

MongoDB for Java Developers

Design, build, and deliver efficient Java applications
using the most advanced NoSQL database

Francesco Marchioni

BIRMINGHAM - MUMBAI

MongoDB for Java Developers

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1070815

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-027-6

www.packtpub.com

Credits

Author
Francesco Marchioni

Reviewers
Daniel Mühlbachler

Weiwei Sun

Mehdi Tazi

Commissioning Editor
Veena Pagare

Acquisition Editors
James Jones

Nadeem N. Bagban

Content Development Editor
Neeshma Ramakrishnan

Technical Editor
Bharat Patil

Copy Editors
Merilyn Pereira

Laxmi Subramanian

Project Coordinator
Shweta Birwatkar

Proofreader
Safis Editing

Indexer
Tejal Soni

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Francesco Marchioni is a Red Hat Certified JBoss Administrator (RHCJA)
and a Sun Certified enterprise architect working as a freelancer in Rome, Italy.
He started learning Java in 1997, and since then, he has followed the path to the
newest application program interfaces released by Sun. In 2000, he joined the
JBoss community, when the application server was running the release 2.X.

He has spent many years as a software consultant, wherein he envisioned many
successful software migrations from vendor platforms to open source products
such as JBoss AS, fulfilling the tight budget requirements of current times.

Over the past 5 years, he has been authoring technical articles for OReilly Media and
running an IT portal focused on JBoss products (http://www.mastertheboss.com).

In December 2009, he published JBoss AS 5 Development, which describes how to
create and deploy Java Enterprise applications on JBoss AS (http://www.packtpub.
com/jboss-as-5-development/book).

In December 2010, he published his second title, JBoss AS 5 Performance Tuning,
which describes how to deliver fast and efficient applications on JBoss AS
(http://www.packtpub.com/jboss-5-performance-tuning/book).

In December 2011, he published yet another title, JBoss AS 7 Configuration, Deployment,
and Administration, which covers all the aspects of the newest application server
release (http://www.packtpub.com/jboss-as-7-configuration-deployment-
administration/book).

In June 2013, he authored a new title, JBoss AS 7 Development, which focuses on
developing Java EE 6 API applications on JBoss AS 7 (https://www.packtpub.com/
application-development/jboss-7-development).

http://www.packtpub.com/jboss-as-5-development/book
http://www.packtpub.com/jboss-as-5-development/book
http://www.packtpub.com/jboss-5-performance-tuning/book
http://www.packtpub.com/jboss-as-7-configuration-deployment-administration/book
http://www.packtpub.com/jboss-as-7-configuration-deployment-administration/book
https://www.packtpub.com/application-development/jboss-7-development
https://www.packtpub.com/application-development/jboss-7-development

About the Reviewers

Daniel Mühlbachler got interested in computer science shortly after entering
high school, where he later developed web applications as part of a scholarship
system for outstanding pupils.

He has profound knowledge of web development (PHP, HTML, CSS/LESS, and
AngularJS), and has worked with a variety of other programming languages and
systems, such as Java/Groovy, Grails, Objective-C and Swift, Matlab, C (with Cilk),
Node.js, and Linux servers.

Furthermore, he works with some database management systems based on SQL
and also some NoSQL systems, such as MongoDB and SOLR; this is also reflected
in several projects that he is currently involved in at Catalysts GmbH.

After studying abroad as an exchange student in the United Kingdom, he completed
his bachelor's degree at the Johannes Kepler University in Linz, Austria, with a thesis
on aerosol satellite data processing for mobile visualization; this is where he also
became familiar with processing large amounts of data.

Daniel enjoys solving challenging problems and is always keen on working with new
technologies, especially related to the fields of big data, functional programming,
optimization, and NoSQL databases.

More detailed information about his experience , as well as his contact details, can be
found at www.muehlbachler.org and www.linkedin.com/in/danielmuehlbachler.

www.linkedin.com/in/danielmuehlbachler

Weiwei Sun is a student of Southeast University, China, and also a student of
Monash University, Australia. He also has a double master's degree in computer
technology and information technology. He loves technology, programming, and
open source projects.

His research interests are database technology, data visualization, and application of
machine learning.

You can read more about him at http://wwsun.github.com.

Mehdi Tazi is a software engineer specializing in distributed information systems
and agile project management.

His core expertise involves managing agile scrum teams, as well as architecting
new solutions, and working with multiple technologies, such as JAVA/JEE, Spring,
MongoDB, Cassandra, HTML5, Bootstrap, and AngularJS.

He has a degree in software engineering and a master's degree in business
informatics. He also has several certifications, such as Core-Spring, MongoDB,
Cassandra, and Scrum Master Official.

You can read more about him at http://tazimehdi.com.

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

This book is dedicated to all the guys that patiently answered my questions
on MongoDB forums and to my son Alessandro that taught me

how to play 'Magic the Gathering' while waiting for replies

[i]

Table of Contents
Preface v
Chapter 1: Introduction to MongoDB 1

Getting into the NoSQL movement 1
Comparing RDBMS and NoSQL databases 4
Living without transactions 6
Managing read-write concurrency 7

MongoDB core elements 8
The heart of MongoDB – the document 9

Understanding how MongoDB stores data 10
Data types accepted in documents 11

Installing and starting MongoDB 12
Installing MongoDB on Windows 12
Installing MongoDB on Linux 13

MongoDB start up options 14
Troubleshooting MongoDB installation 15

Mongo tools 16
Introduction to the MongoDB shell 18

Inserting documents 19
Querying documents 19

Choosing the keys to return 20
Using ranges in your queries 21
Using logical operators to query data 22

Updating documents 22
Deleting data 24
Beyond basic data types 25

Arrays 25
Embedded documents 26

Some useful functions 27
Securing database access 28
Summary 30

Table of Contents

[ii]

Chapter 2: Getting Started with Java Driver for MongoDB 31
Getting the Mongo JDBC driver 31

Creating your first project 32
Creating a new Java project 32
Handling authentication 35

Inserting a document 36
Creating embedded documents 38
Inserting an array of data 38
Using your own ID in documents 40

Querying data 41
Restricting the search to the first document 43
Querying the number of documents in a collection 43
Eager fetching of data using DBCursor 43
Filtering through the records 44

Updating documents 45
Deleting documents 46

Deleting a set of documents 47
Performing operations on collections 47
Listing collections 48

Dropping a collection 49
Using the MongoDB Java driver version 3 49

Running the HelloWorld class with driver v.3 50
Managing collections 51
Inserting data into the database 51

Inserting embedded documents 52
Inserting multiple documents 53

Querying documents 53
Filtering through documents 54

Updating documents 55
Deleting documents 56

Summary 56
Chapter 3: MongoDB CRUD Beyond the Basics 57

Seeing MongoDB through the Java lens 57
Extending the MongoDB core classes 58
Using the Gson API with MongoDB 62

Downloading the Gson API 62
Using Gson to map a MongoDB document 63
Inserting Java objects as a document 65
Mapping embedded documents 66
Custom field names in your Java classes 68
Mapping complex BSON types 69

Using indexes in your applications 72
Defining an index in your Java classes 75

Using compound indexes 77

Table of Contents

[iii]

Using text indexes in your documents 80
Coding bulk operations 83

Comparing plain inserts with BulkWriteOperations 84
Summary 85

Chapter 4: MongoDB in the Java EE 7 Enterprise Environment 87
Entering into the Java EE land 87
Getting a Java EE Container 89

Downloading WildFly 89
Starting WildFly and testing the installation 90

Designing our application 90
Designing the schema 91

Building up the Enterprise project with NetBeans 92
Configuring WildFly on NetBeans 92
Creating our project 94
Adding Java classes 99
Compiling and deploying the project 107

Compiling and deploying from the shell 107
Running the application 108
Exposing the application to external clients 109

Adding RESTful web services to our application 109
Compiling and deploying the application 112

Summary 113
Chapter 5: Managing Data Persistence with
MongoDB and JPA 115

An overview of the Java Persistence API 115
Entering Hibernate OGM 117
Building a JPA project that uses Hibernate OGM 119

Configuring the project dependencies 121
Mapping the database collections 122
Configuring persistence 125
Coding the controller and EJB classes 126

Hibernate OGM and JP-QL 128
Coding a controller bean 129
Coding the views 131

The main view 132
The newCustomer view 133
The newOrder view 134

Compiling and running the example 135
A look into MongoDB 137

Using native queries in your Hibernate OGM 138
Summary 139

Table of Contents

[iv]

Chapter 6: Building Applications for MongoDB with
Spring Data 141

Introducing Spring Boot 141
Getting started with Spring Boot 142

Getting started with Spring Data 143
Using the Spring repository to access MongoDB 144

Coding our Spring Boot application 145
Serving MongoDB using Spring REST 153

Using the Mongo template component to access MongoDB 157
Building up the data access layer 157
Adding the Application class 160

Creating fine grained queries using Criteria 161
Summary 163

Index 165

[v]

Preface
The NoSQL movement is growing in relevance, and it is attracting more and more
developers. The MongoDB database is a well-recognized rising star in the NoSQL
world. It is a document database that allows data to persist and query data in a
nested state without any schema constraint and complex joins between documents.
Understanding when it is appropriate to use MongoDB against a relational database
and the interfaces to be used to interact with it requires some degree of experience.

This book provides all the knowledge to make MongoDB fit into your application
schema, at the best of its capabilities. It starts from a basic introduction to the driver
that can be used to perform some low level interaction with the storage. Then it
moves on to use different patterns for abstracting the persistence layer into your
applications, starting from the flexible Google JSON library, to the Hibernate OGM
framework, and finally landing on the Spring Data framework.

What this book covers
Chapter 1, Introduction to MongoDB, covers the installation steps of MongoDB and its
client tools and how to use the Mongo shell to perform basic database operations.

Chapter 2, Getting Started with Java Driver for MongoDB, introduces the Java
Driver for MongoDB using a simple Java project developed with the NetBeans
development environment.

Chapter 3, MongoDB CRUD Beyond the Basics, covers the advanced usage of the
MongoDB Java driver such as data mapping, index creation, and bulk operations.

Chapter 4, MongoDB in the Java EE 7 Enterprise Environment, demonstrates how to
create and deploy a Java Enterprise application that uses MongoDB as the storage.

Preface

[vi]

Chapter 5, Managing Data Persistence with MongoDB and JPA, covers the development
of a Java Enterprise application using Hibernate Object/Grid Mapper (OGM), which
provides Java Persistence API (JPA) support for NoSQL databases.

Chapter 6, Building Applications for MongoDB with Spring Data, teaches you how
to use Spring Data and Spring Boot to leverage micro services using MongoDB
as the storage.

What you need for this book
The following software will be needed to run the examples contained in this book:

• Java Development Kit 1.7 or newer
• Mongo DB 2.6 or newer
• MongoDB JDBC Driver 2 and 3
• The NetBeans development environment (or equivalent)

All the software mentioned is freely available for downloading.

Who this book is for
This book is for Java developers and architects who want to learn how to develop
Java applications using the most popular NoSQL solution and its use cases.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In command prompt, navigate to the bin directory present into the mongodb
installation folder and point to the folder where data is stored."

A block of code is set as follows:

MongoClient mongoClient = new MongoClient("localhost" , 27017);
DB db = mongoClient.getDB("test");
System.out.println("Successfully connected to MongoDB");

Preface

[vii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

MongoClient mongoClient = new MongoClient("localhost" , 27017);
DB db = mongoClient.getDB("test");
System.out.println("Successfully connected to MongoDB");

Any command-line input or output is written as follows:

> db.users.find({}).sort({"name":1})

{ "_id" : ObjectId("5506d5708d7bd8471669e674"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

{ "_id" : ObjectId("550ad3ef89ef057ee0671652"), "name" : "owen", "age" :
32, "phone" : "555-444-333" }

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " Now let's
add a Java class to the project. From the File menu, select Java Class under New ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[viii]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Chapter 1

[1]

Introduction to MongoDB
In this book, you will learn how to develop Java applications using the MongoDB
database, which is an open source document-oriented database, recognized as a
rising star in the NoSQL world. In a nutshell, MongoDB is a document database,
which allows data to persist in a nested state, and importantly, it can query that
nested data in an ad hoc fashion. It enforces no schema, so documents can optionally
contain fields or types that no other document in the collection contains.

The focus of this book is on applications development; however, we will at first
gather all the resources to connect to MongoDB and add a quick introduction to
the world of NoSQL databases. We will cover the following topics in more detail:

• A bird's eye view of the NoSQL landscape
• Installing MongoDB and client tools
• Using the MongoDB shell

Getting into the NoSQL movement
NoSQL is a generic term used to refer to any data store that does not follow the
traditional RDBMS model—specifically, the data is nonrelational and it generally
does not use SQL as a query language. Most of the databases that are categorized
as NoSQL focus on availability and scalability in spite of atomicity or consistency.

This seems quite a generic definition of NoSQL databases; however, all databases
that fall into this category have some characteristics in common such as:

• Storing data in many formats: Almost all RDBMS databases are based on
the storage or rows in tables. NoSQL databases, on the other hand, can use
different formats such as document stores, graph databases, key-value stores
and even more.

Introduction to MongoDB

[2]

• Joinless: NoSQL databases are able to extract your data using simple
document-oriented interfaces without using SQL joins.

• Schemaless data representation: A characteristic of NoSQL implementations
is that they are based on a schemaless data representation, with the notable
exception of the Cassandra database (http://cassandra.apache.org/).
The advantage of this approach is that you don't need to define a data
structure beforehand, which can thus continue to change over time.

• Ability to work with many machines: Most NoSQL systems buy you the
ability to store your database on multiple machines while maintaining
high-speed performance. This brings the advantage of leveraging low cost
machines with separate RAM and disk and also supports linear scalability.

On the other hand, all database developers and administrators know the ACID
acronym. It says that database transactions should be:

• Atomicity: Everything in a transaction either succeeds or is rolled back
• Consistency: Every transaction must leave the database in a consistent state
• Isolation: Each transaction that is running cannot interfere with other

transactions
• Durability: A completed transaction gets persisted, even after

applications restart

At first glance, these qualities seem vital. In practice, however, for many
applications, they are incompatible with the availability and performance in
very large environments. As an example, let's suppose that you have developed an
online book store and you want to display how many of each book you have in your
inventory. Each time a user is in the process of buying a book, you need to lock part
of the database until they finish so that every visitors from the world will see the
exact inventory numbers. That works just fine for a small homemade site but not if
you run Amazon.com. For this reason, when we talk about NoSQL databases, or,
generally, if we are designing distributed systems, we might have to look beyond the
traditional ACID properties. As stated by the CAP theorem, coined by Eric Brewer,
the following set of requirements are truly essential when designing applications for
distributed architectures:

• Consistency: This means the database mostly remains adherent to its rules
(constraints, triggers, and so on) after the execution of each operation and
that any future transaction will see the effects of the earlier transactions
committed. For example, after executing an update, all the clients see the
same data.

• Availability: Each operation is guaranteed a response—a successful or failed
execution. This, in practice, means no downtime.

http://cassandra.apache.org/

Chapter 1

[3]

• Partition tolerance: This means the system continues to function even if the
communication among the servers is temporarily unreliable (for example, the
servers involved in the transaction may be partitioned into multiple groups,
which cannot communicate with one another).

In practice, as it is theoretically impossible to have all three requirements met, a
combination of two must be chosen and this is usually the deciding factor in what
technology is used, as shown in the following figure:

If you are designing a typical web application that uses a SQL database, most likely,
you are in the CA part of the diagram. This is because a traditional RDBMS is
typically transaction-based (C) and it can be highly available (A). However, it cannot
be Partition Tolerance (P) because SQL databases tend to run on single nodes.

MongoDB, on the other hand, is consistent by default (C). This means if you perform
a write on the database followed by a read, you will be able to read the same data
(assuming that the write was successful).

Besides consistency, MongoDB leverages Partition Tolerance (P) by means of replica
sets. In a replica set, there exists a single primary node that accepts writes, and
asynchronously replicates a log of its operations to other secondary databases.

Introduction to MongoDB

[4]

However, not all NoSQL databases are built with the same focus. An example of
this is CouchDB. Just like MongoDB, it is document oriented and has been built to
scale across multiple nodes easily; on the other hand, while MongoDB (CP) favors
consistency, CouchDB favors availability (AP) in spite of consistency. CouchDB uses
a replication model called Eventual Consistency. In this model, clients can write
data to one database node without waiting for acknowledgment from other nodes.
The system takes care to copy document changes between nodes, so that they can
eventually be in sync.

The following table summarizes the most common NoSQL databases and their
position relative to CAP attributes:

Database Consistent, Partition-
Tolerant (CP)

Available, Partition-Tolerant
(AP)

BigTable X
Hypertable X
HBase X
MongoDB X
Terrastore X
Redis X
Scalaris X
MemcacheDB X
Berkeley DB X
Dynamo X
Voldemort X
Tokyo Cabinet X
KAI X
Cassandra X
CouchDB X
SimpleDB X
Riak X

Comparing RDBMS and NoSQL databases
As you might guess, there is no absolute winner between traditional databases and
the new NoSQL standard. However, we can identify a set of pros and cons related to
each technology. This can lead to a better understanding of which one is most fit for
our scenarios. Let's start from traditional RDBMS:

Chapter 1

[5]

RDBMS pros RDBMS cons
ACID transactions at the database level
make development easier.

The object-relational mapping layer can be
complex.

Fine-grained security on columns and
rows using views prevents views and
changes by unauthorized users. Most SQL
code is portable to other SQL databases,
including open source options.

RDBMS doesn't scale out when joins are
required.

Typed columns and constraints will
validate data before it's added to the
database and increase data quality.

Sharding over many servers can be done
but requires application code and will be
operationally inefficient.

The existing staff members are already
familiar with entity-relational design and
SQL.

Full-text search requires third-party tools.

Well-consolidated theoretical basis and
design rules.

Storing high-variability data in tables can be
challenging.

The following is a table that contains the advantages and disadvantages of NoSQL
databases:

NoSQL pros NoSQL cons
It can store complex data types (such as
documents) in a single item of storage.

There is a lack of server-side transactions;
therefore, it is not fit for inherently
transactional systems.

It allows horizontal scalability, which does
not require you to set up complex joins
and data can be easily partitioned and
processed in parallel.

Document stores do not provide fine-grained
security at the element level.

It saves on development time as it is
not required to design a fine-grained
data model.

NoSQL systems are new to many staff
members and additional training may
be required.

It is quite fast for inserting new data and
for simple operations or queries.

The document store has its own proprietary
nonstandard query language, which
prohibits portability.

It provides support for Map/Reduce,
which is a simple paradigm that allows
for scaling computation on a cluster of
computing nodes.

There is an absence of standardization. No
standard APIs or query languages. It means
that migration to a solution from different
vendors is more costly. Also, there are no
standard tools (for example, for reporting).

Introduction to MongoDB

[6]

Living without transactions
As you can imagine, one of the most important factors when deciding to use
MongoDB or traditional RDBMS is the need for transactions.

With an RDBMS, you can update the database in sophisticated ways using SQL and
wrap multiple statements in a transaction to get atomicity and rollback. MongoDB
doesn't support transactions. This is a solid tradeoff based on MongoDB's goal of
being simple, fast, and scalable. MongoDB, however, supports a range of atomic
update operations that can work on the internal structures of a complex document.
So, for example, by including multiple structures within one document (such as
arrays), you can achieve an update in a single atomic way, just like you would do
with an ordinary transaction.

As documents can grow in complexity and contain several nested
documents, single-document atomicity can be used as a replacement
for transactions in many scenarios.

On the other hand, operations that includes multiple documents (often referred to as
multi-document transactions), are conversely not atomic.

In such scenarios, when you need to synchronize multi-document transactions, you
can implement the 2PC (two-phase commit) in your application so that you can
provision these kinds of multidocument updates. Discussing about this pattern,
however, is out of the scope of this book, but if you are eager to know more, you
can learn more from http://docs.mongodb.org/manual/tutorial/perform-
two-phase-commits/.

So, to sum it up, if your application's requirements can be met via document updates
(also by using nested documents to provide an atomic update), then this is a perfect
use case for MongoDB, which will allow a much easier horizontal scaling of your
application.

On the other hand, if strict transaction semantics (such as a banking application) are
required, then nothing can beat a relational database. In some scenarios, you can
combine both approaches (RDBMS and MongoDB) to get the best of both worlds,
at the price of a more complex infrastructure to maintain. Such hybrid solutions are
quite common; however, you can see them in production apps such as the New York
Times website.

http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/
http://docs.mongodb.org/manual/tutorial/perform-two-phase-commits/

Chapter 1

[7]

Managing read-write concurrency
In RDBMS, managing the execution of concurrent work units is a fundamental
concept. The underlying implementation of each database uses behind the scenes
locks or Multiversion control to provide the isolation of each work unit. On the
other hand, MongoDB uses reader/writer locks that allow concurrent readers
shared access to a resource, such as a database or collection, but give exclusive
access to a single write operation. In more detail here is how MongoDB handles
read and write locks:

• There can be an unlimited number of simultaneous readers on a database
• There can only be one writer at a time on any collection in any one database
• The writers block out the readers once a write request comes in; all the

readers are blocked until the write completes (which is also known as
writer-greedy)

Since version 2.2 of MongoDB, it is possible to restrict the scope of the lock just the
database the read or write operation was working with. If you are using MongoDB
3.0 or later, the scope of the lock is pulled in further than ever before. Now, when a
write is occurring, only the documents involved in the write operation will be locked.
In order to store information about locks, MongoDB relies on a storage engine, which
is a part of the database and is responsible for managing how data is stored on the
disk. In particular, MongoDB 3.0 comes with two storage engines:

• MMAPv1: This is the default storage engine, which uses collection-level
locking

• WiredTiger: This is the new storage engine, which ships with document-
level locking and compression (only available for the 64-bit version)

By using the WiredTiger storage engine, all write operations happen
within the context of a document-level lock. As a result, multiple
clients can modify more than one document in a single collection
at the same time. Thanks to this granular concurrency control,
MongoDB can more effectively support workloads with read, write,
and updates, as well as high-throughput concurrent workloads.

Introduction to MongoDB

[8]

MongoDB core elements
In order to understand the capabilities of MongoDB, you need to learn the core
elements the database is composed of. Actually, MongoDB is organized with a
set of building blocks, which include the following:

• Database: This is, just like for the database, the top-level element. However,
a relational database contains (mostly) tables and views. A Mongo Database,
on the other hand, is a physical container of a structure called a collection.
Each database has its own set of files on the filesystem. A single MongoDB
server typically has multiple databases.

• Collection: This is a set of MongoDB documents. A collection is the
equivalent of an RDBMS table. There can be only one collection with that
name on the database but obviously multiple collections can coexist in a
database. Typically, the collections contained in a database are related,
although they do not enforce a schema as RDBMS tables do.

• Documents: This is the most basic unit of data in MongoDB. Basically, it is
composed by a set of key-value pairs. Unlike database records, documents
have a dynamic schema, which means documents that are part of the same
collection do not need to have the same set of fields. Much the same way,
the fields contained in a document may hold different data types.

The following diagram summarizes the concepts we just discussed:

Chapter 1

[9]

The heart of MongoDB – the document
At the heart of MongoDB is the document, an ordered set of keys with associated
values. The representation of a document varies by the programming language,
but most languages have a data structure that is a natural fit, such as a map, hash,
or dictionary. Here is a very basic example of a document, which is understood
by MongoDB:

{"name" : "Francesco",
 "age" : 44,
 "phone":"123-567-890"}

Most documents will be more complex than this simple one and will often contain
embedded data within them. These denormalized data models allow applications
to retrieve and manipulate related data in a single database operation:

{"name" : "Francesco",
 "age" : 44,
 "contact" : {
 "phone":"123-567-890"
 }
}

As you can see from the preceding example, we have included the contact information
within the same document by using an embedded document with a single key
named contact.

Each document requires a key, which needs to be unique within a document. The keys
contained in a document are strings. Any UTF-8 character can be included in a key,
with a few exceptions:

• You cannot include the character \0 (also known as the null character) in a
key. This character is used to indicate the end of a key.

• The . and $ characters are internally used by the database so they should be
used only in limited cases. As a general rule, it is better to completely avoid
using these characters as most MongoDB drivers can generate exceptions
when they are used inappropriately.

Finally, you need to be aware that MongoDB is both type-sensitive and case-
sensitive. For example, these documents are distinct:

{"age" : 18}
{"age" : "18"}

Introduction to MongoDB

[10]

The same applies to the following documents:

{"age" : 18}
{"Age" : 18}

Understanding how MongoDB stores data
The sample documents you have seen so far should be familiar to you if you
have ever heard about JavaScript Object Notation (JSON). JSON is a human and
machine-readable open standard that simplifies data interchange and is also one of
the most used formats for data interchange in applications along with XML. JSON
is able to deal with all the basic data types used by applications such as String,
numbers, Boolean values, as well as arrays and hashes. MongoDB is able to store
JSON documents into its collections to store records. Let's see an example of a
JSON document:

{
 _id":1,
 "name":{
 "first":"Dennis",
 "last":"Ritchie"
 },
 "contribs":[
 "Altran",
 "B",
 "C",
 "Unix"
],
 "awards":[
 {
 "award":"Turing Award",
 "year":1983
 },
 {
 "award":"National medal of technology",
 "year":1999
 }
]
}

A JSON-based database returns a set of data that can be easily parsed by most
programming languages such as Java, Python, JavaScript, and others, reducing
the amount of code you need to build into your application layer.

Chapter 1

[11]

Behind the scenes, MongoDB represents JSON documents using a binary-encoded
format called BSON. Documents encoded with BSON enhance the JSON data model
to provide additional data types and efficiency when encoding/decoding data
within different languages.

MongoDB uses a fast and lightweight BSON implementation, which is highly
traversable and supports complex structures such as embedded objects and arrays.

Data types accepted in documents
So far, we have used just two basic data types, String and Integer. MongoDB offers a
wide choice of data types, which can be used in your documents:

• String: This is the most common data type as it contains a string of text
(such as: "name": "John").

• Integer (32 bit and 64-bit): This type is used to store a numerical value
(for example, "age" : 40). Note that an Integer requires no quotes
to be placed before or after the Integer.

• Boolean: This data type can be used to store either a TRUE or a FALSE value.
• Double: This data type is used to store floating-point values.
• Min/Max keys: This data type is used to compare a value against the lowest

and highest BSON elements, respectively.
• Arrays: This type is used to store arrays or list or multiple values into one

key (for example, ["John, Smith","Mark, Spencer"]).
• Timestamp: This data type is used to store a timestamp. This can be useful

to store when a document has been last modified or created.
• Object: This data type is used for storing embedded documents.
• Null: This data type is used for a null value.
• Symbol: This data type allows storing characters such as String; however,

it's generally used by languages that use a specific symbol type.
• Date: This data type allows storing the current date or time in the Unix time

format (POSIX time).
• Object ID: This data type is used to store the document's ID.
• Binary data: This data type is used to store a binary set of data.
• Regular expression: This data type is used for regular expressions. All options

are represented by specific characters provided in alphabetical order. You will
learn more about regular expressions.

• JavaScript code: This data type is used for JavaScript code.

Introduction to MongoDB

[12]

Installing and starting MongoDB
Installing Mongo DB is much easier than most RDBMS as it's just a matter of
unzipping the archived database and, if necessary, configure a new path for data
storage. Let's look at the installation for different operating system architectures.

Installing MongoDB on Windows
For installing MongoDB on Windows, perform the following steps:

1. Download the latest stable release of MongoDB from http://www.mongodb.
org/downloads. (At the time of writing, the latest stable release is 3.0.3, which
is available as Microsoft Installer or as a ZIP file). Ensure you download the
correct version of MongoDB for your Windows system.

2. Execute the MSI Installer, or if you have downloaded MongoDB as a ZIP file,
simply extract the downloaded file to C:\drive or any other location.

MongoDB requires a data directory to store its files. The default location for the
MongoDB data folder on Windows is c:\data\db. Execute the following command
from the command prompt to create the default folder:

C:\mongodb-win32-x86_64-3.0.3>md data

In Command Prompt, navigate to the bin directory present in the mongodb
installation folder and point to the folder where data is stored:

C:\mongodb-win32-x86_64-3.0.3\bin> mongod.exe --dbpath "C:\mongodb-
win32-x86_64-3.0.3\data"

This will show the waiting for the connections message on the console output,
which indicates that the mongod.exe process is running successfully.

http://www.mongodb.org/downloads
http://www.mongodb.org/downloads

Chapter 1

[13]

Installing MongoDB on Linux
The installation on Linux can be different depending on your Linux distribution.
Here is a general-purpose installation process:

1. Download the latest MongoDB distribution, which is appropriate for your
OS architecture:
curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-
3.0.3.tgz

2. Extract the downloaded files:
tar -zxvf mongodb-linux-x86_64-3.0.3.tgz

3. Copy files to a target directory:
mkdir -p mongodb

cp -R -n mongodb-linux-x86_64-3.0.3/ mongodb

4. Include MongoDB scripts in the system's PATH variable:
export PATH=<mongodb-install-directory>/bin:$PATH

5. Just like we did for Windows, we will create the data folder:
mkdir -p /data/db

6. Now, you can start MongoDB much the same way as with Windows:
mongod --dbpath /data/db

Introduction to MongoDB

[14]

MongoDB start up options
The list of start up options, which can be applied to the mongod server is quite
large and is detailed at http://docs.mongodb.org/manual/reference/program/
mongod/.

The following table summarizes the most common options for a handy reference:

Option Description
--help, -h This returns the information on the options and use of

mongod.
--version This returns the mongod release number.
--config <filename> This specifies the configuration file to be used by

mongod.
--port <port> This specifies the TCP listening port on which

MongoDB listens. (the default is 27017)
--bind_ip <ip address> This specifies the IP address that mongod binds to in

order to listen for connections from applications (the
default is All interfaces.).

--logpath <path> This sends all diagnostic logging information to a log
file instead of to a standard output or to the host's
syslog system.

--logappend This appends new entries to the end of the log file
rather than overwriting the content of the log when the
mongod instance restarts.

--httpinterface This enables the HTTP interface. Enabling the interface
can increase network exposure.

--fork This enables a daemon mode that runs the mongod
process in the background. By default, mongod does
not run as a daemon.

--auth This enables authorization to control the user's
access to database resources and operations. When
authorization is enabled, MongoDB requires all clients
to authenticate themselves first in order to determine
the access for the client.

--noauth This disables authentication. It is currently the default
and exists for future compatibility and clarity.

--rest This enables the simple REST API. Enabling the REST
API enables the HTTP interface, even if the HTTP
interface option is disabled, and as a result can increase
network exposure.

http://docs.mongodb.org/manual/reference/program/mongod/
http://docs.mongodb.org/manual/reference/program/mongod/

Chapter 1

[15]

Option Description
--profile <level> This changes the level of database profiling (0 Off,

which means no profiling; 1 On, which only includes
slow operations; and 2 On, which includes all the
operations.)

--shutdown This safely terminates the mongod process. It is
available only on Linux systems.

In addition, the following options can be used to vary the storage of the database:

Option Description
--dbpath <path> This is the directory where the mongod instance stores

its data. The default is /data/db on Linux and OS X
and C:\data\db on Windows.

--storageEngine string This specifies the storage engine for the mongod
database. The valid options include mmapv1 and
wiredTiger. The default is mmapv1.

--directoryperdb This stores each database's files in its own folder in the
data directory. When applied to an existing system,
the --directoryperdb option alters the storage
pattern of the data directory.

Troubleshooting MongoDB installation
On startup, the server will print some version and system information and then
begin waiting for connections. By default, MongoDB listens for connections on port
27017. The server process will fail to start if the port is already used by another
process—the most common cause of it is that another instance of MongoDB is
already running on your machine.

You can stop mongod by typing Ctrl + C in the shell that is
running the server. In a clean shutdown, the mongod process
completes all running operations, flushes all data to files, and
closes all data files. Within the Securing database access section
of this chapter, we show how to use the Mongo shell to shut
down the database from the Mongo shell.

Introduction to MongoDB

[16]

The mongod command also launches a basic HTTP server that listens,
by default, on port 28017. This web server can be used to capture REST request
(see http://docs.mongodb.org/ecosystem/tools/http-interfaces/) and
to query for administrative information about your database by pointing to
http://localhost:28017 with your web browser.

You need to start mongod with the --rest option in order
to enable the web administration console.

The following screenshot depicts the web administration GUI when executed from
the browser:

Mongo tools
MongoDB ships with a set of shell commands, which can be useful to administrate
your server. We will shortly provide a description of each command, so that you can
get an initial introduction to the server administration:

• bsondump: This displays BSON files in a human-readable format
• mongoimport: This converts data from JSON, TSV, or CSV and stores them

into a collection

http://docs.mongodb.org/ecosystem/tools/http-interfaces/

Chapter 1

[17]

• mongoexport: This writes an existing collection using the CSV or JSON formats
• mongodump/mongorestore: This dumps MongoDB data to disk using the

BSON format (mongodump), or restores them (mongorestore) to a live database
• mongostat: This monitors running MongoDB servers, replica sets, or clusters
• mongofiles: This reads, writes, deletes, or updates files in GridFS
• mongooplog: This replays oplog entries between MongoDB servers
• mongotop: This monitors data reading/writing on a running Mongo server

Here is an example of how to use the mongoimport tool to import a CSV-formatted
data contained in /var/data/users.csv into the collection users in the sample
database on the MongoDB instance running on the localhost port numbered 27017:

mongoimport --db sample --collection users --type csv --headerline --file
/var/data/users.csv

In the preceding example, mongoimport determines the name of files using the first
line in the CSV file, because of --headerline.

If you want to export the MongoDB documents, you can use the mongoexport tool.
Let's look at an example of how to export the collection users (part of the sampled
database), limited to the first 100 records:

mongoexport --db sampledb --collection users --limit 100 --out export.
json

As part of your daily backup strategy, you should consider using the mongodump
tool, which is a utility for creating a binary export of the contents of a database.

mongodump does not provide a backup of the local database.

The following command creates a database dump for the collection named users
contained in the database named sampled. In this case, the database is running on
the local interface on port 27017:

mongodump --db test --collection users

The preceding command will create a BSON binary file named users.bson and a
JSON file named users.metadata.json containing the documents. The files will be
created under dump/[database-name].

Introduction to MongoDB

[18]

Finally, the mongorestore program loads binary data from a database dump
created by mongodump to a MongoDB instance. mongorestore can both create a new
database and add data to an existing database:

mongorestore --collection users --db sampledb dump/sampledb/users.bson

Introduction to the MongoDB shell
MongoDB ships with a JavaScript shell that allows interaction with a MongoDB
instance from the command line. The shell is the bread-and-butter tool for
performing administrative functions, monitoring a running instance, or just inserting
documents.

To start the shell, run the mongo executable:

$ mongo

MongoDB shell version: 3.0.3

connecting to: test

The shell automatically attempts to connect to a running MongoDB server on
startup, so make sure you start mongod before starting the shell.

If no other database is specified on startup, the shell selects a default database called
test. As a way of keeping all the subsequent tutorial exercises under the same
namespace, let's start by switching to the sampledb database:

> use sampledb

switched to db sampledb

If you are coming from an RDBMS background, you might be surprised that we can
switch to a new database without formerly creating it. The point is that creating the
database is not required in MongoDB. Databases and collections are first created
when documents are actually inserted. Hence, individual collections and databases
can be created at runtime just as the structure of a document is known.

If you want to check the list of available databases, then you can use the show dbs
command:

>show dbs

local 0.78125GB

test 0.23012GB

As you can see, the database we created (sampledb) is not present in the list. To
display the database, you need to insert at least one document into it. The next
section will show you how to do it.

Chapter 1

[19]

Inserting documents
As we said, MongoDB documents can be specified in the JSON format. For example,
let's recall the simple document that we have already introduced:

{"name" : "francesco",
 "age" : 44,
 "phone":"123-567-890"
}

In order to insert this document, you need to choose a collection where the document
will be stored. Here's how you can do it with the Mongo shell:

db.users.insert({"name": "francesco","age": 44, "phone": "123-567-
890"})

As for databases, collections can be created dynamically by specifying it into the
insert statement. Congratulations, you've just saved your first document!

MongoDB supports a special kind of collection named Capped
collections, which are fixed-size collections that are able to support
high-throughput operations where insert and retrieve documents
are based on insertion order. Capped collections need to be created
first before being able to use them. We will show you how to use
Capped collections in the next chapter, using the Java driver.

Querying documents
The find method is used to perform queries in MongoDB. If no argument is given to
the find method, it will return all the documents contained in the collection as in the
following statement:

> db.users.find()

The response will look something like this:

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

Maybe you have noticed that the _id field has been added to the document. This
is a special key that works like a primary key. As a matter of fact, every MongoDB
document requires a unique identifier and if you don't provide one in your
document, then a special MongoDB ID will be generated and added to the document
at that time.

Introduction to MongoDB

[20]

Now, let's include another user in our collections so that we can refine our searches:

> db.users.insert({"name": "owen","age": 32, "phone": "555-444-333"})

Your collection should now include two documents, as verified by the count function:

> db.users.count()

2

As you can see from the preceding insert command, document
keys are specified with quotes. This is not mandatory but generally
a good practice as it makes queries more readable.

Having two documents in our collection, we will learn how to add a query selector
to our find statement so that we filter users based on a key value. For example, here
is how to find a user whose name is owen:

> db.users.find({"name": "owen"})

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen",
"age" : 32, "phone" : "555-444-333" }

Multiple conditions can be specified within a query, just like you would do with a
WHERE – AND construct in SQL:

> db.users.find({"name": "owen", "age": 32})

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen",
"age" : 32, "phone" : "555-444-333" }

Choosing the keys to return
The queries mentioned earlier are equivalent to a SELECT * statement in SQL terms.
You can use a projection to select a subset of fields to return from each document
in a query result set. This can be especially useful when you are selecting large
documents, as it will reduce the costs of network latency and deserialization.

Projections are commonly activated by means of binary operators (0,1); the binary
operator 0 means that the key must not be included in the search whilst 1 obviously
means that the key has to be included. Here is an example of how to include the name
and age keys in the fields to be returned (along with the id field, which is always
included by default:

> db.users.find({}, {"name": 1,"age": 1})

Chapter 1

[21]

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : "francesco",
"age" : 44 }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen", "age" :
32 }

By setting the projection values for the name and age to 0, the phone number is
returned instead:

> db.users.find({}, {"name": 0,"age": 0})

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "phone" : "123-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "phone" : "555-444-333" }

Note that you cannot have a mix of inclusions and exclusions
in your projection. The exception to the rule is the _id field. In
fact, {_id: 0, name: 1, age: 1} works but any inclusion/
exclusion combination of other fields does not.

Using ranges in your queries
Quite commonly, your queries will use some functions to restrict the range of the
returned data, which is done in most SQL dialects and languages with the > and <
or = operators.

The equivalent operators in MongoDB terms are $gt, $gte, $lt, and $lte. Here is
how to find users whose age is greater than 40 using the $gt operator:

> db.users.find({ age: { $gt: 40 } })

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

The $gte operator, on the other hand, is able to select keys that are greater than or
equal (>=) to the one specified:

> db.users.find({ age: { $gte: 32 } })

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen",
"age" : 32, "phone" : "555-444-333" }

The $lt and $lte operators, on the other hand, allow you to select keys which are
smaller and smaller/equal to the value specified.

Introduction to MongoDB

[22]

Using logical operators to query data
You cannot think of a scripting language without logical operators and MongoDB
is no exception. The most common logical operators are named $or, $and, and $not
in MongoDB.

We will not enter into the basics of logical operators, rather let's see a concrete
example of the logical operator OR:

db.users.find({ $or: [{ "age": { $lt: 35 } }, { "name": "john" }]
})

In the preceding query, we are selecting users whose age is smaller than 35 or have
the name john. As one of the conditions evaluates to true, it will return one user:

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen",
"age" : 32, "phone" : "555-444-333" }

By turning to the AND logical operator, on the other hand, no users will be returned:

db.users.find({ $and: [{ "age": { $lt: 35 } }, { "name": "john" }] })

By using the NOT operator, you can invert the effect of a query expression and
return documents that do not match the query expression. For example, if you
wanted to query for all users with last names not beginning with f, you could
use $not as follows:

> db.users.find({"name": {$not: /^f/} })

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen", "age" :
32, "phone" : "555-444-333" }

Using LIKE in Mongo
Note the /expr/ operator, which can be used to achieve a SQL-
like equivalent expression. For example, in its simplest form, you
can use it to query for phone numbers, which are like 444:
> db.users.find({"phone": /444/})

Updating documents
In order to update an existing document, you need to provide two arguments:

•	 The document to update
•	 How	the	selected	documents	should	be	modified

Chapter 1

[23]

Let's see a practical example, supposing that you wanted to change the key age for
the user owen to be 39:

> db.users.update({name: "owen"}, {$set: {"age": 39}})

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

The outcome of the statement informs us that the update matched one document
which was modified. A find issued on the users collection reveals that the change
has been applied:

> db.users.find()

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen", "age" :
39, "phone" : "555-444-333" }

Be aware that executing an update without the $set operator
won't update the fields but replace the whole document, while
preserving the _id field.

The update supports an additional option, which can be used to perform a more
complex logic. For example, what if you wanted to update the record if it exists, and
create it if it doesn't? This is called upsert and can be achieved by setting the upsert
option to true, as in the following command line:

> db.users.update({user: "frank"}, {age: 40},{ upsert: true})

WriteResult({

 "nMatched" : 0,

 "nUpserted" : 1,

 "nModified" : 0,

 "_id" : ObjectId("55082f5ea30be312eb167fcb")

})

As you can see from the output, an upsert has been executed and a document with
the age key has been added:

> db.users.find()

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

Introduction to MongoDB

[24]

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen", "age" :
39, "phone" : "555-444-333" }

{ "_id" : ObjectId("55082f5ea30be312eb167fcb"), "age" : 40 }

Updating a document with MongoDB can be done also on a portion of a document,
for example, you can remove a single key from your collection by using the $unset
option. In the following update, we are removing the age key to all documents
whose name key equals to owen.

> db.users.update({name: "owen"}, {$unset : { "age" : 1} })

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

Executing the find on our collection confirms the update:

> db.users.find()

{ "_id" : ObjectId("5506d5988d7bd8471669e675"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

{ "_id" : ObjectId("5506eea18d7bd8471669e676"), "name" : "owen", "phone"
: "555-444-333" }

{ "_id" : ObjectId("55082f5ea30be312eb167fcb"), "age" : 40 }

The opposite of the $unset operator is $push, which allows you to append a value to
a specified field. So here is how you can restore the age key for the user owen:

> db.users.update({name: "owen"}, {$push : { "age" : 39} })

WriteResult({ "nMatched" : 1, "nUpserted" : 0, "nModified" : 1 })

You can achieve the same result by using $set on a field,
which is not included in the document.

Deleting data
As you have just seen, the update operator is quite flexible and allows trimming
or pushing keys to your collections. If you need to delete a whole set of documents,
then you can use the remove operator. When used without any parameter, it is
equivalent to the TRUNCATE command in SQL terms:

> db.users.remove()

Chapter 1

[25]

Most of the time, you need to be more selective when deleting documents as you
might need to remove just a set of documents matching one or more conditions.
For example, here is how to remove users older than 40:

> db.users.remove({ "age": { $gt: 40 } })

WriteResult({ "nRemoved" : 1 })

Just like the TRUNCATE statement in SQL, it just removes documents from a
collection. If you want to delete the collection, then you need to use the drop()
method, which deletes the whole collection structure, including any associated index:

> db.users.drop()

Beyond basic data types
Although the basic data types we have used so far will be fine for most use cases,
there are a couple of additional types that are crucial to most applications, especially
when mapping Mongo types to a language driver such as a Mongo driver for Java.

Arrays
MongoDB has a rich query language that supports storing and accessing documents
as arrays. One of the great things about arrays in documents is that MongoDB
understands their structure and knows how to reach inside arrays to perform
operations on their content. This allows us to query on arrays and build indexes
using their content.

Let's start creating a couple of documents containing an array of items:

> db.restaurant.insert({"menu" : ["bread", "pizza", "coke"]})

WriteResult({ "nInserted" : 1 })

> db.restaurant.insert({"menu" : ["bread", "omelette", "sprite"]})

WriteResult({ "nInserted" : 1 })

We will now show you how to query on the array selection to find the menu,
which includes pizza:

> db.restaurant.find({"menu" : "pizza"})

{ "_id" : ObjectId("550abbfe89ef057ee0671650"), "menu" : [
"bread","pizza", "coke"] }

Introduction to MongoDB

[26]

Should you need to match arrays using more than one element, then you can use
$all. This allows you to match a list of elements. For example, let's see how you can
query on the above collection by matching two items in the menu:

> db.restaurant.find({"menu" : {$all : ["pizza", "coke"]}})

{ "_id" : ObjectId("550abbfe89ef057ee0671650"), "menu" : ["bread",
"pizza", "coke"] }

Embedded documents
You can use a document as a value for a key. This is called an embedded document.
Embedded documents can be used to organize data in a more natural way than
just a flat structure of key-value pairs. This matches well with most object-oriented
languages, which holds a reference to another structure in their class.

Let's start by defining a structure, which is assigned to a variable in the mongo shell:

x = {

 "_id":1234,

 "owner":"Frank's Car",

 "cars":[

 {

 "year":2011,

 "model":"Ferrari",

 price:250000

 },

 {

 "year":2013,

 "model":"Porsche",

 price:250000

 }

]

}

Since the Mongo shell is a JavaScript interface, it is perfectly fine to write something
like the preceding code and even use functions in order to enhance objects in the shell.
Having defined our variable, we can insert it into the cars collection as follows:

> db.cars.insert(x);

WriteResult({ "nInserted" : 1 })

Chapter 1

[27]

Alright. We have just inserted a document which in turn contains an array
of documents. We can query our subdocument by using the dot notation.
For example, we can choose the list of cars whose model is Ferrari by
using the cars.model criteria:

> db.cars.find({ "cars.model": "Ferrari" }).pretty()

{

 "_id" : 1234,

 "owner" : "Frank's Car",

 "cars" : [

 {

 "year" : 2011,

 "model" : "Ferrari",

 "price" : 250000

 },

 {

 "year" : 2013,

 "model" : "Porsche",

 "price" : 250000

 }

]

}

Also, the pretty function provides a pretty formatted
JSON in the response.

Some useful functions
We will complete our excursus on the Mongo shell with some handy functions,
which can be used to achieve a more precise control over your queries. The ones
we will cover in this section are the limit, sort, and skip functions.

You can use the limit function to specify the maximum number of documents
returned by your query. You obviously need to provide the number of records to
be returned as a parameter. By setting this parameter to 0, all the documents will
be returned:

> db.users.find().limit(10)

Introduction to MongoDB

[28]

The sort function, on the other hand, can be used to sort the results returned from
the query in ascending (1) or descending (-1) order. This function is pretty much
equivalent to the ORDER BY statement in SQL. Here is a basic example of sort:

> db.users.find({}).sort({"name":1})

{ "_id" : ObjectId("5506d5708d7bd8471669e674"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

{ "_id" : ObjectId("550ad3ef89ef057ee0671652"), "name" : "owen", "age" :
32, "phone" : "555-444-333" }

This example sorts the results based on the name key-value in ascending order,
which is the default sorting order. If you want to switch to the descending order,
then you would need to add the -1 flag to the sort operator.

Note that the sort function when issued against the document's
_id will be sorted on a time criteria.

The next one in the list is the skip function, which skips the first n documents in a
collection. For example, here is how to skip the first document in a search across the
users collection:

> db.users.find().skip(1)

{ "_id" : ObjectId("550ad3ef89ef057ee0671652"), "name" : "owen", "age" :
32, "phone" : "555-444-333" }

All the preceding commands can be also combined to produce a powerful
expression. For example, the preceding command will return a different user
when combined with a sort function in descending order:

> db.users.find().skip(1).sort({"name":-1})

{ "_id" : ObjectId("5506d5708d7bd8471669e674"), "name" : "francesco",
"age" : 44, "phone" : "123-456-789" }

Securing database access
We will conclude this chapter by informing you about database security. So far,
we have started and used MongoDB without any authentication process. Actually,
starting mongod without any additional option exposes the database to any user
who is aware of the process.

Chapter 1

[29]

We will show how to provide secure access by means of the mongo shell. So, launch
the mongo shell and connect to the admin database, which holds information about
the users:

use admin

Now, let's use the createUser function to add a user named administrator with
the password mypassword and grant unlimited privileges (the role root):

db.createUser(

 {

 user: "administrator",

 pwd: "mypassword",

 roles: ["root"]

 }

)

Now, shut down the server by using the following command:

db.shutdownServer()

We will restart the database using the –-auth option, which forces user
authentication:

mongod --dbpath "C:\mongodb-win32-x86_64-3.0.3\data" --auth

Now, the database is started in secure mode. You can connect from the mongo shell
in two different ways. The first one should be used with caution on Linux/Unix
systems, as it exposes the user/password in the process list:

mongo -u administrator -p mypassword --authenticationDatabase admin

As an alternative, you can start the mongo shell and authenticate it at the beginning
of the session (you need to select the admin database at first as the authentication
keys are stored on the admin DB):

use admin

db.auth('admin','mypassword')

use yourdb

. . . .

Introduction to MongoDB

[30]

Summary
This chapter has provided a whistle-stop tour of the basics of the MongoDB and
NoSQL databases. We have gone through some advantages that can be gained when
choosing a NoSQL database and the trade-offs compared with a relational database.

Then, we took you through the installation of MongoDB and some start up options
that can be used to customize your server. Finally, we talked about the MongoDB
shell and learned how to manipulate data using some basic CRUD operations.

In the next chapter, we will show you how to connect to MongoDB using the Java
driver and perform some equivalent actions using Java.

Chapter 2

[31]

Getting Started with Java
Driver for MongoDB

This chapter discusses the MongoDB Java interface that consists of a JDBC driver
that needs to be downloaded and included in your application's classpath. By using
the MongoDB Java driver, you will be able to perform all the create/read/update/
delete (CRUD) operations that we have so far accomplished using the mongo shell.
The list of topics covered includes the following:

• Downloading and installing the MongoDB JDBC driver
• Setting up a basic Java project using Eclipse
• Performing common CRUD operations using a Java application

Getting the Mongo JDBC driver
The MongoDB Java driver can be downloaded from the Maven central repository at
http://central.maven.org/maven2/org/mongodb/mongo-java-driver/. Make
sure you download the latest stable release of it.

At the time of writing, version 3.0.0 of the MongoDB Java driver has
just been released. The new version of the driver deprecates some of
the core interfaces available in version 2.X, which is still the de facto
standard in Java projects using MongoDB. For this reason, we will start
with the latest stable 2.X version, showing the new driver in action in
the Using the MongoDB Java driver version 3 section.

http://central.maven.org/maven2/org/mongodb/mongo-java-driver/

Getting Started with Java Driver for MongoDB

[32]

Once downloaded, you need to include it in your application classpath. As for every
external library, you can add it to the classpath by using the –classpath option on
the command line. For example:

–classpath mongo-java-driver-2.13.0.jar YourApplication.java

Creating your first project
Developing Java applications can be done in a variety of options. In a nutshell, you
would need a development environment and the required libraries to compile and
run your project. Most Java developers approach the development in two ways:

• Create a standalone Java project and include the required libraries in it. This
is the simplest solution and could be used if you are developing a standalone
Java application.

• Create a project using a framework like Maven or Gradle, which can help
you define the project dependencies and assist you in the project setup
and build management. This approach requires you to invest some time
learning these frameworks; nevertheless, it pays big dividends if you are
engineering enterprise applications that have lots of dependencies on
external libraries. We will discuss Maven in Chapter 4, MongoDB in the Java
EE 7 Enterprise Environment.

Both approaches require you to first download a development environment.
We will use NetBeans 8.0.2 for this purpose, which can be downloaded from
https://netbeans.org/downloads/.

Installing NetBeans is pretty simple; all you have to do is execute the installer
(netbeans-8.0.2-javaee-windows.exe or netbeans-8.0.2-javaee-windows.sh
for Linux). This will start a guided installation procedure requiring you to specify
the installation path.

Creating a new Java project
The following steps will take you through the creation of a new Java project:

1. Start NetBeans and from the File menu, select New Project. Choose Java
Application as displayed in the following window:

https://netbeans.org/downloads/

Chapter 2

[33]

2. Enter a name for the project and choose a project location. Check the Create
Main Class checkbox, so that you already have a skeleton Java class named
com.packtpub.mongo.chapter2.HelloMongo, as shown in the following
screenshot:

Getting Started with Java Driver for MongoDB

[34]

3. Click on Finish.
4. Now we will include the JDBC Driver for MongoDB in the project. Right-

click on your project's Libraries folder and select Add Jar/Folder. From there,
locate the mongo-java-driver-2.13.0.jar. At the end of this step, your
project should look like this:

5. Now let's add a Java class to the project. From the File menu, select Java
Class under New. Name the class as HelloMongo:
package com.packtpub.mongo.chapter2;

import com.mongodb.DB;
import com.mongodb.MongoClient;

public class HelloMongo{

 private final static String HOST = "localhost";
 private final static int PORT = 27017;

 public static void main(String args[]){
 try{
 // Connect to mongodb server on localhost
 MongoClient mongoClient = new MongoClient(HOST,
 PORT);

 DB db = mongoClient.getDB("test");

 System.out.println("Successfully connected to
 MongoDB");

 }
 catch(Exception e){

Chapter 2

[35]

 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

The preceding example is a quintessential Java example that connects to the
test MongoDB running on the localhost on the default port (27017).

The com.mongodb.MongoClient class represents your Java
connection to the MongoDB database. For most applications,
you should have one MongoClient instance for the entire JVM.

6. Next, the com.Mongodb.DB class provides a logical view of the database and
can be used to retrieve a specific collection. As for the mongo shell, if the
collection does not exist, it is created.

7. Run the application by right-clicking on the class and executing the Java
application under Run As. On the Eclipse console, you should see the
message Successfully connected to MongoDB.

Handling authentication
The above example will connect to an unsecured database. Although, this can be fine
for your first examples, it is essential that you learn how to handle security in your
Java code.

If you managed to create the administrator in Chapter 1, Introduction to MongoDB,
now you can connect to a secured MongoDB database by using the credentials
administrator/mypassword that we created earlier:

package com.packtpub.mongo.chapter2;

import java.util.Arrays;
import com.mongodb.DB;
import com.mongodb.MongoClient;
import com.mongodb.MongoCredential;
import com.mongodb.ServerAddress;

public class HelloSecureMongo{

 public static void main(String args[]){
 try{

Getting Started with Java Driver for MongoDB

[36]

 MongoCredential credential =
 MongoCredential.createCredential("administrator",
 "admin", "mypassword".toCharArray());

 MongoClient mongoClient = new MongoClient(new
 ServerAddress("localhost"), Arrays.asList(credential));

 DB db = mongoClient.getDB("test");

 System.out.println("Successfully connected to secure
 database");
 }
 catch(Exception e){
 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

The class that is responsible for the authentication, using release 2.13 or later, is com.
mongodb.MongoCredential. This class represents the credentials (administrator in
our case) used to authenticate against a Mongo database (named admin), as well as
the source of the credentials and the authentication mechanism to use.

Execute the main class and expect the following output on the console:

Successfully connected to secure database

Inserting a document
So far, we have only tested the connectivity to the database. Now it's time to insert
some documents and verify that the database contains them. The main class used
by the Java driver for MongoDB (versions 2.X) for mapping Mongo objects is com.
mongodb.BasicDBObject. You can use its fluent API to create Java representations
of Mongo key-values by appending them to the object. In the following example, we
create our first document in the javastuff collection. From the File menu, add a
new Java Class named com.packtpub.mongo.chapter2.SampleInsert. The class
will contain the following code:

package com.packtpub.mongo.chapter2;

import com.mongodb.BasicDBObject;
import com.mongodb.DBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;

Chapter 2

[37]

import com.mongodb.MongoClient;

public class SampleInsert{

 private final static String HOST = "localhost";
 private final static int PORT = 27017;

 public static void main(String args[]){
 try{

 MongoClient mongoClient = new MongoClient(HOST,PORT);

 DB db = mongoClient.getDB("sampledb");

 DBCollection coll = db.getCollection("javastuff");
 DBObject doc = new BasicDBObject("name","owen")
 .append("age", 47)
 .append("email", "owen@mail.com")
 .append("phone", "111-222-333");

 coll.insert(doc);

 }
 catch(Exception e){
 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

Just like we did with the mongo shell, the insert method
of the class com.mongodb.DBCollection also creates a
collection automatically if it does not exist.

Run the preceding example and from the mongo shell, check whether the document
has been added:

> use sampledb

> db.javastuff.find().pretty()

{

Getting Started with Java Driver for MongoDB

[38]

 "_id" : ObjectId("5513edcc3efba51b04574d5a"),

 "name" : "owen",

 "age" : 47,

 "email" : "owen@mail.com",

 "phone" : "111-222-333"

}

Creating embedded documents
The preceding example uses a flat data structure. Most of the time, you will have to
deal with more complex types. For example, let's say that the user's information has
to be stored in an embedded document. Luckily, creating this structure is intuitive,
as you have to append a new instance of the document to the DBObject interface.

Let's see how to change the core section of the SampleInsert class:

DBObject doc = new BasicDBObject("name","frank")
 .append("age", 31)
 .append("info", new BasicDBObject("email",
 "frank@mail.com").append("phone", "222-111-444"));

Here is the structure that has been created on the database, which uses the info key
to store some private information:

> db.javastuff.find({"name":"frank"}).pretty()

{

 "_id" : ObjectId("5513f1bd6c0d4cd4201ac006"),

 "name" : "frank",

 "age" : 31,

 "info" : {

 "email" : "frank@mail.com",

 "phone" : "222-111-444"

 }

}

Inserting an array of data
Another scenario could be creating arrays of data in your document. Again, the
solution is pretty intuitive and uses the well known java.util.List class, which
can be populated with a set of BasicDBObject. Each BasicDBObject class, in turn,
contains the array of keys and values.

Chapter 2

[39]

See the following example, which adds an array of kids to the user named john:

public class ArrayInsert {

 private final static String HOST = "localhost";
 private final static int PORT = 27017;

 public static void main(String args[]) {
 try {
 MongoClient mongoClient = new MongoClient(HOST, PORT);

 DB db = mongoClient.getDB("sampledb");

 DBCollection coll = db.getCollection("javastuff");

 List<DBObject> kids = new ArrayList<>();
 kids.add(new BasicDBObject("name", "mike"));
 kids.add(new BasicDBObject("name", "faye"));

 DBObject doc = new BasicDBObject("name", "john")
 .append("age", 35)
 .append("kids", kids)
 .append("info",
 new BasicDBObject("email", "john@mail.com")
 .append("phone", "876-134-667"));
 coll.insert(doc);

 } catch (Exception e) {
 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

Execute the Java class. Now switch to the mongo shell and meet John's family:

> db.javastuff.find({"name":"john"}).pretty()

{

 "_id" : ObjectId("5513f8836c0df1301685315b"),

 "name" : "john",

 "age" : 35,

 "kids" : [

 {

Getting Started with Java Driver for MongoDB

[40]

 "name" : "mike"

 },

 {

 "name" : "faye"

 }

],

 "info" : {

 "email" : "john@mail.com",

 "phone" : "876-134-667"

 }

}

Using your own ID in documents
In the documents created so far, we have not used any unique identifier as the
key. You should be aware that MongoDB by itself adds a _id identifier to your
documents, which needs to be unique in all documents.

The advantage of using the self-generated _id identifier is that it begins
with a 4-byte value representing the seconds since the Unix epoch.
Hence, you can sort documents on a time base by using the _id field.

In some cases, however, you might be prone to provide yourself the identifiers and
use them to search through the documents.

Using your own identifiers is just a matter of setting the _id key within the com.
mongodb.BasicDBObject structure. This way, MongoDB will not attempt to create
its own keys. See the following snippet, which provides the _id that has the value
12345678:

DBCollection coll = db.getCollection("javastuff");

DBObject doc = new BasicDBObject("_id", "12345678")
 .append("name","jim")
 .append("age", 47)
 .append("info", new BasicDBObject("email", "owen@mail.com").
append("phone", "111-222-333"));

coll.insert(doc);

Chapter 2

[41]

Check from the console whether the ID has been assigned correctly:

> db.javastuff.find({"name": "jim"}).pretty()

{

 "_id" : "12345678",

 "name" : "jim",

 "age" : 47,

 "info" : {

 "email" : "jim@mail.com",

 "phone" : "111-222-333"

 }

}

Be careful when using your own IDs!
When providing your own keys, it is entirely your responsibility to care
for duplicate key issues. Generally speaking, MongoDB documents
can share the same keys; that's not true for the _id key, resulting in an
exception if you try to insert two documents with the same _id:
com.mongodb.MongoException$DuplicateKey: {
"serverUsed" : "localhost:27017" , "ok" : 1 , "n" : 0
, "err" : "insertDocument :: caused by :: 11000 E11000
duplicate key error index: sampledb.javastuff.$_id_
dup key: { : \"12345678\" }" , "code" : 11000}

Querying data
We will now see how to use the Java API to query for your documents. Querying
for documents with MongoDB resembles JDBC queries; the main difference is that
the returned object is a com.mongodb.DBCursor class, which is an iterator over the
database result.

In the following example, we are iterating over the javastuff collection that should
contain the documents inserted so far:

package com.packtpub.mongo.chapter2;

import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBCursor;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;

Getting Started with Java Driver for MongoDB

[42]

public class SampleQuery{

 private final static String HOST = "localhost";
 private final static int PORT = 27017;

 public static void main(String args[]){
 try{
 MongoClient mongoClient = new MongoClient(HOST,PORT);

 DB db = mongoClient.getDB("sampledb");

 DBCollection coll = db.getCollection("javastuff");
 DBCursor cursor = coll.find();
 try {
 while(cursor.hasNext()) {
 DBObject object = cursor.next();
 System.out.println(object);
 }
 }
 finally {
 cursor.close();
 }

 }
 catch(Exception e) {
 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

Depending on the documents you have inserted, the output could be something
like this:

{ "_id" : { "$oid" : "5513f8836c0df1301685315b"} , "name" : "john" ,
"age" : 35 , "kids" : [{ "name" : "mike"} , { "name" : "faye"}] ,
"info" : { "email" : "john@mail.com" , "phone" : "876-134-667"}}

. . . .

Chapter 2

[43]

Restricting the search to the first document
The find operator executed without any parameter returns the full cursor of a
collection; pretty much like the SELECT * query in relational DB terms. If you are
interested in reading just the first document in the collection, you could use the
findOne() operation to get the first document in the collection. This method returns
a single document (instead of the DBCursor that the find() operation returns).
As you can see, the findOne() operator directly returns a DBObject instead of a
com.mongodb.DBCursor class:

DBObject myDoc = coll.findOne();
System.out.println(myDoc);

Querying the number of documents in a collection
Another typical construct that you probably know from the SQL is the SELECT
count(*) query that is useful to retrieve the number of records in a table. In
MongoDB terms, you can get this value simply by invoking the getCount
against a DBCollection class:

DBCollection coll = db.getCollection("javastuff");
System.out.println(coll.getCount());

As an alternative, you could execute the count() method over the DBCursor object:

DBCursor cursor = coll.find();
System.out.println(cursor.count());

Eager fetching of data using DBCursor
When find is executed and a DBCursor is executed you have a pointer to a database
document. This means that the documents are fetched in the memory as you call
next() method on the DBCursor.

On the other hand, you can eagerly load all the data into the memory by executing
the toArray() method, which returns a java.util.List structure:

List list = collection.find(query).toArray();

The problem with this approach is that you could potentially fill up the memory
with lots of documents, which are eagerly loaded. You are therefore advised to
include some operators such as skip() and limit() to control the amount of data
to be loaded into the memory:

List list = collection.find(query).skip(100).
 limit(10).toArray();

Getting Started with Java Driver for MongoDB

[44]

Just like you learned from the mongo shell, the skip operator can be used as an
initial offset of your cursor whilst the limit construct can eventually load the first n
occurrences in the cursor.

Filtering through the records
Typically, you will not need to fetch the whole set of documents in a collection. So,
just like SQL uses WHERE conditions to filter records, in MongoDB you can restrict
searches by creating a BasicDBObject and passing it to the find function as an
argument. See the following example:

DBCollection coll = db.getCollection("javastuff");

DBObject query = new BasicDBObject("name", "owen");

DBCursor cursor = coll.find(query);

try {
 while(cursor.hasNext()) {
 System.out.println(cursor.next());
 }
} finally {
 cursor.close();
}

In the preceding example, we retrieve the documents in the javastuff collection,
whose name key equals to owen. That's the equivalent of an SQL query like this:

SELECT * FROM javastuff WHERE name='owen'

Building more complex searches
As your collections keep growing, you will need to be more selective with your
searches. For example, you could include multiple keys in your BasicDBObject
that will eventually be passed to find. Recall the Using ranges in your queries section
that you learned in Chapter 1, Introduction to MongoDB. We can then apply the same
functions in our queries. For example, here is how to find documents whose name
does not equal ($ne) to Frank and whose age is greater than 10:

DBCollection coll = db.getCollection("javastuff");

DBObject query = new
 BasicDBObject("name", new BasicDBObject("$ne",
 "frank")).append("age", new BasicDBObject("$gt", 10));

DBCursor cursor = coll.find(query);

Chapter 2

[45]

Updating documents
Having learned about create and read, we are half way through our CRUD track. The
next operation you will learn is update. The DBCollection class contains an update
method that can be used for this purpose. Let's say we have the following document:

> db.javastuff.find({"name":"frank"}).pretty()

{

 "_id" : ObjectId("55142c27627b27560bd365b1"),

 "name" : "frank",

 "age" : 31,

 "info" : {

 "email" : "frank@mail.com",

 "phone" : "222-111-444"

 }

}

Now we want to change the age value for this document by setting it to 23:

DBCollection coll = db.getCollection("javastuff");

DBObject newDocument = new BasicDBObject();
newDocument.put("age", 23);

DBObject searchQuery = new BasicDBObject().append("name", "owen");

coll.update(searchQuery, newDocument);

You might think that would do the trick, but wait! Let's have a look at our document
using the mongo shell:

> db.javastuff.find({"age":23}).pretty()

{ "_id" : ObjectId("55142c27627b27560bd365b1"), "age" : 23 }

As you can see, the update statement has replaced the original document with
another one, including only the keys and values we have passed to the update. In
most cases, this is not what we want to achieve. If we want to update a particular
value, we have to use the $set update modifier that we have already studied in the
first chapter of this book:

DBCollection coll = db.getCollection("javastuff");

BasicDBObject newDocument = new BasicDBObject();

Getting Started with Java Driver for MongoDB

[46]

newDocument.append("$set", new BasicDBObject().append("age",
 23));

BasicDBObject searchQuery = new BasicDBObject().append("name",
"frank");

coll.update(searchQuery, newDocument);

So, suppose we restored the initial document with all the fields, this is the outcome
of the update using the $set update modifier:

> db.javastuff.find({"age":23}).pretty()

{

 "_id" : ObjectId("5514326e627b383428c2ccd8"),

 "name" : "frank",

 "age" : 23,

 "in,fo" : {

 "email" : "frank@mail.com",

 "phone" : "222-111-444"

 }

}

Please note that the DBCollection class overloads the method update
with update (DBObject q, DBObject o, boolean upsert,
boolean multi). The first parameter (upsert) determines whether
the database should create the element if it does not exist. The second
one (multi) causes the update to be applied to all matching objects.

Deleting documents
The operator to be used for deleting documents is obviously delete. As for other
operators, it includes several variants. In its simplest form, when executed over a
single document returned, it will remove it:

MongoClient mongoClient = new MongoClient("localhost", 27017);

DB db = mongoClient.getDB("sampledb");
DBCollection coll = db.getCollection("javastuff");
DBObject doc = coll.findOne();

coll.remove(doc);

Chapter 2

[47]

Most of the time you will need to filter the documents to be deleted. Here is how
to delete the document with the key frank:

DBObject document = new BasicDBObject();
document.put("name", "frank");

coll.remove(document);

Deleting a set of documents
Bulk deletion of documents can be achieved by including the keys in a List
and building an $in modifier expression that uses this list. Let's see, for example,
how to delete all records whose age ranges from 0 to 49:

BasicDBObject deleteQuery = new BasicDBObject();
List<Integer> list = new ArrayList<Integer>();

for (int i=0;i<50;i++)
list.add(i);

deleteQuery.put("age", new BasicDBObject("$in", list));
coll.remove(deleteQuery);

Performing operations on collections
By using the Java driver, you are also able to manipulate the collection objects,
which are the equivalent of database tables. And you should be fully aware that if
you attempt to retrieve a nonexistent collection and insert a document into it, the
collection will be automatically created by MongoDB:

DBCollection coll = db.getCollection("mycol");

DBObject doc = new BasicDBObject("name","owen")
.append("age", 47)
.append("email", "owen@mail.com").append("phone", "111-222-333");

coll.insert(doc);

System.out.println("Collection mycol successfully created");

Getting Started with Java Driver for MongoDB

[48]

You can also explicitly create a collection by means of Capped collections.

A Capped collection is a fixed-size collection, which supports
high-throughput insert/retrieve operations based on insertion
order. A capped collection acts much the same as a circular
buffer. As a collection fills out its allocated space, it overwrites
the oldest documents to make room.

In order to create a Capped collection from the Java driver, you need to pass a set of
options along with the collection name, which include:

• The max argument, which specifies the maximum number of documents
allowed in the collection.

• The size argument, which specifies the size of the capped collection in bytes.
This argument is always required, even when you specify the maximum
number of documents.

Here is, for example, how to create a capped collection named orderedcollection,
which has a size of 1000000000 bytes:

DBObject options = BasicDBObjectBuilder.start().add("capped",
 true).add("size", 1000000000l).get();

DBCollection collection =
 db.createCollection("orderedcollection", options);

Listing collections
The list of collections is available as a set of strings by invoking getCollectionNames
over the com.mongodb.DB class. Here is a quick snippet that does exactly this:

for (String s : db.getCollectionNames()) {
 System.out.println(s);
}

That should output the available collections, which, in our case, are:

cars
javastuff
orderedcollectioon
system.indexes

Chapter 2

[49]

Perhaps, you have noticed the system.indexes collection.
This is a special kind of collection containing the list of indexes
available in the collection. More details about indexes are
discussed in the next chapter.

Dropping a collection
The drop operator can also be used to delete a collection of data. This operation is
pretty equivalent to the DROP TABLE query that is executed in SQL. Here is how to
use the drop operator to drop the collection named testCollection:

DBCollection coll = db.getCollection("testCollection");
coll.drop();

On the other hand, if you need to delete all the documents in a collection (just like
a TRUNCATE would do in a RDBMS), then you have to iterate over the documents in
the collection and delete them individually:

DBCursor c = collection.find();
 while (c.hasNext()) {
 collection.remove(c.next());
 }

Using the MongoDB Java driver
version 3
While this book is being written, a new major version of the Java driver has just been
released. This version is number 3 and can be downloaded just like version 2 from
http://central.maven.org/maven2/org/mongodb/mongo-java-driver.

As the core classes and interfaces used by the new API are different compared
to the 2.X version, you will have to choose which Mongo Java driver (http://
central.maven.org/maven2/org/mongodb/mongo-java-driver) is fit for
your projects. This decision might not be that simple, as each version has some
advantages. In particular:

• Developing applications with the Java driver for MongoDB 3 can be more
intuitive, typesafe, and run faster as it deals with a document schema that is
translated in BSON

• Developing applications with the Java driver for MongoDB 2, on the other
hand, has a rich community of users, and it is generally adopted in many
frameworks that have some kind of interaction with MongoDB from Java

http://central.maven.org/maven2/org/mongodb/mongo-java-driver
http://central.maven.org/maven2/org/mongodb/mongo-java-driver
http://central.maven.org/maven2/org/mongodb/mongo-java-driver

Getting Started with Java Driver for MongoDB

[50]

Running the HelloWorld class with driver v.3
The first evident change in the MongoDB Java API is that the com.mongodb.DB class
has been deprecated in favor of the import com.mongodb.client.MongoDatabase,
which is a major improvement in the driver API featuring a thread-safe interface
towards the databases on MongoDB.

Here is the HelloWorld class written with the new API:

package com.packtpub.mongo.chapter2;

import com.mongodb.MongoClient;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.MongoIterable;

public class HelloMongo{
 private final static String HOST = "localhost";
 private final static int PORT = 27017;

 public static void main(String args[]){
 try{
 MongoClient mongoClient = new MongoClient(HOST , PORT);
 // Now connect to the test database
 MongoDatabase db = mongoClient.getDatabase("test");
 System.out.println("Connect to database successfully ");

 }
 catch(Exception e){
 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

Be sure to include the new driver in your project's library. As usual, run the project
by clicking on Class and selecting Run File. Once executed, you should expect to
read the following message on your Java console:

Connect to database successfully

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Chapter 2

[51]

Managing collections
Collections are created using the driver version 3 in much the same way as the older
driver. The main difference is that the provider of collections is now the interface
com.mongodb.client.MongoDatabase. You will have to use the createCollection
method of the MongoDatabase class as follows:

db.createCollection("collection1");

In order to browse through the list of collections, you can use the
listCollectionNames method of the MongoDatabase class, which returns a com.
mongodb.client.MongoIterable object:

MongoIterable<String> collections = db.listCollectionNames();
MongoCursor<String> cursor = collections.iterator();
while (cursor.hasNext()) {
System.out.println(cursor.next());
}

MongoIterable is the result from an operation, such as a query.

Finally, in order to connect to a specific collection and start working with it, you can
use the method getCollection, passing the name of the collection as a parameter:

MongoCollection col = db.getCollection("users");

Inserting data into the database
The most marked difference between the driver versions is the class used to map
the documents. The driver version 3 uses a new class named org.bson.Document
to create the document on the database. Let's see a practical example of this, we will
insert the following document:

{"name" : "john",
"age" : 25,
"phone":"321-654-987"
}

To do this, we can, at first, retrieve the collection we want to use by using the method
getCollection that we have just learned.

Next, we will be using the org.bson.Document class to create the document and
then just simply insert it into the collection using the insertOne() method.

Getting Started with Java Driver for MongoDB

[52]

Here is the full source code of it:

package com.packtpub.mongo.chapter2;

import org.bson.Document;
import com.mongodb.MongoClient;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;

public class InsertMongo {

 private final static String HOST = "localhost";
 private final static int PORT = 27017;

 public static void main(String args[]) {
 try {
 MongoClient mongoClient = new MongoClient(HOST, PORT);

 MongoDatabase db = mongoClient.getDatabase("sampledb");
 MongoCollection<Document> coll = db.getCollection("users");

 Document doc = new Document("name", "john").append("age",
 25) .append("phone", "321-654-987");
 coll.insertOne(doc);

 }
 catch (Exception e) {
 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

Inserting embedded documents
The above document is a very basic one. Let's see how to insert a more complex
document like the following one that contains an embedded document:

{
 "name" : "louis",
 "age" : 29,
 "info" : {
 email : "louis@mail.com",

Chapter 2

[53]

 phone : "876-134-667"
 }
}

In terms of Java code, there is a perfect match with the document structure as we will
embed a new document within the existing one:

Document doc = new Document("name", "louis").append("age", 29)
 .append("info",
 new Document("email", "louis@mail.com").append(
 "phone", "876-134-667"));

coll.insertOne(doc);

Inserting multiple documents
In the first example, we have used the insertOne method to insert a single
document into MongoDB. If you need to insert multiple documents from a single
point, then you can store your documents in java.util.List and pass it as an
argument to the insertMany method of your collection:

List<Document> documents = new ArrayList<Document>();
for (int i = 0; i < 10; i++) {
 documents.add(new Document("key", UUID.randomUUID().toString()));
}
coll.insertMany(documents);

Querying documents
A new interface named com.mongodb.client.MongoCursor has been added to
iterate over the list of documents that is queried. The behavior is quite the same
compared to the com.mongodb.DBCursor class available in the driver version 2,
the only difference is that it is now iterating over a list of document objects:

MongoCollection<Document> coll = db.getCollection("users");

MongoCursor<Document> cursor = coll.find().iterator();
try {
 while (cursor.hasNext()) {
 Document doc = cursor.next();

 System.out.println(doc.toJson());
 }

Getting Started with Java Driver for MongoDB

[54]

} finally {
 cursor.close();
}

Please notice the toJson method, which is a convenience
method that can be used to output the document into the
JSON format.

Filtering through documents
Filtering documents using the driver version 3 can now be performed using
compile-safe methods thanks to the com.mongodb.client.model.Filters class.
This class contains a set of static imports that are able to match the most common
querying criteria.

For example, here is a sample class that queries documents, whose name equals
to john:

package com.packtpub.mongo.chapter2;

import com.mongodb.MongoClient;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoCursor;
import com.mongodb.client.MongoDatabase;
import static com.mongodb.client.model.Filters.eq;
import org.bson.Document;

public class MongoFilter {

 private final static String HOST = "localhost";
 private final static int PORT = 27017;

 public static void main(String args[]) {
 try {

 MongoClient mongoClient = new MongoClient(HOST, PORT);

 MongoDatabase db = mongoClient.getDatabase("sampledb");
 MongoCollection<Document> coll = db.getCollection("users");

 Document newDoc = new Document("name", "john").append("age",
 25).append("phone", "321-654-987");
 coll.insertOne(newDoc);

Chapter 2

[55]

 MongoCursor<Document> cursor = coll.find(eq("name",
 "john")).iterator();

 try {
 while (cursor.hasNext()) {
 Document doc = cursor.next();

 System.out.println(doc.toJson());
 }
 } finally {
 cursor.close();
 }

 } catch (Exception e) {
 System.err.println(e.getClass().getName() + ": " +
 e.getMessage());
 }
 }
}

Filters can also be combined with multiple conditions. For example, here is how to
retrieve the users who are aged between 21 and 40:

MongoCursor<Document> cursor = collection.find(and(gt("age", 20),
 lte("age", 40))).iterator();

On the other hand, if you want to retrieve only the first document from the list, then
the first() method is your choice:

Document myDoc = coll.find(eq("name", "john")).first();

The full list of available filters is pretty lengthy; however, you can keep this link as
a reference http://api.mongodb.org/java/3.0/com/mongodb/client/model/
Filters.html.

Updating documents
In order to update a document, you can use two methods of the MongoCollection
class; updateOne is a simple construct to update a single document of a collection.
For example, here is how you set the key age to 50 for the first key whose name
is john:

MongoCollection<org.bson.Document> coll =
 db.getCollection("users");
coll.updateOne(eq("name", "john"), new Document("$set", new
 Document("age", 50)));

http://api.mongodb.org/java/3.0/com/mongodb/client/model/Filters.html
http://api.mongodb.org/java/3.0/com/mongodb/client/model/Filters.html

Getting Started with Java Driver for MongoDB

[56]

The preceding method updates just a single document, that is the first one matching
the preceding filter (whose name equals to john). In case you want to apply the
update to all occurrences of the same condition, you can use the updateMany
method, which returns an instance of com.mongodb.client.result.UpdateResult:

UpdateResult updateResult = coll.updateMany(eq("name", "john"),
 new Document("$set", new Document("age", 50)));

The update count is available through getModifiedCount() as follows:

System.out.println(updateResult.getModifiedCount());

Deleting documents
MongoCollection also contains methods for removing documents from a collection.
The corresponding methods are deleteOne and deleteMany. The former can be used
to delete the first record matching a key:

MongoCollection<org.bson.Document> coll =
 db.getCollection("users");
coll.deleteOne(eq("name", "john"));

Here is the deleteMany method that deletes all the users whose names are john:

DeleteResult deleteResult = coll.deleteMany(eq("name", "john"));

System.out.println(deleteResult.getDeletedCount());

Summary
In this chapter, we covered the first steps with MongoDB and the Java driver, which
allows you to perform the same operations that are available in the mongo shell,
which was covered in the previous chapter.

As there are two main versions of the MongoDB driver (2.X and 3.X), we have
covered the basics of both APIs so that you can decide to code your applications
using a consolidated API (2.X) or pilot them towards the newer 3.X API.

The next chapter is going to teach you some more advanced topics about the Java
driver such as Java to JSON mapping using the Google Gson API, using indexes,
and more.

Chapter 3

[57]

MongoDB CRUD
Beyond the Basics

The previous chapter of this book took you through the first green bar in connecting
Java and MongoDB. You learned how to perform some basic create, read, update,
and delete operations using simple Java classes. It is now time to address some
advanced concerns, which are part of every real work application. Here is what we
are going to discuss in this chapter in detail:

• How to map MongoDB documents in Java objects and vice versa
• How to apply indexes to your documents to speed up searches
• How to code bulk operations to improve the speed of your insert/updates

Seeing MongoDB through the Java lens
So far, we have had some interaction with the Java driver using com.mongodb.
DBObject as a simple translator between the Java objects and the MongoDB
documents:

DBCursor cursor = coll.find();

 try {
 while(cursor.hasNext()) {
 DBObject object = cursor.next();
 System.out.println(object.get("username"));
 }
 } finally {
 cursor.close();
 }

MongoDB CRUD Beyond the Basics

[58]

When you move from the basics to a more complex project, you will find that this
approach requires writing lots of code and it is prone to runtime errors.

There are some solutions to this problem with different degrees of complexity. In this
chapter, we will account for some simple ones that require a minimal learning curve.
Later on, in Chapter 5, Managing Data Persistence with MongoDB and JPA, we will
describe how to use some frameworks that can let you persist Java objects directly
into MongoDB as documents, at the price of some enhanced complexity.

Here is what we are going to learn in the next section:

• Extending the MongoDB core classes to save custom objects into
the database.

• Using a Java library to translate Mongo documents into Java objects (and vice
versa) via JSON.

Extending the MongoDB core classes
The first approach requires that you either implement com.mongodb.DBObject
(and provide some default implementation of its core methods) or directly extend
com.mongodb.BasicDBObject.

As you can see from the preceding diagram, the first choice is more flexible;
however, you need to provide some default implementation for the basic methods of
the collections mapped by your POJO. (For the sake of simplicity, only the two most
common methods, put and get, are indicated in the diagram.)

Chapter 3

[59]

Let's see a minimal implementation of a Java class SimplePojo, which implements
com.mongodb.DBObject:

package com.packtpub.mongo.chapter3;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;

import org.bson.BSONObject;

import com.mongodb.DBObject;

public class SimplePojo implements DBObject {
 private Map<String, Object> data;
 private boolean partial;

 public SimplePojo() {
 data = new HashMap<>();
 partial = false;
 }

 @Override
 public Object put(String key, Object value) {
 return data.put(key, value);
 }

 @SuppressWarnings("unchecked")
 @Override
 public void putAll(BSONObject o) {
 data.putAll(o.toMap());
 }

 @SuppressWarnings({ "rawtypes", "unchecked" })
 @Override
 public void putAll(Map m) {
 data.putAll(m);
 }

 @Override
 public Object get(String key) {

MongoDB CRUD Beyond the Basics

[60]

 return data.get(key);
 }

 @SuppressWarnings("rawtypes")
 @Override
 public Map toMap() {
 return data;
 }

 @Override
 public Object removeField(String key) {
 return data.remove(key);
 }

 @Override
 public boolean containsKey(String key) {
 return data.containsKey(key);
 }

 @Override
 public boolean containsField(String key) {
 return data.containsKey(key);
 }

 @Override
 public Set<String> keySet() {
 return data.keySet();
 }

 @Override
 public void markAsPartialObject() {
 partial = true;
 }

 @Override
 public boolean isPartialObject() {
 return partial;
 }
}

Chapter 3

[61]

As you can see, we had to provide a default implementation for the methods
specified in the com.mongodb.DBObject interface. Now we'll insert our SimplePojo
class directly into our collection, as follows:

DB db = mongoClient.getDB("sampledb");
DBCollection coll = db.getCollection("pojo");

SimplePojo obj = new SimplePojo();
obj.put("user", "user1");
obj.put("message", "message");
obj.put("date", new Date());

coll.insert(obj);

Retrieving the Java class from the database is straightforward as well. First you need
to call setObjectClass on your collection to state that you are going to retrieve
objects of that type. Then you can use the finder methods of the collection as usual:

coll.setObjectClass(SimplePojo.class);

SimplePojo tw = (SimplePojo)coll.findOne();

System.out.println(tw.get("user"));

The major downside of this approach is that you have to provide some boilerplate
code with a default implementation of the com.mongodb.DBObject class. As an
alternative, you can consider extending the class com.mongodb.BasicDBObject,
which already contains a com.mongodb.DBObject default implementation. This will
avoid writing boilerplate code, at the price of lack of flexibility in your code. As a
matter of fact, you will not be able to extend any other class from your code.

Here is a rewritten version of SimplePojo that extends com.mongodb.
BasicDBObject and merely contains a business method to return an uppercased
version of a key requested:

package com.packtpub.mongo.chapter3;

import com.mongodb.BasicDBObject;

public class SimplePojo extends BasicDBObject {

 public String getUpperCaseKey(String key) {
 String value = (String) super.get(key);
 if (value != null)
 return value.toUpperCase();

MongoDB CRUD Beyond the Basics

[62]

 else
 return null;

 }
}

In terms of implementation, nothing will change, and you can pass your Java classes
to the insert method of your collection, as you already know:

SimplePojo pojo = new SimplePojo();
pojo.put("user", "user2");
pojo.put("message", "msg");
pojo.put("date", new Date());

coll.insert(pojo);

Using the Gson API with MongoDB
Using JSON as a medium between Java and external system is a well-tested
integration pattern. There are several libraries available to serialize and deserialize
Java classes in JSON, the most popular one being Google's Gson (https://code.
google.com/p/google-gson/). This API provides two simple toJson() and
fromJson() constructs to convert Java objects to JSON and vice versa; besides this,
Gson supports converting arbitrarily complex objects including deep inheritance
hierarchies and makes extensive use of Java's generic types.

Downloading the Gson API
You can download the latest release of Gson from the Maven central repository at
http://search.maven.org/#browse%7C472424538.

Include the JAR driver of Gson in the libraries of your project, as displayed in the
following screenshot:

https://code.google.com/p/google-gson/
https://code.google.com/p/google-gson/
http://search.maven.org/#browse%7C472424538

Chapter 3

[63]

If you are using Maven, then you can include the following dependency in your pom.
xml file (see the next chapter for more details about using Maven in your projects):

<dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.3.1</version>
</dependency

Using Gson to map a MongoDB document
In the first example, we will map a MongoDB document with a Java class composed
of a set of fields. So first, let's create a document that contains some basic keys:

MongoClient mongoClient = new MongoClient("localhost", 27017);

DB db = mongoClient.getDB("sampledb");

DBCollection coll = db.getCollection("javastuff");

DBObject doc = new BasicDBObject("name", "owen")
 .append("age", 25)
 .append("email", "owen@gmail.com")
 .append("phone", "321-456-778");

coll.insert(doc);

As evident from the following document query, a document has been created in the
javastuff collection:

> db.javastuff.find().pretty()

{

 "_id" : ObjectId("55266979d3d5368080f97f92"),

 "name" : "owen",

 "age" : 25,

 "email" : "owen@gmail.com",

 "phone" : "321-456-778"

}

Now let's create a simple Java bean that will be able to contain this document
structure:

public class Customer {

 String name;

MongoDB CRUD Beyond the Basics

[64]

 int age;
 String email;
 String phone;

 public Customer(String name, int age, String email, String
 phone) {
 super();
 this.name = name;
 this.age = age;
 this.email = email;
 this.phone = phone;
 }

 @Override
 public String toString() {
 return "Customer [name=" + name + ", age=" + age + ", email="
 + email + ", phone=" + phone + "]";
 }
}

Please note that it is not necessary to use any annotations to
indicate that a class field is to be included for serialization
and deserialization. By default, all fields contained in the class
(and its superclasses) will be serialized into Java objects. In the
Custom field names in your Java classes section, we will show you
how to use annotations to map the field with custom names.

Being based on simple Java types such as string and int, mapping the MongoDB
document to the Customer Java class is a piece of cake. Let's see how to do it:

Gson gson = new Gson();
DBObject doc = new BasicDBObject("name", "owen");

DBObject obj = coll.findOne(doc);
Customer c = gson.fromJson(obj.toString(), Customer.class);
System.out.println("Found customer " + c);

The expected output will be the toString() method of the Customer class that
dumps the fields contained in the class:

Customer [name=owen, age=25, email=owen@gmail.com,
 phone=321-456-778]

Chapter 3

[65]

Inserting Java objects as a document
The Google's Gson API can also leverage the reverse process, that is, inserting a Java
class into MongoDB via JSON. The trick is done by the toJson method that serializes
a Java class into the JSON format:

DB db = mongoClient.getDB("sampledb");

DBCollection coll = db.getCollection("javastuff");

System.out.println("Collection created successfully");

Customer c = new Customer("john", 22, "john@gmail.com",
 "777-666-555");

Gson gson = new Gson();
String json = gson.toJson(c);

DBObject dbObject = (DBObject) JSON.parse(json);

coll.insert(dbObject);

In the above example, the JSON string mapping the Customer class is stored in the
string JSON. You can then use the static parse method of the com.mongodb.util.
JSON class to convert the JSON string into a DBObject type.

The inserted structure will be as follows:

> db.javastuff.find({"name":"john"}).pretty()

{

 "_id" : ObjectId("55268359d3d51c80bdb231b5"),

 "name" : "john",

 "age" : 22,

 "email" : "john@gmail.com",

 "phone" : "777-666-555"

}

MongoDB CRUD Beyond the Basics

[66]

Mapping embedded documents
So far, we have mapped very simple basic structures with MongoDB. In real world
cases, you will have to deal with Java classes having references to other objects. For
example, we could think of a Customer class, which contains some information in a
separate class named Info:

package com.packtpub.chapter3.mongodemo;

public class CustomerInfo {

 String name;
 Info info;

 public CustomerInfo(String name, int age, String email, String
 phone) {

 this.name = name;

 this.info = new Info(age, email, phone);
 }

 public Info getInfo() {
 return info;
 }

 public void setInfo(Info info) {
 this.info = info;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Override
 public String toString() {
 return "CustomerInfo [name=" + name + ", info=" + this.info +
 "] " ;
 }

 class Info {

Chapter 3

[67]

 public Info(int age, String email, String phone) {
 super();
 this.email = email;
 this.phone = phone;
 this.age = age;
 }
 public Info() {

 }
 String email;
 String phone;
 int age;

 public String getEmail() {
 return email;
 }

 public void setEmail(String email) {
 this.email = email;
 }

 public String getPhone() {
 return phone;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }

 public int getAge() {
 return age;
 }

 public void setAge(int age) {
 this.age = age;
 }

 @Override
 public String toString() {
 return "Info [email=" + email + ", phone=" + phone + ",
 age=" + age + "]";
 }

 }
}

MongoDB CRUD Beyond the Basics

[68]

In the new class called CustomerInfo, we have highlighted the fields that will be
mapped by MongoDB keys.

As you are aware, creating embedded documents in MongoDB can be done by setting
a key to a DBObject structure containing the embedded document. In our case, we
will structure the info key to contain the embedded document's information:

BasicDBObject doc = new BasicDBObject("name",
 "owen").append("info", new BasicDBObject("age",
 25).append("email", "owen@gmail.com").append("phone",
 "321-456-778"));

coll.insert(doc);

DBObject obj = coll.findOne(doc);

CustomerInfo c = gson.fromJson(obj.toString(),
 CustomerInfo.class);

System.out.println("Found customer " + c);

The expected output should match the following query executed through the
mongo shell:

> db.javastuff.find({"name":"owen"}).pretty()

{

 "_id" : ObjectId("5526888bd3d56a86cea8ea12"),

 "name" : "owen",

 "info" : {

 "age" : 25,

 "email" : "owen@gmail.com",

 "phone" : "321-456-778"

 }

}

Custom field names in your Java classes
The Customer class contains a set of fields that are exactly equivalent to the
key names to be found in the MongoDB collection. The schema of a MongoDB
document is, however, quite flexible compared to a standard database table. One
simple strategy could be choosing custom names for your class fields and mapping
the corresponding MongoDB keys with the com.google.gson.annotations.
SerializedName annotation. See the following class as an example:

Chapter 3

[69]

import com.google.gson.annotations.SerializedName;

public class Customer {

 @SerializedName("name")
 String userName;

 @SerializedName("age")
 int userAge;

 @SerializedName("email")
 String userEmail;

 @SerializedName("phone")
 String userPhone;

}

In the next section, we will deal with a more complex concern, that is, mapping
complex BSON types used by MongoDB to store entries.

Mapping complex BSON types
The preceding examples used simple Java types such as String and Integers.
Sometimes, however, you might need to use a custom serialization/deserialization
strategy for your classes.

For example, consider the following document structure:

{
 "_id" : ObjectId("5527b0bbd3d53064aac7c991"),
 "name" : "john",
 "age" : 22,
 "email" : "john@gmail.com",
 "phone" : "777-666-555"
}

You might think that adding the _id field to the Customer class will do the job of
mapping Mongo's _id key:

public Customer(Object _id, String name, int age, String email,
 String phone) {
 super();
 this._id = _id;
 this.name = name;
 this.age = age;

MongoDB CRUD Beyond the Basics

[70]

 this.email = email;
 this.phone = phone;
}
public String toString() {
 return "Customer{" + "_id=" + _id + ", name=" + name + ", age="
 + age + ", email=" + email + ", phone=" + phone + '}';
}

Let's see what happens if we try to deserialize the preceding document by using the
fromJson method:

Customer c = gson.fromJson(obj.toString(), Customer.class);

System.out.println(c);

What we are trying to achieve is the following representation of the Customer class:

{_id=558c1007578ef44c4cbb0eb8, name=owen, age=25,
 email=owen@gmail.com, phone=321-456-778}

However, as you can see from the following output, the _id object was not correctly
parsed as we expected:

_id={$oid=5527b117d3d511091e1735e2}, name=owen, age=22,
 email=john@gmail.com, phone=777-666-555

Many other examples exist, for example, if you are dealing
with date and time libraries.

Luckily, Gson allows registering custom serializers/deserializers so that you can
convert these objects into the type that is needed by your application.

This is done in two steps:

1. At first you need to code a serializer (if you are inserting custom types
in MongoDB) or a deserializer (if you are going to parse custom entries
contained in MongoDB).

2. Then, you need to register this custom adapter.

Let's see both steps, in case you want to parse the _id unique identifier of MongoDB
documents.

A custom deserializer needs to implement the com.google.gson.
JsonDeserializer class as follows:

import com.google.gson.JsonDeserializationContext;
import com.google.gson.JsonDeserializer;

Chapter 3

[71]

import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import com.google.gson.JsonParseException;

public class CustomAdapter implements JsonDeserializer<Customer> {

 public Customer deserialize(JsonElement json,
 java.lang.reflect.Type typeOfT, JsonDeserializationContext
 context) throws JsonParseException {
 JsonObject jObj = json.getAsJsonObject();

 String id =
 jObj.get("_id").toString().replaceAll(".*\"(\\w+)\"}",
 "$1");

 String name = jObj.get("name") != null ?
 jObj.get("name").getAsString() : "";
 String email = jObj.get("email")!= null ?
 jObj.get("email").getAsString() : "";
 String phone = jObj.get("phone")!= null ?
 jObj.get("phone").getAsString() : "";
 int age = jObj.get("age")!= null ? jObj.get("age").getAsInt()
 : 0;

 return new Customer(id,name,age,email,phone);
 }
}

As you can see, this class contains the deserialization logic in the method
deserialize, where each field is parsed according to your custom parsing rules.
In this case, the value of the _id field is extracted using a regular expression, which
scans for the identifier contained in the parentheses.

Please note that using a schemaless database implies a lack of
control over the data contained in your collection. As you can
see, we had to check against null on each field of our document.

Some changes will also be required in your main Java class, so that you register the
adapter on the Gson class, by means of the registerTypeAdapter method contained
in the com.google.gson.GsonBuilder class:

GsonBuilder builder=new GsonBuilder();

Gson gson = new GsonBuilder().registerTypeAdapter(Customer.class, new
CustomAdapter()).create();

MongoDB CRUD Beyond the Basics

[72]

BasicDBObject doc = new BasicDBObject("name", "owen");

DBObject obj = coll.findOne(doc);

Customer c = gson.fromJson(obj.toString(), Customer.class);
System.out.println("Found customer " + c);

Now the toString output of the Customer class reveals that you have been able to
parse the $id field correctly:

_id=5527b117d3d511091e1735e2, name=owen, age=22,
 email=john@gmail.com, phone=777-666-555

Using indexes in your applications
The concept of an index in a database is pretty equivalent to the index contained in a
book. So, instead of searching for a section across all the pages of the book onwards,
you search for the relevant section in the index and then open the book on that page.

This concept has been adopted by all relational databases and it works quite the
same on MongoDB, that is, by creating a special data structure that is able to store a
small part of the collection's dataset in such a way that is easy to traverse from.

Without using indexes, MongoDB must perform an expensive collection scan, which
means to scan every document in a collection, in order to find those documents
that match the query string. Indexes can improve the efficiency of your queries by
limiting the number of documents they must inspect on each query.

This is not true in every case. As a matter of fact, a built-in index
already exists on every collection on the _id field. This index is unique
and prevents duplicate insertions using the _id field in a collection.

Let's see a practical example:

MongoClient mongoClient = new MongoClient("localhost", 27017);

DB db = mongoClient.getDB("sampledb");

DBCollection coll = db.getCollection("indextest");

for (int ii=0;ii<100000;ii++) {

DBObject doc = new BasicDBObject("userid", ii);

Chapter 3

[73]

coll.insert(doc);

}

Here, we are inserting 1,00,000 documents in one go. Once the insertion completes,
we can move to the mongo shell and execute the explain function to see what
happens behind the scenes when mongo performs a query:

> db.indextest.find({userid: 50000}).explain("executionStats")

{

 "queryPlanner":{

 "plannerVersion":1,

 "namespace":"sampledb.indextest",

 "indexFilterSet":false,

 "parsedQuery":{

 "userid":{

 "$eq":"1111"

 }

 },

 "winningPlan":{

 "stage":"COLLSCAN",

 "filter":{

 "userid":{

 "$eq":"1111"

 }

 },

 "direction":"forward"

 },

 "rejectedPlans":[

]

 },

 "executionStats":{

 "executionSuccess":true,

 "nReturned":0,

 "executionTimeMillis":6,

 "totalKeysExamined":0,

 "totalDocsExamined":100000,

 "executionStages":{

MongoDB CRUD Beyond the Basics

[74]

 "stage":"COLLSCAN",

 "filter":{

 "userid":{

 "$eq":"1111"

 }

 },

 "nReturned":0,

 "executionTimeMillisEstimate":0,

 "works":10002,

 "advanced":0,

 "needTime":10001,

 "needFetch":0,

 "saveState":78,

 "restoreState":78,

 "isEOF":1,

 "invalidates":0,

 "direction":"forward",

 "docsExamined":100000

 },

 "allPlansExecution":[

]

 },

 "serverInfo":{

 }

}

The totalDocsExamined attribute reveals the number of documents MongoDB has
looked through; as you can see, every single document has been searched. Although
the time needed to scan the collection might look insignificant (6 ms) this is due to
the fact that we are dealing with a minimal document and that of course MongoDB is
quite fast!

Also, the attribute totalKeysExamined set to 0 indicates that no index key was
scanned during the search.

Chapter 3

[75]

Besides this, you might instruct the Mongo cursor to stop looking through other
documents once an occurrence is found using the limit(1) operator (which is also
available through the Java driver). That could be helpful but may not be exactly what
you are looking for in your search.

In the next section, we will see how to use an index to limit the number of documents
to be scanned.

Defining an index in your Java classes
Adding an index to your collection is quite easy. In order to do that, you need to
specify which fields of a document need to be indexed and state whether the index
ordering is going to be in ascending (1) or descending (-1) order. For example, the
following creates an ascending index on the userid field:

coll.createIndex(new BasicDBObject("userid",1));

If you have been using the MongoDB Java driver in its earlier version,
you might have used the ensureIndex method to create an index if
that is not available. This method is now deprecated and you have to
use createIndex as shown.

Now, let's execute the explain plan query again and examine the result (we will
show you just the relevant part of the statistics):

> db.indextest.find({userid: 5000}).explain("executionStats")

{

. . . .

 "executionStats":{

 "executionSuccess":true,

 "nReturned":0,

 "executionTimeMillis":0,

 "totalKeysExamined":1,

 "totalDocsExamined":1,

 "executionStages":{

 "stage":"FETCH",

 "nReturned":0,

 "executionTimeMillisEstimate":0,

 "works":1,

MongoDB CRUD Beyond the Basics

[76]

 "advanced":0,

 "needTime":0,

 "needFetch":0,

 "saveState":0,

 "restoreState":0,

 "isEOF":1,

 "invalidates":0,

 "docsExamined":0,

 "alreadyHasObj":0,

 "inputStage":{

 "stage":"IXSCAN",

 "nReturned":0,

 "executionTimeMillisEstimate":0,

 "works":1,

 "advanced":0,

 "needTime":0,

 "needFetch":0,

 "saveState":0,

 "restoreState":0,

 "isEOF":1,

 "invalidates":0,

 "keyPattern":{

 "userid":1

 },

 "indexName":"userid_1",

 "isMultiKey":false,

 "direction":"forward",

 "indexBounds":{

 "userid":[

 "[\"1111\", \"1111\"]"

]

 },

 "keysExamined":0,

 "dupsTested":0,

 "dupsDropped":0,

Chapter 3

[77]

 "seenInvalidated":0,

 "matchTested":0

 }

 },

 "allPlansExecution":[

]

 },

. . .

The explain() output is now a bit more complex; let's focus on the fields we are
interested in. The number of totalDocsExamined documents is just one and the
query is now instantaneous as the index named userid_1 has been used. However,
everything has its flip side. In this case, we will have super-fast queries at the price
of slower inserts/updates as indexes have to be rewritten too. More storage has to
be planned also since indexes will need it. However, that is now a peculiarity of
MongoDB, but it is a clear assumption that is true on every database.

For the sake of completeness, we will mention that the explain function is also
available on the Java side, by calling the explain method directly on a search string:

BasicDBObject doc = new BasicDBObject("userid", "1111");
DBObject explainObject = coll.find(doc).explain();

System.out.println(explainObject) ;

Using compound indexes
The preceding examples are making the assumption that our indexed field is a prefix
in the query. For example, consider the following search:

BasicDBObject doc = new BasicDBObject("code", "1111").
append("userid",5000);

DBObject explainObject = coll.find(doc);

In this case, having defined the index on the userid field, this is not helping our
query too much, as the index will come into play only after scanning the first key,
that is, code. A solution, in this case, could be to create a compound index that is a
handy solution if your search contains multiple criteria.

MongoDB CRUD Beyond the Basics

[78]

The following sample diagram illustrates a compound index using two fields, such
as userid and code:

As you can see from the preceding figure, in a Compound Index, a single index
structure holds references to multiple fields (userid and code) within a collection's
documents.

Creating a Compound Index is not very different from creating a single index field.
Using the fluent API provided by the BasicDBObject, you can append the keys and
then create the index with that object:

DBObject obj = new BasicDBObject();
obj.put("userid", 1);
obj.put("code", 1);
coll.createIndex(obj);

You can run the Compound Index creation and verify that the search cursor is using
the Compound Index and scanning only one document:

> db.indextest.find({userid: 5000, code:5000}).explain("executionStats")

{

. . . .

"executionStats":{

Chapter 3

[79]

 "executionSuccess":true,

 "nReturned":0,

 "executionTimeMillis":0,

 "totalKeysExamined":1,

 "totalDocsExamined":1,

 "executionStages":{

 "stage":"FETCH",

 "nReturned":0,

 "executionTimeMillisEstimate":0,

 "works":1,

 "advanced":0,

 "needTime":0,

 "needFetch":0,

 "saveState":0,

 "restoreState":0,

 "isEOF":1,

 "invalidates":0,

 "docsExamined":0,

 "alreadyHasObj":0,

 "inputStage":{

 "stage":"IXSCAN",

 "nReturned":0,

 "executionTimeMillisEstimate":0,

 "works":1,

 "advanced":0,

 "needTime":0,

 "needFetch":0,

 "saveState":0,

 "restoreState":0,

 "isEOF":1,

 "invalidates":0,

 "keyPattern":{

 "userid":1,

 "code":1

MongoDB CRUD Beyond the Basics

[80]

 },

 "indexName":"userid_1_code_1",

 "isMultiKey":false,

 "direction":"forward",

 "indexBounds":{

 "userid":[

 "[\"1111\", \"1111\"]"

],

 "code":[

 "[MinKey, MaxKey]"

]

 },

 "keysExamined":0,

 "dupsTested":0,

 "dupsDropped":0,

 "seenInvalidated":0,

 "matchTested":0

 }

 },

 "allPlansExecution":[

]

 },

}

Using text indexes in your documents
MongoDB has support for text indexes that can be used to search strings of text
contained in documents of a collection.

Since version 2.6 of MongoDB, the text search feature is enabled by
default, so you don't need to do anything in order to activate it.

In order to perform queries using the text index, you need to use the $text query
operator. In the following example, we are creating a text index on the content key:

MongoClient mongoClient = new MongoClient("localhost", 27017);

DB db = mongoClient.getDB("sampledb");

Chapter 3

[81]

DBCollection coll = db.getCollection("textitems");

coll.createIndex(new BasicDBObject("content", "text"));

coll.insert(new BasicDBObject().append("content", "mytext other
content"));

DBObject search = new BasicDBObject("$search", "mytext");

DBObject textSearch = new BasicDBObject("$text", search);

int count = coll.find(textSearch).count();
System.out.println("Found text search matches: " + count);

Once the index has been created, we will use the $text operator to perform a text
search on the collection, using the string of words contained in the $search operator:

MongoClient mongoClient = new MongoClient("localhost", 27017);

DB db = mongoClient.getDB("sampledb");

DBCollection coll = db.getCollection("textitems");

coll.insert(new BasicDBObject("_id", 1).append("text", "mytext"));

List<DBObject> list = coll.getIndexInfo();

for (DBObject obj:list)
 System.out.println(obj);
}

The method getIndexInfo returns a list of the indexes for this collection
as DBObject. This information is printed on the console, which in our case,
outputs the following:

 { "v" : 1 , "key" : { "_id" : 1} , "name" : "_id_" , "ns" :
"sampledb.textitems"}

Searching for text by language
Text search can be done using additional options such as language search, which
enables restricting the text search to a particular language. The list of languages
supported in this text search is contained in the driver documentation at
http://docs.mongodb.org/manual/reference/text-search-languages/.

http://docs.mongodb.org/manual/reference/text-search-languages/

MongoDB CRUD Beyond the Basics

[82]

Here is a full example that shows how to restrict your searches only to English words
by means of the $language operator:

MongoClient mongoClient = new MongoClient("localhost", 27017);

DB db = mongoClient.getDB("sampledb");

DBCollection coll = db.getCollection("textitems");

coll.createIndex(new BasicDBObject("textcontent", "text"));

coll.insert(new BasicDBObject("_id", 0).append("textcontent",
 "Some data"));
coll.insert(new BasicDBObject("_id", 1).append("textcontent",
 "Other data"));
coll.insert(new BasicDBObject("_id", 2).append("textcontent", "Not
 important"));

BasicDBObject search = new BasicDBObject("$search", "data");

DBObject textSearch = new BasicDBObject("$text",
 search.append("$language", "english"));

int matchCount = coll.find(textSearch).count();
System.out.println("Found lanuguagage matches: " + matchCount);

The expected output, from the last line of code, is to print:

Found language matches: 2

Searching for text by score
A common requirement for a text search engine is to provide a score, for example, in
the case of searches including a complex set of words. Score search can be done by
setting the textScore parameter in the $meta projection operator.

The score represents the relevance of a document to a given text
search query.

The following example shows how to return the score in a search by means of the
metadata associated with the query:

DBObject scoreSearch = new BasicDBObject("score", new
DBObject("$meta", "textScore"));

Chapter 3

[83]

DBObject doc = coll.findOne(textSearch, scoreSearch);

System.out.println("Highest scoring document: "+ doc);

Coding bulk operations
One of the highlights available since MongoDB 2.6 is the new bulk write
operations. Bulk operations allow building a list of write operations to be executed
in bulk for a single collection. The Java driver for MongoDB includes a new bulk
API as well, which allows your applications to leverage these new operations
using a fluent-style API.

First of all, let's explore this API that can be executed using two main styles:

• Ordered bulk operations: Every operation will be executed in the order they
are added to the bulk operation, halting when there's an error

• Unordered bulk operations: These operations are executed in parallel and
neither guarantee order of execution, nor do they stop when an error occurs

First, let's see an example of OrderedBulkOperation:

BulkWriteOperation builder =
 collection.initializeOrderedBulkOperation();

builder.insert(new BasicDBObject("item", "A1"));
builder.insert(new BasicDBObject("item", "A2"));
builder.insert(new BasicDBObject("item", "A3"));

builder.find(new BasicDBObject("item", "A1")).updateOne(new
 BasicDBObject("$set", new BasicDBObject("A1", "AX")));

BulkWriteResult result = builder.execute();

System.out.println("Bulk Completed: Inserted documents " +
 result.getInsertedCount());
System.out.println("Bulk Completed: Modified documents " +
 result.getModifiedCount());

As you can see, an instance of the BulkWriteOperation class is created using the
initializeOrderedBulkOperation method of the collection class. Operations are
added using the fluent API available in the BulkWriteOperation.

MongoDB CRUD Beyond the Basics

[84]

The expected output of the preceding execution will be as follows:

Bulk Completed: Inserted documents 3

Bulk Completed: Modified documents 1

Finally, the BulkWriteResult is used as a wrapper that contains the results of the
Bulk.execute() method.

The same code written using an unordered bulk operation can be coded this way:

BulkWriteOperation builder =
 collection.initializeUnorderedBulkOperation();

builder.insert(new BasicDBObject("item", "A1"));
builder.insert(new BasicDBObject("item", "A2"));
builder.insert(new BasicDBObject("item", "A3"));

builder.find(new BasicDBObject("item", "A1")).updateOne(new
 BasicDBObject("$set", new BasicDBObject("A1", "AX")));

BulkWriteResult result = builder.execute();

Comparing plain inserts with
BulkWriteOperations
Bulk operations are most useful when you have a batch of inserts/updates which
need to be executed in one single shot. The advantage in terms of performance is
notable. As a proof of evidence, we will compare the execution of a batch of 10,000
documents using the default approach:

long l1 = System.currentTimeMillis();

for (int ii=0;ii<10000;ii++) {
 DBObject doc = new BasicDBObject("name","frank")
 .append("age", 31)
 .append("info", new BasicDBObject("email",
 "frank@mail.com").append("phone", "222-111-444"));

 coll.insert(doc);
}

long l2 = System.currentTimeMillis();

System.out.println(l2-l1);

Chapter 3

[85]

By running the above example, 10,000 inserts are performed in 7421 ms. Let's
reengineer the code to use bulk operations:

long l1 = System.currentTimeMillis();

BulkWriteOperation builder = coll.initializeOrderedBulkOperation();

for (int ii=0;ii<10000;ii++) {
 DBObject doc = new BasicDBObject("name","frank")
 .append("age", 31)
 .append("info", new BasicDBObject("email",
 "frank@mail.com").append("phone", "222-111-444"));

 builder.insert(doc);
}
BulkWriteResult result = builder.execute();

long l2 = System.currentTimeMillis();

System.out.println(l2-l1);

The second execution was completed in as little as 1535 ms.

You can further reduce the execution by switching to an unordered bulk execution:

BulkWriteOperation builder =
 coll.initializeUnorderedBulkOperation();

This will bring down the time to even less, that is, 1446 ms to insert 10,000 records.

Summary
In this chapter, we have gone through some advanced features available in the
MongoDB Java driver, and we examined some strategies for mapping Java objects
to MongoDB documents. The solutions we have covered will fit into many practical
scenarios. We now need to change the perspective of our examples a bit as we
move into an enterprise context. In the next chapter, we will show you how to use
the knowledge we have built so far to create a Java Enterprise application using
MongoDB as the storage.

Chapter 4

[87]

MongoDB in the Java EE 7
Enterprise Environment

In this chapter, we will dive into the Java Enterprise Edition (JEE) API by creating a
simple web application, which uses MongoDB as storage. We will demonstrate how
this technology can leverage a real-world scenario using simple and lean constructs.
Some kind of exposure with Java EE technology will help you to get quickly to the
point; however, a brief overview of the Java EE platform will be provided. In more
detail, here is what we will discuss in this chapter:

• A brief introduction to the Java EE platform
• Design and development of the application and tools required

to construct them
• Deploying the application to a Java EE certified application server

Entering into the Java EE land
Writing an application for the IT industry can be a big challenge for any developer,
as it needs to address some important concerns such as security, portability, and
high availability just to mention a few. Most of them need to also interact with other
systems and be managed from a central point. Using the JEE platform, you can
leverage all these features and more, focusing on the most important concern, that is
your business requirements.

MongoDB in the Java EE 7 Enterprise Environment

[88]

The Java EE platform development is handled through the Java Community Process
(JCP), which is a community in charge of developing specifications for all Java
technologies. This community is composed of top IT industry experts that have set
the Java Specification Requests (JSRs) to delineate the Java EE technologies. Thanks
to the work of the Java Community, developing applications with Java EE is now
easier and more powerful at every new release. The set of available APIs has grown
too, making up a big picture of technology, which is shown in the following diagram:

We have to admit that a large amount of available APIs might be overwhelming for
a beginner who is looking for a quick head start with this technology. Fortunately,
you don't need to be scared by that picture as it's absolutely not needed to learn all of
that, but you can code real-world applications with as little as a couple of the above
building blocks. In our case, we will pick up some core components such as:

• A technology for developing the end user interface such as Java Server Faces
(JSF)

• An API that can bridge your requests to your MongoDB applications such as
RESTFul web services

• Some glue between the frontend and the backend and the ability to let the
Java EE container to manage objects such as MongoDB client connections.
We will use Context and Dependency Injection (CDI) for this purpose.

Chapter 4

[89]

In order to use the preceding features, we need a JEE Container at first, which is a
special kind of Java application that is compliant with JEE specifications and can be,
therefore, used to execute your JEE applications. Let's pick up a JEE Container at
first, then we will suggest some tooling that can be used to simplify the development
of JEE applications.

Getting a Java EE Container
Running Java EE applications can be done by means of open source solutions and
vendor products as well. The choice between open source and vendor solutions is
out of the scope of this book as it is often not a matter of technology features, but it
is well shaped also by the commercial choices of your IT company. We will use an
open source product called WildFly, formerly known as the JBoss application server,
which is now developed by Red Hat (http://www.redhat.com).

As an author of some books about WildFly, I hope you don't find
me biased on this choice. Besides, you can be assured that you
will be using an advanced, stable, and well-known in the trenches
middleware product.

Downloading WildFly
You can freely download WildFly from http://www.wildfly.org.

Select the latest stable release which is, at the time of writing, 8.2. WildFly ships
as a ZIP file so all you have to do is a postinstallation job, unzipping it in a folder
of your machine:

unzip wildfly-8.2.0.Final.zip

In order to start WildFly, it is recommended to set the JAVA_HOME variable so that it
points to the location where you have installed Java. You can add this information to
your system as follows:

• Linux users: Enter the following script in your .profile/.bash_profile
script (substitute this with the actual location of Java)
export JAVA_HOME=/usr/java/jdk1.7.0_71

• Windows users: Right-click on the My Computer icon on your desktop and
select Properties. Then select Advanced Tab contained in the Environment
Variables button. Under System Variable, click on New. Enter the variable
name as JAVA_HOME and value the Java install path. Click on OK and then on
Apply Changes.

http://www.redhat.com
http://www.wildfly.org

MongoDB in the Java EE 7 Enterprise Environment

[90]

Starting WildFly and testing the installation
WildFly start up scripts are located in the bin folder of the root installation. You can
basically start it in two different modes:

• Standalone mode, which means that the application server will be a single
Java process, where applications can be executed

• Domain mode, in case you want to manage a set of application servers from a
central Java process called the Domain controller

Discussing the domain mode is out of the scope of this book; therefore, we will use
the single process mode (standalone). No changes to your code will be required to
run the application in domain mode.

Hence, you can start the application server by executing the following command
from the bin folder:

/standalone.sh

Windows users should use the equivalent batch script:

standalone.bat

In the server console, you should find something like this, at the end of startup
process:

10:07:16,137 INFO [org.jboss.as] (Controller Boot Thread) JBAS015961:
Http management interface listening on http://127.0.0.1:9990/management

10:07:16,140 INFO [org.jboss.as] (Controller Boot Thread) JBAS015951:
Admin console listening on http://127.0.0.1:9990

10:07:16,141 INFO [org.jboss.as] (Controller Boot Thread) JBAS015874:
WildFly 8.2.0.Final "Tweek" started in 29033ms - Started 255 of 310
services (92 services are lazy, passive or on-demand)

You can verify that the server is reachable from the network by simply pointing your
browser to the application server's welcome page, which is reachable, by default, at
the address http://localhost:8080.

Designing our application
Our application will be a simple bookstore which contains a list of book titles. A start
up class will be in charge of adding books to the bookstore. Once executed, the user
will be able to purchase books and perform searches over the titles.

Chapter 4

[91]

Business use cases such as payment checks are excluded from this basic example
as this is not a typical database concern; hence, it is out of the scope of this book.
Nevertheless, you can easily include this functionality by adding any Stateful
component (such as Stateful beans or Session Scoped beans).

On the other hand, a database concern is updating the available list of books, once
the user purchases a copy of it.

Every application starts from a proper data schema design, so our first step will be
to define the database structure and then to create the Java EE interfaces, starting
with those directly involved with data CRUD, and then moving on to the customer
view design.

Designing the schema
Our MongoDB documents will be created in the following storage:

• Database: javaee7
• Collection: bookstore

The following is the list of keys we will store in our MongoDB document:

• Book ID (automatically generated)
• Book title (String)
• Book author (String)
• Book type (String)
• Book price (Double)
• Book copies (Integer)

Here is an example document that we will use in our application:

{
 "_id" : ObjectId("5541ea47438724845af4cff7"),
 "title" : "The Hobbit",
 "author" : "J.R.R. Tolkien",
 "type" : "Fantasy",
 "price" : 8,
 "copies" : 10
}

All database objects will be created by our Java Enterprise application, so right now
your only concern will be to start up MongoDB.

MongoDB in the Java EE 7 Enterprise Environment

[92]

Building up the Enterprise project with
NetBeans
Our Java Enterprise application will now be created, step by step.

We will use NetBeans for coding and building our project. Our helping hand will
be Maven, which is a de facto standard used by Java developers to arrange for a
standard application structure, compile, deploy, and test it. Being an extensible
framework based on plugins, the capabilities of Maven can be even expanded far
beyond the points mentioned earlier.

First of all, however, we need to configure it so that it can be used in combination
with the WildFly application server; the upcoming section details it.

Configuring WildFly on NetBeans
Since release 8.0.2 of NetBeans, you can directly add the WildFly server to the list
of available servers, without the need to download it as a separate plugin. Start
NetBeans at first. From the left side of its GUI, select the Services tab and right-click
on Servers, as shown in the following screenshot:

Select Add Server. The server wizard will start. As the first option, select WildFly
Application Server from the list of available application servers. Click on the Next
button to move ahead to the next step:

Chapter 4

[93]

In the following window, select the location where WildFly is installed and pick up the
server configuration file to be used (standalone.xml is the default configuration file):

Click on Finish. As you can see from the following screenshot, now the WildFly
Application Server is enlisted among the available services by expanding the
Servers option:

MongoDB in the Java EE 7 Enterprise Environment

[94]

Creating our project
In order to create our project, we will use a Maven project. Maven is a popular
software and release management tool which buys you:

• A standard structure for all your Java projects
• A centralized and automatic management of dependencies

Most development environments are Maven friendly; this means, you don't need to
download any additional plugins.

From the File menu, select New Project. Select Web Application as displayed in the
Maven categories, as shown in the following screenshot:

Chapter 4

[95]

Click on Next. The following window will be displayed:

Enter the Project Name, its location on your filesystem, the Group Id, Version, and
Package information. Then click on Next.

The Group Id in Maven terms is a naming schema used by your Maven
project. It generally matches with the root package of your application.

In the following window, select WildFly Application Server as Server and Java EE 7
Web as Java EE Version:

MongoDB in the Java EE 7 Enterprise Environment

[96]

Click on Finish to create the Maven project. The following screenshot shows the
basic structure of your project view:

Within the project files folder a file named pom.xml has been included. This file
is the Maven project's configuration file, where you will be able to configure the
dependencies on other libraries and also plugins.

Maven plugins are just Java libraries, which can be used
to empower your Maven with additional capabilities
such as compiling, deploying, and testing your code.

In order to compile your project, you will need to specify the dependencies, that is,
the library which needs to be used by our project. We will start with the following set
of libraries in our project:

• Enterprise Java Beans: This is used to code a start up class in our project
• Java Server Faces and Context Dependency Injection: This is used to code

the web application's frontend and backend beans
• Mongo DB Java Driver: This is used for storing data
• Google's Gson: This is used for transforming JSON strings into Java objects

and vice versa

So, here is the pom.xml file with the highlighted list of dependencies required in
the project:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

Chapter 4

[97]

 <groupId>com.packtpub.mongo.chapter4</groupId>
 <artifactId>javaee7-mongodb</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
 <name>javaee7-mongodb</name>
 <properties>
 <endorsed.dir>${project.build.directory}/endorsed</endorsed.dir>
 <project.build.sourceEncoding>UTF-8
 </project.build.sourceEncoding>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.wildfly.bom</groupId>
 <artifactId>jboss-javaee-7.0-with-all</artifactId>
 <version>8.2.0.Final</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>

 <dependencies>
 <dependency>
 <groupId>org.mongodb</groupId>
 <artifactId>mongo-java-driver</artifactId>
 <version>2.12.4</version>
 </dependency>

 <dependency>
 <groupId>javax.enterprise</groupId>
 <artifactId>cdi-api</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.spec.javax.faces</groupId>
 <artifactId>jboss-jsf-api_2.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>

MongoDB in the Java EE 7 Enterprise Environment

[98]

 <groupId>org.jboss.spec.javax.ejb</groupId>
 <artifactId>jboss-ejb-api_3.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.spec.javax.annotation</groupId>
 <artifactId>jboss-annotations-api_1.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.3.1</version>
 </dependency>

 <dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>jaxrs-api</artifactId>
 </dependency>
 </dependencies>

 <build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 <compilerArguments>
 <endorseddirs>${endorsed.dir}</endorseddirs>
 </compilerArguments>
 </configuration>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <failOnMissingWebXml>false</failOnMissingWebXml>

Chapter 4

[99]

 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

You can see that we have also included a Bill of Materials (BOM)
at the top of our dependencies. This is a handy option so that you
don't need to specify each of WildFly's library versions, as they are
maintained in the external BOM file.

We are done with the project's skeleton. Allow a couple of minutes to NetBeans to
load all the required dependencies, and then you can go for the real classes, which
will make up your application.

Adding Java classes
The first Java class we will add is named Book and will be used to map MongoDB
documents. It contains the same field as the corresponding keys of the document:

package com.packtpub.mongo.chapter4.bean;

public class Book {

 String title;
 String author;
 String type;
 double price;
 int copies;

 public Book() { }

 public Book(String title, String author, String type, double price)
{
 super();
 this.title = title;
 this.author = author;
 this.type = type;
 this.price = price;
 this.copies = 10;
 }

// Getter and Setters omitted for brevity
}

MongoDB in the Java EE 7 Enterprise Environment

[100]

Now that we have the basic structure to host Mongo documents, we need to handle
the connection toward MongoDB. Within the Java Enterprise environment, there is a
better alternative than the following piece of your code around your classes:

MongoClient mongoClient = new MongoClient("localhost", 27017);

Instead of the preceding code, we will create a CDI producer, which will be in charge
of creating an instance of the MongoClient object and share it with the classes of
your application. So, add a class named Producer to your project:

package com.packtpub.mongo.chapter4.producer;

import com.mongodb.MongoClient;
import com.packtpub.mongo.chapter4.ejb.SchemaSetup;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.enterprise.context.ApplicationScoped;
@ApplicationScoped

public class Producer {
private static final Logger LOGGER =
 Logger.getLogger(Producer.class.getName());

 @Produces
 public MongoClient mongoClient() {
 try {
 return new MongoClient("localhost", 27017);
 } catch (UnknownHostException e) {
 LOGGER.log(Level.SEVERE, e.getMessage(), e);
 }
 return null;
 }
}

Producers are a useful addition provided by CDI, which can be
used when the concrete type of the objects to be injected may vary at
runtime or when the objects require some custom initialization that is
not performed by the bean constructor.

Now, we will add the Controller class named BookStore, which receives input
from the user interface and constructs the list of available books:

package com.packtpub.mongo.chapter4.controller;

import com.google.gson.Gson;

Chapter 4

[101]

import com.mongodb.BasicDBObject;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBCursor;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;
import com.mongodb.util.JSON;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.List;
import javax.annotation.PostConstruct;
import javax.enterprise.inject.Model;
import javax.inject.Inject;
import com.packtpub.mongo.chapter4.bean.Book;

@Model
public class BookStore {

 @Inject
 MongoClient mongoClient;

 List<Book> listBooks;

 String filter;

 @PostConstruct
 private void init() {
 doQuery();
 }

 public void doQuery() {
 listBooks = query();
 }
 public List<Book> query() {
 Gson gson = new Gson();
 DB db = mongoClient.getDB("javaee7");
 DBCollection coll = db.getCollection("bookstore");
 DBCursor cursor = null;
 if (filter == null || filter.trim().length() == 0) {
 cursor = coll.find();
 }
 else {

MongoDB in the Java EE 7 Enterprise Environment

[102]

 DBObject q = new BasicDBObject();
 q.put("title", java.util.regex.Pattern.compile(filter));
 cursor = coll.find(q);
 }

 List<Book> list = new ArrayList<>();
 try {
 while (cursor.hasNext()) {
 DBObject obj = cursor.next();

 list.add(gson.fromJson(obj.toString(), Book.class));

 }
 } finally {
 cursor.close();
 }
 return list;
 }

 public void buy(Book book) {
 System.out.println("Buy book!!!!!"+book);
 Gson gson = new Gson();

 int copiesLeft = book.getCopies() - 1;
 DB db = mongoClient.getDB("javaee7");

 DBCollection coll = db.getCollection("bookstore");

 DBObject newDocument = new BasicDBObject();
 newDocument.append("$set",
 new BasicDBObject().append("copies", copiesLeft));

 DBObject searchQuery = (DBObject)
 JSON.parse(gson.toJson(book));
 coll.update(searchQuery, newDocument);

 listBooks = query();

 }

}

Chapter 4

[103]

And now, let's discuss the most relevant parts of this class. First of all, there is a
@Model annotation at the top of it. This is a CDI stereotype that can be used on CDI
beans in order to achieve two things:

• Defining a request scope for the class. It means that the class will be created
and destroyed according to the user's request life cycle.

• Guaranteeing expression language visibility. It means that the class can be
used in our UI.

Next, we are using the @Inject annotation to let the container provide an instance of
the MongoClient class, which is actually done by the Producer class we just coded.

The query and buy methods are our business methods, which are used for listing the
books and for purchasing them respectively. If you have gone through the Gson API
discussed in the previous chapter, this code should be quite intuitive for you.

Within the query method, you will find a search expression, which is used to filter
among the titles using a regular expression pattern. The purpose of the following
block of code is to provide a SQL LIKE functionality during the search:

BasicDBObject q = new BasicDBObject();
q.put("title", java.util.regex.Pattern.compile(filter));
cursor = coll.find(q);

The list of available books is ultimately maintained into the List<Book> listBooks
collection, which is updated every time a book is purchased.

The preceding two classes are sufficient to make up the backbone of a Java EE
application. We will include one more class to provide some available books when
the application is deployed:

package com.packtpub.mongo.chapter4.ejb;

import com.google.gson.Gson;
import com.mongodb.DB;
import com.mongodb.DBCollection;
import com.mongodb.DBObject;
import com.mongodb.MongoClient;
import com.mongodb.util.JSON;
import com.packtpub.mongo.chapter4.bean.Book;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.annotation.PostConstruct;
import javax.ejb.Startup;
import javax.ejb.Singleton;
import javax.inject.Inject;

MongoDB in the Java EE 7 Enterprise Environment

[104]

@Singleton
@Startup

public class SchemaSetup {

private static final Logger LOGGER = Logger.getLogger(SchemaSetup.
class.getName());

 @Inject
 MongoClient mongoClient;

 @PostConstruct
 public void createSchema() {
 try {

 DB db = mongoClient.getDB("javaee7");

 DBCollection coll = db.getCollection("bookstore");
 coll.drop();
 coll = db.getCollection("bookstore");

 Book[] book = new Book[5];
 book[0] = new Book("A Tale Of Two Cities", "Charles
Dickens","Novel", 10);
 book[1] = new Book("Le Petit Prince", "Antoine de Saint-
Exupery","Novel", 8);
 book[2] = new Book("The Da Vinci Code", "Dan Brown", "thriller",
12);
 book[3] = new Book("Think and Grow Rich", "Napoleon
Hill","Motivational", 10);
 book[4] = new Book("The Hobbit", "J.R.R. Tolkien", "Fantasy",
8);
 Gson gson = new Gson();

 for (Book b : book) {
 DBObject obj = (DBObject) JSON.parse(gson.toJson(b));
 coll.insert(obj);
 }

 } catch (Exception e) {
 LOGGER.log(Level.SEVERE, e.getMessage(), e);
 }
 }
}

Chapter 4

[105]

The preceding class is a singleton EJB, which means only one instance of this
class will be created by the container. Thanks to the @Startup annotation, the
createSchema method, which is annotated with @PostConstruct, will be
executed when the application is deployed.

Inside the createSchema method, we first clean up our existing collection of books,
and then, we create a new collection by using a combination of the MongoDB driver
and Google Gson API.

The server side part is completed. We need one view for displaying the book titles
and a couple of buttons to perform a filter on the titles and to purchase a book
respectively. The following is the index.xhtml page, which needs to be added
to the project's web pages:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:c="http://java.sun.com/jsp/jstl/core">
 <h:head></h:head>

<h:body>

 <h:form id="bookstore">
 <h:panelGrid >
 <h:outputLabel value="Filter title: " style="font-weight:bold"
/>
 <h:inputText value="#{bookStore.filter}" />
 <h:commandButton actionListener="#{bookStore.doQuery}"
styleClass="buttons" value="Search" />
 <h:dataTable value="#{bookStore.listBooks}" var="item"
styleClass="table"
 headerClass="table-header"
 rowClasses="table-odd-row,table-even-row">
 <h:column>
 <f:facet name="header">Title</f:facet>
 <h:outputText value="#{item.title}" />
 </h:column>
 <h:column>
 <f:facet name="header">Author</f:facet>
 <h:outputText value="#{item.author}" />
 </h:column>

 <h:column>
 <f:facet name="header">Price</f:facet>

MongoDB in the Java EE 7 Enterprise Environment

[106]

 <h:outputText value="#{item.price}" />
 </h:column>
 <h:column>
 <f:facet name="header">Type</f:facet>
 <h:outputText value="#{item.type}" />
 </h:column>
 <h:column>
 <f:facet name="header">Copies</f:facet>
 <h:outputText value="#{item.copies}"/>
 </h:column>

 <h:column>
 <f:facet name="header">Buy</f:facet>
 <h:commandButton actionListener="#{bookStore.buy(item)}"
rendered="#{item.copies > 0}"
 styleClass="buttons" value="Buy" />
 </h:column>
 </h:dataTable>
 </h:panelGrid>

 </h:form>

</h:body>
</html>

The preceding code contains a few basic JSF components such as inputText, which
is a HTML text field used to perform a filter over the title field. The next component
is dataTable, which is used to display tabular data contained in the listBooks
list in BookStore. Within dataTable, every field is referenced through the variable
item, so that we have a tabular view of all our BookStore.

Finally, a Buy button is included, which submits the execution to the buy method
of the BookStore bean, passing as an argument the item on which the button
was clicked.

Just to remind you, the BookStore beans can be referenced from
the user interface as we have tagged it with the @Model annotation.
As no specific name has been chosen for this bean, it will be
referenced using its default EL name, which is BookStore.

Chapter 4

[107]

Compiling and deploying the project
Compiling and deploying the project is just one click away from you, provided that
you have added a WildFly application server to your list of services. Simply right-
click on your project and choose Run. A sequence of operations will be triggered:

1. At first, the WildFly application server will start.
2. The web application will be deployed.
3. The index.xhtml page will be displayed.

If you are not using NetBeans, simply follow the next section, which will detail a
generic compilation and deployment procedure, which can be used from the shell
prompt or wrapped by your development environment.

Compiling and deploying from the shell
Any Maven project can be compiled and packaged by executing the following goals:

mvn clean install

This will generate an artifact named javaee7-mongodb.war file, which needs to be
deployed on the application server. The simplest way to do it is to copy the file into
standalone/deployments of WildFly.

If you want to automate the distribution of the web application, we would suggest
adding Maven's WildFly plugin, which will handle the deployment for you. In order
to do that, you need to add the following plugin definition at the bottom of your
pom.xml file:

<build>
 <finalName>${project.artifactId}</finalName>
 <plugins>
 <plugin>
 <groupId>org.wildfly.plugins</groupId>
 <artifactId>wildfly-maven-plugin</artifactId>
 <version>1.0.2.Final</version>
 </plugin>
 </plugins>
</build>

Now, with the plugin in place, you can perform compilation, packaging, and
deployment with a single command:

mvn clean install wildfly:deploy

MongoDB in the Java EE 7 Enterprise Environment

[108]

A successful execution will terminate with an output like the following one:

INFO: JBoss Remoting version 4.0.3.Final

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

[INFO] Total time: 12.269 s

[INFO] Finished at: 2015-04-30T10:39:35+01:00

[INFO] Final Memory: 14M/37M

[INFO] --

Running the application
Whatever is your development environment, you will end up with the web
application deployed on WildFly. So, now, browse over the following URL
in order to test the application:

http://localhost:8080/javaee7-mongodb/index.xhtml

Here is how your application should look like (We have omitted to include the
stylesheets used in the index.xhtml page for the sake of brevity. You can find
the complete source code of the book in the download area.):

Chapter 4

[109]

You can try to see how the application works by clicking on the Buy button,
which will decrease the count of the available book copies. Entering some text
into the Filter title field and clicking on Search will restrict the search only to
titles containing that text:

Exposing the application to external clients
One of the biggest advantages of using JSON to represent your application's data is
that you can easily integrate with other systems that support JSON and display its
data natively. In order to be able to expose our data to external systems, we need to,
however, wrap our CDI beans with some compatible exchange format such as REST
Services. This will put the MongoDB data at your fingertips with just a couple of
additions to our project!

A RESTful web service exposes a set of resources to external clients.
Resources are identified by URIs, which provide a simple and
uniform way to manipulate server-side resources using standard
HTTP commands such as GET, POST, PUT, and DELETE.

Adding RESTful web services to our application
First of all, we will include the org.jboss.resteasy dependency, which is the
actual implementation of REST services in WildFly:

<dependency>
 <groupId>org.jboss.resteasy</groupId>
 <artifactId>jaxrs-api</artifactId>
</dependency>

MongoDB in the Java EE 7 Enterprise Environment

[110]

Getting to grips with REST web services is not a complicated matter. We need
to specify the URI pattern, which will be used to access our services, the type of
resources, which are produced (or consumed) by our services and, of course, the
implementation.

Let's add a new Java class named BookService to our project with the following
implementation:

package com.packtpub.mongo.chapter4.ws;
import com.packtpub.mongo.chapter4.bean.Book;
import com.packtpub.mongo.chapter4.controller.BookStore;
import java.util.List;
import javax.inject.Inject;

import javax.ws.rs.*;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

@Path("/bookstore")
public class BookService {

 @Inject
 BookStore bookstore;

 @GET
 @Produces(MediaType.APPLICATION_JSON)
 public List<Book> query() {

 return bookstore.getListBooks();
 }

 @POST
 @Consumes(MediaType.APPLICATION_JSON)
 public Response buyBook(Book b) {

 Book book = bookstore.checkAvailability(b);

 if (book == null) {
 return Response.ok("Book not found sorry!").build();
 }

 if (book.getCopies() > 0) {
 bookstore.buy(book);
 return Response.ok("Book purchased!").build();
 }

Chapter 4

[111]

 else {
 return Response.ok("No more copies available
 sorry!").build();
 }

 }
}

Even if this is your first green bar with REST services, the preceding code should not
look too complicated. At first, we have stated that our REST service will be available
through the /bookstore URI path. Then, as this class is just a wrapper to our
BookStore class, we have injected one instance of it inside our service.

We have then added two methods:

• The query method which is triggered by an HTTP GET and executes a query
on the BookStore class, returning the list of books in the JSON format

• The buyBook method, which, on the other hand, is triggered by an HTTP
POST checks for availability at first and then it executes the purchase.

In order to be able to use the buyBook method, we have to enrich our BookStore
class with the method checkAvailability, which retrieves the actual book
document by searching for the title and author as follows:

public class BookStore implements {

 public Book checkAvailability(Book book) {
 Gson gson = new Gson();

 DB db = mongoClient.getDB("javaee7");

 DBCollection coll = db.getCollection("bookstore");

 DBObject query = new BasicDBObject("title", book.getTitle());
 query.append("author", book.getAuthor());

 DBObject obj = coll.findOne(query);

 if (obj == null)
 return null;

 return gson.fromJson(obj.toString(), Book.class);

 }
}

MongoDB in the Java EE 7 Enterprise Environment

[112]

Besides, in order to activate REST services on WildFly, we need to include a class
that extends javax.ws.rs.ApplicationPath in our project, which also specifies
the URI path to be used by REST services:

package com.packtpub.mongo.chapter4.ws;

@ApplicationPath("/rest")

public class RESTActivator extends Application {

}

Compiling and deploying the application
As usual, you can perform compilation, packaging, and deployment with a single
click from NetBeans by selecting the project and right-clicking on Run. If you
are not using NetBeans, just issue the following command from the shell:

mvn clean install wildfly:deploy

In order to test our application, we need to perform a request to the following URL:

http://localhost:8080/javaee7-mongodb/rest/bookstore

If the request is a GET request, the query method of the REST service will be
triggered. On the other hand, if you are executing a POST request, the buyBook
process will start.

There are plenty of solutions available to perform HTTP requests, for example, if you
are on a Linux machine you can just use the curl command as follows to issue a GET
request, which will return the list of books in the JSON format:

curl -H "Content-Type: application/json" -X GET
http://localhost:8080/javaee7-
mongodb/rest/bookstorehttp://localhost:8080/javaee7-
mongodb/rest/bookstore

The following content should be returned:

[{"title":"A Tale Of Two Cities","author":"Charles Dickens","type":"Nove
l","price":10,"copies":10},{"title":"Le Petit Prince","author":"Antoine
de Saint-Exupery","type":"Novel","price":8,"copies":10},{"title":"The Da
Vinci Code","author":"Dan Brown","type":"thriller","price":12,"copies":10
},{"title":"Think and Grow Rich","author":"Napoleon Hill","type":"Motivat
ional","price":10,"copies":10},{"title":"The Hobbit","author":"J.R.R. Tol
kien","type":"Fantasy","price":8,"copies":10}]

Chapter 4

[113]

You can execute a POST request as well by passing the title and author
parameters as follows:

curl -H "Content-Type: application/json" -X POST -d
'{"title":"titolo1","author":"author1"}'
http://localhost:8080/javaee7-mongodb/rest/bookstore

You should expect a Book purchased return string from the preceding command line.

Summary
In this chapter, we have learned how to create a Java Enterprise application just
by adding a few classes to a web project. Thanks to the improvements in the Java
EE specification, now coding an application requires very little code and minimal
configuration. The project that we have created can be used as a template for your
applications, which will use MongoDB as the foundation for storing data.

Some other solutions do exist, which can make the access to your MongoDB storage
transparent so that you can adapt your code to other databases as well.

In the next chapter, we will discuss Hibernate Object/Grid Mapper (OGM), which
provides Java Persistence API (JPA) support for NoSQL solutions.

Chapter 5

[115]

Managing Data Persistence
with MongoDB and JPA

In this chapter, you will learn how to develop a Java Enterprise application using a
standard API such as the Java Persistence API and an implementation of it. It is also
called Hibernate Object/Grid Mapper (OGM), which provides the Java Persistence
API (JPA) support for NoSQL solutions such as MongoDB. The list of topics we will
discuss are as follows:

• An introduction to the Java Persistence API
• Using Hibernate OGM to map MongoDB documents
• Developing and deploying a web application that uses Hibernate OGM as

the persistence layer for your entities

An overview of the Java Persistence API
The earlier chapter was a gentle introduction to MongoDB in the Java Enterprise
Edition (JEE) API. You learned how to engineer a simple web application using
the MongoDB driver as a persistence layer. This can be a good solution for simple
projects using just one data source. Often, it will be required to access multiple
persistence layers in a neutral way, without coding the specific database query
language. The standard API used for this purpose is the JPA, which can be
implemented using different providers that are nothing but interfaces toward a
data source.

Managing Data Persistence with MongoDB and JPA

[116]

The JPA has been inspired by object-relational mapping (ORM) frameworks, such
as Hibernate, and uses annotations to map objects to a relational database. Each Java
class mapping a database object (such as a table or view) is called an Entity. You
don't need to extend any class, nor implement an interface to code an Entity. You
don't even need XML descriptors for your mapping. Actually, the JPA is made up of
annotations and only a few classes and interfaces. For example, we would mark the
class Customer as Entity, as follows:

@Entity
public class Customer {
public Customer () { }

@Id
String name;

}

The preceding code snippet shows the minimal requirements for a class to be
persistent. They are as follows:

• It must be identified as an entity by using the @javax.persistence.Entity
annotation

• It must have an identifier attribute with the @javax.persistence.Id
annotation

• It must have a no-argument constructor

The preceding Entity can be used to map a corresponding Customer object in
your storage. For example, in order to insert a new customer you would just need
to use a standard Java constructor of it, and use PersistenceContext to save it in
your storage:

@Stateless
public class CustomerBean {

@PersistenceContext
private EntityManager em;

 public void createCustomer(String country,String name) {

 Customer customer = new Customer();

Chapter 5

[117]

 customer.setCountry(country);
 customer.setName(name);
 em.persist(customer);
 }
}

Much the same way, you can query for entities using some specific JPA constructs
such as javax.persistence.Query and a query language called JP-QL that
translates object queries into database native queries:

public Customer findCustomerByName(String customerName) {

 Query query = em.createQuery("FROM Customer
where name=:name");
 query.setParameter("name", customerName);
 Customer customer = (Customer)query.getSingleResult();
 return customer;
}

The advantage of using a Persistence Layer API is that you don't write any specific
database instructions, hence the preceding code can be used either to insert a query
for rows in a relational database or new documents in a NoSQL database. The
next sections will teach you how you can configure the Persistence Layer to use a
MongoDB-compatible solution such as Hibernate OGM.

Entering Hibernate OGM
The JPA persistence engine used behind the scenes by WildFly is actually Hibernate,
which cares for mapping database objects to Java entities. Although Hibernate has
been designed around relational database mapping, a NoSQL version of it exists,
which is called Hibernate OGM (http://hibernate.org/ogm/).

Hibernate OGM reuses Hibernate ORM's engine, but persists entities into a NoSQL
data store instead of a relational database using the appropriate NoSQL driver.

http://hibernate.org/ogm/

Managing Data Persistence with MongoDB and JPA

[118]

The following figure describes the architecture of Hibernate OGM, showing its
relation with the base Hibernate ORM framework:

As you can see, the application layer interacts with the JPA (or Hibernate native)
API. This layer uses the Hibernate ORM features contained in the Hibernate core
implementation. In turn, the Hibernate core delegates the execution of queries and
CRUD operations to Hibernate OGM.

Chapter 5

[119]

As for queries, the query engine will drive the execution of JP-QL statements to
the underlying storage. Other CRUD operations will be executed directly to the
storage, with the mediation of your data store provider, which, in our case, uses
the MongoDB driver.

The preceding concepts might look a bit abstract so we will provide a complete
example of an application that uses some entities to store and retrieve documents
in a MongoDB database.

Building a JPA project that uses
Hibernate OGM
As most readers have some skills with Hibernate or JPA, we will reuse an example
that was originally presented in an earlier book of mine (https://www.packtpub.
com/networking-and-servers/jboss-5-development). The purpose of this
exercise will be to demonstrate how you can apply a MongoDB storage to a standard
application using Hibernate or JPA.

This example application simulates a simple online store where you can register new
customers and add/issue new orders for each customer.

Here is the basic structure of our entity objects:

https://www.packtpub.com/networking-and-servers/jboss-5-development
https://www.packtpub.com/networking-and-servers/jboss-5-development

Managing Data Persistence with MongoDB and JPA

[120]

Now start NetBeans and from the File menu select New Project. Within the Maven
categories, select Web Application. Click on Next. In the following window, enter
the project name (for example, jpa-mongodb) and specify GroupId, Version, and
Package, as we did in the previous chapter:

In the following window, select Server as WildFly Application Server and Java EE 7
Web as Java EE version:

Click on Finish to create the Maven project.

Chapter 5

[121]

Configuring the project dependencies
In order to compile your project, you will need to set up some dependencies in
your pom.xml file. Start by including the Bill of Materials (BoM) for the WildFly
application server and for Hibernate OGM:

<dependencyManagement>
 <dependencies>

 <dependency>
 <groupId>org.wildfly.bom</groupId>
 <artifactId>jboss-javaee-7.0-with-all</artifactId>
 <version>8.2.0.Final</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>

 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-bom</artifactId>
 <type>pom</type>
 <version>4.2.0.Beta1</version>
 <scope>import</scope>
 </dependency>

 </dependencies>
</dependencyManagement>

With the BoM in place, setting the actual dependencies used in the project will be
simpler as we won't need to specify the actual version for the libraries to be used:

<dependencies>

 <dependency>
 <groupId>org.hibernate.ogm</groupId>
 <artifactId>hibernate-ogm-mongodb</artifactId>
 </dependency>

 <dependency>
 <groupId>javax.enterprise</groupId>
 <artifactId>cdi-api</artifactId>
 <scope>provided</scope>
 </dependency>

Managing Data Persistence with MongoDB and JPA

[122]

 <dependency>
 <groupId>org.jboss.spec.javax.faces</groupId>
 <artifactId>jboss-jsf-api_2.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.spec.javax.ejb</groupId>
 <artifactId>jboss-ejb-api_3.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

 <dependency>
 <groupId>org.jboss.spec.javax.annotation</groupId>
 <artifactId>jboss-annotations-api_1.2_spec</artifactId>
 <scope>provided</scope>
 </dependency>

</dependencies>

Besides the standard Java EE API stack used to construct our application (CDI, JSF,
JPA, and Annotations), we have included org.hibernate.ogm as well, which will
be used to interact with MongoDB.

You can optionally include the Maven's WildFly plugin that can be used to deploy or
undeploy our application directly from the Maven shell:

<build>
 <finalName>${project.artifactId}</finalName>
 <plugins>

 <plugin>
 <groupId>org.wildfly.plugins</groupId>
 <artifactId>wildfly-maven-plugin</artifactId>
 <version>1.0.2.Final</version>
 </plugin>
 </plugins>
</build>

Mapping the database collections
We will now add Java classes to our project, starting from the entities that will be in
charge to map the database collections. Here is the Customer class, which stores all
the records of the customers accessing our online store:

Chapter 5

[123]

package com.packtpub.mongo.chapter5.model;

import javax.persistence.*;
import java.util.List;
import static javax.persistence.FetchType.EAGER;
import org.hibernate.annotations.GenericGenerator;

@Entity

public class Customer {

 @Id
 @GeneratedValue(generator = "uuid")
 @GenericGenerator(name = "uuid", strategy = "uuid2")
 private String id;

 private String country;
 private String name;

 @OneToMany(mappedBy = "customerFK", fetch = EAGER)
 private List<Item> items;

 public Customer() { }

 // Getter/Setters omitted for brevity
}

The first annotation we have added is @Entity, which declares the class as an entity.

You can optionally include a @Table(name="yourtable")
annotation at the class level to declare that the bean class uses
a different name from the database collection.

The @Id annotation is mandatory; it describes the primary key of the table.

If you need to use a composite primary key, then you can use
@EmbeddedId, which denotes that more than one column
behaves jointly as a primary key.

Managing Data Persistence with MongoDB and JPA

[124]

Along with @Id, there's the @GeneratedValue annotation. This is used to declare
that the database is in charge of generating the value. @GenericGenerator is used to
declare the strategy used for generating the ID, which in our case is a 128-bit unique
identifier (UUID).

Moving along, we have included the fields of the entity, which map the corresponding
keys of the customer. Finally, the @OneToMany annotation defines an association with
one-to-many multiplicity.

Actually, the Customer class has many items. The corresponding orders are
contained in a List collection.

Within the @OneToMany annotation, we have chosen the EAGER
attribute so that all the orders are populated at the same time
when we issue a query on the Customer entity.

The second entity that we will include is the Item class, which contains all the items
ordered by one customer. The code is as follows:

package com.packtpub.mongo.chapter5.model;

import javax.persistence.*;
import org.hibernate.annotations.GenericGenerator;

@Entity
public class Item {

 @Id
 @GeneratedValue(generator = "uuid")
 @GenericGenerator(name = "uuid", strategy = "uuid2")
 private String id;

 private int price;

 private String product;

 private int quantity;

 @ManyToOne
 @JoinColumn(name = "CUSTOMER_ID")
 private Customer customerFK;

Chapter 5

[125]

 public Item() { }

 // Getters and Setters omitted for brevity
}

As you can see, the Item entity has the corresponding @ManyToOne annotation, which
complements the @OneToMany relationship in the Customer class. @JoinColumn
notifies the JPA engine that the customerFK field is mapped through the foreign
key of the database customer_id.

Configuring persistence
The Entity API looks great and very intuitive; however, you might wonder how
the server knows which database is supposed to store/query the Entity objects.
The persistence.xml file is the standard JPA configuration file. Within this file,
we will specify the persistence provider to be used for the database connection
and the connection properties.

Create the following persistence.xml file under src/main/resources of your
project:

<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="mongo-ogm" transaction-type="JTA">
 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>
 <class>com.packtpub.mongo.chapter5.model.Customer</class>
 <class>com.packtpub.mongo.chapter5.model.Item</class>
 <properties>
 <property name="hibernate.transaction.jta.platform"
 value="org.hibernate.service.jta.platform.internal.
 JBossAppServerJtaPlatform"/>
 <property name="hibernate.ogm.datastore.database"
 value="javaee7"/>
 <property name="hibernate.ogm.datastore.host"
 value="localhost"/>
 <property name="hibernate.ogm.datastore.provider"
 value="MONGODB"/>
 </properties>
 </persistence-unit>
</persistence>

Managing Data Persistence with MongoDB and JPA

[126]

If you have been using JPA in some of your projects, you will notice an evident
difference with the preceding persistence.xml file; as a matter of fact, there is no
reference to the data source, which is the server resource used to provide connections
to the EntityManager interface.

Instead, the data store connection is handled through the properties of the persistence
provider, which is org.hibernate.ogm.jpa.HibernateOgmPersistence. The
properties that we have configured are as follows:

• hibernate.transaction.jta.platform: This specifies the platform's
Transaction API to be used when inserting/updating/deleting data

• hibernate.ogm.datastore.database: This specifies the database to be
used, in our case, the MongoDB database

• hibernate.ogm.datastore.host: This specifies the host where the database
is running

• hibernate.ogm.datastore.provider: This states the database provider;
since we are connecting to MongoDB, our choice will be MONGODB

Coding the controller and EJB classes
Transactions are a fundamental part of every enterprise application; a common
best practice is to use Enterprise Java Beans to perform database insert/update/
delete operations as they are an inherently transactional component. In our case,
transactions will be handled by the underlying JTA platform that is included in
the application server.

For this purpose, we will add the StoreManagerEJB class, which contains all the
CRUD operations that can be executed with the database:

package com.packtpub.mongo.chapter5.ejb;

import com.packtpub.mongo.chapter5.model.*;
import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;

import javax.persistence.Query;

@Stateless
public class StoreManagerEJB {

 @PersistenceContext(unitName = "mongo-ogm")

Chapter 5

[127]

 private EntityManager em;

 public void createCustomer(String country, String name) {
 Customer customer = new Customer();
 customer.setCountry(country);
 customer.setName(name);
 em.persist(customer);
 }

 public void saveOrder(String idCustomer, int price,
 int quantity, String product) {
 Customer customer = findCustomerById(idCustomer);
 Item order = new Item();
 order.setCustomerFK(customer);
 order.setPrice(price);
 order.setQuantity(quantity);
 order.setProduct(product);
 em.persist(order);
 }

 public List<Item> findAllItems(String customerId) {
 Query query = em.createQuery("FROM Customer where id=:id");
 query.setParameter("id", customerId);
 Customer customer = (Customer) query.getSingleResult();
 List<Item> customerOrders = customer.getItems();
 return customerOrders;
 }

 public Customer findCustomerByName(String customerName) {
 Query query = em.createQuery("FROM Customer where
 name=:name");
 query.setParameter("name", customerName);
 Customer customer = (Customer) query.getSingleResult();
 return customer;
 }

 public Customer findCustomerById(String id) {
 Query query = em.createQuery("FROM Customer where id=:id");
 query.setParameter("id", id);
 Customer customer = (Customer) query.getSingleResult();
 return customer;
 }

Managing Data Persistence with MongoDB and JPA

[128]

 public List<Customer> findAllCustomers() {
 Query query = em.createQuery("FROM Customer");
 List<Customer> customerList = query.getResultList();
 return customerList;
 }
}

The @PersistenceContext annotation added to the EntityManager field injects a
container-managed persistence context. You might think of this as an object-oriented
connection to the database.

The first method, createCustomer, shows you how to add a new customer to the
database using JPA. As you can see, it's all about creating object instances. However,
until you persist your objects, all the changes are held in the memory.

The method saveOrder works in quite the same way. Moving to the finder methods,
we have coded a finder method for every business case so that we can query for all
the items, customers, or a specific one, using a key as the filter. If you have already
worked with Hibernate, the syntax used for queries should sound very familiar to
you. In fact, JPA also uses a database-independent language, Java Persistence Query
Language (JP-QL) to issues queries. It is a rich language that allows you to query any
complex object's model (associations, inheritance, abstract classes, and so on) using
common built-in database functions.

Hibernate OGM and JP-QL
The support for JP-QL constructs is still in the early stage of Hibernate OGM;
therefore, right now, you cannot use all the constructs, which are available on
RDBMS. In detail, the following constructs are allowed to be executed:

• Simple comparisons using "<", "!=", "=", ">=", and ">"
• IS NULL and IS NOT NULL
• The Boolean operators AND, OR, NOT
• LIKE, IN, and BETWEEN
• ORDER BY

On the other hand, the following are not supported:

• Cross entity joins as it's not possible to use joins in document-oriented
databases such as MongoDB

• JP-QL functions in particular aggregation functions such as count, JP-QL
update, and delete queries

Chapter 5

[129]

Coding a controller bean
EJB classes cannot be directly exposed to our views; therefore, we need a component
that acts as a controller for our application. We will add a CDI bean named Manager
that will just be a wrapper between the view and the transactional layer (EJB). The
source code of the com.packtpub.mongo.chapter5.controller.Manager class is
as follows:

package com.packtpub.mongo.chapter5.controller;

import java.util.*;

import javax.enterprise.inject.Model;
import javax.faces.application.FacesMessage;

import javax.faces.context.FacesContext;

import com.packtpub.mongo.chapter5.ejb.StoreManagerEJB;
import com.packtpub.mongo.chapter5.model.Customer;
import com.packtpub.mongo.chapter5.model.Item;
import javax.annotation.PostConstruct;

import javax.faces.event.ValueChangeEvent;
import javax.faces.model.SelectItem;
import javax.inject.Inject;

@Model
public class Manager {

 @Inject
 StoreManagerEJB storeManager;

 private String customerId;
 private int orderQuantity;
 private int orderPrice;
 private String customerName;
 private String customerCountry;
 private String orderProduct;

 List<Item> listOrders;
 List<SelectItem> listCustomers;

Managing Data Persistence with MongoDB and JPA

[130]

 public Manager() { }

 @PostConstruct
 public void init() {
 getListCustomers();
 if (listCustomers.size() > 0) {
 customerId = listCustomers.get(0).getValue().toString();
 listOrders = storeManager.findAllItems(customerId);
 }
 }

 public void findAllCustomers() {
 List<Customer> listCustomersEJB =
 storeManager.findAllCustomers();
 for (Customer customer : listCustomersEJB) {
 listCustomers.add(new SelectItem(customer.getId(),
 customer.getName()));
 }
 }

 public void createCustomer() {
 storeManager.createCustomer(customerCountry, customerName);
 FacesMessage fm = new FacesMessage("Created Customer" +
 customerName + " from " + customerCountry);
 FacesContext.getCurrentInstance().addMessage("Message", fm);
 customerName = null;
 customerCountry = null;
 listCustomers = null;
 }

 public void saveOrder() {
 storeManager.saveOrder(customerId, orderPrice, orderQuantity,
 orderProduct);
 FacesMessage fm = new FacesMessage("Saved order for" +
 orderQuantity + " of " + orderProduct + " and customer " +
 customerId);
 FacesContext.getCurrentInstance().addMessage("Message", fm);
 orderPrice = 0;
 orderQuantity = 0;
 orderProduct = null;
 }

 public void changeListener(ValueChangeEvent e) {
 Object oldValue = e.getNewValue();
 customerId = e.getNewValue().toString();

Chapter 5

[131]

 listOrders = storeManager.findAllItems(customerId);
 }

 public List<SelectItem> getListCustomers() {
 if (listCustomers == null) {
 listCustomers = new ArrayList();
 findAllCustomers();
 }
 return listCustomers;
 }

 // Getter-Setters omitted for brevity
}

The Manager class exposes two main collections to the view: a collection named
listCustomers, which displays the list of customers in a combobox, and a collection
of named listOrders, which contains the orders placed by each customer.

Within the init method (annotated with @PostConstruct, thus invoked after the
creation of the class) the two collections are loaded and displayed.

The findAllCustomers method is used to load the list of customers using the EJB's
findAllCustomers method.

Then, the createCustomer method wraps the creation of a new customer using the
EJB's corresponding createCustomer method.

The method saveOrder wraps the execution of the saveOrder method of the
StoreManagerEJB class.

Finally, a changeListener method is included to automatically reload the list of
orders as soon as a customer is selected from the combobox.

The class includes the Customer and Item fields as well, which are
used to transport the information from the HTML page to Manager.
You can further optimize the above code by using CDI producers to
expose the items and their collections via EL expressions.

Coding the views
This application is made up of three views, one for each use case:

• An index.xhtml page that contains the main screen and is loaded at startup
• A newCustomer.xhtml page that is used to add a new customer

Managing Data Persistence with MongoDB and JPA

[132]

• A newOrder.xhtml page that can be used to place a new order for an item by
a specific customer

Let's see each page in detail.

The main view
The index.xhtml page contains a form with the list of customers and their orders:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:c="http://java.sun.com/jsp/jstl/core">
 <h:head>
 <style type="text/css">
 @import url("css/store.css");
 </style>
 </h:head>

 <h:body>
 <h:panelGrid columns="1" border="1" styleClass="spring">
 <f:facet name="header">
 <h:outputText value="Order List"/>
 </f:facet>
 <h:form id="listOrdersForm">
 <h:outputText value="Select Customer:" />
 <h:selectOneMenu id="selectCustomer"
 valueChangeListener="#{manager.changeListener}"
 onchange="submit()" value="#{manager.customerId}"
 styleClass="buttons">
 <f:selectItems value="#{manager.listCustomers}" />

 </h:selectOneMenu>

 <h:dataTable value="#{manager.listOrders}"
 var="orders" border="1" rowClasses="row1, row2"
 headerClass="header">
 <h:column>
 <f:facet name="header">
 <h:outputText value="Product" />
 </f:facet>
 <h:outputText value="#{orders.product}" />
 </h:column>
 <h:column>

Chapter 5

[133]

 <f:facet name="header">
 <h:outputText value="Price" />
 </f:facet>
 <h:outputText value="#{orders.price}" />
 </h:column>
 <h:column>

 <f:facet name="header">
 <h:outputText value="Quantity" />
 </f:facet>
 <h:outputText value="#{orders.quantity}" />
 </h:column>
 </h:dataTable>
 <h:commandButton action="newCustomer" value="Insert
 Customer" styleClass="buttons" />
 <h:commandButton action="newOrder" value="Insert Order"
 styleClass="buttons" />
 </h:form>
 </h:panelGrid>
 <h:messages style="color:red;margin:8px;" />

 </h:body>
</html>

We have highlighted the two most interesting sections:

• The first block, which renders a combobox, is used to display the list of
customers. The list is maintained in the listCustomers collection of the
Manager bean. SelectItem registers a valueChangeListener each time
the selection is changed, triggering the method changeListener of the
Manager class.

• The second block is used to display the orders of each customer in a tabular
way. The data of this collection is maintained in the listOrders collection of
the Manager bean.

At the bottom of the view, a pair of buttons is used to navigate to the other views of
the application, which are described in the next sections.

The newCustomer view
The newCustomer.xhtml file is a form that fills up the properties required to insert a
new customer. Here is the core part of it:

<h:panelGrid columns="1" border="1" styleClass="spring">
 <f:facet name="header">

Managing Data Persistence with MongoDB and JPA

[134]

 <h:outputText value="New Customer"/>
 </f:facet>
 <h:form id="newCustomer">
 <h:panelGrid columns="2" border="1" styleClass="spring">
 <f:facet name="header">
 <h:outputText value="Insert new Customer" />
 </f:facet>
 <h:outputText value="Name" />
 <h:inputText value="#{manager.customerName}" />
 <h:outputText value="Country" />
 <h:inputText value="#{manager.customerCountry}" />
 <h:commandButton action="#{manager.createCustomer}"
 value="Insert Customer" />
 <h:commandButton action="index" value="Back" />
 </h:panelGrid>

 </h:form>
</h:panelGrid>
<h:messages style="color:red;margin:8px;" />

The highlighted button, when clicked, executes the createCustomer method of the
Manager bean, thus inserting a new customer into the database.

The newOrder view
The last view of our application is newOrder.xhtml, which adds a new order for a
selected customer:

<h:panelGrid columns="1" border="1" styleClass="spring">
 <f:facet name="header">
 <h:outputText value="New Order"/>
 </f:facet>
 <h:form id="newOrder">
 <h:panelGrid columns="2" border="1" styleClass="spring">
 <f:facet name="header">
 <h:outputText value="Insert new Order" />
 </f:facet>
 <h:outputText value="Product" />
 <h:inputText value="#{manager.orderProduct}" />
 <h:outputText value="Quantity" />
 <h:inputText value="#{manager.orderQuantity}" />
 <h:outputText value="Price" />
 <h:inputText value="#{manager.orderPrice}" />
 <h:outputText value="Customer" />

Chapter 5

[135]

 <h:selectOneMenu id="selectCustomerforOrder"
 value="#{manager.customerId}">
 <f:selectItems value="#{manager.listCustomers}" />
 </h:selectOneMenu>
 <h:commandButton action="#{manager.saveOrder}"
 value="Save Order" />
 <h:commandButton action="index" value="Back" />
 </h:panelGrid>

 </h:form>
</h:panelGrid>
<h:messages style="color:red;margin:8px;" />

Again, Manager is in charge of inserting the saved order into the database when the
user clicks on the Save Order button.

Compiling and running the example
You can compile, package, and deploy your application by simply right-clicking on
the project icon and choosing Run.

If you want to manage the above tasks from the shell, you can issue the following
Maven goals, provided that you have installed the Maven's WildFly plugin (see
Chapter 4, MongoDB in the Java EE 7 Enterprise Environment, for more information
about configuring your pom.xml file):

mvn clean install wildfly:deploy

The home page (index.html) will initially display a blank list of customers and items:

Managing Data Persistence with MongoDB and JPA

[136]

Click on the Insert Customer button at first, which will take you to the
newOrder.xhtml view where you can register a new customer into your store:

With a customer available, click on the Back button to return to the home page. From
there, add a new order by clicking on the Insert Order button, which will take you to
the newOrder.xhtml page:

Once you're done with adding orders, check from the main page whether the
customer contains the orders that have been placed:

Chapter 5

[137]

A look into MongoDB
So far, we have handled database interaction just using the JPA API; as a matter of
fact, we didn't write even a MongoDB query or insert it into our code. Believe it or
not, the collections and documents have been properly inserted into our database
and checking it takes just a minute.

First, from the mongo shell, enter into the javaee7 database and run the following
command:

C:\>mongo

MongoDB shell version: 2.6.4

connecting to: test

> use javaee7

switched to db javaee7

Now, let's have a look at the collections that are available:

> show collections

Customer

Item

. . . .

system.indexes

You will find, among the other collections, that the customer and item collections
have been created. With the following query, we will verify that the content of the
collections is consistent with the data, which has just been inserted into the application:

> db.Customer.find().pretty()

{

 "_id" : "c5878f45-d472-48cb-8ff1-0efc62dca9fb",

 "name" : "John Doe",

 "country" : "US",

 "items" : [

 "6295d5e1-fec9-4035-8214-047975e45acb",

 "1af91459-1c24-4592-a160-694125229683"

]

}

> db.Item.find().pretty()

{

Managing Data Persistence with MongoDB and JPA

[138]

 "_id" : "6295d5e1-fec9-4035-8214-047975e45acb",

 "product" : "Laptop",

 "price" : 500,

 "quantity" : 1,

 "CUSTOMER_ID" : "c5878f45-d472-48cb-8ff1-0efc62dca9fb"

}

{

 "_id" : "1af91459-1c24-4592-a160-694125229683",

 "product" : "Mobile phone",

 "price" : 300,

 "quantity" : 2,

 "CUSTOMER_ID" : "c5878f45-d472-48cb-8ff1-0efc62dca9fb"

}

Using native queries in your Hibernate
OGM
If you want to use the raw power of MongoDB queries within your Hibernate OGM
applications, then this is possible as well. This can be a good choice if you feel too
limited by the current Hibernate OGM JP-QL. On the other hand, you have to consider
that you will lose portability of your application, in case you change the database.

In JPA, you can use the EntityManager.createNativeQuery method to execute
a native query. You can also use a Named query to define your queries apart from
your business methods.

Let's see an example of it:

public List<Customer> queryNative() {

 String query1 = "db.Customer.find({'country': 'US'})";
 Query query = em.createNativeQuery(query1, Customer.class);

 List<Customer> list = query.getResultList();
 return list;
}

Chapter 5

[139]

The preceding Native query executes a find on the Customer collection, by filtering
through the customers that have the country key as equals to US.

The preceding query can also be expressed by using the NamedQuery interface,
which can be attached to the Customer entity as follows:

@Entity
@NamedNativeQuery(
name = "USCustomers",
query = "db.Customer.find({'country': 'US'})",
resultClass = Customer.class)

public class Customer {

. . . .
}

You can then execute the native named query from within your code as follows:

List<Customer> list = em.createNamedQuery("USCustomers",
 Customer.class).getResultList();

Summary
In this chapter, we have gone through the Hibernate OGM framework showing
how to deal with a NoSQL database such as MongoDB without writing database-
specific instructions. This provides a great benefit in terms of abstractions and uses a
standard specification called JPA to simplify the development of your applications.

Other valuable frameworks to simplify the interaction with MongoDB do exist; we
have selected one more, named Spring Data MongoDB, which is a project under the
umbrella of the popular Spring framework. We'll see more of this in the next chapter.

Chapter 6

[141]

Building Applications for
MongoDB with Spring Data

In this chapter, we will learn how to develop Java applications with MongoDB
from another perspective. The framework we will use is Spring Boot, which offers a
new paradigm for developing applications based on the Spring core framework. In
particular, we will learn how to store data on MongoDB by means of the Spring Data
project. Here is the list of the topics discussed in this chapter:

• An introduction to Spring Boot and the Spring Data framework
• Constructing a Spring Boot application using the repository interface
• Using the Mongo template interface to achieve fine grained control of

MongoDB

Introducing Spring Boot
The Spring framework is the leading Java/JEE application framework. It is a valid
alternative to the standard Java EE programming model and provides a lightweight
container and a non-invasive API enabled by the use of dependency injection,
portable service abstractions, and aspect-oriented programming.

Although Spring is a lightweight framework in terms of programming code, it does
require a complex configuration, which represents an obstacle for quickly developing
applications. As a matter of fact, the developers should concentrate on the business
logic rather than dealing with configuration concerns.

The most exciting thing that has happened in the last few years in the Spring arena
is the development of a project called Spring Boot, which offers a new paradigm for
developing Spring applications with more agility while focusing on your business
methods rather than the thought of configuring Spring itself.

Building Applications for MongoDB with Spring Data

[142]

Getting started with Spring Boot
Spring Boot does not require complex configuration files as it is able to discover
classes by looking in the classpath of your applications and building a single
runnable JAR of it, which makes it convenient to make your service portable too.

Let's see a practical example of it:

package hello;
import org.springframework.stereotype.Component;

@Component
public class SimpleBean
{
 @Override
 public String toString() {
 return "Hello , This is an example component";
 }
}

The preceding class contains a @Component annotation, which marks a Java class as a
bean so the component-scanning mechanism of Spring can pick it up and pull it into
the application context. We will now code a minimal Spring Boot application, which
will be able to discover the class with as little as a single annotation:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;

import org.springframework.boot.SpringApplication;
import
 org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application implements CommandLineRunner {

 @Autowired
 SimpleBean bean;

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);

 }

 @Override
 public void run(String... args) throws Exception {

Chapter 6

[143]

 System.out.println("Found bean:" + bean);
 }
}

This class, although very simple, contains lots of things in it. Inside it, we have used
@SpringBootApplication to leverage a set of functionalities, which are commonly
required by most Spring applications:

• The @Configuration annotation identifies the class as a source of bean
definitions for the application context.

• The @EnableAutoConfiguration annotation enables Spring Boot to add
beans based on the application's classpath, and various property settings.

• The @ComponentScan annotation tells Spring to look for other beans,
configurations, and services in the same package as your application
class so that you will be able to find the SimpleBean class.

• Finally, @EnableWebMvc flags the application as a web application
and thus activates the component called DispatcherServlet to capture
HTTP requests.

All the preceding functionalities are automatically included once you provide the
@SpringBootAnnotation within your class.

The main method contained in the class uses Spring Boot's SpringApplication.
run method to launch an application and print the toString method of SimpleBean
class. Although nothing fancy happens here, we have coded a Spring application
without writing a single line of XML and we could have easily added some
functionalities such as querying data from a storage or a REST controller with little
effort. Providing an example of this requires an introduction to the Spring Data
project, which can be easily combined into the Spring Boot container providing
integration with relational databases and NoSQL solutions such as MongoDB.

Getting started with Spring Data
Implementing a data access layer of an application has traditionally been a pain
point for developers. The critical points are that too much boilerplate code has to be
written and the resulting domain classes are not designed in a real object-oriented or
domain-driven style.

Spring Data is a high-level Spring project whose purpose is to unify and simplify
the access to different kinds of persistence stores, reducing the amount of boilerplate
code to be written, and providing common patterns that can be applied to relational
database systems and NoSQL data stores.

Building Applications for MongoDB with Spring Data

[144]

The following figure gives you a bird's eye view of the Spring Data framework:

As you can see from the preceding figure, two core instruments can be used to access
a MongoDB storage:

• A MongoRepository interface acts as a marker place to capture the
document model, thus, providing a convenient way to derive DB
statements directly from the field name of your documents.

• A template interface called MongoTemplate is a high-level abstraction
for storing and querying documents and its super interface called
MongoOperations. You will find this approach familiar if you have
been using the JDBC support in the Spring framework.

The upcoming section will introduce the core concepts of both instruments with
some proof of concept examples of interaction with MongoDB.

Using the Spring repository to access
MongoDB
The org.springframework.data.repository.Repository interface is a core part
of the Spring Data framework. This interface acts as a marker interface to capture the
domain type to manage, as well as the domain type's ID type. So, the purpose of the
interface is to hold type information, as well as being able to discover interfaces that
extend this one during classpath scanning.

Chapter 6

[145]

The advantage of implementing the repository in your code is that you will be able to
expose CRUD methods for your data storage by simply declaring methods with the
same signature as those exposed in the org.springframework.data.repository.
CrudRepository interface. This allows a drastic reduction of boiler plate code to
write the most common functionalities required by your applications.

We will now provide a proof of concept example of a Spring Boot application using
Spring Data for MongoDB to perform common CRUD operations.

Coding our Spring Boot application
Our project will be a simple Maven-based Java application, which includes as first
class the Book class, which will map a corresponding MongoDB document. Start
by navigating to New | Maven | Java application from the File menu and select
com.packtpub.mongo.chapter6 as the package's base directory.

Next, we will configure pom.xml, so that you will be able to compile and deploy
our application:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packtpub.mongo.chapter6</groupId>
 <artifactId>spring-mongodb</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <properties>
 <project.build.sourceEncoding>UTF-
 8</project.build.sourceEncoding>
 <maven.compiler.source>1.7</maven.compiler.source>
 <maven.compiler.target>1.7</maven.compiler.target>
 </properties>

 <parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.2.3.RELEASE</version>
 </parent>

 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>

Building Applications for MongoDB with Spring Data

[146]

 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
 </build>

 <repositories>
 <repository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/libs-release</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>spring-releases</id>
 <name>Spring Releases</name>
 <url>https://repo.spring.io/libs-release</url>
 </pluginRepository>
 </pluginRepositories>
</project>

As you can see from the preceding highlighted sections, the simplest way to compile
and build a Spring Boot project consists in including in your pom.xml a starter POMs
that references the Spring Boot Parent. We have then added a dependency to Spring
Data MongoDB artifacts and a plugin to execute Spring Boot from Maven.

Mapping Java classes with Spring Data
Mapping a Java class with a MongoDB document is straightforward, as the built-in
MongoMappingConverter will do most of the job for you. At minimum, you need
to provide an org.springframework.data.mongodb.core.mapping.Document
annotation to your class to candidate it for mapping the class to a MongoDB document:

package com.packtpub.mongo.chapter6.repository;

import org.springframework.data.annotation.Id;

Chapter 6

[147]

import org.springframework.data.mongodb.core.mapping.Document;

@Document
public class Book {

 @Id
 private String id;
 private String title;
 private String author;
 private int price;
 private String type;

 @Override
 public String toString() {
 return "Book{" + "id=" + id + ", title=" + title + ", author="
 + author + ", price=" + price+"}";
 }

 public Book(String title, String author, String type, int price)
 {
 this.title = title;
 this.author = author;
 this.price = price;
 this.type = type;
 }

 // Getters/Setters omitted for brevity
}

Within this class, the @Id annotation tells the mapper, which property you
want to use for the _id property of MongoDB. You can customize the behavior
of MongoMappingConverter by providing a custom name for your Mongo
documents, as shown in the following code:

@Document(collection = "mybooks")
public class Book {

. . .
}

You can also customize the mapping between the fields and the database keys by
using the @Field annotation as shown in the following code:

@Field("booktitle")
private String title;

Building Applications for MongoDB with Spring Data

[148]

Having built the model, we will now concentrate on the Repository class.
Our repository class will extend the org.springframework.data.mongodb.
repository.MongoRepository interface, plugging the types required by our
model: Book and String:

package com.packtpub.mongo.chapter6.repository;
import java.util.List;
import
 org.springframework.data.mongodb.repository.MongoRepository;

public interface BookRepository extends MongoRepository<Book,
 String> {

 public Book findByTitle(String title);
 public List<Book> findByType(String type);
 public List<Book> findByAuthor(String author);

}

Within this interface, we already have many standard CRUD operations (Create-
Read-Update-Delete) out of the box, but we can define other queries as needed by
simply declaring their method signature. In our case, we have added finder methods
for specific attributes of our Book class such as findByTile, findByType, and
findByAuthor.

The advantage of using this approach is two-fold:

• You will write the least amount of code to perform CRUD operations
• You don't need to use the database-specific language to perform those

operations

We can wire up our application by adding a Spring Boot application class, which will
execute some CRUD operations by using the BookRepository class.

Here is our Application class:

package com.packtpub.mongo.chapter6.repository;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application implements CommandLineRunner {

Chapter 6

[149]

 @Autowired
 private BookRepository repository;

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @Override
 public void run(String... args) throws Exception {

 repository.deleteAll();
 System.out.println("Collection deleted");

 repository.save(new Book("A Tale Of Two Cities", "Charles
 Dickens","Novel", 10));
 repository.save(new Book("The Da Vinci Code", "Dan Brown",
 "thriller", 12));
 repository.save(new Book("Think and Grow Rich", "Napoleon
 Hill","Motivational", 10));
 repository.save(new Book("The Hobbit", "J.R.R. Tolkien",
 "Fantasy", 8));
 repository.save(new Book("Le Petit Prince", "Antoine de
 Saint-Exupery","Novel", 8));

 System.out.println("Book found with findAll():");
 System.out.println("-------------------------------");
 for (Book bstore : repository.findAll()) {
 System.out.println(bstore);
 }
 System.out.println();

 System.out.println("Book found with findByTitle('The Da Vinci
 Code'):");
 System.out.println("--------------------------------");
 Book book1 = repository.findByTitle("The Da Vinci Code");
 book1.setPrice(5);
 // Update Book
 repository.save(book1);

 book1 = repository.findByTitle("The Da Vinci Code");
 System.out.println(book1);

 // Delete Book

Building Applications for MongoDB with Spring Data

[150]

 repository.delete(book1);

 System.out.println("Book found with findByType('Novel'):");
 System.out.println("--------------------------------");
 for (Book book : repository.findByType("Novel")) {
 System.out.println(book);
 }

 }
}

Our SpringBootApplication class implements the CommandLineRunner interface
so that the run method of the class will be invoked automatically when when the
application starts.

Thanks to @SpringBootAnnotation, we will be able to inject into our class the
BookRepository interface and the methods contained in it.

We start by using the deleteAll method, which is inherited from MongoRepository,
so that we start with a clean collection of books.

Then we add some books to our collection using the save method on instances of the
Book class.

The save method, by definition, is supposed to update an object in
the upsert style, that is, update if present and insert if not.

The next method, findAll, is executed to return the list of books as proof that we
managed to store them correctly.

The findByTitle method demonstrates how to use a method defined in our
BookRepository class to search for a specific book. The book is then updated using
the save method and finally deleted by the built-in delete method available in the
Repository interface.

Finally, the findByType method is executed to return a collection of books of a
particular type.

Running the example
Having included the Spring Boot plugin in your pom.xml file, it will be fairly simple
to run and test your application. You can run it by using the following command:

mvn spring-boot:run

As an alternative, you can simply right-click on NetBeans and choose Run File.

Chapter 6

[151]

The expected output will inform us that the books have been created and the finder
queries will show the single books or the collection of books queried, as shown in the
following code:

Collection deleted
Book found with findAll():

Book{id=55643737438717ca06d80b8e, title=A Tale Of Two Cities,
author=Charles Dickens, price=10}
Book{id=55643737438717ca06d80b8f, title=The Da Vinci Code, author=Dan
Brown, price=12}
Book{id=55643737438717ca06d80b90, title=Think and Grow Rich,
author=Napoleon Hill, price=10}
Book{id=55643737438717ca06d80b91, title=The Hobbit, author=J.R.R.
Tolkien, price=8}
Book{id=55643737438717ca06d80b92, title=Le Petit Prince,
author=Antoine de Saint-Exupery, price=8}
Book found with findByTitle('The Da Vinci Code'):

Book{id=55643737438717ca06d80b8f, title=The Da Vinci Code, author=Dan
Brown, price=5}
Book found with findByType('Novel'):

Book{id=55643737438717ca06d80b8e, title=A Tale Of Two Cities,
author=Charles Dickens, price=10}
Book{id=55643737438717ca06d80b92, title=Le Petit Prince,
author=Antoine de Saint-Exupery, price=8}

As proof of concept, you can connect to the Mongo shell and execute a find on
the book collection to check whether the data matches with your output, using
the following code:

db.book.find()

Customizing the repository storage
Our simple application stored our collection of books on the default database
host, using the test database. This is obviously not what you would need in a
real application. Luckily, it is not difficult to customize the settings used by the
Repository class. You can do it by extending org.springframework.data.
mongodb.config.AbstractMongoConfiguration and implementing the methods
required for connecting to MongoDB:

package com.packtpub.mongo.chapter6.repository;

import com.mongodb.Mongo;

Building Applications for MongoDB with Spring Data

[152]

import com.mongodb.MongoClient;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.mongodb.config.
 AbstractMongoConfiguration;
import org.springframework.data.mongodb.repository.config.
 EnableMongoRepositories;

@Configuration
@EnableMongoRepositories
public class MongoConfiguration extends AbstractMongoConfiguration
 {

 @Override
 protected String getDatabaseName() {
 return "springdata";
 }

 @Override
 public Mongo mongo() throws Exception {
 return new MongoClient("127.0.0.1", 27017);
 }

 @Override
 protected String getMappingBasePackage() {
 return "com.packtpub.mongo.chapter6.repository";
 }
}

In the preceding example, we will connect to the springdata database available
on 127.0.0.1. The @EnableMongoRepositories annotation is used to activate the
MongoDB repositories—by specifying the mapping base package; it will trigger
scanning of the package of annotated classes.

Using JSON queries in your repository classes
When using the MongoRepository interface, you can still use the raw power of JSON
queries to perform custom query operations on your data. This can be achieved by
adding the org.springframework.data.mongodb.repository.Query annotation
on the repository finder methods. This allows specifying a MongoDB JSON query
string instead of having the query derived from the method name. Consider the
following example:

Chapter 6

[153]

public interface BookRepository extends MongoRepository<Book,
 String> {

 @Query("{ 'type' : ?0 }")
 public List<Book> findByBookType(String type);
 @Query("{ 'type' : {$ne : ?0} }")
 public List<Book> findByBookTypeNot(String type);

}

In the above repository class, we have added two methods, the first one
(findByBookType) will execute a JSON finder query on books of a certain type. The
second one (findByBookTypeNot) will instead return books, which are not of the
same type as the first one.

In the Creating fine grained queries using Criteria section, we will discuss more in depth
about using the Query interface with the Criteria class, to create complex searches.

Serving MongoDB using Spring REST
A Spring Boot application includes out-of-the-box web capabilities. In particular,
a DispatcherServlet class is available to serve the content created in your
application. A practical use of it is creating an HTTP REST interface to access
the content of your repository.

In order to use Spring REST annotations in your code, you need at first to include its
dependency in the pom.xml file:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-rest</artifactId>
</dependency>

Next, we can move to the code; by adding an annotation to our repository class
named @RepositoryRestResource, we can specify the resource path for our REST
resource:

package com.packtpub.mongo.chapter6.repository;

import java.util.List;

import org.springframework.data.mongodb.repository.MongoRepository;
import org.springframework.data.repository.query.Param;

Building Applications for MongoDB with Spring Data

[154]

import org.springframework.data.rest.core.annotation.
RepositoryRestResource;

@RepositoryRestResource(collectionResourceRel = "book", path =
 "book")
public interface BookRepository extends MongoRepository<Book, String>
{

 public Book findByTitle(@Param("title") String title);
 public List<Book> findByType(@Param("type") String type);
 public List<Book> findByAuthor(@Param("author") String author);
}

At execution time, Spring Data REST will create an implementation
of our BookRepository interface automatically. Then it will use the
@RepositoryRestResource annotation to direct Spring MVC to create
RESTful endpoints available on the URI path /book.

Each of the methods contained in the interface are accepting a Param,
which is used as a filter by the query.

When executing the Spring application class, an embedded web server will start.
As our collection of books has been bound to the /book URI, let's request the URL
http://localhost:8080/book.

Here is the expected output from the browser or the tool you have used to perform
the request (the full output has been shortened for brevity):

http://localhost:8080/book
{
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/book{?page,size,sort}",
 "templated" : true
 },
 "search" : {
 "href" : "http://localhost:8080/book/search"
 }
 },
 "_embedded" : {
 "book" : [{
 "title" : "A Tale Of Two Cities",
 "author" : "Charles Dickens",
 "price" : 10,
 "type" : "Novel",

Chapter 6

[155]

 "_links" : {
 "self" : {
 "href" :
 "http://localhost:8080/book/55644f4b438730fc13627847"
 }
 }
 },
. . .
 "page" : {
 "size" : 20,
 "totalElements" : 4,
 "totalPages" : 1,
 "number" : 0
 }
}

As you can see, Spring REST used JSON Hypertext Application Language (HAL)
to render the response. HAL defines links to be contained in a _link property of the
returned document.

By issuing a request to the root URL under which the Spring Data REST application
is deployed, the client can extract a set of links from the returned JSON object that
represents the next level of resources that are available to the client.

By adding the search pattern to our URI (http://localhost:8080/book/search),
we will discover the find methods that are available:

{
 "_links" : {
 "findByType" : {
 "href" : "http://localhost:8080/book/search/findByType{?type}",
 "templated" : true
 },
 "findByAuthor" : {
 "href" : "http://localhost:8080/book/search/
findByAuthor{?author}",
 "templated" : true
 },
 "findByTitle" : {
 "href" : "http://localhost:8080/book/search/
findByTitle{?title}",
 "templated" : true
 }
 }
}

Building Applications for MongoDB with Spring Data

[156]

From there, you can query individual search methods such as http://
localhost:8080/book/search/findByType?type=Novel that will return
as expected:

{
 "_embedded" : {
 "book" : [{
 "title" : "A Tale Of Two Cities",
 "author" : "Charles Dickens",
 "price" : 10,
 "type" : "Novel",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/
book/55644f4b438730fc13627847"
 }
 }
 }, {
 "title" : "Le Petit Prince",
 "author" : "Antoine de Saint-Exupery",
 "price" : 8,
 "type" : "Novel",
 "_links" : {
 "self" : {
 "href" : "http://localhost:8080/
book/55644f4b438730fc1362784b"
 }
 }
 }]
 }
}

Obviously, the GET calls are not the only option that is available. You can also
issue a POST to insert a new document, PUT to replace it, PATCH to update it,
or DELETE, which deletes an existing record.

For example, the following POST executed with curl will add a new book to our
collection:

curl -i -X POST -H "Content-Type:application/json" -d '{ "title" :
"Lord of the Rings","author" : "J.R.R. Tolkien","price" : 10,"type" :
"Fantasy" }' http://localhost:8080/book

Chapter 6

[157]

Using the Mongo template component to
access MongoDB
Using the repository interface provides a convenient way to create applications
using standard CRUD operations, which are prebuilt around the fields contained
in the model. If you need fine grained control over your data, an alternative is to
use MongoTemplate, which is located in the package org.springframework.data.
document.mongodb.

The simplest way to use MongoTemplate is to wire the MongoOperations component
in your code, which is the superinterface of MongoTemplate. This interface replicates
the methods that are already available in the Mongo driver, thus making the
transition simpler between the driver and MongoTemplate. For example, you can
execute methods such as find, findOne, findAndModify, save, insert, update, and
remove. The major difference between the Mongo driver and MongoOperations is
that the latter uses the domain objects instead of DBObject and that it includes fluent
APIs for the Query, Criteria, and Update operations instead of using DBObject
to specify the parameters for those operations.

In the next section, we will show how to build a simple application, starting from
a Data Access Object (DAO) layer, which will use the MongoOperations interface
to wrap the required CRUD methods on the database.

Building up the data access layer
The DAO layer is used to abstract access to data sources, thus making your
applications portable between different database vendors. We will start by coding an
interface for our DAO, which will encapsulate the core methods of our application:

public interface BookDAO {

 public void insert(Book p);
 public void insertAll(Book[] p);
 public Book findByTitle(String id);

 public void update(Book p);

 public int deleteByTitle(String id);
 public void dropCollectionIfExist();
}

Building Applications for MongoDB with Spring Data

[158]

The implementation class, which is tagged with the @Repository annotation is
as follows:

package com.packtpub.mongo.chapter6.template;

import org.springframework.data.mongodb.core.MongoOperations;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;

import com.mongodb.WriteResult;
import java.util.Arrays;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Repository;

@Repository
public class BookDAOImpl implements BookDAO {

 @Autowired
 private MongoOperations mongoOps;

 private static final String BOOK_COLLECTION = "Book";

 public BookDAOImpl(MongoOperations mongoOps) {
 this.mongoOps = mongoOps;
 }

 public BookDAOImpl() { }

 public void dropCollectionIfExist() {

 if (mongoOps.collectionExists(BOOK_COLLECTION)) {
 mongoOps.dropCollection(BOOK_COLLECTION);
 System.out.println("dropped collection");
 }
 }

 public void insert(Book p) {
 this.mongoOps.insert(p, BOOK_COLLECTION);
 }

 public void insertAll(Book[] books) {
 mongoOps.insert(Arrays.asList(books), BOOK_COLLECTION);

Chapter 6

[159]

 }

 public Book findByTitle(String title) {
 Query query = new Query(Criteria.where("title").is(title));
 return this.mongoOps.findOne(query, Book.class,
 BOOK_COLLECTION);

 }

 public void update(Book p) {
 this.mongoOps.save(p, BOOK_COLLECTION);
 }

 public int deleteByTitle(String title) {
 Query query = new Query(Criteria.where("title").is(title));
 WriteResult result = this.mongoOps.remove(query, Book.class,
 BOOK_COLLECTION);
 return result.getN();
 }

}

In Spring 2.0 and later, the @Repository annotation is a marker
for any class that fulfills the role or stereotype of a repository
(also known as DAO).

Within our BookDAOImpl class, we have provided some wrapper methods for adding
(create) or updating (update) documents. The findByTitle method shows an
example of how to use the criteria API to perform searches over your collections of
data. In the next section, we will see some more complex examples using multiple
conditions in our query.

Once configured, MongoOperations is thread-safe and can be
re-used across multiple instances.

Building Applications for MongoDB with Spring Data

[160]

Adding the Application class
The Application class will not be much different from the one coded in the
repository section. We will need to wire the DAO class in our code and execute the
methods to create our collection of books:

package com.packtpub.mongo.chapter6.template;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application implements CommandLineRunner {

 @Autowired
 BookDAO bookDAO;

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

 @Override
 public void run(String... args) throws Exception {

 bookDAO.dropCollectionIfExist();
 Book b = new Book("A Tale Of Two Cities", "Charles Dickens",
 "Novel", 10);

 bookDAO.insert(b);

 Book[] books = new Book[]{
 new Book("The Da Vinci Code", "Dan Brown", "thriller", 12),
 new Book("Think and Grow Rich", "Napoleon Hill",
 "Motivational", 10),
 new Book("The Hobbit", "J.R.R. Tolkien", "Fantasy", 8),
 new Book("Le Petit Prince", "Antoine de
 Saint-Exupery","Novel", 8)
 };

 bookDAO.insertAll(books);

 Book b1 = bookDAO.findByTitle("The Hobbit");
 System.out.println("Retrieved Book=" + b1);

Chapter 6

[161]

 b1.setPrice(6);

 bookDAO.update(b1);
 Book b2 = bookDAO.findByTitle("The Hobbit");
 System.out.println("Retrieved Book after update=" + b2);

 int count = bookDAO.deleteByTitle("Think and Grow Rich");
 System.out.println("Number of records deleted=" + count);
 }

}

The Application class uses the methods coded in BookDAO to perform some
example CRUD operations on the database.

Just like in the repository example, you can customize the
database to be used by extending org.springframework.
data.mongodb.config.AbstractMongoConfiguration
and overriding its methods.

You can run your application using the following command:

mvn clean install spring-boot:run

As an alternative, you can right-click on the Application class from NetBeans and
execute Run File.

Creating fine grained queries using Criteria
By combining the Query class with the Criteria selection, you can create complex
patterns for selecting your data. This includes logical operators such as AND or
NOT, for example. Here is how to select the first book, which is a Fantasy book and
is priced less than 10:

Query query = new Query();
query.addCriteria(Criteria.where("type").is("Fantasy").
 and("price").lt(10));
Book book = mongoOps.findOne(query, Book.class);

You can also combine multiple criteria in a single operator using andOperator or
orOperator. For example, here is how to combine in a single and operation the type
of book, and a range of price between 5 and 10:

Query query = new Query();

query.addCriteria(

Building Applications for MongoDB with Spring Data

[162]

 Criteria.where("type").is("Fantasy").andOperator(
 Criteria.where("price").gt(5),
 Criteria.where("price").lt(10)
)
);

The following table shows the list of the methods that are available in the Criteria
class (the full list of methods also includes methods to perform geospatial queries).
For more information, refer to http://docs.spring.io/spring-data/mongodb/
docs/current/reference/html/#repositories.query-methods.

Function Description
Criteria all (Object o) This is the criteria using the $all

operator
Criteria and (String key) This adds a chained criteria with the

specified key to the current criteria and
returns the newly created one

Criteria andOperator (Criteria…
criteria)

This creates an and query using the $and
operator for all of the provided criteria
(this requires MongoDB 2.0 or later)

Criteria elemMatch (Criteria c) This is the criteria using the $elemMatch
operator

Criteria exists (boolean b) This criteria uses the $exists operator
Criteria gt (Object o) This criteria uses the $gt operator
Criteria gte (Object o) This criteria uses the $gte operator
Criteria in (Object… o) This criteria uses the $in operator for a

var args argument.
Criteria in (Collection<?>
collection)

This criteria uses the $in operator using a
collection

Criteria is (Object o) This criteria uses the $is operator
Criteria lt (Object o) This criteria uses the $lt operator
Criteria lte (Object o) This criteria uses the $lte operator
Criteria mod (Number value,
Number remainder)

This criteria uses the $mod operator

Criteria ne (Object o) This criteria uses the $ne operator
Criteria nin (Object… o) This criteria uses the $nin operator
Criteria norOperator (Criteria…
criteria)

This creates a nor query using the $nor
operator for all of the provided criteria

Criteria not () This criteria uses the $not meta operator,
which affects the following clause

http://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repositories.query-methods
http://docs.spring.io/spring-data/mongodb/docs/current/reference/html/#repositories.query-methods

Chapter 6

[163]

Function Description
Criteria orOperator (Criteria…
criteria)

This creates an or query using the $or
operator for all of the provided criteria

Criteria regex (String re) This criteria uses a $regex operator
Criteria size (int s) This criteria uses the $size operator
Criteria type (int t) This criteria uses the $type operator

Finally, just like we have discussed in the Using the Spring repository to access
MongoDB section of this chapter, you can provide a MongoDB JSON-based query
to your MongoOperations interface. In this case, you will need to use one of its
subclasses called BasicQuery. The following example shows how to perform the
same selection introduced at the beginning of this chapter using a JSON query:

BasicQuery query1 = new BasicQuery("{ price : { $lt : 10 }, type :
 'Fantasy' }");
Book book = mongoOps.findOne(query1, Book.class);

Summary
This chapter completed our journey through the libraries, which can manage
persistence on MongoDB. We have gone through the Spring Data project, which
can be easily combined with the new Spring Boot framework to create a persistence
layer with very little code and no configuration at all. We have covered the two main
approaches that you can use, that is creating repository interfaces, which are able
to derive DB statements directly from the field name of your documents, or using
MongoTemplate, which provides a fine grained approach to your data persistence.

The two approaches are, however, not mutually exclusive, which means you
can combine the best of the two approaches in your applications using common
constructs, such as the Query and the Criteria APIs.

[165]

Index
A
ACID properties

about 2
atomicity 2
consistency 2
durability 2
isolation 2

application
designing 90, 91
schema, designing 91

arrays 25

B
Bill of Materials (BOM) 121
BSON 11
bsondump 16
bulk operations

coding 83
ordered bulk operations 83
plain inserts, comparing with

BulkWriteOperations 84, 85
unordered bulk operations 83

buyBook method 111

C
capped collection 48
CAP theorem

about 2
availability 2
consistency 2
partial tolerance 3

Cassandra
URL 2

collections, Mongo JDBC driver
about 8
dropping 49
listing 48

complex searches
building 44

components, for accessing
MongoDB storage

MongoRepository interface 144
MongoTemplate interface 144

Compound Index 78
Context and Dependency Injection

(CDI) 88
core elements, MongoDB

collection 8
database 8
document 8-10

Criteria
class functions 162, 163
used, for creating fine grained

queries 161-163

D
data

deleting 24
querying, logical operators used 22

Data Access Object (DAO) layer 157
database

about 8
access, securing 28

data, Mongo JDBC driver
DBCursor, used for eager fetching

of data 43, 44

[166]

number of documents, querying
in collection 43

querying 41, 42
records, filtering 44
search, restricting to first document 43

data types, document
arrays 11
binary data 11
boolean 11
date 11
double 11
integer (32 bit and 64-bit) 11
JavaScript code 11
Min/Max keys 11
null 11
object 11
object ID 11
regular expression 11
string 11
symbol 11
timestamp 11

document
about 8, 9
data types 11
inserting 19
key, selecting to return 20, 21
querying 19, 20
updating 22-24

documents, Mongo JDBC driver
array of data, inserting 38, 39
deleting 46, 47
embedded documents, creating 38
inserting 36, 37
own ID, using 40
set of documents, deleting 47
updating 45, 46

documents, MongoDB Java driver
version 3

deleting 56
embedded documents, inserting 52
filtering 54, 55
multiple documents, inserting 53
querying 53
updating 55

E
embedded documents 26, 27
Enterprise project

application, exposing to external clients 109
application, running 108, 109
building, with NetBeans 92
compiling 107
compiling, from shell 107, 108
creating 94-99
deploying 107
deploying, from shell 107, 108
Java classes, adding 99-106
WildFly, configuring on NetBeans 92, 93

Entity 116
Eventual Consistency 4

F
fine grained queries

creating, Criteria used 161-163
functions

limit 27
of Criteria class 162, 163
skip 28
sort 28

G
Gson API

complex BSON types, mapping 69-71
custom field names, in Java classes 68
downloading 62
embedded documents, mapping 66-68
Java objects, inserting as document 65
URL 62
used, for mapping MongoDB

document 63, 64

H
HelloWorld class

running, with MongoDB Java
driver version 3 50

Hibernate OGM
about 117, 118
and Java Persistence Query Language

(JP-QL) 128

[167]

native queries, using in 138, 139
URL 117

Hypertext Application Language
(HAL) 155

I
indexes

compound indexes, using 77, 78
defining, in Java classes 75-77
text indexes, using 80, 81
using, in applications 72-75

installation
MongoDB, on Linux 13
MongoDB, on Windows 12

J
Java classes

mapping, with Spring Data 146-150
Java Community Process (JCP) 88
Java EE Container

obtaining 89
WildFly, downloading 89
WildFly, starting 90

Java Enterprise Edition (JEE)
about 87, 88
components 88

Java Persistence API (JPA)
overview 115-117

Java Persistence Query Language (JP-QL)
and Hibernate OGM 128
MongoDB query, writing 137

JavaScript Object Notation (JSON) 10
Java Server Faces (JSF) 88
Java Specification Requests (JSRs) 88
JPA project, Hibernate OGM

building 119, 120
controller bean, coding 129, 131
controller, coding 126, 128
database collections, mapping 122-125
EJB classes, coding 126-128
example, compiling 135, 136
example, running 135, 136
main view, coding 132, 133
newCustomer view, coding 133, 134

newOrder view, coding 134, 135
persistence, configuring 125, 126
project dependencies, configuring 121, 122
views, coding 131

JSON queries
using, in repository classes 152, 153

L
libraries

Enterprise Java Beans 96
Gson, Google 96
Java Server Faces and Context Dependency

Injection 96
Mongo DB Java Driver 96

limit function 27
Linux

MongoDB, installing on 13
logical operators

used, for querying data 22

M
Maven central repository

URL 62
MMAPv1 7
MongoDB

about 1
accessing, Spring repository used 144
core classes, extending 58-62
core elements 8
data storage 10, 11
Gson API, using with 62
installing 12
installation, troubleshooting 15, 16
installing, on Linux 13
installing, on Windows 12
serving, Spring REST used 153-156
starting 12
start up options 14, 15
URL, for downloading latest stable

release 12
used, with Java lens 57, 58

MongoDB Java driver version 3
collections, managing 51
data, inserting into database 51

[168]

documents, deleting 56
documents, querying 53
documents, updating 55
embedded documents, inserting 52
HelloWorld, running with 50
URL 49
using 49

MongoDB shell
about 18
documents, inserting 19
documents, querying 19, 20
documents, updating 22-24

Mongo JDBC driver
collections, listing 48
data, querying 41, 42
document, inserting 36, 37
documents, deleting 46, 47
documents, updating 45, 46
obtaining 31
operations, performing on collections 47, 48
project, creating 32
URL, for downloading 31

MongoRepository interface 144
Mongo template component, used for

accessing MongoDB
about 157
Application class, adding 160, 161
Data Access Object (DAO) layer,

building 157, 159
Mongo tools

bsondump 16
mongodump/mongorestore 17
mongoexport 17
mongofiles 17
mongoimport 16
mongooplog 17
mongostat 17
mongotop 17

N
native queries

using, in Hibernate OGM 138, 139
NetBeans

WildFly, configuring on 92, 93

NoSQL
about 1
characteristics 1-3
cons 5
pros 5
versus RDBMS 5

O
Object/Grid Mapper (OGM) 115
object-relational mapping (ORM) 116

P
Partition Tolerance 3
Producers 100
projections 20
project, Mongo JDBC driver

authentication, handling 35, 36
creating 32
new Java project, creating 32-35

Q
queries

ranges, using in 21
query method

about 111
reference link 162

R
ranges

using, in queries 21
RDBMS

cons 5
pros 5
versus NoSQL 5

read-write concurrency
managing 7

Red Hat
URL 89

repository classes
JSON queries, using in 152, 153

[169]

RESTful web services
adding, to application 109, 111
application, compiling 112
application, deploying 112

REST Services 109

S
schemaless data representation 2
skip function 28
sort function 28
Spring Boot

about 141
example 142, 143

Spring Boot application, coding
about 145
example, running 150
Java classes, mapping with

Spring Data 146-150
JSON queries, using in repository

classes 152, 153
repository storage, customizing 151, 152

Spring Data
about 143
Java classes, mapping with 146-150

Spring repository
used, for accessing MongoDB 144

Spring REST
used, for serving MongoDB 153-156

start up options, MongoDB 14, 15
storage engines, MongoDB 3.0

MMAPv1 7
WiredTiger 7

T
text indexes

text search, by language 81, 82
text search, by score 82

transactions
need for 6

two-phase commit
reference link 6

W
WildFly

domain mode 90
downloading 89
Linux users 89
standalone mode 90
URL 89
Windows users 89

Windows
MongoDB, installing on 12

WiredTiger 7

Thank you for buying
MongoDB for Java Developers

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

MongoDB Cookbook
ISBN: 978-1-78216-194-3 Paperback: 388 pages

Over 80 practical recipes to design, deploy, and
administer MongoDB

1. Gain a thorough understanding of some of the
key features of MongoDB.

2. Learn the techniques necessary to solve
frequent MongoDB problems.

3. Packed full of step-by-step recipes to help you
with installation, design, and deployment.

Learning MongoDB [Video]
ISBN: 978-1-78398-392-6 Duration: 03:26 hrs

A comprehensive guide to using MongoDB for ultra-
fast, fault tolerant management of big data, including
advanced data analysis

1. Master MapReduce and the MongoDB
aggregation framework for sophisticated
manipulation of large sets of data.

2. Manage databases and collections, including
backup, recovery, and security.

3. Discover how to secure your data using SSL,
both from the client and via programming
languages.

Please check www.PacktPub.com for information on our titles

MongoDB High Availability
ISBN: 978-1-78398-672-9 Paperback: 164 pages

Design and implement a highly available server using
the latest features of MongoDB

1. Improve response time by profiling and
indexing on large databases.

2. Configure a Replica set network from scratch
using a real-world example.

3. Step-by-step guide to setting up and learning
about the latest MongoDB components and
features to perform clustering and sharding.

MongoDB Data Modeling
ISBN: 978-1-78217-534-6 Paperback: 202 pages

Focus on data usage and better design schemas with
the help of MongoDB

1. Create reliable, scalable data models
with MongoDB.

2. Optimize the schema design process to support
applications of all kinds.

3. Use this comprehensive guide to implement
advanced schema designs.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to MongoDB
	Getting into the NoSQL movement
	Comparing RDBMS and NoSQL databases
	Living without transactions
	Managing read-write concurrency

	MongoDB core elements
	The heart of MongoDB – the document
	Understanding how MongoDB stores data
	Data types accepted in documents

	Installing and starting MongoDB
	Installing MongoDB on Windows
	Installing MongoDB on Linux
	MongoDB start up options
	Troubleshooting MongoDB installation

	Mongo tools
	Introduction to the MongoDB shell
	Inserting documents
	Querying documents
	Choosing the keys to return
	Using ranges in your queries
	Using logical operators to query data

	Updating documents
	Deleting data
	Beyond basic data types
	Arrays
	Embedded documents

	Some useful functions

	Securing database access
	Summary

	Chapter 2: Getting Started with Java Driver for MongoDB
	Getting the Mongo JDBC driver
	Creating your first project
	Creating a new Java project
	Handling authentication

	Inserting a document
	Creating embedded documents
	Inserting an array of data
	Using your own ID in documents

	Querying data
	Restricting the search to the first document
	Querying the number of documents in a collection
	Eager fetching of data using DBCursor
	Filtering through the records

	Updating documents
	Deleting documents
	Deleting a set of documents

	Performing operations on collections
	Listing collections
	Dropping a collection

	Using the MongoDB Java driver
version 3
	Running the HelloWorld class with driver v.3
	Managing collections

	Inserting data into the database
	Inserting embedded documents
	Inserting multiple documents

	Querying documents
	Filtering through documents

	Updating documents
	Deleting documents

	Summary

	Chapter 3: MongoDB CRUD beyond the Basics
	Seeing MongoDB through the Java lens
	Extending the MongoDB core classes
	Using the Gson API with MongoDB
	Downloading the Gson API
	Using Gson to map a MongoDB document
	Inserting Java objects as a document
	Mapping embedded documents
	Custom field names in your Java classes
	Mapping complex BSON types

	Using indexes in your applications
	Defining an index in your Java classes
	Using compound indexes
	Using text indexes in your documents

	Coding bulk operations
	Comparing plain inserts with BulkWriteOperations

	Summary

	Chapter 4: MongoDB in the Java EE 7 Enterprise Environment
	Entering into the Java EE land
	Getting a Java EE Container
	Downloading WildFly
	Starting WildFly and testing the installation

	Designing our application
	Designing the schema

	Building up the Enterprise project with NetBeans
	Configuring WildFly on NetBeans
	Creating our project
	Adding Java classes
	Compiling and deploying the project
	Compiling and deploying from the shell

	Running the application
	Exposing the application to external clients
	Adding RESTful web services to our application
	Compiling and deploying the application

	Summary

	Chapter 5: Managing Data Persistence with MongoDB and JPA
	An overview of the Java Persistence API
	Entering Hibernate OGM
	Building a JPA project that uses Hibernate OGM
	Configuring the project dependencies
	Mapping the database collections
	Configuring persistence
	Coding the controller and EJB classes
	Hibernate OGM and JP-QL

	Coding a controller bean
	Coding the views
	The main view
	The newCustomer view
	The newOrder view

	Compiling and running the example
	A look into MongoDB

	Using native queries in your Hibernate OGM
	Summary

	Chapter 6: Building Applications for MongoDB with Spring Data
	Introducing Spring Boot
	Getting started with Spring Boot

	Getting started with Spring Data
	Using the Spring repository to access MongoDB
	Coding our Spring Boot application
	Serving MongoDB using Spring REST

	Using the Mongo template component to access MongoDB
	Building up the data access layer
	Adding the Application class
	Creating fine grained queries using Criteria

	Summary

	Index

