit arithmetic and Gaussian elimination with trivial pivoting
to solve the linear system

24.14*! - 1.210*2 = 22.93
1.133*1+5.281*2 = 6.414.

This time m21 = 1.133/24,14 = 0.04693 is the multiple of row 1 that is to be subtracted
from row 2. The new coefficients are

= 5281 - 0.04693(—1.210) = 5.281+0.05679 = 5.338
ag = 6.414 - 0.04693(22.93) = 6.414- 1.076 5.338.

The computed upper-triangular system is

24.14*i - 1,210*2 = 22.93
5.338*2 = 5.338.

Back substitution is used to compute *2 = 5.338/5.338 = 1.000, and X\ — (22.93 +
1.210(1.000))/(24.14) = 1.000. [
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The purpose of a pivoting strategy is to move the entry of greatest magnitude U
the main diagonal and then use it to eliminate the remaining entries in the column. I
there is more than one nonzero element in column p that lies on or below the mair
diagonal, then there is a choice to determine which rows to interchange. The partial
pivoting strategy, illustrated in Example 3.18, is the most common one and is used ir
Program 3.2. To reduce the propagation of error, it is suggested that one check the
magnitude of all the elements in column p that lie on or below the main diagonal
Locate row K in which the element that has the largest absolute value lies, that is,

\atp\ = rsm.{\app\, \ap+ip\ , |aw_ip|, [aarp[},

and then switch row p with row K if K > p. Now, each of the multipliers mrp foi
r=p+1, ..., N will be less than or equal to 1in absolute value. This process will
usually keep the relative magnitudes of the elements of the matrix V in Theorem 3.9
the same as those in the original coefficient matrix A. Usually, the choice of the larger
pivot element in partial pivoting will result in a smaller error being propagated.

In Section 3.5 we will find that it takes a total of (4,V3+9N2- IN)/6 arithmetic
operations to solve an N x N system. When N — 20, the total number of arithmetic
operations that,must be performed is 5910, and the propagation of error in the compu-
tations could result in an erroneous answer. The technique of scaled partial pivoting
or equilibrating can be used to further reduce the effect of error propagation. In scaled
partial pivoting we search all the elements in column p that lie on or below the main
diagonal for the one that is largest relative to the entries in its row. First search rows p
through N for the largest element in magnitude in each row, say sr:

(13) jr =max{|arp|,|flrp+i]|,...,JarW} forr- p, p+ 1l..... N.

The pivotal row K is determined by finding

(14) N =maxj e Nl

Sk \ 5p nSpH SN J
Now interchange row p and k, unless p = k. Again, this pivoting process is designed
to keep the relative magnitudes of the elements in the matrix U in Theorem 3.9 the
same as those in the original coefficient matrix A.

LLiconditioning

A matrix A is called ill conditioned if there exists a matrix B for which small pertur-
bations in the coefficients of A or B will produce large changes in X = A~]B. The
system AX = B is said to be ill conditioned when A is ill conditioned. In this case,
numerical methods for computing an approximate solution are prone to have more
error.

One circumstance involving ill conditioning occurs when A is “nearly singular”
and the determinant of A is close to zero. Il conditioning can also occur in systems
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Figure 3.4 A region where two
equations are “almost satisfied”.

ot two equations when two lines are nearly parallel (or in three equations when three
planes are nearly parallel). A consequence of ill conditioning is that substitution of
erroneous values may appear to be genuine solutions. For example, consider the two
equations

X+2y-200=0
(15) 2x+3y-340=0.

Substitution ofxo = 1.00 and yo = 0.48 into these equations “almost produces zeros”:

1+ 2(0.48)- 2.00= 1.96- 2.00=-0.04 « 0
2+ 3(0.48) - 3.40=344- 340= 0.04 O

Here the discrepancy from 0 is only £0.04. However, the true solution to this lin
ear system isjc = 0.8 and y = 0.6, so the errors in the approximate solution art
X —x0 = 0.80 —1.00 = —0.20 and y —yo = 0.60 —0.48 = 0.12. Thus, merely sub-
stituting values into a set of equations is not a reliable test for accuracy. The rhombus-
shaped region R in Figure 3.4 represents a set where both equations in (15) are “almosi
satisfied™:

R = (G y) :\x+2y —2.00] <01 and \2x+ 3y - 3.40] < 0.2}.

There are points in R that are far away from the solution point (0.8, 0.6) and yei
produce small values when substituted into the equations in (15). If it is suspected
that a linen system is ill conditioned, computations should be carried out in multiple-
precision mhmetic. The interested reader should research the topic of condition num-
ber of a rrr 'iix to get more information on this phenomenon.

Il conditioning has more drastic consequences when several equations are in
volved. Consider the problem of finding the cubic polynomial y = cix3+o0r2+
CLX+C4that passes through the four points (2, 8), (3, 27), (4,64),and (5, 125) (clearly.
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y = 3 is the desired cubic polynomial). In Chapter 5 we will introduce the method
of least squares. Applying the method of least squares to find the coefficients requires
that the following linear system be solved:

'20,514 4,424 978 224" "20,514'
4,424 978 224 54 c2 4,424
978 224 54 14 c3 978
224 54 14 4 a4 224

A computer that carried nine digits of precision was used to compute the coefficients
and obtained

ci = 1.000004, c2= -0.000038, ¢3= 0.000126, and c4=-0.000131.

Although this computation is close to the true solution, ¢\ ~ landq —ci —t4 = 0, it
shows how easy it is for error to creep into the solution. Furthermore, suppose that the
coefficient ay, = 20,514 in the upper-left comer of the coefficient matrix is changed
to the value 20,515 and the perturbed system is solved. Values obtained with the same
computer were

ci = 0.642857, €2 - 3.75000, c3= -12.3928, and c4 = 12.7500,

which is a worthless answer. 11l conditioning is not easy to detect. If the system is
solved a second time with slightly perturbed coefficients and an answer that differs
significantly from the first one is discovered, then it is realized that ill conditioning
is present. Sensitivity analysis is a topic normally introduced in advanced numerical
analysis texts.

MATLAB

In Program 3.2 the MATLAB statement [A B] is used to construct the augmented
matrix for the linear system AX = B, and the max command is used to determine
the pivot element in partial pivoting. Once the equivalent triangulated matrix [C/|Y]
is obtained it is separated into V and Y. and Program 3.1 is used to carry out back
substitution (backsuM U, Y)). The use of these commands and processes is illustrated
in the following example.

Example 3.19. (a) Use MATLAB to construct the augmented matrix for the linear system
in Example 3.16; (b) use the max command to find the element of greatest magnitude in the
first column of the coefficient matrix A; and (c) break the augmented matrix in (11) into
the coefficient matrix U and constant matrix Y of the upper-triangular system UX =Y,
@

» A=[l 2 14;2 043;4221;-3 13 2];

» B=[13 28 20 6] ’;

» Aug=[A B]
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(b) In the following MATLAB display, a is the element of greatest magnitude in the h: i
column of Aand j is the row number.
» [a,jJ«max{abs(A(1.4,1)}>
a=
4
j*
3
(c) Let Augup = [£/|Y] be the upper-triangular matrix in (11).
» Augup=[1 2 14 13;,Q -4 2 -5 2;0 0 -5 -7.5 -35;0 0 0-9 -181;
» U=Augup(l:4,1:4)
U=
1.0000 2.0000 1.0000 4.0000

0 -4.0000 2,0000 -5.0000
0 0 -5.0000 -7.5000
0 0 0 -9.0000
» Y=Augup(l:4,5)
Y=
13
2
-35
-18 ]

Program 3.2 (Upper Triangularization Followed by Back Substitution). To
construct the solution to AX = B, by firstreducing the augmented matrix [J1 to
upper-triangular form and then performing back substitution.

function X = uptrbk(A,B)

f.Input - Ais an N x N nonsingular matrix

% - Bis an N x 1 matrix

/.0utput - X is an blx 1 matrix containing the solution to AX=B.

T.Initialize X and the temporary storage matrix C
[N N]=size(A);
X=zeros(N,I);
C=zeros(l,N+1);
1.Form the augmented matrix:Aug=[AIB]
Aug=[A BJ ;
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for p=LN-I
#Partial pivoting for column p
[Y.j]=max(abs(Aug(p:N,p)));
f.Interchange row p and j

C=Aug(p,);
Aug(p,:) =Aug(j+p-1,1);
Aug(j+p-1,)=C;

if Aug(p,p)==0
Awas singular. No unique solution’
break

end

'/.Elimination process for column p
for k=p+I:N

m=Aug(k,p)/ Aug(p.p);
Aug(k,p:N+D)=Aug(k,p:N+I)-m*Aug(p,p:N+Il);
end
end
"ABack Substitution on [UlY] using Program 3.1
X=backsub(Aug(l:N,I:N),Aug(l:N,N+1));

Exercises for Gaussian Elimination and Pivoting

In Exercises 1through 4 show that AX = B is equivalent to the upper-triangular system
VX =¥ and find the solution.

1. 2x\ + 4x2 —6X3 -4 2x] 4-4*2 — 6x3= -4
; 5x2 + 3*3= 10 32+ 6x3— 12

x\ + 3x2+ 1*3 = 5 = 3

2. x\ + X2+ 6x3= 7 X4 *2+ 6x3= 7
—xi + 2x2 + 9n3 = 2 33X+ 15x3 — 9

X] —2x2 + 3x3= 10 12x3 = 12

3. 2*i —x2 +5x3= 6 2Xi —2x2 + 5x3= 6
2Xi + 32+ x3= 13 5x2- 4x3= 7

- xi+4x2~4x3= 3 09*3= 18

4 - 5xi+2x2- x3= -1 -5Xj+2%2- x3= -1
Xi+0x2+3x3— 5 04x2+ 2.8*3= 438

3Xi+ X+ 6x3= 17 - 10*3 = -10
5. Find the parabolay = A + Bx + Cx2 that passes through (1, 4), (2, 7), and (3,14).
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6. Find the parabolay = A + Bx + Cx2 that passes through (1,6), (2, 5), and (3,2).

7. Find the cubicy = A + Bx + Cx2+ Dx3that passes through (0, 0), (1, 1), (2, 2),
and (3,2).
In Exercises 8 through 10, show that AX = B is equivalent to the upper-triangular system
UX = ¥ and find the solution.

8% 4xj + 8x2+ 4x3+ 0x4 = 8 4Xi + 8x2+4x3 + 0x4 — 8
Xi +5X2 4-4x3 —3x4 = -4 X2+ 3x3—3X4= -6

Xi 4-4x2 + 7x3 + 2x4= 10 4x3 + 4x4 = 12

Xi + 3x2 + Ox3 —2x4 — -4 X — 2

9. 2x\ +4x2—4x3+ 0*4 = 12 2Xj + 4x2—4x3 + Ox4= 12
Xi + 5x2—5x3 —3x4 = 18 3x2 —3x3 —3X4' 12

2Xi + 3x2+ X3+ 3x4 = 8 4x3 + 2x4 = 0
X\ +4X2-2xz+2x4=, 8 X4 . -6

10. Xi + 2x2+ 0Xx3— X4 = 9 X+ 22 4-0x3- X4= 9
2Xi + 3x2— X3+ 0x4 - 9 -X2- X3+ 2x4= -9
Oxi + 4x2 + 2x3 - 5x4 = 26 -2x3 + ¥4 = -10
5xt + 5X2+ 2x3 - 4x4= 32 15X4= -3

11. Find the solution to the following linear system.

Xi + 2*2 =7
2% + 3x2 — X3 =9
4xr + 2x3 + 3x4 = 10
2X3 —4x4 = 12

12. Find the solution to the following linear system.

X+ X =5
2x1- X2+5x3 =-9
X2 —4x3+ 2x4= 19

2X3 +6Xe = 2

13. The Rockmore Corp. is considering the purchase of a new computer and will choose
either the DoGood 174 or the MightDo 11. They test both computers’ ability to solve
the linear system

34x + 55y - 21 =0
55x + 89y - 34= 0.

The DoGood 174 computer givesx = —0.11 andy = 0-45, and its check for accuracy
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14.

15.

is found by substitution:

34(—0.11) + 55(0.45) -21 = 0.01
55(—0.11) + 89(0.45) - 34 = 0.00.

The MightDo 11 computergivesx = -0.99 and v = 1.01, and its check for accuracv
is found by substitution:

34(—0.99) + 55(1.01) - 21 = 0.89
55(—0.99) + 89(1.01) —34 = 1.44.

Which computer gave the better answer? Why?

Solve the following linear systems using (i) Gaussian elimination with partial pivot-
ing, and (ii) Gaussian elimination with scaled partial pivoting.
(@ 2xi - 3x2+ 100x3= 1 (b) xi+ 20x2~  x3+0.001x4=0

*1L+ 10*2- 0.001*3 = o 2*i— b5*2+ 30*3— 0.1*4 =1
3*i —100*2 + 0.01*3 =10 5%1 + *2 —100*3 — 104 =0
2*i —100*%2 — *3 + *4 = 0

The Hilbert matrix is a classical ill-conditioned matrix and small changes in its coef-
ficients will produce a large change in the solution to the perturbed system.

(a) Find the exact solution of AX = B (leave all numbers as fractions and do exact
arithmetic) using the Hilbert matrix of dimension 4 x 4:

() Now solve AX = B using four-digit rounding arithmetic:

'1.0000 0.5000 0.3333 0.2500'
A = 0.5000 0.3333 0.2500 0.2000 B =
~ 0.3333 0.2500 0.2000 0.1667 -
0.2500 0.2000 0.1667 0.1429

coo<

Nofe. The coefficient matrix in part (b) is an approximation to the coefficient
matrix in part (a).
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Algorithms and Programs

1. Many applications involve matrices with many zeros. Of practical importance are
tridiagonal systems (see Exercises 11 and 12) of the form

d\x\+c\x2 =b[
W X! + d2x2 + cam = &
B2*2 + <8*3 + CIx4 = by

ON-2XN-2 +dN-IXN~I +CN-IXff = bf/-]
aN-]Xf/-i + df/Xti —b-H.

Construct a program that will solve a tridiagonal system. You may assume that row
interchanges are not needed and that row K can be used to eliminate ** in row Kk —1.

2. Use Program 3.2 to find the sixth-degree polynomialy = a1+ ajx + ct\x2+ ax~ +
asx4 + ii6*5 + a-jx6 that passes through (0, 1), (1,3), (2, 2), (3, 1), (4, 3), (5, 2),
and (6, 1). Use the plot command to plot the polynomial and the given points on the
same graph. Explain any discrepancies in your graph.

3. Use Program 3.2 to solve the linear system AX = B, where A = R7Lv*Vv and
ay = iJ~\and B — where by = N and bn = iN~2f(i —1) fori > 2.
Use N = 3,1, and 11. Theexact solutionis X =1 1 ... 1 [I]/. Explain any
deviations from the exact solution.

4. Construct a program that changes the pivoting strategy in Program 3.2 to scaled partial
pivoting.

5. Use your scaled partial pivoting program from Problem 4 to solve the system given
in Problem 3 for N = 11. Explain any improvements in the solutions.

6. Modify Program 3.2 so that it will efficiently solve M linear systems with the same
coefficientmatrix A but differentcolumn matrices B. The M linear systems look like

AX}=BU AXi=B2 AXm =Bm-

7. The following discussion is presented for matrices of dimension 3 x 3, but the con-
cepts apply to matrices of dimension N x N. If A is nonsingular, then A-1 exists and
AA~] = 1. Let Ci, C2, and Cs be the columns of A-1 and E\, E2, and £3 be the
columns of I. The equation AA_1 = | can be represented as

A[C, C2 C3]=1t£1 Er £3].
This matrix product is equivalent to the three linear systems

AC1 = Ei, AC2=£2, and ACs = Es.
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Thus finding A-1 is equivalent to solving the three linear systems.
Using Program 3.2 or your program from Problem 6, find the inverse of each of the
.following matrices. Check your answer by computing the product AA_>and also by
using the command inv CA). Explain any differences.
2 0 120 120 2700 100
@ 3 2 ® 20 2700 6480 -a200
-140 1680 -4200 2800

3% Triangular Factorization

In Section 3.3 we saw how easy it is to solve an upper-triangular system. Now we
introduce the concept of factorization of a given matrix A into the product of a lower-
triangular matrix L that has 1’s along the main diagonal and an upper-triangular ma-
trix U with nonzero diagonal elements. For ease of notation we illustrate the concepts
with matrices of dimension 4 x 4, but they apply to an arbitrary system of dimension
N x N.

Definition 3,4. The nonsingular matrix A has a triangular factorization if it can
be expressed as the product of a lower-triangular matrix L and an upper-triangular
matrix U:

@) A=LV.

In matrix form, this is written as

«n an  «13 «14 1 0 0 0 «N N2 U13 «14-

«2l an  «23 «24 ffl2L 1 0 0 0 u22 =23 «24

«31 «32 «33 «34 m\ 132 1 0 0 0 «33 «34
_«4l «42  «43  «44_ m4i m 2 043 1 0 0 0 «44_

The condition that A is nonsingular implies that u» ¢ 0 for all k. The notation
for the entries in L is my, and the reason for the choice of m,j instead of I,j will be
pointed out soon.

Solution of a Linear System

Suppose that the coefficient matrix A for the linear system AX = B has a triangular
factorization (1); then the solution to

2 LUX =B
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can be obtained by defining Y — U X and then solving two systems:

?3) firstsolve LY —B forY; thensolve UX = Y for X.
In equation form, we must first solve the lower-triangular system
yi =h\
@) Y1 + Y2 =b2
msiyi ¥TIFYIr+ yb = H

“ulyt+ T2+ T4A38+ M= bl
to obtain yi,y2. ¥3, and >4 and use them in solving the upper-triangular system
«11*1 + U 12X2 + «13*3 + 1 14x4 = vyi
5 U22X2 + «23+3 + W24X4 = Y2
® U3+ UBKA= ys
UX4- M
Example 3/10. Solve
jei+ 2x2+ 43+ X4=21
2xi + 8x2+ 6Xx3+ 4jcA= 52
3% 4-10x2 + 8x3+ 8*4 =79
4% + 12*2 + 10x3+ 6x4 = 82.

Use the triangular factorization method and the fact that

"2 4 f ‘0 0 0 "M 2 4 1~
2 8 6 4 2 100 0 4 -2 2
3 10 8 8 3110 00 -2 3
4 12 10 6 4 121 00 0 -6

Use the forward-substitution method to solve LY —B:

yi =21

2yi+ yi = 52
(6) ) B

3yi+yr+ y3 =79

4yi + yi 4-2y3 + Y4 = 82.

Compute the values yi = 21,yr = 52 —2(21) = 10,y3 = 79 —3(21) —10 = 6, and
Ya= 82—4(21) —10—2(6) =t —24,orY = [21 10 6 —24]". Next write the system
uUx =Y:
X\ +2x2+ 4x3+ *4= 21
A2 _ 2X3+ 2X4 .. 10
—2x3+ 3X4 = 6
- 6x4 = -24.

™
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Now use back substitution and compute the solution *4 = —24/(~6) = 4.xj = (6 -
3(4)/(—2) = 3,*2= (10- 2(4) 4-2(3))/4 = 2,andjti = 21 - 4- 4(3) - 2(2)= Lor
X=[1 2 3 4]. [

Triangular Factorization

We now discuss how to obtain the triangular factorization. If row interchanges are not
necessary when using Gaussian elimination, the multipliers my are the subdiagonal
entries in L.

Example 3.21.  Use Gaussian elimination to construct the triangular factorization of the
matrix

4 3-1
A= 2 -4 5
1 2 6

The matrix L will be constructed from an identity matrix placed at the left. For each row
operation used to construct the upper-triangular matrix, the multipliers rrijj will be put in
their proper places at the left. Start with

‘170 0 “4 3 -f
A= 0 10 -2 -4 5
00 1 1 2 6

Row 1is used to eliminate the elements of A in column 1below ay. The multiples «121 =
—0.5 and /m3! = 0.25 of row 1 are subtracted from rows 2 and 3, respectively. These
multipliers are put in the matrix at the left and the result is

10 O 4 3 -1
A= -05 1 0 0 -25 45
025 0 1 0 125 6.25

Row 2 is used to eliminate the elements of A in column 2 below «22- The multiple myi —
—0.5 of the second row is subtracted from row 3, and fee multiplier is entered in the matrix
atthe left and we have the desired triangular factorization of A.

1 0 0 ‘4 3 -r
8) A= -0.5 10 0 -25 45
025 -05 1 0 0 85

Theorem 3.10 (Direct Factorization A — LU. No Row Interchanges). Suppose
that Gaussian elimination, without row interchanges, can be successfully performed to
solve the general linear system AX = B. Then the matrix A can be factored as the
product of a lower-triangular matrix L and an upper-triangular matrix V :

A= LU.
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Furthermore, L can be constructed to have 1’s on its diagonal and U will have nonzero
diagonal elements- After finding L and V, the solution X is computed in two steps:

1. Solve LU = B for ¥ using forward substitution.
2. Solve UX = Y for X using back substitution.

Proof. We will show that, when the Gaussian elimination process is followed and
B is stored in column N + 1 of the augmented matrix, the result after the upper-
triangularization step is the equivalent upper-triangular system UX = Y. The matrices
L. [/, B, and Y will have the form

- —
1 0 0 on e
o1 0 -0 aR.,
L - MBL s 1 0 B = é‘ﬂ)n
MNj yn2 MN3 me 1 aM+
— -—
'« - n
0 41 9% w as+i
v - 0 0 L3 - 20 y = &%
. AN)
0 0 0 u. Q,l"\,\l) aN N+I

Remark. To find just L and U, the (,V 4- 1)st column is not needed.

Step 1 Store the coefficients in the augmented matrix. The superscript on a'.1'
means that this is the first time that a number is stored in location (r, c).

=

‘£ C - W +
m' a2N 2N+l

o m °3N+I

_«Slij u aN N+1

Step 2. Eliminate xi in rows 2 through N and store the multiplier mri, used to
eliminate xi in row r, in the matrix at location (r, 1).
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forr» 2.V
mri =
arl =mri;
foic=2:N+i
Gr? = 4c}~mrj
end
end

The new elements are written @  to indicate that this is the second time that a
number has been stored in the matrix at location (r, ¢). The result after step 2 is

=

moft 2 6y - omoajly +
mil ag@ afd mm Qi@ agg +
TU 34 =9 - mak) agm;

2

it 9 B ™ anw ﬂ,@VH

Step S. Eliminate xo in rows 3 through N and store the multiplier mrj, used to
eliminate *2 in row r, in the matrix at location (r, 2).

forr = 3 gN
mr2 = afl larh
ar2 = mrZ,

forc= 3:N+ 1

ad = 5% - Taxal,
end
end

The new elements are written afc to indicate that this is the third time that a num-
ber has been stored in the matrix at the location (r, c).

NS .o C a0+ !
Jv
N2t a2 mm %8 a2nN+|
"131 mz2 343 W g g4+
mNioTEf2 3@ =W oo NNt

Step p + 1. This is the general step. Eliminate xp in rows p + 1through N and
store the multipliers at the location (r, p).
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forr=p+ 1:N
mrp=4f?/a%;
am- Mrp,
forc=p+ LW + |
oV = 3R P
end
end

The final result after xn i has been eliminated form row N is

- gz A~ a AR = 4 7
mil L8 N Ka?l
mu ™32 £ W, a3+

mNi M2 nttas e g C “j\<v/N+t

The upper-triangular process is now complete. Notice that one array is used to store
the elements of both L and U. The |’s of L are not stored, nor are the 0’s of L and
U that lie above and below the diagonal, respectively. Only the essential coefficients
needed to reconstruct L and V are stored!

We must now verify that the product LU = A. Suppose that D = LU and
consider the case whenr < ¢. Then drc is

(-9

9) drc - mriajj? + mr 32) Nee-- S +ahr;.

Using the replacement equations in steps 1through p + 1 = r, we obtain the following
substitutions:

nnall} =af£-a% >,

mr2zaf =a™ - ag>,
(10)

tirr—3ifr-§¢ —dfec-D _ 80«
When the substitutions in (10) are used in (9), the resultis
@c- @) RtAR- AQw-mm/gfrl) - A A - Afex

The other case, r > ¢, is similar to prove.
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Computational Complexity

The process for triangularizing is the same for both the Gaussian elimination and tri-
angular factorization methods. We can count the operations if we look at the first N
columns of the augmented matrix in Theorem 3.10. The outer loop of step p + 1re-
quires N —p = N~ (p + I) + | divisions to compute the mu/tipliers mrp. Inside the
loops, but for the first N columns only, a total of (N —p)(N —p) multiplications and
the same number of subtractions are required to compute the new row elements a’*c+l) ¢
This process is carried outforp — 1, 2,..., N —1. Thus the triangular factorization
portion of A = LU requires

—N
(11) 2 ,0W-p)W—p+ 1= — -— multiplications and divisions,
P=1 3
and
(12) > (N—p)(N ~ P)q—zl\133-'\-12-+-'\J subtractions.
= 6

To establish (11), we use the summation formulas

A M(M +1)
B and -r*z_
*=j 2 i=1
Using the change of variables it = N —p, we rewrite (11) as
N -1 N -1 N -1
Y'(N-p)(N-p+1)=J2W -P) +'E (N-P'>2
p=I p=1 p=1

Jv-1 N-1
Ar=l jfead
(N- DN (N - D(tF)(2N - 1)
+ — r—
N3-N
3 ,

Oni~the triangular factorization A = LU has been obtained, the solution to the
lower-triangular system LY — B will require 0 + 1+ ... + JT- 1= (V2- N)/Z
multiplications and subtractions; no divisions are required because the diagonal ele-
ments of L are 1’s. Then the solution of the upper-triangular system U X ~ Y requires
1+ 2-1------- EN = (N2 + N)/2 multiplications and divisions and (V2 —N)/2 sub-
tractions. Therefore, finding the solution to LU X = B requires

N 2 multiplications and divisions, and N2 —N subtractions.
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We see that the bulk of the calculations lies in the triangularization portion of the
solution. If the linear system is to be solved many times, with the same coefficient
matrix A but with different column matrices B, it is not necessary to triangularize the
matrix each time if the factors are saved. This is the reason the triangular factorization
method is usually chosen over the elimination method. However, if only one linear
system is solved, the two methods are the same, except that the triangular factorization
method stores the multipliers.

Permutation Matrices

The A = LU factorization in Theorem 3-10 assumes that there are no row inter-
changes. It is possible that a nonsingular matrix A cannot be directly factored as
A =LU.

Example 3.22.  Show that the following matrix cannot be directly factored as A = L IJ:

12 6
A= 4 8-1
2 3 5

Suppose that A has a direct factorization LU; then

ml 2 6' 'l 0 o' U]l «12  «13
(13) 4 8 -1 = T4 1 0O 0«2 «3
-2 3 5 M3 = 1 0 0 "33

The matrices L and U on the right-hand side of (13) can be multiplied and each element
of the product compared with the corresponding element of the matrix A. In the first
column, 1 = 1wny, then 4 = M21«11 = J«e21, and finally -2 = Tuyun = T3b In
the second column, 2 = lun, then 8 —m~u 12 = (4)(2) + 112 implies that «22 = Q@
and finally b — myvii<i2 + m3242 = (~2)(2) + 132(0) = -4, which is a contradiction.
Therefore, A does not have a LU factorization. ]

A permutation of the first N positive integers 1, 2, -mm N is an arrangement ki, k2,
... ,KN ofthese integers in a definite order. Forexample 1, 4, 2, 3, 5 isa permutation of
the five integers 1, 2, 3, 4, 5. The standard base vectors =[00 = 0 1/0 =mmQ],
fori= 1,2,..., JV, are used in the next definition.

Definition 3.5. An N x N permutation matrix P is a matrix with precisely one entry
whose value is 1 in each column and row, and all of whose other entries are 0. The

rows of P are a permutation of the rows of the identity matrix and can be written as

(14)
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The elements of P = [/»/;] have the form

1 j=ki,

PU= 0 otherwise.

For example, the following 4 x 4 matrix is a permutation matrix,

010 0
10 0 O \ .
(15) P= 0o o 1 =[E2 e B']".
0 0 10
Theorem 3.11, Suppose that P — E'ki ... FEkb\ is apermutation matrix.

The product PA is a new matrix whose rows consist of the rows of A rearranged in
the order row*. A, row*2A ,..., row”" A.

Example 3.23. Let Abea4 x 4 matrixand let P be fixepermutation matrixokea (JBY,
then P A is the matrix whose rows consist of the rows of A rearranged in the order row2 A,
rowj A, rows A, rows A.

Computing the product, we have

0 1 0 0" =»an 4HA12 43 au4 a21 022 «23 a-i4
10 0 O 21 022 23 ai4d oil  «12 «13 «l4
0 0 0 1 31 <o «33 a34 041 o442 a43 44
0 0 1 0 _f£4 o042 «43 «44_ «31  Oyi 33 aj4_

Theorem 3.12. If P is a permutation matrix, then it is nonsingularand P 1= P".

Theorem 3.13. If A is a nonsingular matrix, then there exists a permutation matrix
P so that P A has a triangular factorization

(16) PA =LU.
The proofs can be found in advanced linear algebra texts.

Example 3,24. If rows 2 and 3 of the matrix in Example 3.22 are interchanged, then the
resulting matrix PA has a triangular factorization.

The permutation matrix that switches rows 2and 3is P = [E\ E3 £7] mComput-
mg the product PA, we obtain

“10 0" 2 6 12 6
PA= 0 0 1 8 -1 = -2 3 5
010, L4 3 5 4 8 -1
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Now Gaussian elimination without row interchanges can be used:
pivot-m "1 2 6
m2l=-2 -2 3 5
«3l= 4 4 8 -1

After X2 has been eliminated from column 2, row 3, we have

I 2 6
0 7 17 =U
0 0 -25

Extending the Gaussian Elimination Process

The following theorem is an extension of Theorem 3.10, which includes the cases
when row interchanges are required. Thus triangular factorization can be used to find
the solution to any linear system AX = B , where A is nonsingular.

Theorem 3.14 (Indirect Factorization: PA = LU). Let A be agiven N x V
matrix. Assume that Gaussian elimination can be performed successfully to solve the
general linear system AX — B, but that row interchanges are required. Then there
exists a permutation matrix P so that the product PA can be factored as the product
of a lower-triangular matrix L and an upper-triangular matrix U:

PA = LU.

Furthermore, L can be constructed to have I's on its main diagonal and U will have
nonzero diagonal elements. The solution X is found in four steps:

1 Construct the matrices L. U, and P.

2. Compute the column vector PB.

3. Solve LY = PB for ¥ using forward substitution.
4. Solve UX —Y for X using back substitution.

Remark. Suppose that AX = B is to be solved for a fixed matrix A and several difft i
ent column matrices B. Then step 1 is performed only once and steps 2 through 4 ab-
used to find the solution X that corresponds to B. Steps 2 through 4 are a computatioi i
ally efficient way to construct the solution X and require 0 (N 2) operations instead
the 0 (N 3) operations required by Gaussian elimination.
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MATLAB

The MATLAB command [L,U,P]=lu(A) creates the lower-triangular matrix L, the
upper-triangular matrix U (from the triangular factorization of A), and the permutation
matrix P from Theorem 3.14,

Example 3.25.  Use the MATLAB command [L,U,P]=lu(A) on the matrix A in Ex-
ample 3.22. Verify that A = P~IAV (equivalent to showing that PA —LU).

»A=[1 26 ;4 8 —1;-2 3 -5];
»[L,U,P]=lu(A)

L=
1.0000 o 0
-0.5000 1.0000 o
0,2500 O 1.0000
0-
4.0000 8.0000 -1.0000
0 7 0000 4.5000
0 0 6.2500
P»
010
01
1 0
»inv(P)*L*U
1 26
4 8-1
-2 35 ]

As previously indicated the triangular factorization method is often chosen over the
elimination method. In addition, it is used in the inv(A) and det(A) commands in
MATLAB. For example, from the study of linear algebra we know that the determinant
of a nonsingular matrix A equals (—1)? det U. where U is the upper-triangular matrix
from the triangular factorization of A and q is the number of row interchanges required
to obtain P from the identity matrix I. Since U is an upper-triangular matrix, we
know that the determinant of U is-just the product of the elements on its main diagonal
(Tbeorem 3.6). The reader should verify in Example 3.25 that; det(A) = 175 =
(-1)2(175) = ( - 1)2det(f/).

The following program implements the process described in the proof of Theo-
rem 3.10. It is an extension of Program 3.2 and uses partial pivoting. The interchang-
ing of rows due to partial pivoting is recorded in the matrix R. The matrix R is then
Utcdm the forward substitution step to find the matrix Y.



152 Chap.3 The Solution of Linear Systems AX = B

Program 33 {PA = LU: Factorization with Pivoting). To construct the solu-
tion to the linear system AX = B, where A is a nonsingular matrix.

function X = lufact(A,B)

‘lelnput - Ais an N x N matrix
1, - Bis an N x 1 matrix
'/mOutput - X is an N x 1 matrix containing the solution to AX = B.

I.Initialize X, Y, the temporary storage matrix C, and the row
'/, permutation information matrix R
[N,N]=size(A);
X=zeros(N,I);
Y =zeros(N,I);
C=zeros(I,N);
R=1:N;
for p=1:N-I
'I.Find the pivot row for column p
[maxi,j]l=max(abs(A(p:N,p)));
'/.Interchange row p and j
C-A(p.1);
Ap,)=A(j+p-1,1);
ACj+p-1,))=C;
d=R(p);
R(p)=R(j+p-i);
R(j+p-N=d;
if A(p,p)==0
"Ais singular. No unique solution'
break
end
‘/.Calculate multiplier and place in subdiagonal portion of A
for k=p+I:N
nmlt=A(k,p)/A(p.p);
A(k,p) = mult;
A(k,p+1:N)=A(k,p+I:N)-mult*A(p,p+I:N);
end
end

'1.Solve for Y
YC1) = B(R(1));
for k=2:N
YCk)= B (R (k))-A(k,l:k-)*Y Cl:k-I);
end
'/.Solve for X
X(N)=Y(N)/A(N,N);
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for k=N-I:-1:1
X(K)=(Y (k)-A(K,k+1:N)*X (k+1:N))/A(k,k);
and

Exercises for Triangular Factorization

1. Solve LY = B, UX =Y, and verifythat B = AX for(a) B~ [4 10 5]'and
(b) B=1[20 49 32]\where A=LU is

2 4 -6' 1 0 072 4 -6
15 3 - 1/2 1 0 0 3 6
13 2 12 113 1 0 0 3

2. Solve LY = B,UX = Y, and verifythat B AX for(a) B = [7 2 10]rand
(DB =123 35 7], whereA = LU is

1 16 1 00 1 1 ¢
10209 -1 10 0 3 15
1 -2 3 1 -1 1 00 12
3. Find the triangular factorization A = LU for the matrices
-5 2 -1" "10 3*
@) 10 3 (b) 31 6
31 6 -5 2 -1
Find the triangular factorization A = LU for the matrices
"4 2 1" 1T -2 7
@ 2 5-2 b 4+ 2 1
1 -2 7 2 5-2

5. Solve LY - B, UX - Y, and verifythat B =AX for(a) B=[8 ™ 10 —4j'
and(D)B = [28 13 23 4], whereA = LU is

8 4 0 10 00 4 8 4 0
5 4 -3 \ o 00 0333
47 2 5 10 004 4
3 0-2 21 44 000 1

6. Find the triangular factorization A = LU for the matrix

1 10 4
2 -1 50
5 2 1 2
-3 0 2 6

7. Establish the formula in (12).
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8. Show that a triangular factorization is unique in the following sense: If A is nonsin-
gularandL\U\ —A = L2U2,then L\="hi and V\ = U2.

9- Prove the case r > c at the end of Theorem 3.10.

10. (@) Verify Theorem 3.12 by showing that PP* = | = P'P for the permutation
matrix
0 10O
10 0O
0 0 0 i
00 10

(b) Prove Theorem 3.12. Hint. Use the definition of matrix multiplication and the
fact that each row and column of P and P* contains exactly one 1

11. Prove that the inverse of a nonsingular N x N upper-triangular matrix is an upper-
triangular matrix.

Algorithms and Programs

1. Use Program 3.3 to solve the system AX = B, where

1 3 5 1 T
2 -1 35 2
0o o 25 d B= g4
2 6 -3 L 4

Use the [L,U,Pj=iu(A) command in MATLAB to check your answer.

2. Use Program 3.3 to solve the linear system AX = B, where A = [a,-j]sxN and
atd = iJ~\ and B — [bij]\xi, where by, = N and by, = iN~2/(i —1) fori > 2.
Use N = 3,7, and 11. The exact solutionis X — [l 1 ... 1 I]\ Explain any
deviations from the exact solution.

3. Modify Program 3.3 so that it will compute A-1 by repeatedly solving N linear sys-

tems
ACj = Ej forJ- 1,2 ..., N
Then
A[Cj Ci ... Cn]—][Ei Ez .. £n]
and
A-4 = [C] Cz carl.

Make sure that you compute the LV factorization only once!
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Figure 3,5 The electrical network
for Exercise 4.

4. Kirchoff’s voltage law says that the sum of the voltage drops around any closed path
in the network in a given direction is zero. When this principle is applied to the circuit
shawn in Figure 3.5, we obtain the following linear system of equations:

@+ + 1P+ Rzh + R413 —
) A3/1 4-{R24- B + jRs)/2 — Rsh —Ez
van — N5/2 + (R4+ R$ + Re)H —O.

L'ws Program 3.3 to solve for the current li, 12, and /3 if
fa Rj = L,R2= L,R3=2,M4= 1/15=2,Re=4,andE1= 23, £2 = 29
(hy Ri = L,Rz=107511%3= 1, M4=2 WN5= 1% = 4,and £v= 12
Bj = 215
(0 A1= 1,ii2=2,R3=4,94=3,«5=1,M6=5andE\ = 41,£2= 38
5. Incalculus the following integral would be found by the technique of partial fractions:

f X2+x + |
J (x-1)(n-2)(x-3)2(x2-1)
This would require finding the coefficients Aj, for 1= 1,2,..., 6, in the expression

X2+x + |
(x- 1)(* - 2)<*- 3)2(x2+ 1)
A Ar Ab A4 ANX + AG
~ Oc-D x~2)+ (x- 32+ (*- 3 2+ 1)
Use Program 3.3 to find the partial fraction coefficients.
6. Use Program 3.3 to solve the linear system AX = B, where A is generated us-
ing the MATLAB command A-randQO, 10) and B=[l 2 3 ... 10]’.Remem-
ber to verify that A is nonsingular (<tet(A)j£ 0) before using Program 3.3. Check

the accuracy of your answer by forming the matrix difference AX —B and ex-
amining how close the elements are to zero (an accurate answer would produce
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AX —B = 0). Repeat this process using a coefficient matrix A generated by the
command A=rand(20,20) and B=[I 2 3 ... 20] Explain any apparent dif-
ferences in the accuracy of Program 3.3 on these two systems.

7. In (8) of Section 3.1 we defined the concept of linear combination in JT-dimensional
space. For example, the vector (4, —3), which is equivalent to the matrix [4 —3] .

could be written as a linear combinationof [I  0]'and [0 I]r:

[ « ¢ =I?

Use Program 3.3 to show thatthe matrix [L 3 5 7 9]* canbe written as a lineai
combination of

o " 3 5' I

4 0 2 6 4
-2 0 0 -3 and -2

3 4 5 0 7
-1 4 1 2 0

Explain why any matrix [jfi X2 x$ *4 -ts]* can be written as a linear combina-
tion of these matrices.

Iterative Methods for Linear Systems

The goal of this chapter is to extend some of the iterative methods introduced in Chap-
ter 2 to higher dimensions. We consider an extension of fixed-point iteration that ap
plies to systems of linear equations.

Jacobi Iteration
Example 3.26. Consider the system of equations

- y+ z= 7
1) 4n-8y + r=-21
—2X+ y+5r= 15
These equations can be written in the form
17+y—1z
21+4x +z
@ y=
8
_ 15+ 2jc—y
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Table 3.2  Convergent Jacobi Iteration for the Linear

System (1)

K 4 W &

0 1.0 2.0 2.0

1 1.75 3.375 3.0

2 1.84375 3.875 3.025

3 1.9625 3.925 2.9625

4 1.99062500 3.97656250 3.00000000

5 1.99414063 3.99531250 3.00093750
15 1,99999993 3.99999985 2.99999993
19 2.00000000 4.00000000 3.00000000

this suggests Ihe following Jacobi iterative process:

IR
21 + Adc+ X
(€) yuwl &
15 + 2xk —X
Zk+1 5

Let us show that if we start with Pq = (0. }o.r0) = 11 2, 2), then the iteration in (3)
appears to conveige to the solution (2,4, 3).

Substitute xo = 1, vo = 2, and zo — 2 into tbe tight-hand side of each equation in (3)
to obtain the new values

7 +2-
> _ 4 = f.75
21+4 + 2
T —— 9— = 3.375
15+2-2
= 3.00.
The new point i = (1.75,3.375,3.00) is closer to (2,4, 3) then pPq. Iteration us-
ing (3) generates a sequence of points {Pk} that converges to the solution (2,4, 3) (see
Table 3.2). m

This process is called Jacobi iteration and can be used to solve certain types of
linear systems. After 19 steps, the iteration has converged to the nine-digit machine
approximation (2.00000000,4.00000000,3.00000000).
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Linear systems with as many as 100,000 variables often arise in the solution oi
partial differential equations. The coefficient matrices for these systems are sparse:,
that is, a large percentage of the entries of the coefficient matrix are zero. If there
is a pattern to the nonzero entries (i.e., tridiagonal systems), then an iterative proce ,
provides an efficient method for solving these large systems.

Sometimes the Jacobi method does not work. Let us experiment and see that t
rearrangement of the original linear system can result in a system of iteration equation
that will produce a divergent sequence of points.

Example 3.27. Let the linear system (1) be rearranged as follows:

—2X+ y+52= 15
4 4x -8y + z=-21
dX—y+ 1r= T

These equations can be written in the form

—15+ y +57
3
5) _21+4m+z
y_
y 8
z2=7- 4x+y.

This suggests the following Jacobi iterative process:

N -15 + 33/k +5z
(6) 21+4jcic+zk
YiHL = ------- 8--——-

Zk+1= 7 -4xk + J&.

See that if we start with Pq = (-4, >0,zq) = CL2,2) then the iteration using (6) will
diverge away from the solution (2,4, 3).

Substitute xg = 1,yo = 2, and ro = 2 into the right-hand side of each equation in (6
to obtain the new values jti.yi, andzi:

-15+2+10

Xi = —meeeee J mmmee = 5
21+4 + 2

>i = e g-—= 3.375

r,=7-4 +2=5.00.

The new point Pi = (—1.5,3.375, 5.00) is farther away from the solution (2,4, 3) than
Iteration using the equations in (6) produces a divergent sequence (see Table 3.3). ]
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TWhle33  Divergent Jacobi Iteration for the linear

System (4)

K 4 X Ve

0 10 2.0 20

| -1.5 3.375 5.0

2 6.6875 25 16.375

3 34.6875 8.015625 -17.25

4 -46.617188 17.8125 -123.73438
5 —307.929688 -36,150391 211.28125
6 502.62793 -124.929688 1202.56836

Gauss-Seidel Iteration

Sometimes the convergence can be speeded up. Observe that the Jacobi iterative pro-
cess (3) yields three sequences {1*}, »}, and (r*) that converge to 2,4, and3, respec-
tively (sec Table 3.2). It seems reasonable that Xk n could be used in place of xt in
the computation of Similarly, and ?fc+i might be used in the computation
of ztf imThe next example shows what happens when this is applied to the equations
in Example 3.26.

Example 3.28. Consider the system of equations givenin (I) and tht Gauss-Seidel itera-
tive process suggested by (2):

. 7+ Yk - Zk
J4+i = 4
21 Y41 + zj
) Y+ = I';_L !
15 + 2i*+i -yt+t
Zk+1 = 5

See that if we start with Po = (*o. TO zo) = (1,2.2), then iteration using (7) will converge
to the solution (2,4, 3).
Substitute vo = 2 and ro = 2 into the first equation of (7) and obtain

, =1 + 1 ~ |75,
4

Then substitute .ri = 175 and zn =2 into the second equation and get
x4 +4(1.75,:13-.7?5.

finally, substitute g = 1.75and y\ = 3.75 into tbe third equation to get

15-2(1.75) - 3.75
= 2.95.
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lhble 3.4  Convergent Gauss-Seidel Iteration for the

System (1)

K *K e z

0 10 20 2.0

1 175 375 2.95

2 195 3.96875 2.98625

3 1.995625 3.99609375 2.99903125

1.99999983 3.99999988 2.99999996

9 1.99999998 3.99999999 3.00000000

10 2.00000000 4.00000000 3.00000000

The new point Pi —(1.75, 3.75, 2,95) is closer to (2,4, 3) than P o and is better than the
value given in Example 3.26. Iteration using (7) generates a sequence {P*} that converges
to (2,4, 3) (see Table 3.4). [

In view of Examples 3.26 and 3.27, it is necessary to have some criterion to de-
termine whether the Jacobi iteration will converge. Hence we make the following

definition.

Definition 3.6. A matrix /1 of dimension N x N is said to be strictly diagonally
dominant provided that

®) laul fori = 1,2 N. K

This means that in each row of the matrix the magnitude of the element on the
main diagonal must exceed the sum of the magnitudes of all other elements in the row
The coefficient matrix of the linear system (1) in Example 3.26 is strictly diagonally
dominant because

Inrow I: 4 > j- 11+ [11
In row 2: | —8| > |4] + fl|
Inrow 3: [5] > | —2|] + 11

All the rows satisfy relation (8) in Definition 3.6; therefore, the coefficient matrix A
for the linear system (1) is strictly diagonally dominant.
The coefficient matrix A of the linear system (4) in Example 3.27 is not stricth
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diagonally dominant because

Inrow 1 | —2| < 1] + 5[
In row 2: 1- 8 > |4] + 1]
In row3: W< |4 -H - 1.

Rows 1 and 3 do not satisfy relation (8) in Definition 3.6; therefore, the coefficient
matrix A for the linear system (4) is not strictly diagonally dominant.

We now generalize the Jacobi and Gauss-Seidel iteration processes. Suppose that
the given linear system is

anxi+ai2x2 + emmt+ a\jXj + me+ a\MxH = b\

<ANX\ + A2272 +emm+maljxj+ ell+ [RNXN = A2
©) L . o

ajiXi+aj2x2 4--—--- \-ajjXjA------- T aju*N =bj

&N\ + a"2X2 + mm +CtNjXj + -+ apjNXfi/ = btf.
Let the fcth point be Pk = (x\KW ... Jtj*\ .. mx®); then the next point is
Pk+1 = o X PP 4 +\  The superscript (£) on the coor-
dinates of Pk enables us to identify the coordinates that belong to this point. The
iteration formulas use row j of (9) to solve for in terms of a linear combination
of the previous values XKL, XKLL, XML

Jacobi iteration:
L (t+i bj - «?i*t " aij-*x)-\ ~ aJi+]X)li
i ) bi- j-*x) I
1 uij
forj = 12,..., N.
Jacobi iteration uses all old coordinates to generate all new coordinates, whereas
Gauss-Seidel iteration uses the new coordinates as they become available:

Gauss-Seidel Iteration:

(thi>  bi ~ afl* 1%+ 1)~ ajj X+t ajHxff
XJ ~ an
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The following theorem gives fesufficient condition for Jacobi iteration to converge.

Theorem 3.15 (Jacobi Iteration). Suppose that A is a strictly diagonally dominant
matrix. Then AX = B has a unique solution X = P. Iteration using formula (10)
will produce a sequence of vectors {Pjd that will converge to P for any choice of the
starting vector Pq,

Proof. The proofcan be found in advanced texts on numerical analysis. .

It can be proved that the Gauss-Seidel method will also converge when the ma-
trix A is strictly diagonally dominant. In many cases the Gauss-Seidel method will
converge faster than the Jacobi method-, hence it is usually preferred (compare Exam-
ples 3.26 and 3.28). It is important to understand the slight modification of formula
(10) that has been made to obtain formula (11). In some cases the Jacobi method will
converge even though the Gauss-Seidel method will not.

Convergence

A measure of the closeness between vectors is needed so that we can determine if
(Pij is convetgihg to P. The Euclidean distance (see Section 3.1) between I' --
(X),x2, wm. 4 and Q = (yj,y2,... ,yN)is

()

Its disadvantage is that it requires considerable computing effort. Hence we introduce
a different norm, A",

(13)

The following result ensures that \X  has the mathematical structure of a meti ic
and hence is suitable to use as a generalized “distance formula.” From the study of
Unear algebra we know that on a finite-dimensional vector space all norms are equiv-
alent; that is, if two vectors are close in the ||*|| i norm, then they are also close in the
Euclidean norm ||*|(.

Theorem 3.16. Let X and Y be /~-dimensional vectors and ¢ be a scalar. Then the
function ||.STII, has the following properties:

(14) 1X1)i >0,
(15) prill =0  ifandonlyif X =0,
(16) (icjril, = 1 pTIi,

17) pc+ry, <Neh +mi e
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Proof, We prove (17) and leave the others as exercises. For each j, the triangle
iaequality for real numbers states that \xj + yj| < \xj\ + \yj\. Summing these yields
inequality (17);

N N N
BX+Yh =£ o+ yN<£121 + 1> jl = WIl+ HJie
y=1 =1 J=1
The norm given by (13) can be used to define the distance between points. .

Definition 3.7.  Suppose that X and Y are two points in TV-dimensional space. We
define the distance between X and Y in (he |j*(]j norm as
iv
Pr-u.,=1r 10 ;-nj. *
i="

Cxampte 3.29. Determine the Euclidean distance and (*j!, distance between the points
<2,4,3) and Q = (1.75, 3.75, 2.95).
The Euclidean distance is

\IP~ Q\ = (2~ 1.75)2+ (4 - 3.75)2+ (3 - 2.95)2)1/2 = 0.3570.
The distance is
IIP- fill] = 12-1.75)+ 14-3.751+ |3 -2.951 =0.55.

The )J¥)] is easier to compute and use for determining convergence in W-dimensiona!
Space. [ ]

Th* MATLAB command A(jj [1:j-1,j+I:N]) is used in Program 3.4. This
effectively selects all elements in the jth row of A, except the element in the j'th
column (i.e., A(j,j)). This notation is used to simplify the Jacobi iteration (10) step
in Program 3,4.

In both Programs 3.4 and 3.5 we have used the MATLAB command norm, which
o the Euclidean norm. The j|*||i can also be used and the reader is encouraged to
check the Help menu in MATLAB or one of the reference works for information on
the norm command.

Pi4)gram 3.4 (Jacobi Iteration). To solve the linear system AX = B by starting
vift an initial guess X = Pqgand generating a sequence {Pk}that converges to the
®j6lutim. A sufficient condition for the method to be applicable is that A is strictly
diagonally dominant.

/unction X=jacobi(A,B,P.delta, maxi)

% Input - Ais an N x Nnonsingular matrix
| - Bis an N x 1 matrix
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Y - P is an Nx 1 matrix; tbe initial guess
', - delta is the tolerance for P
¥, - maxi is the maximum number of iterations
% Qutput - Xis an N x 1 matrix: the jacobi approximation to
', the solution of AX =B
N = length(B);
for k=Il:maxl
for j=I:N
X@=BG)~AG -1+ END*P([1j-Li+ END)/A (5.0);
end
err=abs(norm(X *-P));
relerr=err/(norm (X)+eps);
P=X";
if(err<delta)l(relerr<delta)
break
end
end
X=X

Program 3.5 (Gauss-Seidel Iteration). To solve the linear system AX = B j
by starting with the initial guess X = Po and generating a sequence {P*} that
converges to the solution. A sufficient condition for the method to be applicable |s !
that A is strictly diagonally dominant.

function X=gseid(A,B,P,delta, maxi)
¥ Input - Ais an N x N nonsingular matrix

% - Bis an A x 1 matrix
7 - Pis an N x 1 matrix; the initial guess
Y - delta is the tolerance for P
¥ - maxi is the maximum number of iterations
Y Output - X is an N x 1 matrix: the gauss-seidel
¥, approximation to the solution of AX=B
N = length(B);
for k=l:maxl
for j=I:N
if j=1
X(@1)=(BU)-A(1,2:N)*P(2:N))/A(1,1);
elseif j==
XaO=(B(N)-A(N,L:N-1)*(X(1:N-1))>)/A(N,N);
else

XX contains the kth approximations and P the (k-I)st
X (1)=(BH)-AU.LJ-D* X (1:j-1)
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-ACHj+HEN)*P(j+EN)/A (L) ;
end
end
err=abs(norm{X’-P));
relerr=err/(norm(X)+eps);
P=X";
if(err<delta)l(relerr<delta)
break
end
end
X=XJ;

Exercises for Iterative Methods for Linear Systems

In Exercises 1 through 8:

(a) Start with Po = 0 and use Jacobi iteration to find Pk for k = 1,2,". . Will Jacobi
iteration converge to the solution?

(b) Start with Po = 0 and use Gauss-Seidel iteration to find Pk for k = 1,2, 3. Will
Gauss-Seidel iteration converge to the solution?

1 4x~ y= 15 2. 8*-3y = 10
jc+5;y=9 -X+4y = 6
3. —Xx+3y= 1 4. 2x+3y= |
6x —2y = 2 Ix —2y= 1
5. 5*- y+ z= 10 6. 2x+8y- z= 11
2x+8y- z=1 5x- y+ z= 10
-jc+y+4z=3 - x+ y+4z= 3
7. X-5- z=-8 8. 4x+ y- z= 13
X+ y—z= 13 X 5y z=-8
2X- y-6z=-2 2X- y—6z=-2

9. Let X = On,X2,..., Xxn). Prove that the ||*|| [ norm

N
Wii =£>*1
*:l
satisfies the three properties <14)—16).
10. Let X = (xi,Xi, m -, xn). Prove that the Euclidean norm

12
IIATI
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satisfies the four properties given in (14)—17).
11. Let X = (jt|, X2, m Prove that the ||*|1M norm

¥ 150=  max [**
e I<n<n||

satisfies the four properties given in (14)—17).

Algorithms and Programs

1. Use both Programs 3.4 and 3.5 to solve the linear systems in Exercises 1 through 8
Use the format long command and delta = 10-9.

2. InTheorem 3.14 the condition that A be strictly diagonally dominantis a sufficient bm
not necessary condition. Use both Programs 3.4 and 3.5 and several different initial
guesses for Po on the following linear system. Note. The Jacobi iteration appears t
converge, while the Gauss-Seidel iteration diverges.

X + z=2
+y =0
jc+2y-3r=0

3. Consider the following tridiagonal linear system, and assume that the coefficient m;i-
trix is strictly diagonally dominant.

d\x\+c\x2 =bi
a\x\ + diX2+ CX3 = b2
02X2 + d-jXi + C3X4 = bi

an-1XN-2 + dfi/-iXN-i + cfj-\XN = bs~\
aN-\XN-\ +dtfxN =-bfj.

(i) Write an iterative algorithm, following (9)-(I 1). that will solve this system. Y01
algorithm should efficiently use the “sparseness” of the coefficient matrix.

(ii) Constructa MATLAB program based on your algorithm in and solve the followin
tridiagonal systems.
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(@ 4mi + m2 =3 (b) 4mi + m2 —1
mi +4/92 + m3 =3 mil+4m2 + « 3 =2
m2+4m3 + m4 =3 ffl2 +4713 + /94 = 1
m3 + 4«4 + «5=3 m3 +4m4 + ms = 2
«48 + 449+ mso = 3 m48 + 4/n49 + msO = 1

«49 + 4m50= 3 /U9 + 4m50 = 2

4. Use Gauss-Seidel iteration to solve the following band system.

12xi - 2x2 + X3 =5
—2*i + — 2Xj + X4 =5
Xi — 2Xx2 + 12x3 — 2x4 + xS =5
X2 — 2x3 + 12x4 — 2Xj + *6=5

X46— 2X47+ 12X48— 2X49+ *30= 5
X4 — 2x48 + 12x49— 2X50= 5
X48 — 2X49 + 12x50 —5

5. In Programs 3.4 and 3,5 the relative error between consecutive iterates is used as a
stopping criterion. The problems with using this criterion exclusively were discussed
in Section 2.3. The linear system AX = B can be rewritten as AX —B = 0. If Xt
is the fcth iterate from a Jacobi or Gauss-Seidel iteration procedure, then the norm of
the residual AXk —B s, in general, a more appropriate stopping criterion.

Modify Programs 3.4 and 3.5 to use the residual as a stopping criterion. Use the
modified programs to solve the band system in Problem 4.

Iteration for Nonlinear Systems:
Seidel and Newton’s Methods (Optional)

Iter,ili\e techniques will now be discussed that extend the methods of Chapter 2 and
Section 3.6 to the case of systems of nonlinear functions. Consider the functions

" li(x,y)=x2-2x-y +05
fi(x,y) =x2+4y2- 4.

We seek a method of solution for the system of nonlinear equations

) /1(x,y)=0 and f2(x,y) =0.

Tne equations f\ (X, y) = 0 and /r(x, v) = 0 implicitly define curves in the xy-
plane. Hence a solution of the system (2) is a point (p, ) where the two curves cross
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y =x2- 2x +0.?

- 10

Figure 3.6 Graphs far the nonlinear systemy = x2—2x + 0.5
and x2+ 4y2 —A.

(i.e., both fi(p, q) = 0 and flip, g) = 0). The curves for the system in (1) are well
known:

je2—2*+ 0.5=0 isthe graph of a parbola,

3
@) x2--4y2—4 = 0 s the graph of an ellipse.

The graphs in Figure 3.6 show that there are two solution points and that they are in
the vicinity of (—0.2, 1.0) and (1.9, 0.3).

The first technique is fixed-point iteration. A method must be devised for generat-
ing a sequence ((/>*, gk)) that converges to the solution ip, g). The firstequation in (3m
can be used to solve directly for x. However, a multiple of y can be added to each sidt-
of the second equation to getx1+ 4y2~ 8y —4 — —8>". The choice of adding —8r is
crucial and will be explained later. We now have an equivalent system of equations:

Xx2—jy+ 0.5
X — Iy
2
—X2- 4y2+ 8y + 4
8

©

These two equations are used to write the recursive formulas. Start with an initial poin
(Po. <70). and then compute the sequence {(pt+i, gt+i)) using

Pk ~ 4k + 0.5
2
~pl- 4qj + Bgt + 4
8

PkH = gi(Pk,qk) =
(5)
Ak+1= gl(.Pk, gk) =
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Table 3.5 Fixed-Point Iteration Using the Formulas in (5)

Case (i): Start with (0,1) Case (ii): Start with (2,0)
K Pk K K Pk K
0 0.00 1.00 0 2.00 0.00
1 -0-25 1.00 1 2.25 0.00
2 -0.21875 0.9921875 2 2.78125 -0.1328125
3 -0.2221680 0.9939880 3 4.184082 -0.6085510
4 -0.2223147 0.993812! 4 9.307547 -2.4820360
5 -0.2221941 0.9938029 5 44.80623 -15.891091
6 -0.2222163 0.9938095 6 1,011.995 -392.60426
7 -0.2222147 0.9938083 7 512,263.2 -205,477.82
8 -0.2222145 0.9938084 This sequence is diverging.
9 -0.2222146 0.9938084

Case (i): 1fwe use the starting value (po. <o) = (0,1), then

. 02- 1+0.5 . —02—4(1)2+ 8(1)+4_ ., n
Pi — o = 025 and qi= = 1.0

Iteration will generate the sequence in case (i) of Table 3.5. In this case the sequence
converges to the solution that lies near the starting value (0, 1).
Case (ii): 1f we use the starting value (po, qo) = (2, 0), then

22 —0+ 0.5

J —22—4(0)2+ 8(0) + 4
p\ = - L7225 and gl = 021295

Iteration will generate the sequence in case (ii) of Table 3.5. In this case the sequence
diverges away from the solution.

Iteration using formulas (5) cannot be used to find the second solution (1.900677,
0.3112186), To find this point, a different pair of iteration formulas are needed. Start
with equation (3) and add —2x to the first equation and —11y to the second equation
and get

X2—4x —y+05= —-2x and je2+4y2—Ily —4= —lly.
These equations can then be used to obtain the iteration formulas

-P* + 4pk + gk —0.5
z

Pk+] = glKP, gk) =
(6> 4 -pl~4qr+Uqk+4
Qi = Qi(PK, GK) oo o

Table 3.6 shows how to use (6) to find the second solution.
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Table 3.6  Fixed-point Iteration Using the
Formulas in (6)

K Pk Qk
0 2.00 0.00

1 1.75 0.0

2 1.71875 0.0852273
3 1.753063 0.1776676
4 1.808345 0,2504410
8 1.903595 0.3160782
12 1.900924 0.3112267
16 1.900652 0.3111994
20 1.900677 0.3112196
24 1.900677 0.3112186

Theory

We want to determine why equations (6) were suitable for finding the solution near
(1.9, 0.3) and equations (5) were not. In Section 2.1 the size of thd derivative at the
fixed point was the necessary idea. When functions of several variables are used, the
partial derivatives must be used. The generalization of “the derivative” for systems
of functions of several variables is the Jacobian matrix. We will consider only a few
introductory ideas regarding this topic. More details can be found in any textbook on
advanced calculus.

Definition 3.8 (Jacobian Matrix). Assume that f\ (jc, y) and /2 (X, y) are functions
of the independent variables x and y; then their Jacobian matrix J(x, >®is

Bfi  dfi~
Bx By
32 372
X dy_

Similarly, if f\{x, y, z), /20r,y, z), and /3(X, y, z) are functions of the independent
variables X, y, and z, then their 3 x 3 Jacobian matrix J(x, \\ z) is defined as follows:

AN AN p

dx 3y o
dh T al2
dx 37 or

dh 3h A
X gy o
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Example 3.30. Find the Jacobian matrix J(X, Y, z) of order 3 x 3 at the point (1, 3, 2)
for the three functions

li(*.y,z2)=x3-y2+y-z2* +12z
fa(x,y,2) = xy +yz+ xz

h (.x,y,2) = -l

The Jacobian matrix is

A dfi g

Bx dy d TBX2 2y + 1 —4z3+
a Sh alfi y+z x+12 Y+x
3 3y dz -y 1 -y

ofy Bh Ne - XZ XZ Xz2
x dy Bz

Thus the Jacobian evaluated at the point (1, 3,2) is the 3 x 3 matrix

3 -5 -28
7d,3,2) = 5 3 4
3 1 3

L5

Generalized Differential

For a function of several variables, tbe differential is used to show how changes of the

independent variables affect the change in the dependent variables. Suppose that we
have

©9) u = f\(x,y,z), v = f2(x,y,z), and  w= /3(x, Y, 2).

Suppose that the values of the functions in (9) are known at the point (jro, vo. ro)
and we wish to predict their value at a nearby point (x,y,z). Letdu,dv, and dw
denote differential changes in the dependent variables and dx, dy, and dz denote dif-
ferential changes in the independent variables. These changes obey the relationships
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If vector notation is used, (10) can be compactly written by using the Jacobian
matrix. The function changes are dF and the changes in the variables are denoted dX.

du dx
(11) dF = dv = J (xg,>Qro) dY = J (*o.yo, ro) dx.
dw dz

Example 3.31. Use the Jacobian matrix to find the differential changes (du, dv, dw)
when the independent variables change from (1, 3, 2) to (1.02,2.97,2.01) for the system
of functions

m=1i(xy, 2z)=j3-y2+y- z4+ 727
v=Ffi(X,y,z) = xy +yz + xz

Yy
w= h(x,y, 2) = 7

Use equation (11) with /(1,3,2) of Example 3.30 and the differential changes
(dx, dy, dz) = (0.02, -0.03,0.01) to obtain

du 3 -5 -28' 0.2 -0.07"
& - 5 3 4 -003 = 005
aw _F b3 om —0.0525

Notice that the function values at (1.02,2.97,2.01) are close to the linear approximu
tions obtained by adding the differentials du = —0.07, dv —0.05, and dw = —0.0525 to
the corresponding function values /i(l, 3,2) = —17,/2(1,3,2) = 11,and /3(1,3,2) -
1.5; that is,

/i(1.02,2.97,2.01) = —17.072 —17.01 = /i(1,3,2 )+du
/2(1.02,2.97,2.01)= 11.0493 = 11.05 = /2(1,3,2)+
/3(1.02,2.97,2.01)= 1.44864  1.4475 = /3(1, 3,2)+dw,

Convergence Near Fixed Points

The extensions of the definitions and theorems in Section 2.1 to the case of two and
three dimensions are now given. The notation for N-dimensional functions has noi
been used. The reader can easily find these extensions in many books on numerical
analysis.

Definition 3.9. Afixedpoint for the system of two equations

(12) x =g\{x,y) and y—g2(x.y)

is a point (p, q) such that p = gi (p, q) and g = g2(p, H)m Similarly, in three dimen-
sions a fixed point for the system

(13) x=g\{x,y,z), ¥~g2(x,y,z) and z=3$3(x,y,7T)
is apoint (p, g, r) suchthatp = g](p, g, r),q = 92(p, q,r) andr = g3(p, q, r). 4
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Definition 3.10. For the functions (12), fixed-point iteration is

14) Pk+l = gliPk.gk) and <& i = gi(pk,gk)

for k —0, 1,___ Similarly, for the functions (13), fixed-point iteration is
Pk+l —gi(Pk, gk, M)

(15) gk+l = giiPk, gk, rk)
=] =83 iPk,qk,rk)

fork =0, 1

Theorem 3.17 (Fixed-Point Iteration). Assume that the functions in (12) and (13)
and their first partial derivatives are continuous on a region that contains the fixed point
{p, q) or (p, q, r), respectively. If the starting point is chosen sufficiently close to the
fixed point, then one of the following cases applies.

Case (i): Two dimensions. If (po, qo) is sufficiently close to (p,q) and if

(16)

then the iteration in (14) converges to the fixed point (p, q).
Case (ii): Three dimensions. If (po, qo, na) is sufficiently close to (p,q, r) and it

(17)

then the iteration in (15) converges to the fixed point (p, g, ).

If conditions (16) or (17) are not met, the iteration might diverge. This will usually
be the case if the sum of the magnitudes of the partial derivativesis much laigei than 1.
Theorem 3.17 can be used to show why the iteration (5) converged to the fixed point
near (-0.2,1.0). The partial derivatives are
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Indeed, for all (x, y) satisfying —0.5 < x < 0.5 and 0.5 <y < 1.5, the partial
derivatives satisfy

i(*.j = |z|+ |- 0.5] < I,
o STCHI0 g |z| + | I

C] _
ji*g2(x,y) E}./#z(n, Y) I + |-y +1 <0625 < 1

Therefore, the partial derivative conditions in (16) are met and Theorem 3.17 implies
that fixed-point iteration will converge to (p, q) ~ (—9.2222146, 0.9938084). Notice
that near the other fixed point (1.90068, 0.31122) the partial derivatives do not meet
the conditions in (16); hence convergence is not guaranteed. That is,

i gi (1.90068, 0.31122) d—y£i0-90068,0.31122)
X

2.40068 > 1,

1.16395 > 1

5#2(1-90068,0-31122) + lgy£2(1-90068, 0.31122)

Seidel Iteration

An improvement, analogous to the Gauss-Seidel method for linear systems, of fixed
point iteration can be made. Suppose that pk+i is used in the calculation of gt+\
(in three dimensions both p*+| and gt+i are used to compute r*+i). When these
modifications are incorporated in formulas (14) and (15), the method is called Seidel
iteration:

(18) P<i = g\(Pk,gk) and  gk+\ - gi(pk+i, 5K),
and

Pk+i = g\(pk,qk,rk)
(19) gk+\ = gliPk+U gt, n)

n+1 = g3(Pi+b 9*+I. nt).

Program 3.6 will implement Seidel iteration for nonlinear systems. Imple
tion of fixed-point iteration is left for the reader.

Newton’s Method for Nonlinear Systems

We now outline the derivation of Newton’s method in two dimensions. Neu ton's
method can easily be extended to higher dimensions.
Consider the system

n= fi(x,y)

(20) v = flix, Y),
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which can be considered a transformation from the ny-plane to the «u-plane. We are
interested in the behavior of this transformation near the point (jeg, yo) whose image
is the point (bio, i>0)- If the two functions have continuous partial derivatives, then the
differential can be used to write a system of linear approximations that is valid near the

point (*o, yo):

= — [i(* - — ~
MD= 5 /i(*0. Yn{X - mxo) + gy F1(x0.yo)v = yo),
(21) 9 3
V-V0o= 6(/2U0.y<))(x - X0) + d—y/zuo, yoKy - yo)-
The system (21) is a local linear transformation that relates small changes in the
independent variables to small changes in the dependent variable. When the Jacobian
matrix J{x0, yo) is used, this relationship is easier to visualize:

d

d;/l (*0. vo)

gy/1( 0> >b)

no
IVO. ]

(22) jc - joo

d
LA T
dX/2( 0, yo) 'clj'yfllxo, yo)
If the system in (20) is written as a vector function V. = F(X), the Jacobian
J(X, y) is the two-dimensional analog of the derivative, because (22) can be written as
(23) AF  J(x0 yo) A *.

We now use (23) to derive Newton’s method in two dimensions.
Consider the system (20) with n and v set equal to zero:

- fi
(24) 0- fikey)
0 = fi(x, y).

Suppose that (p, q) is a solution of (24); that is,
[25) 0= f:!(P:Q)
0= fi(p,q).

To develop Newton’s method for solving (24), we need to consider small changes
sinthe functions near the point (po, go)".
= U—«ao, Ap —x - Po.
(26) Au « P
Nwv = un —wo, AQ =y - 40-

Set (x, y) = (p, Q) in (20) and use (25) to see that (u, n): (0,0). Hence the changes
in the dependentvariables are

flip,q) - f\(po,qo0)=0- f\(po, qo)
flip, ) - f2(po, go) = 0 - f2(po, qo)-

27 M- wo

V~Vo
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Use the result of (27) in (22) to get the linear transformation

9 9
jli ,go 0, 9o
gj/i (po, go) (po, go) fi(po.<70)

(28) fi(po, go)

) a [£] -
-7f2(P0,q0) 772(PQ,go)

Ifthe Jacobian/(po,<?0) in (28) is nonsingular, we can solve for 4P = [Ap A"]r—
[P g\ - [po go] as follows:

(29) AP* -J(po, gOr 1F(po, go)-

Then the next approximation P i to the solution P is

(30) P, = Po+ AP = Po- Jipo, goT[P(po, go)-

Notice that (30) is the generalization of Newton’s method for the one-variable ease;

thatis, pi —po  f(po)/f'(po)-

Outline of Newton’s Method

Suppose that Pk has been obtained.
Step /. Evaluate the function

Ftp,) —I/Kp*: gt)
Step 2. Evaluate the Jacobian

' E?)Zfi (Px, ) z—yfi (Pk. )
J(Pi) = d
g;fZ(Pk,Qk) a);\(Pk,qk)
Step 3. Solve the linear system

J{PK)AP = -F(J>*) for LOP
Step 4. Compute the next point:
Pk+1= Pi + A P-

Now, repeat the process.
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Example 3.32. Consider the nonlinear system

0= x7—2x —y+ 0.5

0= x2+4y2-4.

Use Newton’s method with the starting value (/jo, 90) = (2.00,0.25) and compute (pi, g\ i
(pz-qi), and (p3<a3)-

The function vector and Jacobian matrix are

2_2x —y+ 0] raar-2 -11

* 0 =
F(*.j0 X2+ 4y2~ 4 3 2x  8,3-

At the point (2.00,0.25) they take on the values

0.25] 20 -1.0'

F(2.00,0.25) = 025, @ /(200028 = 0

The differentials p and /14 are solutions of the linear system

[20 - 10] T4?L _ _ r0.25M
4.0 203[4~J |0.25

A straightforward calculation reveals that

r r-0.09375
ap - TAP) ]
~ J~ L 00625 J°

The next point in the iteration is
* |
n |-299 ! 5] _ [1.90625
Pi - Po+ AP - j + I‘_&&%%J]* 170:3 125
Similarly, the next two points are

fl.o00691] . _ [L900677]
Pl 0.311213j ! jos112103 1

The coordinates of P 3 are accurate to six decimal places. Calculations for finding P 2 and
i®B are summarized in Table 3.7. [



178 chap.3 The Solutionoflinear Systems AX= B

Thble 3.7  Function Values, Jacobian Matrices, and Differentials Required for Bach
Iteration in Newton's Solution to Example 3.32

Solution of the linear system

PK J(PKbP = -F{PK Pt + AP
E.o -179\-0.QP% 751 [1.90625

[4.0 25] = - [ 0.3125

1

[1.90625] [1.8125 -1.0] [-01.005559} L [1.900691]
[ 0.3(25) [3.8125  2.5j [-0.1001287 [0.311213J
[1.900691] [1.801381 -1.000000] [-0.000014] _ _ [0.000031] [1.9006771
[0.311213j [3.801381  2.489700J [ 0.000006J-  [0.000038J 0.311219

Implementation of Newton’s method can require the determination of several par
tial derivatives. It is permissible to use numerical approximations for the values <4
these partial derivatives, but care must be taken to determine the proper step size. In
higher dimensions it is necessary to use the methods for solving linear systems intro
duced earlier in this chapter to solve for AP.

MATLAB
Programs 3.6 (Nonlinear Seidel Iteration) and 3.7 (Newton-Raphson Method) will re-
quire saving the nonlinear system X = G (X), and the nonlinear system F(X) = 0

and its Jacobian matrix, JF, respectively, as M-files. As an example consider saving
the nonlinear system in Example 3.32 and the related Jacobian matrix as the M-fi[es
F.mand JF.m respectively.

function Z*F(X) function W=JF(X)
x=X(l);y=X{2); x=X(1);y=X(2);
Z=zeros(l,2); W=[2*x-2 -1;2*x 8*y];

Z(l)=x"2-2*x-y+0.5;
Z(2)=x'2+4y*2-4;
The functions may be evaluated using the standard MATLAB comm -i. =
»A=feval(CF*, [2.00 0.25])
A=
0.2500 0.2500

»W=JF([2.00 0.25])
B=

4 2
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Program 3.6 (Nonlinear Seidel Iteration). To solve the nonlinear fixed-point
~system X = G (X), given one initial approximation Po, and generating a sequence
} {P j) that converges to the solution P.

function [P.iter] = seidel(G,P,delta, maxi)

‘/,nput - G is the nonlinear system saved in the M -file G.m
- P is the initial guess at the solution

VA - delta is the error bound

/ - maxi is the number of iterations

7/Output - P is the seidel approximation to the solution
| - iter is the number of iterations required
N=length(P);
for k=I:maxl
X=P;
'/ X is the kth approximation to the solution
for j=I:N
A=feval(’G\X);
Y, Update the terms of X as they are calculated
X (1)=A);
end
arr=abs(norm (X-P));
relerr=err/(norm (X)+eps);
P=X;
iter=k;
if(err<delta)l(relerr<delta)
break
end
end

In the following program the MATLAB command A\B is used to solve the linear
system AX = B (see Q=P-(J\Y’) '). Programs developed earlier in this chapter could
be used in place of this MATLAB command. The choice of an appropriate program
to solve the linear system would depend on the size and characteristics of the Jacobian

matrix.
Program 3.7 (Newton-Raphson Method). To solve the nonlinear system
P(X) — 0, given one initial approximation Po and generating a sequence {P *}

that converges to the solution P.

function [P,iter,err]J=newdim(F,JF,P,delta,epsilon,maxi)

7.lnput - F is the system saved as the M -file F.m
4 - JF is the Jacobian of F saved as the M -file JF.M
VA - P is the initial approximation to the solution



180 Chap.3 The Solution of Linear Systems Ax = B

/ - delta is the tolerance for P

'/, - epsilon is the tolerance for F(P)

% - maxi is the maximum number of iterations
/.Output - P is the approximation to the solution

7, - iter is the number of iterations required
7, - err is the error estimate for P

Y=feval(F,P);

for k=l:maxl
J*feval(JF,P);
Q=P-(I\Y’) "3
Z=feval(F,Q);
err=aorm(Q-P);
relerr=err/(norm(Q)+eps);
P=Q;
Y=z,
iter=k;
if (err<delta)l(relerr<delta)l(abs(Y)<epsilon;

break

end

end

Exercises for Iteration for Nonlinear Systems

1. Find (analytically) the fixed point(s) for each of the following systems.

(@ x=9g\(x,y) = xX—y

Yy -gl(x,y) = —x -méy
(b) x = gi{x,y) = (*2-y2-*-3)/3
y=S2(X,y) = (—c+y —1)/3
© x= gi(x,y) = sin(y)
Y =glx,y) = -6x +y
(d) =*=£1(*,y,z) = 9—3y—2z
Y= 92(x,y, )= 2 -x+ 2z
r =g3(.x,y,z) = -9 + 3x+ 4y—z

2. Find (analytically) the zero(s) for each of the following systems. Evaluat
bian of each system at each zero.
(a) 0= fi{x,y) =2x + y- 6
0= fi(x,y) =x + 2y
b)) 0= f\(x,y)= 3x2+ 2y - 4
O mfi{x,y)=2x+ 2y- 3
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Figure 3.7 The hyperbola and
circle for Exercise 5.

(c) 0= fi(x,y) = 2x-4cos(y)
0= h(x, Y) = 4jrsin(y)

(d) 0= fi(x,y,z) = x2+ y2- z
0= h(x,y, 2z) = x2+ yl1+ z2- 1
0= h(x,y,z) = x+y

3. Find a region in the ary-plane such that if (po, <jo) is in the region then fixed-point
iteration is guaranteed to converge (use an argument similar to the one that followed
Theorem 3.17) for the system:

* = giu. Y)= t*2- y2- x - 3)/3
gi(x,y) = (x +? + D/3.

y

4. Rewrite the following linear system in fixed-point form. Find bounds on x, >\ and z
such that fixed-point iteration is sure to converge for any initial guess (po, qo, ro) that
satisfies the boundary conditions.

1}
=

6X + y+ z

X+ 4y + z
x+ y+52=0
5. For the given nonlinear system, use the initial approximation (po, go) ~ (1.1, 2.0),

and compute the next three approximations to the fixed point using (a) fixed-point
iteration and equations (14) and (b) Seidel iteration using equations (18).

8x - 4*2+ y2+ 1
X =gl(x,y) = 8 (hyperbola)

2X —x2+ Ay —y2+ 3
4

(circle).

<
1

gi{x, y)
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Figure 3.8 The cubic and porabola
for Exercise 6.

6. For the following nonlinear system, use the initial approximation (po, qn) = (-0.3,
—1.3), and compute the next three approximations to the fixed point using (a) fixed-
point iteration and equations (14) and (b) Seidel iteration using equations (18).

, y -Xx 3+ 3x2+ 3x )
x = g\fx, y} = e (cubic)

<
1

glix, y) = -——--mmmmmmmm- (parabola).

7. Consider the nonlinear system

0= f\(x,y)=x2-y-Q .2

0= f2(x,y) = y2-x-0.3.

These parabolas intersect in two points as shown in Figure 3.9.

(a) Startwith (po.?0) = (1.2,1.2) and apply Newton’smethod to compute (pi, q\)
and (p 2, qi)-

(b) Start with (p0,go) — (—0.2, —0.2) and apply Newton’s method to compute
(pi, g\) and {p2,qi)-

8. Consider the nonlinear system shown in Figure 3.10.

0= Zi(jt,y) =x2+ y2-2
0= fi(x,y)=xy- 1

(a) Verify that the solutions are (1, 1) and (-1,-1).
(b) What difficulties might arise if we try to use Newton’s method to find the solu-
tions?
9. Show that Jacobi iteration for a 3 x 3 linear system is a special case of fixed-point
iteration (15). Furthermore, verify that if the coefficient matrix from a 3 x 3 linear
system is strictly diagonally dominant then condition (17) is satisfied.
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Figure 3.9 The parabolas for Figure 3.10 The circle and hyper-
Exercise 7. bola for Exercise 8.

10. Show that Newton’s method for two equations can be written in fixed-point iteration
form
X =glx,y), y=92(x,y),
where gi (x, y) and g2(x, y) are given by
i ) TI(x,y)iyf2(xy) - T2(x, y)ETi(x,y)
(X, = X -
ey det(3 (x,y))

fl(x, y)jjifi(x, y) - fl(x, y)-$zfi(x, y)

82{x, y) det(y(jc, y))

y ~

11. Fixed point iteration is used to solve the nonlinear system (12). Use the following
steps to prove that conditions in (16) are sufficient to guarantee that {(pt, qt)} con
verges to {p, q). Assume that there is a constant K withO < K < 1so that

1(x, + T8i(x, < K
dXg(xy) dy( y)

and

2(x, < K
dxg(XY)

for all (x,y) in the rectangle R = {(jc,y) :a < x < b,c < y < d}. Also assume
thata < pa <b andc < qo < d. Define

et=p~ pk, Ek= g - qt, and rk= max{]e*[. |£*Ib
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Use the following form of the Mean Value Theorem applied to functions of two vari-
ables:

3
e*+l = (at, gk)ek + ~gi (P, EKk

£*+1 = ’\352(bt,qk)ek + -?\gl(p, d%)EK,
where a£ and bk lie in [a, b] and c£ and dk lie in [c, d\. Prove the following:
(a) kil 5 Kro and |£i] < Kro
(b) Y21£ Kr\ < KZ2roand |Erl - Kr\ < K2ro
(c) k*] < Krk-i < Kkroand |£5] < Krk-1< Kkro
(d) limn—oo Pk — p and gk =g
12. As noted earlier, the Jacobian matrix of system (20) is the two-dimensional analog
of the derivative. Write system (20) as a vector function v = fr'iX), and let J :/
be the Jacobian matrix of this system. Given two nonlinear systems V = F (X land
V = G (X) and the real number c, prove:
(@) J(cF(X)) = cI(F(X))
(b) J(F(X) + G(X)) = I(F(X)) + I(G(X))

Algorithms and Programs

1. Use Program 3.6 to approximate the fixed points of the systems in Exercises 5 a
Answers should be accurate to 10 decimal places.

2. Use Program 3.7 to approximate the zeros of the systems in Exercises 7 and 8.
swers should be accurate to 10 decimal places.

3. Construct a program to find the fixed points of a system using fixed-point iters
Use the program to approximate the fixed points of the systems in Exercises 5 a
Answers should be accurate to 8 decimal places.

4. Use Program 3.7 to approximate the zeros of the following systems. Answers si
be accurate to 10 decimal places.
(@ 0= x2—x -fy24-z2—5

0= x1+ y2- y+ z1- 4
0= x2+y2+ 22+ z- 6
(b) 0= x1- x+ 2y2+ yr- 10
0= 5x-6y + z
0= z—x2—y2
() 0= (it )2+ (y41)2- 1
0= (x- 12+ y2-r1
0= 4x2+ 2y2+ z2- 16
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(d) 0= 9x2+ 36y2+ 42z—36
0= x2- 2yz- 20z
0= 16x-x3-2y2- 16z2

5. We wish to solve the nonlinear system

0= 7x3- IOx- -1
0= 8y3- Illy + x- 1

Use MATLAB to sketch the graphs of both curves on the same coordinate system.
Use the graph to verify that there are nine points where die graphs intersect. Using
the graph, estimate the points of intersection. Use these estimates and Program 3.7 to
approximate the points of intersection to 9 decimal places.

6. The system in Problem 5 can be rewritten in fixed-point form:

IxX3-y-\
' - 10

8y3+ X —1
R

Do some computer experimentation. Discover that, no matter what starting value is
used, only one of the nine solutions can be found using fixed-point iteration (on this
particular fixed-point form). Are there other fixed-pointforms of the system in 5 that
could be used to find other solutions of the system?



Interpolation and
Polynomial Approximation

The computational procedures used in computer software for the evaluation of a li-
brary function, such as sin(x), cos(jt), or ex, involve polynomial appproximation. The
state-of-the-art methods use rational functions (which are the quotients of polynomi-
als). However, the theory of polynomial approximation is suitable for a first course
in numericai analysis, and we will mainly consider them in this chapter. Suppose thai
the function fix) — ex is to be approximated by a polynomial of degree n — 2 over
the interval [-1, 1]. The Taylor polynomial is shown in Figure 4.1(a) and can be con-

(a) (b)

Figure 4.1 (a) The Taylor polynomial p(x) — 1.000000 + 1.000000n +
0.500000n2 which approximates f(x) = ex over [—1, 1]. (b) The Chebyshev
approximation q(x) = 1.000000 + 1.129772* + 0.532042.t2 for / (*) = e* over

[-1 1

186
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Figure 4.2 The graph of the col-
location polynomial that passes
through (1,2), (2, 1), (3,5), (4,6),
and (5, I).

trasted with the Chebyshev approximation in Figure 4.1(b). The maximum error for
the Taylor approximation is 0.218282, whereas the maximum error for the Chebyshev
polynomial is 0.056468. In this chapter we develop the basic theory needed to investi-
gate these matters.

An associated problem involves the construction of the collocation polynomial.
Given n + 1points in the plane (no two of which are aligned vertically), the colloca-
tion polynomial is the unique polynomial of degree < n that passes through the points.
In cases where data are known to a high degree of precision, the collocation polyno-
mial is sometimes used to find a polynomial that passes through the given data points.
A variety of methods can be used to construct the collocation polynomial: solving a
linear system for its coefficients, the use of Lagrange coefficient polynomials, and the
construction of a divided differences table and the coefficients of the Newton poly-
nomial. All three techniques are important for a practitioner of numerical analysis to
know. For example, the collocation polynomial of degree n = 4 that passes through
the five points (1, 2), (2, 1), (3, 5), (4, 6), and (5, 1) is

5n4 - 82*3 + 427n:2 - 806* + 504

P(x) = ,
24

and a graph showing both the points and the polynomial is given in Figure 4.2,

Taylor Series and Calculation of Functions

Limit processes arc the basis of calculus. For example, the derivative

L UPs fim TR T,
A-fU A

is (lit limit of the difference quotient where both the numerator and the denominator
go to zero. A Taylor series illustrates another type of limit process. In this case an
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Table 4.1  Taylor Series Expansions for Some Common Functions

for all x
x2 x4 X6
cos(je) = 1m for all x
A+H ~ 6"+
AV
Nz l+X+ -+ -+ -+ for all x
X2 x»
In(l +*) =X - — +y - — H-- l<x<1
arctanU)=x -y +y -y H-— —l<x<1
P(P—1).> P(P 1P —2) t i
@+ N = 1+ pjc+ (2! —)*2+—( _ AP =2 3+- for if < 1

infinite number of terms is added together by taking the limit of certain partial sums.
An important application is their use to represent the elementary functions: sin(;c),
cos(jt), ex, In(jt), etc. Table 4.1 gives several of the common Taylor series expansions.
The partial sums can be accumulated until an approximation to the function is obtained
that has the accuracy specified. Series solutions are used in the areas of engineering
and physics.

We want to learn how a finite sum can be used to obtain a good approximation
to an infinite sum. For illustration we shall use the exponential series in Table 4.1 to
compute the numbere = e 1, which is the base of the natural logarithm and exponential

functions. Here we choose x — | and use the series
, 1 12 13 14 1*
L+ I+ 20 4+ 3L+ 40+ T K+

The definition for the sum of an infinite series in Section 1.1 requires that the partial
sums Sn tend to a limit. The values of these sums are given in Table 4.2.

A natural way to think about the power series representation of a function is to
view the expansion as the limiting case of polynomials of increasing degree. If enough
terms are added, then an accurate approximation will be obtained. This needs to be
made precise. What degree should be chosen for the polynomial, and how do we
calculate the coefficients for the powers of x in the polynomial? Theorem 4.1 answers
these questions.
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Tbble 4.2
Determine

5B

=1

FREBow~wonbwnpo

Partial Sums S,, Used to

e

=1+ 1 +1 + ...

1.0
2.0
25

+ J-

2.666666666666...
2.708333333333 ...
2.716666666666...
2,718055555555...
2.718253968254...
2.718278769841 ...
2.718281525573...
2.718281801146...
2.718281826199...
2.718281828286 ...
2.718281828447 ...
2.718281828458...
2.718281828459...

Theorem 4.1 (Taylor Polynomial Approximation).
and x0 e [a, b] is a fixed value. U x e [a, b], then

CD f(x) =

where Ps (x) is a polynomial that can be used to approximate fix):

(e2)} / (*)55Pn (x)

Hie error term E~(x) has the form

PsM + EN(x),

N k) n

= — TIAX~ XN

i=0

nny-1y/

ftr some value ¢ = c(x) that lies between x and *o.

Proof, The proofis left as an exerci

se.

189

Assume that / € C N+X[a, b]

Relation (2) indicates how the coefficients of the Taylor polynomial are calculated.
Although the error term (3) involves a similar expression, notice that f (N+1](c) is to be
evaluated at an undetermined number c that depends on the value of x . For this reason
we do not try to evaluate Ey(x): it is used to determine a bound for the accuracy of

the approximation.
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Example 4.1. Show why 15 terms are all that are needed to obtain the 13-digit approxi
mation e = 2.718281828459 in Table 4.2.

Expand f(x) — f' in a Taylor polynomial of degree 15 using the fixed value *(> =
and involving the powers (jc —0)* = x k. The derivatives required are f'(x) = f"(x) =
m-+= /(16J = e*. The first 15 derivatives are used to calculate the coefficients ak= e°/k1
and are used to write

x1 a3 n:15
(4) PIS(x)=1+x+ - + _ +
Setting x = 1in (4) gives the partial sum S15= /*u(l). The remainder term is needed to
show the accuracy of the approximation:

(5) £ 15 = L3206

Since we chose *0 = 0 andx = 1, the value c lies between them (i.e., 0 < ¢ < 1), which
implies that ec < el Notice that the partial sums in Table 4.2 are bounded above by 3
Combining these two inequalities yields ec < 3, which is used in the following calculation

=B ee

— < 1.433844 x 10-13.
16! “ 16! 16!

1£I5(I)| =
Therefore, all the digits in the approximations  2.718281828459 are correct, because th.
actual error (whatever it is) must be less than 2 in the thirteenth decimal place. u

Instead of giving a rigorous proof of Theorem 4.1, we shall discuss some of the
features of the approximation; the reader can look in any standard reference text Qi1
calculus for more details. For illustration, we again use the function /7 (x) = ex and
the value *o = 0. From elementary calculus we know that the slope of the curve
y = ex at the point (x,ex) is f'(x) = e*. Hence the slope at the point (0, 1) i>
/'(0) — 1 Therefore, the tangent line to the curve at the point (0, 1) isY =1 + X
This is the same formula that would be obtained if we used 3V = 1in Theorem 4.1
that is, .PiU) = /(0) + /'(0)n/1! = 1+ x. Therefore, PiOt) is the equation of the
tangent line to the curve. The graphs are shown in Figure 4.3.

Observe that the approximation e* v | + /ris good near the center ,i'o = 0 and thai
the distance between the curves grows as x moves away from 0. Notice that the slope-
of the curves agree at (0, 1). In calculus we learned that the second derivative indicate-
whether a curve is concave up or down. The study of curvaturel shows that if twn
curvesy = f(x) and v= g(x) have the property that f(xo) = #Uo), fix Q0 = g’{x0)
and f"(x 0) = g"(x0) then they have the same curvature at* 0. This property would be
desirable for a polynomial function that approximates f(x). Corollary 4.1 shows thai
the Taylor polynomial has this property for N > 2.

1The curvature K of agraph v = f(x) at (xq, j>q) is defined by K — -H/4Y-4Y)12)3»
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Figure 43 The graphs of y = ?
andy = Pi(x) = 1+n.

Corollary 4.1. If Pjv(x) is the Taylor polynomial of degree N given in Theorem 4.1,
then

(6) P$\xo0) = fikkxo) for k= 0O, I....... N.

Proof. Setx = xo iNnequations (2) and (3), and the result is Pjv(xo) = f(xo0). Thus
statement (6) is true for k = 0. Now differentiate the right-hand side of (2) and get

7 Pf,(x) = 2J2*% — “ xg = A
) 00 = &2 (K h ) k=0

setx = *0 in (7) to obtain PN (x0) — f'(x 0). Thus statement (6) is true for k — 1
Successive differentiations of (7) will establish the other identities in (6). The details
are left as an exercise. .

Applying Corollary 4.1, we see thaty = Pjix) has the properties / (jcq) = P2U 0),
/'(x0) = P2(x0), and f" (*o) = P~&ao0)', hence the graphs have the same curvature
at xo- For example, consider f(x) = exand P2U) = 1+ x + x2jl. The graphs are
shown in Figure 4.4 and it is seen that they curve up in the same fashion at (0, 1).

In the theory of approximation, one seeks to find an accurate polynomial approx-
imation to the analytic function2 f(x) over [a. b\. This is one technique used in de-
veloping computer software. The accuracy of a Taylor polynomial is increased when
we choose N large. The accuracy of any given polynomial will generally decrease as
the value of x moves away from the center xo- Hence we must choose N large enough
and restrict the maximum value of g —Jtolso that the error does not exceed a specified
bound. If we choose the interval width to be 2R and xq in the center (i.e., \Xx—xol < R),

2The function f(x) is analytic at .to if it has continuous derivatives of all orders and can be
represented as a Taylor series in an interval about jtq.
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Figure 4.4 The graphsofy = e* andy = Pr(x) = 1+

* + x2l.

Table 4.3  Values for the Error Bound frror] <

Approximation ex  PN(x) for Ul < R

R = 2.0,
I1'< 20

<S*P5(X) 0.65680499
exX W Pb(X) 0.18765857
0.04691464
0.01042548

R = 15
W < 15

0.07090172
0.01519323
0.00284873
0.00047479

the absolute value of the error satisfies the relation

(8) lenror] -

M R N+I

/(v + 1)! Using the

R- 10,
1< 10

0.00377539
0.00053934
0.00006742
0.00000749

R = 0.5,
N <05

0.00003578
0.00000256
0.00000016
0.00000001

where M < max{] 7/ (/IMT+1Xr) | : xo—R < z < *o+ J1). If N is fixed and the derivatives
are uniformly bounded, the error bound in (8) is proportional to RN+]/(N +1)! and
decreases if R goes to zero as N gets large. Table 4.3 shows how the choices of these

two parameters affect the accuracy of the approximation ex ~

Pn (x) over the interval

jicl < R. The error is smallest when N is largest and R smallest. Graphs for Pj, P3,

and P4 are given in Figure 4.5.

Example 4.2. Establish the error bounds for the approximation ex

the intervals M < 1.0 and [|x] < 0.5.

Pg(x) on each of

If U]l < 1.0, thenletting R = 1.0 and |/(9)<c)l = kc]< €10 = M in (8) implies that

lerrori= IEsM | < —

100

0.00000749.
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Figure 4.5 The grafts ofy = e*, y = Pi(x), y = Pi(x),
andy — P*(x).

Figure 4.6 The graph of the error
y= £,(*) = e*~ P9Xx).

1f N < 0.5, then letting R = 0.5 and ff (9>(c)l = \ec\< e0J = M in (8) implies that

£0,5(0.5)9
lerrorl = | () ]< -——-- ~0.00000001. []

Example 4.3. Iffix) = ex, show that N — 9 is the smallest integer, so that the lerrorj =
[E>(.*)] < 0.0000005 for jcin [—1,1]. Hence Pg(x) can be used to compute approximate
values of ex that will be accurate in the sixth decimal place.

We need to find the smallest integer N so that

. ec(\)M+1
lerrori = |EW(*)] < —; < 0.0000005.
(N + 1)
In Example 4.2 we saw that N = 8 was too small, so we try /' = 9 and discover

that \Es(x)\ < <?'()9+i/(9 + 1)! < 0.000000749. This value is slightly larger than
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desired; hence we would be likely to choose N = 10. But we used ec < elas a crude
estimate in finding the error bound. Hence 0.000000749 is a little larger than the actual
error. Figure 4.6 shows a graph of Eg(x) = ex — P”ix). Notice that the maximum vertical
range is about 3 x 10-7 and occurs at the right end point (1, £9(1». Indeed, the maximum
error on the interval is £9(1) = 2.718281828 —2.718281526 ~ 3.024 x 10“ \ Therefore,
N = 9isjustified. [ ]

Methods for Evaluating a Polynomial

There are several mathematically equivalent ways to evaluate a polynomial. Consider,
for example the function

(9) f(x) = (x- 1)8.

The evaluation of /7 will require the use of an exponential function. Or the binomial
formula can be used to expand 7/ (*) in powers of*:

Homer’s method (see Section 1.1), which is also called nested multiplication, can
now be used to evaluate the polynomial in (10). When applied to formula (10), nested

multiplication permits us to write
(11) f(x) = (((((((* - 8* + 28)x - 56)x + 70)jc - 56)w+ 28)j - 8)* + 1

To evaluate / (x) now requires seven multiplications and eight additions or sub-
tractions. The necessity of using an exponential function to evaluate the polynomial

has now been eliminated.
We end this section with the theorem that relates the Taylor series in Table 4.1 and

the Taylor polynomials of Theorem 4.1.

Theorem 4.2 (Taylor Series). Assume that / (x) is analytic and has continuous
derivatives of all order v= 1,2,..., on an interval (a, b) containing xo. Suppose that
the Taylor polynomials (2) tend to a limit

d2
then f{x) has the Taylor series expansion

(13) f(x)= Y , f(K)J{*O\ x - x O)k.
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Proof This follows directly from the definition of convergence of series in Sec-
tion 1.1. The limit condition is often stated by saying that the error term must go
to zero as N goes to infinity. Therefore, a necessary and sufficient condition for (13)
to hold is that

I%W';c)nz {Im fiN+l)(c)(x -X q)N+l:

hm 0,
V—KB0 HOC (N + 1)

(14)

where ¢ depends on N and jc,

Exercises for Taylor Series and Calculation of Functions

1. Let/ (x) = sm(jr) and apply Theorem 4.1.
(a) Use *0 = 0 and find Ps(x), Pj(x), and /M¥*).
(b) Show thatif Jc] < 1then the approximation
i x3 x5 jer x9
sm(jc) « X =—-----m- Frmmmmmm e 3
3! 5! 7! 9!
has the error bound |£9(*)] < 1/10! < 2.75574 x 10-7.
(c) Usexqg = >/4 and find Ps(x), which involves powers of (x - 5/4).

2. Let f(x) = cos(x) and apply Theorem 4.1.
(a) Usexqg= 0Oand find Pn(x), P6(x\ and Pg(x).
(b) Show thatif |x]< 1then the approximation

c0S(x) | e e  —

has the error bound |Eg(jc)] < 1/9! < 2.75574 x 10-6.
(c) Usexqg = Tt/4 and find PgOc), which involves powers of (. —jt/4).

3. Does /(jc) = XX 1have a Taylor series expansion aboutjco = 07? Justify your answer,
Does the function /7 (x) = x 1/2have aTaylor series expansion about .to = 1? Justify
your answer.

4. (a) Find a Taylor polynomial of degree N — 5 for f(x) = 1/(1 + x) expanded

about joo = 0.
(b) Find the error term Es (x) for the polynomial in part (a).

5. Find the Taylor polynomial of degree N = 3 for /(x) — e"*22 expanded about
jeco = 0.
6. Find the Taylor polynomial of degree N = 3, Pb(x), for /(x) = jci8 —2jc2 + 2x

expanded aboutxq = 1. Show that / (x) = Pr(x).
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10.

12.

13.

Chap.4 Interpolation and polynomial Approximation

(a) Find the Taylor polynomial of degree N = 5 for fix) = x1/1 expanded about
X0 = 4.

(b) Find the Taylor polynomial of degree N = 5for fix) = x” 2expanded about
X0 = 9.

(c) Determine which of the polynomials in parts (a) and (b) best approximates
(6.5)V2

. Use fix) = (2 + x)U/r and apply Theorem 4.1.

(a) Find the Taylor polynomial P3(x) expanded aboutxo = 2

(to) Use P3(x) to find an approximation to 31/2

(c) Find the maximum value of ¥ (4)(c) Jon the interval 1 < ¢ < 3 and find a bound
for |E3(go)l.

Determine the degree of the Taylor polynomial P\ (x) expanded about xo = 0 that

should be used to approximate e®' so that the error is less than 10-6.

Determine the degree of the Taylor polynomial Pn (x) expanded about xo — n that
should be used to approximate cos(33jr/32) so that the error is less than 10" 6.

(a) Find the Taylor polynomial of degree N = 4 for F(x) = /', cos(r2)dt ex-
panded about xo = 0.

(b) Use the Taylor polynomial to approximate F(0.1).

(c) Find a bound on the error to the approximation in part (b).

(a) Use the geometric series
1
= |- x1+*4—-J6+ Xr - -m- for I*1 < 1,
1+0112

and integrate both sides term by term to obtain

A3 05yl
arctan(x) = jc- — + —---— — He—- for I < 1

(b) Use /6 = arctan(3_I/ 2) and the series in part (a) to show that

3-' 3-2 3~3 3-4 \
2 ( 3 + 5 7 + 9 ")

(c) Use the series in part (b) to compute >k accurate to eight digits.
Fact, >k « 3.141592653589793284....

Use fix) = In(1+ jc) andj;0= 0. and apply Theorem 4.1.

(a) Show that/<*>(*) = (-1)*-](Ne - 1))/(1 + x)k.

(to) Show that the Taylor polynomial of degree N is
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(c) Show thatthe error term for P,v(n:) is

(-1)*x *+1

En(x) =
(JV+ 1)@ +c)w+r

(d) Evaluate P}Q.5), ft(0.5), and /~(0-5). Compare with In(1.5).
(e) Show thatif 0.0 < x < 0.5 then the approximation

X2 x3 x1 Xs X9
»0 )J)«*-T +T - -+ T -T + T
has the error bound jE®I < 0.00009765__

14. Binomial series. Let /(x) = (1 + x)pandxo = O,
(@) Showthat/w Cx)= p(p —1--(p —k+ 1)1 + x)p~k.
(b) Show that the Taylor polynomial of degree N is

(c) Show that
EN(X) = p(p-1)...(p- N)xn+1l/« 1+ ¢c)n+1~p(N + 1)!).
(d) Set p = 1/2 and compute Pr(0.5), P4<0.5), and Pe(0-5). Compare with

() Show thatif 0.0 < x < 0.5 then the approximation

I+ J 2 8 16 128 + 256

has the error bound |£sl < (0.5)ii(21 /71024) = 0.0003204___
(f) Show thatif p = N is apositive integer, then

PN(x) = 1+ Nx + + mmm+ Nxn~' + xn.

Notice that this is the familiar binomial expansion.

15. Find ¢ such that \Eb\ < H I Mlwhenever \x —xq\< c.
(a) Let/ (j9 = cos(x)and .to= 0.
(b) Let /(x) = sin(x) andxo = 3r/2.
(c) Let/(x) = exandxo = 0.
16. (a) Supposethaty = f(x) is aneven function (i.e., 7/ (—x) = /(x) for all x in the
domain of /). What can be said about P,v(x)?
(b) Suppose thaty = 7/ (x) is an odd function (i.e., / (—x) = —/ (x) for all x in the
domain of /). What can be said about Pfj(x)?
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17. Lety = f{x) be apolynomialofdegree N. If /O0) > Oand fix 0),..., /(JV)(*0) 2
0, show that all the real roots of / are less than xo- Hint. Expand 7/ in a Taylor
polynomial of degree N about xo.

18. Let f(x) — ex. Use Theorem 4.1 to find P\’'(x), for N = 1, 2, 3....... expanded
about xo = 0. Show that every real root of Pn (x) has multiplicity less than or equal
to one. Note. If p is aroot of multiplicity M of the polynomial P(x), then p is aroot
of multiplicity M — 1of P'(x).

fi\
19. Finish the proof of Corollary 4.1 by writing down the expression for PN (x) and
showing that

Pp W = / N9<*0) for k= 2, 3, ..., N.

Exercises 20 and 21 form aproofof Taylor's theorem.

20. Let g(t) and its derivatives fork — I, 2,..., N + 1, be continuous on the
interval (a, b), which contains xq. Suppose that there exist two distinct points x and
jto such that g(x) = 0, and g(xcj) = g'(x0) = ... £(,v'(jo) = 0. Prove that there

exists a value c that lies between xo and x such that g<Jv+1)(c) = 0.

Remark. Note that g(t) is a function of t. and the values x and xo are to be treated
as constants with respect to the variable t.

Hint. Use Rolle’'s theorem (Theorem 1.5, Section 1.1) on the interval with end
points xo and x to find the number ci such thatg’(c\) = 0. Then use Rolle’s theorem
applied to the function g'(t) on the interval with end points xo and ci to find the
number cr such that g"(ci) = 0. Inductively repeat the process until the number
cn+ i is found such that g <,v+r,(cN+]) = O.

21. Use the result of Exercise 20 and the special function

(t —xn')N+I
g(0 = fit) - PNit)- E,U)(x_ xo- ,

where Pp/ix) is the Taylor polynomial of degree N, to prove that the error term
E,\\(c) = fix) —Pjv(x) has the form

Hint. Find £(1,+1)(0 andevaluate itatt = c.

Algorithms and Programs

The matrix nature of MATLAB allows us to quickly evaluate functions at a large num-
ber of values. If X=[-1 0 1], then sin(X) will produce [sin (-]1) sin(0) sin(l)].
Similarly, if X=-1:0.1: 1, then Y=sin(X) will produce a matrix Y of the same dimension
as X with the appropriate values of sine. These two row matrices can be displayed in the
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form of a table by defining the matrix D = [X' Y'] {Note. The matrices X and Y must be
of the same length.)
1. (a) Use the plot command to plot sin(jt), Ps(x), Pj(x), and Pyix) from Exercise
1on the same graph using the interval —1 < je< 1
(b) Create a table with columns that consist of sin(jt), Ps(x), Pj(x), and Pg(jc)
evaluated at 10 equally spaced values of jc from the interval [—1,1].

2. (a) Usetheplot command to plot cos(x), P\(x), Pe(x'), and Pg(x) from Exercise
2 on the same graph using the interval —1 < x < 1
(b) Create a table with columns that consist of cos (ic), P4(x). P(,{x), and P%{x)
evaluated at 19 equally spaced values of x from the interval [—1,1].

Tntroduction to Interpolation

In Section 4.1 we saw how a Taylor polynomial can be used to approximate the func-
tion f{x). The information needed to construct the Taylor polynomial is the value
of / and its derivatives at jeo. A shortcoming is that the higher-order derivatives must
be known, and often they are either not available or they are hard to compute.

Suppose that the functiony = f(x) is known at the N + 1 points (jcq, yo), mmm,
&N, v,v), where the values g* are spread out over the interval [a, ft] and satisfy

a< X0 < Xi < eee< xn < b and yb = / (jet).

A polynomial P(x) of degree N will be constructed that passes through these N + 1
points. In the construction, only the numerical values and y* are needed. Hence
the higher-order derivatives are not necessary. The polynomial P(x) can be used to
approximate/(x)overthe entire interval [a,b\. However, if the error function E(x) —
f(x) — P(x) is required, then we will need to know 7/ (iV+1,(jt) and a bound for its
magnitude, that is

M = Tax{[/~+14*)1 ma <x <b}.

Situations in statistical and scientific analysis arise where the functiony = 7 (jc)
(Savailable only at N + 1tabulated points ( 4 yk). and a method is needed to approx-
imate / (ar) at nontabulated abscissas. If there is a significant amount of error in the
tabulated values, then the methods of curve fitting in Chapter 5 should be considered.
On the other hand, if the points (gr*, y*) are known to a high degree of accuracy, then
ihe polynomial curve y = P (x) that passes through them can be considered. When
Xg < x < xn, the approximation P(x) is called an interpolated value. If either
X < toor xpt < jc,then P(x) is called an extrapolated value. Polynomials are used to
design software algorithms to approximate functions, for numerical differentiation, for
numerical integration, and for making computer-drawn curves that must pass through
specified points.
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The tangent line

y y has slope P (4).
Figure 4.7 (a) The approximating Figure 4.7 (b) The approximating
polynomial P(x) can be used for inter- polynomial P(x) is differentiated and
polation at the point (4, A(4)) and ex- P'{x) is used to find the slope at the in-
trapolation at the point (5.5, P (5.5)). terpolation point (4, P (4)).

Let us briefly mention how to evaluate the polynomial P(x):
(1) P(x) = aNxN +a N ixN~ 1 4----—--- Taix2+ a\x + ao.

Homer’s method of synthetic division is an efficient way to evaluate P (x). The deriva-
tive P'(x) is

(2) P'Oc) = Nat/x"-1+ (N - l)aN-\xN~2+ mem+ 2aX +at
and the indefinite integral 1(x) = 7/ P(x) dx, which satisfies I'(x) = P(x), is
_ anxN+l ay~\Xxbl aix3 a\x2

<» + f- + — + — + ow + C

where C is the constant of integration. Algorithm 4.1 (end of Section 4.2) shows how
to adapt Homer’s method to P'(x) and 1(jc).

Example 4.4. The polynomial P(x) = —0.02x3 -~Q.2x2 —0.4jt + 1.28 passes through
the four points (1, 1.06), (2, 1.12), (3, 1.34), and (5, 1.78). Find (a) P(4), (b) P’{4).
(c) /l4P(x)dx, and (d) P(5.5). Finally, (e) show how to find the coefficients of P(x).

Use Algorithm 4.1(1)—iii) (this is equivalent to the process in Table 1.2) with x = 4.

(a) b3 = a3 = —0.02
B2= a2+ b3x = 0.2+ (—0.02)(4) = 0.12
bt = ax + b2 = -0.4 + (0.12)(4) = 0.08
bO= ao+bix = 1.28+ (0.08)(4) = 1.60.
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Figure 4.8 The approximating
polynomial P{x) is integrated and
its antiderivative is used to find the
area under the curve for 1< x < 4.

The interpolated value is P(4) = 1,60 (see Figure 4.7(a)).

(b) th = 3a3 = —0.06
d] = 2ar + <hx = 0.4+ (—0.06)(4) = 0.16
do= ai + d,x = -0.4+ (0.16){4) = 0.24.

The numerical derivative is P'{4) = 0.24 (see Figure 4.7(b)).

(©) 4= — = -0.005

+ 14 = 0,06666667 + (-0.005X4) = 0.04666667

12= y + hx = -0.2 + (0.04666667)(4) = -0.01333333

I, = 00+ hx = 1-28+ (-0.01333333)(4) = 1.22666667
/o= 0+ fix = 0+ (1.22666667X4) = 4.90666667.

Hence /(4) = 4.90666667. Similarly, /(1) = 1.14166667. Therefore, f4P(x) av =
/(4) — /(1) = 3.765 (see Figure 4.8).
(d) Use Algorithm 4.1(i) with x = 5.5,

3 = a3 = —0.02
in=ar+ bix = 0.2+ (-0.02)(5.5) = 0.09
b\ —Qj + b2* — —0.4+ (0.09)(5.5) = 0.095
= ao + b\x = 1.28+ (0.095)(5.5) = 1.8025.

The extrapolated value is P(5.5) = 1,8025 (see Figure 4.7(a)),
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Table 4.4  Values of the Taylor Polynomial T (jc) of Degree 5, and the
Function In(l + jc) and the Error In(l + n) —T (n) on [0, 1]

Taylor polynomial, Function, Error,

X T(x) In(l 1-1) 1n(1+pac)-74n)
0.0 0.00000000 0.00000000 0.00000000
0.2 0.18233067 0.18232156 -0.00000911
0.4 0.33698133 0.33647224 -0.00050909
0.6 0.47515200 0.47000363 -0.00514837
0.8 0.61380267 0.58778666 -0.02601601

10 0.78333333 0.69314718 -0.09018615

(e) The methods of Chapter 3 can be used to find the coefficients. Assume that P(x) -
A + Bx + Cx2+ Djc3; then at each value x = 1,2, 3, and 5 we get a linear equation
involving A, B,C, and D.

Atx = \:A+\B+ 1C + 1D= 1.06
Atx =2 A+ 2B+ 4C+ 80 = 1.12
(4) Atx = 3:A + 3B+ 9C+ 27D = 134
Atx =5 :J1 + 59 + 25C+ 125£>= 1.78

The solutionto (4) isA = 1.28,B = —0.4,C = 0.2, and D = —0.2. m

This method for finding the coefficients is mathematically sound, but sometime.1
the matrix is difficult to solve accurately. In this chapter we design algorithms specifi
cally for polynomials.

Let us return to the topic of using a polynomial to calculate approximations to a
known function. In Section 4.1 we saw that the fifth-degree Taylor polynomial for
7 (r) = In(l + ) is

x2 X X g 2 4 5

(5) rMX)=X-7T +T~T +T

If T(x) is used to approximate In(1+ jc) on the interval [0,1], then the error is O at
x = 0 and is largest when x = 1 (see Table 4.4). Indeed, the error between 7(1) and
the correct value In(1) is 13%. We seek a polynomial of degree 5 that will approximate
In(l + jc) better over the interval [0, 1]. The polynomial P(x) in Example 4.5 is an
interpolating polynomial and will approximate In(l + x) with an error no bigger than
0.00002385 over the interval [0, 1].

Example 4.5. Consider the function f{x) = In(l + jc) and the polynomial

P{x) = 0.02957206jc5- 0.12895295jt4 + 0.28249626jc3

- 0.48907554jjc2+ 0.99910735jc
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Table 4.5 Values of the Approximating Polynomial P(x) of Example 4.5 and the Function

f{x) = In(l +*) and the Error E(x) on [—0.1, 1.1]
Approximating polynomial, Function, Error,

X P(x) /() =In(l +*) £(*) = fix) - Fix)

-0.1 -0.10509718 -0.10536052 -0.00026334
0.0 0.00000000 0.00000000 0.00000000
0.1 0.09528988 0.09531018 0.00002030
0.2 0.18232156 0.18232156 0.00000000
0.3 0.26237015 0.26236426 -0.00000589
0.4 0.33647224 0.33647224 0.00000000
0.5 0.40546139 0.40546511 0.00000372
0.6 0.47000363 0.47000363 0.00000000
0.7 0.53063292 0.53062825 -0.00000467
0.8 0.58778666 0.58778666 0.00000000
0.9 0.64184118 0.64185389 0.00001271
1.0 0.69314718 0.69314718 0.00000000
11 0.74206529 0.74193734 -0.00012795

Figure 4.9 The graph of j =
P(x), which “lies on top" of the
graph y = In(l + *).

based on the six nodes Xk = kj5for k= 0, 1, 2, 3, 4, and 5. The following are empirical
descriptions o f the approximation P(x) ~ In(l + x).

1. Pfak) = /(**) at each node (see Table 4.5).

2. The maximum error on the interval [—0.1, 1.1] occurs at x — —0.1 and Jerror] <
0.00026334 for —0.1 < x < 1.1 (see Figure 4.10). Hence the graph ofy = P(x)
would appear identical to thatofy = In (1 + Jt) (see Figure 4.9).

3. The maximum error on the interval [0,1] occurs atx = 0.06472456 and |eiror] <x
0.00002385 for 0 < * < 1(see Figure 4.10).
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Figure 410 The graph oftheerrory = E(jc) =
In(l +3C) - P(x).

Remark, At a node jc* we have f (oc*) = P(x/i). Hence E (x*) = O at a node. The graph t
E(x) = fix) —P(x) looks like a vibrating string, with the nodes being the abscissa wher.
there is no displacement. *

Algorithm 4.1 (Polynomial Calculus). To evaluate the polynomial P{x), its
derivative P'(x), and its integral / P(x) dx by performing synthetic division.

INPUT N {Degree of P(x)}

INPUT A(0), .4 (1),, A(Af) {Coefficients of /'(x)}

INPUT C {Constant of integration}

INPUT X {Independent variable}

(i) Algorithm to Evaluate P (x) Space-saving version:

B(N) :=A(N) Poly := A(N)

FOR K = N - 1DOWNTO 0DO FORK = N - 1DOWNTOODO
B(K) := A(K) + B(K + 1)*X Poly := A{K) + Poly * X

PRINT “The value P(x.) is", B(0) PRINT "The value P(x) is”, Poly

(ii)  Algorithm to Evaluate P'{x) Space-saving version:

D(N~ 1) -N * A(N) Deriv := N * A(N)

FORK = N - 1DOWNTO 1DO FORK = N - 1DOWNTO 1DO
D(K - 1):= K*A(K) + DiK)*X Deriv := K * A(K) + Deriv* X

PRINT “The value F’(x) is”, D(0) PRINT “The value P'(x) is”, Deriv

(iii)  Algorithm to Evaluate I (jc) Space-saving version:

I{N+ 1):= A{N)/(N + \ Integ := A(N)/(N + 1)

FOR K = N DOWNTO 1DO FOR K = N DOWNTO 1130
LK) AK - {)/K+ I{K + \)*X Integ - A(K~i)jK + Integ* X

1(0) := C+ /(1)* X Integ := C 4-Integ * X

PRINT “The value ! (x) is", /(0) PRINT “The value I (x) is”, biteg
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Exercises for Introduction to Interpolation

1 Consider P (n) =* —0.02n3+ O.ljc2 —0.2* + 1.66, which passes through the four
points (1,1.54), (2, 1.5), (3, 1.42), and (5,0.66).
(a) Find P (4).
(b) Find P'(4).
(c) Find the definite integral of P(x) taken over [1,4].
(d) Find the extrapolated value P (5.5).
(e) Show how to find the coefficients of P{x).
2. Consider P(x) = —0.04m:3+ 0.14*2—0.16n: + 2.08, which passes through the four
points (0, 2.08), (1, 2.02), (2, 2.00), and (4,1.12).
(@) Find Pi'S).
(b) Find P'(D).
(c) Find the definite integral of P(x) taken over [0, 3].
(d) Find the extrapolated value P (4.5).
(e) Show how to find the coefficients of P(x).
3. Consider P(x) = -0.029216666713+ 0.275n:2 -0.570833333* - 1.375, which
passes through the four points {1, 1.05), (2,1.10), (3,1.35), and (5, 1.75).
(a) Show that the ordinates 1.05, 1,10, 1.35, and 1.75 differ from those of Exam-
ple 4.4 by less than 1.8%, yet the coefficients of * 3 and * differ by more than
42%.
(b) Find P (4) and compare with Example 4.4.
(c) Find P\ 4) and compare with Example 4.4.
(d) Find the definite integral of P(x) taken over [1,4] and compare with Exam-
ple 4,4.
(e) Find the extrapolated value P(5.5) and compare with Example 4.4.
Remark. Part (a) shows that the computation of the coefficients of an interpolating
polynomial is an ill-conditioned problem.

Algorithms and Programs

1. Write a program in MATLAB that will implement Algorithm 4.1. The program
should accept the coefficients of the polynomial P(x) = cnxn +a”-i X N~] -----—-- K
aix2+ ai* + floasan 1 x N matrix: P = [go/ maj 5 ao}

2. For each of the given functions, the fifth-degree polynomial P(x) passes through
the six points (0, /7(0)), (0.2, 7(0.2)), (0.4, /7(0.4)), (0.6, /7(0.6)), (0.8, 7(0.8)),
(1, 7(1)). The six coefficients of P(x) are go, a\,..., as, where

p(x) = a$x5+ 04X* + a3*3+ arxl+ ct\x + ao-



(i) Find the coefficients of P(x) by solving the 6 x 6 system of linear equations
ao + aix + 02X2+ aix3+ a*xA+ asx5— fixj)

usingxj — ij —I)/5andj = 1,2, 3,4, 5,6 for the six unknowns {a*}] _0.

(ii) Use your MATLAB program from Problem 1 to compute the interpolated va
ues /40.3), P A), and /*(0.5) and compare with /(0.3), /7(0.4), and /(0.5
respectively.

(iii) Use your MATLAB program to compute the extrapolated values P (—0.1) an :
P(I.1) and compare with /7 (—0.1) and 7/ (I.1), respectively.

(iv) Use your MATLAB program to find the integral of Pix) taken over [0, 1]
and compare with the integral of / (jc) taken over [0,1]. Plot / (x) and Fix
over [0, 1] on the same graph.

(v) Make atable of values for P{xKk), /(**)> and E{xK = /(xk — P(.Xk), where
xk = A/100 for A= 0, 1,..., 100.

(@) 7(*) =«

(b) f(x) = sin(jc)

(c) f{x) = {x+

3. A portion of an amusement park ride is to be modeled using three polynomials. Thu
first section is to be a first-degree polynomial, P}{x), that covers a horizontal dis
tance of 100 feet, starts at a height of 110 feet, and ends at a height of 60 feet. The
third section is to also be a first-degree polynomial, Q\{x), that covers a horizontal
distance of 50 feet, starts at a height of 65 feet, and ends at a height of 70 feet. The
middle section is to be a polynomial, Pix) (of smallest possible degree), that covers

a horizontal distance of 150 feet.

(a) Find expressions for /' (jc), Pi (x), and Qiix) such that /4100) = Pi (100)
/>'(100) = P'(100), /7*(250) = Qi (250), and P'i250) = Q\{250) and the
curvature of P(x) equals the curvature of P\ (jo at x = 100 and equals the
curvature of Q\ {x) aix = 250.

(b) Plot the graphs of Pi (n), P(x), and Q 1(jo on the same coordinate system.

(c) Use Algorithm 4.1 (iii) to find the average height of the ride over the given hori-
zontal distance.

Lagrange Approximation

Interpolation means to estimate a missing function value by taking a weighted aver-
age of known function values at neighboring points. Linear interpolation uses a line
segment that passes through two points. The slope between (xq, yo) and (jcj,>4) is
nt = (y\ —>0)/{x\ — jco), and the point-slope formula for the line v = mix - xq) + yo
can be rearranged as

(1) y = P(x) = yo+ (?1 - >>0)----—--—--—- .



When formula (1) is expanded, the result is a polynomial of degree < 1 Evaluation of
P(x) at xq and g produces yo and yi, respectively:

P(x0) = yo + (yi - yo0)(0) >0.

~U]D) = yo+ Oyi -yo)(l) = yj-
The French mathematician Joseph Louis Lagrange used a slightly different method to

find this polynomial. He noticed that it could be written as

>Ojr—Jti X —an
3 Y = Pi = > byi .
(3) i(x) P Vi %

Each term on the right side of (3) involves alinear factor; hence the sum is a polynomial
of degree < 1. The quotients in (3) are denoted by

(4) Ei,o(*)4: 35.:.).:5{‘_ and  ru (jcflz _>_<__»:3<__9__

Computation reveals that Lio Uo) — 1,"1,0U i) = O,Li i(j:o) = O and L \,\(jej) = |
so that the polynomial P\ (jc) in (3) also passes through the two given points:

(5) fi(xo) = yo+ yi(0) = Yo 31 ~IC*!) = yo(0) + yi = Y\-
The terms £-i,0U) and Li,i (jc) in (4) are called Lagrange coefficient polynomials
based on the nodes xq and jci. Using this notation, (3) can be written in summation
form
|

(6) Pi(*) = ~ykL\,k(x).

k=0
Suppose that the ordinates yk are computed with the formula y* = /n*)- If P\ (i) is
used to approximate fix) over the interval [jco, jcj], we call the process interpolation.
If n < jeo (or JGj < jc), then using P\(x) is called extrapolation. The next example
illustrates these concepts.

Example 4.6. Consider thegraphy = fix) = cos(x) over [0.0, 1.2].

(a) Use the nodes jco = 0.0 and jcj = 1.2 to construct a linear interpolation polyno-
mial Pi (x).

(b) Use the nodes xo ~ 0.2 and jci = 1.0 to construct a linear approximating polyno-
mial Qi(x).

Using (3) with the abscissas jco — 0.0 and jci = 1.2 and the ordinates yo = co0s(0.0) =
1.000000 and yi = cos(1.2) = 0.362358 produces

jc—12 x —0.0
MO0 = 1.000000— — — +0.362358
0.0-1.2 1.2-0.0

= —0.833333(c- 1.2) + 0.301965(jc - 0.0).
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(a) (b)

Figure 4.11 (a) The linear approximation of y — Pt(x) where the nodes X, = 0.0
and xj = 3.2 are the end points of the interval {a. b]. (b) The linear approximation of
y = Qi(x) where the nodes jtqg = 0.2 and X\ = 1.0 lie inside the interval [a, 6].

When the nodes xy - 0.2 and xi = 1.0 with yo = co0s(0.2) = 0.980067 and
cos(1.0) = 0.540302 are used, the result is

O\(x) = 0.980067~ + 0540302 * " °'2
0.2-1.0 1.0-0.2

—1.225083(x — 1.0) + 0.675378(x — 0.2).

Figure 4.11(a) and (b) show the graph ofy = cos(jr) and compares it with y — P\ U ) and
Y = £7?i(x). respectively. Numerical computations are given in Table 4.6 and reveal that
Q i(x) has less error at the points xk that satisfy 0.1 < < 1.1. The largest tabulated
error, /(0.6) - P\ (0.6) = 0.144157, is reduced to /(0.6) —Q\(0.6) = 0.065151 by using

Qi(Jf). n
The generalization of (6) is die construction of a polynomial PN c) of degree at
most N that passes through the N + 1 points (jco. >0), (x\ ,>4),.... (xv, v,v) and has
the form
N
(7) PN{x) = '~2,ykLN.k{x),
k=0

where L\ kis the Lagrange coefficient polynomial based on these nodes:

(@C- *0) eme(X - JC*-1)(X - Xyt+i) mee{X - XN)
(xk- jco) eme(xk - xk~i)(xk- JCi+j) Jtjv)

(8) LNj (x) =

It is understood that the terms (x —xk) and (xk —xk) do not appear on the right side of
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Table 4.6 Comparison of fix') = cos(s) and the Linear Approximations P\ (j:) and Qi (jr)

xk f(xk) - cos(j:>t) h(4) f(*k) - P\(xK) Q\(xk) /(**) - QliXk)
0.0 1.000000 1.000000 0.000000 1.090008 -0.090008
01 0.995004 0.946863 0.048141 1.035037 —0.040033
0.2 0.980067 0.893726 0.086340 0.980067 0.000000
0.3 0.955336 0.840589 0.114747 0.925096 0.030240
0.4 0.921061 0.787453 0.133608 0.870126 0.050935
0.5 0.877583 0.734316 0.143267 0.815155 0.062428
0.6 0.825336 0.681179 0.144157 0.760184 0.065151
0.7 0.764842 0.628042 0.136800 0.705214 0.059628
0.8 0.696707 0.574905 0.121802 0.650243 0.046463
0.9 0.621610 0.521768 0.099842 0.595273 0.026337
1.0 0.540302 0.468631 0.071611 0.540102 0.000000
11 0.453596 0.415495 0.038102 0.485332 —0.031736
12 0.362358 0.362358 0.000000 0.430361 -0.068003

equation (8). It is appropriate to introduce the product notation for (8), and we write

N7=o(* - *j)
Ne
9)
nJUu*—xj)

Here the notation in (9) indicates that in the numerator the product of the linear
factors (x —Xj) is to be formed, but the factor (x — xk) is to be left out (or skipped).
A similar construction occurs in the denominator.

A straightforward calculation shows that, for each fixed k, the Lagrange coefficient
polynomial LN, k{x) has the property

(10) LN.kUj) = 1 whenj = k and L~k Xj) = 0 when j & K

Then direct substitution of these values into (7) is used to show that the polynomial
curvey = Pn (x) goes through (x,,yj)\

(11) Pn(Xj) = yoLN.o(xj) “k----—- TyjLN,j(X]j) H---—--- TyNLN'N(Xj)
= yo(0) ry;() H hw (0) = vyj.
To show that c) is unique, we invoke the fundamental theorem of algebra,

which states that a polynomial T (x) of degree 5 N has at most N roots. In other
words, if T (|c) is zero at N + 1distinct abscissas, it is identically zero. Suppose that
Pn(x) is not unique and that there exists another polynomial Q n (x) of degree £ N
that also passes through the N + 1 points. Form the difference polynomial T(x) =
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Figure 4.12 (a) The quadratic approximation polynomial y = P2{jc) based on the
nodes xo = 0.0, m] = 0.6, and x2 = 1.2. (b) The cubic approximation polynomial
> = P-$(x) based on the nodes jco = 0.0, x\ = 0.4, X2 = 0.8, and g3 = 1.2.

Pn(x) —Qn(x). Observe that the polynomial T (x) has degree < N and that T (xf) ~
PN (Xj) —Qpi(.Xj) = yj —yj = 0,fory = 0,1 ,, N. Therefore, T(x) = 0 and it
follows that Qn(x) — P n(w)e

When (7) is expanded, the result is similar to (3). The Lagrange quadratic interpo-
lating polynomial through the three points (X0, yo). C*i, i), and (x2, yr) is

.~4 D | _ (X - X\)jac - x2 _(ir-jto)jc - nr) _ . (x - xo)(x - Xx\)
(12) P2(x) = YOS =i 3 Y ol I Y k2 xo)(x2-x y):

The Lagrange cubic interpolating polynomial through the four points (xo, yo). (*1, yiJm
(x2,yi), and (ge3, y3) is

4 (X~ Xi)(x - xr)(x - X}) (X - XOHX - X2)(x - x3)
(13) PA(X) — YO--omms 7+ V1 b
Uo - jel)(*o - xr)(xb -x i) (*1 - no)(n! —jc2)(-ci —* 3
L-jco)(* -Xx\)(x -jc3) (x = x@)(X - xi)(x - x2)

* V2wl T peT it Yios - *0)*3 ~ xi e - 1)

Example 4.7. Considery = f(x) = cos(jt) over [0.0,1.2].

(a) Use the three nodes jco = 0.0, jci = 0.6, and X2 = 1.2 to construct a quadrati
interpolation polynomial P2{x).

(b) Use the four nodes .*« = 0.0, jcj = 0.4, x2 = 0.8, and = 1.2 to construct a cubi
interpolation polynomial P-j(x).
Using xq — 0.0, jci = 0.6, 2= 1.2andyo = cos(0.0) = 1,yj = cos(0.6) = 0.82533C
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and yi — cos(1.2) = 0.362358 in equation (12) produces

{(x —0.0)(c — 1.2)
(0.6 - 0.0)(0.6 - 1.2)

ft 00

= 1.388889(jc- 0.6)(jc- 1.2) - 2.292599(jt - 0.0)(je- 1.2)
+ 0.503275(jt - 0.0)(jc- 0.6).

Using jco = 0.0, jci = 0.4, 12 = 0.8,/ = 1.2 and yo = co0s(0.0) = 1.0, Y\ = cos(0.4) =
0.921061, y2 = cos(0.8) = 0.696707, and y3 = cos(1.2) = 0.362358 in equation (13;
produces

= —2.604167(jc - 0.4)(jc - 0.8)(c- 1.2)
+ 7.195789(jc - 0.0)(jc - 0.8)(jc - 1.2)
- 5.443021I<jr - 0.0)(jc- 0.4)(jc- 1.2)
+ 0.943641(x - 0.0)(jc- 0.4)(c- 0.8).

The graphs of y = cos(jc) and the polynomialsy - Pr(x) andy /”(jc) are shown in
Figure 4.12(a) and (b), respectively.

Error Terms and Error Bounds

It is important to understand the nature of the error term when the Lagrange polynomial
is used to approximate a continuous function / (jc). It is similar to the error term for
the Taylor polynomial, except that the factor (jc — Jto)W+i is replaced with the product
{x —x(i)(x —jci) mme(jc —jc,v)- This is expected because interpolation is exact at each
ofthe N + 1 nodes xt, where we have Ey(x*) = / (Xx*) —PH(XK) = Yk — Yk = O for
k= 0,1,2,..., N.

Theorem 4.3 (Lagrange Polynomial Approximation). Assume that/ € C'v+1[a, b]
and that jco, jcjv e [a, b] are N + 1nodes. Ifx € [a, b], then

(14) fix) = PN(x) + EN{x),
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where fV (x) is a polynomial that can be used to approximate /7 (jc):

N

(15) fix) BPN(x) - ~ f(xKLNtk(x).
k=0

The error term £w(x) has the form
(JV+1)!

for some value ¢ = c(x) thatlies in the interval [a, b].

Proof. As an example of the general method, we establish (16) when N = 1. The
general case is discussed in the exercises. Start by defining the special function git) as
follows

(17) git) = f{f) - Pi(r) - £i(x)-(t ~ ~ *|;.
(X - x 0)(x - xi

Notice thatx , jco and X[ are constants with respect to the variable t and that git) eval-

uates to be zero at these three values; that is,

g(x) = fix) - Piix)- £iU)y~— A = fix) - Ptix) - E\(x) = 0.
ix -X 0)(X - JA)

gixo) = f(xo0) - J1(x0) - £i(x)(" = / (xo0) - Piixo) = 0O,

X - X 0)(x - x~i)

g(X,) = /<XI) - N(X1) - x - x0)(x - Xi) = / (Xi)- Pi (X!) = 0.

Suppose thatx lies in the open interval (xo, xj). Applying Rolle’s theorem to git)
on the interval [xo, x] produces a value do, with xo < do < X, such that

(18) g'(do) = 0.

A second application of Rolle’s theorem to git) on [x, x j will produce a value d-,
with x < d\ < xi, such that

(19) g'idj) = 0.
Equations (18) and (19) show that the function g'(f) is zero att = do and t = d\.

A third use of Rolle’s theorem, but this time applied to g'{t) over [do, ~I], produces a
value c for which

(20) g(2(c) = 0.
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Now go back to (17) and compute the derivatives g'(t) and g"(t):

21 () = /'(?) - P[(t) - EXGe) ==*0) + (F~ *,
(21) g'(t) (?) [‘() Aie) ( _j) c(—nq)}
2

(22) *"(0 =/"(0-0-£i(;0

(c - * o)™ *1)
In (22) we have used the fact the P\ (t) is a polynomial of degree N = 1; hence its
second derivative is P"(t) = 0. Evaluation of (22) at the pointt = c and using (20)
yields
(23) 0= /"(c) —E\(X)-

2
(x - x 0)(x - JC)

Solving (23) for Ei(jc) results in the desired form (16) for the remainder:

Eipx = (25220)(123C 1)/ 2)(<0

(24) ) = ,

and the proofis complete. .

The next result addresses the special case when the nodes for the Lagrange poly-
nomial are equally spaced jc- = xq + hk, for k =0, 1, ..., N, and the polynomial
Pn(x) is used only for interpolation inside the interval [jco, jc/].

Theorem 4.4 (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes).
Assume that /(jc) is defined on [a, b], which contains equally spaced nodes jc* =
xo + hk. Additionally, assume that 7/ (jc) and the derivatives of /(jc), up to the order
N + 1, are continuous and bounded on the special subintervals [xq, jci], [jco, xi], and
[ito, Jc3], respectively; that is,

(25) 17 (,V+1) (io)] < MN+{ for jco 5 jc < xNI

for N = 1,2, 3. The error terms (16) corresponding to the cases N = 1,2, and 3 have
the following useful bounds on their magnitude:

. h2m 2 .
(26) 1Ei(*)] £ —g— valid for x € [jco, jci],
(27) IE2(*)] 5 —- -pr valid for jc € [jco, jcj],
9Vv3
h*M4
(28) |E3(n0L < 24 vanr  ~°r * e IO, *3]-

Proof We establish (26) and leave the others for the reader. Using the change of
variables jc —.to — t and x —x\ —t —h, the error term E] (jC) can be written as

(f2—ht)f~(c)
(29) £i(jt) = £i(jco + f) = ——omv — for 0<t<h
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The bound for the derivative for this case is
(30) V 2)(c) < M2 for jco < ¢ < Xxj.

Now determine a bound for the expression U2 - hi) in the numerator of (29J; cV.
this term ®(r) = t2 —fit. Since ®'(r) = 21 — h, there is one critical pointt = h/-
that is the solution to @ '(1) — 0. The extreme values of ® (r) over [0, h] occur eitb ;
at an end point ®(0) = 0, ®(A) = 0 or at the critical point ®(i/2) = -h 2/4. Sine -
the latter value is the largest, we have established the bound

i_ 12j
(31) |®01 - \tz - kt\<—4~ = -4r for 0O <!<h.

Using (30) and (31) to estimate the magnitude of Ihe product in the numerator 1 Im
results in

(32) gy = |COAVEEL_ have

and formula (26) is established.

Comparison of Accuracy and O (h IV+t)

The significance of Theorem 4.4 is to understand a simple relationship between thi
size of the error terms for linear, quadratic, and cubic interpolation. In each case th<
error bound |£>(j:)] depends on h in two ways. First, hN+1 is explicitly present so
that | £v(jc)] is proportional to hN+i. Second, the values Mfj+i generally depend ori
h and tend to 1/ (Af+14-*0)l as ft goes to zero. Therefore, as h goes to zero, (£',vU)
converges to zero with the same rapidity that hN+] converges to zero. The notatiorj
O (h N+x) is used when discussing this behavior. For example, the error bound (26)
can be expressed as

[Eidl = 0(h2 valid for e [xo,x/].

The notation 0{h 2) stands in place of h2Mi/S in relation (26) and is meant to convey
the idea that the bound for the error term is approximately a multiple of h2; that is,

[Ei(jt)i < Ch2~ 0(h2.
As a consequence, if the derivatives of / (x) are uniformly bounded on the in-

terval |A( < 1, then choosing N large will make hN+i small, and the higher-degree
approximating polynomial will have less error.
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)
Figure 4.13 (a) The error function E%{ic) = cos(x) - P2{jr). (b) The error function
EaM = cos(x) - P3(x).

Example 4.8. Considery = /(jo = cos(x) over [0.0,1.2]. TJse formulas (26) through
(28) and determine the error bounds for the Lagrange polynomials Pi (jc), Pj(x), and Pb(x)
that were constructed in Examples 4.6 and 4.7.

First, determine the bounds Mi, M3, and Mi, for the derivatives (/ (2>(x)j, |/ (34jc)1,
and \f4,(x)\. respectively, taken over the interval [0.0,1.2]:

1/2)(x)] = 1-cos(x)] i i-cos(0.0)] = 1.000000 = M2,
17(3)(jic)] = IsinU)] < Isin(1.2)] = 0.932039 = M 3,

17(4,(i9] = (cos(jc)l < lcos(0.0)l = 1.000000 = L .

For Pi (x) the spacing of the nodes is A = 1.2, and its error bound is

keMi  (1.2)2(1.000000)
(33) 8 >= 0.180000.

For ft(x) the spacing of the nodes is ft = 0.6, and its error bound is

A3A/3  (0.6)"(0.932039)
(34) = 0.012915.
9v3 9vVv3

For P3 (jc) the spacing of the nodes is h = 0.4, and its error bound is
3 k4M 4 (0.4)4(1.000000) 0.001067
5 * = 0. .
(35) 1£3(%)] < o4 o4
From Example 4.6 we saw that [E[(0.6)] = ]cos(0.6) — /~(0.6)! = 0.144157, so
the bound 0.180000 in (33) is reasonable. The graphs of the error functions £2 00 =
COS(jC) — P200 and E~(x) — cos(x) - P3(x) are shown in Figure 4.13(a) and (b),
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Table 4.7 Comparison of f(x) = cos(x) and the Quadratic and Cubic Polynomial
Approximations Pi(x) and P3(x)

4 /(**) = «B (*k) E2(-4) bl X K Er(-*K)
0.0 1.000000 1.000000 0.0 1.000000 0.0

0.1 0.995004 0.990911 0.004093 0.995835 -0.000831
0.2 0.980067 0.973813 0.006253 0,980921 -0.00085?
0.3 0.955336 0.948707 0.006629 0.955812 —0.00047(1
0.4 0.921061 0.915592 0.005469 0.921061 0.0

0.5 0.877583 0.874468 0.003114 0.877221 0.00036!
0.6 0.825336 0.825336 0.0 0.824847 0.00089
0.7 0.764842 0.768194 -0.003352 0.764491 0.00035 .
0.8 0.696707 0.703044 -0.006338 0,696707 0.0

0.9 0.621610 0.629886 -0.008276 0.622048 -0.000+3:-
1.0 0.540302 0.548719 -0.008416 0.541068 —0.0007C
11 0.453596 0.459542 -0.005946 0.454320 -0 00072-
12 0.362358 0.362358 0.0 0.362358 0.0

respectively, and numerical computations are given in Table 4.7. Using values in ihe
table, we find that |£2(1-0)] = ]cos(1.0) — /7~(1.0)] = 0.008416 and ]|£3(0.2)] —
Jcos(0.2) — P-?2,d/)\ = 0.000855, which is in reasonable agreement with the bour
0.012915 and 0.001607 given in (34) and (35), respectively.

MATLAB

The following program finds the collocation polynomial through a given set of poii

by constructing a vector whose entries are the coefficients of the Lagrange interpo.
tory polynomial. The program uses the commands poly and conv. The poly co

mand creates a vector whose entries are the coefficients of a polynomial with specifk
roots. The conv commands produces a vector whose entries are the coefficients o:
polynomial that is the product of two other polynomials.

Example 4.9. Find the product of two first-degree polynomials, P(x) and Q(x), w
roots 2 and 3, respectively.
»P=poly(2)
p=
1 -2
»Q=poly(3)
OF
1 -3

»conv(p,q)
ans=
1-5 6

Thus the productof P(x) and Q{x) isx2 —5x + 6
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jProgram 4.1 (Lagrange Approximation). To evaluate the Lagrange polynomial
[PU) - Yik=0ykL ff,kto basedon N + 1 points (jc*, y*) for* = 0,1,..., /V.
function [C,L]»lagran(X,Y)

"Ydnput - X is a vector that contains a list of abscissas

b - Y is a vector that contains a list of ordinates
/Output - C is a matrix that contains the coefficients of
7 the Lagrange interpolatory polynomial

V2 - L is a matrix that contains the Lagrange

% coefficient polynomials

w=Zength(X);

1.-2eros(w,w) ;

7.Fcrx the Lagrange coefficient polynomials
for k=l:n+l

V=l
for j=l:n+lI
if k~=j
V=conv(V.poly(X(j)))/(X00-X(j» ;
end

end
L(k,:)=V;

end

‘'/.Determine the coefficients of the Lagramge interpolating
{polynomial

>

Exercises for Lagrange Approximation

L Find Lagrange polynomials thai approximate/ (*) = j.3
(a) Find the linear interpolation polynomial P\(x) using the nodes *o = —1 and

X\ = 0.

(b) Find the quadratic interpolation polynomial P7(x) using the nodes xo = —1,
je; = 0,and *2 — ‘e

(> Findthe cubic interpolation polynomial P?,(x) usingthenodesxo = —I.*i = O,
xi- |, and I3 = 2.

(d) Find the linear interpolation polynomial P\(x) using the nodes xo = 1and
Xi = 2

<e> Find the quadratic interpolation polynomial P2U ) using the nodes go = O,
jfi = I, and 22 = 2.
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. Let fix) = x + 2/x.

(a) Use quadratic Lagrange interpolation based on the nodes xo = 1, x\ = 2, an:
X2 = 2.5 to approximate /(1.5) and /(1.2).

(b) Use cubic Lagrange interpolation based on the nodes jco = 0.5, x; = 1L x>= 2
and jt3= 2.5 to approximate /(1.5) and /(1.2).

. Let f(x) = 2sin(7J/6), where x is in radians.

(a) Use quadratic Lagrange interpolation based on the nodes xqg = 0, X] = 1,a.1
xi = 3to approximate /(2) and /(2.4).

(b) Use cubic Lagrange interpolation based on the nodes xo = O, jci = 1, xj =
and jc3 = 5 to approximate /(2) and /(2.4).

. Let s (jc) = 2sin(jrx/6), where x is in radians.

(a) Use quadratic Lagrange interpolation based on the nodes jco = 0, jcj = 1, am!
X2 = 3to approximate /(4) and /(3.5).

(b) Use cubic Lagrange interpolation based on the nodes jco = 0, xi = 1, xi =
and xi = 5to approximate /(4) and /(3.5).

. Write down the error term Ei(x) for cubic Lagrange interpolation to fix), whore

interpolation is to be exact at the four nodes xo = —1,jci = 0, xt = 3, and x4~ 4
and / (jc) is given by

(a) /(jc)= 4x3-3x+2

(b) 7/(x) = x4~ 2x3

(c) 7/ (x) = x5—5jc4

. Let fix) = xx.

(a) Find the quadratic Lagrange polynomial Pr(x) using the nodes jco = 1, jci
1.25, andJC2 = 1.5.

(b) Use the polynomial from part (a) to estimate the average value of fix) over the
interval [1, 1.5].

(c) Use expression (27) of Theorem 4.4 to obtain a bound on the error in approxi-
mating fix) with Pr(x).

. Consider the Lagrange coefficient polynomials £r,*(*) that are used for quadratic

interpolation at the nodes xo, xi, and xjm Define gix) = Z2o(x) + Li;(x
L22wW - L

(a) Show thatg is apolynomial of degree < 2.

(b) Show thatg(x*) = Ofor k= 0, 1, 2.

(c) Show that g(x) = O for all x. Hint. Use the fundamental theorem of algebra
. Let Lh o(x), Ln i(X)....... and Ln,n (x) be the Lagrange coefficient polynom
based on the N + 1nodes xO0, xi,.,., and x/v. Show that (x) = 1for .11

real number x.

. Let fix) be apolynomial of degree < N. Let Par(x) be the Lagrange polynomia |

degree 5 N based on the N — | nodes xo, Xi, ..., xar- Show that /7 (x) = Pn(x) in:
all x. Hint. Show that the error term £ar(x) is identically zero.



Sec.

10.

12.

:13.

4.3 Lagrange Approximation 219

Consider the function / (*) = sin(jc) on the interval [0, 1]. Use Theorem 4.4 to

determine the step size h so that

(a) linear Lagrange interpolation has an accuracy of 10-6 (i.e., find h such that
E1(*)! < 5x 1Cr7v).

(b) quadratic Lagrange interpolation has an accuracy of 1Cr6 (i.e., find h such that
\E2{x)\ < 5 x 10-7).

(c) cubic Lagrange interpolation has an accuracy of 10-6 (i.e., find h such that
|£33Y)] <5 x 10“7).

Start with equation (16) and A/ = 2, and prove inequality (27). Let X\ = xq + ft,

xi = xg + 2h. Prove that if xo < x < xi then

A3

I* - jadlljc - - x2|<
Jodllic - x]lIx - x2] 3x 3/2

Hint. Use the substitutionst = x —xi,t+k —x —xo, andt —h = x —X2 and the
function v(/) = f3—th2on the interval —ft < t < h. Seti/(f) = 0 and solve for r in
terms of A.

Linear inteipolation in two dimensions. Consider the polynomialz — P(x,y) = A+-

B x+Cy that passes through the three points (xq, yo, zo)> C*b Y1, rj), and (X2, y2. zi).
Then A, B tand C are the solution values for the linear system of equations

A + Bxqg + Cyo = zo
A + Bxi+ Cyi = z]
A+ BX2+ Cy2= Z2-

(a) Find A, B, and C so that z = P(x, y) passes through the points (1, 1, 5).
(2, 1,3), and (1,2, 9).

(b) Find N, B, and C so that z — P(x, y) passes through the points (1, 1,2.5),
(2,1,0), and (1,2,4).

(c) Find A, B, and C so that z = P(x, y) passes through the points (2,1,5),
(1,3, 7), and (3,2,4).

(d) Canvalues A, B, and C be found so thatz = P(x, y) passes through the points
1, 2,5), (3,2,7), and (1,2,0)? Why?

Use Theorem 1.7, the Generalized Rolle’s Theorem, and the special function

9(0 = /(0 - Pu(®- E.,mn (X - XOKX - Xi) me-(x - XN)

where Pn (x) is the Lagrange polynomial of degree N, to prove that the error term
E.wix) = /(n) - Pn (x) has the form

£ (N+1)(c)
(N + 1)

Hint. Find g (,v+I){f) and then evaluate itatt = c.
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Algorithms and Programs

1. Use Program 4.1 to find the coefficients of the interpolatory polynomials in Prob
lem 2(i) a, b, and c in the Algorithms and Programs in Section 4.2. Plot the graphs
of each function and the associated interpolatory polynomial on the same coordinate
system.

2. The measured temperatures during a 5-hour period in a suburb of Los Angeles on

November 8 are given in the following table.

(a) Use Program 4.1 to construct a Lagrange interpolatory polynomial for the data
in the table.

(b) Use Algorithm 4.I(iii) to estimate the average temperature during the given
5-hour period.

(c) Graph the data in the table and the polynomial from part (a) on the same coordi-
nate system. Discuss the possible error that can result from using the polynomial
in part (a) to estimate the average temperature.

Time, P.M. Degrees Fahrenheit

66

o U b W N R
B3 RES

Newton Polynomials

It is sometimes useful to find several approximating polynomials Pi(x), ftCx),

PN (x) and then choose the one that suits our needs. |f the Lagrange polynomials
are used, there is no constructive relationship between P,v_i Or) and P\(x). Each
polynomial has to be constructed individually, and the work required to compute the
higher-degree polynomials involves many computations. We take a new approach and
construct Newton polynomials that have the recursive pattern

(1) Pi(jo) =ao0 + a\(x — jco),

(2) ?22{x) = ao+ ai(jc - x0) + a™(x - xq)(x —jci),
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(3) P3(x) = ao + a\(x - X0) + a2{x - xo0)(x - *i)
+ as(x -x 0)(x — —m2),
(4) Pu(x) = ao+ ai(x -x 0) + a2(.x - xq)(x ~ xi)

+ a}(x - x0)(x - xi)(x - xi)
+ ad(x - x0)(x - -*i)(x - x2){x - jeBH -——-

+ ajv(x - X0) mme(x -x ?j-1).
Here the polynomial P,v(x) is obtained from P.v-i(x) using the recursive relationship
(5) Pn(x) = Pn-\(x)+ aN(X -x0)(x-xi)(x -X 2---(X ~xjv_i).

The polynomial (4) is said to be a Newton polynomial with N centers xo, xi,
— xM-i - Itinvolves sums of products of linear factors up to

aN(x —Xo)(Xx —Xi)(X - x2) mmm(X - xn-}),

so P.v(x) will simply to be an ordinary polynomial of degree < N.

Example 4.10. Given the centers xo = 1, xX\ = 3. x2 = 4, and x$ — 4.5 and the
coefficients a0 = 5, w4, = -2, a2 = 0.5, a3 = —0.1, andag = 0.003, find Pi(x), P2(x),
fr,(x). and Pi(x) and evaluate fit(2.5) for ft = 1, 2, 3, 4.
Using formulas (1) through (4), we have
No0O = 5—2(x —1),
Pz(x) = 5 —2(x — 1)+ 0.5(x - I)(x —3),
Pi(x) = Pz(x) - 0.1(x - I)(x - 3)(x - 4),
P4(x) = P3(x) + 0.003(x - I)(x - 3)(x - 4)(x - 4.5).
Evaluating the polynomials atx = 2.5 results in
Pi(2.5) = 5—2(1.5) = 2,
P2(2.5) = Pi(2.5) + 0.5(1.5)(-0.5) = 1.625,
Pj(2.5) = P2(2.5) - 0.1(1.5)(—0.5)(—1.5) = 1.5125,
P4(2.5) = P3(2.5) + 0.003(1.5)(—0.5)(—1.5)(—2.0) = 1.50575. n

Nested Multiplication

If N is fixed and the polynomial P.vfx) is evaluated many times, then nested multi-
plication should be used. The process is similar to nested multiplication for ordinary
polynomials, except that the centers x* must be subtracted from the independent vari-
able x The nested multiplication form for Pi(x) is

(6) Pi(x) = ((A3C* - x2) + a2)(x ~ xi) + ai)(x - xo0) + a0.
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To evaluate P3 (jo for agiven value of x 1start with the innermost grouping and form
successively the quantities

S3= as,
S2= S3U -* 2 +A2
7> gi = gZE - jci)\#J'al,

So ‘' Si(jc- jd) -boo-
The quantity sq is now P3(x).

Example 4.11. Compute /32.5) in Example 4.10 using nested multiplication.
Using (6), we write

Pj(jO = ((—0.1(je- 4) + 0.5)(je- 3) - 2)(x - 1) + 5.
The values in (7) are

S3= -0.1,

S2= -0.1(25-4)+ 0.5 = 0.65,
Si= 0.65(2.5- 3)- 2= -2.325,
So= -2.325(2.5- 1)+ 5= 1.5125,

Therefore, P3(2.5) = 1.5125. [

Polynomial Approximation, Nodes, and Centers

Suppose that we want to find the coefficients at for all the polynomials P\ (n t.
P/v(je) that approximate a given function f(x). Then I\(x) will be based on the centers
jco, jci, ..., je™ and have the nodes jco, jci, mm, jc*+i. For the polynomial P<(x) the
coefficients a0 and a\ have a familiar meaning. In this case

(8) Pi (jcq) = / Uo0) and P\{xi) = f(x\).
Using (1) and (8) to solve for ao, we find that
9) f(x0) - Pi(jeo =@ao+a,(x0- *0) = «O-
Hence ao = /(go)- Next, using (1), (8), and (9), we have
/ (jcj) = = a0 + ai(xj - x0) = /(jc0) + ai(*i - *0),

which can be solved for a\, and we get
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Hence a\ is the slope of the secant line passing through the two points (xq, f(x 0))
and (jei, f(xj)).

The coefficients ao ant* ai 316 the same for both Pi (x) and P2(x). Evaluating (2)
at the node X2, we find that

(11) /1c2) = P2U2) = ao+ ai(X2 - jeo) + V2(12—Jto)JT2 - *])-
The values for oq and a\ in (9) and (10) can be used in (1 1) to obtain

/(*2) — 00 —ai(x2-Jt0)
az =
(X2 - X0)(X2 ~ Xi)
78(X2) - 7(3tp) _ FiXTL— 58\ |

vV x2-x0 X] - Xq X2 -*1)-

For computational purposes we prefer to write this last quantity as

.2) . m -fM \ /(2

Vo X2-Xi B Xi - XO  }! -

The two formulas for a2 can be shown to be equivalent by writing the quotients
over the common denominator (xj —jq)(jf2 — xo0)(*i — x0)- The details are left for
the reader. The numerator in (12) is the difference between the first-order divided
differences. In order to proceed, we need to introduce the idea of divided differences.

Definition 4.1 (Divided Differences). The divided differences for a function / (jc)
are defined as follows:

fIxk\ - /7 (**),
n  fixkl - /Z[**-1]

fuk-I, R s
XK ~ X K-\
03) fIXk~\,XK] - f{Xk-2,Xk-]]
f[Xk-2,Xk-1,Xk] = —
Xk - Xk-2
f{xk-2,xk-1,xK] - f[xk-3,xk-2,xk-1]

” n
fixk 3,Xk-2,Xk-1,xkJ =
Xk - xk-3

The recursive rule for constructing higher-order divided differences is

, v /ljct-j+i,..., AY - fxk-j, ..., xk-\]
(14) fixk-i,xk-j+1,-.., xkd = 1-
Xk - Xk-j
and is used to construct the divided differences in Table 4.8. a
The coefficients a* of Pn (jc) depend on the values 7 (jc;), forj = 0,1,... ,k. The

nexttheorem shows that a* can be computed using divided differences:

05) at= [ *o,*b
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Table 41  EHvided-difference Table fory = 7/ (i

Xk fw /[ . 3 no. ., 1 /[ . ... |

X0 /W

*1 fixl] fixo,X]]

X2 fix2) fixi,x2| /1*0.

*3 /[*3] fix2.*3] /{jri, x2,1c3) fIxo,x\,X2, * 3

T4 fix4] /[*3.%4l f[x 2N3,M14] /[x,,x2.X3,Xa fixo,XI,X2,Xi,X4]

Theorem 4.5 (Newton Polynomial). Suppose thatjco, xi,..,, xs are N +1 distinct

numbers in [a, b], There exists a unique polynomial Pn (x) of degree at most N with
the property that

f(xj) = Pfj(xj) forj = 0,1,..., IV
The Newton form of this polynomial is
(16) PN(x) =ao + ai(x - .to) H---—--—- W nK* - Jto)0 - *i) see(* - xn-i),

where a* = f[xo,jci, ..., jc*], fork = 0, l N.

Remark. If (U;- y;)}*_0is a set of points whose abscissas are distinct, the values
f(xj) = yj can be used to construct the unique polynomial of degree < N that passes
through the N + 1points.

Corollary 4.2 (Newton Approximation). Assume that P\(x) is the Newton poly-
nomial given in Theorem 4.5 and is used to approximate the function /7 (jc), thatis,

(7) f(x) = PN(x) + EN(x).

1/ e CNH [a, b], then for each jr e [a,b] there corresponds a number c = c¢(x) in
(a. b). so that the error term has the form

N/4 (X=X 0)(x-n) et (X -jen)/ (A+1)(c)
(18 EfiW----mm-mm - (3] | '

Remark. The error term Ey(x') is the same as the one for Lagrange interpolation, which
was introduced in equation (16) of Section 4.3.

Itis of interest to start with a known function 7 (jo thatis a polynomial of degree N
and compute its divided-difference table. In this case we know that / <n+,1(x) = 0
for all jc, and calculation will reveal that the (A" + I)st divided difference is zero.
This will happen because the divided difference (14) is proportional to a numerical
approximation for the yth derivative.
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Table 4.9
Fust Second Third Fourth Fifth
divided divided divided divided divided
/1**] difference difference difference difference difference
=1 -3
=2 0 3
*2=3 15 15 6
*3=4 48 33 9 1
Xy =5 105 57 12 | 0
*5=6 192 87 15 1 0 0

Table 4.10 Divided-Difference liable Used for Constructing the Newton Polynomials
Pk(x) in Example 4.13

Xk /M ! a . . a1
-

= 0 1.0000000

ja= 10 0.5403023 -0.4596977
j2= 20 -0.4161468 -0.9564491 -0.2483757
= 30 —0.9899925 -0.5738457 0.1913017 0.1465592
X4=40 -0.6536436 0.3363499 0.4550973 0.0879318 -0.0146568

Example 4.12. Let f{x) = x3—Ax. Construct the divided-difference table based on the

nodes jco = 1,xi = 2,..., jo; = 6, and find the Newton polynomial P} (jc) based on jco, jci,
X2,and * 3.
See Table 4,9. ]
The coefficients ao = —3, a\ = 3,aj = 6,and a3 = | of P$(x) appear on the

diagonal of the divided-difference table. The centers xo — 1, x\ = 2, andxj = 3 are
the values in the first column. Using formula (3), we write

Plix) = -3 + 3(c- 1)+ 6(c- 1)<jc - 2) + (jc- 1)(n - 2)(jc - 3).

Example 4.13. Construct a divided-difference table for f(x) = cos(jt) based on the five |
points (ft. cos(Jt)), for k = 0, I, 2, 3, 4. Use it to find the coefficients at- and the four
Newton interpolating polynomials fork— 1,2, 3,4.

For simplicity we round off the values to seven decimal places, which are displayed
in Table 4.10. The nodes jcg, jci, xj, I3 and the diagonal elements ao, ai, “2, a3, <} in
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y

Figure 4.14 (a) Graphs of y = cosu) Figure 4.14 (b) Graphs of y = cos(.v)
and the linear Newton polynomial y = and the quadratic Newton polynomial
Pi (ic) based on the nodes jco = 0.0 and y = P2(x) based on the nodes xq =

Xl = 10 0.0, x\ = 1.0, and X2= 2,0.

Table 4.10 are used in formula (16), and we writedown the first four Newton polynomials:

Pi (x)

1.0000000 - 0.4596977(n: - 0.0),
P2(x) = 1.0000000 - 0.4596977(jc- 0.0) - 0.2483757(g: - 0.0)(a: - 1.0),
P3(x) - 1.0000000 - 0.4596977(jc - 0.0) - 0.2483757(x - 0.0)(x - 1.0)
+ 0.1465592(x - 0.0)(n: - 1.0)(n: - 2.0),
1.0000000 - 0.4596977(x - 0.0) - 0.2483757(x - 0.0)(* - 1.0)
+ 0.1465592(x - 0.0)(x - 1-0)(x - 2.0)
0.0146568(jc - 0.0)(x - 1.0)U - 2.0)(jc - 3.0).

P4(x)

The following sample calculation shows how to find the coefficient 22.

., /Ui]-/[*0] 0.5403023- 10000000

= - ro”~o-—-—-—=-045* 977-
/<) = = -Q.<i6i<M -0*030a =
X2 —x1 20—10
, flxu*2)-flxo,xi] -0.9564491 + 0.4596977
ar = f{x<),x],x2] = = [ji— — - = -0.2483757.
*2 —*0 2.0—0.0

The graphs of y = cos(x) andy = P\(x), y = Pr{x), and y = P3(x) are shown in
Figure 4.14(a). (b), and (c), respectively.

For computational purposes the divided differences in Table 4.8 need to be stored in an
array which is chosen to be D(k, j). Thus (15) becomes

(19) DK, j) = flxkj, Xk-j+i.... **]  forj < k
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Figure 4.14 (c) Graphs of

y = cos(jt) and the cubic New-

ton polynomial y = P3(*) based
on the nodes xo = 0.0, i = 1.0,
X2 = 2.0, and *3 = 3.0.

Relation (14) is used to obtain the formula to recursively compute the entries in the array.

(20) D(k, j) = _

Xt - Xt-j
Notice that the value a* in (15) is the diagonal element ag = D(k, k). The algorithm for
computing the divided differences and evaluating P\ (x) is now given. We remark that
Problem 2 in Algorithms and Programs investigates how to modify the algorithm so that
the values {ctk} are computed using a one-dimensional array. [ ]

Program 4.2 (Newton Interpolation Polynomial). To construct and evaluate the
Newton polynomial of degree < N that passes through (jc*, yi) = Ub 7/ (**)) for

(21) P(x) = rfo.o+ di,\(x - jco) + di'i(x - xq)(x - x5
- \-df/.N(x -JCo)(* -X\)---(X -Xfif-t),
where
j j j dk,j—  dt—i,"—i
dk.o - Yk and dkj ~ — —
Xk ~ Xk-j
?unction [C,D]=newpoly(X,Y)
%Input - X is a vector that contains a list of abscissas
% - Y is a vector that contains a list of ordinates
AQutput - C is a vector that contains the coefficients
% of the Newton intepolatory polynomial
% - D is the divided-difference table

n=length(X);
D~zerosCn.n);
IK: ,1)=Y";
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/. Use formula (20) to form the divided-difference table
for j=2:n
for k=j:n
D (k.,j)=(D (k,j-1)-D (M ,j-1))/ (X (k)-X (k-j+1i))i
end
end

'/mDetermine the coefficients of the Newton interpolating
~polynomial
C=D(n,n);
for k=(n-i):—:1
C=conv(C,poly(X(k)));
m=length(C);
C(m)=C(m)+D(K,k);
end

Exercises for Newton Polynomials

In Exercises 1through 4, use the centers nco.-rb x2, and xi and the coefficients iio.lib sir.as.
and a4 to find the Newton polynomials P\ (x), Piix), P}(x), and P4O), and evaluate them
at the value x — c. Hint. Use equations (i) through (4) and the techniques of Example 4.9.

1 ao= 4 ai = -1 ¢2—0.4 ay = 0.01 a4 = -0.002
JOo—1 x\ = 3 *2=4 T = S =295
2. ao=5 ai = -2 ar = 0.5 a3= -0.1 a4 = 0.003
xo —O0 x1 = 1 x2 = 2 *3=3 c= 25
3. a0 =7 a\ - 3 02~ 0.1 a3 = 0.05 a4= -0.04
xQ= - | w =0 xi= 1 *3=4 c=3
4. a0 = -2 al=4 a2= -0.04 a3 = 0.06 a4 = 0.005
x0 = -3 x1 = -1 x2 ~ 1 *3=4 c= 2

In Exercises 5 thorugh 8:

(a) Compute the divided-difference table for the tabulated function.
(b) Write down the Newton polynomials Pi (*), PrOO, P3(x), and Pii-t).
(c) Evaluate the Newton polynomials in part (b) at the given values of jc.

(d) Compare the values in part (c) with the actual function value 7 (jc).
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5. /(X )~ X 12 «. /(3c) = 3.6/%

x = 4.5,7.5 jc= 25,35

K Xk f(x k) K Xk f(xK)
0 4.0 2.00000 0 1.0 3.60
1 5.0 2.23607 1 2.0 1.80
2 6.0 2.44949 2 3.0 1.20
3 7.0 2.64575 3 4.0 0.90
4 8.0 2.82843 4 5.0 0.72

fix) = 3sin2(xx/6) 8. f(x)

X - 15,35 x =0.5,1.5

k Xk f(Xk) K Xk 7 (**>
6] 0.0 0.00 0 0.0 1.00000
1 1.0 0.75 1 1.0 0.36788
2 2.0 2.25 2 2.0 0.13534
3 3.0 3.00 3 3.0 0.04979
4 4.0 2.25 4 4.0 0.01832

9. Consider the M + 1points Uo. veil....... (XM, ym).

(a) [Ifthe (N + I)st divided differences are zero, then show that the (N + 2)nd up
to the Mth divided differences are zero.

(b) Ifthe (N + I)stdivided differences are zero, then show that there exists a poly-
nomial Pf/(x) of degree N such that

AV (*jt) = Yk for k=0, 1, ..., M.

In Exercises 10 through 12, use the result of Exercise 9 to find the polynomial Ph (x) that
goes through the M + 1points (N < M),

Xk Yk Xk Yk Xk

0o -2 1 8 0 5
1 2 2 17 1 5
2 4 3 24 2 3
3 4 4 29 3 5
4 2 5 32 4 17
5 -2 6 33 5 45

6 95
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13. Use Corollary 4.2 to find a bound on the maximum error (J£r(*)]) on the inter-

val [0, it}, when the Newton interpolatory polynomial Pr(x) is used to approximate
f(x) = cos(jrx) at the centersjco= 0O, jvj = jt/2, and*2 = a.

Algorithms and Programs

1. Use Program 4.2 and repeat Problem 2 in Programs and Algorithms from Section ) v

2. In Program 4.2 the matrix D is used to store the divided-difference table.
(a) Verify that the following modification of Program 4.2 is an equivalent wa> 10
compute the Newton interpolatory polynomial.

for k=0:N
A(k)=Y(k);
end
for j»I:N
for K*N:-1:j
A(k)-U(k)-A(k-1>) /(X(k)-XCk-j) >;
end
end

(b) Repeal Problem 1 using this modification of Program 4.2

Chebyshev Polynomials (Optional)

We now turn our attention to polynomial interpolation for f(x) over [—1,1] based
on the nodes —1 < jco < x\ < mmm < Xfj < \. Both the Lagrange and Newton

polynomials satisfy
f(x) = Pn(x) + EN(x),

where

(1) En(x) = Q(x) (N + 1)1

and Q (jo) is the polynomial of degree N + 1 :
@) £5(3d = (X -XOX* - *t)jctf) -
Using the relationship

max-i<j< ]/ (A1)

IEMID] < \QUN\ (N + )L
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Table 4.11  Chebyshev Polynomials
70(jc) through Ti(x)

TO(x) = 1
7I(i) =X
M(x) = 2x2- 1

r3(jc) = 4jt3- 3x

T4(x) = 8jt4- 8jc2+ 1
5(x) = 16n5 —20n"™ +5ar

T6(x) = 32j6 - 48n4 + 1812- 1
Tj(x) = 64x7 - 112x5+ 56*3 - 7x

our task is to follow Chebyshev’s derivation on how to select the set of nodes {xt}*_0
that minimizes max.-\<x<\{\Q(x)\}. This leads us to a discussion of Chebyshev poly-
nomials and some of their properties. To begin, the first eight Chebyshev polynomials
are listed in Table 4.11.

Properties of Chebyshev Polynomials

Property 1. Recurrence relation

Chebyshev polynomials can be generated in the following way. Set Tq(x) — 1 and
AH:ti= x and use the recurrence relation
) Tt(x) = 2xTk-i(x) - 7*2(gr) for k= 2, 3.......

Property 2. Leading Coefficient

The coefficientofx N in TN(x) is 2W_1 when N > \.

Property 3. Symmetry

V/hen N = 2M, T2m(x) is an even function, that is,

4) Tim(-x)= T2m (x).
When N = 2M + 1, T2M+i (x) is an odd function, that is,

Trm+\(—x) = —Trm+\(x).

Ptoperty 4. Trigonometric Representation on [—1,1]

) Tu(x) ~ cos(N arccos(x))  for —1<x < 1
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y = T4x) Figure 4.15 Graphs of the Chs
shev polynomials Tq(x), T.(x),
.., T4(x) over [—1, 1].

Property 5. Distinct Zeros in [—1,1]

Tfj(x) has N distinct zeros x~ that lie in the interval [—1,1] (see Figure 4.15):

(2%+ 1)%

@) XK _ opg 2NANY)  fer o~ ko w- 1

These values are called the Chebyshev abscissas (nodes).

Property 6. Extreme Values

(8) | 7w(c)] <1 for —1l<x < 1

Property 1 is often used as the definition for higher-order Chebyshev polynomials.
Let us show that T3(x) = 2xT-i(x) —T\(x). Using the expressions for Ti(jc) and '/20r)
in Table 4.11, we obtain

2xTr(x) —T\(jc) m2x(2x2—1) —x = 4x3—3x~ T3(x).

Property 2 is proved by observing that the recurrence relation doubles the leading
coefficient of TN_, (jt) to get the leading coefficientof Tn (x).

Property 3 is established by showing that TimU ) involves only even powers of x
and T2m+i(x) involves only odd powers of n. The details are left for the reader.

The proof of property 4 uses the trigonometric identity

cos(kB) — c0s(20) cos((* —2)6) —sin(20) sin((& — 2)0)
Substitute cos(2f>) = 2cosz(£>) — 1and sin(2£) = 2 sin(f9) cos(9) and get

cos(A$) = 2cos(0){cos(B) cos((& —2)0) —sin(0) sin((fc —2)0)) — cos((k — 2)6)
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which is simplified as
cos{*0) = 2cos(0)cos((Jfc — 1)0) —cos((.k —2)9).

Finally, substitute B = arccosOO ax! obtain

(9) 2jecos((k - 1) arccos(Jt)) - cos<<J: - 2) arccosOO)

=m cosfit arccob'(.r)) for —1<x < 1

The first two Chebyshev polynomials are 7b(x) = cos(Oarccos(j:)) = 1 and
Il(ar) — cos(1larccos(x)) = x. Now assume that Tk(x) = cos(fr arccos(x)} for k — 2,
3, — N — ]. Formula (3) is used with (9) to establish the general case:

Tn(x) = 2xTn- i{x) - T\-2(x)
= 2x cos{(N - l)arccos(x)) —cos((jv —2) arccos(,r))

= cos(N arccos(jr)) for —1< x < 1

Properties 5 and 6 are consequences of Property 4.

Minimax

The Russian mathematician Chebyshev studied how to minimize the upper bound for

(v) I One upper bound can be formed by taking the product of the maximum value
of \Q{x)\ over ail x in [-1, 1] and the maximum value \fiN+])(x)/(N + 1)!] over
all x in [-1, 1]. To minimize the factor max{] £?(*)]), Chebyshev discovered that x0,
Xi,..., xn should be chosen so that Q(x) = (I/2N)TN+\(x).

Theorem 4.6. Assume that N is fixed. Among all possible choices for Q(x) in equa-
tion (2), and thus among all possible choices for the distinct nodes [xk}*=0in [-1, 1].
the polynomial T(x) = T~+](x)/2N is the unique choice that has the property

max (irUJDs max (|]GO)I}-
Moreover,
(10) max _{IT*(G:) b =
-i<x<i 2"

Proof. The proofcan be found in Reference [29]. .
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Table 4.12 Lagrange Coefficient Polynomials Used to Form P3(n)
Based on Equally Spaced Nodes jc* = -14- 2k/b

Lxo(x) = -0.06250000 + 0.06250000x + 0.56250000*2 - 0.56250000n:3
b3.1CO = 0.56250000 - 1.68750000* - 0.56250000x2 + 1.6875000013
L3'2W = 0.56250000 + 1.68750000n: - 0.56250000512 - 1.68750000n:3
L X3(x) = —0.06250000 - 0.062500007- + 0.56250000*2 + 0.56250000*3

The consequence of this result can be stated by saying that, for Lagrange interpo-
lation /(jc) = P,v(jc) + En (x) on [- 1, 1], the minimum value of the error bound

(max{] GO INmax{]/{" +J(1)/(GV + D'}

is achieved when the nodes ft*-} are the Chebyshev abscissas of 7'v i-i<>)e As an il-
lustration, we look at the Lagrange coefficient polynomials that are used in forming
Pb(x). First we use equally spaced nodes and then the Chebyshev nodes. Recall that
the Lagrange polynomial of degree N = 3 has the form

(n) P3(x) = f(xo)Lxo(x) + f(xi)Lxi(x) + F(X2)L32(x)+ f(.x3L3"(x).

Equally Spaced Nodes

If f(x) is approximated by a polynomial of degree at most N = 3 on [-1,1], the
equally spaced nodes *o — —1, *i = —1/3, x2 — 1/3, and 33 = 1 are easy to
use for calculations. Substitution of these values into formula (8) of Section 4.3 and
simplifying will produce the coefficient polynomials Ly~ix) in Table 4.12.

Chebyshev Nodes

When f(x) is to be approximated by a polynomial of degree at most N = 3, using
the Chebyshev nodes jco = cos(7jt/8), jei = cos(5jt/8), *2 = cos(3jt/8), and *3 =
cos(jr/8), the coefficient polynomials are tedious to find (but this can be done by a
computer). The results after simplification are shown in Table 4.13.

Example 4.14. Compare the Lagrange polynomials of degree N = 3 for 7(jc) = ex that
are obtained by using the coefficient polynomials in Tables 4.12 and 4.13, respectively.
Using equally spaced nodes, we get the polynomial

P(x) = 0.99519577 + 0.99904923* + 0.54788486jc2+ 0.17615196jc3.
This is obtained by finding the function values

/{ic0) = = 0.36787944, 7 (jci) = 4-1/3>= 0.71653131,
fix2) = e(/3) = 1.39561243, /(x3) = e(l) = 2.71828183,
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Table 4.13  Coefficient Polynomials Used to Form P3(nr) Based on the
Chebyshev Nodes x* = cos((7 - 2Jfc)jr/8)

CO(n) = -0.10355339 + 0.11208538n + 0.70710678n2 - 0.76536686n3
Ci(*) = 0.60355339 - 1.57716102n - 0.70710678n2 + 1.84775906n3
C2(n) = 0.60355339 + 1.57716102n - 0.70710678n2 - 1.84775906n3
C3(n) = -0.10355339 - 0.11208538n + 0.70710678n2 + 0.7653668613

and using the coefficient polynomials L 3it(x) in Table 4.12, and forming the linear combi-
nation

P(x) = 0.36787944L3,0 « +0.71653131L3,i(x) 4 1.39561243L3,2(x)
+ 2.71828183L3,3(j9.
Similarly, when the Chebyshev nodes are used, we obtain

V(x) = 0.99461532 + 0.99893323n + 0.54290072n2+ 0.17517569n3.

Notice that the coefficients are different from those of P(x). This is aconsequence of using
different nodes and function values:

fixo) = e-°®387953 _ 0.39697597,
f(x!) = £-03868343_ (1.68202877,

f(X2) = eOM26S343 = 1.46621380,

f(x3) = (A92387953 = 2.51904417.

Then the alternative set of coefficient polynomials Ct(x) in Table 4.13 is used to form the
linear combination

V(x)= 0.39697597CoU) + 0.68202877Ci(x) + 1.46621380C2<n) + 2.51904417C3(n).

For a comparison of the accuracy of P(x) and V (x), the error functions are graphed
in Figure 4.16(a) and (b), respectively. The maximum error \e* — P(x)] occurs at x =
0.75490129, and

\ex - />£01 < 0,00998481 for -1 <n < 1L
The maximum error \e* — V(x)] occurs atx = 1, and we get
\ex - V(x)\ < 0.00665687 for -1 < x < 1

Notice that the maximum error in V (n) is about two-thirds the maximum error in A (n).
Also, the error is spread out more evenly over the interval. [
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y Yy
0.005 y=ex-P(x) 0.00~ Ww=e/l_LU( |
J / v 1 It 1\ 1/ \1 . /1
1.0\ -0.5/ \o.5 10 “ -lLo\ -05/ \0.5 /10
/ -0.005 \ , '4- / -0.005 \ vy
-0.010 v/ -0.010 —
(a) Ib)

Figure 4,16 (a) The error functiony = ex—P(x) for Lagrange approximation over [—1, 1]
(b) The error function y = ex — V(x) for Lagrange approximation over [—1, 1].

Runge Phenomenon

We now look deeper to see the advantage of using the Chebyshev interpolation nodes.
Consider Lagrange interpolating to fix) over the interval [—1, 1] based on equally
spaced nodes. Does theerror Etj{x) = f (x) —Pn (x) tend to zero as N increases? For
functions like sin(jf) or ex, where all the derivatives are bounded by the same constant
M, the answer is yes. In general, the answer to this question is no, and it is easy to find
functions for which the sequence \P,\-(x)} does not converge. If f(x) = 1/(1 + 12a-2),
the maximum of the error term EN{x) grows when N —* oc. This nonconvergence
is called the Runge phenomenon (see Reference [90], pp. 275-278). The Lagrange
polynomial of degree 10 based on 11 equally spaced nodes for this function is shown
in Figure 4.17(a). Wild oscillations occur near the end of the interval. If the number of
nodes is increased, then the oscillations become larger. This problem occurs because
the nodes are equally spaced!

If the Chebyshev nodes are used to construct an interpolating polynomial of de-
gree 10to f(x) = 1/(1 + 12x2), the error is much smaller, as seen in Figure 14.17(b).
Under the condition that Chebyshev nodes be used, the error E~(x) will go to zero
as N -> o0o. In general, if fix) and f'(x) are continuous on [—1, 1], then it can be
proved that Chebyshev interpolation will produce a sequence of polynomials { P.vU)!
that converges uniformly to f{x) over [—1, 1].

Transforming the Interval

Sometimes it is necessary to take a problem stated on an interval [a, b] and reformu-
late the problem on the interval [c\ d] where the solution is known. If the approxima-
tion Puy(x) to f(x) is to be obtained on the interval [a, b], then we change the variable
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y
Figure 4.17 (a) The polynomial
approximation to y = 1/(1 + \2x2)
based on 11 equally spaced nodes
over [—1, 1].

y

Figure 4.17 (b) The polynomial
approximation to y = 1/(1 + 12n2)
based on 11 Chebyshev nodes over

[-1.1].
SOthat the problem is reformulated on [—1, 1]:
/b —a\ a+ b |
c12) x= \— ) t+ — or =2 -

wherea < x < band —1< f < 1
The required Chebyshev nodes of 7jv+i 0) on [—1, 1] are

(13) tk=cO0s(0.N+1-2 k)~ -~ j for £= 0, 1, .... N

and the interpolating nodes on [a, b] are obtained by using (12):

xk = tk~~~2~ + for k= 0, 1......... N.
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Theorem 4.7 (Lagrange-Chebyshev Approximation Polynomial), Assume that
Py(.1) is the Lagrange polynomial that is based on the Chebyshev nodes given in (14).
If/ e C*+1[a,&],then

2(h
(15) [fix) ~ PN(x)| < 4’\(+i A r)ras {1 QWY

Example 4.15.  For f(x) = sin(x) on [0, x/4], find the Chebyshev nodes and tht' a Tor
bound (15) for the Lagrange polynomial Ps(x).
Formulas (12) and (13) are used to find the nodes;

1 ®K)aNn
g

n
= cos (L EOANT L G for k=0, 1.5

Using the bound |/ <6)(x)I £ |—sin(jr/4)] = 2-1°2= M in (15), we get

\f(x) - PN(x)| < (f)6( |) 2_V2 ~ 0-00000720. n

Orthogonal Property

In Example 4.14, the Chebyshev nodes were used to find the Lagrange interpolating
polynomial. In general, this implies that the Chebyshev polynomial of degree N can be
obtained by Lagrange interpolation based on the N —1 nodes that are the N + 1zeros
of 7V.jix). However, a direct approach to finding the approximation polynomial is
to express P~(x) as a linear combination of the polynomials 7*(*)> which were given
in Table 4.11 Therefore, the Chebyshev interpolating polynomial can be written in the
form

N
(16) Pflix) = ~2,ckTK{X) = cqTg{x) + ciT|(*) h——---- \-cNTN (x).
k=0
The coefficients in (16) are easy to find. The technical proofrequires the use
of the following orthogonality properties. Let
( 2fc+ 1\
(17) J*= cosf2r2n + 2/ for * = °” N *
N
(18) MTiixk)Tj{xk) =0  when i " j,
k=0
(19) A2 Ti(xk)Tj(xk) = when i=j ®0,
*:O
N
(20) A2 xk)TOW =N+ 1
k=0

Property 4 and the identities (18) and (20) can be used to prove the following
theorem.
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Theorem 4.8 {Chebyshev Approximation). The Chebyshev approximation polyno-
mial Pn (+*) of degree < N for f(x") over [—1,1] can be written as a sum of {7)001:

N
(21) f(x) « PN(x) ="cjTjix).
j=i
The coefficients {c,) are computed with the formulas

(22 co= — £ /W W xK=T~—m [(xk)

'v  1*=o0 *=g

and
J= -1y, f <KQTj {XK
¢ 6 )Tj {XKk)
'"\]-I.i . . N.

Example 4.16. Find the Chebyshev polynomial P3{x) that approximates the function
f(x) = e* over[—L,1].

The coefficients are calculated using formulas (22) and (23), and the nodes i* =
cos(jt(2€ + 1)/8) fork = 0,1, 2,3.

.3 , 3
0= ~Y,eXtn{xk) = = 1-26606568,
4 k=0 4 *=0
i 3 m 3
d = JEY*)XK**) = - £V*JC* = 1.13031500,
1i=0 t=0
cr="YY*r2(*)=i Ve~cos = 0.27145036,
2 k=0 k=0 ' '
c3=1 =Jy;~Ncosf3/~"-ti) = 0.04379392.
i=0 *=0 ' 8 /

Therefore, the Chebyshev polynomial J1(a:) for e* is

(24) P3(*) = 1.26606568TOU) 4- 1.130315007Ti (jo)
+ 0.27145036I () + 0.04379392T3(0).

Ifthe Chebyshev polynomial (24) is expanded in powers of jc, the result is
ftU) = 0.99461532 + 0.99893324* + 0.54290072*2+ 0.17517568n:3,

which is the same as the polynomiai V(x) in Example 4.14. |f the goal is to find the
Chebyshev polynomial, formulas (22) and (23) are preferred. |
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MATLAB

The following program uses the eval command instead of the feval command use
in earlier programs. The eval command interprets a MATLAB text string as an en
pression or statement. For example, the following commands will quickly evaluat.
cosine at the valuesx = kj10fork =0, 1,..., 5
» x=0:.1:.5;
>> eval(’cos(x)’)
ans =

1.0000 0.9950 0.9801 0.9553 0.9211 0.8776

Program 4.3 (Chebyshev Approximation). To construct and evaluate the Cheby-
shev interpolating polynomial of degree N over the interval [—1, 1], where

N

P(x) = J 2 ATj(x)
i=0

is based on the nodes

function [C,X,Y]=cheby(fuu,n,a,b)
f.Input - fun is the string function to be approximated

X - Nis the degree of the Chebyshev interpolating
X polynomial

X - a is the left end point

X - b is the right end point

XOutput - C is the coefficient list for the polynomial
X - X contains the abscissas

X - Y contains the ordinates

if nargin==2, a=-l;b=I;end
d=pi/(2*n+2);
Ozerosd ,n+1);
for k=l:in+l
X (k)=cos((2*k-1)*d);
end
X=(b-a)*X/2+{a+b)/2 ;
X=X;
Y -eval(fun);
for k *l:n+l
z=(2*k-1)*d;
for j=l:in+l
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CH)=C)+Y(k)*cos((i-1)*2z);

end
end

02*C/(n+l);
ch=cy/2;

Exercises for Chebyshev Polynomials (Optional)

1

(<224 ) I - V6]

1ft.

Use property 1and
(@ construct Ti(x) from 7'3(n:) and Ti(x).
(b) construct 75(,t) from 4(x) and T${x).

. Use property land

(at  construci from 7s(jr.) and TA(x).
(b) construct Tj{x) from 76(ar| and T$(x).

. Use mathematical induction to prove property 2.
. Use mathematical induction to prove propeny 3.
. [=net the maximum and minimum values of T2(x).

. Find the maximum and minimum values of T}(x).

Him. T\(1/2) ~ 0 and 73(-1/2) = 0.

. Find the maximum and minimum values of ).

Hint. Tun = O M4(2~,fi)=0. and T"(-1-12\- 0.

. Let f[x) —sin(i) on |—4, Ij.

(a) Use the coefficient polynomials in Table 4.13 to obtain the Lagrange-Chebyshev
polynomial approximation P}(x).

(b) Find the error bound for \sinU) - P~u:)j.

. Let /(.*) = In(jt 4- 2) on [—L I].

(@) Use the coefficient polynomials in Table 4.13 to obtain the Lagrange-Chebyshev
polynomial approximation Pi(x).

{b) Find the error bound for | In(jic + 2) —P3(a)..

The Lagrange polynomial of degree N = 2 has ihe form
fix) =/(.ro) 7-2.c(-0 4- /t.ri)L;.i(jr) - f(X2)L2.zU).

If the Chebyshev nodes xo = ec*155/6), xi = 0, and xj = cost*/fe) are used, show
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that the coefficient polynomials are

i (u X 2x2

4x2

2ifr) = 1—j-.
X 2x2

L22M) = 3+ "7

11. Let fix) = cos(jt) on [—1,1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebyshev
polynomial approximation Pi(x).
(b) Find the errorbound for |cos(x) - Pr(mr)|.

12. Let/(x) = exon [—1,1].
(a) Use the coefficient polynomials in Exercise 10 to get the Lagrange-Chebysho
polynomial approximation Pz(x).
(b) Find the error bound for \e* —Pr{x)\.

In Exercises 13 through 15, compare the Taylor polynomial and the Lagrange-Chebyshev
approximates to fix) on [—1,1]- Find their error bounds.

13. /(jc) = sin(jc) and N = 7; the Lagrange-Chebyshev polynomial is
sin(jt) » 0.99999998x - 0.16666599n:2+ 0.00832995*5- 0.00019297x7
14. f{x) = cos(je) and JT = 6; the Lagrange-Cbebyshev polynomial is
cos(x) % | - 0.49999734n:2+ 0.04164535n:4 - 0.00134608*6.
15. f(x) = exand N -1\ the Lagrange-Chebyshev polynomial is

ex # 0.99999980 + 0.99999998n: + 0.50000634*2
+ 0.16666737n:3+ 0.04163504n:4 + 0.00832984n:5
+ 0.00143925n:6+ 0.00020399n:7.

16. Prove equation (18).
17. Prove equation (19).

Algorithms and Programs

In Problems 1 through 6, use Program 4.3 to compute the coefficients {c*) for the Chebj -
shev polynomial approximation RvU) to fix) over[-1,1], when (a) N = 4, (b) N —5.
(c) N —6,and (d) N = 7. In each case, plot fix) and Pu(x) on the same coordinate
system.

1 f(x) = e* 2. fix) = sin(*)
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3. f(x) = cos(x) 4. f(x) = InOr + 2)
5 7Geo = Get 2)12 6, f(x) = (n +2)(x+2>
7. Use Program 4.3 (V = 5) to obtain an approximation for /0 cos(*2) dx.

Pade Approximations

In this section we introduce the notion of rational approximations for functions. The
function / (c) will be approximated over a small portion of its domain. For example,
if f(x) = cos(jc), it is sufficient to have a formula to generate approximations on the
interval [0, a/2]. Then trigonometric identities can be used to compute cos(jr) for any
value x that lies outside [0, Tr/2].

A rational approximation to / (x) on la, b] is the quotient of two polynomials
Pn (x) and Qm {x) of degrees N and M, respectively. We use the notation Ry m (x) to
denote this quotient:

(9] Rn,m(x) - TQrm~(rXT) for a <x <b.

Our goal is to make the maximum error as small as possible. For a given amount
of computational effort, one can usually construct a rational approximation that has a
smaller overall error on [a, b] than a polynomial approximation. Our development is
an introduction and will be limited to Pade approximations.

The method of Padi requires that f(x) and its derivative be continuous atjc =o .
There are two reasons for the arbitrary choice of j: =0. First, it makes the manipula-
tions simpler. Second, a change of variable can be used to shift the calculations over to
an interval that contains zero. The polynomials used in (1) are

(2) Pn(x) = po+ Pix + P2X2 + -e¢+ pnxn
and
?3) Qmx)= 1+ q]xX+g2x2+ -e + <X M.

The polynomials in (2) and (3) are constructed so that fix ) and Rn.m U) agree at
x = 0 and their derivatives up to N + M agree at x = 0. In the case Qo(x) = I, the
approximation is just the Maclaurin expansion for fix). For a fixed value of N + M
the error is smallest when P,bi(x) and Qm (x ) have the same degree or when Pyix) has
degree one higher than QM (*).

Notice that the constant coefficient of Qm is qo = I- This is permissible, because
it cannot be 0 and Rn.m 00 is not changed when both Pu (x) and Qwm (x) sue divided
by the same constant. Hence the rational function Rn,m (x) has N -h M + 1 unknown
coefficients. Assume that f(x) is analytic and has the Maclaurin expansion

(@) fix) = ao + aix + a2x2 4---—--- Ea*jor -
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and form the difference f(x)Qu(x) - P\(x) —Z(x):

v {wm \ N oo
ai*}I11E BX")- £ Pj*J-  J2  cjX]
mo / \j=0 /o 7=0 , = IU-M+1
The lower indexy = M + jV + 1in the sununation on the right side of (5) is chosen

because the first N + M derivatives of / {ic) and Rnm (x) are to agree atx = 0.
When the left side of (5) is multiplied out and the coefficients of the powers of >
are set equal to zero forx = 0, 1,..., N + M, the resultis a system of N + M 4
linear equations:
ao~ PO=0
giao + a\ - pi = 0
(6) g2ao + giai + & ~ P2 = 0
<)+ Ar<d + 4\°2 + a3 - p3 = O

UMaH-M + UmM-\ay-M+\ "l \-on — Pn =0
and
quaN-M+\+4M-iaN-M+2-\------- «ir +«jv+i =0
AVKIbEVH2 + UMA\<*U-M+D H-------- |-<7134+1  +~N+2 =0
O]

+ 4 M-}O0n+i + ommt+ HA\ay+m-\ + on+m = 0.

Notice that in each equation the sum of the subscripts on the factors of each product
is the same, and this sum increases consecutively from 0 to N + M. The M equations
in (7) involve only the unknowns q\, qi,.. .,qu and must be solved first. Then the
equations in (6) are used successively to find po, pi,.,., ppj.

Example 4.17. Establish the Pade approximation
15,120 - 6900x2 + 313jc4

15120 + 660n:2+ 13jth

See Figure 4.18 for the graphs of cos(x) and /?4,4(x) over [5, 5].

If the Maclaurin expansion for cos(x) is used, we will obtain nine equations in nine
unknowns. Instead, notice that both cos(x) and A”~bc) are even functions and involve

powers of x 2. We can simplify the computations if we start with / (i) = cos(x,/2):

©) ) =1- 5 +30%2 250 * 40300

In this case, equation (5) becomes

(8) cos(x) sa R4 4 (x)

0 - IXx+b? - W X*+ W 20/ -mmm)(*+«® +W 1)-PO0-P*-W 2
=0+ Ox+ Ox2+ Ox3+ O*4+ c$xb + Cex6 + mm
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Figure 4.18 Hie graph of y = cos(,t) and its Pade
approximation Rn"ix).

When the coefficients of the first five powers of x are compared, we get the following
system of linear equations:

1- pa=0

~2 +<?] - Pi =°

(10) — - ig, +g2- p2=0
1 1 1

720 + 2AQi 142~

40,320 “ 72091 + 24qi = °*
The last two equations in (10) must be solved first. They can be rewritten in a form that is
Casy to solve:
g\ - \2qi =~ and -g\+30q2 = ~ -

Fttttfind qi by adding the equations; then find qi

13
A 42 1&(30 56) 15,120'

- L 156 _ I
91 ~ 30 + 15,120 ~ 252 *

Now the first three equations of (10) are used. It is obvious that pa = 1, and we can
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use g\ and <2in (11) to solve for p\ and pr'.

1 11 115
(12) Pi~~2 + 252 ~~252"
11 13 313

P2~ 24 504 + 15,120 * 15,120 °
Now use the coefficients in (11) and (12) to form the rational approximation to / (ar):

1- U5jd252 + 313j2/15,120

1 f(x):
(13) (x) 1+ 1h;/252+13jc2/15,120

Since cos (ic) = 7 (ic2), We can substitute jc2 for jc in equation (13) and the result is tne
formula for ftt,4(jc) in (8). [ ]

Continued Fraction Form

The Pade approximation in Example 4.17 requires aminimum of 12 arithmetic
operations to perform an evaluation. It is possible to reduce this number to seven b>
the use of continued fractions. This is accomplished by starting with (8) and tin.din,
the quotient and its polynomial remainder.

15,120/313 - (6900/3 13)*2+ jc4
e 15,120/13 + (660/13)*2+ .r4

313 /296,2804 / 12,600/823+ jc2 \

13 “ V169 ) \ 15,120/13 + (600/13).t2+ jc4/ *

The process is carried out once more using the term in the previous remainder. The
result is

D , 313 296,280/169
N4 a(;e) — 7------- r
13 15,120/13 + (660/13)jt2 +jc4

12,600/823+ j2

313 296,280/169
“ U ~ 379,380 , , 420,078,960/677,329 '
10,699 + 12,600/823+ j2

The fractions are converted to decimal form for computational purposes and we obtair

(14) tf4,4(jc) = 24.07692308
1753.13609467
~ 35.45938873 + jc2 + 620.19928277/(15.30984204 + jc2)



Sec.4.6 Pade Approximations 247

(a (b)
Figure 4.19 (a) Graph of the error Es (x) = cos(jr) —Rn”(x) for the Pade approxima-

tion /24,4(.t). (b) Graphofthe error £> (x) = cost*)—*6(*) for the Taylor approximation
P6(X).

To evaluate (14), first compute and store x 2, then proceed from the bottom right term
in the denominator and tally the operations: addition, division, addition, addition, divi-
sion, and subtraction. Hence it takes a total of seven arithmetic operations to evaluate
i?4,4(j:) in continued fraction form in (14).

We can compare /?44(*) with the Taylor polynomial P6(x) of degree N = 6,
which requires seven arithmetic operations to evaluate when it is written in the nested
form

(15)

= 1+ J2(—0.5 + E2(0.0416666667 - 0.001388888971:2)).

The graphs of Eg(x) = cos(x) —/A44(n) and £>(w*) = cos(jt) —Pe(x) over [, 1]
are shown in Figure 4.19(a) and (b), respectively. The largest errors occur at the
end points and are Eg(l) = —0.0000003599 and £>( 1) = 0.0000245281, respec-
tively. The magnitude of the largest error for ft*Cx) is about 1,467% of the error
for P(,(x). The Pade approximation outperforms the Taylor approximation better on
smaller intervals, and over [—0.1,0.1] we find that £2(0.1) = —0.0000000004 and
£p(0.1) = 0.0000000966, so the magnitude of 1he errot for A4,4(x) is about 0.384%
of the magnitude of the error for Pb(x).
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Exercises for Pade Approximations
1. Establish the Pade approximation:
iw =,

1. (a) Find the Paclé approximation /?i,i (x) for/ (m:) = In(I + x)/x. Hint. Start u ith
the Maciaurin expansion:

/<*) = + .
(b) Usethe resultin part (a) to establish the approximation

6Xx + X2
6 i 4x

In(l +*) *J2W

3. (@) Find Si.iOc) for/ (jc) = tanfjc'/jr1*2. Hint. Start with the Madauri
sion:

X  2x2
fix) = 1+ 3 + +

(b) Use the result in part (a) to establish the approximation

15ic - x3

tan(jc) so 13.r(") - 15 —6x2

4, (@ Find /2i,i: for f(x) — arcian(xl,2)/;tr. Hint. Start with the Maclaur
expansion:

X X2

fix) =1- 3+y .
(b) Use the result in part (a) to establish the approximation

15n + 4>§§

arctan(jr) «®@ R3,2(x) = :
) 9 15 + 9x2

(c) Express the rational function Ri~ix) in part (b) in continued fraction form.
5. (a) Establish the Pade approximation:

e o\ 12+ 6* +jc2
e ~ RIalX):TZ_—6X+’_‘ -

(b) Express the rational function R2,2ix) in part (a) in continued fraction forn.
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6. (a) Find the Padf approximation Ar.rM for f(x) = In(l + x)/x. Hint. Start with
the Maclaurin expansion:

(b) Use the result in part (a) to establish

30X :1\x2+ x3

In(l +x) ar A3n(x) - 30 4 3 + 9x2

(c) Express the rational function Rz,2(x) in part (b) in continued fraction form.
(@ Find R j for/ (x) = tan(xI/2)/x1/2. Hint. Start with the Maclaurin expan-
sion'.
X 2x2 17x3  62x*
I(*) _ 1+ - + — + +

(b) Use the result in part (a) to establish

945jc- 105jt3+J:5

tan{*) sarsa(x) =
945 —420n;2 + 15114°

(c) Express the rational function in part (b) in continued fraction form.
$. (@) Find Ri.2(x) for f{x) = arctan(xl2)/jc1/2. Hint. Start with the Maclaurin
expansion:

x x2 13 x4
m = +y -y +T - - n=m

(b) Use the resultin part (a) to establish

945n; + 735n:3 + 64n;5

i
aretan(jc) ~ RS"() = g5+ 1080m2+ 225508

(©) Express die rational function”,4(;c) in part (b) in continued fraction form.
«S. Establish the Pad6 approximation:

120 + 60m; + 1202+ 13
e "A3,3(*)= 120—60n; + 12x2+ x3

4 O. Establish the Pad6 approximation:

1680 + 840n: + 180jc2 + 20n:3 + x4

ex b Rt 4(x) =
) 1680 - 840* + 180m:2- 20N3 + jea *
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Algorithms and Programs

1. Compare the following approximationsto /(jc) = ex.

Taylor: ()= 1+n+y +y + ~

Pade: Rj.iix) = 12 —6x + x1

(@) Plot/(*), 7ii(x). and Ri.iix) on the same coordinate system.

(b) Determine the maximum error that occurs when /(jc) is approximate : rn
7e(jc) and Ar.rM, respectively, over the interval [—1,1].

2. Compare the following approximationsto f{x) = In(l + x).
r2 X3 I’4 X5
Taylor: 7s(jc)=:j:-y+y -y + y
» 30jc+ 21jc2 + jic3
n O32(x)= 30T w TO9A

(@) Plot/ (jc), 7s(i9, and R\2(x) on the same coordinate system.
(b) Determine the maximum error that occurs when /(jc) is approximate.! ih
7f(x) and A3.rCx), respectively, over the interval [—1,1].

3. Compare the following approximations to f(x) = tan(;c).

byte rw=, + T+ + 127, 62jc9

Padf SS4(,)= 945' “ 105)11+ '5
945 - 420jc2 + 15jc4
(@) Plot/(ie. r9(jc), and Kbn(x) on the same coordinate system.
(b) Determine the maximum error that occurs when / .) is approximated with
T(x) and Rsjf.x), respectively, over the interval [, 1].
4. Compare the following Pade approximations to / (icy = sin(jc) over the interval
[-12,1.2]

166,320jc - 22,260jc3 + 551jc5

54- “ 15(11,088 + 364jc2 + 5x4)

. 11,511,339,840jc - 1,640,635,920jc2+ 52,785,432n:5-479,249jc7
RIDIX) — 1 644,477,120 + 39,702,960c2+ 453.9605c4 + 2,623716)
(@ Plot/(*), RsMx)>and Rj,e(.x) on the same coordinate system.

(b) Determine thue maximum error that occurs when f(x) is approximated with
~5.4<c) and W7,6(*), respectively, over the interval {—1.2,1,2].
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5. (a) Use equations (6) and (7) to derive J16.600 and % g(x) for/ (mr) = cos(x) over
the interval [—1.2, 1.2].
(b) Plot f(x), J16,6(x), and Jtg,g(x) on the same coordinate system.
(c) Determine the maximum error that occurs when / ;o) is approximated with
1%6,(six) and flg.sUJ, respectively, over the interval [-1.2, 1.2].



Curve Fitting

Applications of numerical techniques in science and engineering often involve curve
fitting of experimental data. For example, in 1601 the German astronomer Johannes
Kepler formulated the third law of planetary motion, T = Cn 32, where x is the dis-
tance to the sun measured in millions of kilometers, T is the orbital period measured
in days, and C is a constant. The observed data pairs (jc, T) for the first four planets,
Mercury, Venus, Earth, and Mars, are (58, 88), (108, 225), (150, 365), and (228,687),
and the coefficient C obtained from the method of least squares is C = 0.199769. The
curve T = 0.199769jc3/! and the data points are shown in Figure 5.1.

750
500

250

Figure 5.1 The least-squares fit
T = 0.199769jc3/2 for the first four
x  planets using Kepler’s third law of
50 100 150 200 planetary motion.

252
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Least-squares Line

In science and engineering it is often the case that an experiment produces a set of
data points (V. Vj)........ Lw, v,v). where the abscissas I**} are distinct. One goal of
numerical methods is to determine a formulay = f(x) that relates these variables.
Usually, a class of allowable formulas is chosen and then coefficients must be deter-
mined. There are many different possibilities for the type of function that can be used.
Often there is an underlying mathematical model, based on the physical situation, that
will determine the form of the function, in this section we emphasize the class of linear
functions of the form

(D) y = f(x) = Ax + B.

In Chapter 4 we saw how to construct a polynomial that passes through a set of
points. If all the numerical values {n*}, {y*} are known to several significant digits
ofaccuracy, then polynomial interpolation can be used successfully; otherwise it can-
not. Some experiments are devised using specialized equipment so that the data points
"will have at least five digits of accuracy. However, many experiments are done with
equipment that is reliable only to three or fewer digits of accuracy. Often there is an
experimental error in the measurements, and although three digits are recorded for the
values {, }and {»}, it is realized that the true value /(**) satisfies

13 f(xk)-yk+ek,

where is the measurement error.

How do we find the best linear approximation of the form (1) that goes near (not
always through) the points? To answer this question, we need to discuss the errors
(also called deviations or residuals):

3) ek = f(xk) —yk for 1<k <N.

There are several norms that can be used with the residuals in (3) to measure how
farthe curve y = f(x) lies from the data.

i : = *x)
.4 Maximum error: £oo(/) Igil%{)/( ) 3
1 N
5) Average error: E,(f) = Tt XV V(**) - ¥,
*:I
/1 N
Root-mean-square E2(f) = I —7  |/IC**) - W2
error: \ =i

The next example shows how to apply these norms when a function and a set of
points are given.
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Table5.1 Calculations for Finding E\(f) and £?(/) for
Example 5.1

%o It =86-lfor p g

-1 100 102 0.2 0CH
0 9.0 8.6 04 0.16
1 7.0 7.0 0.0 0.00
2 5.0 54 04 0.16
3 4.0 3.8 0.2 0.04
4 3.0 22 0.8 0.64
5 0.0 0.6 0.6 0.36
6 -1.0 -1.0 0.0 0.00

2.6 140

Example 5.1. Compare the maximum error, average error, and rms error for the lim. 1,
approximationy = /(jo = 8.6 —1.6jcto the data points (—1, 10), (0, 9), (1, 7), (2, m
(3,4), (4,3), (5,0), and (6,-1).

The errors are found using the values for / (jt*) and e* given in Table 5.1.

%) Ex (f) = max{0.2, 0.4, 0.0, 0.4, 0.2, 0.8,0.6, 0.0) = 0.8,
(8) £i(/) = [(2.6)= 0.325,
) £2(/) . as 0.41833

We can see that the maximum error is largest, and if one point is badly in error, its
value determines £«>(/)m The average error £ [ (/) simply averages the absolute value ol
the error at the various points. It is often used because it is easy to compute. The erro
£2(/) is often used when the statistical nature of the errors is considered.

A best-fitting line is found by minimizing one of the quantities in equations (4) through
(6). Hence there are three best-fitting lines that we could find. The third norm Ej{f) is the
traditional choice because it is much easier to minimize computationally. [

Finding the Least-squares Line

Let {(ir*, >*)}*..j be a set of N points, where the abscissas {jc*} are distinct. The least-
squares liney = f(x) = Ax + B is the line that minimizes the root-mean-square error
Eiif).
The quantity Eoif) will be a minimum if and only if the quantity NiEiif))1 =
\irxk + B —yk)2is a minimum. The latter is visualized geometrically by mini-
mizing the sum of the squares of the vertical distances from the points to the line. The
next result explains this process.
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Figure 5.2 The vertical distances
between the points {(xk, v¥)1and
the least-squares line y = Ax + B.

Theorem 5.1 (Least-squares Line). Suppose that {(**, y*)}j*=1 are N points, where
tile abscissas are distinct. The coefficients of the least-squares line

y = Ax+ B

are the solution to the following linear system, known as the normal equations'.

N \ I N \ N
ExX*)a+ (£*4e =]t
K=i =i k=1
N /' N \ N
X >M + «> = £ » o

V=1 |/ i=1

Proof. Geometrically, we start with the line y = Ax + B. The vertical distance dt
fwm the point (xk, Yk) to the point (x*, Axk + B) on the line is dk = \Axk -TB —»
(see Figure 5.2). We must minimize the sum of the squares of the vertical distances d

N N

an E(AB)NY ¢t By>1= Y de

The minimum value of E(A, B) is determined by setting the partial derivatives
3E/3a and 3E/dB equal to zero and solving these equations for A and B . Notice that
{c} and {yi} are constants in equation (11) and that A and B are the variables! Hold
B fixed, differentiate E(A, B) with respectto A, and get

(i2) B'= L 2(Axk+ B - Yk)(xx) = 2V'tAjcf + Bxk - XkYx)
dA *=j t=i
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Ll 1e 5.2 Obtaining tbe Coefficients for
Normal Equations

4 W xk *KYK
-1 10 1 -10
0 9 0 0
1 7 1 7
2 5 4 10
3 4 9 12
4 3 16 12
5 0 25 0

6 -1 36 -6
20 37 92 25

Now hold A fixed and differentiate E(A, B) with respectto B and get

= ~ N = ~
(13) 9£(é% B) II<_|Zi2{AXk + B~y 2%(etW + B ~ »>nm

Setting the partial derivatives equal to zero in (12) and (13), use the distributive
properties of summation to obtain

N J4 v N
(14) 0="(Axl + Bxk- xkyk) = A ~xj +B"2xk- 7>v™*.
i=1 k=1 *=1 Ar=1
N N N
(15) 0="(Axk+B-yk=AAxk+NB- "Yk- *
*=| k=l k=1

Equations (14) and (15) can be rearranged in the standard form for a system and
result in the normal equations (10). The solution to this system can be obtained by one
of the techniques for solving a linear system from Chapter 3. However, the method
employed in Program 5.1 translates the data points so that a well-conditioned matrix is
employed (see exercises).

Example 5.2. Find the least-squares line for the data points given in Example 5.1.
The sums required for the normal equations (10) are easily obtained using the values
in Table 5.2. The linear system involving A and B is

92A + 20B = 25
20A + 85 = 37.
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x Figure 5.3 The least-squares line
vy = —1.6071429n: + 8.6428571.

The solution of the linear system is A —1.6071429 and B 8.6428571. Therefore, the
least-squares line is (see Figure 5.3)

y=-1.6071429*+ 8.6428571 ]

The Power Fity = AxM

Some situations involve f{x) = AxM, where M is a known constant. The example of
planetary motion given in Figure 5.1 is an example. In these cases there is only one
parameter A to be determined.

Theorem 5.2 (Power Fit). Suppose that {(n*, »)}~=] are N points, where the ab-
scissas are distinct. The coefficient A of the least-squares power curve y = AxM is
given by

(16)

Using the least-squares technique, we seek a minimum of the function E(A):

In this case it will suffice to solve E'(A) = 0. The derivative is

N N
(18) E'(A) = 2Y M Axk ~ YkHx?) = 2~ (A xBRM - x”"yKk).



258 Chap.5 Curve Fitting

Table 5.3  Obtaining the Coefficient for a Power Fit

Time, tjt Distance, <4 dA -
0.200 0.1960 0.00784 0.0016
0.400 0.7850 0.12560 0.0256
0.600 1.7665 0.63594 0.1296
0.800 3.1405 2.00992 0.4096
1.000 4.9075 4.90750 1.0000

7.68680 15664

Hence the coefficient A is the solution of the equation

(19) 0=AJ24M-J2"yk

F— E—
which reduces to the formula in equation (16).

Example 5.3.  Students collected the experimental data in Table 5.3. The relation is
d = jgs2, where d is distance in meters and t is time in seconds. Find the gravitational

constant,”?.
The values in Table 5.3 are used to find the summations required in formula (16), where

the powerused is M = 2.
The coefficient is A = 7.68680/1.5664 = 4.9073, and we get d — 4.9073;3 and

g = 2A = 9.7146 m/sec2. [ |

The following program for constructing a least-squares line is computationally sta-
ble: it gives reliable results in cases when the normal equations (10) are ill conditioned.
The reader is asked to develop the algorithm for this program in Exercises 4 through 7.

Program5.1 (Least-squares Line). To construct the least-squares liney — Ax +

B that fits the N data points (*i, >4),..., (xm, ym).
function [A,B]=Isline(X,Y)
#Input - X is the Ixn abscissa vector
¥, - Y is the Ixn ordinate vector
'/.Output - A is the coefficient of x in Ax + B
', - Bis the constant coefficient in Ax + B

xwean=Tean(X);
ymean=mean(Y);
sumx2=(X-xmean)* (X-xmean)’;
sumxy=(Y-ymean)* (X-xmean)’;
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A=sumxy/sumx2;
B=ymean-A*xmean;

Exercises for Least-squares Line

In Exercises 1and 2, find the least-squares line y = f(x)

calculate Ez(f)

©
Xk YK
-4 -3
-1 -1
0 0
2 1
3 2
2. ()
Xk YK
-4 12
-2 2.8
0 6,2
2 7.8
4 13.2
(c)
Xk YK
-8 6.8
-2 5.0
0 2.2
4 0.5
6 -1.3

f(XK)

-3.0
-0.9
-0.2
1.2
1.9

fixK)

0.44
3.34
6.24
9.14
12.04

/(**)

7.32
3.81
2.64
0.30
-0.87

(b)
Xk

-6
-2

)

Xk

-6
-2

259

Ax + B for the data and

<

O N WOl

-5.3
-3.5
-1.7
0.2
4.0

f(XK)

7.0
4.6
3.4
2.2
-0.2

fixK)

-6.00
-2.84
-1.26
0.32
3.48

3. Find the power fity = Ax, where M = 1, which is a line through the origin, for the
data and calculate Eiifj.
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@
Xk Yk f{xk) XK OYk [(*%)
-4 -3 .28 3 16 1722
-1 -1 -07 4 24 2.296
0 0 0.0 5 29 2870
2 1 1.4 6 3.4 3.444
3 2 2.1 8 46 4592
©
Xk YK I(**)
1 16 158
2 28 3.6
3 47 474
4 64 632
5 80  7.90

Define the means x and >for the points {U*, y*)}£L[ by

N

1 N
“d
*=| *1t-1
Show that the point (J, J) Jies on the least-squares line determined by the given set of
points.

Show that the solution of the system in (10) is given by

1 C N N N
A= — IN ™ xkYK - j’
b *=1 k=l
/N N N N
B _ YKy Y A Xkyk
\t=i  *=i *=i *=i
where
N
D = N LrF AT,
k=\ k=1

Hint. Use Gaussian elimination on the system in (10).

. Show that the value of D in Exercise 5 is nonzero.

Hint. Show that D = N ~Xx)2.

. Show that the coefficients A and B for the least-squares line can be computed &,

follows. First compute the means x and y in Exercise 4, and then perform the calcu-
lations:
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10.

11.

12.

Hint. Use Xt, = Xk —x, ¥* = yk —V and first find the line Y = AX.

. Find the power fitsy = Ax2and y = Bxu for the following data and use £r (/) to

determine which curve fits best.

@
Xk YK Xk Yk
2.0 5.1 2.0 5.9
2.3 7.5 2.3 8.3
2.6 10.6 2.6 10.7
2.9 14.4 2.9 13.7
3.2 19.0 3.2 17.0

. Find the power fitsy = A/x andy = B/x2 for the following dataand use Ejif) to

determine which curve fits best.

@)
X Xk
05 7.1 0.7 81
08 4.4 0.9 49
11 32 11 33
18 19 16 16
40 09 30 05

(a) Derive the normal equation for finding the least-squares linear fit through the
originy = AX.

(b) Derive the normal equation for finding the least-squares power fity = Ax2.

() Derive the normal equations for finding the least-squares parabolay = Ax2+B.

Consider the construction of a least-squares line for each of the sets of data points
determined by Sn —{(, (~)2)}f=1, where N = 2,3,4....... Note that, for each
value of N the points in all lie on the graph of fix) = x2 over the closed interval
[0,1]. LetxN and y N be the means for the given data points (see Exercise 4). Let x
be the mean of the values of x in the interval [0, 1], and let y be the mean (average)
value of f(x) = x2 over the interval [0. 1].

(@) Show lim~o00 xn = jr.
(b) Show UTnr-too yN = .

Consider the construction of a least-squares line for each of the sets of data points:

Sn = [ib - a)= +a fiib - a)g +a);

for N = 2,3.4,.... Assume that v ~ fix} is an integrable function over the closed
interval [a, b\. Repeat parts (a) and (b) from Exercise 11.



262 Chap.5 Curve Fitting

Algorithms and Programs

1. Hooke’s law states that F

Xk Fk
0.2 3.6
0.4 7.3
0.6 109
0.8 145
1.0 182

= kx, where F is the force (in ounces) used to stretch
a spring and X is the increase in its length (in inches). Use Program 5.1 to find an
approximation to the spring constant k for the following data.

Xk

0.2
0.4
0.6
0.8
1.0

Ft

5.3
10.6
15.9
21.2
26.4

2. Write a program to find the gravitational constant g for the following sets of data. 12>,

the power fit that was shown in Example 5.3,

Time, tk

0.200
0.400
0.600
0.800
1.000

Distance, 4t

0.1960
0.7835
1.7630
3.1345
4.8975

Time, tk

0.200
0.400
0.600
0,800
1.000

Distance, dt

0.1965
0.7855
1.7675
3.1420
4.9095

3. The following data give the distances of the nine planets from the sun and their side

real period in days.

Planet

Mekxy
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Piuto

Distance from
sun (km x 106)

57.59
108.11
149.57
227.84
778.14

1427.0
2870.3
4499.9
5909.0

Sidereal period
(days)

87.99
224.70
365.26
686.98

4,332.4
10,759
30,684
60,188
90,710

Modify your program from Problem 2 to also calculate E'lif). Use it to find the
power fit ofthe form y = Cx""2for (a) the first four planets and (b) all nine planets.

4. (a) Find the least-squares line for the data points {(jc*, y*)}|°,, where xt = (0J)£
and y* = xk + costfcl2).

(b) Calculate £2 (/)m

(c) Plot the set of data points and the least-squares line on toe same coordinate

system.
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Curve Fitting
Data Linearization Method fory —CeAx

Suppose that we are given the points (jrj, yi), fe. >2), -. -, (<* ,y,v) and want to fit an
exponential curve of the form

ill y = Cellx.

The first step is to take the logarithm of both sides:

2l In(y) = Ax -+In(C).

Then introduce the change of variables:

3) Y = In(y), X =X, and B = In(C).
This results in a linear relation between the new variables X and Y:
4) Y= AX + B.

The original points (jc>yt) in the xy-plane are transformed into the points (Xk>Y*) =
Ui In(yt)) in the X Y-plane. This process is called data linearization. Then the least-
squares line (4) is fit to the points {(Xjj, K*}}. The normal equations for finding A and

B are
N N \
Jt=) ( i=1 /

A+ NB =J2Yk
(1>)

After A and B have been found, the parameter C in equation (1) is computed:

®)

(6) C = eB.

Example 5.4. Use the data linearization method and find the exponential fity -m CeAx
for the five data points (0,1.5), (1,2.5), (2,3.5), (3,5.0), and (4,7.5).
Apply the transformation (3) to the original points and obtain

{0Xt, yK)} = {(0, In(L.9), (1, In(2.5>), (2, In(3.5)), (3, In(5.0)), {4, In(7.5))
g = {<0,0.40547), (1,0.91629), (2,1.25276), (3,1.60944), (4,2.01490)!-

These transformed points are shown in Figure 5.4 and exhibit a linearized form. The equa-
tion of the least-squares line Y —J1X + B for the points (7) in Figure 5.4 is

()] Y = 0.391202X + 0.457367.
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points {(X*, ¥}

Table5.4 Obtaining Coefficients of the Normal Equations for the Transformed Data Points
(Ne , YK)i

* Y xk % = In(yt) K& xkyx
0.0 15 0.0 0.405465 0.0 0.000000
10 25 10 0.916291 10 0.916291
20 35 20 1.252763 4.0 2505526
30 5.0 3.0 1.609438 9.0 4.828314
40 75 40 2.014903 16,0 8.059612

100 6.198860 30.0 16.309743

_=

Calculation of the coefficients for the normal equations in (5) is shown in Table 5.4.
The resulting linear system (5) for determining A and B is

30A + \0B = 16.309742
® 10A+ 5B 6.198860.

The solutionis A = 0.3912023 and B = 0.457367. Then C is obtained with the calculation
C = £0457367 = 1.5799H0, and these values for A and C are substituted into equation (1)
to obtain the exponential fit (see Figure 5.5):

(10) y = 15799 H0e039120231  (fit by data linearization).
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Figure 5.5 The exponential fit
y = 1.579910e03<[2 |: obtained by
using the data linearization method.

Nonlinear Least-squares Method for y » CeAx

Suppose that we are given the points (*i,yi)>(*2,yi), mme, (,xn, ¥M) and want to fit an
exponential curve:

(11) y = CeAx.

The nonlinear least-squares procedure requires that we find a minimum of

N
(12) £(A,C) = £(CeA*-y*)2.
*=1

The partial derivatives of E(A, C) with respectto A and C are

(13) = 2fyCe** - yk)(CxkeA*)

and

(14) ££=2" CeAk~ Yk){eh).
dc i=i

When the partial derivatives in (13) and (14) are set equal to zero and then simplified,
the resulting normal equations are

(*°) k=l k=l
C"2e Ak 0.
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The equations in (15) are nonlinear in the unknowns A and C and can be solved using
Newton’s method. This is a time-consuming computation and the iteration involved
requires good starting values for A and C. Many software packages have a built-in
minimization subroutine for functions of several variables that can be used to minimize
E(A, C) direcdy, For example, the Nedler-Mead simplex algorithm can be used to
minimize (12) direcdy and bypass the need for equations (13) through (15).

Example 5.5. Use the least-squares method and detennine the exponential fity = CeAx
for die five data points (0,1,5), (1,2.5), (2,3.5), (3,5.0), and (4,7.5).
For this solution we must minimize the quantity E(A, C), which is

£(A,C) = (C- 15)2+ (CeA- 2.5)1+ (Ce2A- 3.5)2

06) + (Cen- 5.0) + (CelR - 7.5

Weuse the fmins command in MATLAB to approximate the values of 4 and C that nuij
mize E(A, C). Firstwe define E(A,C) as an M-file in MATLAB.

function z«E(u)

A=u(l);

On(2);

z=(C-1.5),~2+(C.*exp(A)-2.5)."2+(C.*exp(2*A)-3.5)."2+...
(C,*exp(3*A)-5.0).“2+(C.*exp(4*A)-7.5),"2;

Using the fmins command in the MATLAB Command Window and the initial values
A =10and C = 1.0, we find
»fmins (CE’, [1 1])
ans =

0.38357046980073 1.61089952247928

Thus the exponential fit to the five data points is
@17 y ~ 1.6108995e°'3835705 (fit by nonlinear least squares),

A comparison of the solutions using data linearization and nonlinear least squares is
given in Table 5.5. There is a slight difference in the coefficients. For the purpose of
interpolation it can be seen that the approximations differ by no more than 2% over ihe
interval [0, 4] (see Table 5.5 and Figure 5,6). If there is a normal distribution of the emus
in the data, (17) is usually the prefeaed choice. When extrapolation beyond the range of
the data is made, the two solutions will diverge and the discrepancy increases to about 6!r
when* = 10.

Transformations for Data Linearization

The technique of data linearization has been used by scientists to fit curves such .is
y= Ce*An y = Aln(*) + B, andy = A/x + B. Once the curve has been chosen,
i suitable transformation of the variables must be found so that a linear relation is



Sec.5.2 Curve Fitting 267

Table 5.5 Comparison of the Two Exponential Fits

4 Y 1.5799e° 3920c 1.6109e°-38357r
0.0 15 1.5799 1.6109
1.0 25 2.3363 2.3640
2.0 35 3.4548 3.4692
3.0 5.0 5.1088 5.0011
4.0 7.5 7.5548 7.4713
5.0 11.1716 10.9644
6.0 16.5202 16.0904
7.0 24.4293 23.6130
8.0 36.1250 34.6527
9.0 53.4202 50.8535
10.0 78.9955 74.6287

Figure 5.6 A graphical compari-
son of the two exponential curves.

obtained. For example, the reader can verify thaty = D/(x + C) is transformed
i'nO a linear problem Y = AX 4- B by using the change of variables (and constants)
X =xy,Y =y, C = —1/A, and D — —B/A. Graphs of several cases of the

possibilities for the curves are shown in Figure 5.7, and other useful transformations
are given in Table 5.6.

Linear Least Squares

The linear least-squares problem is stated as follows. Suppose that N data points
liu, yt)} and a set of M linear independent functions {/x)} are given. We want
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Figure 5,7 Possibilities for the curves used in “data linearization”.
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Thble5.6  Change of Variable(s) for Data Linearization

Function,y = f{x) Linearized form, Y = Ax + B Change of variable(s) and constants

y=+B y=Ag+B X= Y =y
yzxfc y+~"(xy’)+(|:D X=xy.¥v =y
-1 -B
L c=-a’'d=-a
V- Ax+ B ;1/=Axl+a X=x,Y=-y
V- Ax+B y_ A he X=et Y
y = Aln(t) + B y = Aln(*) 4- B X=In{*), Y=y
y = CeAx 1n(y) = Ax + 1n(C) X =x,Y =In(y)
C=eB
y = CxA In(y) = A Ln(c) + 1n{C) X =1In(c), Y = In(y)
C-~eB
y= (A*+ B)~2 y~x12=Ax + B X=x,Y =y“V2
y = Cxe~Dx = —Dx + 1n(C) *=jc,K =1Ing)

C=eB,D=-A
L

Ae o X=x,Y=\n(~-1j
Y~ 1+ CeAx In Ax +1n(0 (~-1i

C = eB and L is a constant
that must be given

to find M coefficients {cj} so that the function s ( jc) given by the linear combination

M
(18) I(*) = (%)

will minimize the sum of the squares of the errors
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For E to be minimized it is necessary that each partial derivative be zero (i.e.,

dE/dci = Ofori = 1,2,..., M), and this results in the system of equations
ft /7 W

20> £ -y (fi(*k))=0 for i= 1, 2, M.
k=i \\j=i

Interchanging the order of the summations in (20) will produce sn M x M system
of linear equations where the unknowns are the coefficients (cj }. They are called the
normal equations:

M I N \ N
(21) X! )cj = "ELNN(XK)Yk  for 1= 1,2... M.
j-1\k=1 / *=1

The Matrix Formulation

Although (21) is easily recognized as a system of M linear equations in M unknowns,
one must be clever so that wasted computations are not performed when writing the
system in matrix notation. The key is to write down the matrices F and F' as follows:

fA(x\)  fo(x\) fli(x\)
11(xi) 12(2) fM(x2)
F= A(x3) /r(xs) wmm fu(x3)

fi(x/v) M xn) fKE(XN)
f\(X\)  f\(x2) /1 (n3) 1 (xn)
h(x\) blxr) /2to) Mxn)

Im(xD) fM(x2) fM{x3 m fpht(XN)

Consider the product of F' and the column matrix Y:

zZi(*l) fl(x2) Mxj) /1UaO  ~y\~

/201  fl(x2) /2U3) h(xs") 2
@2) FT =

Im(xi) Im(x2) fuixi) IM(x&) _VUN_

The element in the /th row of the product F'Y in (22) is the same as the ith element m
Jie column matrix in equation (21); that is,

N
;23) £ fi(Xk)yk = row,- F' m[y\ Y2 ... Yary.
*:1
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Now consider the product F'F, which isan M x M matrix:

F'F =
, AT R PYEY) fufixi)’

[1UD)  Mx2) []fo) wm AN TEC DL X
fl(X\)  /202) wm 2(xN) fi((xi; hixs)) - f“u(('xs))
fu{x\) fu(x2) /m(*3) mmm fiu(xjv) M xn)  f2(xN) M N

The element in the ith row and j'th column of F'F is the coefficient of cj in the
ith row in equation (21); that is,

N
@4  ~ Fi(xK)fj(xk) = fi(xi)fj(xi) + fi(x2)fj(x2) H——h M x N)fj (xN).

*:i

When M is small, a computationally efficient way to calculate the linear least-squares
coefficients for (18) is to store the matrix F, compute F'F, and F'Y and then solve
the linear system

(25) F'FC~F'Y for the coefficient matrix  C.

Polynomial Fitting

When the foregoing method is adapted to using the functions {fj(x) = x>~1} and the
index of summation ranges from j = 1toj = M + 1, the function fix) will be a
polynomial of degree M:

(26) f{x) = ci + X +c3x2H-——-- \-cM+\xM.

We now show how to find the least-squaresparabola, and the extension to a poly-
nomial of higher degree is easily made and is left for the reader.
Theorem 5.3 (Least-squares Parabola). Suppose that {(jc*, y*)}*] are N points,
where the abscissas are distinct. The coefficients of the least-squares parabola
27) y = f(x) = Ax2+ Bx + C
are the solution values A, B, and C of the linear system

\ \

N
£4 a+(X>2b+(X> c—2 > |,

\i=i / \fc=i fe=i

(x>§ a+(£*’>)s+gx>)c:t
(e me «)st'c=b’
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Ibble 5.7 Obtaining the Coefficients for the Least-Squares Parabola of Example 5.6

Xk % xR xk Xk UYK  ~ oy
-3 3 9 =27 8L -9 27
0 1 0 0 0 0 0
2 1 4 8 16 2 4
4 3 16 64 256 12 48
3 8 29 45 353 5 79

Proof The coefficients A, B, and C will minimize the quantity:

N
(29) E(A, B,C)=J2(A4 + Bxk+ C - yk)2
K-1

The partial derivatives 9E/gA, 3E/dB, and 3E/3C must all be zero. This results in

0= arM-4'C) = +*« + C-
i=1
3E(A, B, C) A ,
(30) 0= - = 2VVAjr* + Bxk + C -yK) (xK),
aB bl '\

0= 3E(A’B"'C>=1£](Axi+ Bn + C - »)'(!).
°C *=1

Using the distributive property of addition, we can move the values A, B, and C
outside the summations in (30) to obtain the normal equations that are given in (28). «

Example 5.6. Find the least-squares parabola for the four points (—3,3), (0,1), (2,1),
and (4,3).

The entries in Table 5.7 are used to compute the summations required in the linear
system (28).

The linear system (28) for finding A, B, and C becomes
353A + 45B + 29C = 79
45A + 29B + 3C= 5
29A+ 3B+ 4C = 8.

The solution to the linear system is A = 585/3278, B = —631/3278,and C = 1394/1639,
and the desired parabola is (see Figure 5.8)

585 631 1394 _
* = 3278* - 327" + 7639 = °'178462* - 0/192495" + a85°519- A
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Polynomial Wiggle

Itis tempting to use a least-squares polynomial to fit data that is nonlinear. But if the
data do not exhibit a polynomial nature, the resulting curve may exhibit large oscilla-
tions. This phenomenon, called polynomial wiggle, becomes more pronounced with
higher-degree polynomials. For this reason we seldom use a polynomial of degree 6 or
above unless it is known that the true function we are working with is a polynomial.

For example, let f(x) = 1.44/*2+ 0.24* be used to generate the six data points
(0.25,23.1), (1.0,1.68), (1.5, 1.0), (2.0,0.84), (2.4,0.826), and (5.0, 1.2576). The
result of curve fitting with the least-squares polynomials

PI(x) = 22.93 - 16.96* + 2.553a:2,
Pi(x) = 33.04 - 46.51* + 19.51*2- 2.296*3,
P4(x) = 39.92 - 80.93* + 58.39*2- 17.15*3+ 1.680*4,

and

P5(x) = 46.02 - 118.1* 4-119.4*2 ™57.51*3+ 13.03*4 - 1.085*5

is shown in Figure 5.9(a) through (d). Notice that P3(x), P4(x), and Ps(x) exhibit a
large wiggle in the interval [2, 5]. Even though P$(x) goes through the six points, it
produces the worst fit. If we must fit a polynomial to these data, Pr(x) should be the
choice.

The following program uses the matrix F with entries fj(x) = * 1from equa-

tion (18).



274 Chap.5 Curve Fitting

Figure S.9 (a) Using Pj(x) to fit data, (b) Using P3U) to fitdata, (c) Using Pn(x) to
fit data, (d) Using P;(x) to fit data.

Program 5.2 (Least-squares Polynomial). To construct the least-squares polyno-
mial of degree M of the form

Pm (x) = c\ + c2x + ¢ 3x 2 -} hcMxM~1 +c¢cM+\xM

that fits the N data points {(n*, y*)}
function C = Ispoly(X,Y,M)

Xlnput - X is the Ixn abscissa vector

1, - Y is the Ixn ordinate vector

1, - Mis the degree of the least-squares polynomial
7, Output - C is the coefficient list for the polynomial
n=length(X);

B=zeros(l:M+1) ;
F=zeros(n,M+1);
f.Fill the columns of F with the powers of X
for k=:M+l
F(GK)=X".-(k-1);
end
1.Solve the linear system from (25)
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A=F*F;

B=F’*Y’;

C=A\B;

C=flipud(C);

Exercises for Curve Fitting

1. Find the least-squares parabola fix) = Ax2+ Bx + C for each set of data.

@ ®
Xk i Xk
-3 15 -3 -1
1 5 125
11 1 25
3 5 3 1

2. Find the least-squares parabola fix) = Ax2+ Bx + C foreach set of data,
(a)

Xk YK Xk YK Xk YK
-2 .58 -2 2.8 -2 10
-1 11 -1 2.1 -1 1

0 3.8 0 3.25 0 0

1 3.3 1 6.0 1 2

2 -1.5 2 115 2 9

3. Forthe given set of data, find the least-squares curve:
(a) f(x) = CeAx, by using the change of variables X —x, Y = In(y), and C —eB,
from Table 5.6, to linearize the data points.
(b) fix) = CxA, by using the change of variables X — In(x), Y = In(y), and
C = eB, from Table 5.6, to linearize the data points.
(c) Use E2(f) to determine which curve gives the best fit.

Xk YK
1 0.6
2 1.9
3 4.3
4 7.6
5 12.6
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4. For the given set of data, find the least-squares curve:

(a) f(x) = CeAl,by using the change of variables X = x, Y = In(v), andC = eB
from Table 5.6, to linearize the data points.

(b) f(x) = 1/(Ax + B), by using the change of variables X = x and Y —1/j.
from Table 5.6, to linearize the data points.

(c) Use £r(/) to determine which curve gives the best fit.

Xk W
-1 6.62
0 3.94
1 2.17
2 1.35
3 0.89

5. For each set of data, find the least-squares curve:

(@) f(x) = CeAx, by using the change of variables X = x, Y = In(y),andC =¢ *
from Table 5.6, to linearize the data points.

(b) / (ic) = (Ax + B)~2, by using the change of variables X = x and Y = n
from Table 5.6, to linearize the data points.

(c) Use E2(f) to determine which curve gives the best fit.

uu
Xk W Xk YK
-1 13.45 -1 13.65
0 3.01 0 1.38
1 0.67 1 0.49
2 0.15 3 0.15

6. Logistic population growth. When the population Pit) is bounded by the limiting
value L, it follows a logistic curve and has the form Pit) = L/(1+ CeAt). Find '
and C for the following data, where L is a known value.

@@ (0, 200), (1, 400), (2, 650), (3, 850), (4, 950), and L = 1000.
(b) (0,500), (1, 1000), (2, 1800), (3,2800), (4,3700), and 1 = 5000.

7. Use the data for the U.S. population and find the logistic curve P(t). Estimate the
population in the year 2000.
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(@) AssumethatL = 8 x 10®

Year tk Pk
1800  -10 5.3
1850 -5 23.2
1900 0 76.1
1950 5 1523

Year

1900
1920
1940
1960
1980

tk

oo O

(b) AssumethatL = 8 x 10®

Pk

76.1
106.5
132.6
180.7
226.5

277

n Exercises 8 through 15, carry out the indicated change of variables in Table 5.6, and

ierive the linearized form for each of the following functions.

A
8.y= — VB
Y =5 y
1
K) . 11
T A+ B ’
12y =Aln(x) + B 13y

14. y —(Ac+ B)~2

15. y ~ Cxe~Dx

16. (@) FollowtheprocedureoutlinedmtheproofofTheorem5.3andderivethenonnal
equations for the least-squares curve fix ) = A cos(x) + B sin(jt).

(b) Use theresults from part (a) to find the least-squares curve fix) = A cos(x) +

B sin(;t) for the following data:

Xk YK
-3.0 —0.1385
-1.5 -2.1587

0.0 0.8330

15 2.2774

3.0 -0.5110

17. The least-squares plane z ~ Ax + By + C for the N points Ui,vyi,zi),

(XM, ypj, zn) is obtained by minimizing

N

E(A, B, C) = J2(AK+ syk+ C - zk)2.

k=1
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Derive the normal equations:

It*}) *+ (1> *)5+(1>)c-x>%*.
\*:1})/ £/=L \(t=l )/ *=1

i> a+ (£ *)*+(£ C=£ .
(7 »>)a+(E7)"+(£>) C=L£r»

EIE *_
(g,»)at(eg») "+ c=g,
18. Find the least-squares planes for the following data.
@ (1,1,7),(1.2,9), (2,1.10), (2,2,11), (2,3, 12
(b) (1,2,6), (2,3,7), (1,1,8), (2.2, 8), (2,1,9)
() (38.1,-3),(21,-1),(2,2,0), (1,1,1), (1,2,3)
19. Consider the following table of data

4 YK

1.0 2.0

2.0 5.0

3.0 100

4.0 170

50 26.0
When the change of variables X = xy and Y = |/y are used with the func
y = D/(x + C), the transformed least-squares fit is

-17.719403

N x-5.476617"
When the change of variables X = x and ¥ = |/y are used with the function
V{Ax + B), the transformed least-squares fit is
1
Y~ -0.1064253n + 0.4987330'
Determine which fit is best and why one of the solutions is completely absurd.

Algorithms and Programs

1. The temperature cycle in a suburb of Los Angeles on November 8 is given in
accompanying table below. There are 24 data points.
(a) Follow the procedure outlined in Example 5.5 (use the fmins command) to

the least-squares curve of the form f(x) = A cos(Bx) +C sin(Dx) fortheg
set of data.
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(b) Determine ArC/)-

(c) Plot the data and the least-squares curve from part (a) on the same coordinate
system.

Time, p.m.  Degrees Time, am.  Degrees

1 66 1 58
2 66 2 58
3 65 3 58
4 64 4 58
5 63 5 57
6 63 6 57
7 62 7 57
8 61 8 58
9 60 9 60
10 60 10 64
n 59 u 67
Midnight 58 Noon 68

Interpolation by Spline Functions

Polynomial interpolation for a set of N + 1 points {(jc*, >¥)}"=0 is frequently unsatis
lactory. As discussed in Section 5.2, a polynomial of degree N can have N —1 relative
maxima and minima, and the graph can wiggle in order to pass through the points.
Another method is to piece together the graphs of lower-degree polynomials Sk(x) and
imeipolate between the successive nodes (**, y*) and (**+1, ¥ *H) (see Figure 5.10).

(xk, yK)

J S — 3 i R T
0 X2 xk xk+1 XN -1 XN

Figure 5.10 Piecewise polynomial interpolation.
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(Yo

()(N'l
X K R XN- 1 Xf

Figure5.11 Piecewise linear interpolation (alinear spline).

The two adjacent portions of the curve y = 5*(r) andy = St+i(x), which lie above
xk+\] and [jrjt+i, **+2]. respectively, pass through the common knot {**+], y*-m).

The two portions of the graph are tied together at the knot (**+1, ;y*+i). and the set of

functions f~0O )} forms a piecewise polynomial curve, which is denoted by S(x).

Piecewise Linear Interpolation

The simplest polynomial to use, a polynomial of degree 1, produces a polygonal path
that consists of line segments that pass through the points. The Lagrange polynomial
from Section 4.3 is used to represent this piecewise linear curve:

X -Xk
+ 7%41 for Xk < X <
Xk+\ - Xk

The resulting curve looks like a broken line (see Figure 5.11).
An equivalent expression can be obtained if we use the point-slope formula for a
line segment:

Sk(x) =y k + dk(x - *¥*),

where dt — {yk+i — ¥YK)/(*k+1 —xKk)- The resulting linear spline function can be
written in the form

yo + do(x - jco) for jc in [x0,xi],
+di(x -jci) forx in [xj, X2,
2 S(x) =
@ 0 Yk + dk(x - XKk) ferx in [**,**+1].

+tf*r_i(x -Nnr-i) forj:in [nar- b
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The form of equation (2) is better than equation (1) for the explicit calculation of

l. It is assumed that the abscissas are ordered jco < jej <mmm<, x,\- i < Xjv-
a fixed value of x, the interval [jc* x*+i] containing x can be found by successively
computing the differences x — ..., ic —Xk, x —jc*+i until K + 1 is the smallest
integer such thatx —. r * ¢ 0. Hence we have found k so that jt* < x < Xk+i, and
the value of the spline function S(x) is

M S(x) = Sk(x) = yk+ dk(x - xk) for xt <x < Xk+\.

Tlu”e techniques can be extended to higher-order polynomials. For example, if an
otkl number of nodes xo,xi,. . x2m is given, then a piecewise quadratic polyno-
mial can be constructed on each subinterval [*2*, *2k+2], fork = 0, 1, ..,, M —1
N Jincoming of the resulting quadratic spline is that the curvature at the even nodes
nn; changes abruptly, and this can cause an undesired bend or distortion in the graph.
The second derivative of a quadratic spline is discontinuous at the even nodes. If we
use piecewise cubic polynomials, then both the first and second derivatives can be
made continuous.

Piecewise Cubic Splines

The fitting of a polynomial curve to a set of data points has applications in CAD
(computer-assisted design), CAM (computer-assisted manufacturing), and computer
graphics systems. An operator wants to draw a smooth curve through data points that
are not subject to error. Traditionally, it was common to use a french curve or an ar-
chitect’s spline and subjectively draw a curve that looks smooth when viewed by the
eye. Mathematically, it is possible to construct cubic functions Sk(x') on each inter-
val [xk, n>+]|] so that the resulting piecewise curve y = S(jc) and its first and second
derivatives are all continuous on the larger interval [*o. xN], The continuity of Sf(x)
means that the graph y — J?G.) will not have sharp comers. The continuity of S"{x)
means that the radius o fcurvature is defined at each point.

Definition 5.1 (Cubic Spline Interpolant). Suppose that {(**, Vi)}*=Q are N + |
points, where a = xq < x\ < = b. The function S(x) is called a cubic
spline if there exist N cubic polynomials Sk(x) with coefficients n>.0, i>,i, Sk,2, and
sk,3 that satisfy the properties;

. 5(n) = £5(*} = -u.0 + -rt,i(Jf - *k) + - XM)2+ stMx ~ xt)3
forx e [xk, *yt+ijJandk = 0,1,. . N —1
Il.  S(xk) = yk forit=0,1..... N.
. 5*(n*+|) = S*+I(-**4]) fork =0,1,..., N —2
IV. S;(jrbH) = SE+1(J4H-i) for* = G ,I,...,JV -2

V. SE(jrr+i)=S£+1(Ite+i) for* =0.1....... N-2.

For
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Property | states that Six) consists of piecewise cubics. Property Il states that th
piecewise cubics interpolate the given set of data points. Properties Ill and IV require
that the piecewise cubics represent a smooth continuous function. Property V state'
that the second derivative of the resulting function is also continuous.

Existence of Cubic Splines

Let us try to determine if it is possible to construct a cubic spline that satisfies propei-
ties | through V. Each cubic polynomial Sk(x) has four unknown constants st, i

an<J ~,3); hence there are AN coefficients to be determined. Loosely speaking,
we have 4N degrees of freedom or conditions that must be specified. The data points
supply N + 1conditions, and properties Ill, IV, and V each supply N — 1 conditions
Hence, N + 1 + 3(N —1) = AN —2 conditions are specified. This leaves us two addi-
tional degrees of freedom. We will call them end-point constraints', they will involve
either S'(x) or S"(x) atj:g and x.v and will be discussed later. We now proceed with
the construction.

Since 5(x) is piecewise cubic, its second derivative S"{x) is piecewise linear on
lico.jcivi. The linear Lagrange interpolation formula gives the following representation
for $"(x) = S"(x):

4) S"U) = S7(xk)— + S"(Xk+0: X ~ Xk
Xk-Xk+1 Xk+1-Xk

Usemi = S”(xk), mk+i = S"(xi+}), and hk = n*+] - xk in (4) to get

mk k
5 5:'U) = -7~(Xk+1=X) # - ¥ -
5) ) = Toxeaexy + T Uk - )

~H+

forxk < X <xk+l and Kk = 0, 1........ N ~ 1. Integrating (5) twice will introduce tv
constants of integration, and the result can be manipulated so that it has the form

(6) Sk(X) = Tr(xk+1 -x)3+ -X k)3 + Pk(Xk+\ =~ x) + gk(x ~ xKk).
bnk 6ht

Substituting xk and xk+i into equation (6) and using the values yk = S*Ua) Mid
Vi+i = Sk(xkf 1) yields the following equations that involve pk and gk, respectively;

@ yk= -T-he+ Pkhk and yk+i= = +qkhk-

These two equations are easily solved for pk and gk, and when these values are sub-
stituted into equation (6), the result is the following expression for the cubic function

$k(x):

Sk00 = - ~ (x k+i - X)b+ ~ XK)b

k
, (YK mkhk\. (Yk+l  m+\hk\,
+ U - — )<xw-x)+U — i~ ) (x-xy
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Notice that the representation (8) has been reduced to a form that involves only
the unknown coefficients {mk), To find these values, we must use the derivative of (8),

which is

s = -w kP - x)1n {x- xk9
n _In _ 1Tkl  »+i _ mk+\hk
\hk 6 ) hk hk

Evaluating (9) at x k and simplifying the result yield

10)  SKexk) = —TH kMK N ke gk, where  dk = wETITZ XK .

Similarly, we can replace k by kK - 1 in (9) to get the expression for (-0 and
evaluate it at xk to obtain

mt i
(112) 5t j(Jc*) = — A*-i H—— A*-i+4t-i-

Now use property 1V and equations (10) and (11) to obtain an important relation
involving mk-i, =k, and mk+1:

t12) hk-imh-1 + 2(/ii_1+ hk)mk + hkmk+i = uk

where uk = 6 (dk —dk- 1) fork = 1,2,..., N —1

Construction of Cubic Splines

Observe that the unknowns in (12) are the desired values {mk}, and the other terms
nre constants obtained by performing simple arithmetic with the data points {(xk, yk)}.
therefore, in reality system (12) is an underdetermined system of N —] linear equa-
tions involving N + 1 unknowns. Hence two additional equations must be supplied.
They ;ue used to eliminate mo from the first equation and ms from the (N — I)st
equation in system (12). The standard strategies for the end-point constraints are sum-
marized in Table 5.8.

Consider strategy (v) in Table 5.8. If mo is given, then homo can be computed, and
the first equation (when k = 1) of (12) is

(B) 2(ho + hi)m\-f h\ni2 = «1 —homo.

Similarly, if Ty is given, then h?j- i'k,v can be computed, and the last equation (when
k~ N —1)of (12) is

) hN-2mN-2 + 2(ftjv=2 + hN-Iymn~l = UN-1 —hN-\triN,



284 Chap,5 Curve Fitting

Table 5.8  End-point Constraints for a Cubic Spline

Description of tine strategy Equations involving mo and mz

(i) Clamped cubic spline: spec-

ify S'(x0), S'(X,.)

(the “best choice" if the mo= IMo - S'(*0)>"
derivatives are known) o
mN = tiN_l(S (x/j) ds-\) 1
(ii) Natural cubic spline mg=0m\ =0
(a “relaxed curve”)
(iii)  Extrapolate S"(x) to the
endpoints  ko(m2-mj)
mo-m i ‘
«
KN_i(mN~i -7Tu-2)
MATr-UAr-1+ - )
«N-2
(iv)  S"(x) is constant near the mO0 = mi,mN = mN_x
endpoints
(v) Specify S"(X) at each mg ~ S"(x0), ntf/ = S"(Xfi/)
endpoint
Equations (13) and (14) with (12) used fork = 2, 3, ..., N —2 form N - 1 lines
equations involving the coefficients m,. m2, ..., mjv-i.

Regardless of the particular strategy chosen in Table 5.8, we can rewrite equa-
tions 1and N - 1in(12) and obtain a tridiagonal linear system of the form HM =V,
which involves wi, ............. m” -\:

bl ci mi1 N
ai b2 ci m 2 v2
(15)
bflr-2 Cwm-2 rrtN-2 VN-2
«I-2 bN-1 mu-1 VN- 1

The linear system in (15) is strictly diagonally dominant and has a unique solu-
tion (see Chapter 3 for details). After the coefficients {m*.} are determined, the spline
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coefficients fa*,/} for St(x) are computed using the formulas

hk(2mk + mk+i)

Sk,0 = W* = At e e ,
(6) mk mk+\ ~ mk ©°
*»2=T . «.3 = .

Each cubic polynomial Sk(x) can be written in nested multiplication form for effi-
cient computation:

() 5%0) = ((s*,3iu + Sk2)w +J*,i)u' + 1. where  w = x - xy

aw) Sk(x) is used on the interval Xk < x < xk+\.

Equations (12) together with a strategy from Table 5.8 can be used to construct a
cubic spline with distinctive properties at the end points. Specifically, the values for mo
andm,y in Table 5.8 are used to customize the first and last equations in (12) and form

system of N — 1 equations given in (15). Then the tridiagonal system is solved for
theremaining coefficients mi, Tr, mem, mjv-i « Finally, the formulas in (16) are used to
determine the spline coefficients. For reference, we now state how the equations must
be prepared for each different type of spline.

End-point Constraints

Thbe following five lemmas show the form of the tridiagonal linear system that must be
solved for each of the different endpoint constraints in Table 5.8.

Letfrmm 5.1 (Clamped Spline). There exists a unique cubic spline with the first
derivative boundary conditions S'(a) = do and S'(b) —dy-

Proof, Solve the linear system

(“ho + 2h”~jm) +h\m2 =u\ - 3(do - S'(*0))

hk-\mk-\ + + hk)mk + = un* for k=2, 3, ..., N- 2

3
fcjy—2tnx-2 + (2hN-2 + ~hN-\)m N~\ - 3(s'(xjv) - dn=i). .

Remark. The clamped spline involves slope at the ends. This spline can be visualized
ab ®e curve obtained when a flexible elastic rod is forced to pass through the data
points, and the rod is clamped at each end with a fixed slope. This spline would be
useful to a draftsman for drawing a smooth curve through several points.

Lemma 5.2 (Natural Spline). There exists a unique cubic spline with the free
boundary conditions S*'(a) = 0 and S*'(b) —O.
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Proof.  Solve the linear system

2(ho + h\)mi +h\ni2 = m
kk-imt-i + 2(A*_i + hk)mk + kTk+\ = uk for *= 2, 3, ..., /T- 2
AIV-2»*/V-2+2{iigr_2+AAF_l)mjV-1 =M JV-1- «

Remark. The natural spline is the curve obtained by forcing a flexible elastic rod
through the data points, but letting the slope at the ends be free to equilibrate to tht
position that minimizes the oscillatory behavior of the curve. It is useful for fitting t
curve to experimental data that are significant to several significant digits.

Lemma 5.3 (Extrapolated Spline). There exists a unique cubic spline that uses
extrapolation from the interior nodes at xt and x2 to determine 5 (a) and extrapolatioi
from the nodes at x”. i and x”*-2 to determine S”{b).

Proof. Solve the linear system

hi

Ao + 2h\ +

uk fork=2,3 ..., N-2

hX-\mk=\ +2 (A* i + hk)mk + hkmk+|

WjV-l = UV-I-

Remark. The extrapolated spline is equivalent to assuming that the end cubic is Ne
extension of the adjacent cubic; that is, the spline forms a single cubic curve over the
interval [xo, *2] and another single cubic over the interval [x,v. 2, x.vl-

Lemma 5.4 (Parabolically Terminated Spline). There exists a unique cubic spline
that uses s (x) = 0 on the interval [xo, jcl] and S"(x) = 0 on [x#_b x"].

Proof.  Solve the linear system

mi

(310 + 2h\)m\ + hi
hk-\mk-\ + 2(A*_i + hk)mk -- A*m*+i = uk for k=2, 3, ..., N- 2
hN_2niN- 2 + (2Ajv-2 + 3Ajv_i)m"-i = uny-i-

Remark. The assumption that S*"(x) = 0 on the interval [xo, xi] forces the cubiclll
degenerate to a quadratic over [xo, xi], and a similar situation occurs over [x.\-_i,
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Lemma 5.5 (End-point Curvature-adjusted Spline). There exists a unique cubic
spline with the second derivative boundary conditions S"(a) and S"{b) specified.

Proof. Solve the linear system

2(ho + h\)mi +him2 = «i - Ao0S"(*0)
hk-\mk-\' + 2(A*_i + hk)mk + hkmk+\ - uk  for k = 2, 3...... N - 2
hx-imN-i + 2(km-2 + nr_D)1ar 1 = war-i —AjV_i£"(.*#). ]

Remark. Imposing values for S"(a) and S"(b) permits the practitioner to adjust the
curvature at each endpoint.

The next five examples illustrate the behavior of the various splines. It is possible
to mix the end conditions to obtain an even wider variety of possibilities, but we leave
these variations to the reader to investigate.

Example5.7. Find the clamped cubic spline that passes through (0,0), (1,0.5), (2,2.0),
and (3,1.5) with the first derivative boundary conditions S'(0) = 0.2 and S'(3) = —1,
First, compute the quantities

Po=h\=MA=1
do= (Y1- Yo)/AO= (0.5- 0.0)/1 = 0.5

di = (¥2- yi)/Ai = (2.0- 0.5)/I = 15
= (W - Y2)/h2= (15- 2,0)/1= -0.5
« = 6(dt-do)= 6(L.5- 0.5) = 6.0

u2= 6(d2-dt) = 6(—0.5- 1.5) = -12.0.

Then use Lemma 5.1 and obtain the equations
(J +2)mi +m2=6.0 -3(0.5 -0.2) =5.1,
mi+(2+0 m2=-12.0 - 3(-1.0- (-0.5)) = —105.

when these equations are simplified and put in matrix notation, we have

r35 1.0][mi] _ I 5.1]
[0 35J[m2 ~ [-10.5] ¢

ft*»» straightforward 'ask to computc the solutionm1 = 2.25 and m2 = —3.72 Now
ipftythe equations in (i) of Tabic 5.8 to determine the coefficients mo and mr.
252
mo = 3(05- 0.2) - — = -0.36,

-3.72
m3= 3(-1.0+ 0.5)-——~—" = 0.36.
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Figure 5.12 The clamped cubic Figure 5.13 The natural cubic spline
spline with derivative boundary condi- with $"(0) = 0 and S"(3) = 0.
tions: 5'{0) = 0.2and S'(3) = -1

Next, the values mo = —0.36, mi - 2.25, mi = —3.72, and m3 —0.36 are subMiuiu-O
into the equations (16) to find the spline coefficients. The solution is

50(jc) = 0.48jc3- 0.18n:2+0.2x for 0 < x < 1,
5i(jc) = —1.04(* - 1)3+ 1.26(* - 1)2
(18) + 128U - 1)+ 05 for \ < x <2,
S2(x) = 0.68¢Gc - 2)3- 1.86(x - 2)2
+ 0.68(x - 2) + 2.0 for 2<x < 3.
This clamped cubic spline is shown in Figure 5.12. ]

Example 5.8. Find the natural cubic spline that passes through (0, 0.0), (I, 0.5), (2, 2.0),
and (3,1.5) with the free boundaiy conditions S"'(x) = 0 and S”(3) = 0.

Use the same values {ft*}, {<4}, and (n*) that were computed in Example 5.7. Then
use Lemma 5.2 and obtain the equations

2(1 + I)m\ + m2 = 6.0,
mi1+ 21 -- )/M2 = —12.0.

The matrix form of this linear system is

[4.0 1-OTT/hil T 6.0]
[LO 4.0j \m2 ~ |_-12.0j*

It is easy to find the solution m\' — 2.4 and m2 = —3.6. Since mo= 5”(0) = 0 and
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m3 = S"(3) = 0, when equations (16) are used to find the spline coefficients, the result is

So(x) = 0.4jc3 + O.ljc for 0 <x < 1,
ft(jr) = -(jr-1)3+ L 2(jr-1)2

(19) + 1.3Ge —1) +0-5 forl<jr<2,
Szix) = 0.6(¢T - 2)3- 18(x - 2)2

+0.7(x —2) +2.0 for 2 <jc < 3.

This natural cubic spline is shown in Figure 5.13.

Example 5.9. Find the extrapolated cubic spline through (0,0.0), (1,0.5), (2,2.0), and
(3,1.5).

Use the values {A*}, {<*}, and {»*} from Example 5.7 with Lemma 5.3 and obtain the
linear system

B+2+ I)mi+ 1 —1)«2 =60,
@T- Ihmt+ (2+ 3+ I)m2 - -12.0.
The matrix form is

r6.0 0.0] rmil _ I 6.01
[00 60J[m2] ~ 12.0j°

and it is trivial to obtain m\ = 1.0 and m2 = —2.0. Now apply the equations in (iii) of
Table 5,8 to compute mo and my.

m0= 1.0- (-2.0- 1.0) = 4.0,
m3= -2.0 + (-2.0 - 1.0) = -5.0.

Finally, the values for {m*} are substituted in equations (16) to find the spline coefficients.
The solution is

50(jf) = —0.5jc3 + 2.0*2 —X for 0 <x < 1,
ft(n) = -0.5(x - )3+ 0.5 - 1)2
(20) + 1.5(x-1)+0.5 for 1< je< 2,
S2(x) = -0.5(x - 2)3- (jc- 2)2
+ G —2)+ 2.0 for 2 <jc <3.
The extrapolated cubic spline is shown in Figure 5.14. ]

Example 5.10. Find the parabolically terminated cubic spline through (0, 0.0), (1, 0.5),
Q. 2.0), and (3, 1.5).
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x Figure 5.14 The extrapolated cu-
bic spline.

Use {Ail, {dk}, and {«4}from Example 5.7 and then apply Lemma 5.4 to obtain

(3+ 2)mj + m2= 6.0,
mi + (2 + 3)w2 = —12.0.

The matrix form is

.0 1OIT/w] _ I 6.0]
|10 5.0j [T ~ [_-12-°3°

and the solution ism1 = 175 and m2 = —2,75. Since £7(*) = 0 on the subintervil at
each end, formulas (iv) in Table 5.8 imply that we have mo = mi = 1.75,and m3 = nr -
—2.75. Then the values for {mi} are substituted in equations (16) to get the solution

So(jr) = 0.875n:2- 0.375.* for0 <x < 1,
1) 5,(x) = -0.75(jic- 1)3+ 0.8750* - 1)2
+ 1,375(c- 1)+ 0.5 for 1< < 2,

&(x) = -1 ,375(jc - 2)2+ <j.875(;c- 2)+ 2.0 for 2 <* <3

This parabolically terminated cubic spline is shown in Figure 5.15. [

Example 5.11.  Find the curvature-adjusted cubic spline through (0,0.0), (1,0 .4
(2,2.0), and (3,1.5) with the second derivative boundary conditions S"(0) = —0.3 ,iml
S"(3) = 3.3.
Use {hk}, {dk}, and {1*} from Example 5.7 and then apply Lemma 5.5 to obtain
20+ \)mi+m2=6.0- (-0.3) = 6.3,
mi + 2(1 + I)m2=-12.0- (3.3) = -15.3.

The matrix form is

['40 1.0] Mw]] 6.3
[0 4.0J[7r2] -15.3
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* Figure 5.15 The parabolical ly
terminated cubic spline.

Figure 5/16  The curvature ad-
X justed cubic spline with S"{0) =
-0.3 and S"(3) = 3.3.

and the solution is mi = 2.7 and m2 = —4.5. The given boundary conditions are used
to determine mo - S"(0) = —0.3 and /u3 = S"(3) = 3.3. Substitution of [nik] in
equations (16) produces the solution

So<*) —0.5jc3—0.15*2 +0.15jc for 0 <x < 1,
Si(j) = —1.2(jc- 1)3+ 1.35C* - 1)2
(22) + 1.35(n —1) +0.5 for 1< jc < 2
S2(x) = 13(jc- 2)3- 2.25(jc - 2)2
+045(*- 2)+ 2.0 for 2 < x < 3.
This curvature-adjusted cubic spline is shown in Figure 5.16. ]

Suitability of Cubic Splines

A practical feature of splines is the minimum of the oscillatory behavior that they
possess. Consequently, among all functions / (x) that are twice continuously differen-
tiable on [a, b] and interpolate a given set of data points {Or*. yic)}*=0, the cubic spline
has less wiggle. The next result explains this phenomenon.
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Theorem 5.4 (Minimum Property of Cubic Splines). Assume that / e C2[a, 6]
and S(x) is the unique cubic spline interpolant for /(jc) that passes through the points
((*b f(xt) ) a n d satisfies the clamped end conditions S (a) = f'(a) and S'(b) =
f{b). Then

(23) f\sa(x))2dx< f\f"(x))2dx.
Ja Ja

Proof. Use integration by parts and the end conditions to obtain

«b
f S"(x)U"{x)-S\x))dx
Ja

5"(*)(/'00 - FI'("))IF*EIZI— J(a S'4x)(f(x) - S°(c)) dx

0-0- f s""(x)(f,(x)-s,(x))dx.
Ja

Since S"’(x) = 69* 3 on the subinterval [n*, Jtt+i], it follows that
fXk+\ 3c=icy. ,
/ Sm(x)(f(x) - S'W) dx = &y*,3(/(x) - 5(jc)) * =0
Jxt =4

fork = 0,1,..., N - 1 Hencefa S"{x)(f"(x) - S"{x))dx —0, and it follows th;

rb rb
(24) ISt (x)dx= [ (S"(x))27x.
Ja Ja

Since 0 < (/"(m*) - S"(x))2, we get the integral relationship

rb
os [/ (f"(x)-s"(x))2dx
(25) rb rb rb
=1 (f"(x))2dx —2 I f"(x)S"(x)dx+ 1 (S"(x))2dx.
Ja Ja Ja

Now the result in (24) is substituted into (25) and the result is

rb rb

0< f (f(x))2dx- [ (5"(x))2dx.
Ja Ja

This is easily rewritten to obtain the relation (23) and the result is proved. ®

The following program constructs a clamped cubic spline interpolant for the data
points {Ge~ YK)} . The coefficients, in descending order, of 5*(ar), for k — 0, 1.
- 1,are found in the (k - 1)st row ofthe output matrix S. In the exercises the
reader will be asked to modify the program for the other end-point constraints listed in
Table 5.8 and described in Lemmas 5.2 through 5.5.
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Program 53 (damped Cubic Spline). To constructand evaluate a clamped cubic
spline interpolant s(x) forthe N + 1data points {(**,

function S=csfit(X,Y,cbcO,dxn)

Klnput - X is the Ixn abscissa vector

% - Y is the Ixn ordinate vector

X - dxO = S’ (xO) first derivative boundary condition
A - dxn = S’(xn) first derivative boundary condition
KOutput - S: rows of S are the coefficients, in descending
4 order, for the cubic interpolants

N=length(X)-I;

H*diff(X);

DAdiff(Y)./H;

A*H(2:N-1);

B=2*(H(1:N-1)+H(2:N));

C=H(2:N);

U=6*diff(D);

"/,Clamped spline endpoint constraints
B(()=B(I)-H((l)/2;
UuM=U()-3*(D(1)-dx0);
B(W-1)=B(N-I)-H(N)/2;
U(N-D=U(N-1)-3*(djm-D{N));

for k=2:N-I
temp=A(k-1)/B (k-1);
B (k)=B(k)-temp*C (k-1);
U (k)=U (k)-temp*U (k-1);
end

M(N)=U(N-1)/B(N-1);
for k=4-2:-1:1

M (k+1)=(U (k)-C(k)*M (k+2))/B (k);
end

M (1)=3*(D (1)-dxO)/H (I)-M (2)/2;
M(N+1)=3* (dxn-D(N))/H (N)-M(N)/2 ;

for k=0:N-I
S(k+1,D=(M (k+2)-M (k+1))/(6*H (k+1));
S(k+1,2)=M (k+1)/2;
S(k+1,3)=D(k+D)-H(k+D)*(2*M (k+1)+M (k+2))/6;
S(k+1,4)=Y (k+1);

end
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Example 5.12. Find the clamped cubic spline that passes through (0,0.0), (1.0 i
(2, 2.0), and (3, 1.5) with the first derivative boundary conditions S'(0) = 0.2 and JT(31=
-1.
In MATLAB:

»X=[0 12 3]; vy=[0 0.5 2.0 1.5];dx0=0.2; dxn=-I;
>>S=csfit(X,Y,dx0,dxn)
S =

0.4800 -0.1800 0.2000 O

-1.0400 1.2600 1.2800 0.5000

0.6800 -1.8600 0.6800 2.0000

Notice that the rows of S are precisely the coefficients of the cubic spline interpolate-. in
equation (18) in Example 5.7. The (blowing commands show how to plot the cubic spline
interpolant using the polyval command. The resulting graph is the same as Figure 5.11
>>x1=0:.01:1; yl=polyval(S(l,:),xI-X(1));

»x2=1:.01:2; y2=polyval(S(2,:),x2-X(2));
»x3=2:.01:3; y3=polyval(S(3,:),x3-X(3));
»plot(xi,yl,x2,y2,x3,y3,X,Y,". [

Exercises for Interpolation by Spline Functions

1. Consider the polynomial S(x) = ao + a\x + a2+ ajx3,
(a) Show thatthe conditions5(1) = 1,5'(1) = 0,5(2) —2,and S'(2) = 0 produce
the system of equations

a0+ ai+ a2+ az=1
a] +2ar+ 3a3=0
ao+2ai +4g2+ 8a3 - 2
a\ +4a2+ 12a3=10

(b) Solve the system in part (a) and graph the resulting cubic polynomial.

2. Consider the polynomial S(x) —ao + ajx + a2x2+ asx3.
(a) Show that the conditions 5(1) = 3, 5'(1) = —4, 5(2) = 1, and S'(2) -1
produce the system of equations

ao+ aj + a2+ aj
ai+ 2a2+ 3a3
do + 2ai + 4a2+ 8a3
a\ + Aa2 + 12a3

3
—4

1

2

(b) Solve the system in part (a) and graph the resulting cubic polynomial.



Sic

10,

5.3 Interpolation by Spline Functions 295

. Determine which of the following functions are cubic splines. Hint. Which, if any, of

the five parts of Definition 5.1 does a given function f(x ) not satisfy?

Y — + 15x2—j *3 forl <x <2
(a) fix)
=tl + ™ x -21x2+ %x3 for2 <x <3
11 - 24x + 18x2- 4x3 forl<x <2
() f{x)m
—b54 + 72x —30x2 + 4x3 for2<x <3
. 18 —y x + 26%2 —-y-x3 fori<x <2
(c) fix) =
—T70+ -~"x —4Qx2 + -yx3 for2<x<3
13 —31x -t-23x2 —5x3 forl<x <2
@ f(x) =
—35+ 51x —22x2+ 3x3 for2<x<3

. Find the clamped cubic spline that passes through the points (—3, 2), (-2, 0), (1, 3),

and (4,1) with the first derivative boundary conditions S'{—3) = —land 5'(4) = 1

. Find the natural cubic spline that passes through the points (-3, 2), (—2,0), (1, 3),

and (4,1) with the free boundary conditions S"{—3) = 0 and S"(4) = 0.

. Find the extrapolated cubic spline that passes through the points (-3,2), (-2,0),

(1, 3), and (4,1).

. Find the parabolically terminated cubic spline that passes through (he points (—3, 2),

(-2,0), (1,3), and (4,1).

. Find the curvature-adjusted cubic spline that passes through the points (=3, 2),

(—2, 0), (1, 3), and (4, 1) with the second derivative boundary conditions S"(—3) =
-1 and S"(4) = 2.

. (a) Find the clamped cubic spline that passes through the points {(x*, /(n>))}|_0,

on the graph of f(x) = x + using the nodes xo = 1/2,xi = 1, = 3/2,
and xj = 2. Use the first derivative boundary conditions S'(x0) = /'(x0) and
S'(jt3) = f'(x}). Graph / and the clamped cubic spline interpolant on the same
coordinate system.

(b) Find the natural cubic spline that passes through the points { ( * * , / on
the graph of f(x) = x + j, using the nodesxo = 1/2,x\ = 1.*2 = 3/2, and
xt, = 2. Use the free boundary conditions 5"(x0) = 0 and .¥'Ux3) = 0. Graph
/ and the natural cubic spline interpolant on the same coordinate system.

(a) Find the clamped cubic spline that passes through the points {(xb /C**))}*=0,
on the graph of fix) — cosU2), using the nodes xo —0,Xi = X2 =
Y 34/2,and i3 = Jbnfl. Use the firstderivative boundary conditions S'(xo0) =
/'(x0) and S'(x3) = fix 3). Graph / and the clamped cubic spline interpolant
on the same coordinate system.

(b) Find the natural cubic spline that passes through the points {(**, /(x*))}*=0,
on the graph of fix) = cos(x2), using the nodes Xo = 0,X] = -Jnj2, x" =
Y 34/2, and x3 = */51]2. Use the free boundary conditions S"(x0) = 0 and
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5"(*3) = 0. Graph / and the natural cubic spline interpolant on the samt
coordinate system.

Use the substitutions
r~+i —x = hk+ ¢t- X)
and
Ok+i- x)3= hi + 3n\yxk - X) + 3hk(Xt - x)2+ x* - jo)3

to show that when equation (8) is expanded into powers of (x* —Xx), the coefficients
are those given in equations (16).

Consider each cubic function S*(x) over the interval [x*, x*+i].

(a) Givea formula forJf,;'Jf(t+I St(x) dx.

Then evaluate S(x) dx in part (a) of
(b) Exercise 10 (c) Exercise 11

Show how strategy (i) in Table 5.8 and system (12) are combined to obtain the equa-
tions in Lemma 5.1.

Show how strategy (iii) in Table 5.8 and system (12) are combined to obtain the
equation in Lemma 5.3.

(a) Using the nodes xo = —2 and x\ = 0, show that f(x) = x3 —x is its own
clamped cubic spline on the interval [—2,0].

(b) Using the nodes xq = —2, xi = 0, and X2 = 2, show that f (x) ®=x3- >is
its own clamped cubic spline on the interval [—2,2]. Note, f has an inflection
point atxj.

(c) Use the results from parts (a) and (b) to show that any third-degree polynomial,
f(x) = ao + a\x + (Jix2+ g3a/l is its own clamped cubic spline on any closed
interval [a, bj.

(d) What, if anything, can be said about the other four types of cubic splines de-
scribed in Lemmas 5.2 through 5.5?

Algorithms and Programs

1. The distance dk that a car traveled at time ti is given in the follwoing table. Use

Program 5.3 with the first derivative boundary conditions S'(0) = 0 and S'(8) = 98
and find the clamped cubic spline for the points.

Time, tk 0 2 4 6 8
Distance,dk 0 40 160 300 480
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2. Modify Program 5.3 to find the (a) natural, (b) extrapolated, (c) parabolically termi-
nated, or (d) end-point curvature-adjusted cubic splines for a given set of points.

3. Use your programs from Problem 2 to find the five different cubic splines for the
points (0, 1), (1,0), (2,0), (3,1), (4,2), (5,2), and (6, 1), where S'(0) = -0.6,
S'(6) = —1.8,5"(0) = 1,and S"(6) = —L Plot the five cubic splines and the points
on the same coordinate system.

4. Use your programs from Problem 2 to find the five different cubic splines for the
points (0,0), (1,4), (2,8), (3,9), (4,9), (5,8) and (6,6), where *5'(0) = 1,
S'(6) = -2, 5™(0) = 1,and S"(6) = —L1. Plot the five cubic splines and the points
on the same coordinate system.

5. The accompanying table gives the hourly temperature readings (Fahrenheit) during
a 12-hour period in a suburb of Los Angeles. Find the natural cubic spline for the
data. Graph the natural cubic spline and the data on the same coordinate system. Use
the natural cubic spline and the results of part (a) of Exercise 12 to approximate the
average temperature during the 12-hour period.

Time, am. Degrees  Time, am.  Degrees

| 58 7 57
2 58 8 58
3 58 9 60
4 58 10 64
5 57 n 67
6 57 Noon 68

6. Approximate the graph of f(x) = x —cos(x3) over the interval [-3,31 using a
clamped cubic spline.

w, Fourier Series and Trigonometric Polynomials

Scientists and engineers often study physical phenomena, such as light and sound, that
:have a periodic character. They are described by functions f(x) that are periodic,

) g(x + P) = g(x) for all x.
The number P is called aperiod of the function.

It will suffice to consider functions that have period 2rr. 1f g(x) has period P, then
f(x)~ g(Pxj2n iwill be periodic with period I n. This is verified by the observation

I(* +2n, =9 (0 +p)=,(£) =/«.
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Figure5.17 A continuous function f(x) with period 2n.

Figure 5.18 A piecewise continuous function over [, b].

Henceforth in this section we shall assume that f(x) is a function that is periodic wiih
period 2jt, that is,

3) f(x + 2n) = f{x) for all x.

The graph y = f(x) is obtained by repeating the portion of the graph in any interval,
of length 2n, as shown in Figure 5.17.

Examples of functions with period In are sin(jx) and cos(jx), where j is ;ir
integer. This raises the following question: Can a periodic function be represent; ;’
by the sum of terms involving aj cos(jx) and bj sinO'jt)? We will soon see that the
answer is yes.

Definition 5.2 (Piecewise Continuous). The function / (x) is said to be piecewise
continuous on [a, b] if there exist values to, t\,.. ,,tx witha = to < t\ < mm
tg = b such that f(x) is continuous on each open interval Ij i <x < f, fori — I,
K, and f(x) has left- and right-hand limits at each of the points f;. The situation
is illustrated in Figure 5.18. 4
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Definition 5.3 (Fourier Series). Assume that fix) is periodic with period 2k and
that / (n) is piecewise continuous on [-5, Tr]. The Fourier series S(jc) for 7 (X) is

[4i s — 24 yR(aj cos(jx)+bj sinQIQ).
2 J=i

\here the coefficients aj and bj are computed with Euler’s formulas:

1 f7
cm Of = — | £ (x) cos(jx) dx forj =0, 1, ...
JJ—n
and
ir
(6) bj = — I f(x)sin(jx)dx forj =1, 2, - A
N J~dl

The factor j in the constant term ay/2 in the Fourier series (4) has been introduced
for convenience so that ao could be obtained from the general formula (5) by setting
/ -=0. Convergence of the Fourier series is discussed in the next result.

Theorem 5.5 (Fourier Expansion). Assume that Six) is the Fourierseries for fix)
over [—t, rr]. If /'(*) is piecewise continuous on [—jt, jt] and has both a left- and
right-hand derivative at each point in this interval, then Six) is convergent for all x e
f—jt, n]. The relation

34 - fix)

holds at all points n e [—a, n], where fix) is continuous, If x = a is apoint of
discontinuity of /, then

5(a) = WAzl fiat)

uliere /(a-) and fia +) denote the left- and right-hand limits, respectively. With this
understanding, we obtain the Fourier expansion:

a Ja\
17) fix) ~ + N (a/COsO'ff) + b j sin(_/x)).
1 J=1

A brief outline of the derivation of formulas (5) and (6) is given at the end df the
section.
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Example 5.13. Show that the function /(m*) = x jlI for —k < x < n, extended periodi-
cally by the equation f(x + 2n) = f(x), has the Fourier series representation

x  XT 4 ., v sin(2*) , sin(3;r)
A*) = Z - ——-2——= SM W ---mmmmmmmmmemee. o— — -
;=i
Using Euler’s formulas and integration by parts, we get

rr il x sin0'*) ~ cos(jx) I*

jyresvu t— + L =0

forj = 1,2,3, .,,,and

) 1r x Acosijn) sinO';t) | # (—1)J+1
bj~ - 1 =-sin(jx)dx = —— =1 . .
m 2 2nJ + 2nj2 1-r j
forj —1,2,3........ The coefficient ao is obtained by a separate calculation:
1f x4 I

X
- | - X — —
nJ_K2 4jt -
These calculations show that all the coefficients of the cosine functions are zero” 6
graph of fix) and the partial sums
S2(x) - sin(jr)---—--—---—- ,

sin(2*) . sin(3x)

53(X) - W (X) o = ,
and

S*U) - Sr"r‘l'(j.c)---fiﬂ(éz_jf.)___h Si”(jic) Si”i4><)
are shown in Figure 5.19. .

We now state some general properties of Fourier series. The proofs are left «
exercises.

Theorem 5.6 (Cosine Series). Suppose that f(Xx) is an even function; that is, sup-
pose fi~x) = f(x) holds for all x. If / (X) has period 2n and if fix) and fix) are
piecewise continuous, then the Fourier series for fix) involves only cosine terms:

@
(8) /00 - y + y'a.icos(jx),
1 J=i
where
9) 2Ir f(x) ijx)d for j 0, 1
a;= — x)cosijx)dx orj =0, 1 _
nJ
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* y=S4M

Figure 5.19 The function fix) = x/2 over [—a, a] and its trigono-
metric approximation Siix), 33(x) and St(x).

Theorem 5.7 (Sine Series). Suppose that f(x) is an odd function; thatis, / (—x) =
—fix) holds for all x. If f(x) has period 2jt and if fix) and fix ) are piecewise
continuous, then the Fourier series for / (x) involves only the sine terms:

00

(10) fix) = ~2 bjsinijx),
j=i
where
. 2 r S .
(11) bj —— 1 f(x)sin(jx)dx for j = 1, 2,
a Jo

Example 5.14. Show that the function / (jc) = (s] for—1 < x < n, extended periodi-
cally by the equation f (x + 2n) = fix), has the Fourier cosine representation

» M A 4 N cos((2j — 1)jo
JW=1-*E -aj. D—

JU 4 / , V. cos(3jc)
_— -A"co.W + ~ 5 - +

(12
cos(5ji) \
NB -+
The function fix) is an even function, so we can use Theorem 5.6 and need only to
compute the coefficients {aj}:
2 f* 2x sinijx) 2cos{jx) Ir

XCOSs{jx)dx — : E S 4
Ij ~ n Jo fhodx Ttj nJL 1o

2co0s0>)-2 2((—1)/ —1 c
—— ’\) « ),-------) for j= 1, 2, 3......
ni nl
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Since ((—1)- — 1) —O0 when j is even, the cosine series will involve only the odd terms.
The odd coefficients have the pattern
-4 -4 -4

T

a - j_tSz

The coefficient ao is obtained by the separate calculation

f* X2\
ao= — | xdx = — —ii.
a Jo A lo
Therefore, we have found the desired coefficients in (12). ]
ProofofEuler’s Formulasfor Theorem 5.5. The following heuristic argument as-

sumes the existence and convergence of the Fourier series representation. To deter-
mine ao, we can integrate both sides of (7) and get

J fix) dx = j + ) + bj sino'jn)~ dx

(13) ao ?°.  fn - . e
= 1 —dx+E'aj | cosijx)dx + \\bj I sinO"™) rf*
J— 2 J— ji=j -t
—jrfiQ + 0-1-0.

Justification for switching the order of integration and summation requires a detailed
treatment o f uniform convergence and can be found in advanced texts. Hence we have
shown that

(14) ao=-/ f[x)dx.
X J-n

To determine am, we let m > 0 be a fixed integer, multiply both sides of (7) by
cos(mx), and integrate both sides to obtain

(15)
it pn
/(x)cos(mjt)dx = — | cos(m”)dx + aj j cos(jx)cosiinx)d.
1 NI y_|  J-K
0o fn
+ | sin(jx) cos(mx) dx.
y=i m'-*

Equation (15) can be simplified by using the orthogonal properties of the trigonometric
functions, which are now stated. The value of the first term on the right- hand side

of (15) is

(16) —2 J/r + cos(m x\svax - @osin(mx) =0.
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The value of the term involving cos(j'x) cos(mjt) is found by using the trigonometric
identity

17) cos(jx) cos(mx) = ~cos((j +m)x)+ ~cos(0’—m)x).

Whenj d 1, then (17) is used to get

" *

t 1
aj J cos(jx) cos(mx)dx = -aj j cos((j + m)x) dx
(18) n 1
+ -aj I cos((j —m)x)dx = 0+ 0= 0.
N )T
When j = m, the value of the integral is

(19) dan | cos(jx) coa(mx) dx — at n.
J-1A

The value of the term on the right side of (15) involving sinO *) cos(mx) is found
by using the trigonometric identity

(20) sin(jjc) cos(mx) = - sin((j + m)x) + ~sin((j —m)x).
For all values of j and m in (20), we obtain

bj Ir sin(jx)cos(mx)dx = —lbj jr s:n((j+m)x)dx

ao J~" i
4- -2bj I sin((j - m)x)dx =0+ 0= 0.

Therefore, using the results of (16), (18), (19), and (21) in equation (15), we conclude
that

(22) vam= 1 f(x)cos(mx)dx, form=1, 2,
J—

Therefore, Euler’s formula (5) is established. Euler’s formula (6) is proved
similarly. -

Trigonometric Polynomial Approximation
Definition 5.4 (Trigonometric Polynomial). A series of the form

a M
(23) TM(x) = ~ + CQBU X + bj sin(jx))

1 j=i

N called atrigonometric polynomial of order M . a
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Theorem5.8 (Discrete Fourier Series). Suppose that ((ig , yy))””0are 1'—! p.nr-.
where yj = f(x]j), and the abscissas are equally spaced:

(24) X; = —T + LLK‘\~ for /=0, 1, N.
If f(x) is periodic with period 2>k and 2M < N, then there exists a tigonometric
polynomial 7V (jt) of the form (23) that minimizes the quantity

N

(25) E(/(**) “ Tm W ) 2-
k=1

The coefficients aj and bj ofthis polynomial are computed with the formulas

2 N
(26) dj = — & f(xk) CQ&(jxk) for7z=0, 1, ..., M,
N *=|
and
(27) bj = Y2 /(**) sinQ'x*) for j = 1, 2, M.
A=l

Although formulas (26) and (27) are defined with the least-squares procedure, they
can also be viewed as numerical approximations to the integrals in Euler’s formulas (5)
and (6). Euler’s formulas give the coefficients for the Fourier series of a continuous
function, whereas formulas (26) and (27) give the trigonometric polynomial coeffi-
cients for curve fitting to data points. The next example uses data points generated by
the function f(x) = x/2 at discrete points. When more points are used, the trigono-
metric polynomial coefficients get closer to the Fourier series coefficients.

Example 5.15. Use the 12 equally spaced points xt = —T+ kn/6, fork = 1,2,..., 12,
and find the trigonometric polynomial approximation for M — 5 to the 12 data points
{Gc*, 7/ (jr*))}*~. where f(x) = xs2. Also compare the results when 60 and 360 points
are used and with the first five terms of the Fourier series expansion for f(x) thatis given
in Example 5.13.

Since the periodic extension is assumed, at a point of discontinuity, the function value
/ (jt) must be computed using the formula
28) /(5) = F(7T~) + f(ji+) ij2 —Kj2 -0
Tbe function / (jc) is an odd function; hence the coefficients for the cosine terms are all
zero (i.e.,, aj — 0 for all j). The trigonometric polynomial of degree M = 5 involves only
the sine terms, and when formula (27) is used with (28), we get

Tb (x) = 0.9770486 sin(jt) - 0.4534498 sin(2;c) + 0.26179938 sin(3jc)
(29) - 0.1511499 sin(4jc) +0.0701489 sin(5jtr).
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Figure 520 The trigonometric polynomial T$(x) of degree
M = 5, based on 12 data points that lie on theline y —xjl.

Tkble 5.9 Comparison of Tigonometric Polynomial Coefficients for

Approximations to / (x) = x jl over [—r, jr]

Trigonometric polynomial coefficients

12 points

h 097704862
b -0.45344984

0.26179939
x4 -0.15114995
b  0.07014893

The graph of 7j (j:) is shown in Figure 5.20.

60 points

0.99908598
-0.49817096
0.33058726
-0.24633386
0.19540972

360 points

0.99997462
-0.49994923

0.33325718
-0.24989845'

0.19987306

Fourier series
coefficients

1.0
-0.5
0.33333333
-0.25
0.2

305

The coefficients of the fifth-degree trigonometric polynomial change slightly when the
number of interpolation points increases to 60 and 360. As the number of points increases,
they get closer to the coefficients of the Fourier series expansion of fix). The results are

compared in Table 5.9.

The following program constructs matrices A and B that contain the coefficients aj
and b j, respectively, of the trigonometric polynomial (23) of order M.
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Program 5.4 (Trigonometric Polynomials). To construct the tigonometric poly
nomial of order M of the form

M
P(x) = — + y”(aj cos{jx) + bjsm(jx))
2 i
based on the N equally spaced values xu = —n + 2jtk/N, iatk = 1,2,..., N. The
construction is possible provided that 2A# + 1< N.
function [A,B]=tpcoeff(X,Y,M)
F.Input - X is a vector of equally spaced abscissas in [-pi,pi]

Y - Y is a vector of ordinates

¥, - M is the degree of the trigonometric polynomial
%Output - A is a vector containing the coefficients of cos(jx)
¥, - Bis a vector containing the coefficients of sin(Jx)

N=length(X)-1;
maxI=Fix<(N-1)/2);
it M>maxl

M=maxl;
end

A=zeros(l,M+1);
B=zeros(l,M+1);
Yends=(Y(1)+Y(N+1))/2;
Y(1)=Yends;
Y(N+1)=Yends;
A(D)=sum(Y);

for j=I:M

A(g+l)=cos(J*X)*Y1;

BA+D=sin(J*X)*Y";
end
A=2*A/N;

B=2*B/N;
A(D=A(1)/2;

The following short program w ill evaluate the tigonometric polynomial P (x)
order M from Program 5.4 at a particular value of x.
function z=tp(A,B,x,M)
z=A(D);
for j= 1:M

z=z+A(+1)*cos(G*x)+BG+D*sin(G*X);
end
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For example, the following sequence of commands in the M ATLAB command
window w ill produce agraph analogous to Figure 5.20.
»X=-pi:.0l:pi;
»y=tp(A,B,x,M);
>>plot(x,y 4 ,Y,'o”’)

Exercises for Fourier Series and Trigonometric Polynomials

In Exercises 1 through 5, find the Fourier series representation of the given function.
Hint. Follow the procedures outlined in Examples 5.13 and 5.14. Graph each function
and the partial sums S2M, S$(x), and XiU) of its Fourier series representation on the
same coordinate system (see Figure 5.19).

—| for —n < x < o0 f +x for —m1<* <0

) 2. fix) i ]
1 for 0<x<jt j —x for0< jc< jt

L/

-1 forJ <x <7
. 0 for—m <x<0 .
3. fix) = 4. fix) = 1 for N <x < f
x for0<x<T7
-1 for —w1<x < 1
—x —x for I < x < -j-
5. fix) x for

n-x forj <x<mn

6. In Exercise 1, setx = a/2 and show that

A 41 - L.
4 3 5
7. In Exercise 2, setjc = 0 and show that
—_ - 1 J L

-8~ + 32+ 52+ 72+ ' ¢
8. Find the Fourier cosine series representation for the periodic function whose defini-
tion on one periodis 7 (jc) = X2/4 where —1 < jc < TT.

9. Suppose that f(x) is aperiodic function with period 2P\ thatis, f(x + 2P) = 7 (jv)
for all jc. By making an appropriate substitution, show that Euler’s formulas (5) and
(6) for / are

1 fp
a®= P f A dx

bj = jf - Pf{x)sin dx
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In Exercises 10 through 12, use the results of Exercise 9 to find the Fourier series rep
resentation of the given function. Graph /(*). S-tU), and Se(*) on the same coordinat
system.

—1 for 3<x< —1
11. fix) = lic] for -1 <jc< 1

1 for 1<x <3

. 0 for—2<x<0
10. fix)

1 for0<x<2

12. fix) = -x2+9 for - 3<jc< 3.
13. Prove Theorem 5.6.

14. Prove Theorem 5.7.

Algorithms and Programs

1. Use Program 5.4 with N = 12 points and follow Example 5.15 to find the trigone
metric polynomial of degree M — 5 for the equally spaced points {(**, /(nO)}",.
where 7/ (jo) is the function in (a) Exercise 1, (b) Exercise 2, (c) Exercise 3, and
(d) Exercise 4. In each case, produce agraph of fix), T$(x), and {(xt,fixt)))"]
on the same coordinate system.

2. Use Program 5.4 to find the coefficients of T5(r) in Example 5.15 when first 60 and
then 360 equally spaced points are used.

3. Modify Program 5.4 so that it will find the tigonometric polynomial of period 2P —
b —a when the data points are equally spaced over the interval \a,b\.

4. Use Program 5.4 to find 75(x) for (a) fix) in Exercise 10, using 12 equally spaced
data points, and (b) fix ) in Exercise 12, using 60 equally spaced data points. In ead
case, graph T${x) and the data points on the same coordinate system.

5. The temperature cycle (Fahrenheit) in a suburb of Los Angeles on November 8 ii
given in Table 5.10. There are 24 data points.

(a) Find the trigonometric polynomial Tj{x).
(b) Graph 77(n and the 24 data points on the same coordinate system.
(c) Repeat parts (a) and (b) using temperatures from your locale.

6. The yearly temperature cycle (Fahrenheit) for Fairbanks, Alaska, is given in Ta
ble 5.11. There are 13 equally spaced data points, which correspond to ameasuremen

every 28 days.
(@) Find the trigonometric polynomial 76(jt).
(b) Graph T6(-t) and the 13 data points on the same coordinate system.



Sec.5.4 Fourier Series and Trigonometric Polynomials

Table 5.10 Data for Problem 5

Time, p.m. Degrees Time, am Degrees
1 66 1 58
2 66 2 58
3 65 3 58
4 64 4 58
5 63 5 57
6 63 6 57
7 62 7 57
8 61 8 58
9 60 9 60
10 60 10 64
1 59 n 67
Midnight 58 Noon 68

Tbble 5.11 Datafor Problem 6

Calendardate  Average degrees

Jan. 1 -14
Jan. 29 -9
Feb. 26 2
Mar. 26 15
Apr. 23 35
May 21 52
June 18 62
July 16 63
Aug. 13 58
Sept. 10 50
Oct. 8 34
Nov. 5 12

Dec. 3 -5



Numerical Differentiation

Formulas for numerical derivatives are important in developing algorithms for solv-
ing boundary value problems for ordinary differential equations and partial differen-
tial equations (see Chapters 9 and 10). Standard examples of numerical differenti-
ation often use known functions so that the numerical approximation can be com-
pared with the exact answer. For illustration, we use the Bessel function J\(x), whose
tabulated values can be found in standard reference books. Eight equally spaced
points over [0,7] are (0,0.0000), (1, 0.4400), (2, 0.5767), (3,0.3391), (4, -0.0660).

Figure 6.1 (a) The tangent to pi(x) at (2,0.5767) with slope p2(2) = —0.0505.
(b) The tangentto /uU) at (2,0.5767) with slope p4(2) = —0.0618.
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(5, —0.3276), (6, —0.2767), and (7, —0.004). The underlying principle is differentia-
tion of an inteipolation polynomial. Let us focus our attention on finding ,/j'(2). The
interpolation polynomial piix) = —0.0710 + 0.6982* —0.1872x2 passes through the
three points (1, 0.4400), (2, 0.5767), and (3,0.3391) and is used to obtain J[i2) =»
p2i2) — -0.0505. This quadratic polynomial piix) and its tangent line at (2, J\{2))
are shown in Figure 6.1(a). If five interpolation points are used, abetter approximation
can be determined. The polynomial p$(x) = 0.4986x+0.011x2-0.0813x3-(-0.01 16jc4
passes through (0,0.0000), (1,0.4400), (2,0.5767), (3,0.3391), and (4, -0.0660)
Mid is used to obtain J[{2) ~ p\(2) — —0-0618. Thequartic polynomial pn(x) and its
tangent line at (2, ii(2)) are shown in Figure 6.1(b). The true value for the derivative
is J[(2) = -0.0645, and the errors in piix) and pu{x) are —0.0140 and -0.0026,
respectively. In this chapter we develop the introductory theory needed to investigate
the accuracy of numerical differentiation.

Approximating The Derivative

The Lim it ofthe Difference Quotient

We now turn our attention to the numerical process for approximating the derivative
of f{x):

n /M - lim /<*+»>-/<*>,

A-»0 A
The method seems straightforward; choose a sequence {At} so that A* — 0 and com-
pute the limit of the sequence:

B DI=/<*+M-/M 2 yyreeeeeenn
hk

The reader may notice that we w ill only compute afinite number of terms D\, D2, ...,
J5/v in the sequence (2), and it appears that we should use Dm for our answer. The
following question is often posed: Why compute D\, D2> Av 1? Equivalently,
we could ask: What value A.v should be chosen so that Dn is agood approximation to
the derivative fix ) ? To answer this question, we must look at an example to see why
there is no simple solution.

For example, consider the function fix) = ex and use the step sizes h = 1,
1/2, and 1/4 to construct the secant lines between the points (0,1) and (A, /(A)),
respectively. As h gets small, the secant line approaches the tangent line as shown in
Figure 6.2. Although Figure 6.2 gives a good visualization of the process described
ih (1), we must make numerical computations with h = 0.00001 to get an acceptable
numerical answer, and for this value of h the graphs of the tangent line and secant line
would be indistinguishable.
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v=I1%

Figure 6.2 Several secant line for

Table 6.1 Finding the Difference Quotients Z>* = (el+kt —e)/hk

hk fk=f(l+hk) Dt = {fk-e)/hk
hx= 0.1 3.004166024 0.285884196 2.858841960
A2=0.01 2.745601015 0.027319187 2.731918700
a3= o.00i 2.721001470 0.002719642 2.719642000
/14 = 0.0001 2.718553670 0.000271842 2.718420000
/15= 0.00001 2.718309011 0.000027183 2.718300000
h6= 10-6 2.718284547 0.000002719 2.719000000
hj= 10~7 2.718282100 0.000000272 2.720000000
hi= 10-8 2.718281856 0.000000028 2.800000000
hg=10~9 2.718281831 0.000000003 3.000000000
h10= 10-10 2.718281828 0.000000000 0.000000000

Example 6.1. Let f(x) —el andjr — 1. Compute the difference quotients using the

step sizeshk = 10~* for/: = 1,2,..., 10. Carry out nine decimal places in all calculations.
A table of the values /(1 + hk) and (/(1 + hk) —/(1))/A* that are used in the
computation of £5t is shown in Table 6.1, n

The largest value h\ =0.1 does not produce a good approximation D\ ~ /'(1),
because the step size hi is too large and the difference quotientis the slope of the secant
line through two points that are not close enough to each other. When formula (2) is
used with a fixed precision of nine decimal places, hg produced the approximation
£59 = 3 and hio produced Djo = 0. If hk is too small, then the computed function
values f(x + hk) andfix ) are very close together. The difference f (x + h™) —f (jc)
can exhibit the problem of loss of significance due to the subtraction of quantities
that are nearly equal. The value Ao = KO 10is so small that the stored values of
fix + hjo) and / (jr) are the same, and hence the computed difference quotientis zero.
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M Example 6.1 the mathematical value for the limitis /°(1) ~ 2.718281828. Observe
feat the value hs = 10-5 gives the best approximation, D$ = 2.7183.

Example 6.1 shows that it is not easy to find numerically the limit in equation (2).
The sequence starts to converge to e. and D5 is the closest; then the terms move away
from e. In Program 6.1 it is suggested that terms in the sequence {£>*} should be
computed until P\+\ —D>j > | —Z?v—li- This is 31l attempt to determine the best
approximation before the terms start to move away from the limit. When this criterion
is applied to Example 6.1, we have 0.0007 = \D$ — D$\ > \D$ — D$\ — 0.00012;
hence Ds is the answer we choose. We now proceed to develop formulas that give a
reasonable amount of accuracy for larger values of A

The Central-difference Formulas

If the function f(x) can be evaluated at values that lie to the left and right of jc, then
the best two-point formula w ill involve abscissas that are chosen symmetrically on both
sides of n.

Tbeoret6/1 (Centered Formula ofOrder O(J12)). Assumethat/ e C3[a, b] and
thatjc —h, x, x + A e [a, £] Then

3) W L ) .

Furthermore, there exists anumberc = c(jc) e [a, b] such that

4 Pocfo 0o 2 A h £tnmc(/> «).

where

h2f 34c) J1,,.2n

AEMCCN 10 — —och ).

The term E (f, A)is called the truncation error.

Proof. Start with the second-degree Taylor expansions / (jc) = Piix) + E”.x), aboni
x, forfix + A)and f(x - A):

© fox £18 = By Kb ¢ L2002 | 1 @XCDAS
and
©6) fix —h) = fix) - Fixyh + VPORZ/<HRNI

21 3!
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After (6) is subtracted from (5), the resultis

((/(3(CN) + /<3HAC2)N13

%) f(x + h)~ f(x-h) = 2f\x)h + o

Since f ri){x) is continuous, the intermediate value theorem can be used to find a
value c so that

m /«(c)+/ «te), /0,(c)

This can be substituted into (7) and the terms rearranged to yield

f(x+h)-f(x-h) fO0)(c)h2

©) fix) = 2 h 3!

The first term on the right side of (9) is the central-difference formula (3), the second
term is the truncation error, and the proofis complete. -

Suppose that the value of the third derivative f (y>(c) does not change too rapidly;
then the truncation error in (4) goes to zero in the same manner as A2, which is ex-
pressed by using the notation 0 (h2). When computer calculations are used, it is not
desirable to choose A too small, for this reason it is useful to have a formula for
approximating f'(x) that has atruncation error term of the order 0{h A).

Theorem 6.2 (Centered Formula of Order 0 (h4)). Assume that/ e C5[a, b] and
thatx - 2h, x - h, x,x + h,x + 2h e [a, b\ Then

W, =S5+ U+ BI(x+ A)-8L*-*) + / (*-26)
(10) /< *)» nmn

Furthermore, there exists anumber c = c(x) € [a, b] such that

an
rri —f (x+ 2h) + 8f(x+ h) - 8f(x —h) + f (x —2ft)
f (x) = — + Auwic(/, n).

where

*14 A4/ (5)W

I ,
Alnmc (/i n) — o(h ).
Proof, One way to derive formula (10) is as follows. Start with the difference betw een
the fourth-degree Taylor expansions f{x) = Pa(x) + E*(x), about off{x + h) and
f(x~h):

12 f )ty = 21 pfh e 2LOUIS, . 212 (Chks
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Then use the step size 2A, instead of A, and write down the following approximation:
as, = + +
Next multiply the terms in equation (12) by 8 and subtract (13) from it. The terms
involving / <G (x) will be eliminated and we get

-f(x + 2ft) + Bf(x + h) ~ 8f(x - h) + f(x - 2h)

(14) = 121( )h + ~6/(5)(c1)-64/(5)(c2))i5
J 120

If /,5,(@) has one sign and if its magnitude does not change rapidly, we can find a
value cthat lies in [lc —2A, x + 2A] so that

(15) 16/(5)(ci) - 64/ (5)(c2) = -48/t»(c).
After (15) is substituted into (14) and the result is solved for f{x ), we obtain

-/ + 20+ 8/(x+ A)-8/(x-A) + /(x-2A) , f{S\c)h4
1> r

f) Jw —

12A 30
The first term on the right side of (16) is the central-difference formula (10), and
fee second term is the truncation error, the theorem is proved. -

Suppose that [f (5Hc)] is bounded for c e [a, b]\ then the truncation error in (11)
goes to zero in the same manner as h4, which is expressed with the notation O (A4).
Wow we can make a comparison of the two formulas (3) and (10). Suppose that / (jc)
has five continuous derivatives and that |/(3)(c)l I/*5Hr)) are about the same.
Then the truncation error for the fourth-order formula (10) is 0(h4) and will go to
zero faster than the truncation error O (A2) for the second-order formula (3). This
permits the use of alarger step size.

Example 6.2. Let/ (ji9 = cos(jc)
(a) Use formulas (3) and (10) with step sizes h = 0.1, 0.01,0.001, and 0.0001, and cal-
culate approximations for /'(0.8). Carry nine decimal places in all the calculations.

(b) Compare with the true value /'(0.8) = —sin(0.8).
(@) Using formula (3) with A = 0.01, we get

,(0 ,, /((X81) —/(0/79) ~ ~689498433 - 0,703845316 ~
0.02 0.02
Using formula (10) with A= 0.01, we get
—/(0.82) + 8/(0.81) - 8/(0.79) + /(0.78)

0.12
-0.682221207 + 8(0.689498433) - 8(0.703845316) + 0.710913538

0.12
-0.717356108.
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Table 6.2 Numerical Differentiation Using Formulas (3) and (10)

Step Approximation by Error using Approximation by Error using
size formula (3) formula (3) formula (10) formula (10)
0.1 -0.716161095 -0.001194996 -0.717353703 -0.000002389
0.01 -0.717344150 -0.000011941 -0.717356108 0.000000017
0.001 -0.717356000 -0.000000091 -0.717356167 0.00000007 6
0.0001 -0.717360000 -0.000003909 -0.717360833 0.00000474 2

(b) The errorin approximation forformulas (3) and (10) turns out to be —0.000011941 snd
0.000000017, respectively. In this example, formula (10) gives a better approximation to
/'(0.8) than formula (3) when h = 0.01. The error analysis will illuminate this exampie
and show why this happened . The other calculations are summarized in Table 6.2. [ ]

Error Analysis and Optimum Step Size

An important topic in the study of numerical differentiation is the effect of the com-
puter’s round-off error. Let us examine the formulas more closely. Assume thai a
computer is used to make numerical computations and that

f(xo - h)y=y_ i+ e_i and f(xo+ h)=yi+ e\

where f{x 0—h) and /(jco + h) are approximated by the numerical values i andyi
and e-\ and €\ are the associated round-off errors, respectively. The following result
indicates the complex nature of error analysis for numerical differentiation.

Corollary 6.1(a). Assume that / satisfies the hypotheses of Theorem 6.1 and use the
computationalformula

@7

The error analysis is explained by the following equations:

(18) o T EU
where

E(f,h) ~ £round(/: h)  £trunc(/i A)
(19) e\ —e~] h2ir(c)

- 2h 6

where the total errorterm E (f, h ) has a part due to round-off error plus a part due
truncation error.
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Corollary 6.1(b). Assume that / satisfies the hypotheses of Theorem 6.1 and that nu-
merical computations are made. If |e.i] < €, |é] < e,andM = Tax0<I™*{]/3)(M I},
then

20 \E(f,h)\ <*- + ~ - |
(20) (f,h) A 5

and the value of h that minimizes the right-hand side of (19) is

nl)

When A is small, the portion of (19) involving (e\ —e-\)/2h can be relatively
large. In Example 6.2, when A = 0.0001, this difficulty was encountered. The round-
off errors are

/(0.8001) = 0.696634970 + e, where e\ % -0.0000000003
/(0.7999) = 0.696778442 + where e-\ = 0.0000000005.

The truncation error term is

-A2f 0)(c) ,
6

The error term E (f, ft) in (19) can now be estimated:

-0.0000000003 - 0.0000000005
E(f, A % —_— 0.000000001

= -0.000004001.

Indeed, the computed humerical approximation for the derivative using A = 0.0001
is found by the calculation

, _ /(0.8001) - /(0.7999)  0.696634970 - 0.696778442

0.0002 -~ 0.0002
= -0.717360000,

and aloss of about four significant digits is evident. The error is —0.000003909 and
this is close to the predicted error, —0.000004001.

When formula (21) is applied to Example 6.2, we can use the bound 1/<3)(*)1 5
Isin(x) ] < 1= M andthe value 6 = 0.5 x 10-9 for the magnitude of the round-
off error. The optimal value for A is easily calculated: A = (1.5 x 10“9/1)I/3 =
0.001144714. The step size h = 0.001 was closest to the optimal value 0.001144714
and it gave the best approximation to /'(0.8) among the four choices involving for-
mula (3) (see Table 6.2 and Figure 6.3).

An error analysis of formula (10) is similar. Assume that a computer is used to
make numerical computations and that /(jco + kh) ~ yk + ek.
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Error bound

Corollary 6.2(a). Assume that / satisfies the hypotheses of Theorem 6.2 and use
computationalformula

2 . -Y2 + 851 - 8y_i-t-y_2
@2) /4*0) 12A

The error analysis is explained by the following equations:

(23)
where
E(f, h) — £round(/, A) + £trunc(/, A)
(24) —ei+ 8ej —8e_i + e-r ; h4f~ (c)
——————— N |

12A 30

where the total error term E (f,h) has a part due to round-off error plus a part due to
truncation error.

Corollary 6.2(b). Assume that / satisfies the hypotheses of Theorem 6.2 and that
numerical computations are made. If \ek\< € and M — max0<r<i,{|/(54;t)]). thei

Mh4

25 'E(fA)<3<r+
(25) B A< 5

and the value of A that minimizes the right-hand side of (25) is
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Error bound

Figure 6.4 Finding the optimum step size
h = 0.022388475 when formula (26) is applied to
f(x) = cos(;c) in Example 6.2.

When formula (25) is applied to Example 6.2, we can use the bound } (5Hx) |5
kinGc) | < 1 — M and the value e — 0.5 x 10 9 for the magnitude of the round-
off error. The optimal value for h is easily calculated: h ~ (22.5 x 10-9/4")/5 =
0.022388475. The step size h — 0.01 was clpsest to the optimal value 0.022388475,
nid it gave the best approximation to /'(0.8) among the four choices involving for-
mula (10) (see Table 6.2 and Figure 6.4).

We should not end the discussion of Example 6.2 without mentioning that numer-
ical differentiation formulas can be obtained by an alternative derivation. They can
be derived by differentiation of an interpolation polynomial. For example, the La-
grange form of the quadratic polynomial p2(x) that passes through the three points
10.7, cos(0.7)), (0.8, cos(0.8)), and (0.9, cos(0.9)) is

jnix) = 38.2421094(c - 0.8)(x - 0.9) - 69.6706709(x - 0.7)(x - 0.9)
+ 31.08049840c - 0.7)0* - 0.8).

! polynomial can be expanded to pbtain the usual form:
p2(x) = 1.046875165 - 0.159260044* - 0.348063157*2.

N nilar computation can be used to obtain the quartic polynomial p*(x) that passes
thii iighthe points (0.6, cos(0.6)), (0.7, cos(0.7)), (0.8, cos(0.8)), (0.9, cos(0.9)), and
il " cos(l.O)):

P4(jo = 0.998452927 + 0.009638391* - 0.52329134U2

+0.026521229n3+ 0.028981 KOOn:4.
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Figure 6.5 (&) The graph of y = cos(.nj and the interpolating polynomial pr(x! use.'
to estimate /'(0-8) v p~O.S) = —0.716161095. (b) The graph of y = cos(x) and the
inteipolating polynomial p4<x) used to estimate /'(0.8) « ~(0.8) = —0.717353703.

When these polynomials are differentiated, they produce p”t0.8) = —0.716161W?
and ~(0.8) = —0.717353703, which agree with the values listed under h = 0.1 in
Table 6.2. The graphs of piix) and pa(x) and their tangent lines at (0.8, cos(0.8) are
shown in Figure 6.5(a) and (b), respectively.

Richardson’s Extrapolation

In this section we emphasize the relationship between formulas (3) and (10).

ft — f(Xk) ~ f{.*o + kh), and use the notation Doih) and Do(2h) to denot. ihu
approximations to f'(x<;) that are obtained from (3) with step sizes h and 2h, re spec
tiveldy:

27 f'(x0) « D(i(h) + Ch2
and
(28) f(x 0) « Do(2h) + 4Ch2.

If we multiply relation (27) by 4 and subtract relation (28) from this product, thoi ihe
terms involving C cancel and the result is

(29) 3/'C*0) « 4£>0(/i) - DO(2h) = — *. - - ~JzIlm
in 4ft

Next solve for /'(joo in (29) and get

4  AA)(N) - Z?202A) -/a+ 8/]1 -8 /_i+ /-2
(30) f (xo0) 3 = .

The last expression in (30) is the central-difference formula (10).
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Example 6.3. Let f{x) = cos(x). Use (27) and (28) with h = 0.01, and show how the
luuMtr combination (4Do{h) —D o{2H))/3 in (30) can be used to obtain the approximation
to f (0.8) givenin (10). Carry nine decimal places in all the calculations.

Use (27) and (28) with k = 0,01 to get

f(0-81) - /(0.79)  0.689498433 - 0.703845316
0.02 0.02
» -0.717344150

Dn(n) ~

and

4 /(0.82)- /(0.78) 0.682221207 - 0.710913538
« — «

Dom

« -0.717308275.

Now the linear combination in (30) is computed:

/ 0> « 4(=0.717344150). (-0.717308275)

« -0.717356108.

This is exactly the same as the solution in Example 6.2 that used (10) directly to approxi-
~-e/'(0.8). -

The method of obtaining aformula for /'(xo) of higher order from aformula of
lower order is called extrapolation. The proofrequires that the error term for (3) can
be expanded in a series containing only even powers of h. We have already seen how
to use step sizes h and 2h to remove the term involving ft2. To see how h4 is removed,
letD\(h) and D\ (2h) denote the approximations to /'(.to) of order 0(h4) obtained
wtfh formula (16) using step sizes h and 2h, respectively. Then

. /2 +8/,-8/—+/_2 , N4/ (5(C1) b
QH)  / (-s0) = ~ + 30—~ D\(h) ¥ Ch

age

~ 4 . /4 + 8/2-8/_2+ /_4 , \6haf~r(C2) _ n ~ LN L4
02) [/ (x0)= H NN A (2A) + 16CA .

Suppose that f <5)(x) has one sign and does not change too rapidly; then the assump-
tion that / (5)(ci) / <5)(c2) can be used to eliminate the terms involving h4 in (31)
and (32), and the result is

(bVv, / (XO) A sl T )

The general pattern for improving calculations is stated in the next result.
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Theorem 6.3 (Richardson’s Extrapolation). Suppose that two approximations of
order OikZ) for f'(xo) are Dt~] (h) and Dk-\(2h) and that they satisfy

(34) fix 0) = Dk-i (h) + ah2k+ c2hlk+2 + =m
and
(35) fix 0) = Dk-1(2h)+4kcih2k+ i k+iQh2k+2"mm-

The.b an improved approximation has the form

(36) [(x0)= Dk(h) + Oihu+2)= ~ -iW -D k -~ |h ) + 0(fc2*+z)_

The following program implements the centered formula of order Oih2), equa-
tion (3): to approximate the derivative of a function at a given point. A sequence oi
approximations {DKk) is generated, where the centered interval for Dk+1is onc-tcnth a-
long as the centered interval for Dk. The output is amatrix L=[H’ D' E '], where H
is avector containing the step sizes, Dis avector containing the approximations to the
derivative, and E is a vector containing the error bounds. Note. The function f nced-
to beinput as astring; thatis, *f \

Program 6.1 (Differentiation Using Limits). To approximate fix') numerically
by generating the sequence

Ne + 10-*» -/(AT-1T»/.) s ) .
N O B T 1T R for * =0 ... «

/ w

until 1£4+1 - D,,] > ]£),, - Z>,,_i] or}D,, —Dn-i\ < tolerance, which is an attempt
to find the best approximation fix ) B,,.
function [L,n]=difflim (f,x,toler)

7.nput - f is the function input as a string ,f°

A - 4 is the differentiation point

Y, - toler is the tolerance for the error
XOutput-L*[H3 D’ E 'i:

Y H is the vector of step sizes

| D is the vector of approximate derivatives

Y, E is the vector of error bounds

% - n is the coordinate of the “best approximation~
max|=15;

h=1I;

H(D=b;

D (l)=(feval(f,x+h)-feval(f,x-h))/(2*h);
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ELLU-0;
R(1)=0;
for n=1:2
h=h/10;
HCn+l)=h;
D(n+1)=(feval (f ,x+h)-feval(f,x-h))/(2*h) ;
E(n+l)=abs(D(n+1)-D(n));
R(n+)=2*E(tt+i)*Cabs(D(n+1)}+abs(D(n))+eps);
end
n=2;
while((E(n)>E(n+1))Tt(R(n)>toler))&n<maxl
h=h/10;
K(n+2)=h;
D(n+2)=(feval (f ,x+h)-feval (f ,x-h))/ (2*h);
E(n+2)=abs(D(n+2)-D(n+1));
R(n+2)=2*E(n+2)* (abs(D(n+2))+abs(D(n+l))+eps);
n=n+l;
end
n=length(D)-1;
L=[H"D3E 7;

Program 6.2 implements Theorem 6.3 (Richardson’s extrapolation). Note that, the
expression for the elements in row j is algebraically equivalent to formula (36).

Program 6.2 (Differentiation Using Extrapolation). To approximate f'(x) nu-
merically by generating a table of approximations D(J< k) for k < j, and using
fix) « D(n, n) as the final answer. The approximations £>(/, k) are stored in a
lower-triangular matrix. The first column is

2~j+lh

and the elements inrowj are

du.*)=du.* - 1)+ n;,ﬂ) N

functlon [D,err,relerr,n]“diffext(f,x delta,toler)
f(Input -f is the function input ae a string 't -

- delta is the tolerance for the error
% - toler is the tolerance for the relative error
'/»Output - D is the matrix of approximate derivatives
7 - err is the error bound
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7, - relerr is the relative error bound

7, - n is the coordinate of the “"best approximation™
err=I;

relerr=1;

H=I;

=0
D (1,1)=(feval (f x+h)-feval (f,x-h))/ (2*h);
while relerr>toler & err>delta &j<12
h=h/2;
D(j+1,D=(Ffeval(f,x+h)-feval (f,x-h))/(2*h);
for k=1:j
DA+, k+D)=DG+1,K)+(D(+1,k)-D(F,K))/ ((47K)-1);
end
err=abs(D(J+1,j+1)-D(j.j));
relerr=2*err/(abs(D(J+1,j+1))+abs(D(J.j))+eps);
B=ivis
end
[n,n]=size(D);

Exercises for Approximating The Derivative

1. Let f(x) = sin(jt), where a is measured in radians.
(a) Calculate approximationsto /'(0.8) using formula (3) with h = 0.1, h = 0.01,
and h —0.001. Carry eight or nine decimal places.

(b) Compare with the value /'(0.8) = c0s{0.8).
(c) Compute bounds for the truncation error (4). Use

[/{3)©)] < cos(0.7) 0.764842187

for all cases.

2. Let f(x) = e~
(@) Calculate approximations to /'(2.3) using formula (3) with h ~ 0.1, h = (
and h = 0.001. Carry eight or nine decimal places.

(b) Compare with the value /'(2.3) = e2i3.
(c) Compute bounds for the truncation error (4). Use

I/<3V)| < e2Ass 11.02317638

for all cases.
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3. Letfix) ~ sinOr), where jc is measured in radians.
(a) Calculate approximations to /'(0.8) using formula (10) with ft = 0.1 and A —
0.01, and compare with /'(0.8) = co0s(0.8).
(b) Use the extrapolation formula in (29) to compute the approximationsto /'(0.8)
in part (a).
(c) Compute bounds for the truncation error (11). Use

1/(5>(c)l < cos(0.6) ™ 0.825335615

for both cases.
4. Letfix) = e*.
(@) Calculate approximationsto /'(2.3) using formula (10) with A = 0.1 and ft —
0.01, and compare with /'(2.3) = e23.
(b) Use the extrapolation formula in (29) to compute the approximationsto /'(2.3)
in part (a).
(©) Compute bounds for the truncation error (11). Use

I/<s>(0)] < €25« 12.18249396

for both cases.

5. Compare the numerical differentiation formulas (3) and (10). Let fix) —x 3 and find
approximations for /'(2).
(@ Use formula (3) with h = 0.05.
(b) Use formula (10) with A =0.05.
(c) Compute bounds for the truncation errors (4) and (11).

6. (&) Use Taylor’s theorem to show that

fix + ft) = f(X) + hf'ix) Hororoeomomeee ., where fc—ic | < .

(b) Use part (a) to show that the difference quotient in equation (2) has error of
order 0(A) = —A/(24 ¢)/2.
(© Why is formula (3) better to use than formula (2)?

7. Partial differentiation formulas. The partial derivative /, (x,y) of fix , v) with re-
spect to x is obtained by holding y fixed and differentiating with respectto x. Simi-
larly, fy(x,y) is found by holding x fixed and differentiating with respect to v. For-
mula (3) can be adapted to partial derivatives

N 4 f{x+h,y)~ fix -h,y) , n/,2n
fxix, y) — — T O{ft ),
r, fix,y + h)-f(x,y-h 24
fyix,y) = 4 )10y )+ 0{hA.

(@ Letfix,y) = xy/ix + y). Calculate approximations to [, (2, 3) and //2. 3)
using the formulas in (i) with ft =0.1, 0.01, and 0,001. Compare with the
values obtained by differentiating fix, y) partially.
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(b) Letz = f(x, y) = arctan(y/-t) where z is in radians. Calculate approximations
to fx(3, 4) and f y0 , 4) using the formulas in (i) with h =0.1, 0.01, and 0.001.
Compare with the values obtained by differentiating f(x,y) partially.

8. Complete the details that show how (33) is obtained from equations (31) and (321

9. (@) Show that (21) is the value of h that minimizes the right-hand side of (20).
(b) Show that (26) is the value of h that minimizes the right-hand side of (25).
10. The voltage E = E(t) in an electrical circuit obeys the equation E(t) = Lid ljdt \+
RI(t), where R is resistance and L is inductance. Use L = 0.05and R = 2 <d
values for /(f) in the table following.

1w
10 82277
11 7.2428
12 5.9908
13 4.5260
14 29122

(@) Find /'(1-2) by numerical differentiation, and use it to compute £(1.2).
(b) Compare your answer with /(f) = H k ''"10sin(2/).

11. The distance D = D{t) traveled by an object is given in the table following.

! D()
8.0 17.453
9.0 21.460

100 25.752
110 30301
120 35.084

(&) Find the velocity K (10) by numerical differentiation.
(b) Compare your answer with D(t) = —70 + 7f + 70e-,/1°.

12. Let s (jc) be given by the table following. The inherent round-off error has the bound
kitl £ 5 x 10~6. Use the rounded values in your calculations.

X =m

1.100 0.45360
1.190 0.37166
1.199 0.36329
1.200 0.36236
1201 0.36143
1.210 0.35302
1.300 0.26750
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13.

14.

15.

(@) Find approximations for /'(1.2) using formula (17) with h = 0.1, A = 0.01,
andh = 0.001.

(b) Compare with /'(1.2) = —sin(1.2) « —0.93204.

(c) Find the total error bound (19) for the three cases in part (a).

Let f(x) be given by the table following. The inherent round-offerror has the bound
Njtl < 5 x 10-6. Use the rounded values in your calculations.

2.900 1.06471
2.990 1.09527
2.999 1.09828
3.000 1.09861
3.001 1.09895
3.010 1.10194
3.100 1,13140

(@) Find approximations for /'(3.0) using formula (17) with k =0.1, h = 0.01,
andh = 0.001.

(b) Compare with /'(3.0) = j 53 0.33333.
(c) Find the total error bound (19) for the three cases in part (a).

Suppose that atable of the function / (jc~) is computed where the values are rounded
off to three decimal places and the inherent round-offerroris 5 x 10~4. Also, assume
that 1/(3)©] < 1.5and |/G0)] < 15.

(@) Find the best step size h for formula (17).

(b) Find the best step size h for formula (22).

Let f(x) be given by the table following. The inherent round-off error has the bound
ktl £ 5 x 10-6. Use the rounded values in your calculations.

X f(x) = cos(*)

1.000 0.54030
1.100 0.45360
1.198 0.36422
1.199 0.36329
1.200 0.36236
1.201 0.36143
1.202 0.36049
1.300 0.26750
1.400 0.16997

(@) Approximate /'(1.2) using (22) with h = 0.1 and h — 0.001.
(b) Find the total error bound (24) for the two cases in part (&).



328 Chap.b Numerical Differentiation

16. Let fix) be given by the table following. The inherent round-off error has the bound
e\ < 5 x 1Cr6. Use the rounded values in your calculations.

x  fix) = In(r)

2.800 1.02962
2.900 1.06471
2.998 1.09795
2.999 1.09828
3.000 1.09861
3.001 1.09895
3.002 1.09928
3.100 1.13140
3.200 1.16315

(@ Approximate /'(3.0) using (22) with A= 0.1 and h —0.001.
(b) Find the total error bound (24) for the two cases in part (a),

Algorithms and Programs

1. Use Program 6.1 to approximate the derivatives of each of the following functions
at the given value of jc. Approximations should be accurate to 13 decimal places.
Note. It may be necessary to change the values of maxi and the initial value of h in
the program.

(@ f(x) =60*46- 32nB+ 233n:5- 470:2- 77, n = 1U*JI

(b)

(c) f(x) = sin(cos(l/jc));jc= 1/V2 _
(G) /(m) = sin(*3—Ix| + 6x+ 8);x= — -—
(e) fix) =xx*\x =0.0001
2. Modify Program 6.1 to implement the centered formula (10) of orderO(ft4). Use this

program to approximate the derivatives of the functions given in Problem 1. Again,
approximations should be accurate to 13 decimal places.

3. Use Program 6.2 to approximate the derivatives of the functions given in Problem t.
Again, approximations should be accurate to 13 decimal places. Note. It may be
necessary to change the initial values oferr, re le rr, and h.
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Numerical Differentiation Formulas

More Central-difierenee E'ormulas

The formulas for /'(xo) in the preceding section required that the function can be
computed at abscissas that lie on both sides of x, and they were referred to as central-
difference formulas. Taylor series can be used to obtain central-difference formulas for
the higher derivatives. The popular choices are those of order O (h2) and 0 (h4) and are
givenin Tables 6.3 and 6.4. In these tables we use the convention that = f (xQ-\-kk)
fort=-3,-2,-1,0, 1,2,3.
For illustration, we wiill derive the formula for f*(x) oforder 0{h 2) in Table 6.3

Start with the Taylor expansions

(» Ju+M_ /W W w + 2~ + N + * £ LE> 4+ L
L D 14

Table6*3 Central-difference Formulas of Order 0{h 2)

14*0) ~ f] 5{_|
fl -2/0 + Z-I
1"(*a- -
/04*0

/(4U0)* /2-VI+6/0-4]_ 1+~2

Table 6.4 Central-difference Formulas of Order 0(h )

\zh
f (x O)¢ -h + 16fl - 30/p+16A i- /_2
12n2
-/3 +8h ~ 13/' + 13/-, ~S/-2 + f-3
/ (3)<*0>s ah*

—/3+ 12/2- 39/, + 56/0 - 39/-! + 12/-2 ~ {-3
| ,
rav ! oA
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and

Z (o] 24
Adding equations (1) and (2) will eliminate the terms involving the odd derivatives
fix), /<3><*),/(5)

(3, N9+«+Ng-«.ap,+*!2® + “ U o+ L

Solving equation (3) for /"(*) yields
r*r, fix+h)~ 2fix) + fix - h) 2ft2/<4C>
()] *2 a
2A4/ (6)(*) 2Aa - 2/ (2*>(x)
6! 2*)! '

If the series in (4) is truncated at the fourth derivative, there exists aval.v ( iluii
liesin Ix —h,x + h] so that

/i-2 70, % /- h2f<*>ic)
-2 — .

(5) / (x0) =

This gives us the desired formula for approximating fix ) :

fit, 4~ N\ 2/0-}-/—
(6) f (x0) & - 2 -

Example 6.4. Letf(x) = cos(n).

(a) Use formula (6) with h = 0.1, 0.01, and 0.001 and find approximations to /"(0.8).
Carry nine decimal places in all calculations.

(b) Compare with the true value /"(0.8) = —co0s(0.8).
(a) The calculation forh = 0.01 is

f»m ™ /(°-8D - 2/(0,80) + /(0.79
f”(o. ¢ o8 + 7(0-79)

_ 0.689498433 - 2(0.696706709) + 0.703845316
8 0.0001
~ -0.696690000,

(b) The error in this approximation is —0.000016709. The other calculations are summa-
rized in Table 6.5. The error analysis will illuminate this example and show why h = 0.01
was best. []
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Table 6£ Numerical Approximations to f"(x) for

Example 6.4
Step Approximation by Error using
size formula (6) formula (6)
Nn=0.1 -0.696126300 -0.0005:80409
A= 0.01 -0.696690000 -0.000016709
A=0.001 -0.696000000 -0.000706709
Error Analysis

Let fk = Yk + ek<where e* is the error in computing /(jc*), including noise in mea-
surement and round-offerror. Then formula (6) can be written

)'n ® Y '~ 2Y0+ Y-1

@) ()= e p - FE(f, Al

The errorterm E (h,f) for the numerical derivative (7) will have a part due to round-
off error and apart due to truncation error:

If itis assumed that each error e* is of the magnitude t , with signs that accumulate
Liiors, and that |/(44*)l 2 M, then we get the following error bound:

4e Mh2
\E(f,h)\<-~ + — .

If his small, then the contribution Ae/h1 due to round-off error is large. When h
N large, the contribution Mh2/12 is large. The optimum step size will minimize the

quantity
e Mh2
1] II) (( L1311 p + u -

Setting g'(h) = 0 results in —8c/ft3 + Mft/6 = 0, which yields the equation
h' = 48f/M, from which we obtain the optimal value:

/48e\/4
n- bl

Wilien formula (11) is applied to Example 6.4, use the bound I f @)(x)i < Jcos(m)| £
| —M andthe valuee = 0.5 x 10-9. The optimal step sizeis A = (24x 10-9/1)V4 =
0.01244666. and we sefcthat A = 0.01 was closest to the optimal value.
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Since the portion of the error due to round off is inversely proportional to the square
of A, this term grows when h gets small. This is sometimes referred to as the step-size
dilemma. One partial solution to this problem is to use aformula of higher order so
that a larger value of h will produce the desired accuracy. The formula for f"(x o) of
order O (A4) in Table 6.4 is

-N+16/1-30/0+16/-1-/-2
(12) / (n0) = 2k

The error term for 11 2) has the form

16e  h*fl6)(c)
13> +
where c lies in the interval [x —2h, x + 2h). A bound for E (f, h) \is

16e hAM
04) +

where |/t6) ) £ M. The optimal value for h is given by the formula

/240e\ 1/6

h =
(19) \~M~) [

Example 6.5. Let/ (jc) = cos(x).
(a) Use formula (12) with h = 1.0,0.1, and C.01 and find approximations to /"(0.8).
Carry nine decimal places in all the calculations.
(b) Compare with the true value /"(0.8) = - cos(O.S).

(c) Determine the optimal step size.
(@) The calculation forh = 0.1 is

/"(0.8)
A -/(1.0) + 16/(0.9) - 30/(0.8) + 16/(0.7) - /(0.6)
0.12
pj —0-540302306 + 9.945759488 —20.90120127 +. 12.23747499 - 0825335615

0.12
«s -0.696705958.

(b) The error in this approximation is  0.000000751. The other calculations are summa-
rized in Table 6.6.

(c) When formula (15) is applied, we canuse the bound |/(6)COI < Jcos(jt)! 5 | = M and
thevalues = 0.5x 10-9.These values give the optimal step size ft = (120x 10“9/1)1/6 =
0.070231219 n
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Table 6.6 Numerical Approximations to /"(m*) for

Example 6.5
Step Approximation by Error using
size formula (12) formula (12)
A= 10 -0.689625413 —0.007081296
A=0.1 -0.696705958 -0.000000751
A=0.01 —0.696690000 -0.000016709

Table 6.7 Forward- and Backward-difference Formulas of
Order 0(h2)

i—~3/0 + 4/ —fl (forward \
1 0" 2A Vdifference/
ft i--3%°~ + N2 / backward \
/W » - n | differenced
j-h, ux.2/0—"/i+4/2 - 3 / forward \

/ (*0)-————- | differenced

fit, V 2/o~S/-1+4/-2 ~ /-3 /backward \
7 A2 \ difference /

/(U0)* -5/p + 18/1 - 24/2 + 14/3 ~ 3/4

/(3,(to) S/p~ 18/.] + 24/ 2 - 14/ 3+ 3/,4

/(4)Uq) ~ 3/p - 147i + 26/2 - 24/3 + 11/4 - 2/s

/(8) (x0)* 3/° - 14/-i + 26/~2 ~ 24/ 3+ 11/,4 ~2/-5
h*

Generally, if numerical differentiation is performed, only about half the accuracy
ofwhich the computer is capable is obtained. This severe loss of significant digits will
almost always occur unless we are fortunate to find astep size thatis optimal. Hence
we must always proceed with caution when numerical differentiation is performed.
The difficulties are more pronounced when working with experimental data, where
the function values have been rounded to only a few digits. |f a numerical derivative
Wust be obtained from data, we should consider curve fitting, by using least-squares,
techniques, and differentiate the formula for the curve.
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Differentiation ofthe Lagrange Polynomial

If the function must be evaluated at abscissas that lie on one side of x$, the centra -
difference formulas cannot be used. Formulas for equally spaced abscissas that lie t >
the right (or left) of xq are called forward (or backward) difference formulas. Thes.
formulas can be derived by differentiation of the Lagrange interpolation polynomial.
Some of the common forward- and backward-difference formulas are given in Tt
ble 6.7.

Example 6.6. Derive the formula

2/0- 5/, +4/2- /3
/ (*o) n []

Start with the Lagrange interpolation polynomial for f(t) based on the four points eo
jci,*2, and X3.

ft f ~ " x2)0 ~ *3) , f (- xg)(t- xj)(t - x3)
1 °(*0 * JTIHECO - X2)(x0- *3) LN - *o)(*1 -- X2)(xi - X])
+ 2 ~%0)(? - X\)(t-x 3) + (f —j:q)(f -X2)
"2 - *0)(*2 - X\)(X2 - *3) - X0)<X3 - xi)(*3 - XI)'

Differentiate the productsin the numerators twice and get

ft f ~ Xxi) + (t- xr) + (i - x3)) , 2((f - x0) + Q - x2)+ (t- *3))
0 {xo0-x\)(xo0~x2)(x0 -X 3) 1 (X - XO)(Xi - X2)(x\ - X3)
JJ22((1‘- *o)_+ (r- *i)+ (/- -r3)) 3 2((f - No) + (r- jei)y+ ((- x2))'
(x2- XO0)(.X2 - xtXxi - x3) (*3 - J0)(JIC3 -A4T])(x3 -.bl

Then substitution of t = xo and the feet that Xj —xj = (i —j)h produces

2((io - x\)+ (jt(i - x2) + (jt0- *3))
xo - *1)(*0 - Xx2)(Xo - X3>
2((XQ - XQ) + (XQ - X2) + (xq - J3))

N e AQYG - x2)(xi - )
2((xp - jca) + (jcg - Ii) + (XQ - x3))
(X2- x0)(x2 ~ X])(X2 - x3)
2((xa - jeq) + Pro- jei) + (jeq - J2))
+/3 _
(x3- Jo)(IC3 - X\)(X3 - X2)
2((-A) + {-2A) + (-3A)) 2((0) + (—2A) + (—3f1)
10 <AG—2A)(-3A) (A)(A)(~2A)
f 2((0) + (-A) + (-3 A)) 2((0) + (-/») + (-2ft))
j2 QA (-A) +n (BAAA)
, -12A, —10A, , -81 . —6A 2/0-5/i+4/2-
L A Ry O e B N L h1

and the formula is established.
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Example 6.7. Derive the formula

. -5/0+ 18/i - 24/i + 14/3 - 3/4
fix o=

Start with the Lagrange interpolation polynomial for /(f) based on the five points xq.
X1, xj, *3, and Xi.
- x0)(/ - x2)(f- 3C3)F - *4)
(0= *I)(*0 - *2)e4>- *(*0 - *4)
) (t- Xo)(t- X2)(t- Xi)/ - Xi)
+
(1 - )] “ XN\ - =31 - *4)
_(t - 0)(f~ Xj)(t - X3)(t- X4)
+ /2 .
(X2 - XO)(X2 ~ Xj)(X2 ~ X3)(X2 ~ X4)
f o (t ~ Afp)(F ~ X\){t - X2)(t - Xa)__
3(*) % *o)(*3 - *i)(*3 - xi)(xi- x4)

h’a‘ (t-X0)(t-x1)(t-X 2)(t-X3)

(X4 -- X(D)(X4 - X1)(x4 - X2){X4 - X3)
Differentiate the numerators three times, then use the substitution X j—xj = (i —j)h in the
denominators and get

G((f- Jth+ (T- XD+ (t- x3)+ (f- *4))

/> % /o (-ft)(-2A) (-3A){-4ft)
CB((t- jeq) + (t- X2)+ (F -*3) + (t- X4))
+h (A)(-A)(-2A)(-3A)
6((t- =+ (f- *i) + (f- N3)+ (t~ *4»
2A)(A)(—A)(2A)
6((f- mO)+ (r- ai)+ (t- xr)+ (t- x4))
B (3A)(2A)(A)(-A)
P 6((t- mp)+ (t- X\)+ (f- X2)+ (f~ *3»
N

(4A)BA)A)A)

Then substitution of t — xo in the form 1 —Xj ~ xo - xj — —jh produces

tmt , B(CFA) + (-2A)+ (BA)+ (—4A) , ., 6({0) + (-2A) + (-3A) + (-4A))
/ 34-/0 ] — + N —6/1
r 6((0) + (—A) + (-3A) + (—4A)) . 6((0) + (—A) + (-2A) + (-4A))
+ h X4 + h
v 6((0) + (—A) + (—2A) + (—3A))
+ U 24A4

, —60A ,» D4A . —48A , , 42A , r -36A
“ fo 24A4 + fIW + ~4h*~ + 736A4 + 74 24A4
- 5/0+ 18/] - 24/2+ 14/a- 3/4
2A?
and the formula is established.
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Differentiation ofthe Newton Polynomial

In this section we show the relationship between the three formulas of order 0 (h 2) for
approximating /'(xo), and a general algorithm is given for computing the numeri.
derivative. In Section 4.3 we saw that the Newton polynomial P{t) ofdegree N - 2
that approximates / (f) using the nodes to, fj, and t2 is

(16) Pit) ~ a$+al]{t - 20 +A2(f- 20)(?- M),
where a0 = /(f0),ay = (/(f]) - /(fo))/(*i - fo), and

/fa) ~ /(?i) _ /(fi) - /(ft)

a2 = LI~ w
(t2 ~ 10)

The derivative of P(t) is

a7 P"U) = aj + a2((t- L) + it - fj)),
and when it is evaluated at t — to, the result is

(18) P'do) = a\ + a2ito —fj)  f'(to).

Observe that the nodes {f*} do not need to be equally spaced for formulas (16)
through (18) to hold. Choosing the abscissas in different orders; w ill produce difference
formulas for approximating f'(x).

Case (t): Ifto= x,t\ = x + k, andt2 = x + 2A, then

/(X + A) - f{x)

h
fix) - 2f{x + h) + fix + 2h)

2h2

When these values are substituted into (18), we get
n/, v f(x +h) - f(x) , -fix) +2fix + h) - fix + 2/?)
P(X) = =-emmmmeen Lmmmmmmmeeen + ~ N e -
This is simplified to obtain

(19) n 0 - W TM

which is the second-order forward-difference formula for fix )
Case (ii): If &= jo fi = x + ft, andt2 = x —h, then
fix + h) - fix)
h
fix+h)~2fix) + fix-h
o X 0) ) + fix-h)
2 h2

a\
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W len these values are substituted into (18), we get

b () = LOXEN) = 100, 10+ K)+21(x)~ f(x-h)

This is simplified to obtain

f(x + h)’ —/(jc - h)

n-") PUX) = — T i ~E(X),

viiich is the second-order central-difference formula for /'(=*)=

Case (ii)): If to= x, \—x —h, and tj —x —2h, then

f(x) - 2f(x - h) + fix - 2h)

02=
2h2

These values are substituted into (18) and simplified to get

o, Ne =
2n

v.hich is the second-order backwaid-difference formula for f'(x).
The Newton polynomial Pit) of degree N that approximates / (f) using the nodes

ri-.'i,. . t\is

p,. P(t) ~ a0 +Q\(.t —to) + a2(t — —
+ a3(t - fO)(/ - tt)(t - t2) + mm-+ a”™(t - t0) mmm(t- tN-i).

The derivative of Pit) is

P'it) —ai + a2((t - t0) + it - fj).)
+ a3((t - to)(t- fi) + (t- foX'- M)+ (i- ")(f- 2

> N-i n-i
+eom<l« M

jt=0 j=20
Ne

When P ’(t) is evaluated att = to, several of the terms in the summation are zero,
and P'(tQ) has the simpler fonxi

( P'(/o) =a\ + ci2(to ~ h) + 0 3(t0 —ti)ito - t2) H--—-
+ a\(to —f])(fO —t2)(to - t3) mmm(to —tjv-1).
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The /rth partial sum on theright side of equation (24) is the derivative of the Newtrn
polynomial of degree k based on the first k nodes. If

[o- hil< /O- bl < mee< Ko- fivl, and if {(fy, 0)}'=0

forms asetof N + 1equally spaced points on the real axis, the ifch partial sum is an
approximation to /'(to) of order 0 (hk~1).

Suppose that V = 5. If the five nodes are k —yc+ hk forfc= 0, 1, 2, 3, and 4.
then (24) is an equivalent way to compute the forward-difference formula for /'(n) o
order 0(h*), If the five nodes {f*} are chosentobeto= x, fi = x+ A, = x - h.
B =+ 2h,andh = x —2h, then (24) is the central-difference formula for f 'Ix) o!
order O (h4). When the five nodes are = x—kh, then (24) is the backward-differenct
formula for fix ) oforder 0{h4).

The following program is an extension of Program 4.2 and can be used to imple-
ment formula (24). Note that the nodes do not need to be equally spaced. Also, it
computes the derivative at only one point f'(x0).

Program 6.3 (Differentiation Based on N + 1 Nodes}. To approximate f'(x)
numerically by constructing the Nth-degree Newton polynomial

P(x) = a0+ a\{x - joo) + «2(m - x0)(X - Xj)
+ a3(x ~xo0)(x -n -iXjc - x 2)U--—-—--- \-aN (X - je0) e==(* - x N-i)

and using f\ x0) ™~ P\xo0) as the final answer. The method must be used at xo-
The points can berearranged {xt, go........ **.], xt+i,..., x~} tocompute f'(Xk)

P w

function [A,df]=diffnew (X,Y)

7.Input - X is the Ixn abscissa vector
% - Y is the Ixn ordinate vector
7.0utput - A is the Ixn vector containing the coefficients of
% the Nth-degree Newton polynomial
VA - df is the approximate derivative
A=Y;
N=length(X) ;
for j=2 M
for k=N :-I:j
AK)=(AK)-A(K-1))/(X<k)-X(k-j+1)>;
end
end
xO =X (I);
df=A(2);

prod=l,
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ni=length(A)-l;

for k=2:nl
prOd=prod*(xO-X(k));
df*df+prod*ACKk+l);

end

Exercises for Numerical Differentiation Formulas

1. Letfix) ~ In(je) and cany eight or nine decimal places.
(@ Use formula (6) with h = 0.05 to approximate /"(5).
<> Use formula (6) with h = 0.01 to approximate /"(5).
(c) Use formula (12) with h = 0.1 to approximate /"(5).
(d) Which answer, (a), (b), or (c), is most accurate?

2. Let/(jc) = cos(x) and carry eight or nine decimal places.
(@ Use formula(6) with h = 0.05 to approximate /"(1).
(b) Use formula (6) with h = 0.01 to approximate /"(1).
(c) Use formula (12) with h = 0.1to approximate /"(1).
(d) Which answer, (a), (b), or (c), is most accurate?

3. Consider the table for fix) = In(x) rounded to four decimal places.

X fix) = In(:)
4.90 1.5892
4.95 1.5994
5.00 1.6094
5.05 1.6194
5.10 1.6292

(@ Use formula (6) with h = 0.05 to approximate /"(5).
(b) Use formula (6) with h = 0.01 to approximate /"(5).
(©) Use formula (12) with h = 0.05 to approximate /"(5)
(G) Which answeT, (a), (b), or (c), is most accurate?

4. Consider the table for f <x) = cos(jt) rounded to four decimal plLatc-

X fix) - cosqity

0.90 0.6216
0.95 0.5817
1.00 0.5403
1.05 0.4976

1.10 0.4536
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10.

11.

12.
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(@) Use Formula (6) with h =0.05 to approximate /"(1).
(b) Use formuia{6) with h = 0.01 to approximate /"(1).
(c) Use formula (12) with h —0.05 to approximate /"(1).
(d) Which answer, (a), (b), or (c), is most accurate?

. Use the numerical differentiation formula (6) and h —0.01 to approximate /"(1) for

the functions
(@ fix) = xz (b) fix') = x4

. Use the numerical differentiation formula (12) andh =0.1 to approximate /" { 1) for

the functions
(@ fix) = xi (b) fix) = x6

. Use the Taylor expansions for f(x + h), fix —h), fix + 2h), and /(x —2h) an;

derive the central-difference formula:
/(x + 2h) —2f(x + h) + 2fix —h) —fix —2h)
/ |QW - :

Use the Taylor expansions for /(x + h), f{x —A), f{x + 2h), and fix —2h) and
derive the central-difference formula:

(%)

£ 7 (x

y_fix+ 2 - af(x + b+ bfix) - 4/Ge - ) + fix - 20)

. Find the approximations to /'tat) of order Oih2) at each of the four points in the

tables.
@ - ()
J fix) X fix)
0.0 0.989992 0.0 0.141120
0.1 0.999135 0.1 0.041581
0.2 0.998295 0.2 -0.058374
0.3 0.987480 0.3 -0.157746

Use the approximations

'M) /1 - /o and f.l/l ) fo-f-1

and derive the approximation

fi - 2/0+ /-1
) n

Use formulas (16) through (18) and derive aformula for fix ) based on the absciss;
fo=x,ti = x+ h,andt2 —x + 3h.

Use formulas (16) through (18) and derive aformula for f(x ) based on the abscissa:,
to—x, fi = x —h,and /2 = x + 2h.
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13. The numerical solution of acertain differential equation requires an approximation to
f'(x) + f'(x) oforder Oikz).
(@) Find the central-difference formula for f"{x) + /'(jc) by adding the formulas
forfix) andfix ) oforder 0(h2).

(b) Find the forward-difference formulafor fix ) + f'(x) by adding the formulas
forfix) andfix ) oforder 0(h2).

(c) What would happen if a formula for fix ) of order 0(h4) were added to a
formula for fix ) of order £2(A2)?

14. Critique the following argument. Taylor’s formula can be used to get the representa-
tions

f(x + A) = fix) + hf'ix) + {42\4 0 + AY 90

and

F(x- A= f{x) - hiixj & 1200 AIQ

Adding these quantities results in
fix + A)+ fix - h) ~ 2fix) + h2f"ix),
which can be solved to obtain an exact formula for fix)-.

y fix + h) —2fix) + fix ~ A)
J W=- h2

Algorithms and Programs

1. Modify Program 6.3 so that it will calculate P'(xm)forM = 1, 2,..., N + |.



Numerical Integration

Numerical integration is a primary tool used by engineers and scientists to obtain ap-
proximate answers for definite integrals that cannot be solved analytically. In the are
of statistical thermodynamics, the Debye model for calculating the heat capacity of

solid involves the following function;

i+ 13
b=/ 1T1dt

Since there is no analytic expression for @ (x), numerical integration must be usedito
obtain approximate values. For example, the value ®(5) is the area under the curve

342
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Table7.1 Values of ®(x)

X d(x)
1.0 0.2248052
2.0 1.1763426
3.0 2.5522185
4.0 3.8770542
5.0 4.8998922
6.0 5.5858554
7.0 6.0031690
8.0 6.2396238
9.0 6.3665739
10.0 6.4319219

y —f(t) = ,nj(e! —1)for0 < r < 5 (see Figure 7.1). The numerical approximation
Bad (5) is

5
®B)= [/ - dt ~ 4.8998922.
n 1

Each additional vfilue of ®(nr) must be determined by another num eric integration
Table 7.1 list} several of these approximations over the interval [1, 10].

The purpose of this chapter is to develop the basic principles of nhumerical inte-
gration. In Chapter 9, numerical integration formulas are: used to derives the predictor-
oorrector methods for solving differential equations.

71 Introduction to Quadrature

W® now approach the subject of numerical integration. The goal is to approximate the
definite integral of f(x) over the interval [a, b] by evaluating fix ) at afinite number

of sample points.

Definition 7.1. Suppose thata = x0< *i < --e< xmMm = b. A formula of the form

M
(o £2[/1 = ~ rnf(xit) = WOF(x0) + Wi/Ctt) + - T
k=0

With the property that
I'o

2 / f(x)dx=Q{f] + E[f]
Ja
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is called a numerical integration or quadrature formula. The term E [f] is called th<
truncation error for integration. The values {jc* }*_q are called the quadrature nodes

arid {u(c are called the weights. j

Depending on the application, the nodes {jct} are chosen in various ways. For thi
trapezoidal rule, Simpson’s rule, and Boole’s rule, the nodes are chosen to be equall;
spaced. For Gauss-Legendre quadrature, the nodes are chosen to be zeros of certaii
Legendre polynomials. When the integration formula is used to develop a predicto)
formula for differential equations, all the nodes are chosen less than b. For all applica
tions, it is necessary to know something about the accuracy of the numerical solution.

Definition 7.2. The degree ofprecision of a quadrature formula is the positive inte-
ger n such that E [Pj] = O for all polynomials Pt(x) of degreei < n, but for which
E[Pn+ 1] ¢ O for some polynomial Pn+\jc) of degreen + 1. a

The form of E[P;] can be anticipated by studying what happens when f(x) is a
polynomial. Consider the arbitrary polynomial

P,(x) —a,x' + + mmm+ a\x + ao

ofdegreei. If i < n, then P"'n+I1"(X) ~ 0 foralljc,and P*\I*U ) = (n 4- I)!a,,-i for
all jr. Thus it is not surprising that the general form for the truncation error term is

3) E{f] = K f(n+l4c),

where K is asuitably chosen constant and n is the degree of precision. The proof of
this general result can be found in advanced books on numerical integration.

The derivation of quadrature formulas is sometimes based on polynomial interpo-
lation. Recall that there exists a unique polynomial Pm (jc) of degree < M passing
through the M + 1 equally spaced points ((nb yk)}*=0. When this polynomial is used
to approximate / !>) over [a, b\, and then the integral of /(jc) is approximated by the
integral of Pm (x), the resulting formula is called aNewton-Cotes quadratureformula
(see Figure 7.2). When the sample points jco = a and xm = b are used, it is called a
closed Newton-Cotes formula. The next result gives the formulas when approximating
polynomials of degree M — 1,2, 3, and 4 are used.

Theorem 7.1 (Closed Newton-Cotes Quadrature Formula). Assume that xk =
xo -f kh are equally spaced nodes and /* = f(xk). The first four closed Newton-Cotes
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15 - K 15"
1.0 \«.= o<
0.5 - 05 -
0.0 0.5 1.0 15 2.0
<>
©

Figure 7.2 (a) The trapezoidal rule integrates y = P\(x) over [*q,

= [0.0,0.5].

(b) Simpson’s rule integrates y = Pr(x) over [*o, -*|]] = [0.0, 1.0]. (c) Simpson’s ] rule
integrates y = P3(*) over f'o>x31 = [0.0,1.5]. (d) Boole's rule integrates y — pa(x )

over [*o, M\ = [0.0, 2.0].

quadrature formulas are

¢l h
@) I~ #{x)dx -(/o + /1)
JxD 2
*1 k )
(5) I “f(x)dx s - (Jo+ 4/i + /2)
Jx0 J
f x
(6) I
PQ
f Xi 2h
@ i fix)dx * ~ (7/o+ 32/i +

Corollary 7.1 (Newton-Cotes Precision).

(the trapezoidal rule).

(Simpson’s rule),

i 3h 3
f(x)dx % — (/O + 3/i + 3/2 + /3) (Simpson’s - rule),
® o

12/r + 32/3 + 7/))
(Boole’s rule).

Assume that f(x) is sufficiently differen-

tiable; then £[/] for Newton-Cotes quadrature involves an appropriate higher deriva-
tive. The trapezoidal rule has deglee of precision n — 1. If / e C2Ja, b], then
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Simpson’s rule has degree of precision n = 3. If / € C4]a, b], then
(©)) jfa /() rfr="~/o + 4/i + /2) - ~ / (4l(c).

Simpson’s | rule has degree of precisionn = 3. If / e C4[a, £], then

3A 3015
/(*)At- y(/o + 3/, + 3/2+ /3) ~

Boole’s rule has degree of precisionn = 5. If / e Cé6[a, i>], then

Cx4 2/i ox.7
(11) J f(x)dx= —cC7n+ 32/,+ 12/2+32/3+7/4)-— / (M-

Proofof Theorem 7.1. Start with the Lagrange polynomial Pm (x ) based on xo, x-(,
..., X H that can be used to approximate f(x)\

M
(12) fix)  PmOO = 'y.fk*M.Kkix),
k=0

where ft = f Uk) fork = 0, 1. M. An approximation for the integral is ob*
tained by replacing the integrand / U ) with the polynomial Pm(x). This is the peneral
method for obtaining a Newton-Cotes integration formula:

f xM
| f(x)dx~ 1 PM(x)dx
Jxo JJQ
(13) =T dx =fl( T
JXOo \jt—0 / k=0"" '
/ [/m*" \ A,
=2~n1/ L Mk(x)dx ) n =
Jt=0 "*"0 " *=0

The details for the general proof of (13) are tedious. We shall give a sample proof;

of Simpson’s rule, which is the case M = 2. This case involves the approximation
polynomial
14

P ot - xi) o f (= roy(r - *2) . (r - xa)(x -

2x ~ (Y0 - x\){x0- x2) 1(*i - *0)(*l - xi) r{xr - Xo)(x2 - "
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Since /o, /b and k are constants with respect to integration, the relations in (13) lead
to

(15)
fordx « fo §  XXDOEXD 4 s fro (XXQ)(X=X2)
Ix0 JXo Uo - *I)(*0 - X 2) Jxo (*1 -JCO)(~] - x2)
X2 - joo)(c -.Cl
+ /2 T (X ! )(JC— —)_
X, (X2— X0)(X2 - xi)
We introduce the change of variable x = .ro + ht with dx ~ h dt to assist with

Ihe evaluation of the integrals in (15). The new limits of integration are from t = 0 to
t= 2. The equal spacing of the nodes Xk = xo+ kh leadstojc* - xj = (k - j)h and
X - Xk —h(t —Kk), which are used to simplify (15) and get

(€)

e B ; [2n{t-\)h(t-2)t A h 2)L
I f(X)dXRfO[ {-Mha- )tdt+f|/ ...,(_..,7[-[-71t _____ z_ﬁdt
M, Jo (nx 21) Jo (fc)(-A)

, (2hu-m o-i),

=fn[ (2=+*-/,* [ @ 2)+/4 f »21)]]

h (t3 3t2 \

fo * SAAT
P o-T )
r=2

= 3(/lo+4/1+/2),

and hie proof is complete. We postpone a sample proof of Corollary 7.1 until Sec-
ten7.2. -

Ckartpie7.1. Consider the funcdon f(x) = 1+ e~x *1<4n), the equally spaced quadra-
ture nodesjto = 0.0, xi ~ 0.5, X2 -- 1.0, ¥ = 15, and X4 = 2.0, and the correspond-
ing function values fo — 1.00000, /[ = 1.55152, /2 = 0.72159, /3 = 0.93765, and
jPr = 1.13390. Apply the various quadrature formulas (4) through (7).
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The step size is h ~ 0.5, and the computations are

f 05 05
I~ f(x)dx  -~=(1.00000 + 1.55152) = 0.63788
Jo 2
;10 05
f(x)dx B — (1.00000 + 4(1.55152) + 0.72159) = 1.32128
Jo 3
ris 3(0 5)
I TTf(x)dx  =—7(1.00000 + 3(1.55152) + 3(0.72159) + 0.93765)
Jo 8
= 1.64193
20 2(0.5
J} f(x)dx B —(—)(7(1.00000) + 32(1.55152) + 12(0.72159)
0 45
+ 32(0.93765)+ 7(1.13390)) = 2.29444. n

It is important to realize that the quadrature formulas (4) through (7) applied in the
above illustration give approximations for definite integrals over different intervals.
The graph of the curve y — f(x) and the areas under the Lagrange polynomials y =
P[ (x),y — Pr(x), y = P-i(x), andy = Pa(x) are shown in Figure 7.2(a) through (d),
respectively.

In Example 7.1 we applied the quadrature rules with h — 0.5. If the end points
of the interval [a, b] are held fixed, the step size must be adjusted for each rule. The
stepsizesareh = b—a,h= (b—a)/2,h= (b—a)/3, andh — (b — a)/4 for the
trapezoidal rule, Simpson’s rule, Simpson’s | rule, and Boole’s rule, respectively. The
next example illustrates this point.

Example 7.2. Consider the integration of the function f(x) = 1+ e ~xsin(4.t) over the
fixed interval [a, b] = [0, 1]. Apply the various formulas (4) through (7).
For the trapezoidal rule, h = 1and
fl |
J /()< ~-(/(0) + /(1))

= ”~(1.00000 + 0.72159) —0.86079.

For Simpson’s rule, h = 1/2, and we get
jfrf{x)dx « ~(/(0) +4/d + /(1))

= {(1.00000+4(1.55152)+ 0.72159) = 132128,

For Simpson's | rule, h — 1/3, and we obtain
\IO f{x)dx = ~ E()/(O ) + 3/(j) + 3/(f) + /<]))

= é(1.ooooo+ 3(1.69642) + 3(1.23447) + 0.72159) = 1.31440.
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@ <«

© (0

Figure 73 (&) The trapezoidal rule used over [0,1] yields the approximation 0.86079.

(b) Simpson’s rule used over [0, 1] yields the approximation 1.32128. (c) Simpson's |

rule used over [0, 1] yields the approximation 1.31440. (d) Boole’s rule used over [0. 11
yields the approximation 1.30859.

For Boole’ rule, h = 1/4, and the result is
Llf(x)dxb Aié?/(O) f-32/cp + 12/d +32/D + 7/(1»

= — <J(1.°00(t0) b 32(i-65534) + 12(1.55152)
+ 32(1.06666) +7(0.72159)) = 1.30859.

The true value of the definite integral is

I1f|v| dx = 2le-4cosH)-sin(4) = 1.3082506046426...

and the approximation 1.30859 from Boole’s rule is best. The area under each of the La-
grange polynomials Pi (x), P2(x), Pj{x), and Pa,(x) is shown in Figure 7.3(a) through (d),
respectively. a

To make afair comparison of quadrature methods, we must use the same number of
function evaluations in each method. Our final example is concerned with comparing
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integration over a fixed interval [a, b\ using exactly five function evaluations /* —
/(jc*), lork = 0, 1, ..., 4 for each method. When the trapezoidal rule is applied on
the four subintervals [tq, _rjJ, [ni, xij, [x2,x3], and [x3,x4], it is called a composite
trapezoidalrule:

fXxa rx\ f*s f*a

i f(x)dx = ( f{x)dx + j f(x)dx + | f(x)dx + | fix)d\

JIx0 Jx0 ] ~2 ~3

2o+ /i) + 2N1+ N + 21N2 N 2N 3+ N

J(/o + 2/, + 2/2+ 2/ + /4).

Simpson’s rule can also be used in this manner. When Simpson’s rule is applied on ihe
two subintervals [xo, x2] and [x2, J3J, it is called acomposite Simpson’s rule:

ru f 11- fXA
I f(x)dx = j f(x)dx + f f (x)dx
Jito Jj0 JIx2
<18> * j(fo + 4fj+ [2)+ j (12+ 4/3 + /4)

j(/o+ 411 + 2/2 + 4]3 + /4).

The next example compares the values obtained with (17), (18), and (7).

Example 7.3, Consider the integration of the function fix) = 1+ e~xsin(4jr) over
[, b] = [0, 1]. Use exactly five function evaluations and compare the results from the
composite trapezoidal rule, composite Simpson rule, and Boole’s rule.

The uniform step size is h = 1/4. The composite trapezoidal rule (17) produces

Jf fix) dx * -y-(/(0) + 2f(\) + 2/ + 2/(1) + /(1))

é(1.00000 + 2(1.65534) + 2(1.55152) + 2(1.06666) +0,72159
= 1.28358.

Using the composite Simpson’s rule (18), we get

I fix) dx  ~</(0) + 4/(L1) + 2/(1) + 4/(1) + /(1))

= ~(1.00000 + 4(1.65534) + 2(1.55152) + 4(1.06666) + (
= 1.30938.
We have already seen the result of Boole’s rule in Example 7.2:

).

. 2(1/4 .
fix) dx « -LLi(7/(0) + 32/ + 12/(j) + 32/(8) + 7/(1))

= 1.30859.
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@ )

figure 7.4 (&) The composite trapezoidal rule yields the approximation 1.28358.
i b) The composite Simpson rule yields the approximation 1.30938.

Tin; true value of the integral is

21le —4cos(4) —sin(4)
/I f{X) dX = e e — = 1.3082506046426....
Jo 1

and the approximation 1.30938 from Simpson’s rule is much better than the value 1.28358
obtained from the (rapezoidal rule. Again, the approximation 1.30859 from Boole's rule is
closest. Graphs for the areas under the trapezoids and parabolas tire shown in Figure 7.4(a)
and (b), respectively. [ ]

Example 7.4. Determine the degree of precision of Simpson’s | rule.
It will suffice to apply Simpson's | rule over the interval [0, 3] with the five test func-
tionsfix) = 1, x, x2,j:3, and x4. For the first four functions, Simpson’s | rule iis exact,

/3Ujr=3=1{+3(NH+3(H+1)
JO o

31; xdx=g C\(H 3(1) +3(2)+ 3

3 2
I x2dx = 9= -(0 + 3(1) +3(4)+ 9)

f3x3dx="- = I(Q+ 3(1) + 3(8) + 27).
Jo
the function / (x) =x 4 is the lowest power of x for which the rule is qot exact.
r3 , 243 99 3
JNx'dx = — b — = -(0+3(1) + 3(16) + 81).

"Therefore, the degree of precision of Simpson’s | rule is n = 3.
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Exercises for Introduction to Quadrature

1. Considerintegration of f(x) overthe fixed interval [a, 6] = [0, 1]. Apply thews  us

quadrature formulas (4) through (7). The stepsizesareh = 1, h = j, h = ~ id
h — | for the trapezoidal rule, Simpson’s rule, Simpson’s | rule, and Boole’s e
respectively.

(@ fix)= sm(”™x)

(b) 7 () = 1+ e-xcos(4x)

(c) f(x) = sin(Vx)

Remark. The true values of the definite integrals are (a) 2/jr = 0.636619772367...,
(b) (18e - cos(4) + 4sin(4))/(17e) = 1.007459631397..., and (c) 2(sin(l) -
cos(l)) = 0.602337357879___Graphs of the functions are shown in Figures 7.5(8"
through (c), respectively.

1. Consider integration of fix ) overthe fixed interval fa, b] = [0, 1]. Apply the various
quadrature formulas: the composite trapezoidal rule (17), the composite Simpson' ,
rule (18), and Boole’s rule (7). Use five function evaluations at equally spaced nod&s.
The uniform step size is h ~
@ f(x) = sin(jrx)

(b) fix) = 1+ cos(4jr)
(c) fix) = sin(vx)

3. Consider ageneral interval [a, b]. Show that Simpson’s rule produces exact resulbb
for the functions fix) = x2and f{x) = x3; thatis,

4. integrate the Lagrange interpolation polynomial

over the interval \xa x\J and establish the trapezoidal rule.

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5
(&)
Figure 7.5 (@ jy = sin("Njc), (b) y = 1+ e ncos(4jc), (c) y =sin(v)-
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Determine the degree of precision of the trapezoidal rule. It will suffice to apply the
trapezoidal rule over [0, 1] with the three test functions /(x) = 1, x, and x2.

Determine the degree of precision of Simpson’s rule. It will suffice to apply Simp-
son’s rule over [0, 2] with the five test functions /(x) = 1, x, x2,x 3, andx 4. Contrast
your result with the degree of precision of Simpson’s | rule.

Determine the degree of precision of Boole’s rule. It will suffice to apply Boole’s rule
over [0, 4] with the seven test functions / {x) = 1, x, x1, x3, x4, x5, and x6.

The intervals in Exercises 5. 6, and 7 and Eixample 7.4 were selected to simplify the
calculation of the quadrature nodes. But, on any closed interval [a, b] over which
the function / is integrable, each of the four quadrature rules (4) through (7) has the
degree of precision determined in Exercises 5, 6, and 7 and Example 7.4, respectively.
A quadrature formula on the interval [a, b] can be obtained from aquadrature formula
on the interval [c, d] by making achange of variables with: the linear function

x =g(t) = -—— 1+ —-————- ,

. b- a
where dx = ———-dt.

(@ Verify thatx = g(t) is the line passing through the points (c, a) and (d, b).

(b) Verify that the trapezoidal rule has the same degree of precision on the interval
[a, 6] as on the interval [0, 1].

(©) Verify that Simpson's rule has the same degree of precision on the interval [a, b]
as on the interval [0, 2].

(d) verify that Boole’s rule has the same degree of precision on the interval [a, ft]
as on the interval [0,4] .

Derive Simpson’s | rule using Lagrange polynomial interpolation. Hint. After chang-

ing the variable, integrals similar to those in (16) are obtained:

r fix)dxn-foj f (f-1)0-2)(f-3)* + /if (Cr-0)(*-2)(f-3)*
Jx0 6 Jo 2 Jo

-/ 4, L(f-0){r-)(r=3)dr + /3£ [ (t—0)(f —N)(f —2)at

h /-4 . Hrz_ljjﬁ 2114 Z)[b

,h(-14 413 32\ 3 ., h(I* 3
1=0

Derive the closed Newton-Cotes quadrature formula, bas<d on a Lagrange approxi-
mating polynomial of degree 5, using the 6 equally spaced nodesx~ = xq + kh, where
k=0, 1..... 5.
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11. In the proof of Theorem 7.1, Simpson’s ruie was derived by integrating the second-
degree Lagrange polynomial based on the three equally spaced nodes in. x i, and j&t
Derive Simpson’s rule by integrating the second-degree Newton polynomial based or.
the three equally spaced nodes jog jti , and x}.

7.2 Composite TVapezoidal and Simpson’s Rule

An intuitive method of finding the area under the curve y — f(x) over [a, b] is
by approximating that area with a series of trapezoids that lie above the intervals

(%%, w+]}e

Theorem 7.2 (Composite TVapezoidal Rule). Suppose that the interval [a, b] is
subdivided into M submtervals [**; ®k- |i of width h — (6 —a)/M by using the equally
spaced nodes *k = a + kh%fork = 0, 1,..., M. The composite trapezoidal rulefor
M subintervals can be expressed in any of three equivalent ways:

h M
da) n/fc) = r£ (7 (jrt-i)+ /(**)

1 *=i
or
(Ib) T(f, h) m—(fo + 2/i + 2/2 + 2/3 }—+ 2/«_2 + 2/n/~1 + /W)

h
Uc) T{f, fty= - if (@) + fib)) + hJ2 fixK).
k=]

This is an approximation to the integral of f(x) over [a, b], and we write
@ fr(x)dx~1(f,h).
Jag

Proof. Apply the trapezoidal rule over each subinterval [9*-b **] (see Figure 7.6).
Use the additive property of the integral for subintervals:

b N X ~ h
3) / f{x)dx = ~2,j f(.x)dx~A™~if(xk-i) + f(xK)).
Ja k=1Jx" k=] =

Since h/2 is a constant, the distributive law of addition can be applied to obtain (1a).
Formula (Ib) is the expanded version of (la). Formula (Ic) shows how to group all the
intermediate terms in (Ib) that are multiplied by 2. *
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Figure 7.6 Approximating the area
under the cunve y —2 + sm(2V*)
with the compoasite trapezoidal rule.

Approximating f(x) = 2+ sinQ jx) with piecewise linear polynomials results in
places where the approximation is close and places where it is not. To achieve accuracy
the composite trapezoidal rule must be applied with many subintervals. In the next
example we have chosen to numerically integrate this function over the interval [1,6].
Investigation of the integral over [0,1]is left as an exercise.

Example 7.5. Consider f(x) = 2 + sin(2J~x). Use the composite trapezoidal rule with
11 sample points to compute an approximation to the integral of / (x) taken over [1,6].

To generate 11 sample points, we use M = 10 and k — (6 —1)/10 = 1/2. Using
formula (Ic), the computation is

1 1/2
nrs,-y= ~-(/(b + /(6))

+

"(I(f) +/(2)+ F(8)+/O)+ /b + /(4)+T(\)+ /(B)+ /b )

Z(Z .90929743+ 1.01735756)

+

'(2.63815764 + 2.30807174+ 1.97931647+ 1.68305284+ 1.43530410

+

1.24319750+ 1.10831775+ 1.02872220+ 1.00024140)

~(3.92665499) + ~(14.42438165)

0.98166375 + 7.21219083 = 8.19385457. a

Theorem 7.3 (Composite Simpson Rule). Suppose that [a, b) is subdivided into
2M subintervals [nb x™+j] of equal width h = (b—a)j (2M) by using xk = a+kh for
k= 0,1,..., 2M. The composite Simpson rulefor 2M subintervals can be expressed
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in any of three equivalent ways:

h M
(42) S(f,h)y= - ~(/Uat-2)+ 4/0t2i-i) + f(x2K)
3 jt=i

S(f, A)= - (fO+ 4/, + 2/2 + 4/3

h 2h an
(4c) S(/,A) = ~(/(«) + /(*))+ — ~ [(*2) + -T-~ [ (51~
J dt=l 3 <

This is an approximation to the integral of f(x) over [a, b], and we write

©)] f* f(x)dx**S{f,H).
Ja

Proof. Apply Simpson’s rule over each subinterval [ny, -2, * 2k] (see Figure 7.7). Use
the additive property of the integral for subintervais:

Mok
f(x)dx —~ | f(x) dx
(6) fa *=,

h
% £ T(/N2t-2) + 4/(.X2*-i) + f(x2i)).
i=1J

Since A/3 is a constant, the distributive law of addition can be applied to ob-
tain (4a). Formula (4b) is the expanded version of (4a). Formula (4c) groups al!
the intermediate terms in (4b) that are multiplied by 2 and those that are multiplied
by 4. »

Approximating f{x) = 2+ kw(2,/r) with piecewise quadratic polynomials pro-
duces places where the approximation is close and places where it is not. To achieve
accuracy the composite Simpson rule must be applied with several subintervals. In
the next example we have chosen to numerically integrate this function over [1,6] and
leave investigation of the integral over [0, 1] as an exercise.
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Figure 7.7 Approximating the area
under the curve y = 2 + sin(2-/x)
with the composite Simpson rule.

Example 7.6. Consider f(x) = 2 4-sin(2v/). Use the composite Simpson rule with 11
sample points to compute an approximation to the integral of f(x) taken over [1,6].

To generate 11 sample points, we mustuse M = 5andh = (6 —1)/10 = 1/2. Using
formula (4c), the computation is

S(1, 9) = /(D + /(6)) + 2(/(2) + /(3) + /(4) + /(5))
+ 1 (/) *F /() + F(\) + /(8) + A T»
= (2.90929743 + 1.01735756)
+ ~(2.30807174 + 1.68305284+ 1.24319750+ 1.02872220)
+ ~(2.63815764 + 1.97931647+ 1.43530410+ 1.10831775+ 1.00024140)

= {(3.92665499)+ £(6.26304429)+ £(8.16133735)

= 0.65444250 + 2.08768143 + 5.44089157 = 8.18301550.

Error Analysis

The significance of the next two results is to understand that the error terms E jif, h)
and Esif, h) for the composite trapezoidal rule and composite Simpson rule are of
the order 0(h2) and Oih4). respectively. This shows that the error for Simpson’s
rule converges to zero faster than the error for the trapezoidal rule as the step size h
decreases to zero. In cases where the derivatives of / (jt) are known, the formulas

and Es(/., =2 ™~ W



358 Chap.7 Numerical Integration

can be used to estimate the number of subintervais required to achieve a specified
accuracy.

Corollary 7.2 (Trapezoidal Rule: Error Analysis). Suppose that [a, b] is subdi
vided into M subintervals [**, x*+\] of width h = (b —a)/M. The composite trape-

zoidal rule

h %:}
@) 74/, h) = ~{f (@) + /(ft)) + h Y, f(.*k)
L k=1
is an approximation to the integral
®) rf{x)dx = T{f,h) + ET (f,h).
Ja

Furthermore, if / e C2[a, b], there exists avalue c with a < c < b so that the onvr
term E j (/, h) has die form

9

Proof. We first determine the error term when die rule is applied over [ gn]. Inte-
grating the Lagrange polynomial ri ¢¢) and its remainder yields

(X-XQ)(X-Xl)/(Zv(C("))dX

(10) 7 foxoytix — 1% eodx + |7
IxXQ »Q Q

The term (X —xq)(x —X\) does not change sign on [jto, jci], and f ' 21(c (x)) IS contin-
uous. Hence the second Mean Value Theorem for integrals implies that there exists a
value ej so that

(11) f f(x)dx = J(/fo+ /i) +fm(@c\) f — — — dx.
Jxo Jxo

Use the change of variable x = xq + ht in the integral on the right side of (11):
/ f(x)dx=-(fOo+ fi) + — - / h(t-0)h(t - I)hdt
JO

Jxo 2 2

2(/o + /i) ")
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Now we are ready to add up the error terms for all of the intervals [jc*, **+ 1]:

b * Bk
/ f(x)dx = f ( x ) d x
Ja t—1 Ixt-i
(13) *1
O, h h3Jt,
="~ T7(/(*bl) +/Q0C*)- T t o )
i=| *=1

The first sum is the composite trapezoidal rule T (/, It). In the second term, one factor
of h is replaced with its equivalenth = (b —a)/M, and the result is

The teirm in parentheses can be recognized as an average of values for the second
derivative and hence is replaced by / (2)(c)- Therefore, we have established that

/ f(x)dx=T(f,h)~

;L (x) (f.h) 1
andthe proof of Corollary 7.2 is complete. -
Corollary 7.3 (Simpson's Rule: Error Analysis). Suppose that [a, b\is subdivided

into 2M subintervals [Xk, 1] of equal width h = (b —a)/(2M), The composite
Simpson rule

i 2A NN M
(14) S(/,h)y= -(/(a) + /(b)) + — ~ + -r- 22 fix2k-\)
is an approximation to the integral
rb
(15) f f(x)dx = S(f,h) + Es(f,h).
Ja

Furthermore, if / e Cn\a, b\ there exists avalue c with a < ¢ < b so that the error
term E$ (f,h) has the form

(1)

Example 7.7. Consider f(x) — 2 + &in(2-/x). Investigate the error when the compos-
ite trapezoidal rule is used over [1,6] and the number of subintervals is 10, 20, 40, 80,
and 160.
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Table 7.2 The Composite Trapezoidal Rule for
f(x) = 2+ sin(2,/x) over [I, 6]

M h T{f,h) ET (f, h) = Qih2)
10 05 8.19385457 —0.01037540
20  0.25 8.18604926 -0.00257006
40 0125 8.18412019 -0.00064098
80  0.0625 8.18363936 -0.00016015
160  0.03125  8.18351924 -0.00004003

Tabie 7.2 shows the approximations T (f, h). The antiderivative of f(x) is
F(x) —7x— cos(2Vjc) + S V-,
and the true value of the definite integral is
//Tef(x)d x = F(X) |.]E=6: 8.1834792077.

This value was used to compute the values £Y(/, h) = 8.1834792077 —T{f. hlin Ta-
ble 7.2. It is important to observe that when h is reduced by afactor of \ the successive

errors £> (/. h) are diminished by approximately  This confirms that the orderis O (A2)

Example 7.8. Consider/(jt) = 2 4-sin{2V*). Investigate the error when the composite
Simpson rule is used over [1, 6] and the number of subintervals is 10, 20,40, 80, and 160,

Table 7.3 shows the approximations S(f,h). The true value of the integral is
8.1834792077, which was used to compute the values E.u(/, h) —8.1834792077 —S(f, h)
in Table 7.3. It is important to observe that when h is reduced by afactorof j thesuccessive

errors Esif, h) are diminished by approximately . This confirms that the orderis 0(A4).

Example 7.9. Find the number M and the step size h so that the error Ey (f, h) for the
composite trapezoidal rule is lessthan5x 10~9for the approximation fAdx/x = T(f,k).

The integrand is fix) = 1/x and its first two derivatives are fix') = —Iljx~ and
f a>(x) ~ 2/jr3. The maximum value of \f<IX(x)\ taken over [2, 7] occurs at the end point
x = 2, and thus we have the bound J (2)(c)1< /(2] = j, for2 < c < 7. This is used

with formula (9) to obtain

17 iw M <<2A~AL -g.
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Tkble 7.3 The Composite Trapezoidal Rale for
f(x) = 2+ sin(2n/?) over [1,6]

M A S(f, h) Es(fih) = O<h4)
5 05 8.18301:549 0.00046371

10 025 8,18344750 0.00003171

20 0125 8.18347717 0.00000204

40 0,625 8.18347908 0.00000013

80 003125 818347920 0.00000001

The step size h and number M satisfy the relation h = 5/M, and this is used in (17) to gel
lie relation

08) |l ~(/,ap<”<5x0 -9
Now rewrite (18) so that it is easier to solve for M :
(19) ~ x 109 < M1

48

Solving (19), we find that 22821.77 < M. Since M must be an integer, we choose M =

22,822, and the corresponding step size is h = 5/22,822 = 0.000219086846. When the
composite trapezoidal rule is implemented with this many function evaluations, there is a
possibility that the rounded-off function evaluations w ill produce a significant amount of
error. When the computation was performed, the result was

(50 22829/ = 1-252762969,

which compares favorably with the true value /2dxfx = In(ji:)|J~J = 1.252762968. The
erroris smaller than predicted because the bound \ for 1/<2)(c)| was used. Experimentation
shows that it takes about 10,001 function evaluations to achieve the desired accuracy of
5 x 10"9, and when the calculation is performed with M = 10,000, the result is

The composite trapezoidal rule usually requires a large number of function eval-
uations to achieve an accurate answer. This is contrasted in the next example with
Simpson’s rule, which w ill require significantly fewer evaluations.
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Example 7.10. Find the number M and the step size h so that the error E s (f, h) for th.
composite Simpson rule is less than 5 x 10“ ~for the approximation  dx/x  S(f, h).

The integrand is f(x) = WX, and/ <4)(x) = IAjx”. The maximum value of |f ,;4(r.)j
taken over [2,7] occurs at the end point x -- 2, and thus we have the bound <
1/4,] = | for2 < c< 7. This is used with formula (16) to obtain

#o Mo > A" 17 1~ 40 « 180 - 28

The step size h and number M satisfy therelation A= S/(2M), andthis is used in (20) to
get the relation

cD Ne (/.«.)I< 55%10-

Now rewrite (21) so thatit is easier to solve for M:

(22)

Solving (22), we find that 112.95 < M. Since M must be aninteger, we chose M - 113
and the corresponding step size is A = 5/226 = 0.02212389381. When the composite
Simpson rule was performed, the result was

5 (\;, 526) = 1.252762969,

which agrees with fAdx/x = InU) | ~j = 1.252762968. Experimentation shows that it
takes about 129 function evaluations to achieve the desired accuracy of5 x 10 -e, and when
the calculation is performed with M = 64, the result is

S\f, — )= 1.252762973.
vV 128

So we see that the composite Simpson rule using 229 evaluations of / (x) and
the composite trapezoidal rule using 22,823 evaluations of f(x) achieve the same ac
curacy. In Example 7.10, Simpson’s rule required about the number of function

evaluations.
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Program 7.1 (Composite Trapezoidal Rule). To approximate the integral

fb ~ Af—1
f fix)dxs ~{f{a)-ffib)) + a VvV f(xKk)
Ja L *=j

by sampling fix) atthe M + 1equally spaced points xu = a 4- kh, fork = 0, 1,2,
M. Notice that xqg = a andxu, = b.

function s-traprl(f,a,b,M)

‘/.Input - f is the integrand input as a string ’'f’
', - a and b are upper and lower lim its of integration
% - M is the number of subintervals
'/.Output - s is the trapezoidal rule sum
h=(b-a)/V;
s30;
for k-i:(M-I)
x=a+h*k;
s=s+feval(f,x);
end

s=h* (feval (f,a)+feval (:f,b))/2+h*s;

Program 7J (Composite Simpson Ruk). To approximate the integral:

f fix)dxsi~(/(a)+ f(b))
Ja J J ot=l J o*=i

by sampling fix) atthe 2M + 1equally spaced points xt = a + kh, fork = 0, 1,

2, ..., 2]1/. Notice that aq =: a and —b.

function s=simpri(f,a,b,M)

'/.Input - f is the integrand input as a string ’'f’

', - a and b are upper and lower lim its of integration
VA - Mis the number of subintervals

7, Output - s is the simpson rule sum
h=(b-a)/(2*M);
sl=0;
BLI=0;
for k-I:M
'x=a+h*(2*k~1);
sl=sl+feval(f,x);
end
for k=1:(M-1)
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x=a+h*2*k;
s2=s2+feval(f,x);
end .

s=h* Cfeval(f,a)+feval(f,b)+4*sl+2*s2)/3;

Exercises for Composite Trapezoidal and Simpson’s Role

1. (i) Approximate each integral using the composite trapezoidal rule with M = 10.

(ii) Approximate each integral using the composite Simpson rule with M = 5.

@ j@+x2)-1dx (b) /0(2+sin(2v'?))dx (¢) fA~dx/JIx
<d) /Fx2e~xdx (e) /@2xcos(n) dx f) yT(2x)e~xdx

2. Length ofacurve. The arc length ofthe curvey = fix) overthe intervala <\ < |

length= f Y 1+ (f'ijc)2)dx.
Ja

(i) Approximate the arc length of each function using the composite trapezoidal
rule with Af = 10.

(ii) Approximate the arc length of each Function using the composite Simpson rule

with M = 5.
(@ fix) = x3 for O0<x<1
(b) 7 (x) = sin(jc) for 0<x<Tr/4
() f{x) = e~x for O0<x<1

3. Surface area. The solid of revolution obtained by rotating the region under the
v = fix), where a £ x < b, about the 5 -axis has surface area given by

area: 2n f f(x)yj\ + (f'(x))2dx.
Ja

(i) Approximate the surface area using the composite trapezoidal rule with M

10.
(ii) Approximate the surface area using the composite Simpson rule with M —5.
@ /(@ =x3 for O0<x<1

(b) f(_x) m=sin(x) for 0<x<rt/4
() f(x) = e~* for O0<x<1
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4. (a) Verify that the trapezoidal rule (M — L, h = 1) is exact for polynomials of
degree < | ofthe form f(x) = <jx + ogover [0, 1].
(b) Use theintegrand / (jc) = c2x2 and verify that the error term for the trapezoidal
rule (M — 1, h = 1) over the interval [0, 1] is

erle By = 22230/ 20@82

5. (&) Verify that Simpson’s rule (M = 1, h = 1) is exact for polynomials of degree
< 3oftheform /(*) = ax3+ cix2+ c\x + coover [0, 2].
(b) Use theintegrand / (x) = GiX4 and verify that the error term for Simpson’s rule
(M = 1,h = 1) over theinterval [0, 2] is

Esif, h) = —
180
6. Derive the trapezoidal rule (M = 1, h = I)by using the method of undetermined
coefficients.
(@ Find the constants two and wi so that f 0 g(t) dt = wog(Q>—w\g(\) is exact for
the two functions g(t) = land#(/) = t.
(b) Use therelation /(jcqg + ht) = g(t) and the change of variable x = xo + ht and
dx —hdt to translate the trapezoidal rule over [0, 1] to the interval [jco, jci].
Hintforpart (a). You will get alinear system involving the two unknowns wo and w;.
7. Derive Simpson’srule (M = 1, h = [) by using the method of undetermined coeffi-
cients.
(@ Find the constants wo, wi, and wi so that /@g(t)dt ~ wijg(O) + ujig(l) +
W29(.2) is exact for the three functions g(i) — 1, g(t) = t, and g(t) = t1.
(b) Use therelation / (xo + fit) = g(t) and the change of variable x = xo + ht and
dx = hdt to translate the trapezoidal rule over [0, 2] to the interval [jco,jcj].
Hint for part (). You will get a linear system involving the three unknowns wo, wi,
and Lb-
8. Determine the number M and the interval width h so that the composite trapezoidal
rule for M subintervals can be used to compute the given integral with an accuracy of

5x KIro.
3I/6 m ] r
cost*) dx by [/ - dx () | xe ndx
-irf6 J2 511 JO

Hint forpart (c), f t2'(x) = (x - 2)e~x.

9. Determine the number M and the interval width h so that the composite Simpson rule
for 2M subintervals can be used to compute the given integral wife an accuracy of
5x 10-9.

irl6 -3 J e2
/ CO$(x)dx by 7 - dx © | xe *dx
ir/6 h 5-x Jo
Hint forpart (c). f IA(X) = Gc —4)e~x
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10. Consider the definite integral cos(*) dx = 2sin{0.1) = 0.1996668333. The
following table gives approximations using the composite trapezoidal rule. Calculate
£Y (/. h) = 0.199668 —T (/, h) and confirm that the order is 0(h 2).

M h Sif.h) ET(f,h) = 0{h2)
1 02 0.1990008
2 01 0.1995004
4 0.05 0.1996252
8 0.025 0.1996564
16 0.0125 0.1996642

11. Consider the definite integral cos(jc) dx = 2sin(0.75) = 1.363277520. The
following table gives approximations using the composite Simpson rule. Calcinate
Es(f, A) = 1.3632775 —S(f, h) and confirm that the orderis 0{h 4).

M h S(f,h) Estf,h) = 0(h4)
1 075 1.3658444
2 0375 1.3634298
4 01875 1.3632869
S 009375  1.3632781

12. Midpointruie. The midpointrale on [xq, *i] is
\] f(x)dx=hf(xo+" + I fa)(ci), where h*=X" "~ M).

(@ Expand F(x), the antiderivative of f (x), in aTaylor series about xtJ+ h/2 and
establish the midpoint rule on [jco, Xi].

(b) Use part (&) and show that the composite midpoint rule for approximating the
integral of f(x) over [d, b] is

M(f,hy=hJ2f(a+ (k~" hj, whereh—— =«

This is an approximation to the integral of f(x) over [a, b], and we write

b
f{x)dx ~ M(f, h).

(c) Show that the error term £m (/. h) for part (b) is

*«</. £ /»<«>- = oab
1 k=1

13. Use the midpoint rule with M = 10 to approximate the integrals in Exercise 1,

14. Prove Corollary 7.3
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Algorithms and Programs

1 (@) Foreachintegral in Exercise 1, compute M and the interval width h so that the
composite trapezoidal rule can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.1 to approximate each integral,

(b) For eachintegral in Exercise 1, compute M and the interval width h so that the
composite Simpson’s rule can be used to compute the given integral with an
accuracy of nine decimal places. Use Program 7.2 to approximate each integral.

2. Use Program 7.2 to approximate the definite integrals in Exercise 2 with an accuracy
of 11 decimal places.

3. The composite trapezoidal rule can be adapted to integrate a function known only at
aset of points. Adapt Program 7.1 to approximate the integral of a function over
an interval [a,b] that passes through M given points. (Note. The nodes need not
be equally spaced.) Use this program to approximate the integral of a function that

passes through the points | Jk2+ [,k1 j J

4. The composite Simpson’s rule can be adapted to integrate a function known only at
aset of points. Adapt Program 7.2 to approximate the integral of a function over
an interval [a, b] that passes through M given points. (Note. The nodes need not
be equally spaced.) Use this program to approximate the integral of a function that

passes through the points |(NJk2+ |, £,/3]
5. Modify Program 7.1 so that it uses the composite midpoint rule (Exercise 12) to

approximate the integral of f(x) over [a, b], Use this program to approximate the
definite integrals in Exercise 1 with an accuracy of 11 decimal places.

6. Obtain approximations to each of the following definite integrals with an accuracy of
ten decimal places. Use any of the programs from this section.

e\jan r5f-W3 )
@ / sin (I/x)rfj: by 7/ ... dx
NjIn J& +10-5 Sin(I/x)
7. The following example shows how Simpson’s rule can be used to approximate the
solution of an integral equation. The equation u(jc) = x2+ 0.1 /J (x2+ t)v(t) dt is to
be solved using Simpson’srule with h = 1/2. Letf0o= 0,0\ = 1/2, andtj = 1; then

i (e2+ t)yv(t) dt « Ny ((x]I +0)«o+ 4x1 + ]jvi + (x2+ Dv2).
Let
Q) u(xB) = x2+0.Hg(C*:n + OQ)ro + 4(Xx2+ N)vj + (x2+ 1)v2)).

Substituting xo = 0, jti = 1/2, andxi = 1 into equation (1) yields the system of
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linear equations:

m — OH— -((Oltin+ 2vi +

(2)

Substituting the solution of system (2) (»o = 0.0273, vi — 0.2866, vji = 1.0646) into
equation (1) and simplifying yields the approximation

3) v{jo » 1.037305n:2+ 0.027297.

(@) As acheck, substitute the solution into tbe right-hand side of the integral equa-
tion, integrate and sim plify the right-hand side, and compare the result with the
approximation in (3).

(b) Use the composite Simpson rule with h = 0.5 to approximate the solution of
the integral equation

Use the procedure outlined in part (a) to check your solution.

7.3 Recursive Rules and Romberg Integration

In this section we show how to compute Simpson approximations with a special linear
combination of trapezoidal rules. The approximation w ill have greater accuracy if one
uses a larger number of subintervals. How many should we choose? The sequential
process helps answer this question by trying two subintervals, four subintervals, and
so on, until the desired accuracy is obtained. First, asequence {T(7)f of trapezoidal
rule approximations must be generated. As the number of subintervals is doubled, the
number of function values is roughly doubled, because the function must be evaluated
at all the previous points and at the midpoints of the previous subintervals (see Fig-
ure 7.8). Theorem 7.4 explains how to eliminate redundant function evaluations and

additions.

Theorem 7.4 (Successive Trapezoidal Rules). Suppose that J > 1 and the point;
{Xk — a + kh] subdivide [a, b] into 2J — 2M subintervals of equal width h ss
(b- a)/2J3.The trapezoidal rules T (/, h) and T (/, 2h) obey the relationship

(1)
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@ ()

© @

Figure 7.8 (a) 7(0) is the areaunder 2° = | trapezoid. (b) 7(1) is the area under
21= 2 trapezoids. (C) 7(2) is the area under 22 = 4 trapezoids. (d) 7(3) is the area
under 23 =: 8 trapezoids.

Definition 7.3 (Sequence of Trapezoidal Rules). Define I(0) = (h/2)(f(a) +
fib)), which is the trapezoidal rule with step size h — b —a. Then foreach J > 1
define T(J) — T (/. h). where T (/, h) is the trapezoidal rule with step size h =
(b-a)/23J, A

Corollary 7.4 (Recursive Trapezoidal Rule). Start with 740) = (A/2)(/(a) +
(f(b)). Then a sequence of trapezoidal rules {T(J)\ is generated by the recursive
formula

(£) T{J) = +hJ2 f(x2k-I) for7=1,2,...,

*=]

vhere h = (b —a)/2J and {ic* = a + khj.

Proof. Forthe even nodesxq < Xz < mEE< x:m-2 < XIrm, we use the trapezoidal
rule with step size 2h:

/ 2h
(3) T —1) = = (fy + 2/2 4-2/4 + —oemv h2f2M-4 + 2f2M-2 + /rm)-

For all of the nodes *0 < < *2 < &*- < X2M i < *:1w, we use the trapezoidal rule
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with step size h:

4 7(7) = ~(fo + 2/i + 2/2 H— 1-2/2M-2 + 2/2M-1 + /im>-

Collecting the evert and odd subscripts in (4) yields

h A
(5) 7(7) = -(/O + 2/2 + - t2/2M-2 + /rm) + hy f2X-i-
1 t=i

Substituting (3) into (5) resultsin 7(7) = T(J —I>/2 + A5Djt=i /2*-]. and theprooF
of the theorem is complete. [ ]

Example 7.11. Use the sequential trapezoidal rule to compute the approximations T (()
7(1), 7(2),and 7(3) for the integral /j5dxjx = In(5) —In(l) = 1.609437912.

Table 7.4 shows the nine values required to compute 7(3) and the midpoints required
to compute 7(1), 742), and 7 (3). Details for obtaining the results are as follows:

When h = 4: Z’(O) = ”(1.000000 + 0.200000) = 2.400000.

7(0)
Whenh= 2:  7(1) = + 2(0.333333)
= 1.200000 + 0.666666 = 1.866666.

701
WhenA= 1. 7(2) = @, 1(0.500000 + 0.250000)

0.933333 + 0.750000 = 1.683333.

When h = 7(3) ~(0.666667 + 0.400000

+ 0.285714 + 0.222222)
0.841667 + 0.787302 = 1.628968. ]

Our next result shows an important relationship between the trapezoidal rule and
Simpson’s rule. When the trapezoidal rule is computed using step sizes 2h and f,
theresult is 7 (/, 2A) and 7 (/, h), respectively. These values sire combined to obtain
Simpson’s rule:

«9 24(1,48 4 1B 4 ,

Theorem 7.5 (Recursive Simpson Rules). Suppose that {7 (7)] is the sequence of
trapezoidal rules generated by Corollary 7.4. If J > land S(J) is Simpson’s rule For
2J subintervais of [a. 6], then S (J) and the trapezoidal rules 7(7 — 1) and T(J) obe”™
the relationship

47(7) - 7(7 - 1) A

@) SWA) = — 7, e for 7= 1, 2, ...



Sec.7.3 recursive Rules and Romberg Integration 371

TUMt7.4 The Nine Points Used to Compute T (3) and the Midpoints Required to Compute
r(1), r(2), and 743)

End points for Midpoints for Midpoints for Midpoints for
X [(*) = % computing T(0) computing T'(l) computing T (2)  computing 743)

1.0 1.000000 1.000000

15 0.666667 0.6666(57
2.0 0.500000 0.500000

1.5 0.400000 0.400000
3.0 0.333333 0.333333

35 0.285714 0.285714
4.0 0.250000 0.250000

45 0.222222 0.222222

5.0 0.200000 0.200000

Proof. The trapezoidalrule T(J) with step size h yields the approximation

n J f (*dxrm~(fo+ 2/i +2/2 4--——H2-fiM-2+ 2fiM-\ + /2m)
= tu ).
The trapezoidal rule T(J — 1) with step size 2h produces
) f f(x)dx *kA(/o + 2/rY------ + 2/2M-2 + /tm) = T(J - 1).
Ja
Multiplying relation (8) by 4 yields
4\] f(x)dx « h(2fo + 4/i + 4/2 -l h4/2M-2 + 4/2jvf_i + 2/M)

= 41 (7).

How subtract (9) from (10) and the result is

n 3J f(x)dx ™ h(/0+ 4/i + 2/2 H--—-- b2f2M-2 + 4/2M-i + /im)
= 47(7) —T(J —1).

"This can be rearranged to obtain

[ 1 (*)dx « -(/0 + 4/] + 2/2 B2 2/2M-2 + 4/2a/_1+ /2w)

@ o~ J
4 4T(1) ~TA - D

3
The middle term in (12) is Simpson’s rule 5(7) = S(f, h) and hence the theorem is
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Example 7.12. Use the sequential Simpson rule to compute the approximations 5(1),
5(2), and 5(3) for the integral of Example 7.11.
Using the results of Example 7.11 and formula (7) with 7 = 1,2, and 3, we compute

J1)= 1, O bWl = 47266666~ 2.400000 = (688LU
S{2) = = 40683333?7- 1.865666 = f 622222
= 4N3[ M(2) _ 4(rg28968)3- 1.683333 =

3 3

In Section 7.1 the formula for Boole’s rule was given in Theorem 7.1. It was
obtained by integrating the Lagrange polynomial of degree 4 based on the nodes xo,
X\, X2, x3, and X4. An alternative method for establishing Boole’s rule is mentioned
in the exercises. When it is applied M times over 4M equally spaced subintervals QF
[a, b] of step size h = (b —a)/(AM), we call it the composite Boole rule:

2”/\
(13) B(fhy= — £(7/%-4 + 32/u-j+ 12/4*-2 + 32/4*_i + 7/«).
k=1

The next result gives the relationship between the sequential Boole and Simpson rules.

Theorem 7.6 (Recursive Boole Rules). Suppose that {5(7)} is the sequence of
Simpson’s rules generated by Theorem 7.5. If 7 > 2 and B(J) is Boole’s rule for
2J subintervals of [a, b], then B(J) and Simpson’s rules 5(7 — 1) and 5(7) obey the
relationship

165(J) —5(7 — 1)

r ,
r7=2, 3.

(14) B(7) =

Proof. The proofis left as an exercise for the reader. -

Example 7.13. Use the sequential Boole rule to compute the approximations B(2) ami
B (3) for the integral of Example 7.11.
Using the results of Example 7.12 and formula (14) with 7 = 2 and 3, we compute

165(2) -5(1) _ 16(1.622222)- 1.688888

15 15
165(3)- 5(2)  16(1.610846)-1.622222
B(3) = - - [3

1.617778,

5(2) =

= 1.610088. [ ]

The reader may wonder what we are leading up to. We w ill now show that for
mulas (7) and (14) are special cases of the process of Romberg inte:gration. Let us
announce that the next level of approximation for the integral of Example 7.11 is

64B(3) - 5(2) 64(1.610088) - 1.617778
= 1.609490,
63 63

and this answer gives an accuracy of five decimal places.
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Romberg Integration!

In Section 7,2 we saw that the error terms E jif, h) and Es(f, h) For the composite
trapezoidal rule and composite Simpson rule are of order 0(h2) and 0(h4), respec-
tively. It is not difficult to show that the error term Eg (f,h) for the composite Boole
rule is of the order 0 (h 6). Thus we have the pattern

fb

(15) I f(x)dx =
fb

(16) J fix) dx =
fb

@an j f(x)dx=

The pattern for the remainders in (15) through (17) is extended in the following
sense. Suppose that an approximation rule is used with step sizes h and 2h\ then an al-
gebraic manipulation of the two answers is used to produce an improved answer. Each
successive level of improvement increases the order of the error term from 0{h 1N)
to 0(h2N+~). This process, called Romberg integration, has its strengths and weak-
nesses.

The Newton-Cotes rules are seldom used past Boole’s rule. This is because the
nine-point Newton-Cotes quadrature rule involves negative weights, and all the rules
past the ten-point rule involve negative weights. This could introduce loss of signif-
icance error due to round off. The Romberg method has the advantages that all the
weights are positive and the equally spaced abscissas are easy to compute.

A computational weakness of Romberg integration is that twice as many function
evaluations are needed to decrease the enrorfrom 0 (h 2N) to 0 (h 2N+2). The use of the
sequential rules will help keep the number of computations down. The development
of Romberg integration relies on the theoretical assumption that, if / e CNJ[a, b\
for all N, then the error term for the trapezoidal rule can be represented in a series
involving only even powers of h; thatis,

(18) f fix) dx = T(f h) + ET(f, h).
Ja

where

(19) ET{f, h) = aih2+ a2h4 + a3h6 + e=-e

A derivation of formula (19) can be found in Reference [153].

Since only even powers of h can occur in (19), the Richardson improvement pro-
oess is used successively first to eliminate a\, next to eliminate ar, then to eliminate a3,
and so on. This process generates quadrature formulas whose error terms have even
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orders 0(h4), 0(h6), 0(h8), and so on. We shall show that the first improvement is
Simpson’s rule for 2M intervals. Start with T (/, 2h) and T (f,h) and the equations

fb
(20) / f(x)dx = T(f,2h) + ai4dh2+ a216h4+arll 6+
Ja
and
rb
(21) |I_ f(x)dx = T(f,h) + alh2+ a2h4 + a3h6+ -

Multiply equation (21) by 4 and obtain
fb
(22) 4 / /(x)dx = 474/, h) + a”~h2+ a24h4+ a34h6+ m
Ja
Eliminate a\ by subtracting (20) from (22). The result is
rb

(23) 3/ f(x)dx = 4r(/, h) - T(f, 2h) - aMb* - a360h6 —-—- .
Ja

Now divide equation (23) by 3 and rename the coefficients in the series:

(24) I f(x)dx = \-b\h +bth +mmm.
Ja 3

As noted in (6), the first quantity on the right side of (24) is Simpson’s rule S(f,h).
This shows that Es (f.h) involves only even powers oih:

(25) r /(*)dx = S(f, h) + b]nhA+ bz2hb+ M 8+ mme
Ja

To show that the second improvement is Boole’s rule, start with (25) ami write-
down the formula involving S (f, 2h):

rb
(26) / f(x) dx = S(f, 2h) + b\I6h* + b2(Ahb+ bb256/18 + mmm.
Jo

When b\ is eliminated from (25) and (26), the result involves Boole’s rule:

IbS(f, h) —S(f, 2h) MB8AG6  "3240A8
L " ™* [y _ :
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The general pattern for Romberg integration relies on Lemma 7.1.

Lemma 7.1 (Richardson’s Improvement for Romberg Integration). Given two
approximations R(2h, K — 1) and R(h, K — 1) for the quantity Q that satisfy

S) Q = R(h, K - 1)+ c,h2K + c2h2K+2 + ee-
and
b} Q = R(2h, K - DN+C[4*/t2* + QA4*+iA2*+2 + - -,

an improved approximation has the form

4% —|

The proofis straightforward andis left for the reader.

Definition 7.4. Define the sequence {R(J, K) :J > K of quadrature formulas
for /(jc) over [a, b] as follows

R(J, 0) = T(J) forJ > 0, is the sequential trapezoidal rule.
(31) R(J, V= S@J) forJ > |1, is the sequential Simpson rule.
R(@J, 2) = B(J) forJ > 2, is the sequential Boole’s rule. A

The starting rules, {R(J, 0)], are used to generate the first improvement, [R(J, 1|,
which in turn is used to generate the second improvement, {R(J, 2)}. We have already
seen the patterns

4R, 0) —RQI —1,0)

R(IXN)~

32) | .
R(J, 2) = ¥RLZY DAY 1.1)

Al—1

%(or Js2,

which are the rales in (24) and (27) stated using the notationin (31). The general rule
for constructing improvements is

AKR(J\NK -1 )- R(I -1, K- 1)
(33) R(J, K) = - - XR—----; : - for J > K.
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Table 7.5 Romberg Integration Tableau

RU,0) RU, I RU,2 [ RU,3 RU, 4)
Trapezoidul Simpson’s Boole’s Third Fourth

J rule rule mle improvement improvement
0 «{0,0),.

1 An.oL —AMn n

2 R(2,0) ~ —- R(2,  —- 2)__

3 «{3.01 nEa, il —- R(3, N(3, 3X

4 R(4,01 «(4, 1) --— R4, 7) - — R(4, 3 1 e e
liable 7.6  Romberg Integration Tableau for Example 7.14

RU, 0) RU, 1) RU, 2) RU. 3)
Trapezoidal Simpson’s Boole's Third

J rule rule mle improvement
0 0.785398163397

1 1.726812656758 2.040617487878

1.960534166564 2.038441336499 2.0382962.59740

3 2.018793948078 2.038213875249 2.038198711166 2.038197162776
4 2.033347341805 2.038198473047 2.038197446234 2.038197426156
5 2.036984-954990 2.038197492719 2.038197427363 2.038197427064

For computational purposes, the values R(J, K) are arranged in the Romberg integra
tion tableau given in Table 7.5,

Example 7.14. Use Romberg integration to find approximations for the definite integral
/mi/2 2
J/ (xr+ x + 1)cosOr)dx = -2 + -2 + — = 2.038197427067....
o

The computations are given in Table 7.6. In each column the numbers are converging,
to the value 2.038197427067 .... The values in the Simpson’s rule column converge fastei
than the values in the trapezoidal rule column. For this example, convergence in column:
to theright is faster than the adjacent column to the left.

Convergence of the Romberg values in Table 7.6 is easier to see if we look at the erroi
termsE(J, K) = —2+71r/2+71r':/4—R U, K). Suppose that the interval widthish = b—c
and that the higher derivatives of / (x) are of the same magnitude. The error in column K
ofthe Romberg table diminishes by about afactor of 1/21K+1 = 1/4K+1as one progresses
down its rows. The errors E (J, 0) diminish by afactor of 1/4, the errors E(J, 1) diminist
by afactor of 1/16, and so on. This can be observed by inspecting the entries {E (J, /TN} in
Table 7.7. m
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"Ibble 7.7 Rombeig Error Tableau for Example 7.14

y A £(,00=0(hz) E@J,1)=O@4) E@J,2)=0ihe) E(J,3)= 0(AB)
0 b—a -1.252799263670

1 b 2_a -0.311384770309 0.002420060811

2 b 4_a -0.077663260503 0.000243909432 0.000098832673

3 b ;3 a -0.019403478989 0.000016448182 0.000001284099 -0.000000264291
4 b ;a -0.004850085262 0.000001045980 0.000000019167  -0.000000000912

b—a
5 -0.001212472077 0.000000065651 0.000000000296 -0.000000000003

Theorem 7.7 (Precision ofRomberg Integration). Assume that/ e C2K~2[a, b].
Then the truncation error term for the Romberg approximation is given in the formula

I fix) dx = R(J, K) + bKh2K+1f akK+2Hcj.K)
(34) Ja

R(J, K)+ 0(h2K+2),

where h — ib —a)/2J, bk is a constant that depends on K, and cjj: e [a, b]; see
Reference [153], page 126.

Example 7.15.,, Apply Theorem 7.7 and show that

f lox9dx = 1024 = /2(4, 4).

.0

The integrand is / (n) = [Og9, and f {I0>(x) = 0. Thus the value K = 4 will make the
error term identically zero. A numerical computation w ill produce R(A. 4) — 1024. n

Program 7.3 (Recursive Trapezoidal Rule). To approximate

fb h 2
/ fix) dx - N
Ja *=
by using the trapezoidal rule and successively increasing the number of subintervals
of[a, £]. The Jth iteration samples /(ar) at 2J + | equally spaced points. *

(/U t-i) + /(*%))
I

function T==rctrap(f,a,b,n)
‘/Input - f is the integrand input as a string ’f’
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VA - a and b are upper and lower lim its of integration
% - n is the number of times for recursion

'/.Output - T is the recursive trapezoidal rule list

M=1;

h=b-a;

T=zeros(l,n+l) ;
T(1)=h*(feval(f,a)+feval(f,b))/2;
for j=1l:n
M=2*M;
h=h/2;
s=0;
for k=I:M/2
x=a+h*(2*k-1);
s=s+feval(f,x);
end
T(j+D)~T(j)/2+h*s;
end

Program 7.4 (Romberg Integration). To approximate the integral

o)
f f(x) dx bl R(J, J)
J
by generating a table of approximations R(J, K) for ¥ > K and usire,
R(J + 1,J + 1) as the final answer. The approximations R(J, K) are stored in
aspecial lower-triangular matrix. The elements R(J, 0) of column 0 are computed
using the sequential trapezoidal rule based on 2J subintervals of [a, b\, then R(J, K)
is computed using Romberg’s rule.
The elements ofrow J are

|{21(J’, K) = R(J, K - .]454_ R(J'K —I)_—nyi(.] - IL,K _1),

for 1 < K < J. The program is terminated in the (J + [)st row when
l«(J,J) —R(J + 1,7+ 11 < tol.

function [R,quad,e rr,h] =romber(f ,a,b,n,tol)

7.nput - f is the integrand input as a string ’f’

7, - a and b are upper and lower lim its of integration
7, - n is the maximum number of rows in the table

Y, - tol is the tolerance

'/.Output - R is the Romberg table

/. - quad is the quadrature value

‘f - arr is the error estimate
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7, - h is the smallest step size used
M=l;
h=b-a;
arr=1;
J=0;
R=zeros(4,4);
R(1,1)=h*Cfeval(f,a)+feval(f,b))/2;
while((err>tol)&(J<n)) I(J<4)
J-J+1;
h=h/2;
s=0;
for p=I:M
x=a+h* (2*p-I) ;
s=s+feval(f,x) ;

end
R(I+1,D=R@J,1)/2+h*s;
M=2*M;
for K=1:J
R(J+:L,K+I)=R(JI+:i,K)+(R(I+1,K)-RO ,K))/(4~K-i) ;
end
err=abs(R(J,J)-R(JI-H ,K+1I));
end

quad=R@J+,J+1);

Exercises for Recursive Rules and Romberg Integration

379

1. For each of the following definite integrals, construct (by hand) a Romberg table

(Table 7.5) with three rows.
f 3 sm(Zx) =06717578646 ..
n o 1+*2
V3
(b) / sin”™e"2*dx =0.1997146621...

© I -Ldax= 16
/0.04 V *

d - - 1-r-dx = 4.4713993943...
@ \,IO X2+

e f sin (| X~ 1.1140744942...
Ju@Ey  \x/

) 7 y4 —x2dx ~/1 =3.1415926.535 ...
Jo
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. Assume that the sequential trapezoidal rule convergesto L (i.e., limj-*oc T(J)

Chap.7 Numerical Integration

L).
(@ Show that the sequential Simpson rule convergesto L (i.e., limj—oeS(J) = L).
(b) Show that the sequential Boole rule convergesto L (i.e., limj-,x B(J) = L).

. (@ Verify that Boole’srule (M = 1, h — 1) is exact for polynomials of degree £ 5

of the form /(jc) = c$x5+ c$x4 + -——— |- ciT + coover [0, 4].
(b) Use the integrand f(x) = c(,x6 and verify that the error term for Boole's rule
(M = 1, h = 1)overthe interval [0, 4] is

Lo, N ~2& ~ /,6)(c)A6
E»(/.« = -------------a--)------)-(-‘i)----I

Derive Boole’s rule (M = 1, A = 1) by using the method of undetermined ¢
cients: Find the constants wo, u’i W2, 103, and um so that

[ g(t) dt = wor(0) + wig(l) + W2g(2) + ws#(3) + wAg(4)
o
is exact for the five functionsg(t) = 1,t,t ,/ ,andt . Hint. You will get the ear
system:

u) + W) + uz+ UB+ Ned=4
wi+ 2iU2+ 338+ 4uny =8

64

»i + 4W2+ 9u>3+ I161U4 = —

wj + 8102+27wij+ 64W4 = 64

1024
WA + [6W2 + 8IW3+ 25674 -

. Establish the relation B(J) — (165(7) - S(Z —1))/16 forthecase J - 2 Use We

following information:

5() =y (J0+ 4/2+ /4)

and

S(2) \(fo + 4/i + 2/2+4/3+ /4).

. Simpsons | rule. Consider the trapezoidal rules over the closed interval [jco,*1]

74/, 3A) = (3A/2)(/0 + /3) with step size 3A, and T(f, A) = (A/2)(/0+ | fx+
2/2 + /3) with step size h. Show that the linear combination (9X (/, h) —T (f, ih))/B
produces Simpson’s-| rule.

7. Use equations (25) and (26) to establish equation (27).

8. Use equations (28) and (29) to establish equation (30).
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9. Determine the smallestinteger K for which
(@ /0 8x7dx = 256 = R(K, K).
(b) /@1lixwdx = 2048 s R(K, K).

10. Romberg integration was used to approximate the integrals (i) /J yfxdx and (ii)
fg Ix2dt, and the results are given in the following table:

Approximations for (i)  Approximations for (ii)

R(0,0) =0.5000000 R{0,0) = 1.0000000
K<1, 1) = 0.6380712 [(1, 1)=0.6666667
R(2, 2) = 0.6577566 R{2, 2) =0.6666667
N(3,3) = 0.6636076 R(3,3) =0.6666667
J1(4,4) =0.6655929 R(4,4) =0.6666667

(@) Use the change of variable x = t2 and dx — 21dt and show that tbe two
integrals have the same numerical value.

(b) Discuss why convergence of the Romberg sequence is slower for integral (0 and
faster for integral (ii).

11. Romberg integration based on the midpoint rule. The composite midpoint rule is
competitive with the composite trapezoidal rule with respect to efficiency and the

speed of convergence. Use the following facts about the midpoint rule: f (x)dx =
M (/> ft) + EM(f, A). The rule M (f, h) and the error term Em (/, h) are given by

M (f,h)=h'Yf(a+ (k-~)h'j' where h=

Em(f, h) = a\h2-t-azh4 + a~h6 4-— .

(& Start with

Develop the sequential midpoint rule for computing

2]
M@) = M(f, hj) = hj22f (* + (* - 5)

. b- a
where hj = i—.
(b) Show how the sequential midpoint rule can be used in place of the sequential
trapezoidal rule in Romberg integration.
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Algorithms and Programs

. Use Program 7.4 to approximate the definite integrals in Exercise 1 with an accuracy

of 11 decimal places.

. Use Program 7.4 to approximate the following two definite integrals with an accuracy

of 10 decimal places. The exact value of each definite integral is n. Explain any
apparent differences in the rates of convergence of the two Romberg sequences.

@ [ —x2dx ® fo— ~dx
Jo Jo 1+ x

. The normal probability density functionis f U) = (\j\fbx)e ,2/1. and the cumu a-

tive distribution is afunction defined by the integral ®(n) = j + y= /q e-f'/2ct.

Compute values for ®(0.5), ®(1.0), ®(1.5), ®(2.0), P<2.5), $(3.0), P(3.5), and
®(4.0) that have eight digits of accuracy.

. Modify Program 7.3 so that it will stop when consecutive values T(K —1) and T {/. )

for the sequential trapezoidal rule differ by less than 5 x 10~6.

. Modify Program 7.3 so that it will also compute values for the sequential Simpsoo

and Boole rules.

Modify Program 7,4 so that it uses the sequential midpoint rule to perform Romberg
integration (use the results of Exercise 11). Use your program to approximate ti e
following integrals with an accuracy of 10 decimal places.

o f

h * J_i
In Program 7.4 the approximations to a given definite integral are stored on the main
diagonal of a lower-triangular matrix. Modify Program 7.4 so that the rows of tlie

Romberg integration tableau are sequentially computed and stored in an x 1 matrix A
hence it saves space. Test your program on the integrals in Exercise 1

Adaptive Quadrature

The composite quadrature rules necessitate the use of equally spaced points. Typically,
asmall step size h was used uniformly across the entire interval of integration to ensure
the overall accuracy. This does not take into account that some portions of the curve
may have large functional variations that require more attention than other portions of
the curve. It is useful to introduce a method that adjusts the step size to be smaller
over portions of the curve where alarger functional variation occurs. This technique is
called adaptive quadrature. The method is based on Simpson’s rule.

®

Simpson’s rule uses two subintervals over {a*, 6*]:

S(at,bk) - ~(/tet) +4/(c*) + f(bK),
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wherea = |(a* + 6*) is the centerof [a*, ]andh ~ (bk —ak)/2, Furthermore, if
/ 6 C4[at, bK], then there exists avalue d; e [a*, bK] so that

f Mi
@) 3"t (x)dx=s(akbk) -h 51" V.

Refinement

A composite Simpson rule using four subintervais of [a*, £¢] can be performed by
bisecting this interval into two equal subintervais [a/d, bk\] and [@*2. 6*2] and applying
formula (1) recursively over each piece. Only two additional evaluations of fix) are
needed, and the result is

S(aki,bky) + S(ake,bki) = r(/ (a*1) + 4/(c*i) + /(**1))
)
+ A (/(«*2) + 4/(c*r) + f(bki)),

wherea*1= a* &1 —a*2 = q, *2 = 6% Qj is the midpoint of [dt1, bk1], and cp is
the midpoint of W 2, bill- In formula (3) the step size is hjl, which accounts for the
factors h/6 on the right side of the equation. Furthermore, if / e C*\a, b], there exists
avalued2 t (a*, bk] so that

f bt h5 fw (d2)
4) /. /(w¥)<E* = $(a*i,£ii) + S(@a*2, **2) - — — " — =
Jac

Assumethat / @ (J1;) f @ (/b); then the right sides of equations (2) ani (4) are
used to obtain the relation

{5) S(ak,b Iﬁl)-h’ 5/—(4iNi)' S(an,blk\)\+' sc(/akz,’hl)' ~ ]fl?/—%l)\Ng—) ,
yu lo yu
which can be written as
6) -hs5~r ~ 2> bki) + S(a*2, 2*2) - S(a*. £%).
Then (6) is substituted in (4) to obtain the error estimate:
t [ . . |
/ f(x)dx - S(aki,bki) - S(ak2,ble)\
@) M I
** A |5(@*1, bti) + S(a*2. b*2>- b*)l.

Because of the assumption fA(d\) & f (i4d2), the fraction © is replaced with on
iheright side of (7) when implementing the method. This justifies the following test.



384 Chap.7 Numerical Integration

Accuracy Test

Assume that the tolerance e* > 0 is specified for the interval [a*, bu}- If
(8) — iS(a*i, bkO + S(ak2, bk2) - S(ak, bk\ < q,
we infer that

©) I/ f(x)dx - S(ak[, bki) - S(ak2 bi2)\ < e*.
\Jat |

Thus the composite Simpson rule (3) is used to approximate the integral

K
(10) f(x)dx % 5(an, bti) + S(akz, bk2),
K

and the error bound for this approximation over [a*, b7"] is e*.

Adaptive quadrature is implemented by applying Simpson’s rules (1) and (3). Start
with ([a0, bo], 6;,}, where eo is the tolerance for numerical quadrature over [ao, bo\m
The interval is refined into subintervals labeled [tfoi, ~oiJ [«02- £02]. Tf the accu-
racy test (8) is passed, quadrature formula (3) is applied to [ao, 60] and we are done. |f
the test in (8) fails, the two subintervals are relabeled and [a2, b2], over which
we use the tolerances ej = and e2 = j en. respectively. Thus we have two in-
tervals with their associated tolerances to consider for further refinement and testing:
{[a[, bi], ) and llaj, b2], <2!, where <1 + e2 = eo. |f adaptive quadrature must be
continued, the smaller intervals must be refined and tested, each with its own associated
tolerance.

In the second step we first consider {[ai, b\], e j} and refine the interval [a\,b\] into
[a1l. b1]] and [a12. 612] mIf they pass the accuracy test (8) with the tolerance el, quadra-
ture formula (3) is applied to [ai, b\\ and accuracy has been achieved over this interval.
If they fail the testin (8) with the tolerance €\, each subinterval [ay,,by] and [012, b12]
must be refined and tested in the third step with the reduced tolerance 1. Moreover,
the second step involves looking at {[a2, b2], 62} ar,d refining [a2, b2] into [a2], b2i]
and [a22, b22\ If they pass the accuracy test (8) with tolerance quadrature formula
(3) is applied to [«2, b2] and accuracy is achieved over this interval. |f they fail the test
in (8) with the tolerance €2, each subinterval [a2\ b2\] and [022, bxil must be refined
and tested in the third step with the reduced tolerance j €2, Therefore, the second step
produces either three or four intervals, which we relabel consecutively. The three inter-
vals would be relabeled to produce ({[ib b\], el}, {[a2, b2], £2}, {[93, &3], <Z}}, where
fi + £2 + £3 = *o In the case of four intervals, we would obtain ({[fli, b\], €]J,
\[a2, b2], e2\ {[«3- £3L e3). {[4. bl], e4}}, where ei +e2+ e3+e4 — 0.

If adaptive quadrature must be continued, the smaller intervals must be tested,
each with its own associated tolerance. The error term in (4) shows that each time a
refinement is made over a smaller subinterval there is areduction of error by about
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Table 7.8

Ik bk
0.0 0.0625
0.0625 0.125
0.125 0.1875
0.1875 0.25
0.25 0.375
0.375 0.5
0.5 0.625
0.625 0.75
0.75 0.873
0.875 1.0
1.0 1.125
1.125 125
1.25 i.5
15 2.0
2.0 2.25
2.25 25
25 2.75
2.75 3.0
3.0 35
35 4.0

Totals
a factor of

.bk |) + 5(a*2, *i2>

0.02287184840
0.05948686456
0.08434213630
0.09969871532
0.21672136781
0.20646391592
0.17150617231
0.12433363793
0.07324515141
0.02352883215
-0.02166038952
—0.06065CI79384
-0.21080823822
-0.60550965007
-0.31985720175
-0.30061749228
-0.27009962412
-0.23474721177
-0.36389799695
-0.24313827772

-1.54878823413

Error bound on
the left side of (8)

0.00000001522
0.00000001316
0.00000001137
0.00000000981

0.00000025055
0.00000018402
0.00000013381

0.00000009611

0.00000006799
0.00000004718
0.00000003192
0.00000002084
0.00000031714
0.00000003195
0.00000008106
0.00000008301

0.00000007071
0.00000005447
0.00000103699
0.00000041708

0.00000296809

Tolerance
for [et . £7]

0.00000015625
0.00000015625
0.00000015625
0.00000015625
0.0000003125
0.0000003125
0.0000003125
0.0000003125
0.0000003125
0.0000003125
0.0000003125
0.0000003125
0.000000625
0.00000125
0.000000625
0.000000625
0.000000625
0.0c0000625
0.00000125
0.00000125

0.00001
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Thus the process will terminate after a finite number of steps. The

bookkeeping for implementing the method includes a sentinel variable which indicates
if aparticular subinterval has passed its accuracy test. To avoid unnecessary additional
evaluations of fix ), the function values can be included in adatalist corresponding to
each subinterval. The details Eire shown in Program 7.6.

Example 7.16.
definite integral f* 13(x —x2)e~bx!2dx with the starting tolerance to = 0.00001.

Implementation of the method revealed that 20 subintervals are needed. Table 7.8 lists
eachinterval [a*. £2%], composite Simpson rule .¥Y(a/H, bk\)+S(ak2. £51). the error bound for
this approximation, and the associated tolerance e*. The approximate value of the integral
is obtained by summing the Simpson rule approximations to get

Q)

M

/ 13U - x2)e~ixn dx b» -1.54878823413.

Jo

Use adaptive quadrature to numerically approximate the value of the
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Figure 7.9 The subintervais of [0,4] used in adaptive
quadrature.

The true value of the integral is

4108<r6- 52
27
= -1.5487883725279481333.

f \3(x - x2)e 3x/2dx —
(12) Jo

Therefore, the error for adaptive quadrature is

(13) i- 154878837253 - (-1.54878823413)1 = 0.00000013840,

which is smaller than the specified tolerance eo = 0.00001. The adaptive method involves
20 subintervals of [0,4], and 81 function evaluations were used. Figure 7,9 shows ihe ga*™h
ofy = f(x) and these 20 subintervais. The intervals are smaller where alarger functional

variation occurs near the origin.

In the refinement and testing process in the adaptive method, the first four intervals
were bisected into eight subintervals of width 0.03125, If this uniform spacing is contin-
ued throughout the interval [0,4], M = 128 subintervals are required for the compost
Simpson rule, which yields the approximation —1.54878844029, which is in error by the
amount 0.00000006776. Although the composite Simpson method contains half the error
of the adaptive quadrature method, 176 more function evaluations are required. This gain
of accuracy is negligible; hence there is aconsiderable saving of computing effort with the

adaptive method.

Program 7.5, srule, is a modification of Simpson’s rule from Section 7.1. TV
output is avector Z that contains the results of Simpson’s rule on the interval [aO, 60J.
Program 7.6 calls srule as a subroutine to carry out Simpson’s rule on each oftbe

subintervals generated by the adaptive quadrature process.
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Program 7*5 (Simpson’s Rule). To approximate the integral
fix) dx » £</(e0) + 4/(cO)+ f(bO))
o J
by using Simpson’s rule, whered) = (aO + b0)/2.

function Z=srule(f,aO,b0O,tolO)

XInput - f is the integrand input as a string ’f'

7, - a0 and BO are upper and lower lim its of integration
% - tolO is the tolerance

% Output - Z is a 1x6 vector [a0O bO S S2 err toll]
h=(b0-&0)/2;

C=zeros(l,3) ;
C=feval(f, [@O (a0+b0)/2 bO]);
S=h*(C(1)+4*C(2)+C(3))/3;

S2=S;
toll=tolO,-
err=tolO;

Z=CObO S S2 err toll] ;

Program 7.6 produces a matrix SRmat, quad (adaptive quadrature approximation
to definite integral) and e rr (the error bound for the approximation). The rows of
SRmat consist of the end points, the Simpson’s rule approximation, and the error bound
Oneach subinterval generated by the adaptive quadrature process.

Program 7.6 (Adaptive Quadrature Using Simpson’s Rule). To approximate
the integral

rb M
I f{x)d x ag Y~ (/(*4*-4) +4/(aT4*_3) +2/(X4i-2)
*:1
+ NM(Xik~ 1) + /(-*4%))-
| the composite Simpson rule is applied to the 4M subintervals [x4t - 4, where

la, b] = [x0,xAM] and x ™ -i+j = *4*-4 + jht, foreachk = \,--—- Mand7 = 1,

fufiction [SRmat,quad,err] =adapt(f ,a,b,tol)

%input - f is the integrand input as a string ’'f’

% - a and b are upper and lower |lim its of integration
- tol is the tolerance

%Output - SRmat is the table of values

% - quad is the quadrature value

% - err is the error estimate
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F,Initialize values
SRmat = zeros(30,6);
iterating=0;
done=1;
SRvec=zeros(1,6);
SRvec=srule(f,a,b,tol);
SRmat(1,1:6)=SRve G
m=1;
state=iterating;
while (state===teratiiig)
n=m;
for j=n:-1:1

p=J;
SROvec=SRmat(p,:);
err=SROvec(5);
tol=SROvec(6);
if (tol<=err)
[.Bisect interval,apply Simpson % rule
"/.recursively, and determine error
state=done;
SRIvec=SR0Ovec;
SR2vec=SR0ve G
a=SROvec(l);
b=SR0Ovec(2);
c=(a+h)/2;
err=SR0Ovec(5);
tol=SROvec(6);
tol2=tol/2;
SRlvec=srule(f,a,c,tol2);
SR2vec=srule(f,c,b,tol2);
err=a.bs (SROvec (3) -SRlvec (3) -SR2vec (3)) /]
7Accuracy test
if (err<tol)
SRjnat (p, :)=SROvec;
SRmat(p,4)=SRIvec(3)+SR2vec(3);
SRmat(p,5)=err;
else
SRmat(p+1l:m+l,:)=SRmat(p:m, :);
m=m+1;
SRmat(p, :)=SRlvec;
SRmat (p+1,:) =SR2vec;
state=iterating;
end
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end
end
end
quad=sum(SRmat (: ,4) ) ;
err=sum (abs(SRmat(:,5)));
SRmat=SRmat(1:m,1:6);

Algorithms and Programs

1. Use Program 7.6 to approximate the value of the definite integral. Use the starting
tolerance fo = 0.00001.

@

(d)

2. For each of the definite integrals in Problem 1 construct a graph analogous to Fig-
ure 7.9. Hint, The first column of SRmat contains the end points (except for b)
of the subintervals from the adaptive quadrature process. |f T=SRmat (:, 1) and
Z=zeros(length(T)) \ then plo t(T,Z,". ) will produce the subintervals (ex-
cept for the right end point b).

3. Modify Program 7.6 so that Boole’s rule is used in each subinterval [at, bK].

4. Use the modified program in Problem 3 to compute approximations and construct
graphs analogous to Figure 7.9 for the definite integrals in Problem I.

7.5 Gauss-Legendre Integration (Optional)

We wish to find the area under the curve
y = fix), -1 <x < 1

What method gives the best answer if only two function evaluations are to be made?
We have already seen that the trapezoidal rale is a method for finding the area under
the curve and that it uses two function evaluations at the end points (—1. /( —1)), and
(4, /(1)). But if the graph ofy = / (n) is concave down, the error in approximation
is the entire region that lies between the curve and the line segment joining the points
(see Figure 7.10(a)).

If we can use nodes X\ and x| that lie inside the interval [—1, 1], the line through
die two points (.ri, / (jti)) and (x2, f (*2)) crosses the curve, and the area under the line
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@

Figure 7.10 (a) Trapezoidal approximation using the abscissas —land 1 (b) Trapezoidal
approximation using the abscissas: X\ and Or-

Toro closely approximates the area under the curve (see Figure 7.10(b)). The equation
of the line is

(M y=f(xn + 2. X
and the area of the trapezoid under the line is
2x2 e, , 2x{
2 = — *) - —— 1 *r)-
@) Agp x2->’<’\/CI) X2-XI'D' N
Notice that the trapezoidal rule is aspecial case of (2). When we choose @ — -1,

X2 = 1,and i = 2, then

T(F. h)y= 1 f{x1)- ~f(x2)=fix,) + / ix2).

We shall use the method of undetermined coefficients to find the abscis-.,!-. x i, Xi
and weights w], W2 so that the formula

3) J fe0dx  wifixi) + W2/ U 2)

is exact for cubic polynomials (i.e., f(x) = 23*3 + a2X2 + a\x + ao). Since four
coefficients w], w2, g, and xi need to be determined in equation (3), we can select
four conditions to be satisfied. Using the fact that integration is additive, it will suffice
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to require that (3) be exact for the four functions / (ic) = 1,%, x2,nA The fourintegral
conditions are

/(*) = It \] \dx = 2= WA+ wi
/(*)=*: J  Xdx = 0= UX\ + Wa2Xx2
O
H N
f(x)=x2: 3 x%Hx= "= whk?+ wex?

f(x) = x3: | x3dx = 0= wixj + wa2xz-

Now solve the system of nonlinear equations

5) ui[ + v2= 2

(6) bILUX) = —WaX2
2

%) WAX\ + W2X\ = -

(€)) tuixjl= —wW2x\

We can divide (8) by (6) and the result is

9) X2= x2 or xi ——X2-

Use (9) and divide (6) by X\ on the left and —xr on the right to get
(10) Ul = We-

Substituting (10) into (5) results in u.i + wj = 2. Hence

(11) wi —wj = 1

Now using (11) and (9) in (7), we write

12) WIX* + W2X2 ~ x\ + X2 = J or Xj=
Finally, from (12) and (9) we see that the nodes are
- Xl =x2= 1/31/2 « 0.5773502692.

We have found the nodes and weights that make up the two-point Gauss-Legendre
rule. Since the formula is exact for cubic equations, the error term will involve the
fourth derivative. A discussion of the error term can be found in Reference [41].
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Theorem 7.8 (Gauss-Legendre Two-Point Rule). If / is continuous on [-1,1 ].
then

(13)

The Gauss-Legendre rate G tif) has degree of precisionn = 3. If / 6 C4[—1, ]J
then

(14)

where

(15)

Example 7.17. Use the two-point Gauss-Legendre rule to approximate

and compare the result with the trapezoidal rule ' (/, h) with h -2 and Simpson’s rule
S(f, h) with h = 1
Let G tif) denote the two-point Gauss-Legendre rule; then

G2(/) = /(-0.57735) + /(0.57735)
=1 0.70291 + 0.38800 = 1.09091,

74/,2) = /(-1.00000) + /(2.00000)
1.00000+0.33333 = 1.33333,

The errors are 0.00770, —0.23472, and —0.01250, respectively, so the Gauss-Legendre
rule is seen to be best. Notice that the Gauss-Legendre rule required only two function
evaluations and Simpson’s rule required three. In this example the size of the error for
G jf/) is about 61% of the size of the error for S(f, 1).

The general /V-point Gauss-Legendre rule is exact for polynomial functions of
degree < 2/V — 1, and the numerical integration formula is

(16) GW(/) = WAM/U/V.I) + WN,2f(XN,2) Hommomr h VIN.NF(XN.N)-
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Table 7.9

11

I f(x)dx = V

Abscissas,

-0.5773502692
0.5773502692

+0.7745966692
0.0000000000

+0.8611363116
+0.3399810436

+0.9061798459
+0.5384693101
0.0000000000

+0.9324695142
+0.6612093865
+0.2386191861

+0.9491079123
+0.74)53/1856
+0.4058451514

0.0000000000

+0.9602898565
+0.7966664774
+0.5255324099
+0.1834346425

Gauss-Legendre Integration (Optional)

Gauss-Legendre Abscissas and Weights

Weights, wh-i-

1.0000000000
1.0000000000

0.5555555556
0.8888888888

0.3478548451
0.6521451549

0.2369268851
0.4786286705
0.5688888888

0.1713244924
0.3607615730
0.4679139346

0.1294849662
0.2797053915
0.3818300505
0.4179591837

0.1012285363
0.2223810345
0.3137066459
0.3626837834

WW,*/(**,*) + &N(f)

Truncation error,
Esif)
H IM
135
fedc}

15,730

fmilc)
3.472,875

1"«(*)
1,237,732,650

f u2HC)2 13<6!)4
(12313

(<Ne(c)2xsO ! f

fll6I(c)2n (81)4
<161)317!

The abscissas xbin and weights ww/.- to be used have been tabulated and are easily
available; Table 7.9 gives the values up to eight points. Also included in the table is
the form of the error term E n {f) that corresponds to Gjv(/), and it can be used to
determine the accuracy of the Gauss-Legendre integration formula.

The values in Table 7.9 in general have no easy representation. This fact makes the
method less attractive for humans to use when hand calculations are required. But once
the values are stored in acomputer it is easy to call them up when needed. The nodes
are actually roots of the Legendre polynomials, and the corresponding weights must
be obtained by solving asystem of equations. For the three-point Gauss-Legendre rule
the nodes are —(0.6)12, 0, and (0.6)1'2, and the corresponding weights are 5/<9, 8/9,

and5/9
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Theorem 7.9 (Gauss-Legendre Three-point Rule). If / is continuous on [-1,
then

fl 5/(-V375) + 8/(0) + 5/(V375)
17) fix) dx**G3(f) =

The Gauss-Legendre rule (?3(/) has degree of precisionn = 5. U f e C6[—1, ]|
then

(.8, ['/7(),,- w -~ Ty T+>M T +
J-\ 9
where
f 64c)
(19) EAN =bTO-

Example 7,18. Show that the three-point Gauss-Legendre rule is exact for
jA5x4dx = 2= G3(f).
Since the integrand is f(x) = 5x4 and f {&Hx) = 0, we can use (19) to see thai
E 3{f) = 0. Butit is instructive to use (17) and do the calculations in this case.

w s Y 5(5)(0.6)2+0 + 5(5)(0.6)2 18 ,,
(S I — =T 8

The next result shows how to change the variable of integration so that the Gauss-
Legendre rules can be used on the interval [a, b].

Theorem 7.10 (The Gauss-Legendre Translation). Suppose that the abscissae
(xjv.i}~ and weights are given for the N'-point Gauss-Legendre rule over
[—1, 1]. To apply the rule over the interval [a, b], use the change of variable

+ b b — . b —
) = 2TRPTR ag d- Bk

Then the relationship

21 Fbr , IriJa+b b—a \b —a
@1 I md' ~LfVT-+— ')— u

is used to obtain the quadrature formula

Rk BeaxNy  /a+b b—a \
(22) i f(t)dt = — % 2wiv.kf - f —j - xN,KJ
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Example 7.19. Use the three-point Gauss-Legendre rule to approximate

Ji ot
and compare the result with Boole’s rule B(2) withh = 1
Here a = landft = 5, sotherule in (22) yields

s30/) = (2)5/(3 - 2(0.6)Ii/2) + 8/(3 + 0) + 5/(3 + 2(0.6)1'2)

@

In Example 7.13 we saw that Boole’s rule gave 8(2) = 1.617778. The errors ae
0.006744 and —0.008340, respectively, so that the Gauss-Legendre rule is slightly better
in this case. Notice that the Gauss-Legendre rule requires three function evaluations and
Boole’s rule requires five. In this example the size of the two errors is about the same. =

Gauss-Legendre integration formulas are extremely accurate, and they should be
considered seriously when many integrals of a similar nature are to be evaluated. In
this case, proceed as follows. Pick afew representative integrals, including some with
the worst behavior that is likely to occur. Determine the number of sample points
N that is needed to obtain the required accuracy. Then fix the value JV, and use the
Gauss-Legendre rule with N sample points for all the integrals.

For agiven value of N, Program 7.7 requires that the abscissas and weights from
Table 7.9 be saved in 1 x N matrices A and W, respectively. This can be done in
the MATLAB command window or the matrices can be saved as M-files. It would
be expedient to save Table 7.9 in a35 x 2 matrix G. The first column of G would
contain the abscissas and the second column the corresponding weights. Then, for a
given value of N, the matrices A and W would be submatrices of G. For example, if
N = 3, then A=G(3:5,1)" andW=G(3:5,2) \

Program 7.7 (Gauss-Legendre Quadrature). To approximate the integral

by sampling / (jc) atthe N unequally spaced points {f.v,i:}tLp Th e changes of vari-
able

are used. The abscissas {jf/v,*-j and the corresponding weights {w,v.* must
be obtained from atable of known values.

function quad=gauss(f,a,b,A,W)
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¥Input - f is the integrand input as a string 'f°*

VA - a and b are upper and lower lim its of integration
Y. - Ais the 1 X N vector of abscissas from Table 7.9
7. - Y is the 1 x N vector of weights from Table 7.9

'/.Output - quad is the quadrature value

N«lengthCA);

T=zeros(1,N);

T=((a+b)/2)+ ((b-a)/2)*A;
quad=((b-a)/2)*sum (W .*feval(f,T));

Exercises for Gauss-Legendre Integration (Optional)

In Exercises 1through 4, show that the two integrals are equivalent and calculate G iif).

1.

f 6t5dt= f 6(x + \)5dx 2. f sin(t)dt — f sinc+ 1)dx
Jo J-1 Jo J-1
fr o*"«* + m>/*> t
Jo * J-1 X+ \ Jo v2tt J- 1 2

— \] cos(0.6sin(f))rff = 0.5j cos N0.6sin jc+ 1)7)) dx

. Use Epi(f)in Table 7.9 and the change of variable given in Theorem 7.10 to findiht!

smallestinteger N sothatEsif) = O for
(@ /@®Sxldx = 256 = Gn (/)-
(b) /g U;tiorf* = 204S=G N{/).

. Find the roots of the following Legendre polynomials and compare them with ths

abscissa in Table 7.9.

@ Pi(x) = (3x2~ 1)/2

(b) Pr(x) —(5xb-bx)/2

(c) Pi(x) = (3514 —30x2+ 3)/8

The truncation error term for the two-point Gauss-Legendre rule: on the closed in-
terval [—1,1] is / (4)(C])/135. The truncation error for Simpson’s rule on [a, b] is
-1 5/ <4)].C2>/0. Compare the truncation error terms when [a, b] = [—1, 1]. Which
method do you think is best? Why?

The three-point Gauss-Legendre rule is

/"f(,x)valx _ 5/<-(0.6)j/2) + 8/C0) + 5/((0.6)/2)

Show that the formula is exact for fix) — 1, x, X"\ x3, x4, jc5. Hint. If / is an odd
function (i.e., f (—x) = fix)), the integral of / over [—1,1] is zero.
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10. The truncation error term for the three-point Gauss-Legendre rale on the interval
[—1,1] is /®(0)/15, 750. The truncation error term for Boole’s rule on [a, b] is
—8N7/ (6,(c2)/945. Compare the error terms when [a,b] = [—1, 1]. Which method
is better? Why?

11. Derive the three-point Gauss-Legendre rule using the following steps. Use the fact
that the abscissas are the roots of the Legendre polynomial of degree 3.

X, = -(0.6)1/2, X2 =0, ms = (0.6)1/2

Find the weights u?i, 102, W3 so that the relation
y ' f(x)dx *~/(-(O.ej'rJ + iuj/™ + uo/aO.e)l/2)

is exact for the functions f(x) = 1, x, and x2. Hint. First obtain, and then solve the
linear system of equations

Ul + U2+ W3 = 2
-(0.6)1/2”1 +(0.6)i/2W3 = 0

0.6u>i + O.6uB ~
12. In practice, if many integrals of asimilar type are evaluated, apreliminary analysis is
made to determine the number of function evaluations required to obtain the desired
accuracy. Suppose that 17 function evaluations are to be made. Compare the Romberg
answer R(4. 4) with the Gauss- Legendre answer G \iif).

Algorithms and Programs

1. For each of the integrals in Exercises 1 through 5, use Program 7.7 to find CtJ f),
G?(/>, and Gg(/).
2.'(a) Modify Program 7.7 so thatit will compute Gj (/), (?2(/)> =mm Gg(/) and stop
when the relative error in the approximations Gn- i (/) and Cg/ (/) is less than
the pteassigned value to |, thatis

I\GN-d f)-G N\
\GN-d f) + GN(H)\

Hint. As discussed at the end of the section, saveTable 7.9 in anM-file G as a
35 x 2 matrix G.

(b) Use your program from part (a) to approximate the integrals in Ex*ercises 1
through 5 with an accuracy of five decimal places.
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3. (@ Use the six-point Gauss-Legendre rule to approximate the solution of the inte
gral equation

uGc) = x2+0.1 T (x2+ tv(ndt.
h
Substitute your approximate solution into the right-hand side of the integral

equation and simplify.
(b) Repeat part (a) using an eight-point Gauss-Legendre rule.









Numerical
Optimization

The two-dimensional wave equation is used in mechanical engineering to model vi-
brations in rectangular plates. If the plates have all four edges clamped, the sinusoidal
vibrations are described with a double Fourier series. Suppose that at a certain instant

Figure 8.1 (&) The displacementr = fix, y) of avibrating plate, (b) The contour plot  »
/ (n.y) = C foravibrating plate.

399
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of time the heightr = f(x, y) over the point (X, y) is given by the function

z —fix, y) = 0.02sin{jr) sin(_y) —0.03 sin(2x) sinCj")
+ 0.04 sin(jc) sin(2y) + 0-Q8sin(2x) sm(2y).

Where are the points of maximum deflection located? Looking at the three-dimei
sional graph and the companion contour plot in Figure 8.1(a) and (b), respectively, u
see that there are two local minima and two local maxima over the square0 < n < t
0 £ y £ ?r. Numerical methods can be used to determine their approximate location

/(0.8278,2.3322) = -0.1200 and /(2.5351, 0.6298) =-0.0264
are the local minima, and
/(0.9241, 0.7640) = 0.0998 and /(2.3979, 2.2287) = 0.0853

are the local maxima.
In this chapter we give abriefintroduction to some of the basic methods for locat
ing extrema of functions of one or several variables.

Minimization of a Function

Definition $.1 (Local Extremum). The function / is said to have alocal minimum
value atx — p, if there exists an open interval | containing p so that/ (p) < fix) for
allx el- Similarly, / is said to have alocalmaximum value at.t = piffix) < f(p)
forall x g /. If / has either alocal minimum or maximum value atx = p, it is said
to have alocal extremum atx = p. A

Definition 8.2 (Increasing and Decreasing). Assume that / (x) is defined on the
interval /.

(i) If X] < X2 implies that f(x\) < f (jcj) for all xX\, xr £ |, then / is said to be
increasing on |.

(i) If X] < X2 implies that /(*]) > f(x2) forall X[, xj e I, then / is said to be
decreasing on /. a

Theorem 8.1. Suppose that / (x) is continuouson / = [a. b\and is differentiable v
(a. b).
(i) If /'(m*) > 0 forallx E (a,b),then/ U) is increasing on 1.

(i) If f'(x) < 0 foral' x € (a, b), then / (i) is decreasingon 1.

Theorem 8.2. Assume that f(x) is definedon ! ~ (a, b] and has alocal extremum
at an interior point p e (a, b). If f(x) is differentiable atx = p, thenf'(p) - 0.
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Theorem 8.3 (First Derivative Test). Assume that f(x )is continuouson | = [a,b].
Furthermore, suppose that /'(=*) is defined for all x e (a, b), except possibly atj: = p.

(i) If f{x) <0on(a, p)andfix) > 0on (p, b), thenf(p) is alocal minimum.

(i) Iffix) > 0on (a p)andf(x) < 0on (p,b),then/ (p)is alocal maximum.

Theorem 8.4 (Second Derivative Test). Assume that / is continuous on [a, b] and
f and /'™ are defined on (a, b). Also, suppose thatp € (a, b) is acritical point where
fp)=a

(i) Iff(p) > 0O, thenf(p) is alocal minimum of /.

(i) 1Iff(p) < 0, thenf(p) is alocal maximum of/.

(iii) If f"(p) —0O, then this testis inconclusive.

Example 8.1. Use the second derivative test to classify the local extrema of / (x) =
jr3+ x2 —x +1 ontheinterval [2, 2].

The first derivative is fix) = bxl1+ 2x —1 = (3* - i)(x + 1), and the second
derivative is f'(x) =6x +2. There are two points where /'(*) = 0 (i.e.,, x — 1/3, —1).

Case (i): Atj: = 1/3 wefind that/'(1/3) —0 and /"(1/3) = 4 > 0,so thatfix) has
alocal minimum at x = 1/3.

Case (ii): At* = —lwefindthat/'(—1) = Oand/"(-1) = —4 < 0, so that f(x)
has alocal maximum atx = —1. [ ]

Search Method

Another method for finding the minimum of fix) is to evaluate the function many
times and search for alocal minimum. To reduce the number of function evaluations,
it is important to have a good strategy for determining where f(x) is evaluated. One
of the most efficient methods is called the golden ratio search, which is named for the
ratio’s involvementin selecting the points.

The Golden Ratio
Let the initial interval be [0, 2]. If 0.5 < r < 1,then0 < 1—r < 0.5 and the interval
is divided into three subintervals [0,1 - r], [1 —r, r\, and [r, 1]. A decision process
is used to either squeeze from the right and get the new interval [0, r] or squeeze from
the left and get [1 - r, 1]. Then this new subinterval is divided into three subintervais
in the same ratio as was [0, 1].

We want to choose r so that one of the old points will be in the correct position
with respect to the new interval as shown in Figure 8.2, This implies that the ratio

(Ar-r) :r bethe same asr : 1. Hence r satisfies the equation 1 —r = r2, which
can be expressed as a quadratic equationr2+ r — 1 = 0. The solution r satisfying
05 <r < lisfoundtober = —1) /2.

To use the golden search for finding the minimum of / (n), a special condition
must bemet to ensure that there is aproper minimum in the interval.
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0 I -r r 1 0 1-r r i
E - 1 t 3 E 1 t 3
1-r2
1-
Squeeze from the right and Squeeze from the left and
the new interval is [0, r]. the new interval is [1 - r. 1].

Figure 8.2 The intervals involved in the golden ratio search.

If/(c) =.fUi) then squeeze If/M) < /(c) then squeeze
from the right and use [a, J] from the left and use [c, b)

Figure 8.3 The decision process for the golden ratio search.

Definition 8.3 (Unimodal Function). The function / (jc) is unimodal on / — [a 6],
if there exists aunique number p e / such that

1) /{jc) is decreasing on \a, p]
) / (jc) is increasing on [p, b\ t

If /(jc) is known to be unimodal on [a, £5, it is possible to replace the interval wilk
asubinterval on which f(x) takes on its minimum value. The golden search requires,
that two interior pointsc= a+ (1 —r)(b —a) andd = a + r(b —a) be used, where
r is the golden ration mentioned above. This results in a < ¢ < d < b. The condition
that fix ) is unimodal guarantees that the function values 7(c) and / \d) are less than
ma.x{/(a), f{b)\. We have two cases to consider {see Figure 8.3).

If /(c) < f (d), the minimum must occur in the subinterval [a, d] and we replace b
with d and continue the search in the new subinterval. If f(d) < f(c), the minimum
must occur in [c, b] and we replace a with c and continue the search. The next example
compares the root-finding method with the golden search method.
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Table 8.1  Secant Method for
Solving f'(x) = 2X —cos(i) = 0

Pk 2Pk - cos(pt)

0,0000000 -1.00000000
1.0000000 1.45969769
0.4065540 -0.10538092
0.4465123 -0.00893398
0.4502137 0.00007329
0.4501836 -0.00000005

a P wNpRp O X

Ifcblle 8.2  Golden Search for the Minimum of fix) —x2 ~ sin(Jt)

K “K K [o 8 bk f(Ck) m >
0 0.0000000 0.3819660  0.6180340 | -0.22684748  —0.19746793
1 0.0000000 0.2360680  0.3819660 0.6180340 —0.17815339  —0.22684748
2 02360680  0.3819660  0.4721360 0.6180340  -0.22684748  -0.23187724
3 03819660 0.4721360 0.5278640 0.61:80340  -0.23187724  —0.22504882
4 03819660 0.4376941  0.4721360 0.5278640  -0.23227594  -0.23187724
5 0.3819660 0.4164079  0.4376941 0.4721360  -0.23108238  -0.23227594
6 04164079 04376941  0.4508497 0.4721360  -0.23227594  -0.23246503
21 04501574  0.4501730  0.4501827 0.4501983  -0.23246558  -0.23246558

22 04501730 0.4501827  0.4501886  0.4501983  -0.23246558  -0.23246558
213 0,4501827  0.4501886  0.4.501923 0.4501983  -0.23246558  -0.23246558

Example 8.2. Find the minimum of the unimodal function / (x) = x2—sinu) on [0, 1].

Solution by solving f'(x) = 0. A root-finding method can be used to determine where
tbe derivative f ’(x) = 2x —cos(jc) is zero. Since /'(0) = —larid /'(1) = 1.4596977,
arootof f'(x) lies in the interval [0, 1]. Starting with po —0 and p\ = 1, Table 8.1 shows
the iterations.

Hie conclusion from applying the secant method is that /'(0.4501836) = 0. The
Second derivative is f \jc) = 2+ sin(x) and we compute /"(0.4501836) = 2.435131 > 0.
Hence the minimum value is /(0.4501836) - —0.2324656.

Solution using the golden search. At each step, the function values / (c) and / (d)
are compared and adecision is made as to whether to continue the searchin [a, d\ or jc, b].
Some of the computations are shown in Table 8.2.

At the twenty-third iteration the interval has been narrowed down to [ar3, £23] =
[0,4501827,0.45019831- This interval has width 0.0000156. However, the computed func-
tion values at the end points agree to eight decimal places (i.e., / (a;r3) —0.23246558 =
f hence the algorithm is terminated. A problem in using search methods is that the
function may be flat near the minimum, and this limits the accuracy that can be obtained.
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The secant method was able to find the more accurate answer p$ = 0.45018.36.
Although the golden search is slower in this example, it has the desirable feature ibat
it can be applied in cases where f(x) is not differentiable. ]

Finding Extreme Values off(x, y)

Definition 8.1 is easily extended to functions of several variables. Suppose that f(x. i)
is defined in the region

(3 R={(xy):(x- p)z+{y- q)2<r2}

The function /(jc, y) has alocal minimum at (p, q) provided that
4 f(p, q) < /(jc, >0 for each point (x, y) € R.
The function fix, y) has alocal maximum at ip, q) provided that
(5) f(x,y)<f(p.,q) for each point (jc, y) € R.

The second derivative test for an extreme value is an extension of Theorem 8.4.

Theorem 8.5 (Second Derivative Test). Assume that f{x,y) and its first- and
second-order partial derivatives; are continuous on aregion R. Suppose that (p.q) e R
is acritical point where both /7 .(p, q) = 0 and f yip, q) = 0. The higher-order partial
derivatives are used to determine the nature of the critical point,

(i) If fxxip, q)fyy(p,q) - fxy(P>q) > 0 and fxx(p, q) > O, then f(p,q) i>a
local minimum of /.

iy if fxx(P, q)fyy(p,q) ~ fEy(P,4) > 0 and fxx(p<qg) < 0, then f(p, q) is ;
local maximum of /.

(iiiy If txxip . A)fyy (P =Q) —fxy (P then fix, y) does not not have a local
extremum at (p, Q).

(iv) If fxx(p, Q)fgy (P, a) ~ P> q) = 0. this test is inconclusive.

Example 8.3. Find the minimum of fix, y) = X2 —Ax + y2 —y —xy.
The first-order partial derivatives are

(6) fx(x,y) - 2x- 4 -y and fy{x,y)=2y- 1- x.
Setting these partial derivatives equal to zero yields the linear system

2X —y ~ 4
-x+2y =1



Sec.81 Minimization of a Function 405

The solution to (7) is (x,y) = (3, 2). The second-order partial derivatives of f(x, y) are
fxx(x,y) = 2, fyy(x,y) = 2, and  fxy(x,y) = ~ 1
It is easy to see that we have case (i) of Theorem 8.5, that is
/,, (3.2)fyy(3,2) - /0 (32)=3>0 and [/, (3,2)=2>0.

Hence f(x,y) has alocal minimum /(3, 2) = —7 at the point (3, 2).

The Nelder-Mead Method

A simplex method for finding alocal minimum of a function of several variables has
been devised by Nelder and Mead. For two variables, a simplex is a triangle, and
the method is a pattern search that compares function values at the three vertices of a
triangle. The worst vertex, where f(x,y) is largest, is rejected and replaced with anew
vertex. A new triangle is formed and the search is continued. The process generates
asequence of triangles (which might have different shapes), for which the function
values at the vertices get smaller and smaller. The size of the triangles is reduced and
the coordinates of the minimum point are found.

The algorithm is stated using the term simplex (a generalized triangle in N di-
mensions) and will find the minimum of afunction of N variables. It is effective and
computationally compact.

The Initial Triangle BG W

Let f(x, y) bethe function thatis to be minimized. To start, we are given three vertices
of atriangle: Vjt = (**, >)>k = 1, 2, 3. The function f( x , y) is then evaluated at each
of the three points zk — f (xk, ¥k) for k = 1,2, 3. The subscripts are then reordered so
that zi < 12 < Z3- We use the notation

(8) B = (x\, yi), G = (xz, >2), and W = (x3,73)
to help remember that B is the best vertex, G is good (next to best), and W is the worst

vertex.

Midpoint of the Good Side

‘The construction process uses the midpoint of the line segmentjoining B and G . It is
found by averaging the coordinates:

(9
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& / Figure 8.4 The triangle ABGw
and midpoint M and reflected point;
R for the Nelder-Mead method.

G
Figure 85 The triangle ABGW and point H and extended point E.

Reflection Using the Point R

The function decreases as we move along the side of the triangle from W to B. anti ii
decreases as we move along the side from W to G. Hence it is feasible that f(x, Vv)
takes on smaller values at points that lie away from W on the opposite side of the line
between B and G. We choose atest point R that is obtained by “reflecting” the triangle
through the side BG. To determine R, we first find the midpoint M of the side BG.
Then draw the line segment from W to M and call its length d. This last segment is
extended a distance d through M to locate the point R (see Figure 8.4). The vecior
formula for R is

(10) R —M + (M —W) —2M —W

Expansion Using the Point E

If the function value at R is smaller than the function value at W, then we have moved
in the correct direction toward the minimum. Perhaps the minimum is just a bit farther
than the point R. So we extend the line segment through M and R to the point E
This forms an expanded triangle BGE. The point E is found by moving an additior
distance d along the line joining M and R (see Figure 8.5). If the function value at f
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Figure 8.6 The contraction point
Ci or Cr for Nelder-Mead method

Figure 8.7 Shrinking the triangle
G toward B.

is less than the function value at R, then we have found a better vertex than R. The
vector formula for E is

11) E=R+(R-M)=--2R-M .

Contraction Using the Point C

If the function values at R and W are the same, another point must be tested. Perhaps
the function is smaller at M , but we cannot replace W with M because we must have
atriangle. Consider the two midpoints Ci and C2 of the line segments WM and M R,
respectively (see Figure 8.6). The point with the smaller function value is called C,
and the new triangle is BGC. Note: the choice between C1 and C2 might seem
inappropriate for the two-dimensional case, but it is important in higher dimensions.

Shrink toward B

If the function value at C is not less than the value at W, the points G and W must be
shrunk toward B (see Figure 8.7). The point G is replaced with M, and W is replaced
with S, which is the midpoint of the line segmentjoining B with W.
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Table 8.3 Logical Decisions for the Nelder-Mead Algorithm

IF f (R) < /(G), THEN Perform Case (i) {either reflect or extend)
ELSE Perform Case (ii) {either contract or shrink]

BEGIN {Case (i).} BEGIN {Case (ii).}
IF/(B) < /(/?) THEN iF /() < f(W) THEN
replace W with R L replace W with R
ELSE Compute C = (W + M)/2
orC= (M + R)/2 and/(C)
Compute E arid /(£) IP/(C) < /(W) THEN
IF /(£) < /(5) THEN replace W with C
replace TV with E ELSE
ELSE Compute S and / (5)
replace W with R replace W with 5
ENDIF replace G with M
ENDIF ENDIF
END {Case (i).} END {Case (ii).}

Logical Decisions for Each Step

A computationally efficient algorithm should perform function evaluations only i:
needed. In each step, a new vertex is found, which replaces W. As soon as it i-
found, further investigation is not needed, and the iteration step is completed. The
logical details for two-dimensional cases are explained in Table 8.3.

Example 8.4. Use the Nelder-Mead algorithm to find the minimum of / (jc,y) ®E=Xx1-
4x + y2 —y —xy. Start with the three vertices

Vi=(0,0), V2= (1.2,0.0), v3 = (0.0,0.8).
The function f(x,y) takes on the values

/(0.0) = 0.0, /(1.2, 0.0) = —3,36, /(0.0,0.8) =-0.16.

The function values must be compared to determine B, G, and W;
B =(1200), G-=(0.00.8), W= (0,0).

The vertex W — (0,0) will bereplaced. The points M andR are

M=B=2° = (0604 ad R=2M- W= (1.20.8).
7'he function value f(R) = /(1.2,0.8) = —4.48 is less than /(G), so the situation

case (i). Since f(R) < f (B), we have moved in the right direction, and the vertex E must
be constructed:

E=2R- M = 2(1.2,0.8) - (0.6,0.4) = (1.8,1.2).
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Figure 8.8 The sequence of triangles {7*} converging to the point (3, 2) for the
Nelder-Mead method.

The function value / (E) = /(1-8,1,2) = —5.88 is less than /(B), and the new triangle
has vertices

Vi= (1.8 1.2), V2= (1.2,0.0), V3= {0.0,0.8).

The process continues and generates asequence of triangles that converges down on the
solution point (3,2) {see Figure 8.8). Table 8.4 gives the function values at vertices of the
triangle for several steps in the iteration. A computer implementation of the algorithm con-
tinued until the thirty-third step, where the best vertexwas B = (2.99996456, 1.99983839)
and f(B) = —6.99999998. These values are approximations to /(3, 2) = —7 found in
Bxample 8.3. The reason that the iteration quit before (3, 2) was obtained is that the func-
tion is flat near the minimum. The function values f(B), /(G), and / (W) were checked
and found to be the same (this is an example of round-off error), and the algorithm was
terminated, n

Minimization Using Derivatives

Suppose that f(x) is unimodal over [a, b\ and has aunique minimum atx = p. Also,
assume that }'{x) is defined at all points in (a, b). Let the starting value po lie in
(a, b). If f '(po) < 0, the minimum point p lies to the right of po- If f'(po) > 0, p
lies to the left of po (see Figure 8.9).
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Table 8.4 Function Values at Various Itiangles for Example 8.4

* Best point Good point Worst point

1 /(1.2,0.0)= -3.36 /(0.0,0,8)= -0.16 /(0.0,0.00= 0.00
2 /(1.8, 12)= -5.88 /(1.2,0.0)= -3.36 /(0.0,0.8)= - 0.16
3 /(1.8,12)=-5.88 /(3.0,0.4)= -4.44 /(1.2,0.0)= - 3.36
4 /(3.6, 16)= -6.24 /(/.8,1.2)= -5.88 /(3.0,0.4)= - 444
5 /(3.6,16)= -6.24 /(2.4,24)= - 6.24 /(1.8,1.2)= - 588
6 /(24,16)= -6.72 /(3.6,1.6)= -6.24 /(2.4,24)= - 624
7 /(3.0, 1.8)=-6.96 /(2.4,1.6)= -6.72 /(2.4,24)= - 6.24
8 /(3.0, 1.8)= -6.96 /(2.55, 2.05) = - 6.7725 /(2.4,1.6)= - 6.72
9 /(3.0, 1.8)= -6.96 /(3.15,2.25)= -6.9525 /(2.55,2.05)= - 6.772:
10 /(3.0,1.8)*-6.96  /(2.8125,2.0375) = - 6.95640625 /(3,15,2.25)= - 6.9525

Iff'(p0) < O then If/'<pD > 0 then

p lies in [p0, £, plies in[a pO}
Figure 8.9 Using /'(*) to find the minimum value of the unimodal func-
tion /(jc) on the interval [a. b].

Bracketing the Minimum

Our first task is to obtain three test values,

(12) po, pi = po+ A and P2 = Po+ 2A,
so that
(13) f(Po)>f(Pi) and A n)</(P2).

Suppose that /'(po) < 0; then Po < p and the step size h should be chosen position
It is an easy task to find avalue for h so that the three points in (12) satisfy (1.3). Start
with h = 1in formula (12) (provided thata + 1 < b).

Case (i): If (1.3)is satisfied, we are done.

Case (ii): If /(po) > /(pi) and /(pi) > /(p2), then p2 < p. We need
to check points that lie farther to the right. Double the step size ax
repeat the process.



Sec.81 Minimization of a Function 411

Case (iii): If / (po) < fipi), we havejumped over p andJi is too large. We need
to check values closer to po. Reduce the step size by afactor of j and
repeat the process.

When f'(po) > 0, the step size h should be chosen negative and then cases similar
to (i) to (iii) can be used.

Quadratic Approximation to Find p

Finally, we have three points (12) that satisfy (13). We w ill use quadratic interpolation
to find Pmin, which is an approximation to p. The Lagrange polynomial based on the
nodesin (12) is

{1@) 6‘(x)‘— Yi(x - p_i>§x - pi) yiO - pg)(x = P2) , WX~ pa)ix - pi)

The derivative of Q(x) is

n~» n//M _ Yo(2x ~ PY - P2)  y\(2x - Po- Pi) , yi(2x —Po ~ P\)
1 2h2 ' h2 + . 2h2

Solving Q'(x) = 0in the form Q'ipo + w®) = 0 yields

0 _ yo(2(po + Amin) - Pi - pi) _ Y\(41>0 + ftmin) - 2po - 2pi)

(16) _ Ihi 2h2
Y2(2(po + hmin) - po- Pi)

+ 2h2

Multiply eachterm in (16) by 2h2 and collect terms involving

-ftmin(2yo ~ 4.yi + 2yi) = yo(2po ~ p\ - pi)
- yi(4/>0 - 2po - 2pi) + yr{2po - po - p\)
yo(~3h) - yi(~4h) + y2(.-h).

This last quantity is easily solved for Amin:

h{4y\ - 3yo “ ¥2
a7 ftmin = {y Y )
4yi -2yo0-2y2

The value puy, = PO + Amin is a better approximation to p than po. Hence we
can replace po with pmr, and repeat the two processes outlined above to determine a
new h and a new Continue the iteration until the desired accuracy is achieved, i
The details are outlined in Program 8.3.
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Steepest Descent or Gradient Method

Now let us turn to the minimization of a function f(X) of N variables, where X =
x| X2 tjiv). The gradient of fI X ) is avector function defined as follows

(18) grad/(X) = (/]./2, /an),

where the partial derivatives fk — of /gxk are evaluated at X.

Recall that the gradient vector (18) points Locally in the direction of the greatestrate
of increase of f(X). Hence —grad f(X ) points locally in the direction of the greatest
decrease. Start at the point Po and search along the line through Po in the direction
So = -G j jIG]ll,where G = grad /(Po). You will arrive at apoint P j. where alocal
minimum occurs when the point X is constrained to lie on the line X = Po + rSo-

Next, we can compute G — grad/(Pi) and move in the search direction Si ~
—G/ 1G |l You will cometo P r, where alocal minimum occurs when X is constrained
lo lie onthe line X — P\ + tS\ Iteration will produce asequence (P *} of points with
the property/(jiPq) > /(P i) > /(P*) > emm|flim*—,» P* = P, then f(P)
w ill be alocal minimum for f(X).

Outline of the Gradient Method
Suppose that P k has been obtained.

Step |I. Evaluate the gradient vector G — grad / (P *).

Step 2. Compute the search direction S = —G/ j[G |.
Step J. Perform asingle parameter minimization of ®(/) = / (P* + 1IS) onfre
interval (0. b], where b is large. This will produces valuet = where

alocal minimum for ® (0 occurs. The relation ® (At w) = /(P *+
shows that this is a minimum for / (X) along the search line X = Py~
Ajuns.

Step 4. Construct the next point Pb~\ = Pk + hininS.

Step 5. Perform the termination test for minimization:; thaiis, are the function val-
ues f(Pk) and /(Pjt-i-i) sufficiently close and the distance tIP* +i — A*Il
small enough?

Repeat the process.

Program 8.1 (Golden Search for a Minimum). To numerically approximate the
minimum of j'(x) on the interval [a, b] by using agolden search. Proceed with the
method only if fix) is aunimodal function on the interval [a, b],

functioa[S,E,G]“goldenit,a,b,delta,epsilon)

Vlinput - f is the object function input as a string ’f:
7, - a and b are the end points of the interval
k4 - delta is the tolerance Sor the abscissas
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X - epsilon is the tolerance for the ordinates
'/.Output - S“ (p,yp) contains the abscissa p and

% the ordinate yp of the minimum

"4 - E*(dp,dy) contains the error bounds for p and yp
% - Gis ann x 4 matrix: the kth row contains
% [ilk ck dk bk]; the values of a, c, d, and b at the
% kth iteration

rle(sqrt(5)-1)/2;

r2-rl 2;

ivb-a;

ya=feval (T ,;i);

yb-feval (f ,b) ;

C=a+r2*h;

d a+rl*h;

yc=Ffeval (f,c);

yd-feval (f ,d) ;

JC-1,
A(k)=a;B<k)“b;C(lc)“c;D(k)-d;

while(abs(yb-ya)>epsilon)l(h>delta)
k=k+lI;
if(yc<yd)
b-d;
yb«yd;
d=c;
yd=yc;
h“b-a;
c=a+r2*h;
yc=feval(f,c);
else
a=c;
M=yc,
c-d;
yc=yd;
h-b-a;
d-a+rl*h;
yd"feval(f,d);
end
A(k)-a;B(k)=b;C(k)“c;D(k)=d;
end
dp=abs(b-a);
dy=>absCyb-ya);
-
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yp=ya;
if (yb<ya)

p=b;

yp=yb;
end
G=[A1 C" D' B’];

S=[p yp];
E=[dp dy];

Programs 8.2 and 8,4 require that the object function f be saved as an M-file. Tb
argument of f needs to be a 1 x n aiTay. To illustrate consider saving the function m
Example 8.3 as an M-file:
function z=f(V)
z=0; x=V (); y=V(2);

Z=X."2-4X+y."2-y-X.*y]

Program 8.2 (Nelder-Mead’s Minimization Method). To approximate a local

minimum of / (x\, X2, ..., xn), where / is acontinuous function of N real vari-
ables, and given the N + 1initial starting points V* — (L i ........ vt,s) fork = 0,
Lo N.
function[VO,yO,dV,dy]=nelder{F,V,mini,maxi, e psilon,show)
/hput - F is the object function input as el string ’F’
| - Vis a3 x n matrix containing starting simplex
VA - mini K maxi are minimum and maximum number
7. of iterations
% - epsilon is the tolerance
*, - show ®= 1 displays iterations (P and Q)
70 utput - VO is the vertex for the minimum
% - yO is the f-unction value F(VO)
7. - dV is the size of the final simplex
A - dy is the error bound for the minimum
- P is a matrix containing the vertex iterations
%, - Qis an array containing the iterations for F(-'

if nargin==5,
shov=0;
end
[Mm n]=size (V);
i, Order the vertices
for j=Lin+I
Z=V (J,l:in);
Y (j)=feval(F,z2);
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end
C=(V (hi,1:n)+M)/2;
yC=feval(F,C);
C2=(M+R)/2;
yC2=fevalCF,C2);
if CyC2<yC)
C=C2;
yC=yC2;
end
if(yC <Y (hi))
V (hi,l:n)»C;
Y (hi)=yC;
else
for j=lin+:L
if (j~=1lo)
V((j,1l:n)=CVCj,1:;n)+V(lo,1:n))/2;
Z=V (| .ln);
Y (j)==feval(F,2)
end
end
end
end
[Mm lo]=min(Y);
[rm hil=max(Y);

Ho=lo;
for j=ln+I
if (jJ~=lo&j~"hifcY{j)<=Y(li))
u=y>
end
if g~=bi&j~-10&Y(j)>=Y(ho))
ho=j ;
end
end
CHt=CE.t+1 ;
P(cnt,:)=*V(lo,:):
Q(cnt)«Y(lo);
end
% End of Nelder-Mead algorithm

°/,Determine size of simplex
snorm=0;
for j=l:n+1

S-norm(V(j )-V (lo)) ;
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if (s>«snorm)
snorms=s;
end
end
fl-Qi
V0=V (lo,1:n);
yO=Y(lo);
dV=SHOnn;
dy=abs(Y(hi)~Y(lo));
if (show==l)
dispCP) ;
disp(Q);

end

Program 8.3 (Local Minimum Search Using Quadratic Interpolation). To find
alocal minimum of the function / (x) over the interval [a, bj, by starting with one
initial approximation p$ and then searching (he intervals [a, po] and [po, b\

function[p,yp,dp,dy,P]J=quadmin(f,a,b,delta,epsilon)

¥Input - f is the object function input as a string 'f’
1 ~ a and b axe the end points of the interval
Y - delta is the tolerance for the abscissas

- epsilon is the tolerance for the ordinates
70utput - p is the abscissa of the minimum
7, - yp is the ordinate of the minimum
4 - dp is the error bound for p
YA - dy is the error bound for yp
M - P is the vector of iterations
pO=a;
maxj=20;
maxk=30;
big=le6;
err=1;

k-1,

P(k)=pO;

cond=Q;

h=I;

if (abs(p0)>le4),h=abs(p0)/le4;end

while(k<maxk&err>epsilon&cond~=5)
fl=(feval(f,p0+0.00001)-feval(f,p0-0.00001))/0.00002;
if (f1>0),h=-abs(b);end
pl=pO+h;
p2=p0+2*h;
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pmin**p0O;
yOo«feval(f,p0);
yl=fevalJL(f,pl);
y2=feval(f,p2);
yaiin=yO;
cbnd»=0;
=0;
MDetermine h so that yl<yOfeyl<y2
while g <maxj&abs(tO >deltafccond==
if (jrO<»yl),
p2=pl;
y2-yl;
h=th/2;
p 1“pO+h;
yl.“feval (f ,pI);
else
if(y2<yl)
pl=p2;
y|»y2;
h=2%*h;
p2=p0+2*h;
y2»feval(f fp2) ;
else
cond=-[;
end
end

if(abs(h)>biglabs(pO)>big),cond=5;end
end
if(cond»“5),
pmin~pl;
ymin-feval(f,pl);
else
7.Quadratic interpolation to find vyj
d“4*yl-2*y0-2»y2;
if(d<0),
hmin-h*(4*yl-3*y0-y2)/d;
else
hmin=h/3;
cojad” 4 ;
end
paiin=pO+hijnin;
Ymin=:feval(f,pmin);
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h**abs (,h) ;
hO=abs(hmin);
hl=abs(hmin-h);
h2=abs(hmin-2*h);

'/.Determine magnitude ot next h
if(hO<h),h»hO;end

if Chl<h),h=hl;end

if(b2<h),h=h2;end

if (h.==0) ,h=hmin;end

if (h.<delta),cond=l;end

if (abs(h)>big iabs (pmin)>big),ccrnd-b;end

'[.Termination test for minimization
eO“abs(yO-ymin);
el=aba (yl-ymin);
e2=abs Cy2-yain);
if(e0~=0 fc eO<err),err=e0;end
if(el~--*I0 k eKersr) ,err=el;end
if(e2"-*0 & 2<err),err=e2;end
if(e0'--=0 & el==0 «k e2==0) ,error”0;end
if(err<epsilon),cond*2;end
pO=pmin;
k-k+1;
P(k)=pO;
end
if(cond==2&h<delta),cond=3;end
end
F=pO;
dp=h;
jp-fevalCf ,p) ;
dy-err;

Program 8.4 requires that the object function f be saved as an M-file. Additionally,
the search direction - grad // ligrad/|| needs to be saved as an M-file. To illustrate,
considerthe function / from Example 8.3, where the gradient of / is (2x —4 —y. 2y —
1- r). An appropriate M-file for this particular function / is

function z=G(V)
z=zeros(l,2);
X=V(l);y=V(2);
9“[2x-4-y 2*y-1-x] ;
z—{IVnorm(g)) *g;
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Program 8.4 (Steepest Descent or Gradient Method). To numerically approxi-
mate a local minimum of f(X]1,where / is acontinuous function of N real variables
and X = (xi,x2, m xn), by starting with one point Pq and using the gradient
method.

function[PO0,y0,err]=grads (F,G,PO,maixl,delta, epsilon, show)

f.Input - F is the object function input as a string ’'F'

% - G=-C/norm(grad F))*grad F; the search direction
A input as a string 'G’

7, - PO is the initial starting point

F - maxi is the maximum number of iterations
% - delta is the tolerance for hmin in the single
1, parameter minimization in the search direction
', - epsilon is the tolerance for the error in yoO
', - show; if show==l the iterations are displayed
7.0utput - PO is the point for the minimum

% - yO is the function value F(PO)

y - err is the error bound for yO

7. - P is a vector containing the iterations

if nargin==5,show=0;end
[Mm nj =] size(PO);
majcj=10; big=!e8; h=I;
P=zeros(maxj,n+l);
len=norm(P0);
yO=feval(F,P0);
if (len>ed),h=len/le4;end
err=1;cnt=0;cond=0;
P(cnt+1,:)=[PO yOl;
while (cnt<maxl&cond~=58: (h>delta lerr>epsilon))
7.Compute search direction
S=feval(G,P0);
7.Start single parameter quadratic minimization
PI=PO+h*S;
P2=P0+2*h+S;
yl=feval(F,Pl);
y2=feval(F,P2);
cond=0;j=0;
w hile(j <maxjfccond==0)
len=norm(P0);
if (yo<yl)
P2=P1,
y2=yl;
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h=b/2;
PI=PO+h*S;
yl=feval(F,Pl);
else
if(y2<yl)
P1=P2;
yl~y2;
h=2*h;
P2--P0+2*h*S ;
y2“feval(F,P2);
else
cond=-I;
end
end

if(iKdelta),cond=I;end
if(abs(h)>bigllen>big),cond=5;end
<Sd

if(cond==5)
Pmin=PlI;
ymin=yl;
else
d=4*yl-2*y0-2*y2;
if(d<0)
hmin=.h* (4*yl-3*y0-y2)/d;
else
cond=4;
bmin=h/3;
end

'[.Construct the next point
Pm+n=PO+hmin*S;
ymin=feval(F,Pmin);

f.Determine magnitude of next h
hO=abs(hmin);

hl=abs(hmin-h);
h2=abs(hmin-2*h);
if(hO<h),h=h0;end
if(hl<h),h=hl;end
if(h2<h),h=h2;end
if(h==0),h=hmin;end
if(IKdelta).cond=l;end
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'"Termination test for minimization
eO0=abs(yO-ymin);
el=abs(yl-yjnin) ;
e2=abs(y2-ymin);
if (e0~=04:e0<err) ,err=e0;end
if (el~=0&ei<err) ,err=el;end
if (e2~=04:e2<err) ,err=e2;end
if(e0==0&el==0&e2==0),err=0;end
if (err<epsilon) ,cond==2;end
if(cond==2&h<delta), cond=3;end

end

cnt=cnt+l;

PCcnt+1, :)=[Pmin ymin] ;

PO=Pmin;

yO-ymin;

end

if(show==1I)
disp(P) ;

end

Exercises for Minimization of a Function

1. Use Theorem 8.1 to determine where each of the following functions is increasing
and where it is decreasing.
(@ f(x)=2x3- 9x2+ 12*- 5
(b) fix) =x/(x + 1)
(c) fix) = (x+ I)jx

(d) f{x)~ xz
2. Use Definition 8.3 to show that the following functions are unimodal on the given
intervals.

(a) f(x) =x2-2x + 1,[0,4]
(b) f(x) =mcos(j:); [0, 3]
(c) fix) =xx\[1, 10]
(d) fix) = —x(3 - m)5"3;[0, 3]
3. Use Theorems 8.3 and 8.4, iif possible, to find all local minima and maxima of each
of the following functions on the given interval.
{a) fix)= 4*3- 8x2—11* + 5; [0, 2]
() fix) =x +3/x2;[0.5,3]
(c) f(x) = (x+25)/(4- x2H[-1.9, 1.9]
(d) fix) = e*/x2;[0.5, 3]
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(e) fix) =- sin(x) - sin(3x)/3; [0, 2]
(f) fix) = —=2sin(x) + sin(2jc) —2sin(3jc)/3; [1, 3]

. Find the point on the parabolay = x 2 that is closest to the point (3,1).
. Find the pointon the curve y = sin(jr) that is closest to the point (2,1).
. Find the point{s) on the circle x1 + y1 — 25 that is farthest from the chord A B if

N = (3,4)awlB = (-1,n/54).

. Use Theorem 8.5 to find the local minimum of each of the following functions.

(@ f(x,y)=x3+y3- 3x-3y+5

(b) f(X,y)=Xx2+y2+Xx -2y -xy+ 1
() f(x,y) =x2y +xy2-3xy

<d) fix,y) = (x-y)/ix2+y2+2)

(e) f(x,y)= 100G>- x22+ (1 - x)2
(Rosenbrock’s parabolic valley, circa 1960)

. LetB —(2,—=3), G = (1, 1), and W = (5,2). Find the points M, R, and E and

sketch the triangles that are involved.

. Let B = (—1, 2), G = (—2, —5), and W = (3, 1). Find the points M, R. and E and

sketch the triangles that are involved.

Give a vector proofthat M = (B + G)/2 is the midpoint of the line segmentjoining
the points B and G.

Give avector proof of equation (10).

Give a vector proofof equation (11).

Give a vector proof that the medians of any triangle intersect at a point that is two-
thirds of the distance from each vertex to the midpoint of the opposite side.

LetB = (0,0,0), G = (1, 1,0), P = (0,0, 1), and W = (1, 0, 0).

(a) Sketch the tetrahedron BGPW.

(b) FindM = (B+ G + P)/3.

(c) Find R = 2M —W and sketch the tetrahedron BGPR.

(d) Find E —2R —M and sketch the tetrahedron BGPE.

Let B = (0,0,0), G - (0,2,0), P = (0,1, 1), and W = (2,1,0). Follow the
instructions in Exercise 14.

Algorithms and Programs

. Use Programi 8.1 to find the local minimum of each of the functions in Exercise 3

with an accuracy of eight decimal places.

Use Program 8.3 to find the local minimum of each of the functions in Exercise 3 with
an accuracy of eight decimal places. Start with the midpoint of the given interval.



424

Chap.8 Numerical Optimization

Use Program 8.2 to find the minimum of each of the functions in Exercise 7 with ¢,
accuracy of eight decimal places. Use the following starting vertices:

(a) (1,2), (2,0), and (2, 2)

(b) (0,0), (2,0), and (2, 1)

(c) (0,0), (2,0), and (2, 1)

(d) (0,0), (0,1), and (1,1)

(e) (0,0), (1,0), and (0,2)

. Use Program 8.4 to find the minimum of each of the functions in Exercise 7 with an
accuracy of eight decimal places. Use the starting vertex:
(@ (1.2) (b) (0,0.3) (c) (0.1,0.1)
(d) (0.5,0.11) (e) (0,0)

. In Program 8.4 the X and y coordinates of the iterations are stored in the first two

columns of the matrix P, respectively. Modify Program 8.4 so that it will plot the X
and y coordinates of Ethe iterations on the same coordinate system. Hint. Incorporate
the command plot (P (:, 1),P(:, 2), 1. ") into your program. Use this program on
the functions in Exercise 7.
Use Program 8.2 to find the local minimum of each of the following functions; with
an accuracy of eight decimal places.
@ [/ (x,y,2) =2x2+2y1+22- 2xy +yz —7y - 4z
Start with (1,1,1), (0,1,0), (1,0,1), and (0,0,1).
(b) fix,y,z,u) —2(x2+y2+2z2+u2)- x(y+z- u)+yz~"bx- 8y-5z -9u
Start the search near (1,1,1,1).
<c) f(x,y,z,u) = xyzu+ - + i + - + -
) f(x,y,z,u) = xy Tt
Start the search near (0.7,0.7,0.7,0.7).

Use Program 8.4 to find the local minimum of each of the functions in Problem 6.
Use a starting value near one of the given vertices.

. Use Program 8.1 and/or 8.3 to find all local maxima and minima of the following

function in the interval [0, 2].

X3+ x2- 12x - 12
f ~ 2X6~ 3x5- 4x4+ 9x2+ 12* - 18

. Find the point on the surface z = x2 + y2that is closest to the point (2, 3, 1).
10.

A company has five factories A, B, C, D, and E, located at the points (10, 10),
(30,50), (16.667,29), (0.555,29.888), and (22.2221,49.988), respectively, in the
nry-plane. Assume that the distance between two points represents the driving diis
tance, in miles, between the factories. The company plans to build a warehoijy a
some point in the plane. It is anticipated that during an average week there will be

18, 20, 14, and 25 deliveries made to factories A, B, C, D, and E, respectively. Ideai iy,
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to minimize the weekly mileage of delivery vehicles, where should the warehouse be
located?

11. In Problem 10, where should the warehouse be located if, due to zoning restrictions,
it must be located at a point on the curve y —n2?



Solution of Differential Equations

Differential equations are commonly used for mathematical modeling in science and
engineering. Often there is no known analytic solution and numerical approximation >
are required. As an illustration, we consider population dynamics and a nonlinear
system that is a modification of the Lotka-Volterra equations:

X'=/(/, X, y)~X-Xxy- -j~r2 and =gty x,y)=xy-y-
with the initial condition je(0) = 2 and j>(0) = 1for0 < t < 30. Although th -

numerical solution is a list of numbers, it is helpful to plot the polygonal path joining
the approximation points {(jc*, >*}and plot the trajectory shown in Figure 9.1. In this

y
Figure 9.1 The trajectory n>r a
nonlinear system of differential
0.0 k2 A —J — x equations*’ = f(t,x,y) and

05 10 15 2.0 y' = g(t,x,y).
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cC=2 C=1 C=o

chapter we present the standard methods for solving ordinary differential equations
systems of differential equations, and boundary value problems.

Introduction to Differential Equations

Consider the equation

@ bt =1

It is a differential equation because it involves the derivative dyjdt of the “unknown
function” y = y(t). Only the independent variable f appears on the right side of
equation (1): hence a solution is an antiderivative of 1 —e~*. The rules of inlegration
can be used to find y(f):

2 y{t) =t+e~+ C,

where C is_tbe constant of integration. All the functions in (2) are solutions of (1)
because they satisfy the requirement that y'{t) m=1 — They form the family of
curves in Figure 9.2,

Integration was the technique used to find the explicit formula for the functions
in (2), and Figure 9.2 emphasizes that there is one degree of freedom involved in the
solution, that is, the constant of integration C. By varying the value of C, we “move the
solution curve” up or down, and a particular curve can be found that will pass through
any desired point. The secrets of the world are seldom observed as explicit formulas.
Instead, we usually measures how a change in one variable affects another variable.
When this is translated into a mathematical model, the result is an equation involving
the rate of change of the unknown function and the independent and/or dependent
variable.
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v
3
A=2
Figure 9.3 The solution curves
f y=A+ (yo—A)e~k for Newion
0 law of cooling (and wanning).

Consider the temperature y (f) of acooling object. It might be conjectured that the
rate of change of the temperature of the body is related to the temperature difference
between its temperature and that of the surrounding medium. Experimental evidence
verifies this conjecture. Newton’s law of cooling asserts Ihat the rate of change is
directly proportional to the difference in these temperatures. If A is the temperature of
the surrounding medium and y(t) is the temperature of the body at time r, then

(3)

where K is a positive constant. The negative sign is required because dy Jdt will be neg-
ative when the temperature of the body is greater than the temperature of the medium.

If the temperature of the object is known at time t = 0, we call this an initial
condition and include this information in the statement of the problem. Usually, we
are asked to solve

() 5= Ky —A) with  y(0) = yo.

The technique of separation of variables can be used to find the solution
(5) y - A+ (yo- A)e~kt.

For each choice of yo, the solution curve will be different, and there is no simple
way to move one curve around to get another one. The initial value is a point where the-
desired solution is “nailed down ™ Several solution curves are shown in Figure 9.3, and
it can be observed that as t gets large the temperature of the object approaches room
temperature. Ifyo < A, the body is wanning instead of cooling.

Initial Value Problem
Definition 9.1. A solution to the initial value problem (I. V.P.)

6) y'—I1(/,y) with y(fo) = yo
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on an interval [ro, b] is a differentiable function y —y(t) such that
) y(to) = yo and y'(t) = f(t, y(t)) for all t € [0, b\. a

Notice that the solution curve 3?= y(i) must pass through the initial point (ro. yo).

Geometric Interpretation

Ateach point (t, y) in the rectangularregion R = ((/.y) :a <t <btc <y < d}
the slope of a solution curve y = y(f) can be found using the implicit formula m =
f(t, y(t)). Hence the values mtj — f(ti, yj) can be computed throughout the rectan-
gle, and each value m;j represents the slope of the line tangentto a solution curve that
passes through the point (f,, >j).

A slope field or direction field is a graph that indicates the slopes {m;j} over the
legion. It can be used to visualize how a solution curve “fits” the slope constraint. To
move along a solution curve, one must start at the initial point and check the slope
field to determine in which direction to move. Then take a small step from foto ro + h
horizontally and move the appropriate vertical distance A/(fo, yo) so that the resulting
displacement has the required slope. The next point on the solution curve is (t\, yi).
Repeat the process to continue your journey along the curve. Since a finite number of
steps will be used, the method will produce an approximation to the solution.

Example 9.1. The slope field for y’ — (t —y)/2 over the rectangle R = {(r,y) :0 </ <
5,0 <y < 4} is shown in Figure 9.4. The solution curves with the following initial values
are shown:

1. Fory(O) = 1, the solution is y(t) = —2+t

UFory(0) = 4, the solution isy(r) = 6e~* —2 +t. LU



430 Chap.9 Solution of Differential Equations

Definition 9.2, Given the rectangle R ~ {(t,y) :a <t < b,c <y < d), assume
that /(/, v) is continuous on R. The function f is said to satisfy a Lipschitz condition
in the variable y on R provided that a constant L > 0 exists with the property that

(8) \E(t,y\) ~ /(F. Y2\< L lyi - y2\

whenever (/, yi), (t, yr) € R. The constant L is called a Lipschitz constant for f. a

Theorem 9.1. Suppose that f(t, y) is defined on the region R. If there exists a
constant L > 0 so that

9) [fyt, y\ <L  for all (f,y) 6 R,

then / satisfies a Lipschitz condition in the variable y with Lipschitz constant L over
the rectangle R.

Proof. Fix t and use the mean value theorem to get ci with yi < ¢\ < y2so that

ifit, yi) - f{t, ¥2)} = Kfy(t, Cl)(yi - y2)I
= \My(t, ci)|lyi -y 2\ < Llyi - y2\

Theorem 9.2 (Existence and Uniqueness). Assume that/ (r. y) is continuous in3
region R = {(f,y) :to <t <b,c <y <d}. Iff satisfies a Lipschitz condition on R
in the variable y and (to, yo) e R, then the initial value problem (6), y' = f(t, y) with
y(?0) = yo. has a unique solution y = y (r) on some subinterval to <t <fo+ S.

Proof, See atext on differential equations such as Reference [38]. .

Let us apply Theorems 9.1 and 9.2 to the function f(t, y) = (t —y)/2. The paitial
derivative is fy(t, y) = -1/2. Hence !/v(r, y)| < \ and, according to Theorem 9.1.
the Lipschitz constantis L — Therefore, by Theorem 9.2 the 1.V.P. has a unique
solution.

Sketches of the slope field and solution curves can be constructed by using the
meshgrid and quiver commands in MATLAB. The following M-file will generate a
graph analogous to Figure 9.4. In general, care must be taken to avoid points (t, y) at
which y* is undefined.
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[t,yl]=meshgrid(l:5,4:-1:1);
dt=on.es(5,4);

dy=(t-y)/2;
quiver(t,y,dt,dy);

hold on

x=0:.01:5;
21=3*exp(-x/2) -2+X;
22=6*exp(-x/2)-2+X;
plot(x,zl,x,z2)

hold off

Exercises for Introduction to Differential Equations

In Exercises 1through 5:

la) Show that y(f) is the solution to the differential equation by substituting y (t) and

y'(t) into the differential equation y'U) ~ f{t, v(f)).

ib) T'se Tbeoret 9.1 to find a Lipschitz constant L for the rectangle R = [it, y) : 0 <

1<3,0<y<b).

Ly =t2—y, y(0 = Ce~* +1t2—2t+ 2
2.y'=3y+3/y(f)=Cell- t- |
3.y = -ty,y(r) = Ce~rt2

4.y = e-2' =2y, y(f) = Ce~2t + fe“2

5. y1= 2ty2,y(f) = \f(C —t2)

In Exercises 6 through 9, construct a graph of the slope field m,j -= /(f,-, y,) over ihj
rectangle R = {(t,y) :0 < t < 4,0 < y < 4) and the indicated solution curves on tho

same coordinate system.
6.y =-1y,y() = (C- 212 forC=1,2,4,9

7.Y=r1Y-vM = (C+t)12 forC=-4,-1, 14
8.y - 1lly,y(0 = (C+ 2f)12 forC=-4,-2,02

9. y' = y2,y(t) = 1/(C —i) forC= 12,34

10. Here is an example of an initial value problem that has “two solutions”: y' =

with y(0) = 0.

(a) Verifythaty(/) = 0 for k> 0 is a solution.
(b) Verify that y(t) —132fort > 0 is a solution.
(c) Does this violate Theorem 9.2? Why?
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11.

12.

Chap.9 SOLUTION OF DIFFERENTIAL EQUATIONS

Consider the initial value problem
y =d-/)12 ?2000=0
(@) Verify that y(t) = sin(f) is a solution on [0, it/4].
(b) Determine the largest interval over which the solution exists.

Show that the definite integral ~ f(t)dt can be computed by solving the initial val'
problem

y =fit) for(i<f<& with  y(a) = 0.

In Exercises 13 through 15, find the solution to the 1.V.P.

13.

V' —312 + sin(r), >>0) = 2

14. v’= A ¥ (0) = 0

15.
16.

17.

y — y(0) = 0. Hint. This answer must be expressed as a certain integral.

Consider the first-order differential equation
y'(t) + p(t)yit) = <7(0.

Show that the general solution v(r) can be found by using two special integrals. First
define F(t)as follows:

Fit) = ef pmdt.

Second, define >>(/) as follows:
A0 = (/ F()g(t)dt +cy

Hint. Differentiate the product F{i)y(l).

Consider the decay of a radioactive substance. If y(t) is the amount of substance
present at time t, then y(t) decreases and experiments have verified that the rate of
change of y(f) is proportional to the amount of undecayed material. Hence the 1.V.P.
for the decay of a radioactive substance is

y'——ky with y(0) = yo-

(a) Show that the solution is y it) = yoe~kl.

(b) The half-life of a radioactive substance is the time required for half of an initial
amount to decay. The half-life of 14C is 3730 years. Find the formula y(t) that
gives the amount of 14C present at time t. Hint. Find K so that >(5730) =0.5yo-

(e) A piece of wood is analyzed and the amount of 14C present is 0.712 of the
amount that was present when the tree was alive. How old is the sample of
wood?

(d) At a certain instant, 10 mg of a radioactive substance is present. After 23 sec
onds, only 1mg is present. What is the half-life of the substance?
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In Exercises 18 through 19, derive an equation for the I.V.P. and find its solution.

18. Annual ticket sales for a new professional soccer league are projected to grow at a
rate proportional to the difference between sales at time t and an upper bound of $300
million. Assume that annual ticket sales are initially $0 and must be $40 million after
3 years (or the league folds). Based on these assumptions, how long will it take for
annual ticket sales to reach $220 million?

19. The interior volume of a new library is 5 millon cubic feet. The ventilation system
introduces fresh air into the library at the rate 045,000 cubic feet per minute. Before
the ventilation system is turned on, the percents of carbon dioxide in the interior of
the library and in the exterior fresh air are measured at 0.4% and 0.5%, respectively.
Determine the percentage of carbon dioxide in the library 2 hours after the ventilation
system is started.

9.2 Euler’s Method

The reader should be convinced that not all initial value problems can be solved ex-
plicitly, and often it is impossible to find a formula for the solution y(0; for example,
there is no “closedi-form expression” for the solution to y* = t3 + y2 with >'(0) = 0.
Hence for engineering and scientific purposes it is necessary to have methods for ap-
proximating the solution. If a solution with many significant digits is required, then
more computing effort and a sophisticated algorithm must be used.

The first approach is called Euler’s method and serves to illustrate the concepts
involved in the advanced methods. It has limited usage because of the larger error that
isaccumulated as the process proceeds. However, it is important to study because the
error analysis is easier to understand.

Let [a, b] be the interval over which we want to find the solution to the well-posed
ILVP. Y = fit,>) with y(a) = yo- In actuality, we will not find a differentiable
function that satisfies the I.V.P.. Instead, a set of points {(r*,y*)) is generated, and
the points are used for an approximation (i.e., y(tk) ~ y*)- How can we proceed to
construct a “set of points” that will “satisfy a differential equation approximately”?
First we choose the abscissas for the points. For convenience we subdivide the interval
[a, b] into M equal subintervals and select the mesh points

b—a

1) tk=a+kh fork=0,1 ..., M where h —

The value h is called the step size. We now proceed to solve approximately

3] Yy = f(t,y) over [f0,fivf] with  y(f0) = yo-
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Assume that y(f), y'(t)> and y"it) are continuous and use Taylor’s theorem to
expand y(t) aboutt = fo- For each value t there exists a value cj that lies between to
and t so that

y"(ci)(f -fp)2
® y(0 = y(fo) + /(*o)(f - <0 + 2

When y'(Jo) = /(fo, ¥(to)) and h = t\ —to are substituted in equation (3), the
result is an expression for y (/j):
O]

If the step size h is chosen small enough, then we may neglect the second-order
term (involving A2) and get

® Y1= Ne + A/(*0. yo),
which is Euler’s approximation.
The process is repeated and generates a sequence of points that approximates the

solution curve y = y(t). The general step for Euler’s method' is

(6) tk+l=tk+h,  yk+l =yk+ hf(tk,yk) for k=0, 1, M- L

Example 9.2. Use Euler’s method to solve approximately the initial value problem:
()] y —Ry over [0,1] with y(0) = yo and R constant.

The step size must be chosen, and then the second formula in (6) can be determined
for computing the ordinates. This formula is sometimes called a difference equation and
in this case it is
(8) yk+i = yt(1+ An)  for k=0 1, ..., U —1I.

If we trace the solution values recursively, we see that

yt = yod + hR)
Y2 = yj(l +AN) = yo(l + hR)2
9)

YM = >j#-i(I +hR) =y0(I+HR)M.
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Table 9.1  Compound Interest m Example 9.3

Step Number of

size, h iterations, M Approximation to y(5), ysf
1 5 I000M + fijlj =1610.51
h 60 1000{ 1+ 22} P = 162531
. / \ 1800
! 1800 1000 ( 2+ & i) ==1648.61
m VvV  «07

For most problems there is no explicit formulafor determining the solution points, and
each new point must be computed successively from the previous point. However, for the
initial value problem (7) we are fortunate; Euler’s method has the explicit solution

(H0) 4y —kh yk=yo(l —hR)k for k~0, 1, ..., M.

Formula (10) can be viewed as the “compound interest” formula, and the Euler ap-
proximation gives tbe future value of a deposit. ]

Example 9.3. Suppose that $1000 is deposited and earns 10% interest compounded con-
tinuously over 5 years. What is the value at the end of 5 years?

We choose to use Euler approximations with h = 1. -q, and » to approximate _v(5)
foe the LV.P,;

y = O.ly over [0, 5] with y(0) = 1000.
Formula (10) with R = 0.1 produces Table 9.1. [ ]

Think about the different values y5, y&), and ywx) that are used to determine the
future value after 5 years. These values are obtained using different step sizes and
feflect different amounts of computing effort to obtain an approximation to y (5). The
solution to the I.V.P: is y(5) = 1000e05 = 1648.72. If we did riot use the closed-form
solution (10), then it would have required 1800 iterations of Euler’s method to obtain
yiBOO, and we still have only five digits of accuracy in the answer!

K bankers had to approximate the solution to the I.V.P. (7), they would choose Eu-
ler's method because of the explicit formula in (10). The more sophisticated methods
for approximating solutions do not have an explicit formula for finding yb but they
will require less computing effort.

(geometric Description

Ifyou start at the paint (ro, yo) and compute the value of the slope mo — /(ro, yo)
and move horizontally the amount h and vertically hf(to, yo), then you are moving
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| Figure 9.5 Euler’s approximations
0.0 0.5 1.0 15 2.0 25 3.0 Yici = Yk+hf(tk, Yy

along the tangent line to y(t) and will end up at the point (*i, V|) (see Figure 9.5).
Notice that (f], yt) is not on the desired solution curve! But this is the approximation,
that we are generating. Hence we must use (fj, yi) as though it were correct and
proceed by computing the slope m\ — f(t\, vi) and using it to obtain the next vertical
displacementhf(t\,y\) to locate (?2, yi), and so on.

Step Size versus Error

The methods we introduce for approximating the solution of an initial value problein
are called difference methods or discrete variable methods. The solution is approx-
imated at a set of discrete points called a grid (or mesh) of points. An elementary
single-step method has the form yk+i = yt + h®(Jlb yt) for some function ® called
an incrementfunction.

When using any discrete variable method to approximately solve an initial value
problem, there are two sources of error: discretization and round off.

Definition 9.3 (Discretization Error). Assume that {(/*, » )}* 0 is the set of dis-
crete approximations and thaty = y(t) is the unique solution to the initial value prob'
lem.

The global discretization error e* is defined by
(11) ek = y(f*) - yi  for k=0, 1l..... M.

It is the difference between the unique solution and the solution obtained by the discrete

variable method.
The local discretization error e*+1is defined by

(12) 6*+i = yOi+i) - yk-A®d(/*,yk) fork=0,1, ..., M- 1

It is the error committed in the single step from r* to tk+i.
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When we obtained equation (6) for Euler’s method, the neglected term for each
step was ytT>ct.)(,h2/2). If this was the only error at each step, then at the end of ihe
interval [a, b], after M steps have been made, the accumulated error would be

m m A2 AM n, (b —a)y™Uc) 1
N2y My = ~"-y  (C)h - é ————————— h --0(h).
*=j z i

There could be more error, but this estimate predominates. A detailed discussion on
this topic can be found in advanced texts on numerical methods for differential equa-
tions (Reference [75]).

Theorem 9.3 (Precision of Euler’s Method). Assume that y(t) is the solution to
the 1.V.P. given in (2). Ify(t) e C2[to,b] and { , n )} ~ is the sequence of approxi-
mations generated by Euler’s method, then

\ek\ = N**) - Yd = 0(A)-
Ua+il = \y(tk+\) ~¥ k~ hf(tk, >*)] = 0(h2).

The error at the end of the interval is called thefinal global error (F.G.E.):
(14 E (y), h) = ly(fc) - y.,\ = 0(h).
Remark. The final global error E(y(b),h) is used to study the behavior of the error for
various step sizes. It can be used to give us an idea ofhow much computing effort must
be done to obtain an accurate approximation.

Examples 9.4 and 9.5 illustrate the concepts in Theorem 9.3. If approximations are
computed using the step sizes h mid ft/2, we should have

(15) E(y(b),h)*Ch

for the larger step size, and
(16) E (y(b), 0 » c | = ICh * ~E(y(b),h).

Hence the idea in Theorem 9.3 is that if the step size in Euler’s method is reduced by a
factor of j we can expect that the overall F.G.E. will be reduced by a factor of

Example 9.4. Use Euler’s method to solve the I.V.P.
y=12~ on N ~ »

Compare solutionstorh — 1, ;. and;
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Figure 9.6 Comparison of Euler solutions with different
step sizes for y' = (r —y)/2 over [0, 3] with the initial
condition v(0) = 1

Figure 9.6 shows graphs of the four Euler solutions and the exact solution curve >>(;) =
3e -2 +1t. Table 9.2 gives the values for the four solutions at selected abscissas. For
the step size h = 0.25, the calculations are

yi = 1.0+ 0.25 ° ~ 1-0j =0.875,
Y2=0.875+ 0.25 " '25~°-875) = 0.796875, etc.

This iteration continues until we arrive at the last step:

[2 75 —1 44057311

y(3) >12= 1.440573 + 0.25 |- =22 = 1.604252. .

Example 9.5. Compare the F.G.E. when Euler’s method is used to solve the I.V.P.
yr= — over 3] with y(0) = 1,

using step sizes 1, j ........ [ITH

Table 9.3 gives the F.G.E. for several step sizes and shows that the error in the approx
imation to v(3) decreases by about § when the step size is reduced by a factor of j. For
the smaller step sizes the conclusion of Theorem 9.3 is easy to see:

£(y(3), h) =y(3)~yM= 0(hl) ~Ck, where  C —0.256.
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Table 9.2  Comparison of Euler Solutions with Different Step Sizes fory' = (t - y)/2
over [0,3] withy(0) = I

tk

0.125

0.25

0.375

0.50
0.75
100
150
2.00
2.50
3.00

Table 9.3

Step
size, h

= U O P

B— S

h=1
1.0

0.5

0.75

1.375

¥

A=
1.0

0.75

0.6875

0.765625
0.949219
1.211914
1.533936

1.0

0.875

0.796875
0.759766
0.758545
0.846386
1.030827
1.289227
1.604252

A= 8

1.0
0.9375
0.886719
0.846924
0.817429
0.786802
0.790158
0.882855
1.068222
1.325176
1.637429

Relation between Step Size and F.G.E. for Euler Solutions to
y' = (I - y)j2over [0,3] with>>0) = 1

Number of
steps, M

3

6

24

96

192

Approximation

toy(3), ym
1.375
1533936
1.604252
1.637429
1.653557
1.661510

1.665459

F.G.E.

Errorati = 3,

y(3) - ™

0.294390

0.135454

0.065138

0.031961

0.015833

0.007880

0.003931

yOi) Exact

1.0

0.943239
0.897491
0.862087
0.836402
0.811868
0.819592
0.917100
1.103638
1.359514
1.669390

0(h) as Ch
where

c=0.

0.256

0.128

0.064

0.032

0-016

0.008

0.004

256
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Program 9.1 (Euler’s Method). To approximate the solution of tbe initial value
problemy' = /(/, y) with y (a) = yo over [a, b\ by computing
W+l = Y+ hf(tk, y*)  fork=0, 1, ..., M- |

function E=»euler(f,a,b,ya,M)
Xlnput - f is the function entered as a string 'f’

7, - aand b are the left and right end points
- ya is the initial condition y(a)
X - Mis the number of steps
7.0utput - E=[T’ Y1] where T is the vector of abscissas and
7, Y is the vector of ordinates
h®(b-a)/M;

T=zeros(l,M+l);
Y =zeros(l,M+i);
T®a:h:b;
Y (I}=ya;
for j=I:M
Y (+D=Y ()+h*feval(f,T(j),Y (i));
end
E-[T” Y’'];

Exercises for- £u)er;s Method

]:: Exercises 1through 5 solve the differential equations by the Euler method.
(@ Leth = 0.2 and do two steps by hand calculation. Then let h — 0.1 and di> (our
steps by hand calculation.
(b) Compare the exact solution >(0.4) with the two approximations in part (a).
(c) Does the F.G.E. in part (a) behave as expected when h is halved?

1Y =f2—ywithy(0) = L, y(r) = —e~r+ t1—2t+ 2
2. y'= 3y +3lwithy(0) = L, y(r) = |e3f- t- \

3. Y = —dywith>>0) = 1,y(t) = e"'22

4.y = e~2t - 2y with y(0) = y(t) = + te~2
5.y = 2ly2with ;y(0) = 1, y(r) = 1/(1 —t2)

6. Logistic population growth.  The population curve P(t) for the United StateS ft
assumed to obey the differential equation for a logistic curve P' = aP —bP*. L»et t
denote the year past 1900, and let the step size be h — 10. The values a = 0.02. AN?
b —0.00004 produce a model for the population. Using hand calculations, ftN»
Euler approximations to Pit) and fill in the following table. Round off each value fj,
to the nearest tenth.
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r JP(n)
Year tk Actual Euler approximation
1900 0.0 76.1 76,1
1910 10.0 92.4 89.0

1920 20.0 106.5
1930  30.0 1231
1940  40.0 132.6 138.2
1950 50.0 152.3
1960  60.0 180.7
1970  70.0 204.9 202.8
1980  80.0 226.5

7. Show that when Euler’s method is used to solve the I.V.P.
[ = 1(f) over [ab] with y(@) =yo=0

the result is
u-a

y(fc) > £ /0*)*’
*=0

which is a Riemann sum that approximates the definite integral of /(?) taken over the
interval [a, b],
8 Show that Euler’s method fails to approximate the solution y(t) = t3/2 of the 1.V.P.

yl= f(t,y) = ISy with  {0) = 0.
lustify your answer. What difficulties were encountered?
9. Can Euler’s method be used to solve the I,V.P,

y'= 1+y2 over [0, 3] with y(0) =0?

Hint. The exact solution curve is y(t) = tan(f).

Algorithms and Programs

In Problems 1through 5, solve the differential equations by the Euler method.

(A)Leth = 0.1 and do 20 steps with Program 9.1. Then let h = 0.05 and do 40 steps
with Program 9.1.
[bl Compare the exact solution y(2) with the two approximations in part (a).

~clDoes the F.G.E. in part (a) behave as expected when h is halved?
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(d) Plot the two approximations and the exact solution on the same coordinate system

I N

Hint. The output matrix B from Program 9.1 contains the X and y coordinates of
the approximations. The command plot(E (:,1) ,EC:,2)) will produce a graph
analogous to Figure 9.6.

y'=1t2- ywithy(0) = 1, y(t) = —~"' +t2—2t +2
y' = 3y + 3t with jf(0) = 1,>(f) = %e3t —/ —j

Y - —ty withy(0) = 1,y(t) = e~'2»

Y = e~b - 2y withjv(0) =  y(t) - 4-te~b
| = 2ty2with y{0) = 1,y (/)= 1/(1 —f2)

. Considery' =0.12y over [0, 5] with y(0) = 1000.

(a) Apply formula (10) to find Euler’s approximation to y(5) using the step sizes
h=1i and
(b) What is the limit in part (a) when h goes to zero?

. Exponential population growth. The population of a certain species grows at a rate

that is proportional to the current population and obeys the 1.V.P.
Y = 0.02>' over [0,5] with y(0) = 5000.

(@) Apply formula (10) to find Euler’s approximation lo y(5) using the step -./eb
h — 1, -ft, and 3gQ.
(b) What is the limit in part (a) when h goes to zero?

. A skydiver jumps from a plane, and up to the moment he opens the parachute the

air resistance is proportional to n3/2 (u represents velocity). Assume that the time
interval is [0, 6] and that the differential equation for the downward direction is

V' =32-0.032n32 over [0, 6] with u(0) = 0.

Use Euler’s method with h —0,05 and estimate u(6).

. Epidemic model. The mathematical model for epidemics is described as follows

Assume that there is a community of L members that contains P infected individual*
and Q uninfected individuals. Let y(t) demote the number of infected individuals <nl
time t. For a mild illness, such as the common cold, everyone continues to be active
and the epidemic spreads from those who are infected to those uninfected. SiMt€
there ak P Q possible contacts between these two groups, the rate of change of

is proportional to PQ. Hence the problem can be stated as the I.V.P.

Y = ky(L - y) with y(0) = yo0.

(@) Use L = 25,000, k = 0.00003, and h = 0.2 with 'the initial condition y(0) -
250, and use Program 9.1 to compute Euler’s approximate solution over [0,60J.

(b) Plot the graph of the approximate solution from part (a).

(c) Estimate the average number of individuals infected by finding the average of
the ordinates from Euler’s method in part (a).
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(d) Estimate the average number of individuals infected by fitting a curve to the data
from part (a) and using Theorem 1.10 (Mean Value Theorem for Integrals).

10. Consider the first-order integro-ordinaiy differential equation
y' = 1,3y —0.25y2 —0.000ly f y(r)dr.
Jo

(a) Use Euler’s method with h —0.2, and y (0) = 250 over the interval (0,20], and
the trapezoidal rule to find an approximate solution to the equation. Hint. The
general step for Euler’s method (6) is

ftk
M+l = Yk+ W-3yk ~ 0.25yl - O.OOOIy*J/ y (1) dr).
o

If the trapezoidal rule is used to approximate the integral, then this expression
becomes

Yk+1= Y+ JI(1.3Y% - 0.25y\ - 0.000bIB[)),
where 7b(h) = 0 and

Tk(h) = Tk-\ ) + "(Yk- 1+ YK for k=10, 1, ..., 99.

(b) Repeat part (a) using the initial values y(0) = 200 and y(0) —300.
(c) Plot the approximate solutions from parts (a) and (b) on the same coordinate
system.

S.3 Heun’s Method

The next approach, Heun’s method, introduces a new idea for constructing an algo-
rithm to solve the I.V.P.

A y (t)=10>Yy(0) over [ab] with y(*o) = yo-

"Ib obtain the solution point (/1,yi), we can use the fundamental theorem of calculus
and integrate /(f) over [fO, fi) to get

(v fof(ty(t))dt= f y'(t)dt = y(t\) - y(ta),
it0 ito

Where the antiderivative of y'(t) is tbe desired function y(t). When equation (2) is
Solved for y(i]), the resultis

0" y(t\) = y(fo) + f f(t, y(t)) dt.
J0
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Now a numerical integration method can be used to approximate the definite inte-
gral in (3). If the trapezoidal rule is used with the step size h = t\ —to, then the result
is

(4) yOi) A j2(fo) + ~ (100, Y(20)) + /0 b yOIi)))-

Notice that the formula on the right-hand side of (4) involves the yet to be deter
mined value y(f[). To proceed, we use an estimate for yOi). Euler’s solution will
suffice for this purpose. After it is substituted into (4), the resulting formula for findinj
(ti, vi) is called Heun’s method:

h
(5) yi = Y0o0)+ 272/00,y0) + fUi, yo+ A/00.y0))).

The process is repeated and generates a sequence of points that approximates the
solution curve y = y{t). Ateach step, Euler’s method is used as a prediction, and then
the trapezoidal rule is used to make a correction to obtain the final value. The genera]
step for Heun’s method is

Pk+i = Yk+ A/Ob YK), tk+1 = tk + h,
(6) h
Yk+1= Yk+ 2 (/0*. ¥Yk) + ftik+i,Pk+i))-

Notice the role played by differentiation and integration in Heun’s method. Dra >
the line tangent to the solution cur/e y = y(t) at the point ("o, >0) and use it to tind the
predicted point (fi, pi). Now look at the graph z = f 0. yOY) and consider the points
Oo. /o) and (fj, fi), where /o = / Oo, yo) and f\ —fU i, p\). The area of the trape
zoid with vertices (to, /o) and (fl, fl) is an approximation to the integral in (3), which
is used to obtain the final value in equation (5). The graphs are shown in Figure 9.7.

Step Size versus Error

The error term for the trapezoidal rule used to approximate the integral in (3) is

(7 Y £)(c*)n.

If the only error at each step is that given in (7), after M steps the accumulated error
for Heun’s method would be

(8) * AypY (24c)Hr = 0(h2).

The next theorem is important, because it states the relationship between F.G.E,
and step size. It is used to give us amidea of how much computing effort must be done
to obtain an accurate approximation using Heun’s method.
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(0./0) z=f(t, yuv))
(a) Derivative predictor: (b) Integral corrector:
P\ - vO+7/('0- M) M-y0= £<fo+ /l)

Figure 9.7 The graphs y —y(t) and z = f(t, yit)) in the derivation of Heun’s method.

Theorem 9.4 (Precision of Heun’s Method), Assume that y(t) is the solution to
the LV.P. (1). Ify(t) e C3[to, b] and {(f*, YK)}*=0 is the sequence of approximations
generated by Heun’s method, then

kid = ly(tk) ~ ytl = 0(hz),
le*+il = \y(tk+i)-yk ~h<&(tk,yk)\ = 0(h3),

where ®(?b6 yk) = yk + (h/2}{f{tk, yk) + /(f*+i. Yk + A/(f*. ¥K)))-
In particular, the final global error (F.G.E.) at the end of the interval will satisfy

(10) E(y(b), h) —\y(b) - ym\ = 0(h2).

Examples 9.6 and 9.7 illustrate Theorem 9.4. If approximations are computed
using the step sizes h and h/2, we should have

(11) E(y(b),h)~Ch2
for the larger step size, and

/ h\ h2 1,1
(12) E (y(b), -] wc— = -Ch * -E{y{b), h).

Hence the idea in Theorem 9.4 is that if the step size in Heun’s method is reduced by a
factorof j we can expect that the overall F.G.E. will be reduced by a factor of j.
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Figure 9.8 Comparison of Heun solutions with different
step sizes for v’ = (t —y)/2 over [0, 2] with the initial
condition >'(0) = 1,

Example 9.6. Use Heun’s method to solve the I.V.P.
y' = on [0, 3] with >(0) = 1

Compare solutions forA= 1,j, andg.

Figure 9.8 shows the graphs of the first two Heun solutions and the exact solution curvc
j>(r) = be~rM—2-k. Table 9.4 gives the values for the four solutions at selected abscissas.
For the step size h = 0.25, a sample calculation is

/(to,y0) = — —= -0.5
px = 1.0+ 0.25(—9.5) =0.875,
. 0.25- 0875

t(tu Pi) = - j— = -0.3125,

yi = 1.0+ 0.125{—0.5- 0.3125) = 0.8984375.
This iteration continues until we airrive at the last step:

>(3) «syi2 = 1.511508 + 0.125(0.619246 + 0.666840) - 1.672269. B

Example 9.7. Compare the F.G.E. when Heun’s method is usesd to solve
/| = — over [0,3| with y(0) = 1,

using step sizes 1, j, ...,
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Table 9.4  Comparison of Heun Solutions with Different Step Sizes fory' = (t —y)/2 over
[0, 3] with y(0) = 1

Yk
% h=1 h=3 A=s yOKk) Exact

0 1.0 1.0 1.0 1.0 1.0

0.125 0.943359 0.943239
0.25 0.898438 0.897717 0.897491
0.375 0.862406 0.862087
0.50 0.84375 0.838074 0.836801 0.836402
0.75 0.814081 0.812395 0,811868
1.00 0.875 0.831055 0.822196 0.820213 0.819592
1.50 0.930511 0.920143 0.917825 0.917100
2.00 1.171875 1.117587 1.106800 1.104392 1.103638
2.50 1.373115 1.362593 1.360248 1.359514
3.00 1.732422 1.682121 1.672269 1.670076 1.669390

Table 9.5 Relation between Step Size and F.G.E. for Heun Solutions to
>' = (I —y)/2 over [0,3] with y(0) = 1

F.G.E. Oihl) =sCh2
Step Number of Approximation Erroratf =3, where
size, h steps, M to y(3), ym Y0O) ~ ¥m C = -0.0432
| 3 1.732+22 -0.063032 -0.043200
% 6 1.682121 -0.012731 -0.010800
';' 12 1.672269 -0.002879 -0.002700
é- 24 1.670076 -0.000686 -0.000675
-|-15 48 1.669558 -0.000168 -0.000169
37 96 1.669432 -0.000042 —0.000042
5t 192 1.669401 -0.000011 -0.000011

Table 9.5 gives the F.G.E. and shows that the error in the approximation to y(3) de-
creases by about j when the step size is reduced by a factor of

E(y(3),h) = y(2) - yu = Oih2) « Ch2, where C = -0.0432.
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Program 9.2 (Heun’s Method). To approximate the solution of the initial value j
problem / = fit, y) withy(a) = yo over [a, b] by computing

S*H = v+ j(L(tk, YK) + f(tk+u Yk + fuk, »)>)

fork=0,1,.,., M —1
function H=heun(f,a,b,ya.,M)

I.Input - f isi the function entered as a string °’f’
- a and b are the left and right end points

't - ya is the initial condition y(a)

% - Mis the number of steps

/Output - H=[T'Y’] where T is the vector of abscissas and
1, Y is the vector of ordinates

h=(b-a)/M;

T»zeroe(l,M+I);

Y =s:eros(l,M+l);

T=a:h:b;

Y(h)=ya;

for j=I:M
ki=feval(f,T(j),Y (j));
k2=feval(f,T(j +1),Y(j ) +h*Kl);
Y(j+1)=Y(j)+(h/2)*(kl+k2);

end

H=1T"Y]]

Exercises for Heun’s Method

in Eixercises 1through 5 solve the differential equations by Heun’s method.
(@) Let h = 0.2 and do two steps by hand calculation. Then let h = 0.1 and do four
steps by hand calculation.
(b) Compare the exact solution y (0.4) with the two approximations in part (a).
(c) Does the F.G.E. in part (a) behave as expected when h is halved?
1. y' = t2—y with ;y(0) —1,y(0 = ~e~“+ 12 =2t + 2
2.y =3y + 3fwithy(0) = Ly(t) = |e3 —<—3
3. v' = —ty withy(0) = 1,y0) = e~‘22
4. v'= e~2 - 2v with y(0) = y(t) = + te"?2
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| = 2ty2with >(0) = 1,y(t) = /(1 - t2)
Notice that Heun’s method will generate an approximation to y(I) even though the
solution curve is not defined att = 1

. Show that when Heun’s method is used to solve the .V.P./ = fit) over [a b] with

y(a) = ya = 0 the result is
M-I

y®d) + [ 0%+i)>,
*:0

which is the trapezoidal mle approximation for the definite integral of /(f) taken over
the interval [a, b],

The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with Heun’s method. If Heun’s method is used with step size h,
then we have

yd) » yH + Ch2.
If Heun’s method is used with step size 2A, we have
Yo)*Mi1,+4C)12.

The terms involving Ch2 can be eliminated to obtain an improved approximation for
y®), and the result is

4¥K ~ yih
yo)- y

The improvement scheme can be used with the values in Example 9.7 to obtain better
approximations to y(3). Find the missing entries in the table below.
h yh @ =

1 1.732422

1/2 1682121  1.665354

1/4 1.672269

1/8 1.670076

1/16  1.669558  1.669385

1/32  1.669432

1/64  1.669401

Show that Heun’s method fails to approximate the solution y (r) = f3/2 of the I.V.P
y' —f(t,y)= 15>I/3 with y(0) = 0.

Justify your answer. What difficulties were encountered?
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In Problems 1through 5 solve the differential equations by Heun’s method.

(a) Leth - 0.1 and do 20 steps with Program 9.2. Then let h = 0.05 and do 40 steps

with Prograin 9.2.

(b) Compare the exact solution >'(2) with the two approximations in part (a).
(a) Does the F.G.E. in part (a) behave as expected when h is halved?
(a) Plot the two approximations and the exact solution on the same coordinate system.

N

[ IS R N

Hint. The output matrix H from Program 9.2 contains the x and >mcoordinates of
the approximations. The command plot (H(:, 1) ,H (:,2)) will produce a graph
analogous to Figure 9.8,

= t2- ywithy(0) = 1,y(r) = +12- 2t 42
~ 3y + 3rwith ¥(0) - I, y(f) = 5¢3 —t —5

= e~2 - 2y withy(0) = -w, y(f) = -"e-2' + fe~2
= 2ry2with y(0) = 1,y(t) = 1/(1 —f2)

. Consider a projectile that is fired straight up and falls straight down. If air rcsi*taiue
is proportional to the velocity, the I.V.P. for the velocity v(t) is

A
y'

.y = —ty withy(0) = 1,y(t) = e~22
y'
y'

Vi= —32——vVv with u(0) = i
v (0) = o

where L is the initial velocity, M is the mass, and K the coefficient of air resistance.
Suppose that no = 160 ft/sec and K/M = 0.1. Use Heun’s method with k = 0.5 to
solve

¥ = —32—0.1n over [0,30] with u(0) = 160.

Graph your computer solution and the exact solution v(t) = 480e'mt>—320 on the
same coordinate system. Observe that the limiting velocity is —320 ft/sec.

In psychology, the Wever-Fechner law for stimulus-response states that the rate df
change dR/dS of the reaction R is inversely proportional to the stimulus. The thresh
old value is the lowest level of the stimulus that can be consistently detected. The
1.V.P. for this model is

R’=- with R(Sq =0.

Suppose that So = 0.1 and J?(0.1) = 0. Use Heun’s method with h = 0.1 to solve
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8. (a) Write a program to implement the Richardson improvement method discussed
in Exercise 7.

(b) Use your program to approximate y(2) for each of the differential equations in
Problems 1-5 over the interval [0, 2]. Use the initial step size h = 0.05. The
program should terminate when the absolute value of the difference between
two consecutive Richardson improvements is < 10-6.

Taylor Series Method

The Tayior series method is of general applicability, and it is the standard to which we
compare the accuracy of the various other numerical methods for solving an I.V.P. It
can be devised to have any specified degree of accuracy. We start by reformulating
Taylor’s theorem in a form that is suitable for solving differential equations.

Theorem 9.5 (Taylor’s Theorem). Assume that y(t) e C'v+I[/g, b] and that y(t)
has a Taylor series expansion of order N about the fixed value ( —fjt € [£ 6]

(1) y(tk + h) = y(tic) + hTN(tk, y(tk)) + 0(hN+I),

where

@

and yM\t) — y(t)) denotes the (j —1)st total derivative of the function /

with respect to t. The formulas for the derivatives can be computed recursively:

[(» =1
yyo = // + fyy =ft + fyf
1% ) = fit + 2/ryv' + fyy" + />m>(/)2
fit + 2ftyf + fyyf2+ fy(f, + fyf)
yW (0 = fm + 3fttyy'+ 3/,, (/)2 + 3ftyy"
+ fyy" + 3fyy/y" + fyyy(y')3
—(fttt + 3fttyf + 3/fyy/ 2+ fyyyf*) + fyiftt + 2ftyf + fyyf2)
+ 3(/, + fyf){fty + fyyf) + f 2(f, + fyf)

and, in general,

14)
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where P is the derivative operator

The approximate numerical solution to the LV.P. y(t) = f(t, y) over [fy. tM]
is derived by using formula (1) on each subinterval [tk, f*+i]- The general step for
Taylor's method of order N is

. ., d2h2 d*h} d\h N
5) W+i = I + <IN+ — + — ~ + +

wheredj = y~A\tk)forj = 1,2,..., N ateach stepk =0,1,.,., M —1

The Taylor method of order N has the property that the final global error (F.G.E.)
is of the order 0 (hN+I)\ hence N can be chosen as large as necessary to make this
error as small as desired. If the order N is fixed, it is theoretically possible to a priori
determine the step size h so that the F.G.E. will be as small as desired. However, in
practice we usually compute two sets of approximations using step sizes h and h/2 and
compare the results.

Theorem 9.6 (Precision of Taylor’s Method of Order N). Assume that y(t) is
the solution to the LV.P.. If y(t) e CN+i[tQ,b\ and {(f*, y.Ol"lo is the sequence of
approximations generated by Taylor’s method of order N, then

\ek\ = \y{tk) - y K\ = 0{hN+\

w _ _ K
le*+i 1= |y(ffc+i) ~ YK~ hTN(tk, y*)| = O(A ).

In particular, the F.G.E. at the end of the interval will satisfy

Q) E(y(b).,h) = iy(b)-yu\ = 0(hN).

The proof can be found in Reference [78].

Examples 9.8 and 9.9 illustrate Theorem 9.6 for the case N — 4. Ifapproximations
are computed using the step sizes h and h/2, we should have

(8) £(y(ft), h) % ChA

for the larger step size, and

(9, = (»),«,

Hence the idea in Theorem 9.6 is that if the step size in the Taylor method of order 4 is
reduced by a factor of j the overall F.G.E. will be reduced by about
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Example 9.8.  Use the Taylor method of order N = 4 to solvey' = (I —y)/2 on [0. 3]
withy(0) = 1 Compare solutionsforh = 1. j. J. and g.

The derivatives of y(i) must first be deitermined. Recall that the solution yU) is a
function of f, and differentiate the formula y'(t) = /(/, y(r)) with resf>ect to t to get
y<2(t). Then continue the process to obtain the higher derivatives.

(t-y)/2  2-t+y
2 4
-1+ ([F-7>12=-2 +t-y
4 8

-(-nf2 2-t+y
8 16

To findyi, the derivatives given above must be evaluated at the point (*3,>0) = (0, 1)
Calculation reveals that

f, = y'(0) = = -0.5,
d2=yC)0}= 2 °4 +— = 0.75,
dz=y()0) = -20+g'°T I'0 = -0.375,
dU= y@)(0) = 2'°~ Go+— = 0.1875.

Next the derivatives {dj} are substituted into (5) with h = 0.25, and nested multiplication
is used to compute the value yj:

,, = 10+025(-0.5+025 +0.25( 7 +0.25( "~ ) )))

0.8974915.

The computed solution pointis (/1, >]) = (0.25,0.8974915).

To determine yr, the derivatives [dj] must now be evaluated at the point (/i,yi) =
(0.25, 0.8974915). The calculations are starting to require a considerable amount of com-
putational effort and are tedious to do by hand. Calculation reveals that

A(0 .2 5 )= A~ A = .0.3237458,
dt = y*0.25) - 2:°-a25; 08 "~ = 0.6618729,
3 =y(@B(025. ~.0+025- 08974915 _ _Q*

, Ne(0JS) =2.0-0.25 + 0.8974915 = Q"
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Table 9.6 Comparison of the Taylor Solutions of Order N = 4 for/ = ((- y)jl
over [0,3) with y{0) = 1

h7
=

h=1 M * = h=\ y(ti) Exact
0 10 10 10 10 1.0
0.125 0.9432392 0.9432392
0.25 0.8974915 0.8974908 0.8974917
0.375 0.8620874 0.8620874
0.50 0.8364258 0.8364037 0.8364024 0.8364023
0.75 0.8118696 0.8118679 0.8118678
1.00 0.8203125 0.8196285 0.8195940 08195921 0.8195920
1.50 0.9171423 0.9171021 0.9170998 0.9170997
2.00 1.1045125 1.1036826 1.1036408 1.1036385 1.1036383
2.50 1.3595575 1.3595168 1.3595145 1.3595144
3.00 1.6701860 1.6694308 1.6693928 1.6693906 1.6693905

Now these derivatives [dj] are substituted into (5) with h —0.25, and nested multiplication
is used to compute the value >2:

Y2 = 0.8974915 + 0.25Y -003237458

/0-66LLr3 | —0.3309364 /0.
0,25 Foo 24 0.25 o +0.25/ = 16g‘ﬁaj)))
= 0.8364037.

The solution point is fe. ¥2) = (0.50, 0.8364037). Table 9.6 gives solution values at
selected abscissas using various step sizes. ]

Example 9.9. Compare the F.G.E. for the Taylor solutionsto v' = it - y)/2 over [0. 3L
with y(0) = 1given in Example 9.8.

Table 9.7 gives the EG.E. for these step sizes and shows that the error in the approxi
mation v(3) decreases by about  when the step size is reduced by a factor of j:

E(y(3),h) = y(3) —ym —0(h4) = Ch4, where C= -0.000614. [

The following program requires that the derivatives y', y", y"', and y"™’ be saved

in an M-file named d f. For example, the following M-LLle would save the derivatives
from Example 9.8 in the format required by Program 9.3,

function z=df(t,y)
z=[(t-y)/2 (2-t+y)/4 <-2+t-y)/8 (2-1;+y)/I6] ;
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Table 9.7  Relation between Step Size and F.G.E. for the Taylor Solutions to
= (t- >)/2over[0,3)

F.GE. 0(h2) = Ch4
Step Number of Approximation Erroratt = 3, where
size, h steps, M to y(3), ym y(3)- W C = -0.000614
1 3 1.6701860 -0.0007955 -0.0006140
5} 6 1.6694308 -0.0000403 -0.0000384
% 12 1.6693928 -0.0000023 -0.0000024
5' 24 1.6693906 -0.0000001 -0.0000001

I Program 9.3 (Taylor’s Method of Order 4). To approximate the solution of the
j initial value problemy' = f (t, y) withy(a) = yoover la, b]by evaluatingy", y ",
Iand y"" and using the Taylor polynomial at each step.

function T4=taylor(df,a,b,yafM

Tilnput - df=s[y' y’’ y” »y1’” entered as a string ’df’

', where y’=f(t,y)
- a and b are the left and right end points
7, - ya is the initial condition y(a)
', - His the number of steps
'.Output - T4=[T’ Y’] where T is the vector of abscissas and
', Y is the vector of ordinates
h=(b-a)/M;

T~zerosd.M +1);
Y=zeros(I,M+1);
T=a:h:b;
Y (l)=ya;
for j=I:M
D=feval(df,T(j),Y (J));
Y(j+1)=Y(j )+h*(D(1)+h*(D(2)/2+b*<D(3)/6+h*D(4)/24)));
end
T4=[T" Y] ;

Exercises for Taylor Series Method

In Exercises 1through 5 solve the differential equations by Taylor’s method oforder N = 4.

(a) Leth = 0.2 and do four steps by hand calculation. Then leth = 0.2 and do two
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steps by hand calculation.
(b) Compare the exact solution >(0.4) with the two approximations in part (a)

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

i2—y withy(0) = 1 y(f) = —e~14-12—2t + 2

By + 3rwithy(0) = L,y(f) = feB - t- i

3. = —y wilh y(0) = 1, y(f) = e~*V2

4. y'=e~b - 2y withy(0) = y(t) = "e-2' +te~2
5. y' = 2ty2with >(0) = 1, v(f) = 1/(1 - 2)

6. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with Taylor’s method. If Taylor’s method of order N = 4 is
used with step size A then y(b)  >7, + Ch4. If Taylor’s method of order N = 4 is
used with step size 2A, then y(b) = yjk + 16Ch4. The terms involving Ch4 can be
eliminated to obtain an improved approximation for y (b):

This improvement scheme can be used with the values in Example 9.9 to obtain better
approximations to y(3). Find the missing entries in the table below.

h Y <16»->M)/I5
1.0 1.6701860
0.5 1.6694308
0.25 1.6693928
0.125  1.6693906

7. Show that when Taylor’s method of order N is used with step sizes Aand A/2, heiJ
the overall F.G.E. will be reduced by a factor of about 2~N for the smaller step &T<b

8. Show that Taylor’s method fails to approximate the solution >>(/) = r3/2 of the 1L.VP
y' = f(t,y) = 15> 1/- with >(0) = 0. Justify your answer. What difficulties wenf
encountered?
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Taylor Series Method 457

Verify that the solution to the I.V.P. y* —y2,y(0) = lover the interval [0, 1) is
y(0= 1/(1-0-

Verify that the solution to the LV.P. y' = 1+ y2 y(0) = 1 over the interval
[0,7T/4) is y(f) = tan(r + n/4).

Use the results of parts (a) and (b) to argue that the solution to the LLV.P. y' =
t2+ y2,y(0) = 1has a vertical asymptote between jt/4 and 1 (Its location is
near/ = 0.96981.)

10. Considerthe LV.P.y' = 1+ y2,y(0) = 1

(@
(b)

Find an expression for y®(f)> D340< and y (44f)-
Evaluate the derivatives at t = 0, and use them to find the first five terms in the
Maclaurin expansion fortan(f).

Algorithms and Programs

In Problems 1through 5 solve the differential equations by Taylor’s method of order N = 4.

(a) Leth = 0.1 and do 20 steps with Program 9.3. Then let A = 0.05 and do 40 steps
with Program 9.3.

(b) Compare the exact solution y(2) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

(d) Plot the two approximations and the exact solution on lhe same coordinate system.
Hint. The output matrix T4 from Program 9.3 contains the x and y coordinates of
the approximations. The command plot (T4(:,1) ,T4(: ,2)) will produce a graph
analogous to Figure 9.6.

Ly = t2—>withy(0) = 1 y(l) = —e~' + t2—2t + 2
.y’= 3y + 3fwithy(0) = 1 y(0 = |[e3 —t —5

y' ——ty withy(0) = 1,>(;) = e-*1I2
= e~2 - 2y withy(0) = y(t) = ~ e~ll +te~2

(b)

Lyt~ 2ty2with y(0) = 1, y(t) = 1/(1 —t2)
. (a)

Write a program to implement the Ftichardson improvement method discussed
in Exercise 6.

Use your program from part (a) to approximate y(0.8) for the [.V.P. > = r2+y2,
y(0) = lover [0, 0.8]. The true solutionatt = 0.8 is known to be y(0.8) =
5.8486168. Start with the step size h = 0.05. The program should terminate
when the absolute value of the difference between two consecutive Richardson
improvements is < 10-6.
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7. (@) Modify Program 9.3 to carry out Tay lor’s method of order N = 3.
(b) Use your program from part (a) to solve the LV.P. y' —t2+ y2,>(0) = lo\er

[0, 0.8]. Find approximate solutions for the step sizes h —0.05, 0.025, 0.01-5,
and 0.00625. Plot the four approximations on the same coordinate system.

Runge-Kutta Methods

The Taylor methods in the preceding section have the desirable feature that the F.G.E.
is of order 0(hN), and N can be chosen large so that this error is small. However, the
shortcomings of the Taylor methods are the a priori determination of ,V and the com-
putation of the higher derivatives, which can be very complicated. Each Runge-Kutt«
method is derived from an appropriate Taylor method in such away thatthe F.G.E. Is of
order 0 (hN). A trade-off is made to perform several function evaluations at each ste.f
and eliminate the necessity to compute the higher derivatives. These methods can be
constructed for any order N. The Runge-Kutta method of order TV—4 is most popular
it is a good choice for common purposes because it is quite accurate, stable, and ea&y
to program. Most authorities proclaim that it is not necessary to go to a higher-order
method because the increased accuracy is offsevt by additional computational effort. If
more accuracy is required, then either a smaller step size or ari adaptive method should
be used.
The fourth-order Runge-Kutta method (RK4) simulates the accuracy of the Taylor

series method of order N = 4. The method is based on computing yk+i as follows.

(8 YK+L= YK+ WK\ + w2ki + U13*3 + U74&4,
where Jfg, k2, &, and £4 have the form

ki = hf(tk, yk),

ki = hf{tk +a\h.,yk + b\k\),

*3 = hf(tt + azh, yk + b2k\ + b)k2).
ki = hf{tk + ad, yk+ M i + bbkr + b6k3).

By matching coefficients with those of the Taylor series method of order N —4i0 -that
the local truncation error is of order 0(h5), Runge and Kutta were able to obtain sthe
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following system of equations:

b\ = au
bz + bi = 02,
b4 + fts + = as,

U] + W2+ N8+ UH4= 1,
L2 + U3f2 + wads = '
w2df + w302 + w4a\ —
®) w2dt + P oussd = !
0130Lbj + W4(a\bs + arH) = g,

w3alaz2h + U)da3(aifts + azbg) = i
(o}

w30ib3 + w(a%bs + a%b6) =

awibjbe -

The system involves 11 equations in 13 unknowns. Two additional conditions musi bt
Supplied to solve the system. The most useful choice is

(4) a\ —"~ and br —O0.

Then the solution for the remaining variables is

a2 = " a3 = 1, ft] = b3 — ft4= 0, b5=0, *6=1.
55} 2 2 2
J 1 1 1 1
w] = w2 = «3 = -, uy = -
6 3 3 6

‘The values in (4) and (5) are substituted into (2) and (1) to obtain the formula for
the standard Runge-Kutta method of order N = 4, which is stated as follows. Start
Witoi the initial point (fo, yo) and generate the sequence of approximations using

, h(f\+ 2/2 + 2/3 + /4)
w+i = ytH ,
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where

™

/4 = f(tic + h,yk + hfy).

Discussion about the Method

The complete development of the equations in (7) is beyond the scope of this book and
can be found in advanced texts, but we can get some insights. Consider the graph nf
the solution curve v = y(t) over the first subinterval [fo, i\ |. The function values m
(7) are approximations for slopes to this curve. Here /1 is the slope at the left, /2 and
/3 are two estimates for the slope in the middle, and 74 is the slope at the right (see
Figure 9.9(a)). The next point {/[, >"i) is obtained by integrating the slope function

(8)

If Simpson’s rule is applied with step size hj2, the approximation to the integral
in (8) is

where t\jj is the midpoint of the interval. Three function values are needed; hence we
make the obvious choice f{to, y (fo)) = /1 and f{t\, y(ri)) « /4. For the value in the
middle we chose the average of /2 and / 3:

f(h'2,
These values are substituted into (9), which is used in equation (8) to get >4:
(10)

V/hen this formula is simplified, it is seen to be equation (6) with k = 0. The graph
for the integral in (9) is shown in Figure 9.9(b).
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y =y(t) (fpX't))
z
=/l
X.
0 12 10 12
(a) Predicted slopes m- to ihe (b) Integra) approximation:

solution curve y = y(f) () -Jo = </l + Zi + 2034sa)

E'igure 9.9 Thegraphsy = y(l) and z = /0. y(.!5 in the discussion of the Runge-Kutta
method of order N = 4.

Step Size versus Error

The error term for Simpson’s rule with step size hj2 is

<I't A(Ci) rmmne "
) EASRETT

1 the only error at each step is that given in (11), after M steps the accumulated error

lor the RK4 method would be

12)

The next theorem states the relationship between F.G.E. and step size. It is used
to give us an idea of how much computing effort must be; done when using the RK4
method.

Theorem 9.7 (Precision of the Runge-Kutta Method). Assume that y(r) is the
solution to the LLV.P, If y(r) 6 C5[fo, b] and {(?*, . Vfe)is the sequence of approxi-
mations generated by the Runge-Kutta method of order 4, then

\ek\ = I>(fit) -W | = 0(h4),

(13)
le*+11 = 1)4**+]) ~ ¥K- hTN(tk,yt)| = 0(h5).
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In particular, the F.G.E. at the end of the interval will satisfy
(14) E(y(fr),A)= Iy(i>) -yu\ = 0(h4).

Examples 9.10 and 9.11 illustrate Theorem 9.7. If approximations arc “imputed
using the step sizes h and /2, we should have

(15) E(y(b),h)*Ch4

for the larger step size, and

a®

Hence the idea in Theorem 9.7 is that if the step size in the RK4 method is reduced by
a factor of | we can expect that the overall F.G.E. will be reduced by a factor of -jL.

Example 9.10. Use the RK4 method to solve the LV.P. y' = (r —y)/2 on [0, 3] with
>m(0) = 1. Compare solutionsforh = 1, j, j, and g.

Table 9.8 gives the solution values at selected abscissas. For the step size h = 0.25. a
sample calculation is

. 0.0-1.0

flz —2—= ~05"~

h o= = —0.40625,

/3 = rl+/mag”r(-muya»)=_0.41210W(
n o= m _a3234863>

y - 10 1025 7A~°-5+ 2b°-40625) + 2(-0.4121094)~ 0.3234863]

0.8974915. .

Example 9.11. Compare the F.G.E. when the RK4 method is used to solvey' = (f- y).:”
over [0,31 with y(0) —1using step sizes 1. i, and g.

Table 9.9 gives the F.G.E. for the various step sizes and shows that the error in the
approximation to y(3) decreases by about jg when the step size is reduced by a factoT

of hit.
E(y(3),h) =y(3) - yM= 0(h4) ~ Ch4 where C = —0.000614. *

A comparison of Examples 9.10 and 9.11 and Examples 9.8 and 9.9 shows what b
meant by the statement “The RK4 method simulates the Taylor series method of order
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Table 9.8 Comparison of the RK4 Solutions with Different Step Sizes fory' = (t-y)/2
over [0,3] withy(0) = 1

Yk

‘K h=1 h= h=j y(7jt) Exact
n 1.0 1.0 1.0 1.0 1.0
0.125 0.9432392 0.9432392
0.25 0.8974915 0.8974908 0.8974917
Mn.375 0.8620874 0.8620874
(150 0.8364258 0.8364037 0.8364024 0.8364023
0.75 0.8118696 0.8118679 0.8118678
100 0.8203125 0.8196285 0.8195940 0.8195921 0.8195920
150 0.9171423 0.9171021 0.9170998 0.9170997
200 1.1045125 1.1036826 1.1036408 1.1036385 t.1036383
150 1.3595575 1.3595168 1.3595145 1.3595144
100 1.6701860 1.6694308 1.6693928 1.6693906 1.6693905

Table 9.9 Relation between Step Size and F.G.E. for the RK4 Solutions to
/ = (t—y)/2over [0, 3] withy(0) = 1

F.G.E. O (Ad) ss Ch4
Step Number of Approximation Erroratt —3, where
size,ft steps, M t0j(3), yM yO) - ym C = -0.000614
1 3 1.6701860 -0.0007955 -0.0006140
21 6 1.6694308 —0.0000403 -0.0000384
3| 12 1.6693928 -0.0000023 -0.0000024
é 24 1.6693906 -0.0000001 -0.0000001

N = 4,” Forthese examples, the two methods generate identical solution sets ((/g.. y*)}
over the given interval. The advantage of the RK4 method is obvious; no formulas for
the higher derivatives need to be computed nor do they have to be in the program.

It is not easy to determine the accuracy to which a Runge-Kutta solution has been
computed. We could estimate the size of yw (c) and use formula (12). Another way
is to repeat the algorithm using a smaller step size and compare results. A third way is
to adaptively determine the step size, which is done in Program 9.5. In Section 9.6 we
will see how to change the step size for a multistep method.

Runge-Kutta Methods of Order N — 2

The second-order Runge-Kutta method (denoted RK2) simulates the accuracy of the
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Taylor series method of order 2. Although this method is not as good to use as the
RK4 method, its proof is easier to understand and illustrates the principles involved.
To start, we write: down the Taylor series formula for y(t 4- h):

(17) y{t+ h) —y(t) + hy'(t) + ifcV (0 + CrA3+ ees,

where Ct is a constant involving the third derivative of y(t) and the other terms in the
series involve powers of h>for j > 3.

The derivatives y'(t) and y"(t) in equation (17) must be expressed in terms of
/(I", y) and its partial derivatives. Recall that

(18) y'(t) =

The chain rule for differentiating a function of two variables can be used to differ-
entiate (18) with respectto t. and the result is

yU () - ftit,y) + fy(t y)y'(t).
Using (18), this can be written
(19) ya(t) = Mt,y) + fy(t,y)f(t,y).

The derivatives (18) and (19) are substituted in (17) to give the Taylor expression
fory(f + h):

y(t+h)=y() +hf(t,y) + \h2f,(t,y)
(20) j 2
+ 2h2h 1'J1/4*, Y) + CTK3 H-—.

Now consider the Runge-Kutta method of order N = 2, which uses a linear com
bination of two function values to express y(t + A):

(21) y(t+ A) = y(/) + Ahf0 + Bhfi,

where

(22)

v
/, /(( + PH, y + Qhfo).

Next the Taylor polynomial approximation for a function of two independent vari-
ables is used to expand /{/, y) (see the exercises). This gives the following represen-
tation for f\:

(23) [, = I(*,y) + Phf,(t, y) + Qhfyt't, y)f(t, y) + CPh2+ -
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where Cp involves the second-order partial derivatives of /(/, y). Then (23) is used
iii (21) to get the RK2 expression for y(t + k):

y(t+4 = >0+ (A + B)hf(t,y) + BPh2f,(t, y)

(14)
+ BQh2fy(t,y)f(t,y) + BCph3+ mm .

A comparison of similar terms in equations (20) and (24) will produce the follow-
ing conclusions:

hf(t, y) = (A + B)hf(t,y) impliesthat 1 = A + B,

~h2fi(t,y) = BPh2f;(t, y) implies that ~ = BP,

Mofy(t,y)/(r, 8- BQh2fy(t,y)f(t,y) implies that > — BQ.

Hence, if we require that A, S, A, and C satisfy the relations

25 A+ fl=1 B fi=-,
(25) ? =

tlien the RK2 method in (24) will have the same order of accuracy as the Taylor’s
method in (20).

Since there are only three equations in four unknowns, the system of equations (25)
is underdetermined, and we are permitted to choose one of the coefficients. There are
several special choices that have been studied in the literature; we mention two of them.

Case (i): Choose A = 5, This choice leadsto B = j, P — 1, and Q = 1 If
equation (21) is written with these parameters, the formula is

(26) y(t+ A = y@t) + [(/(f.y) +f(t +h,y +hf(t, y))).

When this scheme is used to generate ((r*, y*)}, the resultis Heun’s method.
Case (ii): Choose A = 0. This choice leadsto B = 1, P = and Q — 5. If
equation (21) is written with these parameters, the formula is

27) y(t +h) = y(t) + A/ y+ M(ty)j .

When this scheme is used to generate [(r*, y*)}, it is called the modified Euler-Cauchy
method.
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Runge-Kutta-Fehlberg Method (RKF45)

One way to guarantee accuracy in the solution of an 1.V.P. is to solve the problem tv*
using step sizes h and h/2 and compare answers at the mesh points corresponding to
the larger step size. But this requires a significant amount of computation for the
smaller step size and must be repeated if it is determined that the agreement is not
good enough.

The Runge-Kutta-Fehlberg method (denoted RKF45) is one way to try to resolve
this problem. It has a procedure to determine if the proper step size h is being used. At
each step, two different approximations for the solution are made and compared. If the
two answers are in close agreement, the approximation is accepted. If the two answers
do not agree to a specified accuracy, the step size is reduced. If the answers agree to
more significant digits than required, the step size is increased.

Each step requires the use of the following six values:

ki = ¥K),
= K+ A +
Kr = hf VY K -?*_).

kr = hf tk+§h,yk+ 3 kl + 3 kz},

(28) K - hf 12, 1932, 7200, 7296, 4
tk+ 13 'YK+ 2197 1~2197 2+ 2197 3)
439 o, 3680 845
k= hf tk+h,yk+ — kl-U'2+— fc- — *\!
3544, 1859

h o= hf 4+ i Aq + 20 wq .
kKt JA, Y 57 265" Y HBIM-iK b

Then an approximation to the solution of (he I.V.P. is made using a Runge-Kutta
method of order 4:
25 1408 2197 1

29 = -— “
(29) Hel= K+ oKt g5 T RGN T®

where the four function values f\, /3, /4, and /5 are used. Notice that /2 is not used
in formula (29). A better value for the solution is determined using a Runge-Kutta
method of order 5:

16 , 6656 28,56% 9 2
(30) r*+1 =* + — kt+ — *B+N Nk 4- ~k5+-A*,

The optimal step size sh can be determined by multiplying the scalar s times the
current step size h . The scalars is
il4

(31)
V2|z*+i - Yk+1/ \U*+i - yt-.+\V/
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Table 9.10 RKF45 Solutiontoy' = 1+ y1,y(0) = 0

RK45 approximation True solution, Error
K tk % 2(*) = tan(fi) Y ~ YK
0 0.0 0.0000000 0.0000000 0.0000000
1 0.2 0.2027100 0.2027100 0.0000000
2 0.4 0.4227933 0.4227931 —0.0000002
3 0.6 0.6841376 0.6841368 -0.0000008
4 0.8 1.0296434 1.0296386 —0.0000048
5 10 1.5574398 15774077 -0.0000321
6 11 1.9648085 1.9647597 -0.0000488
7 12 2.5722408 2.5721516 -0.0000892
8 13 3.6023295 3.6021024 -0.0002271
9 135 4.4555714 4.4552218 -0.0003496
10 14 5.7985045 5.7978837 -0.0006208

where Tol is the specified error control tolerance.

The derivation of formula (31) can be found in advanced books on numerical anal-
ysis. It is important to learn that a fixed step size is not the best strategy even though
it would give a nicer appearing table of values. If values are needed that an; not in the
table, polynomial interpolation should be used.

Example 9.12. Compare RKF45 and RK4 solutions to the I.V.P.
Y =14y2 with y0)=0 on [0, 14]

An RKF45 program was used with the value Tbl = 2 x 10" 5 for the error control
tolerance. It automatically changed the step size and generated the 10 approximations to
the solution in Table 9.10. An RK4 program was used with the a priori step size ofh ~ 0.1,
winch required the computer to generate 14 approximations at die equally spaced points in
lable 9,11. The approximations at the right end point are

y(1.4) « yto = 57985045 and ,v(1.4) = >14 = 5.7919748
and the errors are

£10 = -0.0006208 and E14= 0.0059089

for the RKF45 and RK4 methods, respectively. The RKF45 method has the smaller
error. u
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Table 9.11 RK4 Solutiontoy' = 1+ y1y(0) =10

RK4 approximation True solution, Error
* N y(tk) = tan(r) y(*k) - YK
0 0.0 0.0000000 0.0000000 0.0000000
1 0] 0.1003346 0.1003347 0.0000001
2 0.2 0.2027099 0.2027100 0.0000001
3 0.3 0.3093360 0.3093362 0.0000002
4 0.4 0.4227930 0.4227932 0.0000002
5 0.5 0.5463023 0.5463025 0.0000002
6 0.6 0.6841368 0.6841368 0.0000000
7 0.7 0.8422886 0.8422884 —0.0000002
8 0.8 1.0296391 1.0296386 -0.0000005
9 0.9 1.2601588 1.2601582 -0.0000006
10 10 1.5574064 1.5574077 0.0000013
u 11 1,9647466 1.9647597 0.0000131
12 12 2.5720718 25721516 0.0000798
13 13 3.6015634 3.6021024 0.0005390
u 1, 5.7919748 3.7978837 0.0059089

Program 9.4 (Runge-Kutta Method of Order 4). To approximate the solution
of the initiai value problem y' = f(t, y) with y(a) = yo over [a, b] by using the
formula

o
Y*+1 = Yk+  (*! + 272 + 2*3 4- fo»).

function R=rlt4(f,a,b,ya,M)
f.Input - f is the function entered as a string ’'f1

X - a and b are the left and right end points

X - ya is the initial condition y(a)

A - Mis the number of steps

{.0utput - R*[T’ Y’] where T is the vector of abscissas
, and Y is the vector of ordinates

h=(b-a) /M;

T=zeros(1,M+1);

Y=zeros(l,M+1);

T=a:h:b;

Y(N=vya;

for j=I:M
kl=h*feval(f,T(j),Y (J));
k2=h*feval (f,T(jJ+h/2,Y(j)+kl/2);
kS~rfevaKf.TCjJ+h/a.YCjJ+M*™);
kd=h*feval(f,T(j)+h,Y (j)+k3);
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Y(j+1)~Kj)+0a+2+K2+2*Kk3+LLU /6 ;
end
R=[T" Y’1;

The following program implements the Runge-Kutta-Fehlberg Method (RKF45)
describedin (28) though (31).

Program 9.5 (Runge-Kutta-Fehlberg Method (RKF45)). To approximate the
solution of the initial value problemy' = f(t,y) withy(a) = yo over [a, b} with
an error control and step-size method.

function R«rkf45(f.a.b.yajM .tol)
Tlnput - f is the function entered as a string ’f’

% - a and b are the left and right end points

% - ya is the initial condition y(a)

% - Mis the number ol steps

', - tol is the tolerance

'l«Qutput * R«[T” Y’] where T is the vector of abscissas
X and Y is the vector of ordinates

1.Enter the coefficients necessary to calculate the
Rvalues in (28) and (29)
a2=1/4;b2=1/4;a3=3/8;b3=3/32;¢c3=9/32;ad-12/13;
M-1932/2197;c4=-7200/2197;d4=7296/2197;aS=1,
b5%439/216;c5=-8;d5=3680/513;eB=-845/4104;a6=1/2;
b6=-8/27;c6=2;d6=-3544/2565;e6=1859/4104;
f6=-11/40;r1=1/360;r3=-128/4275;r4=-2197/75240;r5=1/50;
r6=2/55;n1=25/216;n3=1408/2565;n4=2197/4104;n5«-1/5;
big=lel5;

h=(b-a)/K;

bmin=h/64;

hmax=64*h;

max|=200;

YCl)=ya;

T()=4a;

fnr':’b-o.ooom*abs(b);
while (T (j)<b)
if C(T(j)+h)>br)
h-b-T(j);
end
ACalculation of values in (28) and (29)
ItI=h*feval(f 3T (j) ,Y (j)) ;
y2=y(j)+b2*lcl;
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if big<abis(y2)brealtlend
k2=h*feval(f,T(j)+a2*h,y2);
y3=Y (j)+b3*Kk1+c3*K2;
if big<abs(y3)break,end
k3=h*feval(f,T(j)+a3*h,y3);
y4=Y(j ) +b4*kl+c4*k2+d4*k3;
if big<aba(y4)break,end
kd=h*feval(f,Y(j )+ad*h,y4);
y5=Y (j ) +b5*kl+c5*k2+d5*k3+e5*k4;
if big<abss(y5)break ,end
k5=h*feval(f,T(j)+a5*h,y5);
y6=Y(j ) +b6*kl+c6*k2+d6*k3+e6*k4+f6*k5;
if big<abs(y6)break,end
k6=h*feval (f,Y(j ) +a6*ii,y6);
err«=abs (rI*kl+r3*k3+r4*k4+r5*k5+r6*k6) ;
ynew=Y{j ) v *k 1+n3*k3+n4*k4+n5*k5;
[.Error and step size control
if((err<tol)l(h<2*hmin))

Y (j+1)»ynew;

if ((T()+h)>br)

T(j+i)=b;
else
TCj+I)=TCj)+h;

end

P+l
end
if Cerr==0)

s=0;
slse

s=0,84*(tol*h/err)“(0.25);
end
if ((s<0. 7E,)ft(h>2*hmin))

h=b/2;
end
if ((s>1.50)&(2*h<hmajt))
h=2*h;
end
if(Cbig<abs(Y Cj)))I(maxl==j)).break,end
M=j;
if (b>T())

M=j+1;
else

MH ;
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end.
end
R=[T" Y’];

Exercises for Runge-Kutta Methods

In Exercises 1 through 5, solve the differential equations by the Runge-Kutta method of
order N —4.

(@) Let h — 0.2 and do two steps by hand calculation. Then leth = 0.1 and do four
steps by hand calculation.

(h) Compare the exact solution y (0.4) with the two approximations in part (a).
(c) Does the F.G.E. in part (a) behave as expected when h is halved?

1.y —t2—y withy(0) = 1, y(t) = —~"+ t2—2t + 2

2.y’ -m3y + 3t with y(0) = 1, y{t) = —t —j

3-y'= —ty withy(0) = I, y(r) = e~ 2

4. y'=e~b - 2y withy(0) = y(t) - we~2 + te~2

5. y' = 2ty2with y(0) = I, y(t) = 1/(1 - t2)

6. Show that when the Runge-Kutta method of order N = 4 is used to solve the L.V.P.
Y = /(f,y) over [a, b] with y(a) = 0 the result is

y{b) = "% + 4 (Lt+1/2) + I(>*+)),
i=0
where h — (b —a)/M, and tt — a + kh, and ft+i/2 =a + (k +  ft, which is

Simpson’s approximation (with step size hj2) for the definite integral of f(t) taken
over the interval [a, b],

7. The Richardson improvement method discussed in Lemma 7.1 (Section 7.3) can be
used in conjunction with the Runge-Kutta method. If the Runge-Kutta method of
order N = 4 is used with step size h. we have

y(b) « yh + Ch4.
If the Runge-Kutta method of order N —4 is used with step size 2h, we have
y(b) as yth + Ch4.

The terms involving C/14 can be eliminated to obtain an improved approximation for
y(b), and the result is
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This improvement scheme can be used with the values in Example 9.11 to obtain
better approximationsto yP). Find the missing entries in the table below.

W (IBA- Un)/15
1.6701860
1.6694308
1.6693928
1.6693906

For Exercises 8 and 9, the Taylor polynomial of degree N = 2 for a function /I'r, y) oftv.i
variables t and y expanded about the point (a, b) is

Plit, ¥) = /(a, b) + ft(a,b)(t-a) + fy(a, b)(y- b)

b ED D2 @y ayy - e VY S

8. (a) Find the Taylor polynomial of degree N = 2 for f(t, y) = y/t expand. :
about (1, 1).
(b) Find /*2(1.05, 1.1) and compare with/(1.05, 1.]).
9, (a) Find the Taylor polynomial of degree N — 2 for f(t,y) = 1+t —y)1:
expanded about (0, 0).
(b) Find /*2(0.04,0.08) and compare with /(0.04, 0.08).

Algorithms and Programs

In Problems 1 through 5, solve the differential equations by the Runge-Kutta method of
order N = 4.

(@ Leth = 0.1and do 20 steps with Program 9.4. Then leth = 0.05 and do 40 steps
with Program 9.4.

(b) Compare the exact solution y(2) with the two approximations in part (a).

(c) Does the F.G.E. in part (a) behave as expected when h is halved?

(d) Plot the two approximations and the exact solution on the same coordinate system.
Hint. The output matrix R from Program 9.4 contains the x and y coordinates of
the approximations. The command plot (R(:, 1) ,R{:,2)) will produce a grapf)
analogous to Figure 9.6.

1Ly —r2- ywithy(0) = 1, y(f) = —~" +th —2t+ 2

2. y"'= 3y + 3rwithy(0) = 1,y(l) = —t—n
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3. Y = —tywith>(0) = 1, v(/) = e~'Ur
4. y' = e~b - 2y withj’(0) = 75 y(t) = ~ e~2t + re~b

5.

y' = 2ty2with y(0) =1, y(f) = 1/(1 —r2)

In Problems 6 and 7, solve the differential equations by the Runge-Kutta-Fehlberg method,

(a) Use Program 9.5 with initial step size h = 0.1 and tol = 1CI7.
(b) Compare the exact solution y(b) with the approximation.
(c) Plot the approximation and the exact solution on the same coordinate system.

6.
7.
8.

Y = 9te3', y(0) = 0over [0, 3], = 3te3 —e3 + 1
y = 2tan_1(0. y(0) =0 over [0,1], y(t) = 2ttan_I(r) —In(l + 2)
In a chemical reaction, one molecule of A combines with one molecule of B to form

one molecule ofthe chemical C. It is found that the concentration >a(/) of C at time t
is the solution to the 1.V.P.

y'=k(a- y)(b—y) with y(0)=0,

where K is a positive constant and a and b are the initial concentrations of A and
B, respectively. Suppose that K ~ 0.01, a — 70 millimoles/liter, and b = 50 mil-
limoles/liter. Use the Runge-Kutta method of order N = 4 with h = 0.5 to find
the solution over [0,20]. -Remark. You can compare your computer solution with the
exact solution y(t) —350(1 —e_0-2r)/(7 —5e~°-2r). Observe that the limiting value
is50ast -* +o00.

. By solving an appropriate initial value problem, make a table of values of the function

/(f) given by the following integral:
I(*) = ") 1= f e~2,1dt for 0<x < 3.
) 2 )_v 2tt h
Use the Runge-Kutta method of order N = 4 with h = 0.1 for your computations.

Your solution should agree with the values in the following table. Remark. This is a
good way to generate the table of areas for a standard normal distribution.

X m
0.0 05
0.5 0.6914625
10 0.8413448

15 0.9331928
2.0 0.9772499
25 0,9937903
3.0 091*86501

0. (a) Write a program to implement die Richardson improvement method discussed

in Exercise 7,
(b) Use your program from part (a) to approximate >(0.8) forthe LV.P. y* = i2+y?2,
y(0) = 1lover[0,0.8]. The true solution att = 0.8 is known to be y(0.8) =
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5.8486168. Start with the step size h = 0.05, The program should terminate
when the absolute value of the difference between two consecutive Richardson
improvements is < 10 1.

11. Consider the first-order integro-ordinary differential equation:

(a) Use the Runge-Kutta method of order 4 with h = 0.2, and y (0) = 250 over the
interval [0, 20], and the trapezoidal rule to find an approximate solution to the
equation (see Problem 10 in the Algorithms and Programs in Section 9.2).

(b) Repeat part (a) using the initial values y(0) = 200 and y(0) = 300.

(c) Plot the approximate solutions from parts (a) and (b) on the same coordinate
system.

Predictor-Corrector Methods

The methods of Euler, Heun, Taylor, and Runge-Kutta are called single-step methvds
because they use only the information from one previous point to compute the sue

cessive point; that is, only the initial point (to, yo) is used to compute (tj, u j and.
in general, » is needed to compute v*+i- After several points have been found, it
is feasible to use several prior points in the calculation. For illustration, we develop
the Adams-Bashforth four-step method, which requires yk~3, yk-2, M -i, and yt 1
the calculation of yt+i- This method is not self-starting; four initial points Uh > m
(1->1). ¥2), and (f3, y3) must be given in advance in order to generate the points

YK) mk > 4).

A desirable feature of a multistep method is that the local truncation error (L.T.I-. i
can be determined and a correction term can be included, which improves the accuracy
of the answer at each step. Also, it is possible to determine if the step size is sm.ill
enough to obtain an accurate value for yt+i, yet large enough so that unnecessary and
time-consuming calculations are eliminated. Using the combinations of a predictor
and corrector requires only two function evaluations of f(t, _y) per step

The AdamS'Bashforth-Moulton Method

The Adams-Bashforth-Moulton predictor-corrector method is a multistep method de-
rived from the fundamental theorem of calculus:

U]
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*=/(«, y(0)
4-3
(a) The four nodes for the (a) The four nodes for the
Adams-Bashforth predictor Adams-Moulton corrector
(extrapolation is used). (interpolation is used).

Figure 9.10 Integration over [(*, tk- \] in the Adams-Bashforth method.

The predictor uses the Lagrange polynomial approximation for f(t, y(t)) based
on the points (tk- 3, /k-r), Uk-2, fk-r), Uk-\, fk-1), and (A. fk). Itis integrated over
tlie interval fo. 1in (1). Tliis process produces the Adams-Bashforth predictor:

) Pk+l = Yk + 28(~9/k-3 + 37/i_2- 59/i_i + 55fk).

The corrector is developed similarly. The value pk+i just computed can now be
used. A second Lagrange polynomial for /(/, >m(/)) is constructed, which is based
on the points (tk-r, fk-r), (tk-i, fk-12), (tk, fk), and the new point (f*+i. /*+i) =
(tk+1, f(tk+\, Pk+1))- This polynomial is then integrated over , tk+1] producing the
Adams-Moulton coirector:

® S = YK+ A(fk-2 —5fk-1 + 19fk + 9/jt+i).

Figure 9.10 shows the nodes for the Lagrange polynomials that are used in developing
formulas (2) and (3), respectively.

Error Estimation and Correction
The errorterms for the numerical integration formulas used to obtain both the predictor
aud corrector are of the order D(h5). The L.T.E. for formulas (2) and (3) are

24
4) yfft+i) - Pk+1= --v I54e,+, )" (L.T.E. for the predictor),

—19
(5) y(tk+O - w+i = — y <G(dk+\)h* (L.T.E. for the corrector)

Suppose that h is small and is nearly constant over the interval; then the
terms involving the fifth derivative in (4) and (5) can be eliminated, and the result is

-19
(6) y(tk+l) - Yk+l » —A(w+1 - pt+l).
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New mesh— - 32 ft_, tkin
Old mesh-—— tk 3 Kr tk t tk

Figure 9.11  Reduction of the step size to hj 2 in an adaptive method.

The importance of the predictor-corrector method should now be: evident. Fo
mula (6) gives an approximate error estimate based on the two computed values pl-
anet y*+| and does not use y (5)(0 -

Practical Considerations
The corrector (3) used the approximation ft-\ 1, Pk-\) in the calculation
of vt+i. Since y.;,. j is also an estimate for y(r*+i), it could be used in the corrector (3)
to generate a new approximation for /t+b which in turn will generate a new value
for y*+i- However, when this iteration on the corrector is continued, it will converge
to a fixed point of (3) rather than the differential equation. It is more efficient to reduce
the step size if more accuracy is needed.

Formula (6) can be used to determine when to change the step size. Although
elaborate methods are available, we show how to reduce the step size to ft/2 or increase
it to 2h. Let RelErr = 5 x 10~6 be our relative error criterion, and let Small = 10-5.

@) [f > RelErr, then set h = 2

N -
270 |» +1] + Small
* 41 * 41
(8) If 1_9ﬂ +H —pr+il < RelErr
270 lyat] | "b Small 100
When the predicted and corrected values do not agree to five significant digits,
then (7) reduces the step size. If they agree to seven or more significant digits, then (8)
increases the step size. Fine-tuning of these parameters should be made to suit your
particular computer.
Reducing the step size required four new starting values. Interpolation of /(t,
with a fourth-degree polynomial is used to supply the missing values that bisect the in-
tervals [f*_2. jand /*]. The four mesh points ft-3/2, and tk used
in the successive calculations are shown in Figure 9.11.
The interpolation formulas needed to obtain the new starting values for the step
size h/2 are

,  then set h = 2k.

-5/t-4 + 28/*,3 - 70/*_2+ 140/*_, + 35/*
n-1/2= 28 ]

o , 3/%_4-20N_3 + 90/*_2+ 60/*_|-5/*
fk—/2 — -

Increasing the step size is an easier task. Seven prior points are needed to double
the step size. The four new points are obtained by omitting every second one, as shown
in Figure 9.12.
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K b It_2 * -—-New mesh

k-6 kS k-4 't-3 h-r -1 o old mesh

figure 9.12 Increasing the step size to 2h in an adaptive method.

Milne-Simpson Method

Another popular predictor-conector scheme is known as the Milne-Simpson method.
Its predictor is based on integration of / (t, y(t)) over the interval [r*_3, r+1:

el
(10) y(tk+l) - yOk-3) + Jll' ~ f(ty(t))dt.
i-i

The predictor uses the Lagrange polynomial approximation for f(t, yft)) based
on the points (/*-3, fk-3), (tk-i, fk-2), Ok-i, fk-1), and (/*, fk). It is integrated over
the interval [r*_3, ft+i]. This produces the Millie predictor:

4 h
(11) pk+i = Yk-3+ — (2/t-2 - ft- 1+ 2fk).

The corrector is developed similarly. The value can now be used. A sec-
ond Lagrange polynomial for fit, >(/)) is constructed, which is based on the points
to-b N1-i), (tk fk), and the new point ta+i, /1 +i) = (f*+i, fUk+i, Pk+i))- The
polynomial is integrated over [f/t-i, and the result is the familiar Simpson’s rule:

(12) YA ~ YK\ + +4/i +/*+1).

Error Estimation and Correction
The error terms for the numerical integration formulas used to obtain both the predictor
and corrector an? of the order O (A5). The L.T.E. for the formulas in (11) and (12) are

. 28
(13) yte+i) - Pk-\

Nn; (L.T.E. for the predictor).
(14) yfo+j) - W+i = A~-y(5)(<4+i)65 (L.T.E. for the corrector).

Suppose that h is small enough so that v:54 0 is nearly constant over the interval
tfc-3. ft+i]- Then the terms involving the fifth derivative can be eliminated in (13) and
(14) and the resultis

28
(15) yUk+1) - Pk+18 — (YM - Pk+\).

Formula (15) gives an error estimate for the predictor that is based on the two
computed values Pk+ 1and yt+: and does not use >15*(0- It can be used to improve the
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predicted value. Under the assumption that the difference between the predicted and
corrected values; at each step changes slowly, we can substitute pk and yi for pk-i and
_yi+i in (15) and get the following modifier:

(16) m*+i = PkH + 28— K

This modified value is used in place of pt+1 in the correction step, and equation (12)
becomes

a7 yt+l = ¥k-1 + -A(fk-1 + 4 fk + /(fir+b

Therefore, the improved (modified) Milne-Simpson method is

4h
Pk+i = Y3 +y (2N1-2 - N-1+2N) (predictor)
(18) mk+i = Pk+i + 2$¥K2</K (modifier)
N+l = [(F*+1L»»i+])

h
YicH = Ykl + 3 (1 -1+ 4fk + fk+i) (corrector).

Hamming’s method is another important method. We shall omit its derivation, but
furnish a program at the end of the section. As a final precaution we mention that ail
the predictor-corrector methods have stability problems. Stability is an advanced topic
and the serious reader should research this subject.

Example 9.13. Use the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming meth-
ods with h = | and compute approximations for the solution of the I.V.P.

y = ~27. y(0) =1 over [0,3].
A Runge-Kutta method was used to obtain the starting values
yt = 0.94323919, n = 0.89749071, and =3= 0.86208736.
Then a computer implementation of Programs 9.6 through 9.8 produced the values in Ta-
ble 9.12. The error for each entry in the table :isgiven as a multiple of 10-8. In all entries

there are at least six digits ofaccuracy. In this example, the best answers were produced by
Hamming's method. ]
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Table 9.12  Comparison of the Adams-Bashfoith-Moulton, Milne-Simpson, and Hamming
Methods for Solving y* = (f —y)/2, y(0) = 1

Adams-
Bashforth- Milne- Hamming's

K Moulton Eitoj Simpson Error method Error
0.0 1.00000000 OE - 8  1.00000000 0£-8 1.00000000 =8
0.5 0.83640227 8E - 8 0.83640231 4E-8 0.83640234 IE —8
0.625  0.81984-673 16E-8 0.81984687 2E —8  0.81984688 IE -8
0.75 0.81186-762 22E -8 0.81186778 6E-8 0.81186783 1£-8
0.875  0.81194530 28E - 8  0.81194555 3E-8 0.81194558 0E-8
1.0 0.81959166 32E -8 0.81959190 8E-8 0.81959198 0E-8
15 0.91709920 46E - 8 0.91709957 94-8 0.91709967 -1E —8
2.0 1.10363781 51E-8 1.10363822 10E-8 1.10363834 -3 —8
2.5 1.35951387 52E —8 1.35951429 10E-8 1.35951441 -2E-8
2.625 1.43243853 52E - 8  1.4324389!) 6E-8 1.43243907 -2E-8
2.75 1.50851827 52E - 8 1.50851869 10E-8 1.50851881 —2£ —8
2.875 1.58756195 51E - 8  1.S8756240 6E-8 1.58756248 -2E-8
3.0 1.66938998 50E~ 8  1.66939038 10£ —8  1.66939050 -2E-8

The Right Step

Our selection of methods has a purposeL first, their development is easy enough for a
first course; second, more advanced methods have a similar- development; third, most
undergraduate problems can be solved by one of these methods. However, when a
predictor-corrector method is used to solve the L.V.P. y' —f(t, y), where y(r0) =
over a large interval, difficulties sometimes occur.

If fy(><>") < 0 and the step size is too large, a predictor-corrector method might
be unstable. As a rule of thumb, stability exists when a small error is propagated as a
decreasing error, and instability exists when a small error is propagated as an increasing
error. When too large a step size is used qver a large interval, instability will result and
is sometimes manifest by oscillations in the computed solution. They can be attenuated
by changing to a smaller step size. Formulas (7) through (9) suggest how to modify
the algorithm(s). When step-size control is included, the following error estimate(s)
should be used:

(19) y (tk) —yk  19- (Adams-Bashfortb-Moulton),
(20) y (tk) - Yk« — YK (Milne-Simpson),
(21) y(") - Yy« 9—yyp (Hamming).

In all methods, the corrector step is a type of fixed-pointiteration. It can be proved
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that the step size h for the methods must satisfy the following conditions:

(22) (Adams-Bashforth-Moulton),
~ Nyt )l
3.00000 i .
(23) (Milne-Simpson)
< \fy(t, y)I
2.66667 .
(24) \Fit nil (Hamming).

The notation in (22) through (24) means “much smaller than.* The next example
shows that more stringent inequalities should be used:

0.75

[25) h < (Adams-Bashforth-Moulton),
\fyU> Y)!
0.45 . .
(26) h < (Milne-Simpson),
0.69 .
(27) h < (Hamming).
Ify{t, y)I

Inequality (27) is found in advanced books on numerical analysis. The other two in-
equalities seem appropriate for the example.

Example 9.14» Use the Adams-Bashforth-Moulton, Milne-Simpson, and Hamming meth-
ods and compute approximations for the solution of

y' = 30 —by, y(o) = 1 over the interval [0,10].

All three methods are of the order O (ft4). When N = 120 steps was used for all three
methods, the maximum error for each method occurred at a different place:

y(0.41666667) —ys  —0.00277037 (Adams-Bashforth-Moulton),
y(0.33333333) - >4 * -0.00139255 (Milne-Simpson),
y(0.33333333) - ya 1) -0.00104982 (Hamming).

At the right end points i — 10, the error was

y(10) - Vi2o~ 0.00000000 (Adams-Bashforth-Moulton),
y(10) - yi2o0 ~ 0.00001015 (Milne-Simpson),
y(10) - yi20 = 0.00000000 (Hamming).

Both the Adams-Bashforth-Moulton and Hamming methods gave approximate solution
with eight digits of accuracy at the right end point.
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o 1 2 3 4 5 6 7 8 9 10

Figure 9.13 (a) The Adams-Bashforth-Moulton solution
toy -m 30 —5ywith N = 37 steps produces oscilla-
tion. It is stabilized when N = 65 because h = 10/65 =
0.1538 ss 0.15 = 0.75/5 = 0.75/]/j.(f, y)[.

Figure 9.13 (b) The Milne-Simpson solution toy' —30-
5y with N = 93 steps produces oscillation. It is stabilized
when jV = 110 because h = 10/110 = 0.0909 =s 0.09 =

0.45/5 = 0.45/1/ji(r, >)].

It is instructive to see that if the step size is too large the computed solution os-
cillates about the true solution. Figure 9.13 illustrates this phenomenon. The small
number of steps was determined experimentally so that the oscillations was about the
same magnitude. The large number of steps required to attenuate the oscillations were
rfetermined with equations (25) through (27).

Each of the following three programs requires that the first four coordinates of T
and Y be initial starting values obtained by another method. Consider Example 9.13,
where the step size was h — | and the interval was [0, 3j. The following string of
commands in the MATLAB command window will produce appropriate input vec-
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3 A - NANAK- n=70
N = 50

4

3

2

1

01 2 3 4 5 6 7 8 9 10

Figure 9.13 (c) Hamming's solution to y' = 30 —5y
with A/ = 50 steps produces oscillation. It is stabilized
when N = 70 because h = 10/70 = 0.1428 « 0.138 =
0.69/5 =0.697]/j.(f, y)\.

tors Tand Y.

>>T=zeros(l,25);

>>Y=zeros(l,25);

»T=0:1/8:3;

»Y (1:4)“[1 0.94323919 0.89749071 0.86208736];

1 " i
Program 9.6 (Adams-Bashforth-Moulton Method). To approximate the solution !
of the initial value problem y' — f(t, v) with y(a) = vy over [a, b) by using the

predictor
Pk+i ~YK + ~(-9fk-i + 37/i_2 - 59/t-i 455/%)
and the corrector

YRcH = i+ Ar(/*-2 - 5/*% i + 19/% + 9/*+ ).

function A=abm(£,T,Y)

7.Input - f is the function entered as a string

7 - T is the vector of abscissas

VA - Y is the vector of ordinates

Remark. The first four coordinates of T and Y must

VA have starting values obtained with RK4

7Output - A=[T* Y’] where T is the vector of abscissas and
7 Y is the vector of ordinates

n=length(T);
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if il<k5,break,end;
F=zeros(l,4);
F«feval(f,T(1:4),Y(1:4));
h=T(2)-T();
lor k=4:n-1
~Predictor
p=Y(K)+(h/24)*(F*[-9 37 -59 55]");
T(k+)=T(()+h*k;
F=[F(2) F(3) F@4) feval.(f,T(k+1),p)]
y,Corrector
Y(k+)=Y(k)-Kh/24)*(F*[l -5 19 917);
F(4)=feval(iE, T(k+1) ,YOt+l));
end
A=[T’ Y’];

483

Program 9.7 (Milne-Simpson Method). To approximate the solution of the initial

value problemy' -- f (t, v) with y(a) =

Ah
Pk+i = >*-3 +

and the corrector

yo over [a, b] by using the predictoT

- fk-1+ 2/0

Yk+1l= W-i + ~(fk-\+ 4/t +

function M=milne(f,T,Y)

YInput - f is the function entered as a string ’'f’

VA - T is the vector of abscissas

M - Y is the vector of ordinates

/.Remark. The first four coordinates oi T and Y must

VA have starting values obtained with RK4

'/.Output - M=[T’ Y’] where T is the vector of abscissas and
% Y is the vector of ordinates

n=length(T);

if n<5,break,end;
F=zeros(l,4);
F=feval(f,T(1:4),Y(1:4));
h=T(2)-T(l);
pold=0;
yold=0;
for k=4:n-I

7.Predictor

pnew=Y<k-3) + (4*h/3)* (F (2:4)*[2 -1 2]");



484 Chap-9 Solution of Differential Equations

7.Modifier
pmod=pnew+28%*(yold-pold)/29;
T(k+)=TU)+h*k;
F=[F(2> F(3) F(4) fevalff,T(k+l),pmod)];
"/.Corrector
Y{k+D)=Y (k') +(h/3)*{FC2:4)*[l 4 1js>;
pold=puew;
yold=Y(k+1);
F(4)=feval(f,T(k+1),Y(k+]1));

end

M=[TJ Y’];

Program 9.8 (Hamming Method). To approximate the solution of the initial value
problemy' = /(/, y) withy(a) = yo over [a, b] by using the predictor

A
Pk+l = Y- 3+ -J-(2/k-2 ~ fk-l + 2ft)

and the corrector

-Yk-2 + Wk ,3/1 3
YEH = e T (-/t-i + 2/* + fk+i).

function Hrhanuaiivg(f ,T,Y)

‘Y.nput - f is the function entered as a string ’'f’

% - T is the vector of abscissas

', - Y is the vector of ordinates

'/.Remark. The first four coordinates of T and Y must

7 have starting values obtained with RK4

7.0utput - H=[T’ Y’] where T is the vector of abscissas and
b4 Y is the vector of ordinates

n“length(T);

if n<5,break,end;

F=zeros(l,4);

F=feval(f.T(1:4),Y(1:4))i

h=T(2)-T(1);

pold=0;

cold=0;

for k=4:n-i
7.Predictor
pnew=Y(k-3)+(4*h/3)* (F(2:4)*[2 -1 21]7);
«/.Modifier
pmod«pnew+112*(cold-polti)/121;
T(k+D)=T(H)+h*k;
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F-[F(2) F(3) F@) fevaltf ,T(k+I) ,pmod)] ;
'/.Corrector
cnew=C9*Y (k)-Y(Jt-2)+3*b*(F(2:4)*[-i 2 1]°))/8;
Y(k+l)=cnew+9*(pnew-cnew)/121;
pold=pnew;
cold=cnew;
F(4)-feval (f,T(k+1),Y(k+1));
end
H»[T* Y’];

Exercises for Predictor-Corrector Methods

In Exercises 1 through 3, use the Adams-Bashforth-Moulton method, the three starting
values yi, y2, and y3, and the step size k = 0.05 to calculate by hand the next two values
v4 and y3 for the 1.V.P, Compare your solution with the exact solution y (/).

1y —t2- vy, j(0) = 1over[0,5,y(f)= —e" + 11 —2t+ 2

y(0.05) = 0.95127058
>(0.10) = 0.90516258
y(0.15) =r 0,86179202

2. y'=y+ 3t—r2,y(0) = lover[0,5], y(t) = 2e*4-t2—t —1

>(0.05) = 1.0550422
y(0.10) = 1.1203418
>(0.15) =s 1,1961685

3 y' ——t/y, y(I) = loverf], 14],y(t) = (2 - 12) Hi
y(1.05) =a0.94736477
y(1.10) = 0.88881944
y(l. 15) = 0.82310388
In Exercises 4 through 6, use the Milne-Simpson method, the three starting values yi, yi.
and y3, and the step size k = 0.05 to calculate by hand the next two values y4 and Y5 for
the 1.V.P. Compare your solution with the exact solution y(t).
4.y —e~*~y,y(0) = lover[0, 5], y(f) = te~' 4-e"

y(0.05) =: 0.99879090
y(0.10) = 0.99532116
y(0.15) = 0.98981417

5. y' = 2ty2,y(0) = lover|[0, 0.95], y(r) = /(1 —t2

y(0.05) = 1.0025063
y(0.10) = 1.0101010
y{0.15) = 1.0230179
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6.y = 14-y1,y(0) = lover[0,0.75],y(f) = tan(f + jt/4)
y(0.05)= 1.1053556
y(0.10) = 1.2230489
y(0.15) = 1.3560879
In Exercises 7 through 9, use the Hamming method, the three starting values yi- vi, and
y3, and the step size h = 0.05 to calculate by hand the next two values and y5 for the
1.V.P. Compare your solution with the exact solution y(r).
7. y'=ly —y2,y(0) = 1lover [0, 5], y(f) = 14 tanh(f)
y (0.05) = 1.0499584
y(0.10) = 1.0996680
>(0.15) = 1.1488850
8. >'= 1 —y21U2,y(o) = Oover [0, 1.55], y(r) = sin(f)
>(0.05) = 0.049979169
>(0.10) = 0.099833417
>(0.15) = 0.14943813
9. y' = y2sin(r), >(0) = 1lover [0, 1.55], y (f) = sec(/)

y(0.05) = 1.0012513
y(0.10) = 1.0050209
y(0.15) = 1.0113564

Algorithms and Programs

1 (a) Use Program 9.6 to solve the differential equations in Exercises 1through 3.
(b) Plot your approximation and the exact solution on the same coordinate system.

2. (a) Use Program 9.7 to solve the differentia! equations in Exercises 4 through 6.
(b) Plot your approximation and the exact solution on the same coordinate system

3. (&) Use Program 9.8 to solve the differential equations in Exercises 7 through 9.
(b) Plot youir approximation and the exact solution on the same coordinate system

4. Produce a graph analogous to Figure 9.13 by using Program 9.6 with N = 37 and
N — 65 tosolve the I.V.P.

y' = 30—by, y(0) = 1 over[0,10].

5. Forthe LV.P. y' = 45- 9> >(1) = Oover [1, 20]:
(a) Use inequality (22) to determine for which step sizes the Adams-Bashforth
Moulton method might be unstable.
(b) Based on your results from part (a) select step sizes hs and hu foT which the
Adams-Bashforth-Moulton method should be stable and unstable, respectivel!}
Use a Runge-Kutta method to generate three starting values yi, yr, and y3 lor
each of the step sizes.
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(c) Use Program 9.6 to generate two approximations, one for each step size, to the
1.V.P.

(d) Use your results from, part(c) to produce a graph analogous to Figure?. 13. You
may find it necessary to experiment with several sets of step sizes.

Q7 Systems of Differential Equations

This section is an introduction to systems of differential equations. To illustrate the
concepts, we consider the ihitial value problem

dx

— = fit,x,y) [*(/0) = xo,
1) \Y% with J

dt

A solution to (1) is a pair of differentiable functions x(t) and >(/) with the prope ny
thatwhen t, x(t), andy it) are substitutedin /(/, g, y) and g(t, x, y), the result is equal
to the derivative x'it) and y'(t), respectively; tliat is

x'it) = f{t, x(t), y(t)) - f JJf0) = *o.

) , {[
y (t) = oft, *(f), >(f)) y(*o) = JO-

For example, consider the system of differential equations

dx )
=X+ 2y - _
0) = 6,
@) dr with id0)
Sf = 3%+ 2y y{0) = 4.
dt

The solution to the 1.V.P. (3) is

X(t) = de** + 2e~\

®»

yit) = 6ed - 2e-".

This is verified by directly substitutingx (t) and y it) into the right-hand side of (3),
computing the derivatives of (4), and substituting them in the left side of (3) to get

16e4l - 2e~‘' = (Aedt+ 2e~*) + 2(6e4d - 2e-~l),

24e* + 2e~' = 3(4ed + 2e~') + 2(6e4 - 2e~!).
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Numerical Solutions

A numerical solution to (1) over the intervala 5 t < i is found by considering the
differentials

(5) dx = f(t,x,y)dt and dy —g(t,x,y)dt.

Euler's method for solving the system is easy to formulate. Tbe different
fir-ri - tk.dx ~ Xkt\ —xb, and dy —y*+i —y* are substituted into (5) to ge

6 FRE] - xx oxx fU K, xK, yK)(tk+i - tk),
YK\ - YK/ g(tk, Xt, yk)(tk+1- *fo)-

The interval is divided into M subintervais of width h = (b —a)/M, and the mesh
points are f*+i = tk + h. This is used in (6) to get the recursive formulas for Euler -
method:

f*+] = tk+ h,
0) Xk+i=Xk+hf(tk,xk,yk),
M+i = yt+ hg(tk,xk,yk) for k=0, 1, ..., M - 1.

A higher-order method should be used to achieve a reasonable amount of accura*. m
For example, the Runge-Kutta formulas of order 4 are

h
Mt+! = Xk+ ~(/1 + 272 4-2/3 + [a),
® J

Yer1 = Y* + 70(51 + 292 + 293 + gi),

where
f, = f(tk,Xk,yk), gl= g(tk,Xk, YK),
f h h h \
h=f XK + , g2=glf*+ -, 1+ ~f\,yk+ ~gll,
J h E h \ / h n A\
h - f (ft + 27 ** + yk+ 282)° «3 =gU*+ 2* + Jw2 yk+ 282)"
U =/ (tk+ h, xk + A/3, yk+ hgj), g4=g(tk+h,xk+ hh, Yx+ hgj).

Example 9.15. Use the Runge-Kutta method given in (8) and compute the numerical
solution to (3) over the interval [0.0,0.2] using ten subintervals and the step size h = 0.0Z.
For the first point we have fl = 0.02 and the intermediate calculations required to
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Thbte9.13  Runge-Kutta Solutiontox'it) = * 4-2y, y'(t) = 3x + 2y
with the Initial Values x(0) —6 andy(0) = 4

*

tk Xk Y
o 0.00 6.00000000 4.00000000
1 0.02 6.29354551 4.53932490
2 0.04 6.61562213 5.11948599
3 0.06 6.96852528 5.74396525
4 0.08 7.35474319 6.41653305
5 0.10 7.77697287 7.14127221
6 0.12 8.23813750 7.92260406
7 0.14 8.74140523 8.76531667
8 0.16 9.29020955 9.67459538
9 0.18 9.88827138 10.6560560
10 0.20 10.5396230 11.7157807
compute x\ and >i are
fi = /(0.00,6.0,4.0) = 14.0 g, = 5(0.00, 6.0,4.0) = 26.0
h h
*0+271=6/14 JO+ 2S:=4'26
/2= /(0.01,6.14,4.26)= 14.66 g2 =g(0.01, 6.14,4.26) = 26.94
h h .
X0 4- - /2 = 6.1466 Jo+ 2 V2= 4.2694

fi = /(0.01, 6.1466,4.2694) a 14.6854
03 = /(0.01, 6.1466, 4.2694) = 26.9786
xo + A/3= 6.293708 >0+ hgi = 4.539572
/4 = /(0.02,6.293708,4.539572)= 15.372852
g4 = /(0.02, 6.293708,4.539572) = 27.960268

These values are used in the final computation:

xi = 6+ —76—(14.04 2(14.66) 4 2(14.6854) + 15.372852) = 6.29354551,

0.02
yi= 44 —"(26.04- 2(26.94) 4- 2(26.9786) + 27.960268) = 4.53932490.

The calculations are summarized in Table 9.13.
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The numerical solutions contain a certain amount of error at each step. For the
example above, the error grows, and at the right end pointf = o .2 it reaches its maxi-

mum:

*(0.2) ~ *,0 = 105396252 - 10.5396230= 0.0000022,
y(0.2)- yNe= U .7157841- 11.7157807 = 0.0000034.

Higher-order Differential Equations

Higher-order differential equations involve the higher derivatives x"(t), x"'(t), and so
on. They arise in mathematical models for problems in physics and engineering. For

example,
mx'r(t) + cx'(t) + kx(t) = g(f)

represents a mechanical system in which a spring with spring constant kK restores a
displaced mass m. Damping is assumed to be proportional to the velocity, and the
function g (f) is an external force. It is often the case that the position x(?0) and velocity
x '(to) are known at a certain time fo-

By solving for the second derivative, we can write a second-order initial value
problem in the form

9) x '(t) = fit, x(t), x'(t)) with x(fo) = xo and Jf'(fo) = Jo-

The second-order differential equation can be reformulated as a system of two first-
order equations if we use the substitution

(19 x'{t) = y(t).
Then x"(t) = y'(t) and the differential equation in (9) becomes a system:

dx
a1 mK(to) = -0,

A numerical procedure such as the Runge-Kutta method can be used to solve (1)
and will generate two sequences {x/c) and {y*}. The first sequence is the numerical
solution to (9). The next example can be interpreted as damped harmonic motion.
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Table 9.14 Runge-Kutta Solution tox"(t) 4-4x'(t) + 5x(t) — O with

the Initial Conditions x(0) = 3 and x'(O) —5
K « 4 *(to
0 0.0 3.00000000 3.00000000
1 0.1 2.52564583 2.52565822
2 0.2 2.10402783 2.10404686
3 0.3 1.73506269 1.73508427
4 0.4 1.41653369 1.41655509
5 0.5 1.14488509 1.14490455
10 1.0 0.33324302 0.33324661
'to 2.0 —0.00620684 -0.00621162
30 3.0 —0.00701079 —0.00701204
40 4.0 —0.00091163 -0.00091170
48 4.8 —0.00004972 -0.00004969
49 4.9 -0.00002348 -0.00002345
30 5.0 —0.00000493 -0.00000450

Example 9.16. Consider the second-order initial value problem
x"(0 + 4x'(t) + 5*(/) = 0 with n(0) = 3 and *'(0) = -5.

(a) Write down the equivalent system of two first-order equations.

(b) Use the Runge-Kutta method to solve the reformulated problem over [0, 5] nmin
M ~ 50 subintervals of width h = 0.1.

(c) Compare the numerical solution with the true solution:
*(F) ss 3e~2t cos(f) + sin(r).
The differential equation has the form
nte) = I1(F.*(),*"(*» = -4x"(0 - 5x(r).

| sing the substitution in (10), we get the reformulated problem:

dx

iq0) = 3,
g v with <0)
dy - By _fy y(0) = -5.

Samples of the numerical computations are given in Table 9.14. The values {»} are ex-
traneous and are not included. Instead, the true solution values (x(tk)} are included for
comparison. n
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Exercises for Systems of Differential Equation:?

In Exercises 1through 4, use h = 0.05 and
(a) Euler's method (7) by hand to find (ci , yi) and (xi, >2).
(b) the Runge-Kutta method (8) by hand to find (jtj, y 1).

1. Solve the systemjc' = 2x+by,y’ = 2x+y with the initial conditionj:(0) = —2.7 and
v(0) — 2.8 over the interval 0 < t < 1.0 using the step size A = 0.05. The polygonal
path formed by the solution set is given in Figure 9.14 and can be compared with the
analytic solution:

2. Solve the system x1= 3x —vy, y' =4 x —y with the initial condition jc(0) = 0.2 and
>(0) = 0.5 over the interval 0 < / £ 2 using the step size h = 0.05. The polygonal
path formed by the solution set is given in Figure 9.15 and can be compared with the
analytic solution:

3. Solve the system x' = x —Ay, y' — x + y with the initial condition jt(O) = 2 and
>a(0) = 3 over the interval O < t < 2 using the step size h = 0.05. The polygonal
path formed by the solution set is given in Figure 9.16 and can be compared with the
analytic solution:

x(t) = ~2e‘ + 4e*cos2(/) - 12e' cos(f) sin(r)
and
y(r) = —3e* + 6e' cos2(0 + 2e’ cos(0 s:in(r).
Y y
0.4
0.2
X
-2 -1 0 2 0.0 01 0.20
Figure 9.14 The solution to the sys- Figure 9,15 The solution to the sy
temjct - 2x+3y andy' = 2x + y over ternx' = 3x —y andy1= 4x —y over

[0.0, 10y. 10.0,2.0.
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4. Solve the system x' = Yy —4x, y' = x + y with the initial condition x(0) = 1 and
yQ@) = 1lover theinterval 0 < t < 1.2 using the step size h = 0.05. The polygonal
path formed by the solution set is given in Figure 9.17 and can be compared with the
analytic solution:

3e-v/29</2 _ 3<N29f/2 e-V29f/2 + gV29t/2

X(t) = 2V29e3/2 + 2e3' z
and
_T7?2-"N9(/2 + -je*/at/2 + ejwt/l
y(t) = 2V29e3/2 “ o 2772

In Exercises 5 tlirough 8

(a) Verify that the function x (f) is the solution.
(b) Reformulate the second-order differential equation as a system of two first-order
equations.
(c) Use h = 0.1 and Euler’s method by hand to find jt] and X2-
(d) Use h = 0.05 and the Runge-Kutta method by hand to find xi.
5. 2x"{t) —5r'(/) —3jc(r) —45e2 withx (0) = 2andx'(0) = 1
x(t) = 4e“f2+ leil —9eZ
6. *"(/) + 6 *'(f) + 9x(t) = Owith jc(0) = 4 andx'(0) = -4
*(r) = 4e“3 + 8re~3
7. *"(0 + *(r) = 6cos(f) withx(0) — 2andx'(0) = 3
x(t) = 2cos(r) + 3sin(() + 3fsin(r)
8. x"(t) 4-3x’(t) = 12withx(0) = 5andjc'(0) = 1
x(t) = 4+ 4f + e-3'

! i L L O L x

00 02 04 0.6 0.8 1

Figure 9.16 Tbe solution to the sys- Figure 9.17 The solution to the sys-
temx’ —x —Ay andy' = x + y over temx' = y —4x andy' = x + y over
[0.0, 2.0]. [0.0, 1.2].
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Algorithms and Programs

It Write a program to solve a system of equations by the Runge -Kutta method of order
N = 4(9).
In Problems 2 through 5, use your computer implementation of the Runge-Kutta method
for systems to solve each system using the step size h = 0.05. Plot your approximation
and the analytic solution on the same coordinate system.
2. x' = 2x+ 3y, y' = 2x+ y, with*(0) ——=2.7,y(0) = 28overO < f< 10
*(r) = + 30e4t and > (f) = Ue~*+ ~ edl
3 x'= 3x—y,y = 4x - y, withjc(0) = 0.2,y(0) = 0.50verO< /< 2
*(0 = jel—jQte' andy(f) = %er —jtel
4. x'= x- 4y,y’'= x+ y,withx(0) - 2,¥0)= 3overO<t <2
x(t) = —2e* + 4e' cos2(t) — 12e* cos(0 sin(f)
y(t) = ~3e* + 6elcos2(f) + 2e* cos(f) sin<()
5 x'=y—4x,y' = x+ vy, withn(0) = L, y(0) = loverO< t< 12
3e-v~9r/2 _ 3eV59f/2 e-V29</2 + eVv29//2
*C = 2\/29°3t/2 + 2e W
_Te/2</2+Te/XN2  e-v/29(/2+ eV2X/2

yto = + »
In Problems 6 through 9:
(a) Reformulate the second-order differential equation as a system of two first-order
equations.

(b) Use your computer implementation of the Runge-Kutta method for systems to solve
each system over the interval [0, 2] with the step size h = 0.05.

(c) Plot your approximation and the analytic solution on the same coordinate system.
6. 2x"(i) —5x'(t) —3(t) = 45e2 withjc(O) = 2andjt'(0) = 1
X(t) = 4e~1J2+ le3 —9e2
7. x”{t) + 6x'(i) + 9x(t) = Owithj:(0) = 4andjt'(0) = —4
X (t) — 4e-3' + 8te~%X
8. j:"(/) + x(t) = 6¢cos(r) with g;(0) = 2and-t'(0) = 3
x(t) = 2cos(0 + 3sin(r) + 3lsin(f)
9. x"(t) + = 12withn(0) = 5andn'(0) = 1
x(t) =4 + 4r +e~3

In Problems 10 through 19, use your computer implementation of the Runge-Kutta method
of order N = 4 to solve the given differential equation or system of equations. Plot each
approximation.

10. A certain resonant spring system with a periodic forcing function is modeled by

x"(r) + 25%J) = 8sin(57)  with *(0) = O and *40) = O.
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Use the Runge-Kutta method to solve the differential equation over the interval [0, 2]
using M = 40 steps and h = 0.05.

The mathematical model of a certain RLC electrical circuit is
C"(0+20G'(0 + 1256(f) = 9sin(5f)

with Q(0) = O0and Q'(0) = 0. Use the Runge-Kutta method to solve the differential
equation over the interval [0, 2] using M = 40 steps and k = 0.05. Remark. 1(t) —
G (o is the current at time t.

At time t, a pendulum makes an angle x (t) with the vertical axis. Assuming that there
is no friction, the equation of motion is

mlIx"(t) = —mg sin(x(f)),

where m is the mass and | is the length of the string. Use the Runge-Kutta method

to solve the differential equation over the interval [0, 2] using M — 40 steps and
h = 0.05ifg = 32ft/sec. and

(@) | —3.2ftandjc(0) = 0.3and*'(0) - O.

(b) 1= 0.8ftandjc(O)= 0.3and*'(0) = O.

Predator-prcy model. An example of a system of nonlinear differential equations
is the predator-prey problem. Let x(t) and (0 denote the population of rabbits and
foxes, respectively, at time t. The predator-prey model asserts that x(r) and y(t)
satisfy

x'(t) = Ax(t) —Bx(t)y{t),

y'(f) = Cx(t)y(t) - Dy(t).

A typical computer simulation might use the coefficients
A =2, B = 0.02, C = 0.0002, D - 0.8.

Use the Runge-Kutta method to solve the system of differential equations over the
interval [0, 5] using M = 50 steps and h = 0.2 if
(a) jt(0) = 3000 rabbits and v(0) = 120 foxes.
(b) x(0) — 5000 rabbits and v(0) = 100 foxes.

Solve x' = x —xy\'y' = —y + xy with x(0) = 4 and y(0) = 1 over [0, s] using
h = 0.1. The trajectories of this system form closed paths. The polygonal path
formed by the solution set is one of the curves shown in Figure 9.18.

Solve x' = —3jc —2y —2xy2,y’ = 2x —y + 2-.3 with n(0) = 0.8 and _y(0) = 0.6
over [0,4] using h —0.1. For this system, the origin is classified as a spiral point that
is asymptotically stable. The polygonal path formed by the solution set is one of the
curves shown in Figure 9,19.

Solve x' = y2 —x2, y — 2xy with jc(0) = 2.0 and y(0) = 0.1 over [0.0, 1.5]
using h = 0.05. For this system, there is an unstable saddle point at the origin. The
polygonal path formed by the solution set is one of the curves shown in Figure 9.20.
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Figure 9.18 Solutions to the system
x'= x —xy andy' = —y 4-xy.

Figure 9.20 Solutions to the system
x’ = yz—xlandy' = 2xy.

Equations

Figure 9.19 Solutions to the system
x'= —38x —2y - Xyrandy' =2x —
y+ 2y3.

Figure 9.21 Solutions to the system
x'—l—yandy' = x2—y2.

17. Solve x' = | —y,y = x2 —ylwithx(0) ——1.2and y(0) = 0.0 over [0, ;5 using

h =0.1. The point {1, 1) is a spiral point that is asymptotically stable, and the point
(—1 1) is an unstable saddle point. The polygonal path formed by the solution set is
one of the curves shown in Figure 9.21.

. Solve x' = xr - 2xy2, y' — 2xry —y3with *(0) = 1.0 and y(0) = 0.2 over
[0. 2] using h — 0.025. This system has an unstable critical point at the origin. The
polygonal path formed by the solution set is one of the curves shown in Figure 9.22.

. Solve x' = x2—y2,y' = 2xy with jc(0) = 2.0 and 3>(0) = 0.6 over [0.0, 1.6] using
h = 0.02. The origin is an unstable critical point. The polygonal path formed by the
solution set is one of the curves shown in Figure 9.23.
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Figure 9.22 Solutions to the system Figure 9.23 Solutions to the system
jor = xb—2xy2 andy' = 2x2y —y3 x1l= xz—y2and/ = Ixy.

Boundary Viilue Problems

Another type of differential equation has the form
(1) x" = /(/,*, x') for a<t <b,
with the boundary conditions
(2) x(a) = a and x(b) = fi.
This is called a boundary value problem.
The conditions that guarantee that a solution to (1) exists should be checked be-

fore any numerical scheme is applied; otherwise, a list of meaningless output may be
generated. The general conditions are stated in the following theorem.

Theorem 9.8 (Boundary Value Problem). Assume that f(t, x, y) is continuous on
the region R = {>,x,y) :a < t < b, —00 < x < 00, —00 < y < 00) and that
df/3x = fx(t, x, y) anddf/dy = fy(t, x, y) are continuous on R. If there exists a
constant M > O for which fx and fy satisfy

(3) fx(t,x,y)>0 for all (/,jc,y) € R and

(4) \fy(t,x, y)i < M for all (t,x,y) e R,
then the boundary value problem
(5) x" = f(t, x, x") with jc(fl) = a and x(b) =

has a unique solution x = x(r) fora < t < b.
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The notation y = x'(t) has been used to distinguish the third variable of the funr
tion 7/ [t, x, x'). Finally, the special case of linear differential equations is worthy ol
mention.

Corollary 9,1 (Linear Boundary Value Problem). Assume that / in Theorem 9.8
has the form 7/ (r, x,y) = p(t)y + q(t)x + r(t) and thai / and its partial derivatives
Fjbx = q(t) and ofj'dy = pit) are continuous on R. If there exists aconstantM > 0O
for which p(t) and q(t) satisfy

(6) q(t) > 0O for all t e [a, b). and

(7) b(O\ < M - max{[p(Ol},
a<t<b

then the linear boundary value problem
(8) X" — p{t)x'(t) + q (?)x(t) + r(t) with x(a) = a and x(b) —fi

has a unique solutionx =x (t) overa <t<b .

Reduction to Two I.V.P.’s: Linear Shooting Method

Finding the solution of a linear boundary problem is assisted by the linear structure of
the equation and the use of two special initial value problems. Suppose that uu) is the
unique solution to the I.V.P.

9) u" = p(t)u'(t)+qg(lu(t) + r(t) with u(a) = a and un {a) = 0.
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Furthermore, suppose that u(f) is the unique solution to the I.V.P.
(10) v' - p(t)v'{t) + g(t)v(t) with v(a) = 0 and u'(fl) = 1

Then the linear combination

(m je(r) = u(t) + Cu(t)
isa solutionto x" — p(f)x'{t) + q(t)x(t) + r(t) as seen by the computation
x" = u"+ Cv" = p(t)u\t) + g(i)u(t) + r(t) + p(t)Cv'(t) + q(t)Cv(t)

= p(O{u'(t) + Cv'(1)) + <?(H(«0 + Cv{t) + r(t)
= p(Hx'(t) + qU)x(t) + r(t).

The solution x (r) in equation (11) takes on the boundary values

jc@) —u(a) f-Cv(a)= a+ 0= a,
12) jc(@) )

X(b) = u(b) + Cv(b).
Imposing the boundary condition x{b) == fi in (12) produces C ~ (fi —u(b))/v{h.
Therefore, ifv(b) & O, the unique solution to (8) is

13)

Remark. If g fulfills the hypotheses of Corollary 9.1, this rules out the troublesome
solution v(t) ~ O, so that (13) is the form of the required solution. The details are left
for the reader to investigate in the exercises.

Example 9.17. Solve the boundary value problem

withx(0) = 1.25and x(4) = -0.95 over the interval [0,4].

The functions p, g, and r are p(t) = 2t/(1 -f t1), q(t) = —2/(1 + t2), and
r(t) = 1, respectively. The Runge-Kutta method of order 4 with step size h = 0.2
is used to construct numerical solutions [uj 1and (i;; } to equations (9) and (10), respec-
tively. The approximations {«j} for u(t) are given in the firsl column of Table 9.15. Then
4(4) « «20= —2.893535 and ti(4) ~ o= 4 are used with (13) to construct

b- u(a
P2 U4, Aesesay,
wié4) 1
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Table 9.15 The Approximate Solutions [xj] = \uj + Wj) to

the Equation x '(<) = —2-/ 2mr(rl- 2 N+l

a “j Wj Xj = uj + Wj
0.0 1.250000 0.000000 1.250000
0.2 122:0131 0097177 1.317308
0.4 1.132073 0.194353 1.326426
0.6 0.990122 0.291530 1.281652
0.8 0.800569 0.388707 1.189276
1.0 0.570844 0.485884 1.056728
12 0.308850 0.583061 0.891911
14 0.022522 0.680237 0.702759
1.6 -0.280424 0.777413 0.496989
18 -0.592609 0.874591 0.281982
2.0 -0.907039 0.971767 0.064728
22 -1.217121 1.068944 -0.148177
24 -1.516639 1.166121 -0.350518
26 -1.799740 1.263297 -0.536443
28 -2.060904 1.360474 -0.700430
30 -2.294916 1.457651 -0.837265
32 -2.496842 1.554828 -0.942014
3.4 -2.662004 1.652004 -1.010000
36 -2.78.5960 1.749181 -1.036779
3.8 -2.864481 1.846358 -1.018123
4.0 -2.893535 1.943535 -0.950000

Then the required approximate solution is {xj} — [uj + wj'"\. Sample computations arc

given in Table 9.15, and Figure 9.24 shows their graphs. The reader can verify that v(/t = /
is the analytic solution for boundary vaiue problem (10); that is,

with the initial conditions v(0) = Oand i/(c) = 1.
The approximations in Table 9.16 compare numerical solutions obtained with the linear
shooting method with the step sizes ft = 0.2 and h = 0.1 and the analytic solution

jr(t)= 1.25+ 0.4860896526f —2,25/2+ 2r arctan(r) - " Iri(l + t2) + + t2).

A graph of the approximate solution when h = 0.2 is given in Figure 9.25. Included in
the table are columns for the error. Since the Runge-Kutta solutions have error of order
0ih4), the error in the solution with the smaller step size h = 0.1 is about ~ the error of
the solution with the large step size h = o .2. [ ]

Program 9.10 will call Program 9.9 to solve the initial value problems (9) and (10).
Program 9.9 approximates solutions of systems of differential equations using a mod-
ification of the Runge-Kutta method of order N = 4. Thus, it is necessary to save
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Figure 9.24 Numerical approximations «(/) and w(t) used to
form x(r) = u(t) + w(t) which is the solution to

21

x"(i) = x(M) -- 1
(M r+7 1+r ®
. . . It 2
Table 9.16  Numerical Approximations for x"(t) = ----—-- ' {t) -—---——- + 1
1+ t2 1+t2
x(‘]) &(tj)-Xj X3 X(tj)
A= 02 exact error L h=0.1 exact error

0.0 1.250000 1.250000 0.000000 0.0 1.250000 1.250000  0.000000
01 1.291116 1.291117  0.000001

0.2 1.317308 1.317350 0.000042 0.2 1.317348 1.317350  0.000002
0.3 1.328986 1.328990 0.000004

0.4 1.326426 1.326505 0.000079 0.4 1.326300 1.326505  0.000005
05 1.310508 1.310514  0.000006

0.6 1.281652 1.281762 0.000110 0.6 1.281756 1.281762  0.000006
0.8 1.189276 1.189412  0.000136 0.8 1.189404 1.189412  0.000008
10 1.056728 1.056886 0.000158 10 1.056876 1.056886  0.000010

12 0.891911 0.892086  0.000175 12 0.892076 0.892086  0.000010

16 0.496989 0.497187  0.000198 16 0.497175 0.497187  0.000012

2.0 0.064728 0.064931  0.000203 20 0.064919 0.064931  0.000012
24  -0.350518 -0.350325 0.000193 24 -0.350337 -0.350325 0.000012
28 -0.700430 -0.700262 0.000168 28 -0.700273 -0.700262  0.000011
32 -0.942014 -0.941888 0.000126 32 -0.941895 -0.941883  0.000007
36 -1.036779 -1.036708 0.000071 3.6 -1,036713 -1.036708  0.000005

40 -0.950000 -0.950000 0.000000 4.0 -0.950000 -0.950000 0.000000

the equations (9) and (10) in the form of the system of equations (11) of Section 9.7.
As an illustration, consider the boundary value problem in Example 9.17. The follow-
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10
0.5
0.0
-0.5

- 1.0

Figure 9.25 The graph of tbe numerical approximation for

(using ft = o .2).

ing M-file, named FI, will save the I.V.P. (9) in the form of a system of differential
equations.
function Z=FI(t,Z)
x=Z(l) ;y=2Z(2);
r=ly,2*r*y/ (1l 2)-2*x/a+1-2)+1] ;
A similar M-file, named F2, will save the I.V.P. (10) (justlet r(t) = 0in F1) in the

appropriate form.
A plot of the approximation obtained from Program 9,10 can be constructed by

using the commandplot CL(:,1), L (:,2)).

Program 9.9 (Runge-Kutta Method of Order N = 4 for Systems). To approxi-
mate the solution of the system of differential equations

x\{t) = Zi(f, j:i(0, me

with xi (a) = «i, ..., x,,(@a) =an over the interval [a, b].

function [T,Z]=rks4(F,a,b,Za,M)

'/.Input - F is the system input as a string 'F’

X - a and b are the end points of the interval
b4 - Za=[x(a) y(a)j are the initial conditions
i - M s the number of steps
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Output - T is the vector of steps

X - Z=[xI(t).. .3cn(t)]; where xk(t) is the approximation
7, o the kth dependent variable
h=(b-a) /™;

T=zeros(l,M+l);

2=zeros(M+l,length(zZa));

T=a:h:b;

Z(l,:)=Za;

for j=I:M
kl=h*feval(F,T(j) .,2( , ;
k2=h*feval(F,T(j)+h/2,Z(j ,:)+kl/2);
k3=h*feval(F,T(j)+h/2,Z(j ,:)+k2/2);
k4=h*feval(F,T(j)+h,Z(j,:)+k3);
Z(j+1,:)=2Z(j,:)+Ckl+2*k2+2*k3+k4)/6;

end

Program 9.10 (Linear Shooting Method). To approximate the solution of the
boundary value problem x" = p(t)x'(t) + q(t)x(t) + r(t) with x(a) = a and
x(b) — fi over the interval [a, b\ by using the Runge-Kutta method of order N = 4.

function L=linsht(FI,F2,a,b,alpha,beta,M)

Xlnput - Fl and F2 are the systems of first-order equations

% representing the 1.V.P.’s (9) and (10), respectively;
1 input as strings 'FI’, 'F2’

VA - a and b are the end points of the interval

% - alpha = x(a) and beta = x(b); boundary conditions

% - M is the number of steps

AQutput - L =[T’ X]; where T’ is the (M+I)xl vector of

A abscissas and X is the (M+Il)xl vector of ordinates

¥Solve the syetem FI

Za=[alpha,0];
[T,Z]=rks4(F1,a,b,Za,M);
u=z(:,1);

'/.Solve the system F2
Za«[0,1] ;
[T,Z]=rks4(F2,a,b,Za,K);
V=Z(:,1);

/"Calculate the solution to the boundary value problem
X=U+(beta-UM+I)) *V/V(M+I);
L=[T" X];
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Exercises for Boundary Value Problems

1. Verify that the function x(t) is the solution to the boundary value problem.
(@) x" = (—/o*" + (2/t2x + (10cos(In(fy))s ~2 over [1,3] withn{1) = 1 and
*3>= -1.

, 4+ 4.335050(589 - 0.3359506908f3- 311cos(In(0) + ilsin(In(r))

(b) x" = ~2x —2x + e 1+ sin(20 over [0,4] with x (0) = 0.6 andx(4) = —0.1.

1 1 2
(0o = 5 + e~"- cos(f) - - cosz(r)

+ 3.670227413e~'sin(0 - ~ cos(t) sin(0

(c) x" = —A4xr—4x + 5cos{4f) + sin(2f) over [0, 2] with ;t(0) = 0.75 and x(2) —
0.25.

x(r) = + 1.025e_2r - 1.915729975/e-2' + ~cos2(r)
40 20
b n 4 . 8 . 4.
— - cos (») —- cos(r) sinco + - cosJ(f) sin(f)
(d) x"+ {1/0*" + (1 — .1/(4r2);c = o over [1,s] with-t(l) = 1 andr(s) = o.

*(') [ J— [

(e) x" —(1/0* + (1/t2x = 1lover [0.5,4.5] with jr(0.5) = land gr(4.5 = 2

x(t) = t1- 0,252582(5491f - 2.528442297/ In(0

2. Does the boundary value problem in Exercise 1(e) satisfy the hypotheses of Corol-
lary 9.1? Explain.

3. If g fulfills the hypothesis of Corollary 9.1, show that u(0 = 0 is the unique solution
to the boundary value problem

v' = pU)v'(t) 4q(t)v(t) with v(a) =0 and v(b) = 0.

Algorithms and Programs

1. (a) Use Programs 9.9 and 9.10 to solve each of the boundary value problems, in
Exercise 1, using the step size h = 0.05.
(b) Graph your solution and the actual solution on the same coordinate system.
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2. Construct programs analogous to Program 9.9 based on
(@) Heim’smethod,
(b) the Adams-Bashforth-Moulton method, and
(c) Hamming's method.

3. (a) Modify Program 9.10 to call each of your programs from Problem 2.
(b) Use your programs to solve each of the five boundary value problems in Exer-
cise | using the step size k = 0.05,
(c) Graph your solutions and the actual solution on the same coordinate system.

Finite-difference Method

Methods involving difference quotient approximations for derivatives can be used for
solving certain second-order boundary value problems. Consider the linear equation

1) X7 - p(t)x'(t) + g(t)x(t) + r(t)
over [a, b] with x(a) — a and x(b) = fi, Form a partition of [a, b] using the points
a= ta< t\ < mee < tff = b, whereh = (b —a)/N andtj ~ a+ jh for/ = 0, 1,

.., N. The central-difference formulas discussed in Chapter 6 arc used to approximate

(he derivatives

(2) x'(tj) - + 0(h2)
2 h
and
3) = b tig/-.) HO(fti)

To start the derivation, we replace each term x(tj) on the right side of (2) and (3)
with xj and the resulting equations are substituted into (1) to obtain the relation

(4) + <,(>*> = p(tj) + oibb)

+oa(tj)xj + r{tj).

Next, we drop the two terms 0(h 2) in (4) and introduce the notation pj = p(tj).
gm= q(tj), and rj = r(tj); this produces the difference equation

Xj+i — 2jcj Xi—j Xj+j  Xj—i
<> -~ — =PJ~ 2h + <U*J + M-

which is used to compute numerical approximations to the differential equation (1).
This is carried out by multiplying each side of (5) by h2 and then collecting terms
involving Xj-\,Xj, and Xj+\ and arranging them in a system of linear equations:

F oY p~% +e+ A+ (AP] ~ 1)K = ~h2j.
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forj = 1,2,..., N — 1, where.to = u and.vv = p. The system in (6) has the familiar
tridiagonal form, which is more visible when displayed with matrix notation:

1+ h2q\ \p\ -~ 1 X\
=bp2- 1 2+ h2g2 1M -1 0 X2
Zpy -1 2+ h2aj JPJ - 1 Xi

) APN-2~1 2+ h2gN-2 \pn~i —1I XN- 2

“rPtf-1 —1 2+ h2gN-1  xn.1

-h 2ri+teo

-h 2n

= —h2rj
-h ZrN~2

_-h2rs-1+ eN_
where
e°==("Pi + l)a and eN = + N D.

When compulations with step size h are used, the numerical approximation to the
solution is a set of discrete points {(fy, *_/)}; if the analytic solution x(tj) is known, we
can compare xj and xUf).

Example 9.18. Solve the boundary value problem

s = \NTAX)~ TTiix® + 1

with x(0) = 1.25andn (4) = —0.95 over the interval [0,4].

The functions p, g, and r are pit) = 2t/(l + t2), q(t) = —2/(1 + f2), andr(t) = L
respectively. The finite-difference method is used to construct numerical solutions {xj} us-
ing the system of equations (6). Sample values of the approximations {Jtj.i}, [xj 2}, {x, sm
and {xj_4) corresponding to the step sizes h\ = 0.2, hi = 0.1, /13 = 0.05, and hi = 0.025
are given in Table 9.17. Figure 9.26 shows the graph of the polygonal path formed from
{(tj, <'m)} for the case h\ = 0.2. There are 41 terms in the sequence generated with
/12 =0.1, and the sequence \xJ:2 \only includes every other term From these computations;
they correspond to Ihe 21 values of {/,} given in Table 9.17. Similarly, the sequences \x, 3)
and {xh4} are a portion of the values generated with step sizes 13 = 0.05 and hi = 0.025.
respectively, and they correspond to the 21 values of (fy) in Table 9.17.

Next we compare numerical solutions in Table 9.17 with the analytic solution: x(t) =
1.25+ 0 486089652f~2.25/2+ 2/arctan(/) —j In(l +t2) + ~t2In(l +r 2. The numerical
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2t 2
Table 9.17 Numerical Approximations for X" {1) ~ | + I + t2JcW +1
xid X1 x).1 Xj, 4 x(tj)
h =02 h =0.1 h ~ 0.05 h = 0.025 exact

00 1.250000 1.250000 1.250000 1.250000 1.250000
0.2 1.314303 1.316646 1.317174 1.317306 1.317350
0.4 1.320607 1.325045 1.326141 1.326414 1.326505
0.6 1.272755 1.279533 1.281206 1.281623 1.281762
0.8 1.177399 1.186438 1.188670 1.189227 1.189412
10 1.042106 1.05.3226 1.055973 1.056658 1.056886
12 0.874878 0.887823 0.891023 0.891821 0.892086
14 0.683712 0.698181 0.701758 0.702650 0.702947
16 0.476372 0.492027 0.495900 0.496865 0.497187
18 0.260264 0.276749 0.280828 0.281846 0.282184
2.0 0.042399 0.059343 0.063537 0.064583 0.064931
2.2 -0.170616 -0.153592 -0.149378 -0.148327 -0.147977
24 -0.372557 -0.355841 -0.351702 -0.350669 —0.350325
2.6 -0.557565 -0.541.546 -0.537580 -0.536590 -0.536261
2.8 -0.720114 -0.705188 -0.701492 -0.700570 -0.700262
3.0 -0.854988 -0.841551 -0.838223 -0.837393 -0.837116
3.2 -0.957250 -0.945700 -0.942839 -0.942125 -0.941888
34 -1.022221 -1.012:958 -1.010662 -1.010090 -1.009899
3.6 -1.045457 -1.038880 -1.037250 -1.036844 -1.036709
38 -1.022727 -1.019238 -1.018373 -1,018158 -1.018086
4.0 -0.950000 -0.950000 -0.950000 -0,950000 -0.950000

solutions can be shown to have error of order 0'(h2). Hence reducing the step size by a
factor of j results in the error being reduced by about A. A careful scrutiny of Table 9.18
will reveal that this is happening. For instance, at tj = 1.0 the errors incurred with step
sizesAj, Az, hj, andAs aree”,i = 0.014780, e/ = 0,003660, ejj = 0.000913, and ey.s =
0.030228, respectively. Their successive ratios e;,2/~,1 — 0.003660/0.014780 = 0.2476,
gji/ejiz = 0.000913/0,003660== 0.2495, and e)A /ejmi = 0.000228/0.000913 = 0.2497
are approaching s .

Finally, we show how Richardson’s improvement scheme can be used to extrapolate
the seemingly inaccurate sequences {*; .1}, {-*/.2}, [*],3)< and {Xj,4} and obtain six digits
of precision. Eliminate the error terms 0(k2) and O ((hj 2)r) in the approximations }
and {Jg.2}by generating the extrapolated sequence - {(¢n,2 —*j.1)/3}. Similarly,
the error terms 0((A/2)2) and O(ihjA)2) for {nj 2} and [<r 3} are eliminated by generat-
ing {r;,2} = {(dncy,a - Xj=2)/3}. It has been shown that the second level of Richardson’s
improvement scheme applies to the sequences {zj.i} and so the third improvement
is {(16zj = — Zj,\)i 15} (see Reference [41]). Let us illustrate the situation by finding the
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Figure 9.26 The graph of the numerical approximation for
x{I) = u(t) + tu(f) which is the solution to

X (f) 5= W~ 1+ t2XW o+ 1

{using h = 0.2),

extrapolated values that correspond totj = 1.0, The first extrapolated value is

= 4H 532261042106 =

The second extrapolated value is

ANZ N2 = 417N055973) — 1053226 = =
3 3

Finally, the third extrapolation involves the terms z; .i and zj.i'-

16-y2-zj.i  16(1.056889) - 1.056932
15 15

= 1.056886.
This last computation contains six decimal places of accuracy. The values at the other
points are given in Table 9.19. [ ]

Program 9.12 will call Program 9.11 to solve the tridiagonal system (6). Pro-
gram 9.12 requires that the coefficient functions p(t), q(t), and r(t) (boundary value
problem ( 1)) be saved in M-flles p .m, q .m, arid r . m, respectively.

Program 9.11 (Tridiagonal Systems). To solve the tridiagonal systemC X — B,
where C is a tridiagonal matrix.

function. X=trisys(A,D,C,B)
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Table 9.18 Errors in Numerical Approximations Using the Finite-difference Method

0.0
0.2
0.4
0.6
0.8
1.0
12
14
16
18
2.0
22
24
2.6
28
3.0
3.2
34
3.6
3.8
4.0

7.Input
/,

%

%,
7.Output

N=length(
for k=2:N

X(1)-Xjj

=«.]
hi - 02
0.000000
0.002847
0.005898
0.009007
0.012013
0.014780
0.017208
0.019235
0.020815
0.021920
0.022533
0.022639
0.022232
0.021304
0.019852
0.017872
0.015362
0.012322
0.008749
0.004641
0.000000

A is the
D is the
G is the
B is the
X is the
B);

0.001460
0.002229
0.002974
0.003660
0.004263
0.004766
0.005160
0.005435
0.005588
0.005615
0.005516
0.005285
0.004926
0.004435
0.003812
0.003059
0.002171
0.001152
0.000000

subdiagonal of the coefficient matrix

= .3
h3=0.05
0.000000
0.1300176
0.000364
0.000556
0.000742
0.000913
0.001063
0.001189
0.c:01287
0.001356
0.00139%4
0.001401
0.001377
0-C01319
0.001230
0.001107
0.000951
0.000763
0.000541
0.000287
0.000000

x(t})-*j. 4
=4

A4 = 0.025
0.000000
0.000044
0.000091
0.000139
0.000185
0.000(228
0.000265
0.000297
0.000322
0.000338
0.000348
0.000350
0.000344
0.000329
0.000308
0.000277
0.000237
0.000191
0.000135
0.000072
0.000000

main diagonal of the coefficient matrix
superdiagonal of the coefficient matrix

constant vector of the linear system
solution vector

mult=A(k-1)/D (k-1);
D(k)=D(k)-mult*C(k-1);
B(k)=B(k)-mult*B (k-I);

end

X(N)=B(N)/D(N);

for k=

N-I1:-1:1

XCK)= (B (k)-C (K)*X {k+1))/D (K);

end
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Table 9.19  Extrapolation of the Numerical Approximations {jc,,i), (.r/.r}, Obtained
with the Finite-difference Method

Xl 41.3%.2 167,2—-iji x(-1j)

3 3 3 Exact

§ = 1 =n2 solution
0.0 1.250000 1.250000 1.250000 1.250000
0.2 1.317360 1.317351 1.317350 1.317350
0.4 1.326524 1.326506 1.326504 1.32650?
0.6 1.281792 1.281764 1.281762 1.281762
08 1.189451 1.189414 1.189412 1189412
1.0 1.056932 1.056889 1.056886 1.056886
12 0.892138 0.892090 0.892086 0.892086
14 0.703003 0.702951 0.702947 0.702948
16 0.497246 0.497191 0.497187 0.497187
18 0.282244 0.282188 0.282184 0.282184
2.0 0.064991 0.064935 0.064931 0.064931
22 -0.147918 -0.147973 -0.147977 -0.147977
24 -0.350268 -0.350322 -0.350325 -0.350325
26 -0.536207 -0.536258 -0.536261 -0.536261
2.8 -0.700213 -0.700259 -0.700263 -0.700262
3.0 -0.837072 -0.837113 -0.837116 —0.83711(i

32 -0.941850 -0.941885 —0.941858 —0.941m
34 -1.009870 -1.009898 -1.009899 -1.009894
36 -1.036688 -1.036707 -1.036708 - 1.03670s
38 -1.018075 -1.018085 -1.018086 -1.018080
4.0 -0.950000 -0.950000 —0.950000 -0.950001)

Program 9.12 (Finite-difference Method), To approximate the solution of the j

boundary value problem x” = p(t)x'(t) » q(t)x(t) 4-r(t) with x(a) = a anil |
x(b) = fi over the interval [a. b] by using the finite-difference method of order
0(h2).

Remark. The mesh isa = t\ < -me < tfj+\ = b and the solution points arc j
K',. *;)}E,".

function F=findiff(p,q,r,a,b,alpha,beta,N)

‘/.Input - p,g,and r are the coefficient functions of (1)

X input as strings; 'p’,’'q’,’'r’

% - a and b are the left and right end points

VA - alpha=x(a) and beta=x(b)

1, - N is the number of steps
7.0Output- F=[T’ X’] :where T' is the IXN vector of abscissas
7 and X1 is the IXN vector of ordinates
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*/.Initialize vectors and h

T=3eros{l,N+l);

X=3eros(I,N-I) ;

Va-zeros(l1,N-2);

Vb=»zeros(I,N-1);

Vc=zeros(1,N-2);

Vd=zeros(I,N-I);

h=(b-a)/N;

'"/.Calculate the constant vector Bin AX=B
Vt=a+h:h:a+h*(N-1);

Vb=-h"2*feval (r,Vt);
Vb(D)=Vb(1)+(l.+h/2*feval (p,Vt(l)))*alpha;
Vb(N-1)=Vb(N-1)+(I-h/2*feval(p,Vt(N-1)))*beta;
fCalculate the main diagonal of A in AX*B
Vd=2+h~2*feval (q,Vt);

~Calculate the superdiagonal of A in AX=B
Vta=Vt(l,2:N-t);

Va=-1-h/2*feval (p,Vta);

7<Calculate the subdiagoneil of A in AX=B
Vte=vt(l,1:N-2);

V --1+h/2*fev<il (p, Vtc) ;

I.Solve AX=B using trisys
X=t:risys(Va,Vvd,Vc,Vb);

T=[a,Vt,b] ;

X=[alpha,X, beta] ;

F=LT7X"];

Exercises for Finite-difference Method

n Exercises 1through 3, use the finite-difference method to approximate x(a + 0.5).
() Lethi = 0.5 and do one step by hand calculation. Then let /2 = 0.25 and do two
steps by hand calculation.
(b) Use extrapolation of the values in part (a) to obtain a better approximation (i.e.,
Zj,1= (4*,2- xj,i)/3),
(c) Compare your results from parts (a) and (b) with theexact value jc(a + 0.5).
1 x" —2x'~ x + t2—1 over [0, IJwith *(0) = 5andjc(1) = 10
X(t) —t2+4t+5
L jeu + (L/)* + (1 —1/(4f2)jr = Oover [1, 6] withjc(1) = landjc(6) = O
9._2913843206005(0 + 1.001299385 sin(f)
-ft

x(t) =
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3. x" —(@jt)x' + (I/t2x = lover[0.5,4.5] with;c(0.5) = landjt(4.5) = 2

/) = f2- 0.25258264917 - 2.528442297rIn(f)

Assume that /], g, and r are continuous over the interval [a, 6] and thatq(i) > O lor
a <t <b. Ifh satisfies0 < h < 2/M, where M = max,<(<*{];>(0IK prove that
the coefficient matrix of (6) is strictly diagonally dominant and that there is a unique
solution.

. Assume that p(t) = Ci > Oandq(t) = Ci > 0. (a) Write out the tridiagonal linear

system for this situation, (b) Prove that the tridiagonal system is strictly diagonal!)
dominant and hence has a unique solution, provided thatc1/Cc2 < h.

Algorithms and Programs

1. Use Programs 9.11 and 9.12 to solve the given boundary problem using step sizes

h = 0.1 andh = 0.01. Plot your two approximate solutions and the actual solution
on the same coordinate system.
(a) x" = 2x' —jt+ 11— 1over[0,1] with.*(0} = 5andx (l) = 10
x(t) = t2+4f +5
(b) x"+ (Mt)x' + 1 —1/(4t2)* = Oover [1,6] withx(l]) = 1andn(6) = O
_0.2913843206 cos(f) + 1.001299385 sin(f)

() = SRR o)

(c) x"- (A/r)n*+ (1/f2)* = 1over [0.5,4.5] with jt(0.5) = land.r(4.5) = 2
je(f) = tz - 0.252582649U-2.528442297fIn(f)

In Problems 2 through 7, use Programs 9.11 and 9.12 to solve the given boundary problem
using step sizes h = 0.2, h = 0.1, and h = 0.05. For each problem, graph the thice
solutions on the same coordinate system.

2.

N o o~ oW

x" = (—=2/(0*" + (2/12)* + (10cos(In(r)))/f2over [1, 3] with je(1) = 1and x(3) =
-1

x" = —bjc' —6x + se~2 + 3.9cos(3r) over [0, 3] with x(0) = 0.95 andn(3) = 0.15
x" = —AX' —4x + 5co0s(4/) 4 sin(2f) over [0, 2] with Jtr(0) = 0.75 andx (2) = 0.25
X" = —2x' —2x + e~* + sin(2/) over [0,4] with *(0) = 0,6 and x(4) = —0.1

x" + (2//7)* -- (2/t2)x = sin(0/fz over [1, 6] with *<1) = -0.02 and x(6) = 0.02

x" + (1jt)x' + (L —1/(4r2)x = */t cos(t) over [1, 6] with x( 1) = 1.0 and x(6)
-0.5

. Construct a program that will call Programs 9.11 and 9.12 and carry out the extrapo-

lation process illustrated in Example 9.18 and Table 9.19.

. For each of the given boundary value problems, use your program from Problem &

and the step sizes A = 0.1, A = 0.05, and h = 0.025 to construct a table analogous
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to Table 9.19. Plot your extrapolated solution and the actual solution on the same
coordinate system.

@

(b)

x" = 2x' —x 4-12 — lover [0, I with*(0) = 5and*(1) = 10
xit) = t2+ 4t + 5
x" + (Lji)x' + (L —1/(4f2)x = Oover[1,6] with x(l) - land*(6)= 0

s 0.2013843206c0s(f) + 1.001299385sin(f)

x" - (Ift)x'-t (1/t2x = lover [0.5,4.5] with *(0.5) = landjc(4.5) = 2
x(t) =t2- 0.252582(549Ir - 2.528442297fIn{r)



Solution of
Partial Differential Equations

Many problems in applied science, physics, and engineering are modeled mathemat-
ically with partial differential equations. A differential equation involving more than
one independent variable is called apartial differential equation (PDE). It is not nec-
essary to have taken a specialized course in PDEs to understand the rudimentary prin-
ciples involved in obtaining computer solutions. In this chapter we will study finite-
difference methods which are based on formulas for approximating the first and second
derivatives of a function. We start by classifying the three types of equations under
investigation and introduce a physical problem for each case. A partial differential
equation of the form

(1) APxx + BdOxy + COYY = f(x, Yy, ®, ®Ji( dy),

where A, B, and C are constants, is called quasilinear. There are three types of quasi-
iinear equations:

() MB2—4AC < 0, the equation is called elliptic.
A If B2 —4AC = 0, the equation is called parabolic.
(4) If BL —4AC > 0, the equation is called hyperbolic.

As an example of a hyperbolic equation, we consider the one-dimensional model
for avibrating string. The displacement u(x, t) is governed by the wave equation

(5) pu,t(x, y) = Tuxx(x, i) for 0<jc< L and 0 <t < oo,

514
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Figure 10.1 The wave equation
models a vibrating string.

Insulation

Figure 10.2 The heat equation
models the temperature in an

u(L,t)-c2 .
( ) insulated rod.

with the given initial position and velocity functions

©) n(;e, o) = f{x) for t=o0 and o <x < L,
ut(x, 0) = g(x) fort —0 and 0 < x < L,

and the boundary values

u(,t) =o for x = o and o < t < o0,
7
) u(L,t) =0 for x —L and 0 < t < oo.
The constant p is the mass of the string per unit length and T is the tension in the
string. A diagram of a string with fixed ends at the locations (0, 0) and (L, 0) is shown
in Figure 10.1.

As an example of a parabolic equation, we consider the one-dimensional model for
heat flow in an insulated rod of length L (see Figure 10.2). The heat equation, which
involves the temperature u(x, t) in the rod at the position x and time t, is

xR kuxx(x, t) = opu,(x, t) for 0< x <L and 0 <t < cc,
the initial temperature distribution att = o is

19) u(x, o) =f(x) for /= o and o < x < L,

and the boundary values at the ends of the rod are

«(o,t) =cl for x = o and o < r < o0,
10
0 u(L, t) = @ for je= L and 0 < f < oo.
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x Figure 103 Solution curves
u(x, y) = C to Laplace’s equation.

The constant k is the coefficient of thermal conductivity, <r is the specific heat, and p
is the density of the material in the rod.

As an example of an elliptic equation, consider the potential function u(x, v),
which might represent a steady-state electrostatic potential or a steady-state temper-
ature distribution in a rectangular region in the plane. These situations are modeled
with Laplace’s equation in a rectangle:

(11) uxx(x, y) + uyy(x, ;y) = 0 for 0O<x < land O0<y < 1
with boundary conditions specified:

u(x,0) = Zi<jc) for = 0 and 0 < x < 1 (on the bottom),

y
u(x, 1) — fi(x) for y = 1 and 0 < x < 1 (on the top),
n, y) — /3(y) for x = 0 and 0 < y < 1 (on the left),

u(ly) = fiiy) for x = 1 and 0 <y < 1 (on the right).

A contour plot for u(x, y) with boundary functions ft (x) = 0, /2(n) = sin(jrjc),
/3(y) = 0, and f4(y) = O over thesquare R — {(jc,y ) :0<x<1,0<y< 1}is
shown in Figure 10,3.

Hyperbolic Equations

Wave Equation

As an example of a hyperbolic partial differential equation, we consider the wave equa-
tion

1) Ut,(x, t) = c2uxx(x, t) for o< x <aand 0 <t < b
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fi+l

Figure 10.4 The grid for solving
X2 ] nwl N u,(x,t) =c2uxx(x,t) over R.

with the boundary conditions

Vl(o,/):o and u(a,l):o for o < t < Db,
(2) «(x,0) = f(x) for o <x < 3,
ut(x,Q) — g(x) for o < x < a.

The wave equation models the displacement « of a vibrating elastic string with fixed
ends at x = 0 and x = a. Although analytic solutions to the wave equation can
be obtained with Fourier series, we use the problem as a prototype of a hyperbolic
equation.

Derivation o f the Difference Equation

Partition the rectangle R = ((jr,t) : 0 < x < a,0 < t < b) into a grid, consisting of
n—21by m —1rectangles with sides Ax = k and At = ft, asshown in Figure 10.4. Start
at the bottom row, where t —t\ - o and the solution is known to be u(x,, ii) = f (x,).
We shall use a difference-equation method to compute approximations

{ujj i = 1,2,..., n] in successive rows for j = 2,3, ..., m

The true solution value at the grid points is u(Xj, tj).
The central-difference formulas for approximating ut! (*, t) ana uxx(x, i) are

H(t, f + k) - 2u(x,t) + u(x, t - K) 2

3) u,(x, t) p + O (K*)
and

. . u(x+h,t)-2u(x,t) + u(x-h,t) 2

(4) uxx(x,t) = r o ).
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r2uv
(Z-2*)uu
Figure 10.5 The wave equation
stencil.
The grid spacing is uniform in every row: x,+i — M-+ h (and Xj \= x, —h)\ anditis
uniform m every column: fJ+i = tj + k (and f,_i —tj —k). Next, we drop the terms

Oik1) and O (h2) and use the approximation utJ for u(Xj, tj) in equations (3) and (4),
which in turn are substituted into (1); this produces the difference equation

5) trij+l « + Ujj-i 2ui+\,j ~ 2ui,j + «i-i,y

K2 ~C h2
which approximates the solution to (1). For convenience, the substitutionr — ckjh is
introduced in (5), and we obtain the relation

b)

Equation (s ) is employed to find row j + 1 across the grid, assuming that approxima-
tions in both rows j and j — 1 are known:

(7) «CYH = (2 - 2r2)Uij + r2(ui+\j + Ui-ij) - Uvij-1

for( = 2, 3,..., n— 1 The four known values on the right side of equation (7), winch
are used to create the approximation w/j+i, are shown in Figure 10.5.

Caution must be taken when using formula (7). If the error made at one stage of
the calculations is eventually dampened out, the method is called stable. To guarantee
stability in formula (7), it is necessary thatr = ckjh < 1 There are other schemes,
called implicit methods, that are more complicated to implement, but do not have sta-
bility restrictions for r (see Reference [90]).

Starting Values

Two starting rows of values corresponding toj = landj = 2 must be supplied in
order to use formula (7) to compute the third row. Since the second row is not usiuillv
given, the boundary function g(x) is used to help produce starting approximations in
the second row. Fix x = x, at the boundary and apply Taylor’'s formula of order 1 for
expanding u(x, t) about U,,0). The value u(xj, k) satisfies

(8) u(xi} k) = u(xj, 0) + u,(xj, O)E + 0(k?2).
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Then use u(jc; ,0) — f(x-,) = jtandutx,, 0) = g(xf) — gj in (8) to produce the
formula for computing the numerical approximations in the second row:

9) «12= fi + kgt for ;=23 ..., n- 1

Usually, u(xj, £2) @ wn-2, and such errors introduced by formula (9) will propagate
throughout the grid and will not be dampened out when the scheme in (7) is imple-
mented. Hence it is prudent to use a very small step size for k so that the values for
“i,2 given in (9) do not contain a large amount of truncation error.

Often, the boundary function /(jc) has a second derivative f " (x ) over the interval.
In this case we have uxx(x, 0) = /"(jc), and it is beneficial to use the Taylor formula
of order n = 2 to help construct the second row. To do this, we go back to the wave
equation and use the relationship between the second-order partial derivatives to obtain

(10) u,(x«,0) = c2uxx(Xi, 0) = c2f"(xi) = c2-1+1 'Y i + /'~' + ° /N 2>

Recall that Taylor’s formula of order 2 is

(11) u(x, K) = u(x, 0) + u,(x, O)k + U~

Applying formula (11) atx = x,, together with (9) and (10), we get

c2k2
112)  u(xf,k) = f + kg, + 2jiT</i+i - 2f* + + 0 {h2)0 {k2) + 0 (k3.

I'sing r — ck/h, formula (12) can be simplified to obtain a difference formula for the
iinproved numerical approximations in the second row:

r2
113) Mi,2= (1 - r2)fi +kgi + y(/i+l + fi-1)

lori=2,3,..,,n—1

D’Alembert’s Solution
Jhe French mathematician Jean Le Rond d’Alembert (1717-1783) discovered that
(14) u(x, t) = F(x + ct) + G{x - ct)

a solution to the wave equation (1) over the interval 0 < x < a, provided that
/i, F', G', and G" all exist and F and G have period 2a and obey the relationships
F(-z) = -F(z), F(z + 2a) = F(z), G(-z) = -O(r), andG(z + 2d) = G(z) for
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all z. We can check this out by direct substitution. The second-order partial derivatives
of the solution (14) are

(15) utt(x, t) = c2F"(x + ct) + ¢c2G "(x —ct),

(16) 0 = F'\x + ct) + G"(x —ct).
Substitution of these quantities into (1) produces the desired relationship:

utt(x, t) = c2F"(x + ct) 4-c2G"(x —ct)
= c2(F"(x + ct) + G"(x - ct))

c2uxx(x,t).

The particular solution that has the boundary values u(x,0) — 7/ (n) and u,(x. 0) = O
requires that F(x) — G(x) — fix')/2 and is left for the reader to verify.

Two Exact Rows Given

The accuracy of the numerical approximations produced by the equations in (7) de-
pends on the truncation errors in the formulas used to convert the partial differential
equation into a difference equation. Although it is unlikely to know values of the exact
solution for the second row of the grid, if such knowledge were available, using the
increment k = ch along the r-axis will generate an exact solution at all the other points
throughout the grid.

Theorem 10.1. Assume that the two rows of values n,,i = nix,.0) and u, 2 =
u(xf, k), fori - U 2,..., n, are the exact solutions to the wave equation (1). If the
step size k — hfc is chosen along the f-axis, thenr — | and formula (7) becomes

17) 1=+ 4 — —.

Furthermore, the finite-difference solutions produced by (17) throughout the grid are
exact solution values to the differential equation (neglecting computer round-offerror).

Proof Used’'Alembert’'s solution and the relation ck = h. The calculation Xj —ctj —
(i —N/i—c(j —1)E —( —\)h~ (j —I)h = (i —j)h and a similar one producing
Xia-ctj = (i + ] —2)h are used in equation (14) to produce the following special form
of Ujj:

(18) uu = F((« - h) + c((i +j- 2)h),

forf — 1, 2, ..., nandj — 1,2,. . m Applying this formula to the terms



Sec. 101 Hyperbolic Equations 521
ui+ij, Ui-ij, and u,j - i on the right side of (17) yields

N+ Mi—Lj o Mij—
= F«i+ 1- Ne + F{(i ~ 1- Ne
f(o - a - i))A>+ aa + u -j- 2)h)
+ G((f- 1+ - 2k)- G((i + j- 1- 2)h)
F((i - (j+1)k)+ G((i+y+ 1- 2A)=nu+],

forr= 1,2,..., nandj = 1,2,.. .,m. .

Warning. Theorem 10.1 does not guarantee that the numerical solutions are exact
when numerical calculations based on (9) and (13) are used to construct approxima-
tions n, ! in the second row. Indeed, truncation error will be introduced if nec2 o
aix,, K) for some i, where 1 < i < n. This is why we endeavor to obtain the best
possible values for the second row by using the second-order Taylor approximations in
equation (13),

Example 10.1. Use the finite-difference method to solve the wave equation for avibrating
string:

(29) uti(x, 1) = 4ulX(x, t) for 0< x < land O0< t < 0.5,

with the boundaiy conditions

n(0,0—0 and  M(z,r) = 0 for0<t<0.5,
(20) m(jc, 0) = f(x) = sin(zrx) + sin(27rx) forO < x < 1,
u,(x,0) = g(x) = o foro <jr < 1.

For convenience we choose A = 0.1 and k = 0.05. Since ¢ = 2, this yields r
ck/h = 2(0.05)/0.1= 1. Since g(x) = Oand r = 1, formula (13) for creating the second
row is

(21) uia = N - ~ £- for 1= 2, 3, 9.
Substituting r = 1 into equation (7) gives the simplified difference equation
(22) = «itig e, -l -Uij-).

Applying formulas (21) and (22) successively to generate rows will produce the approxi-
mations to n(x, 0 given in Table 10.1 for 0 < *, < 1 and 0 < tj < 0.50.

The numerical values in Table 10.1 agree to more than six decimal places of accuracy
with those obtained with the analytic solution

u(x,0 = sin(jrx)cos(2jr0 + sin(2”~x)cos(4jrf).



522 Chap. 10 Solution of Partial Differential Equations

Table 1011 Solution of lhe Wave Equation (19) with Boundary Conditions (20)

)
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

X1 *3 *4
0.896802 1.538842 1,760074
0.769421 1.328433 1.538842
0.431636  0.769421 0.948401
0.000000 0.051599 0.181636
-0.380037 -0.58778:5 -0.519421
-0.587785 -0.951056 -0.951056
-0.571020 -0.951056 -1.019421
-0.363271 —0.639384 -0.769421
-0.068364 -0,181636 -0.360616

0.1£1636 0.210404 0.000000

0.278768 0.363271 0.142040

*5
1.538842
1.380037
0.951056
0.377381

-0.181636
-0.587785
-0.769421
-0.740653
-0.587785
—0.428980
-0.363271

1.000000
0.951056
0.809017
0.587785
0.309017
0.000000
-0.309017
-0.587785
—0.809017
-0.951056
- 1.000000

w7

0.363271
0.428980
0.587785
0.740653
0.769421
0.587785
0.181636
-0.377381
-0.951056
-1.380037
-1.538842

*8

-0.142040
0.000000
0.360616
0.769421
1.019421
0.951056
0.519421
-0.181636
-0.948401
-1.538842
-1.760074

Figure 10.6 The vibrating string for equations (19) arid (20).

*9
-0.363271
-0.210404

0.181636
0.639384
0.951056
0.951056
0.587785
-0.051599
-0.769421
-1.328438
-1.538842

A three-dimensional presentation of the data in Table 10.1 is given in Figure 10.6.
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Example 10.2. Use the finite-difference method to solve the wave eauation for a vibrating

string:

(23) utt{x, t) = 4uxx(x, t)

with the boundary conditions

h(o, f)

(24) u(x,0) =

Ui(x, 0)

0 and

I x
fix) =1
g(x) =0

«(1,0=0

for0O<x < 1land O <( < 0.5

for 0 < t< 1,

for 0O<jc< 1.

for0<x < 5
r s
15—1.5* for} <x <1,
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Table 10J  Solution of the Wave Equation (23) with Boundary Conditions (24)

4 *2 *3 *4 *5 *6 *7 =40
000 0100 0200 0300 0400 0500 0600 0450 0300 0.150
005 0100 0200 0300 0400 0500 0475 0450 0300 0.150
010 0100 0200 0300 0400 0375 0350 0325 0300 0.150
015 0100 0200 0300 0275 0250 0225 0200 0175 0.150
020 0100 0200 0175 0150 0125 0100 0075 0050 0025
025 0100 0075 0050 0025 0130 -0.025 -0.050 -0.075 -0.100
030 -0.025 -0.050 -0.075 -0.100 -0.125 -0150 -0.175 -0.200 -0.100
035 -0.150 -0.175 -0.200 -0.225 -0.250 -0.275 -0.300 -0.200 -0.100
040 -0.150 -0.300 -0.325 -0.350 -0.375 -0.400 -0.300 -0.200 -0.100
045 -0.150 -0.300 -0.450 —0.475 -0.500 -0.400 -0.300 -0.200 -0.100
050 -0.150 -0.300 -0.450 -0.600 -0.500 -0.400 -0.300 -0.200 -0.100

Figure 10.7 The vibrating string for equations (23) and (24),

For convenience we choose h = 0.1 and k = 0.05. Since c = 2, this again yields
r — 1 Applying formulas (21) and (22) successively to generate rows will produce the
approximations to u(x, t) given in Table 10.2forO0 < Xj < 1andO < tj < 0.50. A three-
dimensional presentation of the data in Table 10.2 is given in Figure 10.7. *

Program 10.1 approximates the solution of the wave equation ((1) and (2)). A three-
dimensional presentation of the output matrix U can be obtained by using the com-
mands mesh(U) or surf (U). Additionally, the command contour (U) will produce a
graph analogous to Figure 10.3, while the command contour3(U) will produce the
three-dimensional analogy of Figure 10.3.
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Program 10.1 (Finite-diffe rence Solution for the Wave Equation). To approx-
imate the solution of u,,(x, t) = c2uxx(x, t) over R = {(c,f) :0 < x < a, 0 <
t < b] withmO,/) = 0, u(a,t) = 0, for0 < t < b, and u(x, 0) = f(x),
u((x, 0) = g(x), forO < x < a.

function U * finedifCf.g.a.bjC.n.m)

7.lnput - f=u(x,0) as a string 'f°'
1. - g=ut(x,0) as a string g’

b4 - a and b right end points of [0,a] and [0,b]
% - ¢ the constant in the wave equation
'/ - n and m number of grid points over [0,a] and [O,b]

70utput - U solution matrix; analogous to Table 10.1

7.lnitialize parameters and U
h>=a/(n-1);

k-b/Cm-1);

r=c*k/h;

r2=r*2;

r22=r~2/2;

sl=1-r*2;

sS2=2-2*r~2;

U=zeros(n,m);

7.Compute first and second rows
for i=2:n-I
U(i,l)=feval(f,h*(i-1)) ;
U (i,2)=sl*feval(f,h*(i-1))+k*feval(g,h*(i-1)) ..,
+r22*(feval(f,h*i)+feval(f,h*(i-2)));
end

*#Compute remaining rows of U
for j=3;m,
for i=2:(n-1),
U(i,j) = s2*U(i,j-.t)+r2* (U(i-:L,j-I)+U (i+1,j-1))-U (i,j-2) ;
end
end
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Exercises for Hyperbolic Equations

1. (a) Verify by direct substitution that u(x, t) = sixi(n”'x) cos(2nm) is a solution to
the wave equation «« (x, t) —4uxx(x, o for each positive integern = 1,2, _

(b) Verify by direct substitution that u(x,t) = sin(nxx) cos,{cnnt) is a solution
to the wave equation utl(x, t) = c2uxx{x, t) for each positive integer n = 1,
2.
2. Assume that the initial position and velocity are u(x, 0) = f(x) and u,(x,0) = 0O,

respectively. Show that the d’ Alembert solution for this case is

ux,t) = /(* + ct) + /(w* ~ ct).

3. Obtain a simplified form of the difference equation (7) in the case h = 2ck.
In Exercises 4 and 5, use the finite-difference method to calculate the first three rows of
the approximate solution for the given wave equation. Carry out your calculations by hand
(calculator).
4. uu(x, t) — 4uxx(x, t), forO < x < 1and 0 < t < 0.5, with the boundary conditions
m(0,f) = 0 and u(l,r)=0 for0O<r<0.5,
«(x, 0) = f(x) = sin(jrj;) forO< x < 1,
u,(x, 0) = g(x) = 0 forOo<jt<l.
Leth m0.2, k= 0.1,andr = \.
5. utt(x, t) = 4uxx(x, f), forO < x < land 0 < t < 0.5, with the boundary conditions

«(0,0 =0 and u(l,i) =0 for 0 <t < 0.5,
5*
for 0 < x <
n(z.0) = /(*) =
o=/ = o e

J
for 5 <x <1,
ut(x, 0) = g(x) =0 for o< x < 1.

Leth = 0.2,k —0.1,andr = 1

6. Assume that the initial position and velocity are n(x, 0) =f(x) andu<(.t, 0) = g(x).
respectively. Show that the d’Alembert solution for this ease is

, v f(x +ct)+f(x-ct) 1 fx+c'
u(x,t) = --—m-m—-— e e -+ — 1 g(s)ds.
2 2C Jx-ci
7. Forthe equationut,(x, t) = 9uxx(x, /), what relationship between A and k must occur
in order to produce the difference equation Ujj+\= Uj+ij + Uj-jj —«rj-i?

8. What difficulty might occur when trying to use the finite-difference method to solve
urt (x,t) = 4uxx(x,t) with the choice k =0.02 and ft = 0.03?
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Algorithms and Programs

In Problems 1to 8, use Program 10.1 to solve the wave equation ult(x, t) = c2us. (jr. r),
forO < x < aandO < t < b, with the boundary conditions

nio,)=0 and wu(a,t)=o0 for O<1 <h.
«(*,0) = f(x) for 0< x < a,
unx, 0) - g(jc) for 0 <x <a,
for the given values. Use the surf and contour commands to plot your approximate
solutions.

1 Usea=mlb= 1Lc= 1fix) = sin(rjr). and g{x) = 0. For convenience, choose
h=0.1andk= 0.1

2. Usea= 1,b=1c—1/(x) = x —x1, andg(x) = 0. For convenience, choose
h —0.1 andk = 0.1.

forO< x < j,
forj <x< 1
g(c) = 0,h = 0.1, andk = 0.1.
. Usea= 1b= I,c= 2 f(x) = sinric), g(x) = 0, h = 0.1, andk = 0.05.
Usea= 1Lb= 1c
. Repeat Problem 3, but withc = 2and X = 0.05.

2,f(x) = x —x2,g(x) = 0,k =0,1, andfc =0.05.

. Repeat Problem 1, but with fix) = sin(2jr.*) + sin(4jrx).

o N O o A

. Repeat Problem 1, butwithc = 2, fix) — sin(2;r.i) + blWATrx), and k = 0.05.

102 Parabolic Equations

Heat Equation

As an example of parabolic differential equations, we consider the one-dimensional
heat equation

(1) ur(jt, i) = c*uxx{x, t) for O<x <a and o <t < b,
with the initial condition

(2) u(x, o) = 7/ (x) for t= o and o < X < a,

and the boundary conditions

«(0,0 = gi(0 = ci for x = 0and O< t< b,
u(a, e) —#2(0=c2 forx=a and O< t< b,
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§+

i Figure 10.8 The grid for solving
1 x2 %1 i 1 u,(n, f) = c2ulX(x, r) over R.

The heat equation models the temperature in an insulated rod with ends held at con-
stant temperatures c\ and a and the initial temperature distribution along the rod be-
ing / (x). Although analytic solutions to the heat equation can be obtained with Fourier
series, we use the problem as a prototype of a parabolic equation for numerical solu-
tion.

Derivation of the Difference Equation

Assume that the rectangle R = {(x.t) : 0 < x < a,0 < t < b] is subdivided into
n - 1by m — 1rectangles with sides Ax = h and At = k, as shown in Figure 10.8.
Start at the bottom row, where t = t\ =0, and the solution is n(x,,t\) — f (*,). A
method for computing the approximations to u(x, t) at grid points in successive rows
{«(*,-, tf) \i—1,2,..., n}, forj = 2,3,..., m, will be developed.

The difference formulas used for u,(x, t) and uxx(x, t) are

u(x, t+ k) —u(x, t) n

(4) u,(x, t) = 10'(K)
K
and
, 4 U{x-h,t)-2u{x,t) + u(x+h,t) , nrtl”
(5) uxx(x, t) = p + 0(h).
The grid spacing is uniform in every row: Xj+] = x-+ h(andx,_i = g —h). and
itis uniform in every column: tj+i = tj -hfc. Next, we drop the terms O(k) and 0 (h 2)

and use the approximation Ujj for u(x-,, tj) in equations (4) and (5), which are in tum
substituted into equation (1) to obtain

ui.j+1  ui,j 2ui,j "t"ui+l, j
K ~ N k>

(6)



528 chap. 10 Solution of Partial Differential Equations

ui,s+l

n i+lJ  Figure 109 The forward differ-
ence stencil.

which approximates the solution to (1). For convenience, the substitution r = c2kjh2
is introduced in (6), and the result is the explicit forward-difference equation

(7) Ujj+l= (1 -2 r)ujj i+« +]5)

Equation (7) is employed to create the (j + 1)th row across the grid, assuming that
approximations in the j th row are known. Notice that this formula explicitly gives the
value Wi.jV] interms ofu,_ij, Ujj, andui+]j. The computational stencil representing
the situation in formula (7) is given in Figure 10.9.

The simplicity of formula (7) makes it appealing to use. However, it is impor-
tant to use numerical techniques that are stable. If any error made at one stage of
the calculations is eventually dampened out, the method is called stable. The explicit
forward-difference equation (7) is stable if and only if r is restricted to the interval
0 < r < j. This means that the step size k must satisfy k < h2/(2c2). If this condition
is not fulfilled, errors committed in one line {u,j} might be magnified in subsequent
lines {u,.p} for some p > j. The next example illustrates this point.

Example 10.3. Use the forward-difference method to solve the heat equation

(8) Ut(x, t) = uxx(x, I) for 0< x < 1and O0< t < 0.20,

with the initial condition

9) u(x, 0) = f(x) = 4x —Ax2 for /=0 and 0 < x < 1,

and the boundary conditions

«(0,f) =gi(?) =0 for jc= 0 and 0 < t < 0.20,

(10) -
a(l, t) = gj{t) =0 for x = 1and 0 <r < 0.20.

IFor the first illustration, we use the step sizes Ax = h = 0.2 and bl — k — 0.02 and
¢ = 1,sotheratioisr = 0.5. The grid will be n — 6 columns wide by m = 1i rows high.
In this case, formula (7) becomes

Uf-ij +Ui+},j
Ui,j+ 1 5
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Table 10.3  Using the Fonvard-difference Method withr = 0.3

*1 =000 X=0.20 *3=040 x4 - 0.60 *5 = 0.80 X, = 1.00

(1 = 0.00 0.000000 0.640000 0.960000 0.960000 0.640000 0.000000
r2=10.02 0.000000 0.480000 0.800000 0.800000 0.480000 0.000000
@=0.04 0.000000 0.-W0000 0.640000 0.640000 0.400000 0.000000
4 =006 0.000000 0.320000 0.520000 0.520000 0.320000 0.000000
f5= 0.08 0.000000 0.260000 0.420000 0.420000 0.260000 0.000000
16 = 0.10  0.000000 0.210000 0.340000 0.340000 0.210000 0.000000
tj = 0.12 0.000000 0.170000 0.275000 0.275000 0.170000 0.000000
(9=0.14 0.000000 0.137500 0.222500 0.222500 0.137500 0.000000
= 0.16  0.000000 0.111250 0.180000 0.180000 0.111250 0.000000
(10= 0.18 0.000000 0.090000 0.145625 0.145625 0.090000 0.000000
/11 =0.20 0.000000 0.072812 0.117813 0.117813 0.072812 0.000000

figure 10.10 Using the forward difference method withr = 0.5.

Formula (11) is stable for r = 0.5 and can be used successfully to generate reasonably
accurate approximations to u(x, t). Successive rows in the grid are given in Table 10.3.
A three-dimensional presentation of the data in Table 10.3 is given in Figure 10.10.

For our second illustration, we use the step sizes AX = h = 0.2and J? =k = N 3
0.033333, so that the ratio is r — 0.833333. In this case, formula (7) becomes

a2 Uij+1 = —0.666665m;,j + 0.833333(«;_ij -t-Uj+ij).
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Table 10.4 Using the Forward-difference Method with r - 0.833333

x\ =000 J2=020 *3=040 x4=060 x5=080 x6= 100

*1 = 0.000000 0.000000 0.640000 0,960000 0.960000 0.640000  0.000000
t2 = 0.033333  0.000000 0.373333 0.693333 0.693333 0.373333  0.000000
f3= 0.066667 0.000000 0 328889 0.426667 0.426667 0.328889  0.000000
<4 = 0.100000  0.000000 0.136296 0.345185 0.345185 0.136296  0.000000
t =0.133333  0.000000 0.196790 0.171111 0.171111 0.196790  0.000000
% = 0.166667 0.000000 0011399 0.192510 0.192510 0.011399  0.000000
<7 = 0.200000 0.000000 0 152826  0.041584 0.041584 0.152826  0.000000
<8=0.233333 0.000000 -0 067230 0,134286 0.134286 -0.067230 0.000000
tg = 0.266667  0.000000 0,156725 -0.03.3644 -0.033644 0.156725  0.000000
f10= 0.300000 0.000000 -0.132520 0.124997 0.124997 -0.132520 0.000000
f[l = 0.333333  0.000000 0 192511 -0.089601 -0.089601 0.192511  0.000000

Figure 10.11 Using the forward difference method with r =
0.833333.

Formula (12) is unstable in this case, because r > |, and errors committed at one row will
be magnified in successive rows. Numerical values that turn out to be imprecise approx

imations to u(x, i), for 0 < t < 0.33333, are given in Table 10.4, A three-dimensional
presentation of the data in Table 10.4 is given in Figure 10.11.

The difference equation (7) has accuracy of the order 0 (k) + 0 (h2). Eiecausethe
term O (k) decreases linearly as k tends to zero, it is not surprising that it must be made
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small to produce good approximations. However, the stability requirement introduces
further considerations. Suppose that the solutions over the grid are not sufficiently
accurate and that both the increments Ax — ho and At = ko must be reduced. For
simplicity, suppose that the new x incrementis Ax = hi = ho/2. If the same ratio r
is used, ki must satisfy

r(hi)2 _ r(h0)2 KO
v w C2 ~ '4¢2 “ 4

This results in adoubling and quadrupling of Ihe number of grid points along the jr-axis
and t-axis, respectively. Consequently, there must be an eightfold increase in the total
computational effort when reducing the grid size in this manner. This extra effort is
usually prohibitive and demands that we explore a more efficient method that does not
have stability restrictions. The method proposed will be implicit rather than explicit.
The apparent rise in the level of complexity will have the immediate payoff of being
unconditionally stable.

The Crank-Nicholson Method

Ail implicit scheme, invented by John Crank and Phyllis Nicholson (see Reference
2 '>]), is based on numerical approximations for solutions of equation (1) at the point
(n t+k/2) thatlies between the rows in the grid. Specifically, the approximation used
for u,(x, t+ k/2) is obtained from the central-difference formula,

/ K\ u(x, t+ k) ~ u(x, t)
n3) u, + ke-———-i-1-1 + 0C*2).

The approximation used for uxx(x, t + kj2) is the average of the approximations
n,t(x, t) and Ujctix, t + k), which has an accuracy of the order 0 (h2):

Uxx Ix'f+ ) = - h,t +k) - 2u(x, t4-k) + u(x+ h,t + k)
114) \ 2 2hz

+ u(x —h,t) —2u(x, t) + u(x + h, t)) + 0 (h2).

In a fashion similar to the previous derivation., we substitute (13) and C14) into (1) and
neglect the error terms O (h2 and 0Oik2). Then employing the notationuij = un(X;, tj)
will produce the difference equation

«l+) ~ utj 2«/-13+1 —2«,>+ + “i+l,/+1 ~ 2m,j + Hi+ij
{ > K 2h2

Also, the substitution r = c2k/h2is used in (15). But this time we must solve for the
three “yet to be computed” values u,_i ;+j, «/./-n, and w+jj+i. This is accomplished
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“1-Lj+ “Prly+

Figure 10.12 The Crank-
“f-u titlj Nicholson stencil.

by placing them all on the left side of the equation. Then rearrangement of the tem >,
in equation (15) results in the implicit difference formula

(16) - rui-i,j+i+ (2+ 2r)ui,J+i- rui+\,j+t

= (2- 1r)ujj +r(«;_ij+ U+lj).
forr = 2,3,. . n — J. The terms on the right-hand side of equation (16) are all
known. Hence the equations in (16) form a tridiagonal linear system AX = B. The

six points used in the Crank-Nicholson formula (16), together with the intermediate
grid point where the numerical approximations aire based, are shown in Figure 10.12

Implementation of formula (16) is sometimes done by using the ratior — 1 in
this case the increment along the i'-axis is At = k = h2/c2, and the equations in (16)
simplify and become

a7) Wi— "b4uij+i — M\j 4
for(=2.3........ n — I. The boundary conditions are used in the first and last equations
(i,e., uij = uij+i = ci andunj — unj+\ = C2, respectively). Equations (17) are

especially pleasing to view in their tridiagonal matrix form AX ~ B.

4 “23+1 2cj + «3j
-1 “3J+1 uz2,j + «..;
4 -1 UPJ+1 - uP~1J
-1 4 -1 un-2,j+1 Un-1.j + «m-11J
-1 4 M- Un-23+2C2

When the Crank-Nicholson method is implemented with a computer, the linear system
A X = B can be solved by either direct means or by iteration.
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Table LO.5 The Values uix,,/) Using the Crank-Nichoison Method with t} = (j —!)/100

1

=0 x3= 02

1.118034 1.538842
0.616905 0.928778
0.394184 0.647957
0.288660 0.506682
0.233112 0.425766
0.199450 0.372035
0.175881 0.331490
0.157405 0,298131
0,141858 0.269300
0128262 0.243749
0,116144 0.220827

Example 10.4. Use the Crank-Nichoison method to solve the equation

(18) ut(x, t) = «**(*,t)

» =09

1,118034
0.862137
0.718601
0.625285
0.556006
0.499571
0.451058
0.408178
0.369759
0,335117
0.303787

with the initial condition

w =0

0.363271
0.617659
0.680009
0.666493
0.625082
0.575402
0.525306
0.477784
0.433821
0.393597
0.356974

= 4
0.000cC00
0.490465
0.648834
0.673251
0.645788
0.600242
0.550354
0.501545
0.455802
0.413709
0.375286

(19) u(x, 0) =f(x) = sin(jirje) + sin(z7TA)

and the boundary conditions

«(o,f) = gi(t)

u(l, o = g2(t) = o

For simplicity, we use the step sizes Ax = h =

0

for x = o

for f =

o =03

0.363271
0.617659
0-680009
0.666493
0.625082
0.575402
0.525306
0.477784
0.433821
0.393597
0.356974

0,1 and At =

ratioisr = 1 The grid will be n m=11 columns wide by m =
algorithm generates the values in Table 10.5for 0 < x- < l1and O < tj < 0.1.
The values obtained with the Crank-Nichoison method compare favorably with the

analytic solution u(x,t)

row being

fl1 0.115285 0.213204 0.301570 0.3543S5 0.372569

0.354385 0.301570

X8 = 0.7

1.118034
0.862137
0.718601
0.625285
0.556006
0.499571
0.451058
0.408178
0.369759
0.335117
0.303787

foro <x < 1and 0 <t<o0.1,

and o < /< 0.1,

for x =1 and o < t < o.1.

K =

. =B

1.538842
0.928778
0.647957
0.506682
0.425766
0.372035
0.331490
0.298131
0.269300
0.243749
0.220827

Oand 0 <x < 1

Xw = 0.9

1.118034
0.616905
0.394184
0.288660
0.233112
0.199450
0.175881
0.157405
0.141858
0.128262
0.116144

0.01 so that the
11 rows high. Applying the

- $T(kx)e~Al' + sinQjrjOe-9* 2, the true values for the final

0.219204 0.115285

A three-dimensional presentation of the data in Table 10.5 is given in Figure 10.13.

Program 10.2 (Forward-difference Method for the Heat Equation). To approx-
imate the solution of u,(x, t) = c2uxx(x, t) over R = \(x,t) ;0 < x <a,0<tc<
ci, u(a, t) — cz, for

b) with u(x, o) =

o <t<h

f(x), foro

function U=forwdif(f >xI,c2 laib,c,n,m)

< x < a, and H(o,/)
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Figure 10.13 wu = «(*;, tj) from the Crank-Nicholson method.

*/.Input - f~-u(x,0) as a string T1

% - cl=u(0,t) and c2=u(a,t)

% - a and b right, end points of [0,a] and [O,b]

Y, - c the constant in the heat equation

7, - n and mnumber of grid points over [0,a] and [O,b]

7«Output - U solution matrix; analogous to Table 10.4

"Unitialize parameters and U
h=a/(n-1);
k=b/(m-I);
r=c~2*k/h"2;
s=1-2*r;
U=zeros(n,m);
~Boundary conditions
u(l,I:m)=cl;
U(n,l:nt) =c2;
'/Generate first row
u@2:n-I,I)-feval(f,h:h:(n-2)*h)’;
~Generate remaining rows of U
for j=2:m

for i=2:n-1

U(i,j)=s*U(i,j“D+r*(U (i-l,j-D)+U (i+1,j-1));
end
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end

u=ux;

Program 10.3 (Crank-Nicholson Method for the Heat Equation). To approx-

imate the solution of ut(x, t) = c2ulX(x, t) over R = {(jc,f) : 0 < x < a,0 <

t < b) with h(x, 0) = f(x), for0 < x < a, and «(0, f) = cj, u{a, t) = c%, for
jO< t < b.

function U=ernich(f,cl,c2,a,b,c,n,m)

7Jnput - f=u(x,0) as a string 'f'

% - cl*u(0,t) and c2=u(a,t)

I - a and b right end points! of [0,a] and [O,b]

7 - ¢ the constant in the heat equation

Y - n and mnumber of grid points over [0,a] and [O,b]

XOutput - U solution matrix; analogous to Table 10.5

"/.Initialize parameters and U
h=a/(n-1);
k=b/(m-1);
r=c~2*k/h*2;
sl=2+2/r;
s2-2/r-2;
U=zeros(n,m);
'/,,.Boundary conditions
u(l,l:m)=cl;
U(n, 1:m)=c2;
'/.Generate first row
Uu2:n-1,l)=feval(f,h:h:(n-2)*h)’;
'/ JFom the diagonal and off-diagonal elements of A and
7.the constant vector B and solve tridiagonal system AX=B
Vd(1,1:n)=sl*ones(1,n);
vVd(1)=1;
Vd(n)=1;
Va=-ones(l,n-I);
Va(n-1)=0;
Vc=-ones(l ,n--1) ;
Vc(l)=0;
Vb(l)=cl;
Vb(n)=c2;
for j=2:m
for i=2:n-1
Vb(i)=U{(i-l,j-D)+U (i+1,j-1)+s2*U (i.j-1);
end
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X=trisys(Va,vd,Vc,Vb);
U(l:n,j)=X";

end

u=u’

Exercises for Parabolic Equations

1. (a) Verify by direct substitution that u(x, t) = $in(nnx)e 44##42 is a solution to the
heat equation u,(x. t) =4uxx(x, t) for each positive integern = 1,2,

(b) Verify by direct substitution that «(n, () = sia(;HJ:)e"(* ',)2' is a solution to
the heat equation ut{x. f) = c2uxx(x, r) for each positive integern — 1,2,
2. What difficulty might occur if At = k = h2/c2is used with formula (7)?

In Eixercises 3 and 4, use the forward-difference method to calculate the first three rows of
the approximate solution for the given heat equation. Carry out your calculations by hand
(calculator).

3. u,(x,t) = uXl(x,t), for0O < x < land 0 < t < 0.1, with the initial condition
u(x, 0) = /(,t) = sin3T.c), for1 =0 and 0 < x < 1, and the boundary conditions

for x = 0 and 0< t < 0.1,

0
0 forjc= 1and O0<t<0,1.

Leth = 0.2,k = 0.02,andr = 0.5.

4. ut(x. 1) = uxx(x,t), forO < x < land O < t < 0.1, with the initial condition
i*(jc,0) — fix) = 1—\2x— 1], fort =0 and 0 < x < 1, and the boundary
conditions

no,t)=ci =0 for x = 0 and 0 < t < 0.1,
u(l.1)=¢gp=0 forg=1and 0<t< 0.1

5. Suppose that At — k — hiji'lcl).
(@) Use this in formula (16) and simplify.
(b) Express the equations in part (a) in the matrix form AX — B.
(c) Is the matrix in part (b) strictly diagonally dominant? Why?

6. Show that u(x, t) = sin(jn-x) is a solution to ut(x, t) = uxx(x, i).
forO < x < land O < /, and has the boundary values u(0, t) = 0, u(\,t) = 0, and
u(x, 0) = aj sinO'jrn).

7. Considerthe analytic solution u(x, t) = sinbTxje-"™2 + a'ron that was

discussed in Example 10.4.
(a) Hold x fixed and determine lim ,-" u(x, i).
(b) What does this mean physically?
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8. Suppose that we wish to solve the parabolic equation u, (x , t) — uxx(x, t) = h(x).
(a) Derive the expiicit forward-difference equation for this situation.
(D) Derive the implicit difference formula for this situation.
9, Suppose that equation (11) is used and that / (*) > 0, g\(t) = 0, and g2 (t) = O.
(a) Show that the maximum value of u(Xj,tj+i)inrow j + 1is less than or equal
to the maximum of u(xt, tj) inrow j .
(b) Make a conjecture concerning the maximum of u(x,-, Z,) in row n as n tends to
infinity.

Algorithms and Programs

In Problems 1and 2, use Program 10.3 to solve the heat equation ut(x, t) = c2uxx(x, tj.
for0 < jc < 1and O < t <0.1, with the initial condition u(x. 0) = /(jc), for t — 0 and
0 < x < 1, and the boundary conditions

h(, /)= £+]=0 for x =-0 and 0 < t < 0.1,

nl,t)y=c2 —o0 for x = 1and O0< t < 0.1,

for the given values. Use the surf and contour commands to plot your approximate
solutions.

1. Use /(jc) = sin(jrjc) + sin(2™A:), h = 0.1, k = 0.01, andr = 1
2. Use f(x) = 3—\bx— 1] —\3x —2],ft= 0.1,k = 00l andr = 1
3. (a) Modify Programs 10.2 and 10.3 to accept the boundary conditions w(0,l) -~
gi(t) ?: Oand u(a, t) = g2(t) ¢ O.
(b) Use your modified Program 10.3 to solve the heat equations in Problems 1 and
2, but use the boundary conditions
«(0,t) = gi(/) = t2 for x = 0 and 0 < f < 0.1,
K(1, f) = g2(t) = e1 for x —1 and O < f < 0.1,
in place ofci = cj = 0.
(c) Use thesurf and contour commands to plot your approximate solutions.

4. Construct programs to implement your explicit forward-difference equations and im-
plicit difference formula from parts (a) and (b) of Exercise 8, respectively.

5. Use your programs from Problem 4 to solve the heat equation u,(x, t) — uxx(x, t) =
sin(jr). for0 < x < land 0 < t < 0.20, with the initial condition u{x, 0) = /(jc) =
sin(jrx) + sin(3irx) and the boundary conditions

u0,0 =2 =0 forx =0and 0<t < 0.20,
m{l1,/)= ci=0 for x= 1land 0 < /< 0.20.

Leth = 0.2,k = 0.02, andr = 0.5.
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Elliptic Equations

As examples of elliptic partial differential equations, we consider the Laplace, Poisson,
and Helmholtz equations. Recall that the Laplacian of the function u(x, _y) is

(1) V2m= uJX + Uyy.

With this notation, we can write the Laplace, Poisson, and Helmholtz equations in the
following forms:

(2) V2h =0 Laplace’s equation,
(3) V2 = g(x,>) Poisson’s equation,
(4) V2h+ f(x,y)u —g(x, y) Helmholtz’s equation.

It is often the case that the boundary values for the functions g and / are known at all
points on the sides of a rectangular region R in the plane. In this case, each of these
equations can be solved by the numerical technique known as the finite-difference
method.

The Laplaciian Difference Equation

The Laplacian operator must be expressed in a discrete form suitable for numerical
computations. The formula for approximating f"(x) is obtained from

f(x + h) ~ 2f(x) + f(x —h) 24
(5) /n(*) = e —_ — — -+ 0 (h 2)'

When this is applied to the function u(x, y) to approximate «,, (i, v) and uyy(x, y)
and the results are added, we obtain

hu(h ).

L2 u(x+h,y) + ux - h,y)+ u(x,y+ h)+ u(x,y - h)-4u(x,y) 2
(6) V. m -]

Assume that the rectangle R — {(n, y) :0 < x < a,0< vy < b, where b/a = m/n}
is subdivided into n — 1 x m — 1 squares with side h (i.e., a = nh and b = mh), as

shown in Figure 10.14.
To solve Laplace’s equation, we impose the approximation

u(x + k,y)+ u(x - h,y) + u(x, y-\-h)+u(x,y-h)-4u(x,y) n

which has order of accuracy O (A2) at all interior grid points (x, y) — (X,,yj) for
i = 2 n—landj = 2, ..., m — 1 The grid points are uniformly spaced:
X,+i = Xj + h, xt-i — Xi - h, y,+i = yi + h, and v;_i — yi - h. Using the

approximation wj for n(x;,yj), equation (7) can be written in the form

* e U+ uichi U341t uiiol - aui
Vtzlj'jj Z,uiry ui~hj UJ+ 1+ ui,j-I 4UI.J_U"I

(o)
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1 Figure 10.14 The grid used with
*i . f
1 n2 wil R " Laplace’s difference equation.
1.F* —JF==————- e <tilj
IR Figure 10.15 The Laplace stencil.

which is known as thefive-point difference formula for Laplace’s equation. This
formula relates the function value u, j to its four neighboring values u,-i7
Hjj+i, and as shown in Figure 10.15. The term h1 can be eliminated in (8) to
obtain the Laplacian computational formula

© M+1,j + ui—t,j + = 0.

Setting Up the Linear System

Assume that the values u(x. y) are known at the following boundary grid points.

u(xj,vj)=uj for 2<j <m—1 (on the left),
u{xi, yi) = «ij for 2<r<n—1 (on the bottom),
u{xn, yj) — un.j for 2<j <m-—1 (on the right),
u(x;, ym = Uim for 2<i <n—1 (on the top).

Then applying the Laplacian computational formula (9) at each of the interior points
of R will create a linear system of (n — 2) equations in (n — 2) unknowns, which is
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solved to obtain approximations to «(jc, ) at the interior points of R
suppose that the region is a square, thatn =

Differential Equations

Figure 10.16 A 5 x 5 grid for
boundary values only.

For example,
m =5, and that the unknown values of

u(x,, Vj) at the nine interior grid points are labeled p\, pi, =am, P9 and positioned in

the grid as shown in Figure 10.16.

The Laplacian computational formula (9) is applied at each of the interior grid

points, and the result is the system A P

B of nine linear equations:

—Ap\ + pr + P4 = -«2l —«12
Pi - 4p2+ p3 + P5 = -«3,1
pr ~ 4p3 + P6 = -«4,1 —«s.,2
P\ -4p4+ PS5 + P7 = -«1,3
P2 + P4- 4ps+ P6 + Pi =0
Pi + P5~ 4p6 + P9 = -«5,3
P4 —4p7+ pi = —«2,5—«1,4
P5 + P7-4/8+ P9 = -U3.5
P6 + PB~4pg = -H45 - «5,4.

Example 10.5.

rectangle R = (U,y) :0£ x <4,0 <y

Find an approximate solution to Laplace’s equation V2u =

0 in the
< 4}, where u(x, y) denotes the temperature at

the point (jc, v) and the boundary values are

H(c, 0) = 20 and
and

n@, y) = 80 and

See Figure 10.17 for the grid to be used.

u(jc, 4) =

u4,y) =0

180 for 0<x <4,

for O0<yc< 4
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(173=180 u35=180 M 5=180

Figure 10.17 The 5x 5 grid in
Example 10.5.

Applying formula (9) in this case, the iinear system AP = B is

—4pi + P2 + pa = —100
Pi-*P2+ Pb + PS ——20
pr~4ps + P6 = -20

pi —4p4 + ps + pi =-80
P2 + P4- 4ps+ P6 + PS =0

Pi + PS- *P6 + P9=10

P4 - 4pi + p& = -260

PS + Pi-4pg+ P9= -180

P6 + PS~4pg = —180

The solution vector P can be obtained by Gaussian elimination (or more efficient
schemes can be devised, such as the extension of the tridiagonal algorithm to pentadiagonul
systems). The temperatures at the interior grid points are expressed in vector form

P

[pi P2 Fo P4 po Pb Pi Ph pyl
[55.7143 43.2143 27.1429 79.6429 70.0000
453571 112.857 111.786 84.2857]' n

Derivative Boundary Conditions

The Neumann boundary conditions specify the directional derivative of u{x, y) normal
to an edge. For our illustration we will use the zero normal derivative condition,
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'nM'VI]. tm- 1

2u 3

Figure 10.18 The Neumann stencils.

For applications in the area of heat flow, this means that the edge is thermally insulated
eind the heat flux throughout the edge is zero.

Suppose that x = X,, is held fixed and that we are considering the right edge x =a
of therectangle /2 = {(n,>) :0 < X < @&, 0 <y < b}. The normal boundary condition
to be used along this edge is

3
11) — U(X,, yj) = uAxn,yj) = 0.

Then the Laplace difference equation for the point (x,,,yj) is
(12) uUn+i,j + Un,j— 4unj =0.

The value u,,+ij is unknown, because it lies outside the region R. However, we can
use the numerical differentiation formula

Wn+l, —
(13) y2h cuAxn,yj) = 0

and obtain the approximation un+i,j “n-ij. which has order of accuracy Oih")
When this approximation is used in (12), the result is

—1 + Unji-1+ 1 4mfjj ~ 0.
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n25= 1S0 3 5= 180 14 5= 180

J14= * * o
210 Uy *12
«j J=80 . « .
*8
Uj 2= 80 . . .
<5 b
H, j=80 wspoo . o
T Figure 10.19 The 5x5 grid in
< " ar Example 10.6.

This formula relates the function value unj to its three neighboring values
un.j+b .

The computational stencils for the other edges can be derived similarly (see Fig-
ure 10.18). The four cases for the Neumann computational stencils are summarized
next:

(14) 2,2+ < + MHLi- 4m; i=0 (bottom edge),
(15) 2w, T-\ + n;-im+ U;+lm- 4Um= 0 (top edge),
(16) 2u2j + wiy-i 4-Mij+i - di<iy = 0 (leftedge),
<17) 2u,,-1j +unJ-1 + u,,j+. - 4u,,j =0 (right edge).

Suppose that the derivative condition du(x, y)/dN = 0 is used along part of the
boundary of R, and that known boundary values of « (;c, y) are used on the other por-
tions of the boundary; then we have a mixed problem. The equations for determining
approximations for u(.r,, yj) at boundary points will involve appropriate Neumann
Computational stencils (14) to (17). The Laplacian computational formula (9) is still
uied to determine approximations for u (xy/) at the interior points of R.

Example 10.6. Find an approximate solution to Laplace’s equation V2h -= 0 in the
rectangle R = {(jc,y) : 0 < x < 4,0 <y < 4}, where u(x, y) denotes the temperature at
tte point (jc, y) and the boundary values are shown in Figure 10.19:

u(x,4) = 180 for 0 < x <4,
uy(x,0) =0 for 0 <x <4,
n(,y) = 80 for o <y <4,
n(4,y)=0 for 0 <y < 4.
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The Neumann computational formula (14) is applied at the boundary points <ji, gj,
and £3. and the Laplace computational stencil (9) is applied at the other points %4, gs,
___Qg\2-The resultis a linear system AQ = B involving 12 equations in 12 unknowns:

—4g\ + Q2 + 204 = -80
g\ —a<22 + 93 + 275 =0
92 - 4<13 +2q6 =0
q\ - 44+ @5 + qi =-80
i2 + - 4gs + 7?6 .+ 98 =0
93 + 95 - 496 +99 =0

)| —ANT+ g + gio =-80

95 + 97 - 4?2*+ 99 + 9il =0
96 + 98-~499 + 912=0
97 -4<7io+ 9ii=-260
98 + 910 —4911 + <vi2= -180

99 + 911 - 4912 = -180

The solution vector Q can be obtained by Gaussian elimination (or more efficient
schemes can be devised, such as the extension of the tridiagonal algorithm to pentadiag-
onal systems). The temperatures at the interior grid points and along the lower edge are
expressed in vector form as

Q==[9L 92 93 94 95 96 97 98 99 910 911 912]'
==[71.8218 56.8543 32.2342 75.2165 61.6806 36.0412

87.3636 78.6103 50.2502 115.628 115.147 86.3492], [ |

Iterative Methods

The preceding method showed how to solve Laplace’s difference equation by con-
structing a certain system of linear equations and solving it. The shortcoming of this
method is storage; each interior grid point introduces an equation to be solved. Since
better approximations require a finer mesh grid, many equations might be needed. For
example, the solution of Laplace’s equation with the Dirichlet boundary conditions re-
quires solving a system of (n —2)(m —2) equations. If R is divided into a modest
number of squares, say 10 by ]0, there would be 91 equations involving 91 unknowns.
Hence it is sensible to develop techniques that will reduce the amount of storage. An
iterative method would require only the storage of the 100 numerical approximations
{u,j} throughout the grid.
Let us start with Laplace’s difference equation

(181 u,+1J + Ui-Lj + uid+l + — =0
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and suppose that the boundaJ7 values u(x, y) are known at the following grid points:

u(*i, yj) —«ij for 2<j <m—1  (on the left),
P, >N)= ] for2< <n—1 (on the bottom),
u(xn, Yj) =unj for 2 <j <m—1 (ontheright),
«(-Vi, ym) = «im for 2 <i<n—1 (on the top).

(19)

Equation (18) is rewritten in the following form that is suitable for iteration:

(20) Uij = ujj +nj,

where

I.illjt ns I B TR W o uii'+1+ Ui.j-1 — 4uijj
h ,

for2<i<n—land2<y<m-—L

Starting values for all interior grid points must be supplied. The constant K, which
is the average of the 2n + 2m —4 boundary values given in (19), can be used for this
purpose. One iteration consists of sweeping formula (20) throughout all of the interior
points of the grid. Successive iterations sweep the interior of the grid with the Laplace
iterative operator (20) until the residual term r,-j on the right side of equation (20) is
“reduced to zero” (i.e., |r,*j[ < e holds foreach2 </ <n—1land2 <j <m —1).
The speed of convergence for reducing all the residuals {n j }to zero is increased by
using the method called successive overrelaxation (SOR). The SOR method uses the
iteration formula

Ij+| + «ij-i —4Ujj
(22) Y 4
= Ujj + oyrt]

where the parameter colies in ihe range 1 < w < 2. In the SOR method, formula (22)
is swept across the grid until |r;j| < e. The optimal choice forw is based on the study
of eigenvalues of iteration matrices for linear systems and is given in this case by the
formula
4
(23) &- -——-=t. = ] -H== e
2+ Y4 - (cos(MT)+cos(”r))

If the Neumann boundary condition is specified on some portion of the boundary,
we must rewrite equations (14) through (17) in a form that is suitable for iteration. The
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four cases are summarized next and include the relaxation parameter co:

(24) Uii= wii+ oofm2M2F KLl #eixl J (bottom edget.
(25)

M,™ = ut,m + co{zl /:uj-i rHe _4MF’LU} (top edjge),\
(26)

ui,j—ui.j+w5\2u2j reriod z«le J (left edge),
(27)

f2un—aJ +Un j_I +Hn,j"+1 - "n,jh

Un.j — U,J + " - (right edge).

Example 10.7. Use an iterative method to compute an approximate solution to Laplace's,
equation V2= 0inR = {(*,vy) :0 < x < 4,0 <y < 4), where the boundary values are:

u(x, 0) = 20 and u(x, 4) = 180 for 0 < x < 4,
and
«(0,y) = 80 and «(4,j» =0 for 0 <y < 4.

For illustration, the square is divided into 64 squares with sides Ax = h = 0,5 and
Ay = h — 05. The initial value at the interior grid points was set at u,j = 70 for
eachi = 2, ..., 8andj 2, ..., 8. The SOR method was used with the parameter
a>= 1.44646 (substituten = 9and m — 9 in formula (23)). After 19 iterations, the residual
was uniformly reduced (i.e.,[r* | < 0.000606 < 0,001). The resulting approximationsare
given in Table 10.6. Because of the discontinuity of the boundary function at the comers
the boundary valuesun = 50. »m [ = 10,hi <= 130, and «9,9 = 90 have been introduced
in Table 10.6 and Figure 10.20; they were not used in the computations at the interior grid,
points. A three-dimensional presentation of the data in Table 10.6 is given in Figure 10-10

Example 10.8. Use an iterative method to compute an approximate solution to Laplace's
equation V2« = 0inR = {(n,y) :0 < x < 4,0 < y < 4), where the boundary \alue
are

u(p4) = 180 for y=4 and O0<x <4,
uy(x,0)=0 for y=0 and O0<x <4,
u(0,y) = SO for *=0 and O<y <4,
u(4,y) =0 for x~4 and O<y <4

For illustration, the square is divided into 64 squares with sides Ax = A = 0.5and
Oy = h =0.5 Starting values using linear interpolation were used along the edge when
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1lW e 10.fi  Approximate Solution to Laplace's Equation with Dirichlet Conditions

*1 X2 *3 *4 *5 *6 X1 4 *9
yg 130.000 180.000  180.000 180.000 180.000 180.000 180.000 180.000  90.0000
wi 80.000 124.821 141172 145414  144.005 137.478  122.642 88.6070  0.0000
n 80.000  102.112 113453  116.479 113.126  103.266 84.4844 51,7856  0.0000
W 80.000 89.1736  94.0499  93.9210 887553  77.9737  60.2439  31.0510  0.0000
ys  80.000 80.5319  79.6515 76.3999  70.0003 59.6301  44.4667 24.1744  0.0000
n 80.000 733023 67.6241  62.0267 55.2159 46.07%  33.8184  1S.1798  0.0000
n 80.000 65.0528 55.5159  48.8671  42.7568  35.6543 265473  14.7266  0.0000
y»  80.000 513931  40.5195  35.1691 31.2899 272335 21.9900 14.1791  0.0000
n 50.000 20.0000 200000 20.0000 20.0000 20.0000 20.0000 20.0000 10.0000

Figure 10.20 wn = u(x, y) with Dirichlet boundary values.
y = yi = 0. The initial value at the interior grid points was set at ujj — 70 for each
i=2,..,8andj = 2,..., 8 Then the SOR method was employed with the parameter

s = 1.44646 (asin Example 10.7). After 29 iterations, the residual was uniformly reduced;
(i.e.,, \nj\ < 0.000998 < 0.001). The resulting approximations are given in Table 10.7.
Because of the discontinuity of the boundary functions at the corners, the boundary values
¥19 = 130 and «99 =90 have been introduced in Table 10.7 and Figure 10.21; they were
not used in the computations at the interior grid points. A three-dimensional presentation
of the data in Table 10.7 is given in Figure 10.21. m
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Table 10.7
X1
\9 130.000
w  80.000
n 80.000
y6  80.000
ys  80.000
w4 80.000
=3 80.000
n 80.000
M  80.000

Approximate Solution to Laplace’s Equation with Mixed Boundary Conditions

-

130.000

126.457

103.5)8
91.6621
84.7247
80.4424
77.8354
76.4244
75.9774

Figure 10.21

3

180.000

142,311

115.951
98.4053
86.7936
79.2089
74.4742
71.8842
71.0605

4

180.000

146.837

119.568
99.2137
84.8347
75.1245
68.9677
65.5772
64.4964

s
180.000
145.468
116.270
94.0461
78.2063
67.4860
60.6944
56.9600
55.7707

*6
180.000
138.762
105.999

82.4936
66.4578
55.9185
49.3635
45.7972
44.6670

n = u(x, y) for a mixed problem.

Foisson’s and Helmholtz’s Equations

Consider Poisson’s equation

(28)

V2u = g(x,vy).

180.000
123583
86.4683
63.4715
49.2124
40.3665
35.0435
32.1981
31.3032

Xi

180.000
89.1008
52.8201
35.7113
26.5538
21.2915
18.2459
16.6*185
16.1500

*9
90.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

Using the notation gij = #(*/, y4 the generalization of formula (20) for solving (28)
over the rectangular grid is

+1. + - iJ+1+ “ij-1 ~ *ui,j - i
Uij — Ujj- o «d+1; + «1-13 + uiJ 1 ij-1 ui,j hZQIJ,
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Consider Helmholtz’s equation
(30) \2u +f(x,y)u=g(x,y]\.

Using the notation fij = f(xt, yj), the generalizationofformula (20) for solving (30)
over the rectangular grid is

A\ _ L Ui+l +Ui-ij +uid+i+Uij_i - (4-h 2fij-)uij-h2gij
1) uu = u,j + !

(3

These fonnulas are explored in greater detail in the exercises.

Improvements

A modification of (8) that can be employed is the nine-point difference formula for
Laplace’s equation:

v 2ui.j % +«/-[J-1 +N]|+1j+1 + +|
+ 4uj+ij +4u,_ij + 4ujj+i+ 4ujj-i —20u,j) =0.

The truncation error for the nine-point difference formula is of the order 0(h4) when
it is used to solve the Poisson or Helmholtz equation; thus there is no improvement if
the nine-point difference formula is used instead of the five-point difference formula.
However, when the nine-point formula is used to solve Laplace’s equation V2a = 0,
the truncation error is of the order O (A6) and there is an advantage to using the nine-
point difference formula.

Program 10.4 (Dirichlet Method for Laplace's Equation). To approximate the
solution of uxx(x, .y) + uyy(x,y) = OoverR = {(k y) :0<x <a,0<y <b
with u(x,0) = f\(x), u(x b) — fz(x), for0 < x < a, and n(0, y) = /3(y),
«(B,Y) = /a(y), for0 < v <b. Itis assumed that Ax =Ay = h and that integers
n and m exist so thata = nft and b = mh.

function U=dirich(fl,f2,f3,f4,a,b,h ,tolJmaxl)
Input - fi,f2,f3,f4 are boundary functions input as strings

/ - aand b right end points of [0,aj and [0,b]
7 - h step size
7 - tol is the tolerance

7.0utput - U solution matrix; analogous to Table 10.6

'/.Initialize parameters and U
n=fix(a/h)+l,;

m=Ffix(b/h)+I;
ave=(a*(feval(f1,0)+feval(f2,0))
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+b*(feval(f3,0)+fevalCf4,0)))/ (2*a+2*b);
U=ave*ones(n,ni) ;
/Boundary conditions
U(l,I:m)=feval(f3,0:h:(m-1)*h)’;
U(n,l:m)=feval(f4,0:h:(m-i)*h)’;
U(1l:n,1)=feval(f1,0:h:(n-1)*b);
U(l:n,my=feval(f2,0:h:(n-1)*h) ;
U (l,)=«J(1,2)+U(2,i))/2;
UCI,m.)=(U(l,m-IN+UC2,m))/2")
U(n,h)=U(n-1,I)+U(n,2))/2;
U(n,m)=(U(n-1.mJ+UCn.m-1))/2;
XSOR parameter
w=4/(2+sqrt(4-(cos(pi/(n-1))+cos(pi/(m-1)))~2));
/.Refine approximations and sweep operator throughout
%the grid
err=1;
cnt=0;
while((err>tol)& (cnt<=maxl))
err=0;
for j=2:m-1
for i=2:n-1
relx=w*(U(i,j+ 1)+ U (i,j-D)+U (i+1,j))+U (i-1,j)-4*U (j,j))/4;
U (i,j)=U(i,j)+relx;
if (err<=abs(relx))
err=abs(relx);
end
end
end
cnt=cnt+l;
end

U=flipudNe');

Exercises for Elliptic Equations

1. (a) Determine the system offourequationsin the four unknowns pu pr, p3, anti »
for computing approximations for the harmonic function u(x, y) inthe reccing\a
R={(x,y) :0<x < 3,0 <y < 3}(see Figure 10.22). The boundary values
are

u(x, 0) = 10 and w(x,3) =90 for 0<x <3,
h(0,y) =70 and m@E,_y) =10 for 0<y<3
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Mj,4-90 <54=9°

«1.3=™

Mi2=70

- ult
u2,i- u3, i T|!1% grid for Exercise 1

u24=90 «34=90

(b) Solve the equations in part (a) for pi, p2, p3, and pa.

2. (a) Determine the system of six equations in the six unknowns i\, gi....... q, for
computing approximations for the harmonic function u(x, y) in the rectangle

M= {(*,y) :0<x <30<y < 3} (see Figure 10.23). The boundary values
are

k(jc,3) =90 and «j,(jc,0)=90 for 0 <x <3,
«0,y) =70 and u(3,y)=0 for 0<y<3

(b) Solve the equations in part (a) for qi, qi, m.., qt,.
i. (@ Show thatu(x,y) = ai sm(jc)sinh(y) + b\ sinh(x)sin(y) is a solution of La-
place’s equation.
(b) Showthat u(x, y) = a, sin(nx) sinh(ny) + bnsinh(/i.r) sin(/ry) is a solution of
Laplace’ equation for each positive integern = 1,2.......
4. Letu(x,y) = x2—y2. Determine the quantities u(x + h, y), u(x —h, y), u(x, y +/1),
and u(x, y —h), substitute them into equation (7), and simplify.
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“24 3.4
4,4
3 o : “a.3
Pi Pi
° * “4.2
PP
*1 “4.i Figure 10.24
u2. | “3.1 The grid for Exercise 7

5. (a)

(b)

()

(d)

Suppose that n has the form u(x, y) = ax2+ bxy + cy2+ dx + ey + f . Find

a relationship among the coefficients which guarantees that uxx + uyy = 0.

Suppose that n has the form given in part (a). Find a relationship among the

coefficients which guarantees that uxx + uyy = —I.

Find the coefficients of the polynomial u(x,y) given in pan (a) that satisfj

the partial differentia! equation in part (a) and also the boundary conditions
0) = 0 and u(x, =0

Find the coefficients of the polynomial u{x, v) given in part (a) that satisf)

the partial differential equation in part (b) and also the boundary conditions

u(x,0) = 0and u(x, fi) = 0.

6. Solve uxx+uyy = —4uoverRs={(jt,y):0<jt<l,0<,y< 1}withthe boundary
values

«(jr.y) = cos(2jc) -)-sin(2y).

7. Determine the system of four equations in four unknowns p\, pr, P2- and p4 foi
implementing the Laplace nine-point difference equation on the 4 x 4 grid shown in
Figure J0.24.

Algorithms and Programs

1. (a)

(b)

Use Program 10.4 to compute approximations for the harmonic functionn U,y)
in the rectangle R = {(jr,>) : 0 < x < 15,0 <y < 1,5]; use h = 0.5. The
boundary values are

u(x, 0) = x4 and u{x, 1.5) = x4 - 13.5jc2+ 5.0625 for0<jt<1.5,
«(0,y) = y4 and «(1.5,y) = y4 —13.5y2+ 5.0625 for 0 <y < 15.

Use the surf command to plot your approximation from part (a) and compare
it with the exact solution u(x, y) —x4 —6x2y2 + y4.
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2. Modify Program 9.11{Tridiagonal Systems) to solve a pemadiagona) system.

3. (@ Useab x 5 grid similar to that in Example 10.5 and determine the system of
nine equations in the nine unknowns pu pr, p3, ..., pg for computing approx-
imations for the harmonic function u(x, y) in the rectangle /? = {U, y) : 0 <
x < 4,0 <y <4} The boundary values are

n(n\0) = 10 and u(x,4) =120 for 0<x <4,
u(0,y) =90 and wu(4,y)=40 for O0<y<4

(b) Use your modification of Program 9.11 to solve for pi, pr, .. , pd.

() Use Program 10.4 to solve for the approximations.

(d) Usea9 x 9 grid similar to that in Example 10.7 and Program 10.4 to solve for
the approximations.

4. (@) Usea5 x 5grid similar to that in Example 10.6 and determine the system of
12 equations in the 12 unknowns qi, q2, =a-, <712 for computing approximations
for the harmonic function m(jc, y) in the rectangle R ~ {(x,y) : 0 < x <4,
0 <y < 4). The boundary values are

u(r,4) =120 and «Mny)=0 for O0<x c 4
u(0, y) = 90 and «(4,y)=40 for O<y <4

(b) Use your modification of Program 9.11 to solve for gi, %2, <, q\2-

(c) Modify Program 10.4 to solve for the approximations.

<d) Use a9 x 9 grid similar to that in Example 10.8 and a modification of Pro-
gram 10.4 to solve for the approximations.

5. (@) Using a5 x 5 grid, derive the nine equations involving the nine unknowns pi,

pr, Pb....... Pi for computing approximations for the solution u(x,y) to Pois-
son’s equation with g(x, y) = 2 in therectangle R = {(c.y) : 0 <x < 1
0 <y < 1). The boundary values are

u(x,0)=x2 and u(x, )= (c—I2, for 0 <e*<I,
“O,y)=y2 and wu(ly)=((y—nN2 for 0<y<|l
(b) Use your modification of Program 9.11 to solve for pi, pi....... P9-
(c) Modify Program 10.4 to solve for the approximations.

(d) Usea9x9 gridand your modification of Program 10.4 to solve for the approx-
imations.

6. (&) Usinga5 x 5 grid, derive the nine equations involving the nine unknowns p\,
pr, Pr, em for computing approximations for the solution «(jc, y) to Pois-
son’s equation with g{x, y) = y inthe rectangle R = {(jc.y) : 0 < x < i
0 <y < 1), The boundary values are

u(x, 0) = and wn(x,1)=ar3 for 0<x<1
«(0,y)=0 and u(lly) =1 for O0<y<lI
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(b) Use your modification of Program 9.11 to solve for p\, pr, m = pg.
(¢) Modify Program 10.4 to solve for the approximations.

(d) Usea9 x 9gridand your modification of Program 10.4 to solve for the approx-
imations.



Eigenvalues and Eigenvectors

The design of certain engineering systems involves the maximum stress theory of
failure. This theory is based on the assumption that the maximum principal stress

acting on a body determines its failure. The related mathematical result is the principal

axes theorem for a linear transformation Y = AX. In two dimensions there exists

basis vectors U 1and Uz so that the effect of this transformation is to stretch space in

the directions parallel to U\ and Uz by the amount /4 and /.2, respectively. Consider
the symmetric matrix

3.8 0.6
0.6 2.2
'6
-3 0 3 6 9 12 -3 0 3 6 9 12
Fijurell.l (a)PreimagesU1= [3 I]J(and Uz =[-1 3] forthe transformation Y = AX. (b) The

ima'ge vectors V1= AU\ = [12 4]'and V2= AH2= [—2 6]f

555
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the principal directions are U\ = [3 [I]'and V2 = [—1 3j", with corresponding
eigenvalues Aj = 4 and b = 2, respectively. Images of these vectors are V) =
AVi = [12 4] = 4[3 1]'and V2 = AV2 = [-2 6] = 2[-] 3]. This
transformation stretches the quarter-circle shown in Figure 11.1(a) into the quarter
ellipse shown in Figure 11.11(b).

Homogeneous Systems: The Eigenvalue Problem

Background

We will now review some ideas from linear algebra. Proofs of the theorems are either
left as exercises or can be found in any standard text on linear algebra (see Refer-
ence [132]).

In Chapter 3 we saw how to solve n linear equations in rt unknowns. It was as-
sumed that the determinant of the matrix was nonzero and hence that the solution was
unique. In the case of a homogeneous system AX = 0, if det(A) / 0, the unique
solution is the trivial solution X = 0. If det(A) = 0, there exist nontrivial solutions to
AX = 0. Suppose that det(A) = 0, and consider solutions to the homogeneous linear
system

A 1*1 + a\2X2 4------- \-au,x,,—0

«21*1 + «22*%2 4-—-—-- fa2nxtt= 0
&n\x\ + &2+ ¢ ' 0.
The system of equations (1) always has the trivial solutionx\ = 0,x2= 0,..., x,, ~ 0.

Gaussian elimination can be used to obtain a solution by forming a set of relationships
between the variables.

Example 11.1. Find the nontrivial solutions to the homogeneous system

X Jt2x2 —*3 =0
2xi + Xx2-bxa =0
5Xi + 4*2 4-*3 = O-

Use Gaussian elimination to eliminate xi and the result is

Xi +2x2- *3
-3x2 + 3x3 =
- 6Xx2+ 6x3=0

0
0
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Since the third equation is a multiple of the second equation, this system reduces to two
equations in three unknowns:

X] + X2 =0
-Xr +x3 = 0.

We can select one unknown and use it as a parameter. For instance, let x3 = /; then
the second equation implies that X2 = t and the first equation is used to compute jci = —.
Therefore, the solution can tie expressed as the set of relations:

where i is any real number. [ ]

Definition 11.1 (Linear Independence). The vectors Ui, Uz, *--: Un are said to
be linearly independent if the equation

@) CIEli + @V 2 4—-1c,U, =0

implies thatc\ = 0,02 = 0, ..., ¢,, = 0. If the vectors are not linearly independent
they are said to be linearly dependent. In other words, the vectors are linearly depen-
dent if there exists a set of numbers {ci, cj, ..., ca) notall zero, such that equation (2)
holds. 4

Two vectors in 2 are linearly independent if and only if they are not parallel.
Three vectors in B are linearly independent if and only if they do not lie in the same
plane.

Theorem 11.1. The vectors U1, Uz, mmm V n are linearly dependent if and only if at
least one of them is a linear combination of the others.

A desirable feature for a vector space is the ability to express each vector as a linear
combination of vectors chosen from a small subset of vectors. This motivates the next
definition.

Definition 11.2 (Basis). SupposethatS = {U\, Uz, Uml\is asetof m vectors m
Jf". The set S is called a basis for " if for every vector X in 9t" there exists a unique
set of scalars jci, @, ..., cm] so that X can be expressed as the linear combination

©) X —c1Z711-\-c2U2 H------ (cmUn

Theorem 11.2. In 3f", any setof n linearly independent vectors forms a basis of :H!.
Each vector X in Sit" is uniquely expressed as a linear combination of the basis vectors,

as shown in.equation (3).



558 Chap.1ll eigenvalues and eigenvectors

Theorem 1171 Let K\, Kr, mmm Km be vectors in SH"

4 Ifm > n, then the vectors arc linearly independent.

(5) Ifm = n, the vectors are linearly dependentif and only ifdet(Jf) = 0,
where K = [if] K2 ... i«].

Eigenvalues

Applications of mathematics sometimes encounter the following equations: What are
the singularities of A ~ X1 , where X is a parameter? What is the behavior of the
sequence of vectors {A; A'0JjL,,? What are the geometric features of a linear trans-
formation? Solutions for problems in many different disciplines, such as economics,
engineering, and physics, can involve ideas related to these equations. The theory
of eigenvalues and eigenvectors is powerful enough to help solve these otherwise in-
tractable problems.

Let A be a square matrix of dimension n x n and let X be a vector of dimension a.
The product Y = AX can be viewed as a linear transformation from s-dimensional
space into itself. We want to find scalars X for which there exists a nonzero vector Y
such that

(6) AX = XX;

that is, the linear transformation T(X) = AX maps X onto the multiple XX. Wheh
this occurs, we call X an eigenvector that corresponds to the eigenvalue X, and together
they form the eigenpair X, X for A. In general, the scalar X and vector X can involve
complex numbers. For simplicity, most of our illustrations will involve real calcula-
tions. However, the techniques are easily extended to the complex case. The identity
matrix | can be used to express equation (6) as AX = XX, which is then rewritten in
the standard form for a linear system as

@) (A - XJ)x = 0.

The significance of equation (7) is that the product of the matrix (A —X1) and the
nonzero vector X is the zero vector! According to Theorem 3.5, this linear system has
nontrivial solutions if and only if the matrix A — X1 is singular, that is,

(8) det(A - x1) = 0.
This determinant can be written in the form

ay -X a\2 a\n
021 022 X - atn

an\ a,2 omn ~ X
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When the determinant in (9) is expanded, it becomes a polynomial of degree n, which
is called the characteristic polynomial

p(k) = det(A - kI)

(—1)M(kM-+fcikn 1-C2kn N+ mmm+ Cn-1k + Cn).

There exist exactly n roots (not necessarily distinct) of a polynomial of degree n.
Each root k can be substituted into equation (7) to obtain an underdetermined system,
of equations that has a corresponding nontrivial solution vector X. If X is real, a real
eigenvector X can be constructed. For emphasis, we state the following definitions.

Definition 11.3 (Eigenvalue). IfA isann x n real matrix, then its n eigenvaluesk i,
A2, ..., k,, are the real and complex roots of the characteristic polynomial

(11) pA) = det(A- U). K

Definition 11.4 (Eigenvector). If K is an eigenvalue of A and the nonzero vector V
has the property that

(12) AV = kV,

then V is called an eigenvector of A corresponding to the eigenvalue n. n
The characteristic polynomial (11) can be factored in the form

(13) p(n) = (-i)"a-A,)fflla-"~2r2'--a->.jtr*,

where mj is called the multiplicity of the eigenvalue kj . The sum of the multiplicities
of all eigenvalues is u; that is,

n—m\ +W2+ - LU -

The next three results concern the existence of eigenvectors.

Theorem 11.4. (a) For each distinct eigenvalue k there exists at least one eigenvec
tor V corresponding to k.

(b) Ifk has multiplicity r, then there exist at most r linearly independent eigenvec-
tors Vi, V2, ..., Vrthatcorrespond to k.

Theorem 11.5. Suppose that A is a square matrix and kj, kr, m.., kt are distinct
eigenvalues of A, with associated eigenvectors V\, V2. e- respectively; then
{Vij, Vz, me, VK) is a set of linearly independent vectors.

Theorem 11.6. If the eigenvalues of the n x n matrix A are all distinct, then there
exist n eigenvectors Vj, forj = 1,2
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Theorem 11.4 is usually applied for hand computations in the following manner.
The eigenvalue Xof multiplicity r > 1is substituted into the equation

(14) 04-A/)P=0.

Then Gaussian elimination can be performed to obtain the Gauss reduced form, whkh
will involve n —«k equations in n unknowns, where 1 < k <; r. Hence there are K
free variables to choose. The free variables can be selected in ajudicious manner to
produce K linearly independent solution vectors Vi, V2, ..., F* thatcorrespond to

Example 11.2. Find the eigenpairs A;-, Vj for the matrix

Also, show that the eigenvectors are linearly independent.
The characteristic equation det(A —A/) = 0 is

i3 —x -1 0
(15) -1 2—A -1
0 -1 3-7

= -A3+ 8A2- 1911+ 12= 0,

which can be written as (A —1)(A —3)(A —4) = 0. Therefore, the three eigenvalues are
Al = 1, N12= 3,and A3= 4.
Case (i): Substitute A1= 1 into equation (14) ind obtain

2% —X2 =0
—*+ X2 — x3=0
-X2+2x3 =0

Since the sum of the first equation plus two times the second equation plus the third equa
tion is identically zero, the system can be reduced to two equations in three unknowns:

2x\ — X2 ==
—X2 + 2*3 =0.

Choose X2 = 2a, where a is an arbitrary constant; then the first and second equations are
used to compute X] = a and *3 = a, respectively. Thus the first eigenpair is At = 1
Vi=[a la aj =e[l 2 I].

Case (ii): Substitute A2 = 3 into equation (14) and obtain

-X2
—*1 - X2 —X3
—X2

In
o o o



Sec. 1111 Homogeneous Systems: The Eigenvalue Problem 561

This is equivalent to the system of two equations
Xi +n3=0
*2 - 0.
Choosexi = b, where h is an arbitrary constant, and compute *3 = —b. Hence the second
eigenpairis X2 = 3, v2=[o 0 —~ =ix[l 0 -1]".
Case (iii): Substitute A3 = 4 into (14); the result is
—1 — X2 =0
—*] m2a2—*3=0
—*2 —*3=0.
This is equivalent to the two equations
Xi + *2 =0
xi + *3 = 0-
Choose xj = c, where c is a constant, then use the second equation to compute *2 = —c:
Then use the first equation to get 1 = c. Thus the third eigenpair is aj = 4, V3 =
[c — cl'=c[l —1 I\
To prove that the vectors are linearly independent, it suffices to apply Theorem 11.5.

However, it is beneficial to review techniques from linear algebra and use Theorem 11.3.
Form the determinant

a b c
det([V, V2 V3])= 2a 0 —
a —b c

Sincedet([V| V> V3]) ¢ 0, Theorem 11.3 implies that the vectors V\, VS, and V-, are
linearly independent. ]

Example 11.2 shows how hand computations are used to find eigenvalues when
the dimension n is small: (1) find the coefficients of the characteristic polynomial;
(2) find its roots; (3) find the nonzero solutions of the homogeneous linear system
(A—X1)V = 0. We will take the prevalent approach of studying the power and Jacobi
methods and the QR algorithm. The QR algorithm and its improvements are used in
professional software packages such as EISPACK and MATLAB ([178]).

Since Vv in (12) is multiplied on the right side of the matrix A, it is called a right
eigenvector corresponding to A There also exists a left eigenvector Y such that

(16) Y'A = XY
In general, the left eigenvector Y is not equal to the right eigenvector v . However,
if A'is real and symmetric (A' = A), then
(AV)' = V'A' = V'A,
(17) nyy = Xy
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Therefore, the right eigenvector V is a left eigenvector when A is symmetric. In the
remainder of the book we consider only right eigenvectors.

An eigenvector V is unique only up to a constant multiple. Suppose that c is a
scalar; then the following calculation shows that cV is an eigenvector:

(18) A(cV) = c(AV) = ¢(XV) = McV).

To regain some semblance of uniqueness, we normalize the eigenvector in one of
the following ways. Use one of the vector norms

(19) A HDo = \T<Et()éé|ﬂ*|}
or
/In
(20) Ne = (£ Mif]
Vi=l

and require that either LML = lor 'Ar2= 1

Diagonalizability
The eigenvalue situation is easiest to understand for a diagonal matrix D that has the
form

(1) D= diag(A, 22 =

LetEj = |0 O -e« 0 1 O mm 0]/ be the standard base vector, where the jth
component is 1and all other components are 0. Then

(22) DE}=P O 0 0..0]-=ajEj,

which implies that the eigenpairs of D are k  Ej forj = 1,2...... n. Itis desirable
to invent a simple way of transforming the matrix A into diagonal form so that the
eigenvalues are left invariant. This is the motivation for the following definition.

Definition 11.5. Twon X n matrices A and B are said to be similar if there eXibth a
nonsingular matrix K so that

(23) B =K 1AK. A

Theorem 11.7. Suppose that A and B are similar matrices and that A iis an

value of A with corresponding eigenvector V. Then X is also an eigenvalue of fe. if
K~]JAK = B, then Y — K*“1V is an eigenvector of B associated with the eigen-
value X.
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Ann x n matrix A is called diagonalimble if it is similar to a diagonal matrix.
The next theorem illuminates the intimate role of eigenvectors in this process.

Theorem 11.8 (Diagonalization). The matrix A is similar to a diagonal matrix D if
and only if it has n linearly independent eigenvectors. If A is similar to 1), then
\Y V = D = diag(A., kr,.. -4,)

(24)
V= [Vi V] ... V,L

where the n eigenpairs are kj. Vj, forj = I, 2,..., n.

Theorem 11.8 implies that every matrix A that has n distinct eigenvalues is diago-
ralizable.

Example 11.3.  Show that the following matrix is diagonalizable.

3 -1 0
Am -1 2 -1
0 -1 3

In Example 11.2 we found Ihe eigenvalues Ai = 1, Aj = 3, and A3 = 4 and the matrix
ot eigenvectors

1 1
V=[Vi V2 V3] = 0 -1
-1 1
The inverse matrix V'
| 1
5 5
1 1
3 '1
1 1
L3 3J

Itis left to the reader to check the details in computing the product in (24):
1

11 :
o & 31 0 1 1. r ioo
I o 3 a1 2 4a4=2 0-1=2030
1 1 -1 1 -1 |

Loy 1o 3 00 4

Hence we have shown that A can be diagonalized; thatis, V 1AV = D = diag(1,3,4). m

A more general result relating the structure of a matrix to its eigenvalues is the
following theorem.

Theorem 11.9 (Schur). Suppose that A is an arbitrary « X n matrix. A nonsingular
matrix P exists with the property that T — P [AP, where I' is an upper-triangular
matrix whose diagonal entries consist of the eigenvalues of A.
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Certain types of structural analysis in engineering require that a basis of be
selected that consists of the eigenvectors of A. This choice makes it easier to visu-
alize how space is transformed by the mapping Y = T(X) = AX. Recall that the
eigenpair Xj, Vj has the property that T maps Vj onto the multiple of Xj Vj. This
characteristic is exploited in the following theorem.

Theorem 11.10. Suppose that A is an n x n matrix that possesses n linearly inde-
pendent eigenpairs Xj, Vj for,j = 1,2,..., n; then any vector X in 91" has a unique
representation as a linear combination of the eigenvectors:

(25) X —c\W[+ CV2+ «*m+ c,V
The linear transformation T(X) — AX maps X onto the vector

(26) Y = T(X) —rjAiv1+C2X2V2 4 fcnX,V,,.

Example 11.4. Suppose that the 3 X 3 matrix A has eigenvalues A] = 2, X2 — —1
and A3 = 4, which correspond to the eigenvectors V1= [I 2 2], v2=[--2 1 1].
and V3 = [I 3 —47', respectively. If X = [-1 2 1]', find the image of X under the
mapping T(X) = AX.

We must first express X as a linear combination of the eigenvectors. This is accom-
plished by solving the equation

[-1 2 IT"=¢,[I 2 -2]'+c2[—=2 1 I]"+ c3[l 3 -47]"
for ci, &, and c3- Observe that this is equivalent to solving the linear system
ci - 2ci-f £3= -1
2cj + c2+ 3c3= 2
-2ci+ c2-4c3= 1
The solution is Cj — 2, &@ = 1, and C3 = —1. Using Definition 11.4, for eigenvectors,
T (X) is found by the computation
mn=*) = AQ2V, + V2~ V3)
=2AVi+AV2- AVi
= 2(2Vi)- V2-4V3
= [2 -5 77].

Virtues of Symmetry

There is no easy way to determine how many linearly independent eigenvectors a ma-
trix possesses withoutresorting to using the most effective algorithms in a professional
software package such as EISPACK or MATLAB. However, it is known that a real
symmetric matrix has n real eigenvectors and that for each eigenvalue of multiplic-
ity rtij there corresponds mj linearly independent eigenvectors. Hence every real sym-
metric matrix is diagonalizable.
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Definition 11.6 (Orthogonal)* A set of vectors {Vi, V2, = Vn}is said to be
orthogonal provided that

(27) V'V*;=0  whenever | ¢ K K

Definition 11.7 (Orthonormal). Suppose that {V 1, V2,. --, V,,Jis a set of orthog-
onal vectors; then we say that they are orthonormal if they are all of unit norm, that
is,
(28) VjVk=0 whenever | ®k.

VijVvijnrl forall j =1, 2......... n. A

Theorem 11.11. An orthonormal set of vectors is linearly independent.

Remark. The zero vector cannot belong to an orthonormal set of vectors.

Definition 11.8 (Orthogonal Matrix). Ann x n matrix A is said to be orthogonal
provided that A! is the inverse of A; that is,

(2:9) A'A = I,
which is equivalent to
(30) A-1 = A"

Also, A is orthogonal if and only if the columns (and rows) of A form a set of or-
thonormal vectors. a

Theorem 11.12. If A is a real symmetric matrix, there exists an orthogonal matrix K
such that

(31) K'AK = K_1AK = D,
where D is a diagonal matrix consisting of the eigenvalues of A.

Corollary 11.1. If Alisan n x n real symmetric matrix, there exist n linearly inde-
pendent eigenvectors for A, and they form an orthogonal set.

Corollary 11.2. The eigenvalues of a real symmetric matrix are all real numbers.

Theorem 11.13. Eigenvectors corresponding to distinct eigenvalues of a symmetric
matrix are orthogonal.

Theorem 11.14. A symmetric matrix A is positive definite if and only if all the
eigenvalues of A are positive.
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Estimates for the Size of Eigenvalues

It is useful to find a bound for the magnitude of the eigenvalues of A. The following
results will give some insights.

Definition 11.9 (Matrix Norm). Let LT be a vector norm. Then a corresponding
natural matrix norm is

S INVAX\\
<32) Mo = J’X-H—Zl w

For the norm || AL”, the following formula holds:

~-Vil

lsi<n | [
Theorem 11.15. If Ais any eigenvalue of A, then
(34) 1A < ||AJ,
for any natural matrix norm ||A|].

Theorem 11.16 (Gerschgorin’s Circle Theorem). Assume that A is an 1 X 1 matrix;
and let cj denote the disk in the complex plane with center ajj and radius

n
(35) = " Saji| for each j = 1, 2, n;
k—[,kAj
that is, Cj consists ofall complex numbers - =.r + iy such that
(36) C{={z:\z-ajj\ < rj}.

Ifs = U =i C(, then all the eigenvalues of A lie in the set S. Moreover, tbe union of
any k of these disks that do not intersect the remaining n - k must contain precisely K
(counting multiplicities) of the eigenvalues.

Theorem 11.17 (Spectral Radius Theorem). Let A be a symmetric matrix. The
spectral radius of A is | A2 and obeys the relationship

(37)
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An Overview of Methods

For problems involving moderate-sized symmetric matrices, it is safe to use Jacobi’s
method. For problems involving large symmetric matrices (for n up to several hun-
dred), itis best to use Householder’s method to produce a tridiagonal form, followed
by the QR algorithm. Unlike real symmetric matrices, real unsymmetric matrices can
have complex eigenvalues and eigenvectors.

For matrices that possess a dominant eigenvalue, the power method can be used
to find the dominant eigenvector. Deflation techniques can be used thereafter to find
the first few subdominant eigenvectors. For real unsymmetric matrices. Householder’s
method is used to produce a Hessenberg matrix, followed by the LR or QR algorithm.

Exercises for Homogeneous Systems: The Eigenvalue Problem

1. For each of the following matrices find (i) the characteristic polynomial p(X), (ii) the
eigenvalues;, and (iii) an eigenvector for each eigenvalue.

1T 21 -2
(@) A_32_ (b)A:Eﬁ_ (c) A — 3

.[.

1 -J 1T 1 1 f

@ A= o @ A- 0223
B 00 3 2

0 0 0 4

2. Determine the spectral radius of each of the matrices in Exercise 1.

3. Determine the LAL; and M fi*. norms of each of the matrices in Exercise 1.

4. Determine which, if any, of the matrices in Exercise 1 are diagonalizable. For each
diagonalizable matrix in Exercise 1, find the matrices V and D from Theorem 11.8
and carry out the matrix product in (24).

5. (a) For any fixed 9, show that

cos#  sin&ll
—sin# COS#J

is an orthogonal matrix.
Remark. The matrix R is called a rotation matrix.
(b) Determine all values ofB for which all the eigenvalues of R are real.

6. In Section 3.2 the plane rotations S x(ot), Ry (p). and R~(y) were introduced.
(a) For any fixed a, fi, arid y, show that Rx{a), Ry{fi), and respectively,
are orthogonal matrices.
(b) Determine all values of a, fi, and y for which all the eigenvalues of Rx(a),
Ry(fi), and R -('/), respectively, are real.
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(a) Show that the characteristic polynomial is p(k) — X2—(3+ 2a)X+a2—3a—A
(b) Show that the eigenvalues of A are Xi = a + 4andk2=a ~ 1
(c) Show that the eigenvectors of A are Vj = [2 I];and V2= [—1 2].

8. Assume that X, V form an eigenpair of the matrix A. If &is a positive integer, prove
that /1*, V are an eigenpair of the matrix Ak.

1]
w

9. Suppose that V is an eigenvector of A that corresponds to the eigenvalue X
Prove that X = 9 is an eigenvalue of the matrix A2 corresponding to V.

10. Suppose that V is an eigenvector of A that corresponds to the eigenvalue X = 2.
Prove that X = j is an eigenvalue of the matrix A-1 corresponding to V.

11. Suppose that K is an eigenvector of A that corresponds to the eigenvalue X = 5.
Prove that X= 4 is an eigenvalue of the matrix A — 1 corresponding to V.

12. Let A bean n x n square matrix with characteristic polynomial p(k) given by

p(X) = det(A —X/)

= (~1)"(X"+ ciX” 1+ gX" 2+ ommt+ cn-I1X + cn).

(a) Show that the constant term of p(k) isc,, = (—1)" det(A).
(b) Show that the coefficient of X""1is c[ = —(ai 1+ a22 H-—--—-+ an,,).

L3. Assume that A is similar to a diagonal matrix; that is
V-1AV = D = diag(A], X2, ,.. ,X,).
If k is a positive integer, prove that

Ak = Kdiag(Xf,X",...

11.2 Power Method

We now describe the power method for computing the dominant eigenpair. Its exten-
sion to the inverse power method is practical for finding any eigenvalue provided thata
good initial approximation is known. Some schemes for finding eigenvalues use other
methods that converge fast, but have limited precision. The inverse power method is
then invoked to refine the numerical values and gain full precision. To discuss the
situation, we will need the following definitions.

Definition 11.10. If Alis an eigenvalue of A that is larger in absolute value than any
other eigenvalue, it is called the dominant eigenvalue. An eigenvector V 1correspond-
ing to Xj is called adominant eigenvector. A
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Definition 11.11. An eigenvector F is said to be normalized if the coordinate of
largest magnitude is equal to unity (i.e., the largest coordinate in the vector V is the

number 1). A
It is easy to normalize an eigenvector [vi v2 ... vn] by forming a new vector
V = (l/c)[ui v2 ... uwn]/,where ¢ = vj and [i)y] = maxi<f<,f[i;,'[}.

Suppose that the matrix A has a dominant eigenvalue 9 and that there is a unique
normalized eigenvector V that corresponds to A. This eigenpair X, V can tie found by
the following iterative procedure called the power method. Start with the vector

(1) *0=1 1 1].
Generate the sequence {Xk} recursively, using

Yk = AXh,
@

where g +i is the coordinate of Yk of largest magnitude (in the case of a tie, choose
the coordinate that comes first). The sequences {Xj,} and |[c*} will converge to V and
X, respectively:

(3) lim Xk —V and lim ck -- X.
K—>00

Remark. If Zq is an eigenvector and X q ¢ V, then some other starting vector must be
chosen.

Example 11.5. Use the power method to find the dominant eigenvalue and eigenvector
for the matrix

0 11 -5
A- -2 11 -7
-4 26 -10

Start with Xg — [! 1 1]|” and use the formulas in (2) to generate the sequence oi
vectors {X<.) and constants (c*). The first iteration produces

0 11 -5" '1' T 6" 3
2 17 -7 1 = s =12 % mc\Xi
-4 26 -100 1 _12_ 1

The second iteration produces

oun -5 m it B

0 16
2 w7 F P, 8 =cre
-4 26 -10 1. % e
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Table 11.1  Power Method Used in Example 11.5 to Find the Normalized Dominant

Eigenvector V = fi; | 1] and Corresponding Eigenvalue A = 4

AXk = YK 4+ | x k+l

AXo = [6.000000 8.000000 12.00000]' = 12.00000[0.500000 0.666667 1] = ¢|*|
AXj = [2.333333 3.333333 5.333333]' = 5.333333[0.437500 0.625000 1] = c2x2
ax2 = [1.875000 2.750000 4.500000]' = 4.500000[0.416667 0.611111 1] == C3X3
AX3 = [L722222 2555556 4.222222] = 4.222222(0.407895 0.605263 1] = c4x 4
AX4 = [1.657895 2473684 4.105263]' = 4.105263k0.403846 0.602564 1] = ¢515
ax5 = [1.628205 2435897 4.053282]' = 4.051282(0.401899 0.601266 1] = c6x(,
AX6 = [1.613924 2.417722 4.025316]' = 4.025316[0.400943 0.600629 1] = crfi
ax7 = [1606918 2.408805 4.012579]' = 4.0.L2579[0.400470 0.600313 1] -
AXg= [1.603448 2404389 4.006270]' = 4.006270[0.400235 0.600156 1] = CgXg

4.003130[0.400117 0.600078 1] = 10
4.001564[0.400059 0.600039 1] = cp~ i

AX9 = [1601721 2402191 4.003130]
AXWw = [1.600860 2401095 4.001564]

Iteration generates the sequence (where XKk is a normalized vector):
a5 " rai-] r24 ri127-1
12 7S 316
38 3 78 47 158

v 9 Ta ' 9 38 ' 19 78 39" m
[ 1 1 1

The sequence of vectors convergesto ¥ = [f § 1], and Ihe sequence of constants
converges to A = 4 (see Table 11.1). It can be proved that the rate of convergence is
linear. ]

Theorem 11.18 (Power Method). Assume that the n x n matrix A has n distinct
eigenvalues A| TAr,..., A, and that they are ordered in decreasing magnitude; that is,

4

If Yo is chosen appropriately, then the sequences {Ar* = [j~ xf*
bl generated recursively by

(5) Yk = AXk
and

6 Yati = - Yt,
© Ck+1
where

()] ck+i = fo) and  xf> = max



Sec. 11.2 Power Method 571

will converge to the dominant eigenvector V ; and eigenvalue A], respectively. That is,
(8) lim Xk = V] and lim c* = Ai.
0 k->0Q

Proof. Since A has n eigenvalues, there are n corresponding eigenvectors Vj, for
j = 1,2, n, that are linearly independent, normalized, and form a basis for n-
dimensional space. Hence the starting vector Ao can be expressed as the linear combi-
nation

9) X0=biVi+b2V2+ --- + brivr,.

Assume that Xg= [x\ x2 ... X,\' was chosen in such a mannerthat b\ ¢ 0. Also,
assume that the coordinates of X gare scaled! so that maxi.-j<n{\xj\} = 1. Because
{Vj}"=1 are eigenvectors of A, the multiplication A X o, followed by noi-malization.
produces

Yo = AX0 = A(bIV1+b2V2 + ——-+t>,V,)

biAVi+b2AV2+ -.-+b,,AVn
(10) =bl,Y, +b2k2V2+ --- + bnknVn

and

After K iterations we arrive at

(11)
= AXk-i
NK—1 / ly \ k-] , \k—
= A— i-

(41AV. +* (£)“ Ah+..+K (~)M AV.)
CIC2 mm-C*_1

k-1 / IAoU=*'1 Ik Vit
cic2 IS VAT S — K.Vn
cice -

{b'v'+* vIi+--+k vy o
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Since we assumed that |Ay|/|Ai| < 1foreachj = 2,3,.... n, we have

(12) limft,-fVi=0 each y=2 3, .... n.
w00 \'M /

Hence it follows that

(13) lira Xk~ hm -—-—m’- %y
A-r00 k—%oc C\C2' ' *Q

We have required that both X t and v 1be normalized and their largest component be 1
Hence the limiting vector on the left side of (13) will be normalized, with its largest
component being 1. Consequently, the limit of the scalar multiple of V| on the right
side of (13) exists and its value must be 1; that is,

(14) im
k-*00 QC2 «+-Clc

Therefore, the sequence of vectors (AT*}converges to the dominant eigenvector:
(15) Kll_j%oXk — V\,

Replacing k with A—Z1 in the terms of the sequence in (14) yields

lim —-i-loee= 1,
K—>00 C\C2 ' ' «C*—1

and dividing both sides of this result into (14) yields

A . biXk/(ciC2--Ck) 1
lim — = lim - * e =
t->00 &k t*00biA] f{C\C%me-Ci-I) 1

Therefore, the sequence of constants {c*} converges to the dominant eigenvalue:

and the proof of the theorem is complete. e

Speed of Convergence

In the light of equation (12) we see that the coefficient of Vj in Xk goes to zero in
proportion to {Xj/Xi)k and that the speed of convergence of [Xu] to V \ is governed
by the terms </.2/’/.[)*. Consequently, the rate of convergence is linear. Similarly, the
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Ibble 11.2  Comparison of the Rate of Convergence of the Power Method and Acceleration of
the Power Method Using Aitken’s A2 Technique

?kXk
ctXi = 12.000000(0.50000(t0 0.6666667 1]' 4.3809524(0.4062500 0.6041667 1] = 7 |||
a X2 = 5.3333333[0.4375000 0.6250000 1] 4.0833333(0.4015152 0.6010101 1] = 4 X»
4+3 = 4.5000000(0.4166667 0.6111111 11° 4.0202020(0.4003759 0.6002506 1] = c3| 3
G X4 = 4.2222222(0.4078947 0.6052632 [+ 4.0050125(0.4000938 0.6000625 1] = CiX4
csXs = 4.1052632(0.4038462 0.6025641 1] 4.0012508(0.4000234 0.6000156 1] = 755 5
Gwe = 4.0512821(0.4018987 0.6012658 1] 4.0003125(0.4000059 0.6000039 1] = 7eXf,
cjX7 = 4.0253165(0.4009434 0.6006289 13 4.0000781(0.4000015 0.6000010 1] = b %
rgxg = 4.0125786(0.4004702 0.6003135 [+ 4.0000195(0.4000004 0.6000002 1] - -g=*g
(9X9 = 4.0062696(0.4002347 0.6001565 11' 4.0000049[0.4000001 0.600000! 1] = ci/X]j
=4.0031299(0.4001173 0.6000782 1]'; 4.0000012(0.4000000 0.6000000 1] =

convergence of the sequence of constants {c*j to Aj is Linear. The Aitk.en 2 method
can be used for any linearly convergent sequence {pt} to form a new sequence

(Pt+1 ~ Pk)2
Pk+2 — 2Pk+1 + Pk j

that converges faster. In Example 11.4 this Aitken [2 method can be applied to speed
up convergence of the sequence of constants {c*}, as well as the first two components of
the sequence of vectors {.Y*}. A comparison of the results obtained with this technique
and the original sequences is shown in Table 11.2.

Shifted-inverse Power Method

We will now discuss the shifted inverse power method. It requires a good starting
approximation for an eigenvalue, and then iteration is used to obtain a precise solution.
Other procedures such as the QM and Given’s method are used first to obtain the
starting approximations. Cases involving complex eigenvalues, multiple eigenvalues,
or the presence of two eigenvalues with the same magnitude or approximately the same
magnitude, will cause computational difficulties and require more advanced methods.
Our illustrations will focus on the case where the eigenvalues are distinct. The shifted
inverse power method is based on the following three results (the proofs are left as

exercises).

Theorem 11.19 (Shifting Eigenvalues). Suppose thata, V is an eigenpair of A. If
a is any constant, then J1—«, V is an eigenpair of the matrix A —al.

Theorem 11.20 (Inverse Eigenvalues). Suppose that A V is an eigenpair of A. If
K ® 0, then X, V is an eigenpair of the matrix A-1,
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A X a A4 [ 2

Figure 11.2 The location of a for the shifted-inverse
power method.

Theorem 11.21. Supposethat X, V is an eigenpair of A. Ifa ¢ X, then ]./(}.—a), V
is an eigenpair of the matrix (A —al)~

Theorem 11.22 (Shifted-inverse Power Method).  Assume that the 1 x n matrix

A has distinct eigenvalues A], Ar, ..., X, and consider Ihe eigenvalue Xj. Then a
constant a can be chosen so that X = 1/(Aj —a) is the dominant eigenvalue of
(A —al)*"". Furthermore, if Xq is chosen appropriately, then the sequences =
[ic® ... xnl>]'} and {clt} are generated recursively by
(17) Yk= (A—a/l I**
and
(18) XK+ = — Ft,
4t+i
where
(19) c*+i=*f) and xf}= max
will converge to the dominanteigenpair 11, Vj of the matrix (A Final ly. the

corresponding eigenvalue for the matrix A is given by the calculation

(20) X; = = ta.

ML
Remark. For practical implementations of Theorem 11.22, a linear system solver b
used to compute Ft in each step by solving the linear system (A —al)Y k — Xk-

Proof. Without loss of generality, we may assume that Aj < A2 < -.m< A,. Se-
lect a numbera (a & xj) that is closer to Xj than any of the other eigenvalues (See
Figure 11.2), that is,

(21) |Aj —a\ < |A; —cq  for each <=1, 2, ..., j —1,j + l.... n.

According to Theorem 11.21, I/(Xj —a), V is an eigenpair of the matrix
(A —a/)-1. Relation (21) implies that 1/]A, - a; < I\Xj —«l for each i ]
sothat m == 1/(Aj —a) is the dominant eigenvalue of the matrix (A —a/)"1. The
shifted-inverse power method uses a modification of the power method to determine
the eigenpair (i, V. Then the calculation Aj = I/m + a produces the desired
eigenvalue of the matrix A.
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Table 113  Shifted-inverse Power Method for the Matrix (A —4.2/) 1in
Example 11.6: Convergence to the Eigenvector V.= [j | 1] andw, = —5

(A-afr Xt = ck+\Xk+1
(A-arr =g = -23.38181818 [0.4117647059 0.6078431373 1]  ciYi

(A - <*)- Xj. = -5.356506239 [0.4009983361 0.6006655574 1]' = c2x2
(A Xé = -5.030252609 [0.4000902120 0.6000601413 ]’ C3X3
(A —al)~ =3 = -5.002733697 [0.4000081966 0.6000054644 1] - C4X4

(A - al)~ X4 = -5.000248382 10.4000007451 0.6000004967 1] C5X5
(A —al)~ x5 = -5.000022579 [0.4000000677 0.6000000452 1] - C6Xb
(A —al)~ = -5.000002053 [0.4000000062 0.6000000041 13 = C-jXj
(A —al)~ Xxi -5.000000187 [0.4000000006 0.6000000004 1] = CgYg
A-al'r -5.000000017 [0.4000000001 0.6000000000 jr = CgX9

>
(2]
|

*
o
1l

Example 11.6. Employ the shifted-inverse power method lo find the eigenpairs of the
matrix

0 1 -5
A= -2 17 -7
-4 26 -10

Use the fact that the eigenvalues of A are Ai = 4. X2 = 2, and A3 = 1, and select an
appropriate or and starting vector for each case.

Case (i): For the eigenvalue Ai =4, we select a = 4.2 and the starting vector
Ao=[1 1 I].First, form the matrix A —4.21, compute the solution to

42 1 -5 v
2 128 -7 Yom *om 1
4 26 -14.2 1

and get the vector Fo = [-9.545454545 -14.09090909 -23.18181818]'. Then com
puteci = —23.18181818 and A'i = [0.4117647059 0.6078431373 1]'. Iteration gener-
ates the values given in Table 11.3. The sequence {c*} converges to 111 = —5, which is the
dominanteigenvalue of (A - 4.2/)“ 1 and (A™J convergesto V\ = [5 f I] . The eigen-
value Alof A is given by thecomputation® = I/fi\+a = |/(—5)+4.2 = —0.2+ 4.2 =
4.

Case (ii): For the eigenvalue X2 = 2, we select a — 2.1 and the starting vector
Yo = [l 1 I]7#Form the matrix A —2.1/, compute the solution to

—21 1 -5 Vv
-2 14.9 -7 Yo = X0 = 1
-4 26 -12.1 1

and obtain the vector Y0 = [11.05263158 21.57894737 42.63157895]. Then cl1 =
42.63157895 and vector Yi =[0.2592592593 0.5061728395 |lj'.Iteration produces the
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liable 11.4  Shifted-inverse Power Method fra- the Matrix (A —2.1/) -1 in

Example 11-6: Convergence to the Dominant Eigenvector V = 3 1] and
m --to

(A-al)~]*k = K+\%M

(A-air % = 4263157895 [0.2592592593 0.5061728395 1] = ciXi
(A-al)" = -9.350227420 I0.2494788047 0.4996525365 U' = c2X2
(A 'Xi = -10.0365751J [0.2500273314 0.5000182209 y' = ¢rXr
(A-ar/)-1 = -9.998082009 [0.2499985612 0.4999990408 15 5 G X4
(A - al)~'IXA = -10.00010097 [0.2500000757 0.5000000505 1r =
(A-al)-lxg = -9.999994686 [0.2499999960 0.4999999973 ji* = cbX§

(A-al)~]«g = -10.00000028 [0.2500000002 0.5000000001 jy

Table 11.5  Shifted-inverse Power Method for the Matrix (A —0.875/)-1 in

Example 11.6: Convergence to the Dominant Eigenvector V = j 11 and
al =38
(A- al) 'Xk =

(A-<*[)-% = -30.40000000 [0.5052631579 0.4947368421 1]' = c,X,
(A-al)~1X\ = 8.404210526 [0.5002004008 0.4997995992 I]' = c2X2
(A-airlXz 8.015390782 [0.5000080006 0.4999919994 1]' = c3/T3
(A- alrl[Xr 8.000614449 [0.5000003200 0.4999996800 1]’ = GCiX4
(A-all IX4 8.000024576 [0.5000000128 0.4999999872 1]' = c5Xs

8.000000983 [0.5000000005 0.4999999995 1]' -- O, Xb
(A-al)~{Xb = 8.000000039 (0.5000000000 0.5000000000 1J' = c7X7

values given in Table 11.4. The dominanteigenvalue of (A —2.1/) Llis = —10, and the
eigenpair of the matrix A is X2 = I/{—10)+ 2.1 = -0.1 + 21 = 2and V2= L \ 1]

Case (iii): For the eigenvalue /.3 = 1, we selecta = 0.875 and the starting vector
Xq= [0 1 I]". Iteration produces the values given in Table. 11,5. The dominant eigen-
value of (A —0.875/)_! is = 8, and the eigenpair of matrix A is A3= 1/8 + 0.875 =
0.125 + 0.875 = land Y3 = \ 1] . The sequence {Xt} of vectors with the starting
vector [0 1 1]7converged in seven iterations. (Computational difficulties were encoun-
tered when Xn - [I 1 1] was used, and convergence took significantly longer.) ]

Program 11,1 (Power Method). To compute the dominant eigenvalue M and its
associated eigenvector V 1for the n Xn matrix A. Itis assumed thatthe n eigenvalues
have the dominance property £ (> /'l > )A3| > «-+> JA| > 0.

function [lambda,V]=powerl(A,X,epsilon,maxi)
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*/.lnpput - A is an nxn matrix

5 - X is the nxl starting vector
7, - epsilon is the tolerance
Y - maxi is the maximum number of iterations
F.Output - lambda is the dominant eigenvalue
¥, - V is the dominant eigenvector
7<Initialize parameters
lambda=0;
cnt=0;
err=1;
state=I;
while ((ent<=niaxl)&(state==i))
Y=A*X;
"/.Normalize Y
[m jl=max(abs(Y));
cl=m;
dc=abs(lambda-cl);
Y=(1/cl)*Y;
*/.Update X and lambda and check for convergence
dv=nonn(X-Y);
err=max(dc,dv);
X=Y;
lambda=c1;
state=0;
if(err>epsilond
state=I;
end
cnt=cnt+l;
end
V=X;

Program 11.2 (Shifted-inverse Power Method). To compute the dominant eigen-
value Aj and its associated eigenvector Vj forthe nx n matrix A. It is assumed that
the n eigenvalues have the property A] < Xj < m-- < A, and thata is a reaJ number
such that |A] —a| < |A-—a|, foreachi = 1,2,...,j —1j + 1,..., n.

function [lambda,V]=invpov(A X,alpha,epsilon,maxi)
%lnput - A Is an nxn matrix

r - X is the nxl starting vector

5 - alpha is the given shift

7, - epsilon is the tolerance

r - maxi is the maximum number of iterations

AOutput - lambda is the dominant eigenvalue
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- V is the dominant eigenvector

*/.Initialize the matrix A-alphal and parameters

[n
A=A

n]*size (A) ;
-alpha*eye(n);

lambda=0;
cnt=0;
err=1;

sta

whi

end
lam

te=1;
le cnt<=maxl)&(state==1))
1.Solve system AY=X
Y=AX;
*/Normalize Y
[m j1=max(abs(Y));
cl=m;
dc=abs(lambda-cl);
Y=(1/cl)*Y;
*/.Update X and lambda and check for convergence
dv=norm(X-Y);
err=max(dc,dv);
X=Y;
lambda“tl;
state=0;
if <err>epsilon)
stata=i;
end
cnt=cnt+l;

bda=alpha+l/cl;

V=X

Exercises for Power Method

. Let X V be an eigenpair of A. Ifa is any constant, show that X—a, V is an eigenpair

of the matrix A - ai.

. Let A V be an eigenpair of A. If A ® 0, show that I/A, V is an eigenpair of the

matrix j4_i.
Let A V be an eigenpair of A. Ifa ¢ A show that 1/(A —a), V is an eigenpair of
the matrix (A —a/)-1.

Deflation techniques. Suppose that A], Ar, Ag, ..., X, are the eigenvalues of A with
associated eigenvectors Vi, Vj, V3, ..... V,, and that As has multiplicity 1. If X is
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any vector with the property that X'V \ = 1, prove that the matrix
B-A-kiViXx

has eigenvalues0, A8, ..., AHwith associated eigenvectorsV W 2, W3,..., Wn,
where Vj and TV are related by the equation

Vj = A—A)W + Ai(X'Wj)V,  for each j = 2, 3....... n.

5. Markov processes and eigenvalues. A Markov process can be described by a square
matrix A whose entries are all positive and the column sums all equal 1. For illus-
tration, let PO = [j: 0> yt0)] record the number of people in a certain city who use
brands X and Y, respectively. Each month people decide to keep using the same brand
or switch brands. The probability that a user of brand X will switch to brand Y is 0.3.
The probability that a user of brand Y will switch to brand X is 0.2. The transition
matrix for this process is

0.8 0.3] fjitwl

\t+i = APk =
: 02 0.7jbH *

IfAPj — Pj for some j, then Pj = V is said to be the steady-state distribution

for the Markov process. Thus, if there is a steady-state distribution, then A= 1 must

be an eigenvalue of A. Additionally, the steady-state distribution V is an eigenvector

associated with k — 1 (i.e., solve (A —I)V =. Q).

(a) For the example given above; verify that A~ 1is an eigenvalue of the transition
matrix A.

(b) Verify that the set of eigenvectors associated with A= 1is {f[3/2 1j :t e
Sttpo}

(c) Assume that the population of the city was 50,000. Use your results from
part (b) to verify that the steady-state distribution is [30,000 20,000] .

Algorithms and Programs

In Problems 1 through 4 use:
(a) Program 11.1 to find the dominant eigenpair of the given matrices.
(b) Program 11.2 to find the other eigenpairs.

7 6 -3 14 -30 42
A= -12 -20 24 2. A= 24 49 -66

6 -12 16 1 24 -32

25 -25 30 05 25 -20 25 05
A_ 00 50 -20 20 4 a. 05 50 -25 -05

05 -05 40 25 ' 15 10 35 25

-2.5 -25 50 35 20 3.0 -5.0 3.0
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5. Suppose that the probability that a user of brand X will switch to brand Y or Z is 0.4

and 0.2, respectively. The probability that a user of brand Y will switch to brand X
or 2 is 0.2 and 0.2, respectively. The probability that a user of brand Z will switch to
brand X or Y is 0.1 and 0.1, respectively. The transition matrix for this process is

'0.4 0.2 0.1' V*>"
fli+l = APk= 04 06 0.1 yWw
0.2 0.2 038 zw

(@) Verify that 1 = 1is an eigenvalue of A.
(b) Determine the steady-state distribution for a population of 80,000.

. Suppose that the coffee industry consists of five brands B\, fi?, B% S4, and 65. As-

sume that each customer purchases a 3-pourd can of coffee each month and 60 mil-
lion pounds of coffee is sold each month. Regardless of brand, each pound of coffee
represents a profit of one dollar. The coffee industry has empirically determined the
following transition matrix A for monthly coffee sales, where aij represents the prob-
ability that a customer will purchase brand if; given that their previous purchase was
brand Bj .

01 02 02 06 0.2
01 01 01 01 0.2
01 03 04 01 0.2
03 03 01 01 0.2
04 01 02 01 0.2

An advertising agency guarantees the manufacturer of brand B\ that, for $40 million
a year, they can change the first column of A to [0.3 0.1 0.1 0.2 0.3] . Should the
manufacturer of brand Bj hire the advertising agency?

. Write a program, based on the deflation technique in Exercise 4, to find all the eigen-

values of a given matrix. Your program should call Program 11.1 as a subroutine to
determine the dominant eigenvalue and eigenvector at each iteration.

. Use your program from Problem 7 to find all the eigenvalues of the following matri

ces.
1 2 -1
(@ A= 1 0 1
4 -4 5
i+j i—j
(b) A = [aij], where a; = ] ] andi,j —12,..., 15

4 o]
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Jacobi’s Method

Jacobi’s method is an easily understood algorithm for finding all eigenpairs fora sym-
metric matrix. It is areliable method that produces uniformly accurate answers for the
results. For matrices of order up to 10, the algorithm is competitive with more sophis-
ticated ones. If speed is not a major consideration, it is quite acceptable for matrices
up to order 20.

A solution is guaranteed for ail real symmetric matrices when Jacobi’s method is
used. This limitation is not severe since trmny practical problems of applied math-
ematics and engineering involve symmetric matrices. From a theoretical viewpoint,
the method embodies techniques that are found in more sophisticated algorithms. For
instructive purposes, it is worthwhile to investigate the details of Jacobi’s method.

Plane Rotations

We start with some geometrical background about coordinate transformations. Let X
denote a vector in n-dimensioria] space and consider the linear transformation ¥ =
RX, where R isann x n matrix:

e 0 0 = 0
0o -- cosp mm singg me O
0 mm —sinh mmcos® m- 0

0 - 0 0 e 1
t t
col p col4
Here all off-diagonal elements of R are zero except for the values + sin ¢, and all
diagonal elements are 1except for cos$. The effect of the transformation ¥ = ft.Y is
easy to grasp:
yi = Xj when j ® p and j ¢ q,
Yp = Xp QB<t>+ Xq SU10,
ygq = —Xpsin ® + Xq COSc.
The transformation is seen to be a rotation of n-dimensional! space in the xpxq-plane
through the angle ¢. By selecting an appropriate angle ¢, we could make eitheryp = 0

oryg = 0 in the image. The inverse transformation X = J?- 'Y rotates space in the
same -plane through the angle —. Observe that R is an orthogonal matrix; that

is,

O-1=R*' or R'R=I.
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Similarity and Orthogonal Transformations

Consider the eigenproblem

(1) AX = XX.

Suppose that ATis a nonsingular matrix and that B is defined by

2 B = K~XAK.

Multiply both members of (2) on the right side by the quantity K 1X. This produces
BK~'X = K~xAKKnX = K~IAX

(3) . .

We define the change of variable

4 Y = K~IX or X =KY.

When (4) is used in (3), the new eigenproblem is

(5 BY = XV.

Comparing (1) and (5), we see that the similarity transformation (2) preserved the
eigenvalue x and that the eigenvectors are different, but are related by the change of
variable in (4).

Suppose that the matrix R is an orthogonal matrix (i.e., /-1 = R') and that D is
defined by

(6) D = R'AR.

Multiply both terms in (6) on the right by R'X to obtain

(7) DR’X = R'ARR’X = RAX = RXX = XR'X.
We define the change of variable

(8) Y=R'X or X =RY.

Now use (8) in (7) to obtain a new eigenproblem,

(9) DY = XY.

As before, the eigenvalues of (1) and (9) are the same. However, for equation (9) the
change of variable (8) makes it easier to convert X to Y and Y back into X because
A"1= R"

In addition, suppose that A is a symmetric matrix (i.e., A = A'). Then we find that
(10) D'=(R'AR)' = R'A(R")' = R'AR = D.

Hence D is asymmetric matrix. Therefore, we conclude that if A is a symmetric matrix
and R is an orthogonal matrix the transformation of A to D given by (6) preserves
symmetry as well as eigenvalues, The relationship between their eigenvectors is given
by the change of variable (8).
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Jacobi Series of Thmsformations

Start with the real symmetric matrix A. Then construct the sequence of orthogonal
matrices R\, Rj_,..., fin as follows:

(in Oo = A,
Dj —R'jDj-iRj forj =1 2, ....
We will show how to construct the sequence {Rj Jso that

12 lim Dj = D = diag(Ab X2,..., X,,).
(12) [lim D] iag( )

In practice we will stop when the off-diagonal elements are close to zero. Then we will
have

(13) D,,» D.

The construction produces

(14) D,, = RnRn_r R\ARiIR2 R,,-iR,,.
If we define
(15) R = *itf2 »

then R 1AR = D, which implies that
(16) AR = RD = Rdiag(Ai, X2, ..., A,).

Let the columns of R be denoted by the vectors X], X 2, mmm X,,. Then R can he
expressed as a row vector of column vectors:

17) R = [X} X2 ... X,],
The columns of the products in (16) now take on the form
(18) [AXi AX2 ... AT = [Ai*] k2X2 ... A X,]

From (17) and (18) we see that the vector X j, which is the jth column of R, is an
eigenvector that corresponds to the eigenvalue A
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General Step

Each step in the Jacobi iteration will accomplish the limited objective of reduction of
the two off-diagonal elements aM and aqgp to zero. Let R\ denote the first orthogonal
matrix used. Suppose that

(19) D\ = R\AR

reduces the elements apt) and aqgp to zero, where R\ has the form

e—Tow p
<0)

mrow g

t t
col p colq

Here all off-diagonal elements of R] are zero except for the element 5 located in
row p, column g and the element —s located in row g, column p. Also note that all
diagonal elements are 1 except for the element ¢, which appears at two locations, in
row p column p. and in row g, column . The matrix is a plane rotation where we
have used the notation ¢ = cos ¢ and s = sin ¢.

We must verify that the transformation (19) will produce a change only to rows p
and g and columns p and q. Consider postmultiplication of A by R\ and the product
B = AR\:

1)
~a\\ o N p = d\q m a\n "1 . 0O me 0 .+ O
B cip\ ® app ®™ am apg - Gpn 0 C me s « 0
® agp =™ - aqq - aqn 0 mm s me+ c m- 0
J*nl Grip &nq &nn 0 = 0 mm 0 me 1

The row by column rule for multiplication applies, and we observe that there is no
change to columns 1top —land p + 1to g —1and g 4-1 to n. Hence only columns p
and g are altered.

bjk = ajk when k @ p and k q,
(22) bjp —C&jp forj = 1,2,...,n,
bjg — SQjp + Cajg forj = 1,2........ n.
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A similar argument shows that premuttiplication of A by R\ will only alter rows p
and q. Therefore, the transformation

(23) D\ = jRjAi%i

will alter only columns p and q and rows p and q of A. The elements djk of D i are
computed with the formulas

djp = cajp - sajq when j @ p and j ¢ q,

dig =saJp + cajq when j ¢ p and j & q,
(24) "pp —mc @pp 4- ] 2csaPg,

dgqg — S Qpp “F C ttqq 4" 2CSdpq,

dPgq = {c2 - s2)apq + cs(app - aqq),

and the other elements of D\ are found by symmetry.

Zeroing out dpg and dgp

The goal for each step of Jacobi’s iteration is to make the two off-diagonal elements
dPg and dgP zero. The obvious strategy would be to observe the fact that

(25) c=cosg and S = sing,

where ¢ is the angle of rotation that produces the desired effect. However, some inge-
nious maneuvers with trigonometric identities are now required. The identity for cot ¢
is used with (25) to define

(26) B = cot2¢ - 2

Suppose that apg ¢ 0 and we want to produce dpg = 0. Then using the last
equation in (24), we obtain

(27) 0=(c s )dpq*cs{app 4,").

This can be rearranged to yield (c2—s2)/(cs) = {aGa- app)/apq, Whichisused in (26:
to solve for 9:

laq Qpp

28
(28) 2apq



5S6 Chap. Il Eigenvalues and Eigenvectors

Although we can use (28) with formulas (25) and (26) to compute ¢ and s, less
round-off error is propagated if we compute tan ¢ and use it in later computations. So
we define

(29) t=tand =
C
Nov/ divide the numerator and denominator in (26) by c2 to obtain

B- 1~ Zf2 _ 1- f2
2slc 2t

which yields the equation
00) r2+2te-i =0

Since t = land, the smaller root of (30) corresponds to the smaller angle of rotation
with \@\ < n-/4. The special form of the quadratic formula for finding this root is

(3i) t=-ex(ez+ 1)1/2= " +S|( g(g-f)l)JIZ’

where sign(E>) = 1whens > 0and sign(0) = —lwhens < 0- Thenc and s are
computed with the formulas

1

(32) (12+1)>/2
s = ct.

Summary of the General Step

We can now outline the calculations required to zero out the element dpq. First, select
row p and column g for which apa ¢ 0. Second, form the preliminary quantities

q °qg ~ app
2apq

(33) T \el+ (e2+10)'/2°
|
c_: (t2+1i)'/2
S —ict.
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Third, to construct D — D i, use

dpq - 0;
dgp -- 0;

dpp — C Qpp + S Gaq 2 CSClpqg\

dgg ~ S &p CQug " 2c5¢lpg,

for j =1:N
(34) if (y~=p) and (j~=a0q
dip = cdip  sdiaql
dpj = djP\
diq — ccija *Lsujp,
daj = djaq;
end
end

Updating the Matrix of Eigenvectors

We need to keep track of the matrix product R 1R 2 mmmR,,. When we stop at the mh
iteration, we will have computed

(35) vn= RtR2 Rn,

where V,, is an orthogonal matrix. We need only keep track of the current matrix V',.
forj — 1,2,..., n. Start by initializing V = /. Use the vector variables XP and XQ
to store columns p and q of A, respectively. Then for each step perform the calculation

for j=1:N

~ VP’
XQj — vig',

end
@0 for = 1:N

vip —cXPj ~ sXQj;
vjg —sXPj + ¢XQj;
end
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Strategy for Eliminating apq

The speed of convergence of Jacobi’s method is seen by considering the sum of the
squares of the off-diagonal elements:

n
37) M = \a/k\2
ik=1
Kep}
fi
(38) S2= ]T \dJk\2, Where DX= R'AR.
M= i
M i

The reader can verify that the equations given in (34) can be used to prove that
(39) S2 = Si ~2\apq\2.

At each step we let Sj denote the sum of the squares of the off-diagonal elements
of Dj. Then the sequence {Sj\ decreases monotonically and is bounded below by zero.
Jacobi’s original algorithm of 1846 selected, at each step, the off-diagonal element ap,,
of largest magnitude to zero out and involved a search to compute the value

(40) max{A} = max{|a,,J}.

This choice will guarantee that {Sj} converges to zero. As a consequence, this proves
that [Dj }converges to D and [Vj} converges to the matrix V' of eigenvectors (see
Reference [68]).

Jacobi’s search can become time consuming since it requires an order of (n2- ii)/2
comparisons in a loop. It is prohibitive for larger values of n. A better strategy is the
cyclic Jacobi method, where one annihilates elements in a strict order across the rows.
A tolerance value i is selected; then a sweep is made throughout the matrix and, if an
element aP4 is found to be larger than e, it is zeroed out. For one sweep through the
matrix the elements are checked inrow 1,a\2,au,..., ai,,; then row 2, a2, a24, -=-
Q,,; and so on. It has been proved that the convergence rate is quadratic for both the
original and cyclic Jacobi methods. An implementation of the cyclic Jacobi method
starts by observing that the sum of the squares of the diagonal elements increases with
each iteration; that is, if

(41) 0=£ w7l

and
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then

Ti = To4-2japql

Consequently, the sequence [Dj] convenes to the diagonal matrix D. Notice that the
average size of a diagonal element can be computed with the formula (7b/«)1/2- The
magnitudes of the off-diagonal elements are compared to 6(70/u)”~2, where e is the

preassigned tolerance. Therefore, the element apq is zeroed out if

(42)

12

\<pg\ > e (’))

Another variation of the method, called the threshold Jacobi method, is left for the
reader to investigate (see Reference [178]).

Example 11.7. Use Jacobi iteration to transform the following symmetric matrix into
diagonal form.
8 -1 3 -1
-1 6 2 0
3 2 9 1
-1 0 1 7

The computational details are left for the reader. The first rotation matrix that will zero

outaid3= 3is

0.763020 0.000000 0.646375 0.000000'
_ 0.000000 0.000000 0.000000 0.000000
«1 = 0646375 0.000000 0.763020 0.000000
0.000000 0.000000 0.000000 0.000000
Calculation reveals that A2 = fi\A]R] is
5.458619 -2.055770  0.000000 -1.409395
Ar = -2.055770 6.000000 0,879665 0.000000
T=  0.000000 0879665 11541381  0.116645
-1.409395 0.000000 0.116645 7.000000
Next, the element a2 = —2.055770 is zeroed out and we get
3.655795 0.000000 0.579997 -1.059649'
A3 0.000000 7.802824  0.661373 0.929268
0.579997 0.661373 11.541381 0.116645
-1.059649 0.929268 0.116645 7.000000
After 10 iterations we arrive at
3.295870 0.002521 0.037859 0.000000
Alo = 0.002521 8.405210 -0.004957 0.066758
lo = 0.037859 -0.004957  11.704123 -0.001430
0.000000 0.066758 -0.001430 6.594797
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It will take six more iterations for the diagonal elements to get close to the diagonal matrix
D = diag(3.295699, 8.407662,11.704301, 6.592338).

However, the off-diagonal elements are notsmall enough, and it will take three more it-
erations for them to be less than 10"™6 in magnitude. Then the eigenvectors are the: columns
of the matrix V = Ri R2 mmsf] ig, which is

0.528779 -0.573042 0.582298 0,230097"
0.591967 0.472301 0.175776 -0.628975
-0.536039 0.282050 0.792487 -0.071235
0.287454 0.607455 0.044680 0.739169

Program 11,3 (Jacobi Iteration for Eigenvalues and Eigenvectors). To compute
the full set of eigenpairs {Ay, of the n x n real symmetric matrix A. Jacobi
iteration is used to find all eigenpairs.

function [V,D]=jacobii(A,epsilon)

XInput - A is an nxn matrix

A - epsilon is the tolerance

AOutput - V is the nxn matrix of eigenvectors

% D is the diagonal nxn matrix of eigenvalues

Mnitialize V,D,and parameters
D=A;
[n,n]=size(A) ;
V=eye(n);
state=I;
*/.Calculate row p and column q of the off-diagonal element
*of greatest magnitude in A
[ml p]=max(abs(D-diag(diag(D))));
[m2 g]=max(ml);
p=p(d);
while(state==I)
[-Zero out Dpg and Dgp
t:=D(p,q)/(D(q,q)—D(p,p)) ’
c=I1/sqrt(t~2+1);
s==c*t;
R=[c s;-s c];
DC[p dl ,:)=R>D([p dl ,:);
DG, Ip dl)=DC, [P q])*R;
VC: L [p qD=V( :, [P qD*R;
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[ml p]l=ma--s(abs(D"diaj5(diag(D))));
[m2 g]l=ma:K(m.I) ;

i;pég%);s(D(p)Q)kepsi lon*sqrt(sum(diag(D) ."2)/n)}
state=0;
end
end

D=diag(diag(D));

Exercises for Jacobi’s Method

1. Mass-spring systems. Consider the undamped mass-spring system shown in Fig-

ure 11.3. The mathematical model describing the displacements from static equilib-
rium is

+ k2 —k2 0 *(*)m m 0 O

0
—«r kr+ & —Kj *2(0 + 0 m2 0 4409 = 0
o —Kj £3 _*3(0 0 0 "3 X§(t) 0

(a) Use the substitutions XjU) - vj sinto/ + B) for j

1.2,3, where B isacon-
stant, and show that the solution to the mathematical model can be reformulated

as follows:
k\ + kr ~Kr
. R 0
mi mi
-2 KM + KI -£3
Tr m2 T3
—*3 *
0 1
m3 T

(b)

Set X = (oz; then the three solutions to part (a) are the eigenpairs Xj

V- =
. for j

= 1, 2, 3. Show that they are used to form the three

xr(1) X3

Figure 11.3 An undamped mass-
0— spring system.
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fundamental solutions:
v\ sin(«y/ + B
Xj(t) = sin(t)yf + B = sin(ijt + 9)
sin(Q)jt+ 0) vV?
where coj = ~Kkj, forj = 1,2, 3.

Remark. These three solutions are referred to as the three principal inodes of
vibration.

2. The homogeneous linear system of differential equations

*5(0= *i(0 + *2(0
X2(t) = -2;ri(f) +4*2(0

can be written in the matrix form:

(a)
(b)

(c)

MGy LH-2 13

Verify that 2, [I 11" and. 3, [I 2]" are eigenpairs of the matrix A.

By direct substitution into the matrix form ofthe system, verify that both X U) =
eb [I I]" and X(t) = B,[I 2]" are solutions of the system of differential equa-
tions.

By direct substitution into the matrix form of the system, verify that X(t) =
c\e2t[1 I]r+ c-yeM[1 21'is the general solution of the system of differentia]
equations.

Remark. If the matrix A has n distinct eigenvalues, then it wilt have n linearly
independent eigenvectors. In this case the general solution of a homogeneous
system of differential equations can be written as a linear combination: that is,
X(t) = ¢ k1|,V1+C2" fy2+ -" + c,eA"'V,,.

Use the technique (by hand) outlined in Exercise 2 to solve each of the following
initial value problems.

@

(b)

©

* = djei + 2%2 . *j =
jei with | *i(0) 1
X2 —3xi — X2 1 *2(0) = 2
x\ = 2xi —12x2 . f*i(0) = 2
with

X'-,= x\— 5*%2 1*2(0) - 2

X] = *2 *i(0) =1
x2= *3 with *2(0) = 2
x-f = 8% —14x2 + 7x3 *3(0) = 3
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Algorithms and Programs

1. Use Program 11.3 to find the eigenpairs of the given matrix with a tolerance ofe =
10-7. Compare your results with those obtained from the MATLAB command eig
by entering [eig(A) diag(D)] in the MATLAB command window.

‘4 3 2 1"
(a) A=
225 --0.26 -1.25 2.75
D) A = -0.25 2.25 2.75 1.25
() - -1.25 2.75 2.25 --0.25
2.75 1.25 -0.25 2.25_
iijl, where ajj = i+] =] and 1, j
U Coj
cos(sin(/ + j i =
) ij], where ajj = G+ =3 g = 12,40
Q]+ i @3

2. Use the technique outlined in Exercise 1and Program 11.3 to find the eiigenpaiis and
the three principal modes of vibration for the undamped mass-spring systems with the
following coefficients.

(@ &=302=2,&8=1mi=1m=1m3=1
(b) =Ak2=303=1,T =4, m2=4, m3 =4
(c) £1=10.2,8=04,k3—0.3,mj = 25, m2=25m3= 25
3. Usethe technique outlined in Exercise 2 and Program 11.3 to find the general solution
of the given homogeneous system of differential equations.
(@) Xj = 4xi+ 3x2+ 2x3+ *4
*2 = 3ji + 4x2 + 3x3 + 2x4
X3 = 2xi + 3x2 + 4*3 + 3X4
*4 = Xi + 2x2+ 3x3 + 4x4

(b) x\ = 5xi + 4x2+ 3x3 + 2x4 + XS
X2 = 4Xi + 5*2 4-4*3 4-3*4 + 2*5
*3 = 31 + 4%2 + 5*3 + 4*4 + 3*5
*4 = 2Xi + 3*2+ 4*3 + 5x4 4-4*5
X6 = *1+ 2*2+ 3*3+ 4*4 + 5%5

4. Modify Program 11.3 to implement the “cyclic” Jacobi method.

5. Use your program from Problem 4 on the symmetric matrices in Problem 1. In par-
ticular, compare the number of iterations required by your cyclic program and Pro-
gram 11.3 lo satisfy the given tolerance.
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Eigenvalues of Symmetric Matrices

Householder’s Method

Each transformation in Jacobi’s method produced two zero off-diagonal elements, but
subsequent iterations nught make them nonzero. Hence many iterations are required to
make the off-diagonal entries sufficiently close to zero. We now develop a method that
produces several zero off-diagonal elements in each iteration, and they remain zero in
subsequent iterations. We start by developing an important step in the process.

Theorem 11.23 (Householder Reflection). If X and Y are vectors with the same
norm, there exists an orthogonal symmetric matrix P such lhat

Cl) Y=PX,
where
2 P=1-2WW"
and

X -Y
(3) w =

WX -y \2

Since P is both orthogonal and symmetric, it follows that
(4) P~-]1=P.

Proof Equation (3) is used and defines W to be (he unit vector in the direction X T
hence

(5) wWw =1
and

(6) ¥ = X-tcW,

where ¢ = —|Y - ¥Y|[2. Since X and Y have the same noim, the parallelogram rule

for vector addition can be used losee thatz = (X +Y)/2 = X + (r/2)W isorthogonal
to vector W (sec Figure 11.4). This implies that

W (X + =0.

Now we can use (5) to expand the preceding equation and get

7 W'X f EW”™W = W'X + "~ =0.
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Figure 11A The vectors (V. X, VY,
and Z involved in the Householder
reflection.

The crucial step is to use (7) and express c in the form
®) c=-2(W'X).
Now (8) can be used in (6) to see that
Y =X +ctV =X  2W'XW.
Since che quantity WX is a scalar, the iasi: equation can ite written as

9) Y=X-2WW'X = (1- 2WW")X.
Luokmg at (9), we see that P ~ 1 —2wWVK'. The matrix P is symmetric bccauv
Pi=(1- 2WWH9‘=1- 2(WW'Y

-1 —2WW' = P.
The following calculation shows that P is orthogonal:
P'P = (/- 2WW)(I - 2WW")

| -AWW' +4WW’ =1,
and the proof is complete.

It should be observed that the effect of the mapping Y = PX is to reflect X
through Ihe line whose direction is z, hence the name Ho useholder reflection.

Corollary 11.3 (fcth Householder Matrix). Let A be ann x n matrix, and X any
vector. Ifk is an integer with 1 < k < n —2, we can construct a vector W* and matm
P* = I —2Wk Wk so that

XK xk
[10] pa =pk x*i - -s =y,
Xk-t-2 0
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Proof. The key is to define the value 5 so that ||X ||2= IIY 2 and then invoke Theo-
rem 11.23. The proper value for S must satisfy

di) S2=4 +i+442 + - +xl
which is readily verified by computing the norms of X and ¥:
it x2e .t X
(12) X\ + X\ -\ e (x%+ S2
mly \2.
The vector W is found by using equation (3) of Theorem 11.23:
W =

(13)
= —70 ... 0 (GitH + S) xk+2 ee- ] m

Less round-off error is propagated when the sign of S is chosen to be the same as the
sign of Xi+i: hence we compute
(14) S = sign(jri+i)(rjt+l + xk+2 -—--—F-x A)\/?
The number R in (13) is chosen so that | WH2 = 1 and must satisfy

R2 — (%it+i + §)24-x%+2 + eom+
(15) = 2XK+IS + S2+ xI+i + xf+2 + m o+ x,,

- 2xk+i S + 2S2.

Therefore, the matrix Pk is given by the formula
(16) Pk=1-2WWr,

and the proofis complete.

Householder Transformation

Suppose that A is a symmetric n x n matrix. Then a sequence of n —2 transformations
of the form PAP will reduce A to a symmetric tridiagonal matrix. Let us visualize
the process when n = 5. The first transformation is defined to be PtAP i, where P 1
is constructed by applying Corollary 11.3, with the vector X being the first column of
the matrix A. The general form of J3] is

17) Pl=

OO0 OO
T T T T O
T T T T O
T T T T O

0
p
p
p
p
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where the letter p stands for some element in P]. As a result, the transformation
Pi AP i does not affect the elementay of A:

« ui 0 0 O
H W w w w
(18) PMAPA= 0 U w w w =Ai
0 w o w w w
0 W o w w w

The element denoted ui is changed because of premultiplication by P\, and ui is
changed because of postmultiplication by Pi; since A i is symmetric, we have ni = i’i.
The changes to the elements denoted w have been affected by both premultiplication
and postmultiplication. Also, since X is the first column of A, equation (10) implies
thatu\ = —S.

The second Householder transformation is applied to the matrix A j defined in (18)
and is denoted P r AP 2, where P 2 is constructed by applying Corollary 11.3, with the
vector X being ihe second column of the matrix A 1. The form of P 2 is

10 0 0 0
010 0 0
(19) P2= 0 0 p p p
00 p p
00 p p P

where p stands for some element in P> The 2 x 2 identity block in the upper-left
comer ensures that the partial tridiagonalization achieved in the first step will not be
altered by the second transformation P 2A\ Pi- The outcome of this transformation is

au W 0 0 O
«1 U]] w 0 O
(20) PiA\P2= 0 «@ B2 W w = Ar-
0 0 W w w
0 0 W w w

The elements ur and v2 were affected by premultiplication and postmultiplication
by P 2. Additional changes have been introduced to the other elements w by the trans-
formation.

The third Householder transformation, P 3A 2P 3, is applied to the matrix A2 de-
fined in (20), where the corollary is used with X being the third column of Ar- The
formof Pj is

00
0 0
0

(21) P3 =

O O OO0
O O O O
T T OO o

1
0
0

- ©
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Again, the 3 x 3 identity block ensures that PsA2P 3 does not affect the elements
of [a, which lie in the upper 3 x 3 comer, and we obtain

ail M 00 o
"towj w2 0 0
22) PsAzPs= 0 @ W2 vi O n]3
0 0 «3 W w
0 0 0 w w

Thus it has taken three transformations to reduce A to tridiagonal form.
For efficiency, the transformation P AP is not performed in matrix form. The next
result shows that it is more efficiently carried out via some clever vector manipulations.

Theorem 11.24 (Computation of One Householder Transformation). If P is a
Householder matrix, the transformation PAP is accomplished as follows. Let

(23) V=AW

and compute

(24) c= W'V

and

(25) Q=V- cWw.

Then

(26) PAP =A-2WQ' -2QW".

Proof.  First, form the product
AP = A(l - 2WWD) = A - 2AWW".
Using equation (23), this is written as
27) AP = A - 2VW"'.
Now use (27) and write
(28) PAP = (/- 2WW')(A - 2VW").

When this quantity is expanded, the term 2(2WW'VW") is divided into two portions
and (28) can be rewritten as

(29) PAP = A - 2W(W'A) + 2W(W'VW') - 2VW' + 2W{W’V)W'
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Under the assumption that A is symmetric, we can use the identity (W'A) = (W'A*) =
V. The tricky part is to observe that (w'V) is a scalar quantity; hence it can commute
freely about in any term. Another scalar identity, w'v = (w’V)'. is used to obtain
the relation w'vw' = (W'V)W' = W' (W'V) = W' (W'V)' = (WWV)W)' =
(W'VW)"'. These results are used in the terms of (29) in parentheses to get

(30) PAP = A - 2WV' + 2W(W'VW)' - 2VW' + iWVW W ',
Now the distributive law is used in (30) arid we obtain
(31) PAP = A - 2w (V' - (W'VW)) - 2(V - W'VW)W'.

Finally, the definition for Q given in (23) is used in (31) and the outcome is equa-
tion (26), and the proofis complete. «

Reduction to Tridiagonal Form
Suppose that A is a symmetric n x n matrix. Start with

(32) A0= A.
Construct the sequence P\, Pi, mmm P n-1 of Householder matrices, so that
(33) At = PkAt-iPk fork=1 2, —2,

where A* has zeros below the subdiagonal in columns 1, 2, ..., k. Then A,,_2is a
symmetric tridiagonal matrix that is similarto A. This process is called Householders
method.

Example 11.8. Use Householder’s method to reduce the following matrix to symmetric
tridiagonal form:

The details are left for the reader. The constants5 = 3and R = 301/7 = 5.477226 are
used to construct the vector

W' = -A=[0 5 2 1] = [0,000000 0.912871 0.365148 0.182574].

Then matrix multiplication V. = AW is used to form

V'=-1=M0-12 12 9]
V30 J

[0.000000 -2.190890 2.190890 1.643168].
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The constant ¢ — W'V is then found to be
c -—0.9.

Then the vector Q —V —cW = V + 0.9TVis formed:

_ L [0.000000 —7.500000 13.800000 9.900000]

Q

[0.000000 -1.369306 2.519524 1.807484].

The computation A\ —Aq—2W Q' —2 QW produces

4.0 -3.0 0.0 0.0"
-3.0 2.0 -2.6 -1.8

1- 00 -2.6 -0.68 -1.24 1
00 -1.8 -1.24 0.68

The final step uses the constants S = —3.1622111, R = 6.0368737,¢c = —1.2649111 and
the vectors

W = [0.000000 0,000000 -0.954514 -0.298168],
V' = [0.000000 0.000000 1.018797 0.980843],
Q' = [0.000000 0.000000 -0.188578 0.603687].

The tridiagonal matrix A2 = Ai —2WQ' —2Q W' is

4.0 -3.0 0.0 0.0
3.0 2.0 3.162278 0.0
0.0 3.162278 -1.4 -0.2
0.0 0.0 -0.2 1.4

Program 11.4 (Reduction to Tridiagonal Form). To reduce the n x n symmetric
matrix A to tridiagional form by usingn ~ 2 Householder transformations.

function. T=house (A)

TZInput - A is an nxn symmetric matrix
fOutput - T is a tridiagonal matrix
[n,n]=size(A);
for k=1:n-2

[.Construct W

s=norm(A(k+l:n,k));

if (A(k+1,k)<0)

S=-S;
end
r=sqrt(2*s*(A(k+1,k)+s.));
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W(1:k)=zeros(l,k);
W(k+D)=(A(k+1,k)+s)/r;
W(k+2:n)=A(k+2:n,k)"/r;
*/.Construct V
V(1:k)=zeros(l,k);
V(k+1:n)=A(k+1:n,k+1:n)*W(k+1:n)1;
¥Construct Q
c=W(k+l:n)*V(k+l:n) =
Q(l:k)=zeros(1,k);
Q(k+1:n)=VCk+1:n)-c*W(k+1:m:n);
r.Form Ak
A(k+2:n,k)=zerosCn-k-1,1);
A(k,k+2:n)=zeros(l,n-k-1);
A(k+l,k)=-s;
Ak, k+1)=-s;
A(k+1:n,k+1:n)=ACk+1:n,k+1:n)
-2 W (k+1:n)’*Q(k+1:n)-2*Q(k+I:n)"*W (k+1:n);
end
T=A;

The QR Method

Suppose that A is a real symmetric matrix. In the preceding section we saw how
Householder’s method is used to construct a similar tridiagonal matrix. The QR
method is used to find all eigenvalues of a tridiagonal matrix. Plane rotations similar
to those that were introduced in Jacobi’s method are used to construct an orthogonal
matrix Q\' — Q and an upper-triangular matrix U\ = U so that Ai = A has the
factorization

(34) Ai = QXU\.

Then form the product

(35) A2=UiQl.
Since Qj is orthogonal, we can use (34) to see that
(36) SiA, = Q\Q\U\ =U\.
Therefore, A2 can be computed with the formula

(37 A2=Q'lIAIQV

Since Q\ = QT I-it follows that A2 is similar to A\ and has the same eigenvalues. In
general, construct the orthogonal matrix Qk arid upper-triangular matrix £* so that

(38) Ak = QkUk-
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Then define
(39) Ak +\=V kQk = QKAkQK.

Again, we have Qk = Q”"1, which implies that Ajt+i and Ak are similar. Ah important
consequence is that Ak is similar to A and hence has the same structure. Specifically,
we can conclude, that if A is tridiagonal then Ak is also tridiagonal for all k. Now
suppose that A is written as

d\ ei
e\ d2 €
er dj
(40) A=
d,-2 en-2
en-2 d,-1 e,1
—+ dn

We can find a plane rotation P,,-1 that reduces to zero the element of A in location
(n, n —1), that is,

di e\
e\ dz
er di

(41) Pn-iA =
dn—2 tih—2 m-2
en-2  Pn-\" 4n-i
0 Pn

Continuing in a similar fashion, we can construct a plane rotation P,, 2 that will
reduce to zero the element of Pn-\ A located in position (n - 1, t —2). Aftern —1
steps we arrive at

pl 4 rl
0 p2 s
0 0 m rn-4
(42) P,-.-Pn_A= =V.

Un-2 m-3

Pn-2 4Yn~2 r,-2
0 Pnl unl
0 0 Pn

Since each plane rotation is represented by an orthogonal matrix, equation (42) implies
that

(43)
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Direct multiplication of U by Q will produce all zero elements below the lower
second diagonal. The tridiagonal form of A2 implies that it also has zeros above the
upper second diagonal. Investigation will reveal that the terms rj are used only to
compute these zero elements. Consequently, the numbers {rj}do not need to be stored
or used in the computer.

For each plane rotation Pj it is assumed that we store the coefficients cj and Sj
that define it. Then we do not need to compute and store Q explicitly; instead we
can use the sequences {cj } and {w} together with the correct formulas to unravel the
product

(44) A2=UQ = UP'n_IPn_2.-.p\.

Acceleration Shifts

As outlined above the QR method will work, but convergence is slow even for ma-
trices of small dimension. We can add a shifting technique that speeds up the rate of
convergence. Recall that if Xj is an eigenvalue of A then Xj —s/ is an eigenvalue of
lhe matrix B —A —stl. This idea is incorporated in the modified step

(45) A, - Sil =UiL,:
then form
(46) Aj+i ~ UiQi  fori=1, 2, ..., kj,

where {j; }is a sequence whose sum is Xj; thatis, kj = jj -f so H------ hs/:j.

At each stage the correct amount of shift is found by using the four elements in the
lower-right corner of the matrix. Start by finding X) and compute the eigenvalues of
the 2 x 2 matrix

(1) \dn' 1 e 1

They are X\ and xj and are the roots of the quadratic equation
(48) x2- (d,-1+ dn)x + d,,.\dn- en-ie,,-i =0.

The value s, in equation (45) is chosen to be the root of (48) that is closest to d,,.
Then QR iterating with shifting is repeated until we have e,,~\ 0. This will

produce the first eigenvalue /[ = ji +52 H--—--A similar process is repeated with

the upper n —1rows to obtain en-2 ~ 0, and the next eigenvalue is J2. Successive iter-

ation is applied to smaller submatrices until we obtain ej ~ 0 and the eigenvalue J7n_2.

Finally, the quadratic formula is used to find the last two eigenvalues. The details can

be gleaned from the program.
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Example 11.9.  Find the eigenvalues of the matrix

4 221
L. 23 11
2 131
1 112

In Example 1J.8, a tridiagonal matrix Ai was constructed that is similar to M. We start
our diagonalization process with this matrix:

4 -3 0 0
A = -3 2 316228 0
nT 0 316228 -1.4 -0.2
0 0 -0.2 14
The four elements in the lower right comer aredi ——1.4, = 14, ande3 ——0.2 and

are used to form the quadratic equation
ji2- (-1.4+ 1A)X + (~14)(14) - (—9.2X—0.2) =x2-2 =0.

Calculation produces the roots jei = —1.41421 and x2 = 1.41421. The root closest to d$
is chosen as the first shift j-| = 1.41421, and the first shifted matrix is

2.58579 -3 0 0
Ad-sil = -30.58579 1.74806 0

01.74806 -2.81421 -1.61421

0 0 -1.61421 -0.01421

Next, the factorization Aj —si/ = Q#4\ is computed:

-0.65288 -0.38859 -0.55535 0.33814
075746 -0.33494 -0.47867 0.29145
QWi= 0-85838 -0.43818 0.26610
0 0 052006 0.85413

’—3.96059 2.40235 2.39531 0
0 3.68400 -3.47483 -0.17168
0 0 -0.38457  0.08024
0 0 0 -0.06550

Then the matrix product is computed in the reverse order to obtain

'4.40547 2.79049 0 0
279049 -4.21663 -0.33011 0
0 -0.33011  0.21024 -0.03406
0 0 -0.03406 -0.05595

The second shift is s2 = —0.06024, the second shifted matrix is A% —S 1 — Q2U2, and

4.55257-2.65725 0 0
-2.65725 -4.26047 0.01911 O
0 0.01911 0.29171 0.00003
0 0 0.00003 0.00027

Ar= Qj=

Ai = U2Q2=
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The third shift is 3 = 0.00027, the third shifted matrix is A3 —s3/ = M3"3< and

'462640 253033 O "

_ _ 253033 /433489 -000T11l @
Ad= U}Q3= 0-0.00111  0.29150 0
0 0 0 0

The first eigenvalue, rounded to 5 decimal places is given in the calculation
X =si +12+33= 1-41421-0.06023 + 0.00027= 1.35425.

Next X is placed in the last diagonal position of A4 and the process is repeated, but
changes are made only in the upper 3 x 3 comer of the matrix

462640  2.53033 00
Ad = 2.53033 -4.33489 -0.00111 0
0 -0.00111  0,29150 0
0 0 0 1.35425

In a similar manner, one more shift reduces the entry in the second row and third
column to zero (to ten decimal places):

H= 029150, Apg—.54/ = Q4U4, A5 = 1/464.
Hence the second eigenvalue is
X2 =  + j4= 135425+ 0.29150 = 1.64575.

Finally, ki is placed on the diagonal of As in the third row and column to obtain

426081 -2.65724 0 0
265724 -4.55232 0 0
Al= 0 1.64575 0
0 00 135425

The final computation requires finding the eigenvalues of the 2 x 2 matrix in the upper-left
corner of As. The characteristic equation is

x2 - (-4.26081 +4.55232)x + (4.26081)(-4.55232) - (2.65724X2.65724) = 0,
which reduces to
jez + 0.2915101- - 26.45749 = 0.

Therootsare xi = 5.00000andjo = —5.29150, and the last two eigenvalues are computed
with the calculations

A= X +jo = 1.64575 4-5.0000 = 6.64575
and
X4 = Jp+ x2~ 1.64575- 5.29150 = -3.64575-
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Program 11.5 can be used to approximate a]] the eigenvalues of a symmetric tridi-
agonal matrix. The program follows directly from the previous discussion, but with
two notable exceptions. First, the MATLAB command eig is used to find, the roots
of the characteristic equation (48) of each 2 x 2 submatrix (47). Second, the QR
factorization of the matrix At --.2/ (45) is executed using the MATLAB command
[Q,R]=qgr (B), which produces an orthogonal matrix Qand an upper-triangular matrix
R, such that B=Q*R (readers will be asked to write their own QR factorization program).

Program 11.5 (The QR Method with Shifts). To approximate the eigenvalues of
a symmetric tridiagonal matrix A using the QR method with shifts.

function D=qr2(A,epsilon)

7Jnput - Ais a symmetric tridiagonal nxn matrix
7 - epsilon is the tolerance
7Output - D is the nxl vector of eigenvalues

"/Unitialize parameters
[n,n]=size(A);
m=n;
D=zeros(n,l);
B=A
while (m>l)
while (abs(B(m,m-l))>=epsilon)
'/.Calculate shift
S=eig(B(m-1:m));
[ikl=min([abs(B(m,m)*[I 1] -S)]1);
7.R factorization of B
[Q.U]=qr(B-S(k)*eye(m));
~Calculate next B
B=U*Q+S(k)*eye(m);
end
% lace mth. eigenvalue in A(mm)
A(l:m,I:m)=B;
'/Repeat process on the m-1 x m-1 submatrix of a
10=T-1;
B=A(l:w,1:m);
end
D==diag(A) ;
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Exercises for Eigenvalues of Symmetric Matrices

1. In the proof of Theorem 11.23, carefully explain why Z is perpendicular to IV.
2. If X isany vectorand P =1 —2X X\ show that P is a symmetric malrix.

3. Let X beEiny vectorandset P = | ~ 2X.X".

(@) Find the quantity P P.
(b) What additional condition is necessary in order that P be an orthogonal matrix?

Algorithms and Programs

In Problems 1through 6 use:
(a) Program 11.4 to reduce the given matrix to tridiagonal form.

(b) Program 11.5 to find the eigenvalues of the given matrix.

“® o T "4 3 2 T '27 -0.25 -0.75 1.25'

1 P81 2 343 2 3 -0.25 275 125 —-0.75
' \ 2 3 "2 3 4 3 " -0.75 125 275 -0.25
: 12 3 4 125 -0.75 —-0.25 275

3.6 4.4 08 .16 -28
44 26 12 —04 08
08 12 08 -4.0 -28
.16 -0.4 -40 12 20
.28 08 .28 20 18

5. A= [aif] whereaj — "1 120 andij =12, 30
u i*i

Jeos(sin(i +j)) =3

*ijrj 00

7. Write a program to carry out the QR method on a symmetric matrix,

8. Modify Program 11.5 to call your program from Problem 7 as a subroutine. Use this
modified program to find the eigenvalues of the matrices in Problems 1through 6.

6. A= [oy], wherea,j = andi,j = 1,2, 40,



Appendix:
An Introduction to MATLAB

This appendix introduces the reader to programming with the software package MAT-
LAB. It is assumed that the reader has had previous experience with a high-level pro-
gramming language and is familiar with the techniques of writing loops, branching
using logical relations, calling subroutines, and editing. These techniques are directly
applicable in the windows-type environment of MATLAB.

MATLAB is a mathematical software package based ori matrices. The package
consists of an extensive library of numerical routines, easily accessed two- and three-
dimensional graphics, and a high-level programming format. The ability to quickly
implement and modify programs makes MATLAB an appropriate format for exploring
and executing the algorithms in this textbook.

The reader should work through the following tutorial introduction to MATLA&
(MATLAB commands are in typew riter type). The examples illustrate typical input
and output from the MATLAB Command Window, To find additional information
about commands, options, and examples, the reader is urged to make use of the on-line
help facility and the Reference and User’s guides that accompany the software.

Arithmetic Operations

+ Addition
Subtraction

* Multiplication

/ Division
Power

pi, e, i Constants

608
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Ex. »(2+3*pi)/2
ans =
b.7124

Built-in Functions

Below is a short list of some of the functions available in MATLAB. The following ex-
ample illustrates how functions and arithmetic operations are combined. Descriptions
of other available functions may be found by using the on-line help facility,

abs(#) eos(#) expC#) log(#) loglOC#) c:osh(#)

sin(#) tan(#) sqri(#> floor (#) acosC#) tanhC#)
Ex. »3*cos(sqrt(4.7))

ans =

-1.6869

The default format shows approximately five significant decimal figures. Entering the
command format long will display approximately 15 significant decimal figures.
Ex. »format long
3*cos(sqrt(4.7))
ans =
-1.68686892236893

Assignment Statements

Variable names are assigned to expressions by using an equal sign.
Ex. »a=3-flcor(exp(2.9))
a=
-15

A semicolon placed at the end of an expression suppresses the computer echo (ouipui i.
Ex. >>b=sin(a) ; Note: b was not displayed.
»2*p~2
ans=
0.8457

Defining Functions

In MATLAB the user can define a function by constructing an M-file (a file ending
in .m) in the M-file Editor/Debugger. Once defined, a user-defined function is called

in the same manner as built-in functions.
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Ex. Place the function fun(j) = 1+ x —x2/4 in the M-fiie fun.m. In the
Editor/Debugger one would enter the following:
function y=fun(x)
y=I+x-X,,“2/4;
We will explain the use of “.  shortly. Different letters could be used for the variables
and a different name could be used for the function, but die same format would have
to be followed. Once this function has been saved as an M-file named fun.m, it can be
called in the MATLAB Command Window in the same manner as any function.
>>cos(fun(3))
ans=
-0.1782
A useful and efficient way to evaluate functions is to use the feval command. This
command requi res that the function be called as a string.
Ex. » feval ("fun’ 4)
ans=
1

Matrices

All variables in MATLAB are treated as matrices or arrays. Matrices can be entered
directly:
Ex. »A=[1 2 3;4 5 6;7 8 9]

A=

12
45
78

o o W

Semicolons are used to separate the rows of a matrix. Note that, the entries of the
matrix must be separated by a single space. Alternatively, a matrix can be entered
row by row.

Ex. »A=[1 23
456
78 9]
A =
12 3
466
789
Matrices can be generated using built-in functions.
EX. »Z=zeros (3,5); creates a 3 x 5 matrix of zeros
»X=o0nes(3,5); creates a 3 x 5 matrix of ones
»Y=0:0.5:2 creates the displayed 1 x 5 matrix

Y=
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0 0.5000 1.0000 1.5000 2.0000

»cos(Y) creates a | x 5 matrix by taking the
cosine of each entry of Y
ans=
1.0000 0.8776 0.5403 0,0707 -0.4161

The components of matrices can be manipulated in several ways

Ex. »A(2,3) select a single entry of A
ans=
»A(1:2,2:3) select a submatrix of A
ans=
23
56
»A 1l 3],[1 3]) another way to select a submatrix of A
ans=
13
79

>>A(2,2)=tan(7.8); assignanew value to an entry of A

Additional commands for matrices can be found by using the on-line help facility or
consulting the documentation accompanying the software.

Matrix Operations

+ Addition
Subtraction
Multiplication
Power
Conjugate Transpose
Ex. »B=[1 2;3 4];
»C=B ~ Cis the transpose of B
c=
13
24
»3*(B*C)~3 3(BC)3
ans-

13080 29568
29568 66840
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Array Operations

One of the most useful characteristics of the MATLAB package is the number of func-
tions that can operate on the individual elements of a matrix. This was demonstrated
earlier when the cosine of the entries of a 1 x 5 matrix was taken. The matrix oper-
ations of addition, subtraction, and scalar multiplication already operate elementwise,
but the matrix operations of multiplication, division, and power do not. These three op-
erations can be made to operate elementwise by preceding them with a period: .*, ,/,
and . It is important to understand how and when to use these operations. Array op-
erations are crucial to the efficient construction and execution of MATLAB programs
and graphics.

Ex. »A=[1 2;3 4]

»A 2 produces the rnalrix product AA
ans=
7 10
15 22
»A "2 squares each entry of A
ans=
14
9 16
»cos(A./2) divides each entry of Aby 2, then tak, -

the cosine of each entry

0.8776 0.5403
0.0707 -0.4161

Graphics

MATLAB can produce two- and three -dimensional plots of curves and surfaces. Op-
tions and additional features of graphics in MATLAB can be found in the on-line fa-
cility and the documentation accompanying the software.

Theplot command is used to generate graphs of two-dimensional functions. The
following example will create the plot of the graphs of y = cos(j;) and y = cos2(n)
over the interval [0, rr].

Ex. >>x=0:0.1 :p:.;

»y=c0s (X) ;

»z=c0s(X) .'2;

»plecr(X,y,x,r, ’0’)
The first line specifies the domain v/ith a step size of 0.1. The next two lines define the
two functions. Note that, the first three lines all end in a semicolon. The semicolon is
necessary to suppress the echoing of the matrices x, y, and z on the command screen.
The fourth line contains the plot command that produces the graph. The first two terms
in the plot command, x and y, plot the function y — cos(jr). The third and fourth
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terms, x and z, produce the plot of v = cos2(n). The lasi term, o', results in 0’s
being plotted at each point (*b ZK) where zt = cos2(xk).

In the third line the use of the array operation “. s critical. First the cosine of
each entry in the matrix x is taken, and then each entry in the matrix cos (x) is squared
using the . * command.

The graphics command fplot is a useful alternative to the plot command. The
form of the command is fplot Cname’, [a,b] ,n). This command creates a plot of
the function nawe.m by sampling n points in the interval [a, bj. The default number

for n is 25.
Ex. » fplot(’tanh. [-2,2]) plotsy =tanh(jr) over [—2, 2]
Theplot and plots commands are used to graph parametric curves in two- and three-
dimensional space, respectively. These commands are particularly useful in the visu-
alization of the solutions of differential equations in two and three dimensions
Ex. The plotoftheellipse c(t) = (2cos(/), 3sin(f)), where 0 < t < 2jr, is produced
with the following commands:
»t=0:0.2: 2*pi;
»plotC2*cos(t) ,3*sin(t))
Ex. The plot of the curve c(t) = (2cos(r), t2, 1//), where 0.1 <t < 4n\ is pro-
duced with the following commands:
»t=0.1:0.1:4*pi;
»plot3(2*cos(t),t."2,1./t)
Three-dimensional surface plots are obtained by specifying a rectangular subset of the
domain of a function with the meshgrid command and then using the mesh or surf
commands to obtain a graph. These graphs are helpful in visualizing the solutions of
partial differential equations.
Ex. »x=-pi:0.1:pi;
»Y=X;
» [x,y]=meshgrid (x,y) ;
»z=sin(c:0s(X+Yy));

»mesh(z)

Loops and Conditionals
Relational Operators

“ Equal to

“= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to
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Logical Operators
Not (Complement)

& And (True if both operands are true)

| Or (True if either or both operands are true)
Boolean Values

1 True

0 False

Mefor, if, andwhile statements in MATLAB operate in a manner analogous to their
counterparts in other programming languages. These statements have the following
basic form:
for (loop-variable = loop-expression)
exeeutable-statements
end

if (logical-expression)
exeeutable-statements
else (logical- expression)
exeeutable-statements
end

while (while-expression)
exeeutable-statements
end
The following example shows how to use nested loops to generate a matrix. The
following file was saved as a M-file named nest.m Typing nest in the MATLAB
Command Window produces the matrix A Note, when viewed from the upper-left
comer, that the entries of the matrix Aare the entries in Pascal 's triangle.

Ex, for i=1:5

A(i,D=LA(,i)=1I,

end

for i=2:5
for j=2:5

A(L)=A00-D+AG-1]);

end

end

A

The break command is used to exit from a loop.
Ex. for k=1:100
x=sqrt(k);
if ((k>10)&(x-floor (x)==0))
break
end
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end
K
The disp command can be used to display text or a matrix.
Ex. n=10;
k=0;
while k<=n
x=k/3;
disp([x x'2 x*3])
k=k+1;
end

Programs

An efficient way to construct programs is to use user-defined functions. These func-
tions are saved as M-files. These programs allow the user to specify the input and
output parameters. They are easily called as subroutines in other programs. The fol-
lowing example allows one to visualize the effects of moding out Pascal’s triangle with
a prime number, Type the following function in the MATLAB Editor/Debugger and
then save it as an M-file named pasc .m

Ex. function P=pasc(n,m)
f.Input - n is the number of rows
#, - mis the prime number
7.0utput - P is Pascal's triangle

for j=I:n
P(.D)=LP(,j)=1,

end

for k=2:n
for j=2:ft

P(k,j)«xrem(P(k,j-1),m)+rem(P(k-1,j),m);

end

end

Now in the MATLAB Command Window enter P=pasc (5,3) to see the first five rows
ofPascal’s triangle mod 3. Ottry P=pasc(175,3); (note the semicolon) and then type
spy(P) (generates a sparse matrix for large values of n).

Conclusion

Al this point the reader should be able to create and modify programs based on the
algorithms in this textbook. Additional information on commands and information
regarding the use of MATLAB on your particular platform can be found in the on-line
help facility or in the documentation accompanying the software.
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Answers to Selected Exercises

Section 1.1 Review of Calculus

1

3.

10.
11.
15.
16.

© = o v~

(@ L =2 = |~ f,Umn,-;»e,=0
@c=1--4

. (@ Mi=-5/4, M2=5

. () c=0

.(@c=1
c~ 4/3

. (8) .r2cor)

@ < x="13/3
@2 (b1
1373, apply the Mean Value Theorem for Integrals

Let the n roots of P(x) be xij, x\, ..., jr,,_j. Venfy that the hypotheses of the
Generalized Rolle’s Theorem are satisfied. Therefore, there exists ¢ € (a, b)
such that P ("_14c) = 0.

Section 1.2 Binary Numbers

1

(a) The computer's answer is not 0 because 0.1 is not an exact binary fraction,
(b) 0 (exactly)
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(@21 (<) 254
. (a) 0.84375 <) 0.6640625

. () 1.414062.5

. (@) V 2- 14140625 = 0.000151062...
. (a) 101118 (c> 10HUOIONvo

. (a) O.0llltwo (c) 0.10l,wo

. (a) 0.0001Wi (c) 0.001,

. (3) 0.006250000 ...

.Usec= andr= " togetS=_L =

© 0O N O 0o A~ W N

=
[N

[y
w

. (@) 0101 Iwo x 2" 1 0.101 ltwo X 2~]
0,110ltwo x 2“2 0.01101two0 x 2“°

0.100011,wo x 2*°

—

5 0.100lwo x 2“° = 0100Lwo x2°
sl 0-1011,wo x 2~2 = 0.001011l,wo x 2_0
1 0.101 111,wo x 0.1 I00mo

14. @ 10= 10W (c) 421 = 120021lhree
15. (a) J = Olthree (b) 2 = 01[hrec

16. (a) 10= 20fi.  (c) 721 = 10341gV¥
17. (b) += 0.2fi

Section 1.3 Error Analysis

1 (@) j = 2.71828182,7= 2.7182, (x - x )= 0.00008182.

U —x)jx = 0.00003010, four significant digits
! ! 292807 _ ) se53074428 =
2° 4+ 43+ 4:5(21) * 477(3)) " 1,146,880 - P
p ~ p = 0.0000000178, (p - p)!p = 0.0000000699

3. (@) pi ~p2= 1414+ 0.09125 = 1505, p]p2 = (1.414){0.09125) = 0.1290

4. The error involves loss of significance.
0.70711385222 - 0.70710678119  0.00000707103 _
(3) 0000 —goooor - WU

5. (@) In(U + 2)/c) orln(l + Ynr) (c) cos(2jc)
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6. (@) /*(2.72)

(2.72)3—3(2.72)" + 3(2.72) —1= 20.12 —22.19 + 8.16 —1
-2.07 - 816- 1= 6.09- 1= 5.09
(.72 - 3)2.72+ 3)2.72 - 1= ((-0.28)2.72+ 3)2.72- 1
(-0.7616 + 3)2.72 - 1= (2.238)2.72- 1=6.087 - 1
5.087

R(2.72) = (272 - 1)3= (1.72)3= 5.088
(a) 0498  (b) 0.499

0(2.72)

1 h2
@) T cos(Ji=2Hh+ ?ﬂ3+ 0(h4)

(b) T h-cos(ft) =1 +h + A2- + 5 + 0(hA)

Section 2.1 Iteration for Solving x = gix)

1

10,

(@ g e C[0, 1], g maps [0, fJonto [3/4, I1]1c [0, 1], and \g'(X)‘ —i- .T/21=
x/2 < 12 < 1on |0, 1). Therefore, the hypotheses of Theorem 2.2 are satisfied
and g has a unique fixed point on [0, 1].

.(@) g(2)- 4+8-2=29g(4)=-4bl6-8=4

(b) po= 19 Eo =01 Yo- 0.05
pi = 1795 Ei = 0.205 A, = 0.1025
P2 = 1.5689875 F2 = 0.4310125 R2 -w0.21550625
Pi = 104508911  £3 = 0.95491089 = 0.477455444

(e) The sequence in part (b) does noi convergeto P —2. The sequence in part (c)
convergesto P —4,

. P =2, g\2) =5, iteration wiil no: convergeto P = 2.

P —2un where n is any integer, g'{P) = 1, Theorem 2.3 gives no information
regarding conveigence.

. (@ g(3) = 05(3)+ 15=3

(c) Proof by mathematical induction. Ifu = 1, then \P —p\\~ \P — /20]/2 ,
by part (b). Induction hypothesis: Assume that jP —p*l = IP ~ Piy,/"2k. Show
statement is true forn = K + 1

IP - Pk+il= 1n- Pk /2 (by part (b))
= GP —pol/2*)/2 (induction hypothesis)
= IP —poi/2*+1.
(S |
(@ Ip*Tl =1
Ipi+il Ei

2 1
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Section 2.2 Bracketing Methods for Locating a Root

1. /0= (0.11+0.12)/2 = 0.115 A(0.115) = 254,403
I\ = (0.11 + 0.115)/2 = 0.1125 A(0.1125) = 246,072
h = (0.1125 + 0.115)/2 = 0.11375  A(0.11375) = 250,198

3. There are many choices for intervals [0, b] on which/ (a) and/ (b) have opposite
sign. The following answers are one such choice.

(@) /(1) < 0and/(2) > 0, so there is a root in [1, 2J; also / (—1) < 0 and
/(—2) 0, so there is a root in [—2, —1].

(c) /(3) < 0and/ (4) > 0, sothere is arootin [3, 4].
4. c0= -1.8300782,a = -1.8409252,c2 = -1.8413854, c3= -1.8414048
6. c0= 3.6979549, ci = 3.6935108, c2 = 3.6934424, c3 = 3.6934414
11. Find N such that ij < 5x 10-9.

14. The bisection method will never converge (assuming thatcn ¢ 2) tox = 2.

Section 2.3 Initial Approximation and Convergence Criteria
1. There is a root near x = —0.7. The interval [—L1,0] could be used.

3. There isarootnearx = 1 The interval [—2, 2] could be used.

5. There is one root near x = 1.4. The interval [1,2] could be used. There is a
second root near jc = 3. The interval [2, 4] could be used.

Section 2.4 Newton-Raphson and Secant Methods

L (@) pk=g(pt-i) = 5

(b) po= -1.5, pi = 0.125, P2 = 2.6458, p3 = 1.1651
3. (@) pk= g(Pk-i) = \pk-\ + 5.

(b) po= 2.1, pi = 2.075, p2 = 2.0561, p3 = 2.0421, p4 = 2.0316
5. (@) pk- g(pk-0 = Pk-1 +cos(pi~i)
7. (@) g(pk-1) = pjt,|/(p*-i - 1)

® ro = 020 © ra = 20.0
py = -0.05 pi = 21.05263158
p2 = -0.002380953 pr = 22.10250034
pr = -0.000005655 pp = 23.14988809
pt = -0.000000000 p4 = 24.19503505
/\_g)c‘ SHoo ﬁﬂ%pk = oc

8. po = 2.6, pi = 2.5, pr = 2.41935484, p2 = 2.41436464
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14. No, because f'(x) is not continuous at the root p = 0. You could also try com-
puting terms with g(Pk-1) = —2pt~\ and see that the sequence diverges.

22. () x2~al, ("2-«)2\ ' x(x2+ 3a)
, v 15c+.i3
L(n)=T +3~"

px= 2.2352941176, pr = 2.2360679775, p3= 2.2360679775

, 4 2+ 4x+ 2x2+ *3
W »W = + 2,»
pi ~ -2.0130081301, pi =-2.0000007211, p3 - -2.0000000000

Section 2.5 Aitken’s, Steffensen’s, and Muller’s Methods

2. (&) O2pn = A(Apn)= A(p,,+l - pn) = (pn+2 - Pn+i) ~ {Pn+i - p,,)
—Pn+2 —2p,Afi + pn=2(n + 2)2+ 1—=22(n + )"+ 1)
+2n2+1=4

6.pn= l/(4n+4-")

n Pn (in Aitken’s
0 05 -0.26437542
1 023529412 -0.00158492
2 0.06225681  -0.00002390
3 0.01562119 -0.00000037
4 0.00390619

5 0.00097656

7. *%(*)== (6+ *)12
n Pn qn Aitken’s

25 3.00024351
2.91547595  3.00000667
2.98587943  3.00000018
2.99764565 3.00000001
2.99960758
2.99993460

OB WN R O
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9. Solution of cos(jt) —1=0.

n  pn Steffeiisen's

0.5

0.24465808
0.12171517
0.00755300
0.00377648
0,00188824
0.00000003

AR WN O

11. The sum of the infinite series is S = 99.

n Sn Th

1 099 98.9999988
2 19701 99.0000017
3 2940399 98.9999988
4 3.90099501  98.9999992
5 4.85198506

6 5.79346521

13. The sum of the infinite series is S = 4.
15. Muller's method for f(x) = xb—x —2.

n Pn f(Pn)

0 10 2.0

1 12 -1.472

2 14 -0.656

3 152495614  0.02131598
4 152135609 -0.00014040
5 152137971 -0.00000001

Section 3.1 Introduction to Vectors and Matrices
L()a) (1,4) () (5-12) (0 (9,-12) (d) 5 (&) (-26,72)
(f-38 (@) 2Vv1465
2. B = arccos(—16/21) « 2.437045 radians

3. (@) Assumethat X, Y ¢ 0. X Y = 0iffcos(0) = 0ifF0 = (2« + 1f iff X
and Y are orthogonal.
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i t=]

6. (¢) a,, =
i~U+j “dj

Section 3.2 Froperties of Vectors and Matrices

11 -12 115 10

1 AB 13 -2f=12 20
_ o 2 -51
3 @ {AB)C =A(BC) 2 2 2]

5 (@) 33 (c) The determinant does not exist because the matrix is not square.

8. (AB)(B~IA~1) = A(BB~t)A~1 (ANA_1 = AA=l = |. Similarly,
{B~IA~")(AB) = I. Therefore, (AB) 1—B 1A 1

10. (@) UN (b) M(N - 1)

1 -1 2
4. XX' =[], XX= -1 1 -2
2 -2 4

Section 3.3 Upper-triangular Linear Systems
1. xi=2,X2=—2,X2—1,X4= 3, and detA — 120
5 x\ —3, X2 —2, /3= 1, X4 = —l, anddetA ——24

Section 3.4  Graussian Elimination and Pivoting
1L.Xj= =3, 2=2%xj=1
5.y =5- 3x +2x2

10. x\ = 1,jfj=3,3=2, X4 = =2

15. (a) Solution for Hilbert matrix A:
xi - 25,x2 ——300, x3 = 1050, X4 ——1400, *5 —630

(b) Solution for the other matrix A:
xi = 28.0:2304, jez = -348.5887, = 1239.781
X = —1666.785, Xi = 753.5564

Section 3.5 Triangular Factorization
1. (@ Y =[-4 123, X -1[321]

(b) Y'=[20399], X =1[57 3]
"5 2 -1 1 00 -5 2 -1
3. 10 3 —02 10 0 04 28
3 1 6 -0.6 55 1 0 0 -10

5@ Y=[B-6 22 *=[3-1 17

() Y =[286 121, * =[3121]
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6. The triangular factorization A = LU is

1 0 0 0 1 1 0 4"
_ 2 1 00 0 -3 5 -8
Ltu="5 10 0 0 -4 -10
-3 -1 -175 1 0 0 O -75
Section 3.6 Iterative Methods for Linear Systems
1. (a) Jacobi iteration (b) Gauss-Seidel Iteration
Pi = (3.75, 1.8) ft = (3.75, 1.05)
P2 = (4.2,1.05) P2 = (4.0125, 0.9975)
ft = (4.0125, 096.1 ft = (3.999375, 1.000125)
Iteration will converge to (4, 1). Iteration will converge to (4, 1).
3. (@) Jacobi iteration (b) Gauss-Seidel iteration
ft = (-1,-1) Pi=(-1,-4)
P2= (-4, -4) ft = (-13, -40)
ft = (-13,-13) ft = (-121,-361)
The iteration diverges away The iteration diverges away
from the solution P = (0.5, 0.5). from title solution P = (0.5, 0.5).

S. (a) Jacobi iteration
Pi = (2, 1.375,0.75)
P2 = (2.125, 0.96875, 0.90625)
ft = (2.0125, 0.95703125, 1.0390625)
Iteration will convergeto P = (2, 1, 1).
(b) Gauss-Seidel iteration
ft = (2,0.875, 1.03125)
P2 = (1.96875, 1.01171875, 0.989257813)
P3= (2.00449219,0.99753418,1.0017395)
Iteration will convergeto P = (2, 1, 1),
9. (15): IX]|l, =££=! [** = 0ifflifd=0 fori =0,1....... NiSX--"0
(16): |kJf]], = £?2=1\cxk\= [cjtel = |c|]ELi L= N mil

Section 3.7 Iteration for Nonlinear Systems

1.@ *=0,y=0 () x =0,y = 2mmr
2. @ x=4y—-2 () x=0,y=(@n+ n/2
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S ew*en= <2->>/)- m(,'1'20) = [-0°05 o0.0]
Fixed-point iteration Seidel iteration
K Pk 4k Pk 4k
0 11 2.0 11 2.0
1 112 1.9975 112 1.9964
2 1.1165508 1.9963984 1.1160016 1.9966327
00 1.1165151 1.9966032 1.1165151 1.9966032

Pk Solution of the linear system: J(Pt)dP = ~F (PO Pk+dP

r 21 -1.0] r-0.0075630] 1192437

[-10  2.4jj 0.0218487] . |/ [1221849 |

11.192437] [2.384874 1.0] r-0.0001278]___ I0.0000572] M1.192309'
[1.221849j -1.0 2.4436971[-0.0002476J “ [0.0004774] [ 1.221601

(@ Therefore, (pj,.?i) = (1.192437,1.221849) and
(P2,<J2) = (1-192309,1.221601).

Solution of the linear system: J(Pk) dP = —F (Pk) Pk +dP

—0.4 -1.0] r-0.0904762] _ 004 -0.290476:

[-1,0 -0.4)J[ 0.0761905J ~ — {-0.06]1 1-0.123809:

[—0.2904762] -0.5309524 —1.0] 10,0044128] _ I0.00818591  —9.286063'
[—90.123805)5J [ -10 0.2476190J [0.0056223) [0.0058050J [w0.118187:

8.

12.

(b) Tlierefore, (pb <%) = (-0.2904762, -0.1238095) and

(P2.92) = (—0.2860634, -0.1181872).

(b) Hie values of the Jacobian determinant at the solution points: are 17 (1, 1)| =
0 and 1J4-1, -1)| = 0. Newton’s method depends on being able to solve a
linear system where the matrix is J (pn, qR) and (p,,, gqn) is near a solution.. For
this example, the system equations are ill conditioned and thus hard to solve with
precision. In fact, for some values near a solution we have J(xo0, yo) = 0, for
example, J(1.0001, 1.0001) = 0.

(a) Note: As with derivatives, we have E?sc/(x, y)) c%f(x, y). F(X) was
definedas F (X) = [/1 (Xi....... X,,) mmfm(xi,..., x,,)] ;thus, by scalar multipli-
cation, CF(X) = [cf\(x\, ctm(Xt, ..-, Xn)]. J(cF(X)) = [jikimx,,,

where /,* = §d1*(cf,-(x1 ....... X)) = c—asfij(xi, ...y X,,). Therefore, by the def-
inition of scalar multiplication, we have J(cF(X) I = cJ(F(X)).
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Section 4.1 Taylor Series and. Calculation of Functions

1 (@) Ps(x) =-x- jc3/3! + g5/5!
P-,(x) =.x- x3/3\ + .¢5/5! - xUT7!
Pg(x) =:x~ XD\ + c5/51 - X1p\ + jtosan
(o) \Ed)\ = |sin(c)jri0L0!| < (1)(1)1010! = 0.0000002755
© P5(x) = + (x - a/4) - (c- Tr/IA)22 - Gc- 7/4)36
+ (X - JIHB424 + (o - n-14}5/120)
3. Atjoo = 0 the derivatives of f(x) are undefined. Butat joo = 1 the derivatives are
defined.
5. Pb@o) = 1+ ojc - x2/2 + Ox3= 1- x2I
8. () /(2) =2,/42) =1 ["(2) = /L 2)=n
P3(X) =2 + (x- 2)/4 - Gc- 2)2/64 + (x - 2)3/512
(b) P3(i) = 1.732421875; compare with 312 = 1.732050808

() f A{x) = -15(2 + x)~112j\b\ the minimum of |/ w (*)I on the interval
1 < jc < 3occurs when x = land |/@~Go| < |/ @)l < 3-7j,2(15/16) &

0,020046. Therefore, |£3(ic)] < (° 020" 6)(1> = 0.00083529

13. (d) P3(0.5) = 0.41666667 14. (d) P2(0.5) = 1.21875000
P6(0.5) = 0.40468750 />405) = 1.22607422
9>(0.5) = 0.40553230 P6(0.5) = 1.22660828
In(1.5) = 0.40546511 (1.5)12 = 1.22474487

Section 4.2 Introduction to Interpolation

1. (@) Usejc = 4andget s == —0.02, bi = 0.02, b\ = —0.12, b$ = 1.18. Hence
P(4) = 1.18.
(b) Usejc = 4 and getdi =-0.06, d\ = -0.04, do = -0.36. Hence P'(4) —
-0.36.
(c) Usejc = 4and get 14 - —0.005, /3 = 0.01333333,12 - —0.04666667,
M= 1.47333333, io = 5.89333333. Hence /(4) = 5.89333333. Similarly, use
jc = landgets(1) = 1.58833333.
/,4P(x)dx = /(4) - /(1) = 5.89333333 - 1.58833333 = 4.305

(d) Usejc = 5.5 and get 63 = —0.02, bi = —0.01, b\ — —0.255, fro = 0.2575.
Hence P(5.5) =0.2575.
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Section43  lfngrange Approximation

1. @) N (jco= —A3Gic—0)/(-1-0)+0 =x+ 0=x
ag = <*F-0>(*-»> + 0+ <*+M*-.°>
(—1- 0)(—l- D 1+ DL-0)
— -0.5(X)(x M)+ 0.5(x)(x+ 1) = O2+x +0 = X
L, ~ % L)< idr- 2) ,n g, (x+ DX)(* - 2)
<« FtW --' ()28, +°+ QM)
S D)X =), 7
+ 8 3)(2)(1) =* +°* +to+0-"'
(d) Pt(k) - li*- 2)/<l- 2)+Six- 1)/(2- ))=7n- 6

1

5. (c) f <c) = 120(c—1) for altc; thus £i(x) = 5(x + 1)(x)(x —8)(x —&)(c —I)
10. < 1- sin(l)| = 0.84147098 = M2
(@) h2M2/% = A2(0.84147098)/8 < 5x10-7

12. (a) z= 3—2x 4-4y

Section 4.4 Newton Polynomials
1 /4 (c) = 4 —jc - 1)
P2(x) =4- (x- 1)+ 04(x - D(x - 3
Pr(x) ~ Pr{x) +0.01(jc - D(;t- 3)(x - 4)
Piix) =P3(x) - 0.002(x - I)(x - 3)(x - 4)ix - 4.5)
Pi(2.5) = 2.5, P2(2.5) = 2.2, P3(2.5) = 2.21125, P.ti2.2) = 2.21575
5. fix) =m3(2)*
Piix) ~ 15+ 1.5(x + 1) + 0.75(x + I)(x) + 0.25(x + 1)(jc)(jc - 1)
+ 0.0625(x + N(x)(x - D(x - 2)
Pi(1.5) = 5.25, P2(1.5) = 8.0625, P3(1.5) = 8.53125, P4(1.5) = 8.47265625
7. fix) -=m3.6/x
Piix) = 3.6 - 18(x- 1)+ 0.6(x- D(x- 2)- 0.15(x- D(x - 2)(x - 3)
+0.03(x - D(x - 2)(x- 3)(x- 4)
Pi(2.5) = 0.9, P2(2.5) = 1.35, P3(2.5) = 1.40625, P4(2.5) = 1.423125

Section 4.5 Chebyshev Polynomials

9. (a) In(x + 2) % 0.69549038 + 0.49905042n - 0.14334605n02+ 0.04909073x3
(b) |/<4>(x)|/(23(4") < | - 6]/(23(4!)) = 0.03125000

11. (a) cos(x) « 1- 0.46952087x2
(b) [/<3>(X)|/(22(31) < Isin(1)}/(22(3!)) =0.03506129
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13. The error bound for Taylor’s polynomial is

[/ ] Q0 ,, |sin(l)]
a ~ 8

The error bound for the minimax approximation is

= 0.00002087.

L A <A LW=000{k0016
27(8) “ 27(8)

Section 4.6 Pade Approximations

1 1=po, 1+ g\ = pi, i +q\=0,q\ = -i, p\ = |
e "Rx,\{x) = (2+x)/{2-x)
3. 1= po, -1+ 2qi/l5 = pb —+qi/3 :20,gi = pi =

5. 1= po, 1+ Q\ = pi, ™+ 91 + Qi = Pi-
g+y +42=0
First solve the system
1 +SI+®=o.
1 1 24 1 6 2
Thenq\ = R = Pi:j,lgz- —

?. @ 1= po, *+qi =pb =+ qi/3 + q2= P2-
v, _,
315 15 3

62 , 26l 1~ _Q
2% 35 B

™
li’hengii = —g<ﬁ'2= 3 Pi = —g, P2 = g5°
Section 5.1 Least-squares Liine
1 (@ 10A+0B= 7
0A+ 5S =13
y = 0.70x + 2.60, E2(f) 0.2449
2. (a) 4011+ 0B =58

First solve (he system

0A + 5B = 31.2
y = 1,45x + 6.24, E2(f) « 0.8958
5 /5
3. (c) £ xkyk/Y » xk= 86-9/55= 158
ir=l i=1

y = 1.5&t E2(f) «s0.1720
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11. (a) y = 1.6866*2, Ez{f) » 1.3
y = 0.5902jc3, E2{f) «&0.29. This s the best fit.

Section 5.2  Curve Fitting

1 (a) 164A +20C = 186
206 = -34
2011 + 4C= 26

y = 0,875j:2- 1.70% + 2.125 = 7/8*2- 17/I0jc + 17/8
3. (@) 15A+ 5B = -0.8647
5A+5B= 4219
y = 3,8665c-0'5084%, E[(f) « 0.10

Using linearization Minimizing least squares

@ 1000 1000
1+4,3018<?-KOS02 1+4.2131r-1045*
5000 5000

(b) 1+S.9991e-°-81138 1+8.9987e-°81157
18. (a) 14A+ 15B+ 8C = 82

1571+ 19S + 9C = 93

8A+ 9B +5C = 49
A=24,B =12 C=38yieldsr = 2.4* + 1.2y + 3.8.

Section 5.3  Interpolation by Spline Functions

4. h0=1 do= -2
Al=3 d\ =\ H = 18
h2=3 d2=-2/3 «@=-10
dmj m2=21

Solve Ihe system 10 get mi R4 andm?2 ——%}

3mi+ 2> = —15
Then mo = —iff and m3 = |*|. The cubic spline is

129
Squ) = i

230 .
U+ 3)3- — (x+3)2- (jt+3+2 - 3<x<-2
SI{x)=~909ix+2)3+ 14l (JC+2)2 “ 101' +2) "2 -1

o - - w P Dm G D3 bercd
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5. h0=1 do=-2
/ii=3  d\=1 ui = 18
fc=3 d2=-1/3 W= -10
Solve the system J®’]1+ = "8 togetmi = L and m2= —jf-
3mi + 12m2 = —10
Setmo = 0 = ma3. The cubic spline is

So(x) = ~{x + 3)3- +3)+2 - 3<x<-2
5i(x) = 190(jc+2)'4+1-{x +2)'2-9—2(x+2) S 2<jc<1
B(>= — (- 1)3- p(Jt- D2+ - D+3  1<jc<4

5. *0=1 db=-2
Ai=3 tfi=1 «l =18
*2=3 R£=-2/3 «@=-10

Solve the system {)J EM2—18 4 getm1= % anm2= &

.+ 18m2 —10
Thenmo= " andm3= - The cubic spline is

37 187 , 841
50() = - — (B:+3)3+ — (ar+3) ~~(x+3)+2 -3<x<-2
-Sit*) = +2)3+ +2)27" +2) “25x- 1
37 , 5 , 125
S2(jt) = ~252@*“ 0 " 18" 1} + 84 x~ 1)+ 3 1" X~ 4
Section 5.4 Fourier Series and Trigonometric Polynomials
1. fix) =1 (sinOO + S fii + + +...)
3.nx) = f + £°°=1( ~ L) cosO™) - E5°=i (4 *)s[n(jx)

BIW =A(sin(x)-~ +A-A2E)+...)

12. /(i) = 6+ $ Eji, (~ -) cos(")
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Section 6.1 Approximating The Derivative

1. f(x) = sin(jt)

Approximate Eiror in the

h formula (3) approximation
0.1 0.695546112 0.001160597
0.01 0.696695100 0.000011609
0.001 0.696706600 0.000000109

3. f(x) = sin(x)

Approximate /' (jc), Error in the

h formula (10) approximation
0.1 0.696704390 0.000002320
0.01 0.696706710 -0.000000001

Bound for the
truncation error

0.001274737
0.000012747
0.000000127

Bound for thie
truncation error

0.000002322
0.000000000

5. /(*) = x3(a) /'(2) & 12.0025000 (b) /'(2) « 12.0000000
(c) For part (a): O(h') = -(0.05)J/ (3{c)/6 = -0.0025000. For part (b):

0(h4) = -(0.05)4/ (3)(c)/30= -0.0000000

7. 1(x, y) = xyl(x +y)
@) fx(x,y) = {y/{x 4 .y))2 x{2,3) = 0.36

Approximation to Error in the

h fx(2, 3) approximation
0.1 0.360144060 -0,000144060
0.01 0.360001400 -0.000001400
0.001 0.360000000 0.000000000

fy(x,y) — (x/(x + ¥))2,1y(2,3) = 0.16

Approximation to Error in the
fy (2, 3) approximation

0.1 0.160064030 -0.000064030
0.01 0.160000600 -0,000000600
0.001 0.160000000 0.000000000

645

10. (a) Formula(3) gives /'(1-2) « -13.5840and £(1,2) » 11.3024. Formula(lO)

gives /'(1-2) « -13.6824 and E (1.2) « 11.2975.

(b) Using differentiation rules from calculus, we obtain/'(1.2) *—13.6793 and

£(1.2) % 11.2976.
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App. I'(*), Error in the Equation (19), total error bound

h equation (17)  approximation [round-off] + jtrunc.|
0,1 -0.93050 -0.00154 0.00005 + 0.00161 =0.00166
0.01 -0.93200 -0.00004 0.00050 + 0.00002 = 0.00052
0.001 -0.93000 -0.00204 0.00500 + 0.00000=0,00500

IS. f{X) = cos(jc),/® () = --sin(jf)
Use the bound |/ (*)] < sin(1.4) ~ 0.98545.

App. f *(x), Error in the Equation (24), total error bound

h equation (22)  approximation |[round-off| + [trunc.|
0.1 -0.93206 0.00002 0.00008 + 0.00000 = 0.00008
0.01 -0.93208 0.00004 0.00075 + 0.00000 = 0.00075
0.001  -0.92917 -0.00287 0.00750 + 0.00000 = 0.00750

Section 6.2 Numerical Differentiation Formulas

1 fix) = In(x)
(@) /"(5) « -0.040001600  (b) /"(5) * -0.040007900
(c) /"(5) -0.039999833  (d) /"(3) = -0.04000000 = -1/52
The answer in part (b) is most accurate.
3. fix) =In(x)
(a) /"(5) « 0.0000 @) /"(5) « -Cl1.0400
(c) I"(5) « 0.0133 (d) /"(5) = -0.0400 = -1/52
The answer in part (b) is most accurate.

5. (a) fix) = x2,/"(1) * 2.0000
(b) fix) = x4,/"(1) » 12.0002

X ')
0.0  0.141345
01  0.041515
0.2 -0.058275

0.3 -0.158025
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Section 7.1 Introduction to Quadrature

1. (a) /(*) = sin(rjc) trapezoidal rale 0.0
Simpson’s rule 0.666667
Simpson’s | rule 0.649519
Boole’s rate 0.636165
(¢) fix) =sin(v-r)  trapezoidal rale 0.420735
Simpson’s rale 0.573336
Simpson’s  rale 0.583143
Boole’s rule 0.593376
2. (@) fix) = sin(jrx) Composite trapezoidal rule 0.603553
Composite Simpson rale 0.638071
Boole’s rale 0.636165
<b) fix) _ sin(V?) Composite trapezoidal rule 0.577889
Composite Simpson rule 0.592124
Boole’s rule 0.593376

Section 7.2 Composite Trapezoidal and Simpson’s Rule

1

(@) F(x) = arctan™), F(I) - F(-1) = jt/2 « 1.57079632679

(): M = 10,h = 0.2, T(f, h) = 1.56746305691, ET{f, h) = 0.00333326989
(ii): M ~ 5 h=0.2, S(/, h) = 1.57079538809, Es(f, h) = 0.00000093870
(© F(x) =rd., F(4)- F(]) =3

@i): M = 10, h = 0.375, T(f, h) = 3.04191993765,

ET{f, h) = -0.04191993765

(ii): Af  5,/1= 0.375, S(f, h) = 3.00762208163, Es(f, h) = -0.00762208163

(@) JAV I+ fo4* = 154786565469019
(i) M = 10, T{f, 1/10) = 155160945
(ii): M =5, S(f, 1/10) = 1.54786419

@ 2n JgxV | +9x4dx = 3.5631218520124

(): M = 10, 74/, 1/10) = 3.64244664

(ii): M =5, S(f, 1/10) = 3.56372816

(a) Use the bound |/® (*)I = I—cos(*)l < |cos(0)] —1, and obtain

((a/3 —0)A2)/12 < 5x 10~9; then substitute h = n/(3M) and get jt3/ 162 x
10s < M2. Solve and get 4374.89 < M\ since M must be an integer, M = 4375
and h = 0.000239359.

(@) Usethebound |/~ (n)| = |cos(j')] < |cos(0)] = 1, and obtain
((x/3—0)114)/180 < 5x 10 9;then substitute h = n/(6M) and get jt5/34,992x
107 < M4; since M must be an integer, M = 18 and. h = 0.029088821.
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M h T(.f,h) ETif,h) = 00,2)
1 02 0.1990008 0.0006660

2 01 0.1995004 0.0001664

4 005  0.1996252 0.0000416

8 0025 0.1996564 0.0000104
16 0.0125 0.1996642 0.0000026

Section 7.3  Recursive Rules and Romberg Integration

J R(J. 0) A1) | RLj. 2
[
0 1-0.00171772
11 0.02377300 1 0.03226990
2 | 0.60402717 10.79744521  0.84845691

I .0 fi(3. 1) X12)
0j 288

11 210564024  1.84752031

2 j :.78167637 1.67368841  1.66209962

10. (ii) For /ry/xdx, Romberg integration converges slowly because the higher
derivatives of the integrand fix) —-Jx are not bounded near x —O.

Section 7.5 Gauss-Legendre Integration (Optional)
I. /@6tsdt = 64 (b) Gif, 2) = 58.6666667

3. 1, sin{/)/r dt $0.9460831  (b) Gif, 2) = 0.9460411
6@ N=4 () V=6

8. If the fourth derivative does not change too much, then f/ﬂmf < |~ / ;g(a) Il

"flie truncation error term for the Gauss-Legendre rule will be less than the trun-
cation error term for Simpson’s rule.

Section 81 Minimization of a Function

3. (@) fix) =4r3- 8g2- 1lr+ 5 fix) = lIx1- 160 - 11,
local mintma at x —
(d) f(x) =e“/x2,fix) = ex{x —2)/*3; loca] minimaatx = 2
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7@ I(jroy)=x3+y’—3y—3y +5
In(*, >)=3*2- 3, /.(r,yj = ¥2- 3
Critical points: (1. 1> (1. 1), (-, 1),i—4 —)
Local minimum at (1, il)
€ /(xy)=xy+xy2—3ry
fi(x, y) = 2xy +y2- 3y, fy{X, >) = X2+ 2nry - BX
Critical points: (0,0), (0,3), (3.0),(1, 3)
Local minimum at (i, 1)

11. “Reflecting” the triangle through the side BG implies that the terminal points
of of the vectors W. M. and R all lie on the same line segment. Thus, by the
definition of scalar multiplication and vector addition, we have R —W = 2(M —
W)otR - 2M - W.

Section 9.1 Introduction to Differential Equations

1 () I.—1 3. (b L=3 5. (b) L =60
10. (c) No, because / y{/, y) = ~y"23is not continuous when | = 0,
and limv>o/y(f,y) - oc.
13. y(r) = r5- cos(() + 3
15. y(t) = f'e~’22ds
17, (b} y(t) = V0" - QOOO2N6&L 2808 years (d) 6,9237 second”

Section 9.2 Euler’s Method

ft yk(h=01) yt(h=02)

00! 1 1

0 1. 0.90000

32! 0.81100 0.80000
03 1 0.73390

0.4 1 0.66951 0,64800

«  y*(A=0.1) it (1= 02)

0.0 1 |

0.1 1.00000

0.2 0.99000 1.00000
0.3 0.97020

0.4 0.94109 0.96000
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6. Pk+i = Pk+ (0.02ft - 0.00004P")10fork = 1,2....... 8.

P
Actual population  Eulerrounded at  Euler with more

Year  tk atI*, P(tk) each step digits carried
1900 OfT 76.1 76.1 76.1
1910 100 92.4 89.0 89.0035
1920 20.0 106.5 103.6 103.6356
1930 300 1231 120.0 120.0666
1940 400 1326 1382 138.3135
1950 50.0 1523 158.2 158.3239
1960 60.0 180.7 1798 179.9621
1970 70.0 204.9 202.8 203.0000
1980 £00 226.5 226.9 227.1164

9, No. For any M, Euler’s method produces 0 < =i < y2 < mm< ym- The
mathematical solution is y (it) = tan(i) and >'(3) < 0.

Section 9.3 Heun’s Method

tk =0 . =0L
0 [ 1

0.1 0.90550

0.2 0.82193 0.82400
0.3 0.75014

04 0.69093 0.69488

t «(*=0.1) )*(*=02)

0 1 1

0.1 0.99500

0.2 0.98107 0.98000
0.3 0.95596

0.4 0.92308 0.92277

7. Richardson improvement for solving y' — (t —y)/2 over [0, 3] with y(0) = 1
The table entries are approximations to y(3).
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K Yk
1 1.732422
1/2 1.682121
1/4 1.672269
1/8 1.670076
1/16 1.669558
1/32 1.669432
1/64 1.669401
8.y —f{t,y) -

@b Y213

1.665354
1.668985
1.669345
1.669385
1.669390
1.669391

fy(t,/) = 055> 2M3 fy(0, 0) does not exist.

The LV.P. is not well-posed on any rectangle that contains (0,0).

Section 9.4 Taylor Series Method

t  yk (1= 0.1)

0 1

0.1 0.90516
0.2 0.82127
0.3 0.74918
0.4 0.68968

tk  M(A = 0.1)

0 1

0.1 0.99501
0.2 0.98020
0.3 0.96000
0.4, 0.92312

Y (A= 0.2)
1
0.82127

0.68968

« (N =0.2)
1
0.98020

0.92313

651

6. Richardson improvement for the Taylor solution y* — (t — y)/2 over [0, 3] with

3(0) =: 1. The table entries are approximations to 1(3).
h YK H —
—
1 1.6701860
1/2 1.6694308 1.6693805
1/4  1.6693928 1.6693903

1/8

1.6693906

1.6693905
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Section 9.5 Runge-Kutta Methods

tk yifft= 0.1) jfc = (ft= 0.2)

0 1 1

0.1 0.90516

0.2 0.82127 0.82127
0.3 0.74918

0.4 0.68968 0.68969

tk w =0 y* = (A=0.2)

0 | 1

01 0.99501

0.2 0.98020 0.98020
0.3 0.95600

0.4 0.92312 0.92312

Section 9.6 Predictor-Corrector Methods

1 y4 = 0.82126825, y5 = 0.78369923
3. y4 = 0.74832050, y5 = 0.66139979
4. VA= 0.98247692, y5= 0.97350099
7. y4= 11542232, y5= 1.2225213

Section 9.7 Systems of Differential Equations
1 (a) (xi, yi) = (—=2.5500000, 2.6700000)
(x2, v2) = (-2.4040735, 2.5485015)
(b) (*i, yi) = (—2.5521092, 2.6742492)
5. (b) x' =y
y' = 1.bx + 2.5y + 22.5e2
(c) xi —2.05,*2 = 2.17
(d) x, = 2.0875384

Section 9.8 Boundary Value Problems
2. No;q(r) = —4jt2 < Oforallt e [0.5,4.5].

Section 9.9 Finite-difference Method
1 (@) h, =0.5,jci = 7.2857149
h2=0.25, /T = 6.0771913, x2= 7.2827443
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2. (@) hi =0.5,*i =0.85414295
h2 = 0.25, 13 = 0.93524622, n2 = 0.83762911

Section 1011 Hyperbolic liquations

4 X2 *3 4 *5

0.0 0.587785 0.951057 0.951057 0.587785
0.1 0.475528 0.7(59421 0.769421 0.475528
0.2 0.181636 0.293893 0.293893 0.181636

4 *2 *3 M *5

0.0 0500 1000 1500 0.750
01 0.500 1.000 0.875 0.800
0.2 0500 0.375 0-300 0.125

Section 10.2 Parabolic Equations

x\ —00 *2=02 I==o I =05 x$=08 x$=10

0.0 0.587785 0.951057 0.951057 0.587785 0.0
0.0 0475528 0.769421 0.769421 0.475528 0.0
0.0 0.384710 0.622475 0.622475 03847110 0.0

Section 10.3 Elliptic Equations

1. (@ - 4pi+ pr+ ps3 = —80
Pi-4p2 + P4=-10
Pi —4p3 + P4- 160

P2+ pr~4pn=-90
(b) pi = 41.25, P2 = 23.75, p3= 61.25, p4 = 43.75
5. (a) 1-Uy =2a+ 2c—0, ifa= —¢
6. Determine ifu (x,y) = cos(lr) -I1-sin(2v) is a solution, since it is also defined on
the interior of R; that is, uxx + uyy = —4cos(2jt) —4 sin(2y) = —4(cos(2x) +
sin(2yy)) = —u.

Section 11.1 Homogeneous Systems: The Eigenvalue Problem

1. (@) |A —A/l= k2—3A—4 = 0implies that Ai = —land JI2 = 4. Substituting
each eigenvalue into |A —A/| =0 and solving gives V1= [—1 I] and V2 =
[2/3 1]\ respectively.
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10. If k = 2is an eigenvalue of A corresponding to the vector V, then AV = 2V.
Premultiply both sides by A-1: A~*AV = A~I{2V) or V = 2A~IV. Thus
A IV = VzV.

Section 11.2 Power Method
1. (A—al)V —AV —alV = AV —cV = kV —aV = (A —a) V. Thus (X—a),
V is an eigenpair of A —a.l.
e - mMij= k0- 03 -
faf |A- Mj=k 0.§ 03 b
—-©2 03 O

(b) 82 gg 8 isequivalenttor

L, 0 0
Lety = /, then x = 3/2. Thus the eigenvectors associated with k — 1 are
{/[3/2 1]t € Ht p 0].
(c) The eigenvectorfrom part (b) implies thatin the long run the 50,000 members
of the population will be divided 3 to 2 in their preference for brands X and Y,
respectively,that is, [30,000 20,000]7.

,thus -0.2*+0.3y = 0.

Section 11.3 Jacobi’s Method
3. (a) The eigenpairs of A = are5, [2 1]’,and -2, [1/3 1]. Thus the

general solution is X(t) = cie5t[2 I];+ cre~b\—\ft I]'. Sett = 0 to solve
forci and c2\thatis, [I 2j/= ci[2 if + &[—1/3 I] . Thuscj = 0.7143 and
c2 = 1.2857.

Section 11.4 Eigenvalues of Symmetric Matrices

1. From (3) we have TV=|yryu-2 and» from Figure 11.4, Z = j(X +Y).
Taking the dot product,

X—-y 1 (T-Y) X+ )
I —=Ydr 2+ * 2]JT- Kib
X-X +X-Y-Y-X-Y-Y W 2-|F |2z
2\\X-Y\\2 ~ 2\\X-Yk !

since X and Y have the same nonn.
2P = (1-2XXY =T - UXXY =1- 2{XYX'=1- 2XX'= P
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A
Accelerating Convergence
Aitken's process, 90, 99 (#10-#14)
Newton-Raphson, 71, < 88 (#23),
176
Steffensen’s method, 90, 95
Adam-Bashforth-Moulton method, 474,
482
Adaptive Quadrature, 382, 387
Aitken’s process, 90,99 (#10-#14)
Approximate significant digits, 25
Approximation of data
least-squares curves, 211, 257
least-squares line, 255, 258
least-squares polynomial, 271, 274
Approximation of functions
Chebyshev polynomial, 230, 233,
238, 240
Lagrange polynomial, 207, 211, 213,
217, 238
least squares, 255, 257,271
Newton polynomial, 220, 224, 227
Pad€ approximation, 243, 246
rational functions, 243
splines, 280, 281, 285, 293
Taylor polymomials, 8, 26, 31, 189

Augmented matrix, 126, 129

B

Back substitution, 121, 123, 136

Backward difference, 334

Basis, 557

Binary numbers, 13, 17, 19

Binomial series, 197 (#14)

Bisection method, 53, 54, 59

Bolzano’s method, 53

Boole’s rule, 344, 372, 375, 380 (#3, #4),
389 (#3)

Boundary value problems, 497, 503, 505,
510

Bracketing methods, 51, 53

C
Central difference, 313, 314, 329, 340 (#7,
#8)
Characteristic polynomial, 559
Chebyshev nodes, 232
Chebyshev polynomial
interpolation, 230, 233, 238, 240
minimization, 233
nodes, 234
Chopped number, 27

Note: Numbers in parentheses refer to problem numbers in exercises.
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C'lan3
Composite Simpson’s mle, 350, 354, 359,
363

Composite trapezoidal mle, 350, 354, 358,
363

Computer accuracy, 21
Continuous function, 3
Convergence
acceleration, 82, 87 (#21-£23), 90,
92, 9%
criteria, 62, 66
global (local), 62
linear, 76, 77, 90
Newton-Raphson, 77, 82, 87 (#21,
#23)
order of, 32, 75
quadratic, 76, 77, 82, 87 (#21, #23)
sequence, 3
series, 8,99 (#10-#14)
speed, 75
Corrector formula, 475, 477
Crank-Nicholson method, 531, 535
Cube-root algorithm, 86 (#11)
Cubic spline
clamped, 284, 285, 293
natural, 284, 285

D
D'Alembert’s solution, 519
Deflation of eigenvalues, 578
Derivative
definition, 5, 311
formulas, 204, 313, 322, 329, 333,
505,517,527,538
higher, 329, 333, 505
partial, 325 (#7), 517, 527, 538
polynomials, 204, 334, 336
Determinant, 113, 114,123, 151
Difference
backward, 334
central, 313, 314, 329, 340 (#7, #8)
divided, 223
finite-difference method, 505, 510,
514,517, 527, 539
forward, 334, 341 (#13)
table, 224
Difference equation, 505, 517, 527, 531,
539
Differential equation

Adams-Bashforth-Moulton - method,
474, 482
boundary value problems, 497, 503,
505, 510
Crank-Nicholson method, 531,535
Dirichlet method for Laplace's equa-
tion, 549
Euler’s method, 433, 437, 440
existence-uniqueness, 430
finite-difference method, 505, 510,
514,517,527,539
forward-difference method, 528, 533
Hamming’s method, 484
Heun’s method, 443,445, 448,465
higher-order equations, 490
initial value problem, 428, 430, 487,
498
Milne-Simpson method, 477,483
modified Euler method, 465
partial differential equations, 514,
516, 526, 538
predictor, 474, 477
Runge-Kutta method, 458, 461, 466,
468, 488, 502
Runge-Kutta-Fehlbeig method, 466,
469
shooting method, 498, 503
stability of solutions, 478,481
Taylor methods, 451, 452,455
Digit
binary, 14, 17, 19
decimal, 14, 19, 22
Dirichlet method for Laplace’s equation,
549
Distance between points, 103, 162
Divided differences, 223
Division
by zero, 74, 77
synthetic, 10, 200
Dot product, 103
Double precision, 22
Double roat, 75, 77, 87 (#21)

E
Eigenvalues
characteristic polynomial, 559
definition, 559
dominant, 568
Householder’s method, 594
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inverse power method, 573, 575, 576
Jacobi's method, 581
power method, 568, 570,573, 576
QR method, 601,606
Eigenvectors
definition, 559
dominant, 568
Elementary row operations, 126
Elementary transformations, 125
Elliptic equations, 538
Endpoint constraints for splines, 284
Epidemic model, 442 (#9)
Equivalent linear systems, 125
Error
absolute, 24
bound, 189, 194, 213
computer, 21, 27, 135
data, 36, 203, 316
differential equations, 437, 445, 452,
462, 475, 477, 519
differentiation, 313, 314, 316, 318
integration, 344, 358, 359, 377
interpolating polynomial, 189, 213,
238

loss of significance, 28
propagation, 32
relative, 24, 66
root mam square, 253
round-off, 27
sequence, 3
stable (unstable), 33
subtractive cancellation, 28
truncation, 26, 313, 314
Euclidean norm, 103, 162, 163
Euler formulas, 299
Euler’s method, 433,437,440
global error, 437
modified, 465
systems, 488
Even function, 300
Exponential fit, 263
Extrapolated value, 199
Extrema, 400, 404
Extreme Value Theorem, 4

F
False position method, 56, 60
Final global error, 437, 445,452,462
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Finite difference metbod, 505, 510, 514,
517, 527, 539

Fixed-point iteration, 42,49,173

error bound, 46
Floating-point number, 21, 22

accuracy, 21
Forward difference, 334, 341 (#13)
Forward difference method, 527, 528, 533
Forward substitution, 125 (#2)
Fourier series, 299

discrete, 304
Fractions, binary, 17
Fundamental theorem of calculus, 6

G
Gauss-Legendre integration, 389, 392, 394
Gauss-Seidel iteration, 159, 161, 164
Gaussian elimination, 125, 128, 143, 150
back substitution, 121, 123
computational complexity, 147
LU factorization, 141, 143, 150
multipliers, 127, 129
pivoting, 127, 131
tridiagonal systems, 140 (#1), 166
(#3), 284, 506, 599
Generalized Rolle’s theorem, 6,198 (#20)
Geometric series, 16, 51
Gerschgorin’s circle theorem, 566
Golden ratio search, 401, 412
Gradient, 412, 420
Graphical analysis
fixed-point iteration, 47
Newton’s method, 70, 78, 79
secant method, 80

H
Hailey’s method, 87 (#22)
Hamming’s method, 484
Heat equation, 515
Helmholtz’s equation, 538, 548
Heun’s method, 443, 445, 448, 465
Higher derivatives, 329, 333
Hilbert matrix, 139 (#15)
Hooke's law, 262 (#1)
Horner's method, 10, 200
Householder’s method, 594
Hyperbolic equations, 516

|
Ill-conditioning



658 INDEX

least-squares data fitting, 134
matrices, 133, 139 (#15)
Initial value problem, 428,430,487, 498
Integration
adaptive quadrature, 382, 387
Boole’s rule, 344, 372, 375, 380 (#3,
#4), 389 (#3)
composite rales, 350, 354, 358, 363
cubic splines, 296 (#12)
Gauss-Legendre integration, 389,
392, 3%4
midpoint mle, 366 (#12), 381 (#11)
Newton-Cotes, 344
Romberg integration, 373, 375, 377,
378, 381 (#11)
Simpson’s mle, 344, 353 (#9), 354,
359, 363, 370, 380 (#6), 387
Trapezoidal rule, 344, 354, 358, 363,
368, 377
Intermediate Value Theorem, 3
Interpolation
Chebyshev polynomials, 230, 233,
238, 240
cubic splines, 281, 285-287, 293
error, polynomials, 8, 31, 189, 211,
213, 238
extrapolation, 199
integration, 296 (#12), 344
Lagrange polynomials, 207,211,213,
217,238
least squares, 255, 271
linear, 207,219 (#12), 255, 277 (#17),
280
Newton polynomials, 220,224, 227
Pad£ approximations, 243, 246
piecewise linear, 280
polynomial wiggle, 273
rational functions, 243
Runge phenomenon, 236
Taylor polynomials, 8, 26, 31, 189,
313, 329
trigonometric polynomials, 297, 303,
306
Iteration methods
bisection, 53, 54, 59
fixed point, 42,49, 173, 544
Gauss-Seidel, 159, 161, 164
Jacobi iteration, 156, 161, 163
Muller, 92, 97

Newton, 70, 82, 84, 88 (#23), 176,
179

partial differential equations, 546
regula falsi, 56, 60

secant, 80, 84, 87 (#20)
Steffensen, 92, 95

J
Jacobi iteration for linear systems, 156,
161,163
Jacobi’s method for eigenvalues, 581, 590
Jacobian matrix, 170, 176

L
Lagrange polynomials, 207, 211, 213, 236
Laplace’s equation, 538, 549
Least-squares data fitting
data linearization, 266
linear fit, 255, 258, 260 (#7), 277
#17)
nonlinear fit, 257, 266, 27i
plane, 277 (#17, #18)
polynomial fit, 271, 274
root-mean-square error, 253
trigonometric polynomials, 297, 303,
306
Length of a cun/e, 364 (#2)
Length of a vector, 103, 162, 163
Limit
function, 2
sequence,3
series, 8
Linear approximation, 219 (#12), 255, 258,
277 (#17), 280
Linear combination, 103, 499
Linear convergence, 76, 77,90
Linear independence, 557
Linear least-squares fit, 255, 258, 260 (#7),

277 (#17)
Linear system, 114, 121, 128 143, 152,
156, 163

Linear systems of equations

back substitution, 121, 123,136

forward substitution, 125 (#2)

Gaussian elimination, 125, 128, 143,
150

LU factorization, 141, 143, 150

tridiagonal systems, 140 (#1), 166
(#3), 284, 506, 599
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Linear systems, theory
matrix form, 11], 114, 127,141
nonsingular, 114

Lipschitz condition, 430

Location of roots, 68

Logistic rule of population growth, 276

(#6, #7)

Loss of significance, 28

Lower triangular determinant, 123

LU factorization, 141, 143, 150

M
Machine numbers, 20
Maelaurin series, 243
Mantissa, 20,22
Markov process, 579 (#5)
Matrix
addition, 107
augmented, 126, 129
determinant, 113, 114, 123, 151
diagonalization, 563
eigenvalue, 559
eigenvector, 559
equality, 106
Hilbert, 139 (#15)
identity, 112
ill-conditioned, 133, 139 (#15)
inverse, 112, 114
lower triangular, 120, 125 (#2), 143
LU factorization, 141, 143, 150
multiplication, 110, 112, 143, 150
nonsingular, 112
norm, 566
orthogonal, 565,594
permutation, 148, 150
singular, 113
strictly diagonally dominant, 160,
162, 163
symmetric, 109 (#6), 565, 581, 590,
594

transpose, 104, 108 (#5), 270
triangular, 120,125 (#2)
tridiagonal, 140 (#1), 166 (#3), 284,
506,599
Mean of data, 260 (#4, #5, #6)
Mean value theorems
derivative, 5, 45
integrals, 6
intermediate, 3
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weighted integral, 7
Midpoint rule, 366 (#12), 381 (#11)
Milne-Simpson method, 477, 483
Minimax approximation, Chebyshev, 231,
233, 238
Minimum
golden ratio search, 401, 412
gradient method, 412, 420
Nelder-Mead, 405, 414
Modified Euler method, 465
Muller’s method, 92, 97
Multiple root, 75, 82, 87 (#21, #23)
Multistep methods
Adams-Bashforth-Moulton  method,
474, 482
Hamming’s method, 484
Milne-Simpson method, 477,483

N
Natural cubic splines, 284, 285
Near-rinimax approximation, 231, 233,
238
Nelder-Mead, 405, 414
Nested Multiplication, 10, 221
Neumann boundary conditions, 541, 545
Newton divided differences, 223
Newton polynomial, 220, 224, 227
Newton systems, 176, 179
Newton’s method
multiple roots, 75, 82, 87 (#21, #23)
order of convergence, 77
Newton-Cotes formulas, 344
Newton-Raphson formula, 82, 84, 88
(#23), 176, 179
Nodes, 203, 207, 211, 213, 234, 344, 389
Norm
Euclidean, 103, 162, 163
matrix, 566
Normal equations, 255
Numerical differentiation, 313, 314, 320,
329, 333
backward differences, 334
central differences, 313, 314, 329,
340 (#7, #8)
error formula, 313, 314, 316, 318
forward differences, 334, 341 (#13)
higher derivatives, 329, 333
Richardson extrapolation, 320
Numerical integration
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adaptive quadrature, 382, 387

Boole’s mle, 344, 372, 375, 380 (#3,
#4), 389 (#3)

composite rules, 350, 354, 358, 363

cubic splines, 296 (#12)

Gauss-Legendre  integration, 389,
392, 394

midpoint rule, 366 (#12), 381 (#11)

Newton-Cotes, 344

Romberg integration, 373, 375, 377,
378, 31 (#11)

Simpson's rule, 344, 353 (#9), 354,
359, 363, 370, 380 (#6), 387

Trapezoidal rule, 344, 354, 358, 363,
368, 377

o)
0(hn), 29, 32, 214, 313, 314, 329, 333,
373, 377, 437, 445, 452, 461,

475. 477, 505, 517, 527, 538

Odd function, 301

Optimization
golden ratio search, 401, 412
gradient method. 412, 420
Nelder-Mead, 405, 414

Optimum step size
differential equations, 466, 476, 479
differentiation, 316, 317
integration, 358, 382
interpolation, 213, 234

Order
of approximation, 29, 32, 214, 313,

329, 333, 373, 377

of convergence, 32, 75

Orthogonal polynomials, Chebyshev, 238

P
PadE approximation, 243, 246
Parabolic equation, 526
Partial derivative, 517, 527, 538
Partial differential equations, 514, 516,
526, 538
elliptic equations, 538
hyperbolic equations, 516
parabolic equations, 526
Partial pivoting, 133
Periodic function, 298
Piecewise
continuous, 298

cubic, 281
linear, 280
Pivoting
element, 127
row, 127
strategies, 131, 133
Plane rotations, 115, 581
Poisson’s equation, 538, 548
Polynomials
calculus, 204
characteristic, 559
Chebyshev, 230, 233, 238, 240
derivative, 204, 334, 336
interpolation, 204, 207, 210, 211,
217, 224, 227, 238
Lagrange, 207, 211, 213, 236
Newton, 22:0, 224, 227
Taylor, 8, 26, 31, 189, 313, 329
trigonometric, 297, 303, 306
wiggle, 273
Power method, 568, 570, 573, 576
Predator-prey model, 495 (#13)
Predictor-corrector method, 474
Projectile motion, 73, 442 (#8), 450 (#6)
Propagation of error, 32

Q
QR method, 606
Quadratic convergence, 76, 77, 82, 87
(#21, #23)
Quadratic formula, 39 (#12)
Quadrature
adaptive quadrature, 382, 387
Boole’s rule, 344, 372, 375, 380 (#3,
#4), 389 (#3)
composite rules, 350, 354, 358, 363
cubic splines, 296 (#12)
Gauss-Legendre integration, 389,
392, 394
midpoint rule, 366 (#12), 331 (#11)
Newton-Cotes, 344
Romberg integration, 373, 375, 377,
378, 381 (#11)
Simpson’s rule, 344, 353 (#9), 34,
359, 363, 370, 380 (#6), 387
Trapezoidal rule, 344, 354, 358, 363,
368, 377
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R
Radioactive decay, 432 (#17)
Rational function, 243
Regula falsi method, 56, 60
Relative error, 24, 66
Residual, 167 (#5), 253
Richardson
differentia] equations, 449 (#7), 456
(#6), 471 (#7)
numerical differentiation, 320, 322
numerical integration, 375
Rolle’s theorem, 5, 6, 198 (#20), 212, 219
(#13)
Romberg integration, 373, 375, 377, 378,
381 (#11)
Root
location, 68
multiple, 75, 82, 87 (#21, #23)
of equation, 53, 75
simple, 75, 77, 87 (#22)
synthetic division, 10,200
Root finding
bisection, 53, 54, 59
Muller, 92, 97
multiple roots, 75, 82, 87 (#21, #23)
Newton, 82, 84, 88 (#23), 176, 179
quadratic function, 39 (#12)
regula falsi, 56, 60
secant, 80. 84, 87 (#20)
Steffensen, 92, 95
Root-mean-square error, 253
Rotation, 115, 581
Rounding error. 27
differentiation, 313, 314, 316, 318
floating point number, 21
Row operations, 127
Runge phenomenon, 236
Runge-Kutta methods, 458, 461, 466, 468,
2

Fehlberg method, 466,469
Richardson extrapolation, 471 (#7)
systems, 488

S
Scaled partial pivoting, 133
Schur, 563
Scientific notation, 19
Secant method, 80, 84, 87 (#20)
Seidel iteration, 174, 179
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Sequence, 3,41
convergent, 3
error, 3
geometric, 16, 51
Sequential integration
Boole, 372, 375
Simpson. 370, 375
trapezoidal, 369, 375, 377
Series
binomial, 196 (#10)
convergence, 8, 99 (#10-#14), 189,
194
geometric, 16, 51
Maclaurin, 243
Taylor, 8, 26, 31, 189, 313, 329
Shooting method, 498, 503
Significant digits, 25
Similarity transformation, 582
Simple roat, 75, 77, 87 (#22)
Simpson’s rule, 344, 353 (#9), 354, 359,
363, 370, 387
three-eighths rule, 344, 353 (#9), 380
(#6)
Single precision, 22
Single-step methods, 474
Slope methods, 70, 80, 84
SOR method, 545
Spectral radius theorem, 566
Splines
clamp;d, 284, 285, 203
end constraints, 284
integrating, 296 (#12)
linear, 280
natural, 284, 285
Square-root algorithm, 72
Stability of differential equations, 478, 481
Steepest descent, 412, 420
Steffensen’s method, 92, 95
Step size
differential equations, 466, 476, 479
differentiation, 316, 318
integration, 358, 382
interpolation, 213, 234
Stopping criteria, 58, 62 (#13)
Successive over-relaxation, 545
Surface area, 364 (#3)
Synthetic division, 10, 200
Systems
differential, 487
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linear, 114, 121. 123, 128, 136, 143,
150, 156, 163
nonlinear, 167, 174

T
Taylor series, 8, 26, 31, 189, 313, 329
Taylor's method, 451, 452,455
Termination criterion

bisection method. 58

Newton’s method, 84

regula falsi method, 58, 60

Romberg integration, 378

Runge-Kutta method, 469

secant method, 84
Transformation, elementary, 125
Trapezoidal mle, 344, 354, 358, 363, 369,

377

Triangular factorization, 141, 143, 149
Trigonometric polynomials, 297, 303, 306
Truncation error, 26, 313, 314
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Unimodal function, 402
Unstable error, 33
Upper-triangulEirization, 136, 150

\Y/
\ectors
dot product, 103
Euclidean norm, 103, 162, 163

w
Wave equation, 516, 519
Weights, for integration rules, 344, 393
Wiggle, 273

z
Zeros
of Chebyshev polynomials, 232
of functions, 53, 75
root finding, 40, 51, 70, 90, 167, 174



