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Preface to the Second
Edition

After the publication of the first edition of the book, about five years ago,
I have received a fair number of messages from readers, both students and
practitioners, around the world. The recurring keyword, and the most im-
portant thing to me, was useful. The book had, and has, no ambition of
being a very advanced research book. The basic motivation behind this sec-
ond edition is the same behind the first one: providing the newcomer with
an easy, but solid, entry point to computational finance, without too much
sophisticated mathematics and avoiding the burden of difficult C++ code,
also covering relatively non-standard optimization topics such as stochastic
and integer programming. See also the excerpt from the preface to the first
edition. However, there are a few new things here:

« a slightly revised title;
e completely revised organization of chapters;

« significantly increased number of pages.

The title mentions both Finance and Economics, rather than just Finance. To
avoid any misunderstanding, it should be made quite clear that this is essen-
tially a book for students and practitioners working in Finance. Nevertheless,
it can be useful to Ph.D. students in Economics as well, as a complement to
more specific and advanced textbooks. In the last four years, | have been
giving a course on numerical methods within a Ph.D. program in Economics,
and | typically use other available excellent textbooks covering advanced al-
gorithms1 or offering well-thought MATLAB toolboxes2 which can be used
to solve a wide array of problems in Economics. From the point of view of
my students in such a course, the present book has many deficiencies: For
instance, it does not cover ordinary differential equations and it does not
deal with computing equilibria or rational expectations models; furthermore,
practically all of the examples deal with option pricing or portfolio manage-
ment. Nevertheless, given my experience, | believe that they can benefit from
a more detailed and elementary treatment of the basics, supported by simple
examples. Moreover, | believe that students in Economics should also get

1K.L. Judd, Numerical Methods in Economics, MIT Press, 1998.
2M.J. Miranda and P.L. Fackler, Applied Computational Economics and Finance, MIT
Press, 2002.

Xxvn



xviii  PREFACE

at least acquainted with topics from Operations Research, such as stochastic
programming and integer programming. Hence, the “and Economics” part of
the title suggests potential use of the book as a complement, and by no means
as a substitute.

The book has been reorganized in order to ease its use within standard courses
on numerical methods for financial engineering. In the first edition, optimiza-
tion applications were dealt with extensively, in chapters preceding those re-
lated to option pricing. This was a result of my personal background, which
is mainly Computer Science and Operations Research, but it did not fit very
well with the common use of a book on computational finance. In the present
edition, advanced optimization applications are left to the last chapters, so
they do not get into the way of most financial engineering students. The book
consists of twelve chapters and three appendices.

e Chapter 1 provides the reader with motivations for the use of numerical
methods, and for the use of MATLAB as well.

e Chapter 2 is an overview of financial theory. It is aimed at students in
Engineering, Mathematics, or Operations Research, who may be inter-
ested in the book, but have little or no financial background.

e Chapter 3 is devoted to the basics of classical numerical methods. In
some sense, this is complementary to chapter 2 and it is aimed at peo-
ple with a background in Economics, who typically are not exposed to
numerical analysis. To keep the book to a reasonable size, a few clas-
sical topics were omitted because of their limited role in the following
chapters. In particular, | do not cover computation of eigenvalues and
eigenvectors and ordinary differential equations.

e Chapter 4 is devoted to numerical integration, both by quadrature for-
mulas and Monte Carlo methods. In the first edition, quadrature for-
mulas were dealt with in the chapter on numerical analysis, and Monte
Carlo was the subject of a separate chapter. | preferred giving a unified
treatment of these two approaches, as this helps understanding their re-
spective strengths and weaknesses, both for option pricing and scenario
generation in stochastic optimization. Regarding Monte Carlo as a tool
for integration rather than simulation is also helpful to properly frame
the application of low-discrepancy sequences (which is also known un-
der the more appealing name of quasi-Monte Carlo simulation). There
is some new material on Gaussian quadrature, an extensive treatment
of variance reduction methods, and some application to vanilla options
to illustrate simple but concrete applications immediately, leaving more
complex cases to chapter 8.

e Chapter 5 deals with basic finite difference schemes for partial differ-
ential equations. The main theme is solving the heat equation, which
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is the prototype example of the class of parabolic equations, to which
Black-Scholes equation belongs. In this simplified framework we may
understand the difference between explicit and implicit methods, as well
as the issues related to convergence and numerical stability. With re-
spect to the first edition, | have added an outline of the Alternating
Direction Implicit method to solve the two-dimensional heat equation,
which is useful background for pricing multidimensional options.

Chapter 6 deals with finite-dimensional (static) optimization. This
chapter can be safely skipped by students interested in the option pric-
ing applications described in chapters 7, 8, and 9. However, it may be
useful to students in Economics. It is also necessary background for the
relatively advanced optimization models and methods which are covered
in chapters 10, 11, and 12.

Chapter 7 is a new chapter which is devoted to binomial and trinomial
lattices, which were not treated extensively in the first edition. The
main issues here are proper implementation and memory management.

Chapter 8 is naturally linked to chapter 4 and deals with more advanced
applications of Monte Carlo and low-discrepancy sequences to exotic
options, such as barrier and Asian options. We also deal briefly with the
estimation of option sensitivities (the Greeks) by Monte Carlo methods.
Emphasis is on European-style options; pricing American options by
Monte Carlo methods is a more advanced topic which must be analyzed
within an appropriate framework, which is done in chapter 10.

Chapter 9 applies the background of chapter 5to option pricing by finite
difference methods.

Chapter 10 deals with numerical dynamic programming. The main rea-
son for including this chapter is pricing American options by Monte
Carlo simulation, which was not covered in the first edition but is gain-
ing more and more importance. | have decided to deal with this topic
within an appropriate framework, which is dynamic stochastic optimiza-
tion. In this chapter we just cover the essentials, which means discrete-
time and finite-horizon dynamic programs. Nevertheless, we try to offer
a reasonably firm understanding of these topics, both because of their
importance in Economics and because understanding dynamic program-
ming is helpful in understanding stochastic programming with recourse,
which is the subject of the next chapter.

Chapter 11 deals with linear stochastic programming models with re-
course. This is becoming a standard topic for people in Operations
Research, whereas people in Economics are much more familiar with
dynamic programming. There are good reasons for this state of the
matter, but from a methodological point of view | believe that it is very
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important to compare this approach with dynamic programming; from
a practical point of view, stochastic programming has an interesting po-
tential both for dynamic portfolio management and for option hedging
in incomplete markets.

» Chapter 12 also deals with the relatively exotic topic of non-convex opti-
mization. The main aim here isintroducing mixed-integer programming,
which can be used for portfolio management when practically relevant
constraints call for the introduction of logical decision variables. We also
deal, very shortly, with global optimization, i.e., continuous non-convex
optimization, which is important when we leave the comfortable domain
of easy optimization problems (i.e., minimizing convex cost functions or
maximizing concave utility functions). We also outline heuristic prin-
ciples such as local search and genetic algorithms. They are useful to
integrate simulation and optimization and are often used in computa-
tional economics.

« Finally, we offer three appendices on MATLAB, probability and statis-
tics, and AMPL. The appendix on MATLAB should be used by the
unfamiliar reader to get herself going, but the best way to learn MAT-
LAB is by trying and using the online help when needed. The appendix
on probability and statistics is just a refresher which is offered for the
sake of convenience. The third appendix on AMPL is new, and it reflects
the increased role of algebraic languages to describe complex optimiza-
tion models. AMPL is a modeling system offering access to a wide array
of optimization solvers. The choice of AMPL is just based on personal
taste (and the fact that a demo version is available on the web). In fact,
GAMS is probably much more common for economic applications, but
the concepts are actually the same. This appendix is only required for
chapters 11 and 12.

Finally, there are many more pages in this second edition: more than 600
pages, whereas the first edition had about 400. Actually, I had a choice:
either including many more topics, such as interest-rate derivatives, or offering
a more extended and improved coverage of what was already included in the
first edition. While there is indeed some new material, | preferred the second
option. Actually, the original plan of the book included two more chapters on
interest-rate derivatives, as many readers complained about this lack in the
first edition. While writing this increasingly long second edition, | switched
to plan B, and interest-rate derivatives are just outlined in the second chapter
to point out their peculiarities with respect to stock options. In fact, when
planning this new edition, many reviewers warned that there was little hope to
cover interest-rate derivatives thoroughly in a limited amount of pages. They
require a deeper understanding of risk-neutral pricing, interest rate modeling,
and market practice. | do believe that the many readers interested in this
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topic can use this book to build a solid basis in numerical methods, which is
helpful to tackle the more advanced texts on interest-rate derivatives.
Interest-rate derivatives are not the only significant omission. | could also
mention implied lattices and financial econometrics. But since there are excel-
lent books covering those topics and | see this one just as an entry point or a
complement, | felt that it was more important to give a concrete understand-
ing of the basics, including some less familiar topics. This is also why | prefer
using MATLAB, rather than C++ or Visual Basic. While there is no doubt
that C++ has many merits for developing professional code, both in terms of
efficiency and object orientation, it is way too complex for newcomers. Fur-
thermore, the heavy burden it places on the reader tends to overshadow the
underlying concepts, which are the real subject of the book. Visual Basic
would be a very convenient choice: It is widespread, and it does not require
yet another license, since it is included in software tools that almost everyone
has available. Such a choice would probably increase my royalties as well.
Nevertheless, MATLAB code can exploit a wide and reliable library of nu-
merical functions and it is much more compact. To the very least, it can
be considered a good language for fast prototyping. These considerations,
as well as the introduction of new MATLAB toolboxes aimed at financial
applications, are the reasons why | am sticking to my original choice. The
increasing number of books using MATLAB seems to confirm that it was a

good one.

Acknowledgments. | have received much appreciated feedback and encour-
agement from readers of the first edition of the book. Some pointed out typos,
errors, and inaccuracies. Offering apologies for possible omissions, | would like
to thank I-Jung Hsiao, Sandra Hui, Byunggyoo Kim, Scott Lyden, Alexander
Reisz, Ayumu Satoh, and Aldo Tagliani.

Supplements. As with the first edition, | plan to keep a web page containing
the (hopefully short) list oferrata and the (hopefully long) list of supplements,
as well as the MATLAB code described in the book. My current URL is:

e http://staff polito.it/paolo.brandimarte
For comments, suggestions, and criticisms, my e-mail address is
e paolo.brandimarteQpolito.it

One of the many corollaries of Murphy’s law says that my URL is going
to change shortly after publication of the book. An up-to-date link will be
maintained both on Wiley Web page:

e http://www.wiley.com/mathematics
and on The MathWorks’ web page:
e http://www.mathworks.com/support/books/

Paolo Brandimarte

Turin, March 2006


http://staff.polito.it/paolo.brandimarte
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From the Preface to the
First Edition

Crossroads are hardly, if ever, points of arrival; but neither are they points of
departure. In some sense, crossroads may be disappointing, indeed. You are
tired of driving, you are not at home yet, and by Murphy’s law there is a far-
from-negligible probability of taking the wrong turn. In this book, different
paths cross, involving finance, numerical analysis, optimization theory, prob-
ability theory, Monte Carlo simulation, and partial differential equations. It
is not a point of departure, because although the prerequisites are fairly low,
some level of mathematical maturity on the part of the reader is assumed. It
is not a point of arrival, as many relevant issues have been omitted, such as
hedging exotic options and interest-rate derivatives.

The book stems from lectures | give in a Master’s course on numerical
methods for finance, aimed at graduate students in Economics, and in an
optimization course aimed at students in Industrial Engineering. Hence, this
is not a research monograph; it is a textbook for students. On the one hand,
students in Economics usually have little background in numerical methods
and lack the ability to translate algorithmic concepts into a working program;
on the other hand, students in Engineering do not see the potential application
of quantitative methods to finance clearly.

Although there is an increasing literature on high-level mathematics applied
to financial engineering, and a few books illustrating how cookbook recipes
may be applied to a wide variety of problems through use of a spreadsheet, |
believe there is some need for an intermediate-level book, both interesting to
practitioners and suitable for self-study. | believe that students should:

e Acquire reasonably strong foundations in order to appreciate the issues
behind the application of numerical methods

« Be able to translate and check ideas quickly in a computational envi-
ronment

» Gain confidence in their ability to apply methods, even by carrying out
the apparently pointless task of using relatively sophisticated tools to
pricing a vanilla European option

» Be encouraged to pursue further study by tackling more advanced sub-
jects, from both practical and theoretical perspectives

The material covered in the book has been selected with these aims in mind.
Of course, personal tastes are admittedly reflected, and this has something to

XXiii
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do with my Operations Research background. | am afraid the book will not
please statisticians, as no econometric model is developed; however, there is
a wide and excellent literature on those topics, and | tried to come up with a
complementary textbook.

The text is interspersed with MATLAB snapshots and pieces of code, to
make the material as lively as possible and of immediate use. MATLAB is a
flexible high-level computing environment which allows us to implement non-
trivial algorithms with a few lines of code. It has also been chosen because of
its increasing potential for specific financial applications.

It may be argued that the book is more successful at raising questions than
at giving answers. This is a necessary evil, given the space available to cover
such a wide array of topics. But if, after reading this book, students will want
to read others, my job will have been accomplished. This was meant to be a
crossroads, after all.

PS1. Despite all of my effort, the book is likely to contain some errors and
typos. | will maintain a list of errata, which will be updated, based on reader
feedback. Any comment or suggestion on the book will also be appreciated.
My e-mail address is: paolo.brandimarte@ polito.it.

PS2. The list of errata will be posted on a Web page which will also include
additional material and MATLAB programs. The current URL is

 http://staff.polito.it/paolo.brandimarte
An up-to-date link will be maintained on Wiley Web page:

e http:/lwww.wiley.com/mathematics

PS3. And if (what a shame ...) you are wondering who Commander Straker
is, take a look at the following Web sites:

e http://www .ufoseries.com

e http://www .isoshado.org

Paolo Brandimarte

Turin, June 2001


mailto:paolo.brandimarte@polito.it
http://staff.polito.it/paolo.brandimarte
http://www.wiley.com/mathematics
http://www.ufoseries.com
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Motivation

Common wisdom would probably associate the ideas of numerical methods
and number crunching to problems in science and engineering, rather than
finance. This intuitive view is contradicted by the relatively large number of
books and scientific journals devoted to computational finance; even more so,
by the fact that these methods are not confined to academia, but are actually
used in real life. As a result, there has been a steady increase in the number
of academic programs devoted to quantitative finance, both at Master’s and
Ph.D. level, and they usually include a course on numerical methods. Fur-
thermore, many people with a quantitative or numerical analysis background
have started working in finance, including engineers, mathematicians, and
physicists.

Indeed, as the term financial engineering may suggest, computational fi-
nance is a field where different cultures meet. Hence, a wide array of students
and practitioners, with diverse background, will hopefully be interested in a
book on numerical methods for finance. On the one hand, this is good news
for the author. On the other one, the first difficult task is to get everyone
on common ground as far as financial theory and the basics of numerical
analysis are concerned; if treatment is too brief, there is a significant risk of
losing a considerable subset of readers along the way; if it is too detailed,
another subset will be considerably bored. The aim of the first three chapters
is to “synchronize” readers with a background in Finance and readers with
a scientific background, including students in Engineering, Mathematics, and
Physics. In chapter 2, we will give the second subset of readers an overview
of concepts in finance, with an emphasis on asset pricing and portfolio man-
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agement. The first subset of readers will find a reasonably self-contained
treatment on classical topics of numerical analysis in chapter 3.

In this introductory chapter we want to give a preview of the problems we
will deal with, along with some motivation. The reader who is unfamiliar with
some topics just outlined here should not be worried, as they are not taken
for granted and will be treated thoroughly in the next chapters. We want to
make three points:

1. In financial engineering we need numerical methods (section 1.1).

2. We need sophisticated and user-friendly numerical computing environ-
ments, such as MATLABI1 (section 1.2), even if this does not prevent at
all the use of (relatively) low-level languages such as Fortran or C++ or
spreadsheets such as Microsoft Excel.

3. Whatever software tool we select, we need a reasonably strong theoreti-
cal background, as we must often select among competing methods and
many things may go wrong with them (section 1.3).

11 NEED FOR NUMERICAL METHODS

Probably, the best-known result in financial engineering is the Black-Scholes
formula to price options on stocks.2 Options are a class of derivatives, i.e.,
financial assets whose value depends on another asset, called the underlying.
The underlying can also be a non-financial asset, such as a commodity, or an
arbitrary quantity representing a risk factor to someone, such as weather, so
that setting up a market to transfer risks makes sense. Options are contracts
with very specific rules for issuing, trading, and accounting. For instance,
a European-style call option on a stock gives the holder the right, but not
the obligation, of buying a given stock at a given time (maturity, denoted
by T), for a prespecified price (the strike price, denoted by K). Similarly,
a put option gives the right to sell the underlying asset at a predetermined
strike price. In European-style derivatives, the right specified in the contract
can only be exercised at maturity T; in American-style derivatives, one can
exercise her right at any time before T, which in this case plays the role of the
expiration date of the option.

In the case of a European-style call option, if the asset price at maturity is
S(T), then the payoffis max{5(T) - K, 0}. The rationale here is that, under
idealized assumptions on financial markets, the option holder could purchase

'MATLAB is a registered trademark of The MathWorks, Inc. For more information, see
http ://lwww.mathworks. com.

2The formula was published by Fisher Black and Myron Scholesin 1973. A similar research
line had been pursued by Robert Merton, and in fact Scholes and Merton were awarded the
Nobel prize in Economics in 1997. By that time, unfortunately, Fisher Black was deceased.
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the underlying asset at the prevailing price S(T) and immediately sell it at
price K. Clearly, the option holder will do so only if this results in a positive
profit. Actually, market imperfections, such as transaction costs or bid-ask
spreads, prevent such an idealized trade: even if S(T) is the last quoted price,
there is no guarantee that the option holder can actually buy the stock at
that price. In the book we will neglect such issues, which are related to the
micro-structure of financial markets.

If we are at a time instant t < T, we would like to assign a value, or a fair
price, to the option. However, what we know is only the current price S(t)
of the underlying asset, whereas its price S{T) at maturity is not known. If
we build some mathematical model for the dynamics of the price S(t) as a
function of time, we may regard S(T) as a random variable; hence, the payoff
is random as well, and there seems to be no trivial way to price this contract.
Let f(S(t),t) be the price of the option at time t if the current price of the
underlying asset is S(t); to ease the notation burden we will usually write it
as f(S, t). It can be shown that, under suitable assumptions, the value of the
contract really depends only on t and S, and it satisfies the following partial
differential equation (PDE):

, A/ o nn
8t 2 as2 as f ’ in

where r is the risk-free interest rate, i.e., the rate of interest one can earn by
investing her money in a safe account, and a is a parameter related to the
volatility of the price of the underlying asset, which is a risky asset. Typically,
we are interested in the current value /(So0,0), where Sq = S(0). Equation
(1.1), with the addition of suitable boundary conditions linked to the type of
option, may be solved analytically in some cases. For instance, if we denote
the cumulative distribution function3 for the standard normal distribution by
N(z) = P{Z < z}, where Z is a standard normal variable, the price Co for a
European call option at time t = 0 is

Co = SoNidi) - Ke-rTN(d2), (1.2)
where
d\ \n(SO/K) + (r + <22/2)T
an/T
= HSolig+”™ -~ rr = A
ay/f

This formula is easy to evaluate, but in general we are not so lucky. The com-
plexity of the PDE or of some additional conditions, which we must impose to
fully characterize a specific option, may require numerical methods. We will

3See appendix B for a refresher on Probability and Statistics.
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cover relatively simple numerical methods for solving PDEs, based on finite
differences, in chapter 5, and applications to option pricing will be illustrated
in chapter 9. Using finite differences, in turn, may call for the repeated solu-
tion of systems of linear equations, which is among the topics of chapter 3 on
numerical analysis.

Apart from the obvious computational advantage, analytical formulas are
of great importance in gaining insights into how different factors affect option
prices. They also allow quick calculation of price sensitivities with respect to
such factors, which are relevant for risk management. In the book, we will
use analytical formulas quite often in order to validate numerical methods,
by comparing the numerical result with the theoretically correct one. This is
of no practical value by itself, but it is very instructive. Finally, we will also
see that when a complex option cannot be priced analytically, knowing an
analytical pricing formula for a related simpler option can be of great value.
In option pricing by Monte Carlo simulation (see below), analytical pricing
formulas may yield control variates useful to reduce variance in the estimate
of price.

Nevertheless, we should note that the distinction between numerical and
analytical methods is sometimes a bit blurred. It may happen that analytical
formulas are quite complicated. As an example, let us consider the following
formula, which we give without much explanation4:

This is a formula for the price of a European-style call option when price
jumps are included in the model. The Black-Scholes model assumes contin-
uous paths for prices, and this formula by Robert Merton generalizes to a
model in which jumps occur according to a compound Poisson process. Here
ChlIs(S', T, K, a2,r) is the standard Black-Scholes formula with the usual in-
put arguments; J1is related to the rate of jumps, i.e., the expected number of
jumps per unit time; Xn is a random variable related to the size of jumps, and
expectation in the formula is with respect to this variable; x is a number which
is also related to the probability distribution of jump sizes. Even without fully
understanding this formula, which goes beyond the scope of this introductory
book, it is clear that evaluating it is not so trivial and calls for some computa-
tional approximation. Nevertheless, it gives an explicit representation of the
effect of each factor affecting price, whereas in a purely numerical approach
this important information is lost.

Even in the simple case of equation (1.2), some numerical method is actu-
ally applied, since we have to evaluate the function:

4See [5, page 320] for details.
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where the integral cannot be solved in closed form. Here, we may evaluate
the integral by quite efficient ad hoc approximation formulas, rather than by
general-purpose methods for numerical integration. Sometimes, however, we
have to compute or approximate integrals in multiple dimensions. In fact,
thanks to a result known as Feynman-Kac formula, the solution of a PDE
such as (1.1) can be expressed as an expected value. This and other pricing
arguments imply that option prices may be expressed as expected values,
which boil down to an integral. Unfortunately, when expectation is taken with
respect to many random variables, standard methods to compute integrals in
low-dimensional spaces fail.

In other problem settings, we have to approximate a function defined by
an integral. For instance, consider a function g(x, y) and define a function of
X by

F (X)=Jfa g{x,y)fY{y) dy.

Such a situation occurs often in stochastic optimization, when x is a decision
variable influencing the result, which is only partially under our control be-
cause of the effect of a random “disturbance” Y , whose density is fy{y) over
the support [a, 6] (possibly (-00,+00)). The function F(x) can be consid-
ered as the expected cost or profit resulting from our decisions. We will see
concrete examples in chapters 10 and 11.

Since computing integrals is so important, chapter 4 is entirely devoted to
this topic. Apart from deterministic integration methods, we will also deal
extensively with random sampling methods known as Monte Carlo integration
or Monte Carlo simulation. Monte Carlo simulation has a incredibly wide
array of applications, including option pricing and risk management. For
instance, it can be shown that the price of a European call option at time
t = 0 is given by the following expected value:

C = E° [e~rTmax{5r - K, 0}],

where St is the (random) price of the underlying asset at maturity, and the
expected value is taken under a suitably chosen probability measure (denoted
by Q). In other words, the option value is the expected value of the payoff,
discounted back to time t = 0, under a certain probability measure. If we are
able to generate M independent random samples S~\ j = 1,..., M, of the
asset price, under probability measure Q, then by the law of large numbers
we could estimate the expected value by the sample mean

1M ]
C=— e~rT max{S" —K ,0}.

3=

This is the essence of Monte Carlo simulation, and a number of tricks of the
trade are needed in order to obtain a reliable and computationally efficient es-
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timate.5 Variance reduction methods and alternative integration approaches
based on low-discrepancy sequences will be introduced in chapter 4, and ap-
plications to option pricing are illustrated in chapter 8.

Another widely applied approach to option pricing is based on binomial
or trinomial lattices. These can be regarded as a sort of clever discretization
of the underlying stochastic process. From this point of view, they are a
deterministic way to generate sample paths, whereas Monte Carlo is based on
random sample path generation. Another point of view is that certain finite
difference approaches can be regarded as generalization of trinomial lattices.
We will see applications of these methods in chapter 7.

Another major topic of the book is optimization, which is introduced in
chapter 6. Optimization models and methods play many different roles in
finance. In the option pricing context, optimization is at the core of pricing
American-style options. Since American-style options may be exercised at any
time before expiration, optimal exercise strategies must be accounted for in
pricing. For instance, in an American-style call option, it would be tempting
to exercise the option as soon as it gets in-the-money, i.e., when S(t) > K for
a call option and you could earn an immediate profit. However, one should
also wonder if it could be better to wait for a better opportunity. This is
not a trivial problem; indeed, it can be shown that it is never optimal to
exercise an American-style call option on a stock, unless it pays dividends
before expiration.

An older type of application of optimization methods is portfolio manage-
ment. Given a set of assets in which one can invest her wealth, we must
decide how much should be allocated to each one of them, given some char-
acterization of the uncertainty in assets return. The best-known portfolio
optimization model is based on the idea of minimizing the variance of port-
folio return (a measure of risk), while meeting a constraint on its expected
value. This leads to mean-variance portfolio theory, a topic pioneered by
Harry Markowitz in the 1950s. While somewhat idealized, this model had
an enormous practical and theoretical impact, eventually earning Markowitz
a Nobel prize in Economics in 1990.6 Since then, many different approaches
to portfolio optimization have been developed, and they will be illustrated in
chapters 10, 11, and 12.

5As we mentioned, option pricing by solving a partial differential equation or by computing
an expectation are theoretically equivalent approaches, via Feynman-Kac formula. How-
ever, they can be quite different in computational terms. It is interesting to note that,
historically, Black-Scholes formula was first obtained by solving the pricing PDE analyti-
cally, whereas the recent tendency is to use expectation based approaches because of their
generality.

6Markowitz shared the prize with Merton Miller and William Sharpe. W hat is probably
less known is that he was among the developers of SimScript, one of the first programming
languages for discrete-event simulation. By the way, Robert Merton had a background in
engineering. This shows how artificial the barriers between Economics and Engineering
may be.
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It is also important to note that asset pricing and portfolio optimization are
not necessarily disjoint topics. Many Financial Economics theories are based
on portfolio optimization models which in turn lead to asset pricing models.
We will not cover these topics, however, both because of space limitations and
because they are not strictly related to numerical methods.

There are still other kinds of application of optimization methods, which
may more instrumental, such as parameter fitting or model calibration. In
complex markets, asset prices may depend on a set of unobservable parame-
ters, and one would like to introduce and price a new asset, in a way which
is coherent with observed prices for other traded assets. To do so, a typical
approach is the following. First we build a theoretical pricing model, depend-
ing on such parameters. Then we try to find values for these parameters,
which are as coherent as possible with observed prices. Let a be the vector
of unknown parameters; according to the asset pricing model, the theoretical
price of asset j should be Pj(a), whereas the observed price is P°. We would
like to get a vector of parameters yielding the best fit. A standard way to do
so is solving the following optimization model:

Then, given the optimal set of parameters, we may proceed to price new as-
sets using the theoretical model. This type of approach is essential in pricing
interest-rate derivatives. Interest-rate derivatives are considerably more diffi-
cult to analyze than options on stocks and are outside the scope of this book;
we will just outline the related issues in section 2.8.

As expected, some simple optimization models may be solved analytically,
yielding quite useful insights. However, as a rule, very sophisticated compu-
tational approaches are needed.

12 NEED FOR NUMERICAL COMPUTING ENVIRONMENTS: WHY
MATLAB?

MATLAB is an interactive computing environment, providing both basic and
sophisticated functions. You may use built-in functions to solve possibly com-
plex but standard problems, or you may devise your own programs by writing
them as M-files, i.e., as text files including sequences of instructions written
in a high-level matrix-oriented language. Moreover, MATLAB has a rich set
of graphical capabilities, which we will use in a very limited fashion, includ-
ing the ability of quickly developing graphical user interfaces. The unfamiliar
reader is referred to appendix A for a quick tour of MATLAB programming.

Some classical numerical problems are readily solved by MATLAB func-
tions. They include:

e Solving systems of linear equations
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e Solving non-linear equations in a single unknown variable (including
polynomial equations as a special case)

¢ Finding minima and maxima of functions of a single variable

e Approximating and interpolating functions

« Computing definite integrals (in low-dimensional spaces)

e Solving ordinary differential equations, as well as some simple PDEs

This and much more is included in the basic MATLAB core. More complex
versions of these problems may be solved by other MATLAB ready-to-use
functions, but you have to get the appropriate toolbox. A toolbox is simply a
set of functions written in the MATLAB language, and it is usually provided
in source form, so that the user may customize or use the code as a starting
point for further work. For instance, the Optimization toolbox is needed to
solve complex optimization problems, involving several decision variables and
possibly complex constrains, as well as to solve systems of non-linear equa-
tions. Another relevant toolbox for finance is the Statistics toolbox, which
includes many more functions than we will use. In particular, it offers func-
tions to generate pseudorandom numbers that are needed to carry out Monte
Carlo simulations. Based on the Statistics and Optimization toolboxes, a
Financial toolbox was first devised a few years ago, which included differ-
ent groups of functionalities. Some were low-level functions aimed at date
and calendar manipulation or finance-oriented charting, which are building
blocks for real-life applications; others dealt with simple fixed-income assets,
portfolio optimization, and derivatives pricing.

After this first toolbox, others were introduced which are directly related
to finance:

* GARCH toolbox

¢ Financial time series toolbox7

.

Financial derivatives toolbox
¢ Fixed-income toolbox

We will not deal with such toolboxes in the book, but information can be ob-
tained by browsing The MathWorks’Web site (http: //www.mathworks. com).
We should also mention that other toolboxes, which were not specifically de-
veloped for financial applications, could be useful, such as the PDEs toolbox

7At the time of writing, the functionalities of this toolbox have been included in the Finan-
cial toolbox.
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or the genetic and direct search toolbox.8 Other more instrumental tools are
useful to develop professional applications, such as Excel link, Web server,
the compiler, or the Datafeed module enabling web connections to different
financial web sites.

Now the question is: Why choose MATLAB for this book? Indeed, there
are different competitors, at different levels:

e User-friendly spreadsheets, such as Microsoft Excel. In fact, there are
spreadsheet-based books showing how optimization and simulation meth-
ods may be applied to financial problems. Spreadsheets are equipped
with solvers able to cope with small-scale mathematical programming
problems, and extensions are available to run Monte Carlo simulations
or optimization by genetic algorithms.

* On the opposite side of the spectrum, one could use low-level languages
such as C++ or Fortran. C++ seem a favorite, ifyou look at the number
of books on computational finance based on this language, but there
are people maintaining that the recent versions of Fortran do still have
some advantages. C++ or Fortran may be used either to implement the
algorithms directly or to call available scientific computing libraries.

e There are also specialized libraries or environments, such as statistical
or optimization tools.

How does MATLAB compare against such alternatives? The obvious answer
is that the choice is largely a matter of taste, and it depends on your aim.

Sure, when you have to carry out simple computations, there’s little point in
resorting to a full-fledged computing environment, and probably spreadsheets
are the best choice. However, the extra effort in learning a programming
language pays off when you have to program a complex numerical method
which goes beyond what is standard and readily available. Actually, there
is no way to really learn numerical methods without some knowledge of a
programming language, and in any case, even if you use a spreadsheet as the
front end, it is quite likely that you have to write some code in Visual Basic
or C+K

Compiled languages such as Fortran and C++ are certainly the most effi-
cient option, in terms of execution speed.9 If you have to write really lightning-
fast code, this is the best choice.

8Genetic algorithms and direct search methods are optimization methods which do not
require computing derivatives of the objective function. This makes them very flexible for
some types of optimization models, as we will see in chapters devoted to optimization.

9A compiled language is based on the translation of source level code to machine level
language. You need a compiler to do that; optimized compilers are able to obtain extremely
fast code. An interpreterdoes not translate to machine level code, but to some internal form
which is then executed. Usually an interpreter has some advantage in terms of debugging
and flexibility, which is paid in terms of execution speed.
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MATLAB is an interpreted language, and even if it is quite efficient, there
is some difference. However, the performance gap is being bridged by increas-
ingly fast MATLAB versions. Furthermore, executable libraries can be gener-
ated from MATLAB code by using the MATLAB compiler; these libraries can
then be linked within the application just as any C++ code. But the most
important advantage of MATLAB is that it is a very simple, yet powerful,
programming language. Unlike C++, you may avoid bothering with issues
such as memory allocation, variable declaration, etc. MATLAB is an excellent
rapid prototyping tool: You may implement a quite complex algorithm with
a very limited amount of lines. Simple code means less time to develop and
less chances for programming bugs. Then, if it is really needed, you may go
on by translating the prototyped code to, e.g., C++. This is obviously im-
portant in a practical setting, but it is not really essential in a didactic book
like the present one. When learning a numerical method, being distracted by
too many programming details is certainly bad.

MATLAB can be thought of as a suitable compromise between conflicting
requirements. The increasing number of toolboxes and books using MATLAB
is a good proof ofthat. Needless to say, this does not imply that MATLAB has
no definite limitations. When one has to deal with large-scale optimization
problems, it is necessary to resort to specialized packages such as CPLEX,10
against which MATLAB is unlikely to be competitive (it should be noted
that the Optimization toolbox is aimed at general non-linear programming,
whereas some optimization packages deal only with linear and quadratic pro-
gramming). Furthermore, mixed-integer programming problems1l cannot be
solved, at present, by MATLAB.12 Even worse, when you have a large op-
timization model, loading the data in a form suitable to a numerical library
function is a difficult and error-prone task without the support of algebraic
modeling languages such as AMPL.13 This is one of the reasons why, in the
chapters on optimization models, we will sometimes solve them using AMPL.
This should not place any burden on the reader, since a free demo version can
be downloaded from the AMPL web site. See appendix C for a quick tour of
AMPL.

By the same token, if one is interested in statistical computing applied to
finance, it is quite likely than some of the many econometric packages are

10CPLEX is a registered trademark of ILOG. See http://www.ilog.com.

N Mixed-integer programming models are optimization models in which some decision vari-
ables are restricted to integer, rather than real, values. They are dealt with in chapter 12.
See also example 1.2 on page 15.

12We should mention that the latest release of the Optimization Toolbox does include a
solver for certain pure binary (0/1) linear programming. However, this is not suitable to
large scale mixed-integer programming.

13AMPL (A Mathematical Programming Language) was originally developed at Bell Lab-
oratories. At present it is available in many versions through different sellers, including
ILOG, under license from the copyright owner. See http:// www.ampl.com.
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better suited to the task. The point is that none of these offers the many
functionalities of MATLAB within a single integrated environment.

Tosummarize, we may argue that a product like MATLAB is the best single
tool to lay down good foundations in numerical methods. Cheap MATLAB
student editions are available, and its use in finance is spreading. So we believe
that learning MATLAB is definitely an asset for students and practitioners in
financial engineering.

A last choice had to be made in writing the book: To which extent should
toolboxes be used? On the one hand, using too many toolboxes would place
some burden on the reader, who may not have access to all of them. On the
other hand, using only the MATLAB core would probably limit what we can
do. So, again, a compromise must be reached. Our choice has been to use
a very limited subset of functions from the Statistical and Financial toolbox,
which can be easily replicated. We will sometimes use functions from the
Optimization toolbox, but the same results can be obtained by the free AMPL
demo version. We will use neither advanced financial toolboxes nor the Partial
Differential Equations Toolbox. This choice is somewhat contradictory: Why
use the Optimization toolbox and not the PDEs one? The point is that there
is a wide gap between a conceptual statement of optimization methods, and
a robust working implementation. It is not the aim of this book to bridge
that gap, so we will avoid a detailed treatment of most optimization methods,
limiting ourselves to the principles behind them. On the contrary, simple
finite difference methods are relatively easy to implement, and can be treated
in detail. Finally, we should also note that typical computational finance
courses do cover basic finite difference methods for solving PDEs, but not
sophisticated optimization methods.

13 NEED FOR THEORY

Now that we established that we are going to use MATLAB in the book, an-
other question may arise: Why should we bother learning numerical methods,
when they are already available in professionally crafted, ready-to-use code?
Can we get rid of theory? Although, in most cases, there is no need for a deep
knowledge of numerical analysis in order to use MATLAB, there are at least
three reasons to gain a basic understanding of the theoretical background of
numerical methods.

1. Without a sound background, you cannot go on developing your own
solutions when the available methods are not enough.

2. Without a sound background, you cannot choose the most appropriate
algorithm when alternatives are given.

3. Without a sound background, you cannot use methods properly and,
most important, you cannot understand what is going wrong when re-
sults are not reasonable or you get weird error messages.
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In particular, we need some understanding of fundamental issues like “con-
ditioning of a numerical problem” and “stability of an algorithm.” These
concepts are briefly discussed in chapter 3. Here we give some simple exam-
ples of the trouble one can get into without a sound knowledge of the pitfalls
of numerical computing.

Example 1.1 Consider the following expression:
9-8.1+ 8.1

Everyone would agree that this is just a complicated way to write 10 x 8.1 =
81. Let us try it on a computer, using MATLAB:

» 9 *81 +8.1
ans =
81.0000

Everything seems right. Now, there is a built-in function in MATLAB, fix,
which can be used to round a number to the integer nearest to zero.14 Note
that fix does not round to the nearest integer:

» fix(4.1)
ans =

4
» fiX(4.9)
ans =

4

Let us try it on the expression above:

» fix(9*8.1 + 8.1)
ans =
80

Now something seems quite wrong. Actually, the point is that the first result
is not what it looks like. This may be seen by changing the visualization
format of numbers and trying again:

>> format long

» 9 *81 +8.1

ans =
80.99999999999999

Actually, there was some warning, since MATLAB printed 81.0000 rather
than 81, as it happens with

14The reader is urged to explore the differences between fix and the related functions
floor, ceil, and round.
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» 10 * 8.1
ans =
81

The problem is that an innocent-looking number like 8.1 is not represented
exactly on a computer. This is because a computer works with a finite pre-
cision arithmetic based on a binary representation, which can represent some
numbers only approximately, even if their representation is finite in another
system, like the decimal system we are used to. D

In this example we see a large effect of a small error. This happens because
of the non-linear character of the fix operator. The example may look a bit
artificial, and one could be tempted to think that such difficulties do not arise
in practice. In the next example we see the relevant effect of similar small
errors in a concrete setting.

Example 1.2 Let us consider a trivial model for capital budgeting deci-
sions. We must allocate a given amount W of money to a set of N potential
investments. For each investment opportunity, we know

e The initial capital outlay Ci, i = 1,..., N

e The revenue #* that we will get from the investment (which we assume
certain)

We would like to select the subset of investments yielding the largest revenue,
subject to a budget constraint. This looks like a portfolio optimization model,
the key difference being that our decision must be “all-or-nothing.” For each
investment opportunity we may decide weather we take it or leave it, but we
cannot buy a fractional share of it. In typical portfolio optimization models,
assets are assumed infinitely divisible, which may often be a reasonable ap-
proximation, e.g., for stocks, but not in this case. It may be helpful to think
of our investments as projects that can be started or not.

The decision variables must reflect the logical nature of our decision. This
is obtained by restricting the decision variables as follows:

_ f1 ifwe invest in project i
0 otherwise.

Now it is easy to build an optimization model:

s.t. CiXi < W
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This model is grossly simplified, but it is a first example of an integer program-
ming model. It is also well known as the knapsack problem, as each investment
may be interpreted as an object of given value Ri and volume C\, and we want
to determine the maximum value subset of objects that may fit the knapsack
capacity W. A model like this looks deceptively simple. However, it cannot be
solved by ordinary optimization methods for continuous optimization models.
One could think of simply enumerating all of the feasible solutions, which are
a finite set, in order to spot the best one. Unfortunately, this is not feasible
in general, as the number of feasible solutions may be very large, even though
finite. To see this, notice that there are N variables which can take two values;
hence, there are 2N possible variable assignments. Many of them would be
ruled out by the budget constraints, but we see that the computational effort
of complete enumeration grows exponentially with the size of the problem. A
possible solution approach would be ordering the items in decreasing order of
their return Ri/C{ and selecting them until the budget allows. This would
work with divisible assets, but it does not guarantee the optimal solution in
the discrete case. As a counterexample, consider the following problem:

max 10a;i + 7X2+ 25x3 + 24x4
s.t. 2Xi + 1x2 + 623+ 5x4< 7
x{6 {0, 1}.

The returns are, respectively, 5.00,7.00,4.17,4.80. Hence, according to this
logic we would select investment 2 first, then investment 1, and we would
stop there, with a revenue 17, because no other investment fits the residual
budget. This is a really bad solution, leaving much budget unused. There are
two solutions which exploit the whole budget: [1,0,0, 1], with total revenue
34, and [0,1,1,0], with total revenue 32. In this trivial case it is easy to
see that the first one is optimal. Unfortunately, in general, a problem like
this can only be tackled by non-convex optimization methods, such as branch
and bound,15 described in chapter 12; in that chapter we will see that logical
decision variables may be useful in capturing various types of constraints in
realistic portfolio management models.

The main limitation ofthe model above isthat uncertainty is not considered
at all. Another issue is that in general there might be some interaction among
different projects. For instance, it could be the case that a given project, say
project Po, may be started only if projects Pi, P2,.«¢, P/v are started as well.
This logical constraint is easily modeled using the binary decision variables
we have just introduced. One possibility is to express the constraint in the

15This problem may be also solved by some form of dynamic programming; see [7, pp.
72-74]. In chapter 10 we only consider dynamic programming for certain stochastic op-
timization problems, but the principle is much more general and powerful and it can be
applied to some combinatorial optimization problems as well.
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following form:
Yn x

xXo< A ﬁl 1
If we start all the N required activities, the right-hand side of this inequality
is simply N/N = 1, so that we may start Po, since the constraint boils down
to the redundant bound xo < 1. If some required project is missing, the
constraint amounts to something like xq < a < 1, which, together with the
binary requirement xo £ {0,1}, enforces xq = 0. In principle, the idea is
fine, but does it really work on a computer? Well, in many cases it does, but
consider what happens with N = 3. Project Po will never be selected. In
fact, in this case, you should read the constraint above as

1 1 1
X0< -Xi+ -x2+ -x3,

but unfortunately, even if all the Xi variables are set to 1, due to the finite
precision of the computer we have something like

Xo < 0.3333333 + 0.3333333 + 0.3333333 = 0.9999999 < 1,

where the number of decimals depends on the numerical precision of the ma-
chine and on the software involved. Actually, sophisticated optimization soft-
ware for integer programming does not incur this trouble, since some integral-
ity tolerance is introduced, and 0.9999999 is considered just like 1. Similar
considerations apply to any high-quality numerical software, such as MAT-
LAB, but the result can be somewhat unpredictable, as the following snapshot
shows:

» Fix(1/3 + 1/3 + 1/3)

ans =

1
» Fix(W/7 + /7 + /7 + /7 + U7 + 1/7 + U/7)
ans =

0

Furthermore, if the optimization problem is first written to a text file, which
is then loaded by an optimization solver, it may be the case that the number
of digits is too small.16 So it is better to avoid the trouble with division in
the first place, by rewriting the constraint as

16For instance, ifyou solve the model within a modeling system like AMPL, calling a solver
like CPLEX, there is no trouble. But if you write an MPS file and load the file with
CPLEX, the result will not be correct. MPS files are text files representing optimization
models according to standard rules; they are read by many optimization software packages.



18 MOTIVATION

or, even better, in the disaggregated form
Xg < Xi, i=1,...,N.

Why this is the preferred form is counterintuitive: after all, the disaggregated
form entails more constraints, and one would think that the less constraints
we have, the easier an optimization model is to solve. This need not be
true in computational optimization, and it also depends on how mixed-integer
programming problems are solved by branch and bound methods. More on
this in chapter 12.

Numerical errors may affect the precision in representing numbers, but this
issue isnot much trouble in itself; after all, a derivative price will not be quoted
in millionths of a dollar. But how about the propagation of errors within a
numerical algorithm? If you have a non-linear operator like fix, a small
error gets immediately amplified. The same may happen when you execute a
long sequence of operations, such that small errors cumulate, growing without
bound. The effect may well be a huge negative price for an option, as we will
see in chapter 9. In the next example we consider a well-known example,
linked to the solution of a system of linear equations.

Example 1.3 Let us consider a system of linear equations:

for some right-hand side vector b, where H is a peculiar matrix known as the
Hilbert matrix.

. 1 1 . 1"
A .
% 3 4 * n-'i’-l
1 1 1 1
H = 3 4 5 ~* n+2
1 1 1 . 1
n ML n2 n-1J

The Hilbert matrix may look a bit artificial, but it may arise in certain function
approximation problems (see example 3.20 on page 190).

MATLAB provides us with a function, hilb, to build a Hilbert matrix
directly. Now, let us try solving the system for n = 20; we cheat a little here,
since we assume that the solution is known, and we build the corresponding
right-hand side b; then we check if that solution is obtained by solving the
system. Let the solution be

X=[123 mmmn]/,
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where we use ' to denote vector (or matrix) transposition. Using MATLAB,
we obtain something likel7

» H hilb(20);

» x = (1:20)7;

>> b = H*X;

» H\b

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = 1.995254e-019.

1.0000
2.0000
3.0018
3.9392
5.8903
-1.1035
41.0915
-94.0458
196.5770
-181.1961
82.1903
12.1684
140.5377
-265.1117
309.7053
-328.9234
485.5373
-401.3571
215.1260
-17.0274

We see that the result doesn’t look quite as it should. D

In the last example we see the typical effect of propagation of numerical
errors, giving rise to numerical instability. In fact, this is detected by MAT-
LAB, which issues a warning message. However, we need some theoretical
background in order to get the meaning of this warning. One could think
that similar difficulties arise whenever a matrix is close to singular. Clearly, if
you try doing something like X = A _1b in order to solve the system Ax = b,

17The actual result may depend on the MATLAB version and the hardware you use. This
is not the case for usual problems, but it does happen when numerical instability issues
arise.
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you are likely to be in trouble if A is close to singular. This may be true, but
it is somewhat misleading:

1. You may have difficulties even when the matrix is not singular at all
(see example 3.8 on page 151). We need to study issues such as problem
conditioning in order to understand what really happens.

2. In practice, there is no need to invert a matrix to solve a system of linear
equations, as this would be much more work than necessary. Compu-
tational mathematics may be quite different from “pencil-and-paper”
mathematics.

At this point, the reader will hopefully be convinced that some background
in numerical analysis is needed, if we are to solve problems in real life.

For further reading

In the literature

e Another MATLAB-based textbook is [6]. It is more aimed at appli-
cations in Economics, but it offers an interesting Computational Eco-
nomics toolbox which may be downloaded for free.

» Readers interested in details on the development and release of Microsoft
Windows components for financial applications may have a look at [4].

* Financial modeling within Microsoft Excel is described, e.g., in [2].
e C++ programmers will find [1] and [3] very useful.

* Many journals devoted to quantitative finance publish papers on com-
putational issues. We should mention at least

—Journal of Computational Finance
http://www.thejournalofcomputationalfinance.com

—Journal of Derivatives
http://www .iijod.com

— Quantitative Finance
http://www.tandf.co.uk

On the Web

e To consult a full and updated listing of MATLAB toolboxes, see
http://www.mathworks.com.

* For more information on CPLEX and related software, see


http://www.the
http://www.iijod.com
http://www.tandf.%d1%81%d0%be.uk
http://www.mathworks.com
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http://www.ilog.com.

e The web page for AMPL is http://www.ampl.com, where you will find
a list of vendors and compatible solvers and a free student version for
download.

e Two web sites we should also mention are

http://www.gams.com, where an alternative product to AMPL is de-
scribed, which has found fairly widespread use among economists,

and http://www.nag.com where a well-known numerical analysis li-
brary is described, for use with programming languages like Fortran
and C++.
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Financial Theory

This chapter is a reasonably brief introduction to some basic problems in
finance. It is mostly aimed at readers with a scientific or engineering back-
ground, but with little previous exposure (if any) to the theory of finance.
The complementary set of readers, i.e., those with a background in finance
may wish to have a cursory look at the material, or maybe to refer back to
this chapter for a quick refresher when needed.

The treatment here is purely instrumental to motivating and stating cer-
tain problems to which we may apply numerical methods. So, it is certainly
not meant to be a substitute for a good book on finance (see the references at
the end of the chapter), and it is not aimed at giving a complete overview of
financial theory. Furthermore, many concepts such as bond portfolio immu-
nization, mean-variance efficiency, and Value at Risk have many well-known
limitations and have been the subject of quite a bit of controversy. We will
point out the limitations of each approach, and we do not suggest that they
should be used as they are stated; we use them just to pave the way for further
developments.

The main themes in finance are time and uncertainty. Actually, there
is a third one, information, which is important in advanced models which
are beyond the scope of this book. Time is important since, under normal
economic conditions, one dollar now is worth more than one dollar tomorrow.
Even if we do not consider inflation, it is reasonable to expect that if we have
one dollar now and we do not need it for immediate consumption, we could go
to a bank, deposit our dollar, and recover a larger sum later on. If, after one
year, we get 1+ r dollars, we say that r is the annual interest rate. We may
see it the other way around: if we borrow one dollar now, in the future we

23



24 FINANCIAL THEORY

will have to give back some more. In fact, one function of financial markets
is just to shift consumption over time by borrowing or lending money. In
practice, the rates for borrowing and lending are not really the same, as there
is a bid ask spread,1 but for our instrumental purposes we will mostly neglect
such issues.

If we are investing money over a relatively short time period, we could
assume that we know the interest rate that will be applied for that period.
This may not be the case for longer periods, as interest rates are subject to
uncertainty. If the interest rate is periodically reset according to prevailing
conditions, then the investment is subject to uncertainty which may be con-
sidered as a reinvestment risk. Even if a given nominal rate is agreed to hold
for the entire period, the real rate will be subject to inflation. An even larger
uncertainty is typically associated to investing in stocks, which are often sub-
ject to significant price volatility. Our first task is to introduce different ways
to model uncertainty (section 2.1). There is no “best” way to model uncer-
tainty, as this may depend on our aim, but there is no doubt that uncertainty
is pervasive in finance.

Uncertainty is strongly linked to risk. Any investor has some implicit risk
tolerance. For instance, common wisdom dictates that older investors should
invest in relatively safe assets, whereas younger ones may afford the risk of
investing in stock. Apart from individual investors, there are institutional
investors, such as pension funds, or even non-financial firms which use financial
assets to modify their exposure to some risk factors. In fact, another function
of financial markets is to transfer risk among market participants, who can
be grossly classified as speculators or hedgers. Speculators have some view on
how prices will move in the future, and they perceive risk as an opportunity
to place bets. Speculation has a somewhat negative connotation, but without
speculators, markets would not exist in their present form. The other side
of the coin is the set of hedgers, who use certain types of assets as a sort of
insurance in order to avoid or reduce uncertainty. In some sense, hedgers sell
volatility to speculators.

In modern financial markets, there is huge variety of assets in which we
may invest our money. The main assets we will deal with may be classified
as bonds, stocks, and derivatives. We will introduce these assets in section
2.2. There, we also introduce the three main problems we are concerned with:
asset pricing, portfolio optimization, and risk management. We will also see
that these basic problems are strictly related.

After this general introduction, we deal with simple fixed-income instru-
ments (bonds) in section 2.3, where we also consider sensitivity measures
related to interest-rate risk, such as duration and convexity. Section 2.4 is

'The bid price how much a dealer bids (is willing to pay) for an asset; hence, from the point
of view of an investor, it is the price at which she may sell. The ask price is the price at
which the investor may buy, i.e., the price asked for by a dealer.



MODELING UNCERTAINTY 25

dedicated to stock portfolio management. The main concepts we illustrate
there are utility theory for decision making under uncertainty, the theory of
mean-variance efficient portfolios, and risk measures such as Value at Risk. To
deal with derivative pricing, we need first to lay some foundations in modeling
by continuous-time stochastic processes: Stochastic integrals and stochastic
differential equations are introduced in section 2.5, together with the funda-
mental I1to’s lemma. Then we proceed to illustrate the basics of arbitrage-free
pricing in section 2.6, where the celebrated Black-Scholes formula for pricing
European-style vanilla options is presented, along with basic issues in pricing
American-style options. We expand the treatment of options in section 2.7,
where we outline a few types of exotic options which will be used in later
chapters to illustrate different numerical methods for pricing. Finally, in sec-
tion 2.8 we give a very brief introduction to interest rate derivatives and the
related problems.

In the course of the exposition we will use short MATLAB snapshots in
order to illustrate the material with examples and to make it immediately
useful. Sometimes, we will use functions from the Financial toolbox. The
reader without access to this toolbox should not worry: these examples are
just used for concreteness, but most of the book is just based on the MATLAB
core.

A final remark is in order. A large part of modern theory of pricing deriva-
tives is based on the concept of martingale, i.e., a specific type of stochastic
process. However, the reader will not find any mention of martingale measures
and the like in what follows. Given the increasingly large number of excel-
lent texts covering martingale pricing, we have decided to omit such concepts,
which are not strictly necessary to introduce numerical methods. The main
consequence of this choice is the lack of coverage of interest-rate derivatives,
which cannot be dealt with adequately without solid foundations; but this
would require much more space than we can afford.

21 MODELING UNCERTAINTY

Before considering “modeling,” we must understand what “uncertainty” is.
The familiar tools of probability and statistics are what we need to cope with
the simplest kind of uncertainty. We assume that a variable, say the price
of a stock or a commodity, can be modeled as a random variable, whose
probability distribution is known, possibly inferred from available data; the
probability distribution encodes the knowledge we have (or think we have)
about uncertainty. This may already look complicated, but it is often far
worse in practice. To begin with, we will only consider purely exogenous
uncertainty. This means that our actions do not influence the distribution of
the relevant random variables. This is true if we are small investors or the
asset is very liquid and in large supply. In thin markets, however, buying and
selling an asset may have a significant impact on its price, and uncertainty
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sf

Fig. 2.1 A binomial model for uncertainty.

is partially endogenous. For instance, a trade executed by a large pension
fund may have a significant impact on markets; sometimes, to avoid adverse
effects, orders are split in different time steps. Another issue is related to
“subjective” rather than “objective” uncertainty. We will implicitly assume
an objective description of uncertainty, but sometimes an investor has some
very specific views, leading to a subjective assessment of uncertainty. The
subjective view may be updated whenever we get new information. This
is typical of the Bayesian approach to statistics, which has been applied to
portfolio management too. Again, given our instrumental point of view, we
will avoid such issues. It is important to understand that if we use statistics to
identify a probability distribution from past data, and we use that distribution
for the future, we are implicitly assuming that, in some sense, history will
repeat itself.

To be specific, let us consider possible ways of modeling uncertainty in the
price of an asset. The simplest model of uncertainty is the binomial model.
We know the current price So, at time t = 0, and we assume that the price
Si, at some future time instant t = 1, can take only two values, 5“ and S'f,
with probability pu and pd, respectively (see figure 2.1). A common choice
is to represent uncertainty by a multiplicative shock, i.e., 5 = uSo and
Sf = dSq, where the letters n and d suggest “up” and “down,” respectively
(hence, d < u). Apparently, this model is very crude, but it is the building
block of very useful models.

A more refined model can be built by allowing for more future states. We
may consider a sort of tree, like the one depicted in figure 2.2. It is a two-stage
tree, in the sense that it represents the world now by the single node on the
left of the figure, and possible states of the world at one time instant in the
future; this structure is sometimes referred to as a fan, and it may be used
to define a set of discrete scenarios. In this case the random variable Si may
take values S[k\ k —1,..., m, with probabilitiesp”~ . An obvious consistency
condition is

m

The binomial model or the fan of scenarios are discrete-state models, rep-
resenting uncertainty in a relevant state variable by a discrete probability
distribution. The state could be the level of an interest rate, or any underly-
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Fig. 2.2 A two-stage tree model for uncertainty.

ing state variable influencing the price of assets.2 These models are also the
simplest discrete-time models, as only two time instants are considered. This
may be interesting if we are following a buy and hold strategy, whereby we
trade some assets now, and then we just wait for the outcome at some time in
the future. If the portfolio will be later rebalanced with some given frequency,
we might be interested in a multiperiod model.

A discrete-state, discrete-time, multiperiod model can be depicted as the
scenario tree in figure 2.3. This is sometimes called a bushy tree. In a bushy
tree, the number of nodes following a parent node is called branching factor.
The larger the branching factor, the more accurate the representation of un-
certainty. However, with large branching factors, the number of nodes tends
to grow very quickly. Scenario generation is the art of building a suitable tree

“Strictly speaking, a state variable has the property that knowledge of its value at a time
instant is all we need to characterize future evolution. We could have situations in which
the whole history of a variable is needed to this purpose. Since this proper use of the term
is only relevant for a few topics in the book, we will use the term in the loose sense.
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Fig. 2.4 A recombining lattice.

with the minimum number of nodes; note also that there is no need that the
branching factor is constant over time, or across nodes. One may use more
branches now, and less branches in the future, if it is more important to rep-
resent immediate uncertainty. This is important in stochastic programming
models (chapter 11). Another point is that the time step involved in a mul-
tiperiod model need not be homogeneous. Usually, in a discrete-time model
we discretize a time horizon of length T in intervals of length St, such that
T = M mSt. When we refer to time instant t = k, what we really mean is
t = k mSt. However, the time step may change; in such a case, the first time
period is short, and time step increases in later periods.

Sometimes, to keep computational effort limited, we prefer using a recom-
bining lattice. A recombining binomial lattice is illustrated in figure 2.4. This
is obtained if we generalize the binomial model with multiplicative shocks.
Since udSo — duSo, we see that an up-jump followed by a down-jump is
the same as a down-jump followed by an up-jump. In the figure, node S%d
could also be denoted as Slju. In the special case 11 = 1/d, we also have,
e.g.. So S2d and Sf = S%ud. The number of nodes grows linearly with the
number of periods: We start with one node at t = 0, then we have two at
time t = 1, three at time t = 2, and T + 1 nodes at time T. In a binary tree
we have an exponential growth, as we have 2T nodes at time T. Note that
we are assuming that the multiplicative shocks are always the same, which
makes sense if the process is stationary and time step is constant. Lattices
may take many different forms, such as trinomial lattices, where each node
has three successors. Recombining lattices are very convenient from a compu-
tational point of view (see chapter 7). However, they are not always suitable,
especially when there are many stochastic factors, calling for larger branching
factors and making recombination more difficult to achieve.

Sometimes it is convenient to model uncertainty using a continuous distri-
bution, such as the normal or lognormal distribution. If we think of prices,
a continuous distribution is certainly an idealization, since no price is quoted
with too many decimal digits. In fact, stock prices are quoted in the USA in
fractions of a point, which may be one-eighth or one-sixteenth of a dollar. For
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Fig. 2.5 Sample path of a Wiener process.

instance, the price of a stock could be $20| or $20|, but not $20.19. A similar
consideration applies to interest rates. Nevertheless, using a continuous-state
model may be convenient, if it results in simple modeling of uncertainty and,
maybe, in analytical formulas.

By the same token, we may also resort to continuous-time models, which
may be thought of as the limit of a discrete-time model when the time step
tends to zero. In the deterministic case, a standard continuous-time model is
a differential equation, like

dB(t)

dt rB(t)

with initial condition 5(0) = So- The solution of this equation is B(t) =
BoeTt; in section 2.3.1 we will see that this is the equation of a wealth, ini-
tially amounting to Bq, invested at a rate r, with continuous-time compound-
ing of interest. Again, this could be just a convenient approximation. To
model uncertainty, differential equations must be extended by introducing a
random element, typically represented by some convenient class of stochastic
processes. Unlike discrete-time models, we deal in this case with continuous-
time stochastic processes (see appendix B). The usual building block is the
Wiener process W (t), which is defined later, and is characterized by jagged
sample paths like the one depicted in figure 2.5. This process may look funda-
mentally different from a binomial lattice, but it can be shown that the Wiener
process is the continuous-time limit of a certain random walk described by a
binomial lattice. By putting Wiener processes and differential equation to-
gether in some sensible way, we get stochastic differential equations, which are
a rather thorny object to deal with, but are a fundamental tool in financial
engineering. We will describe stochastic differential equations in section 2.5.
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2.2 BASIC FINANCIAL ASSETS AND RELATED ISSUES

There is a large number of securities in which an investor may be interested.
Many of them are standardized, publicly quoted, and traded on exchanges.
Some are engineered for a specific need of an investor, or firm, and are traded
over the counter (OTC); OTC securities are usually less liquid than standard-
ized assets. Despite this virtually infinite variety, we may start by classifying
the fundamental securities as

* bonds
» stocks

» derivatives

2.2.1 Bonds

Bonds are one of the instruments that firms and public administrations may
use to fund their activities; they are debt instruments which, unlike stocks,
do not imply any ownership of a firm on the part of the buyer. Basically,
the buyer of a bond lends some money to the issuer, over some time span
ending at bond maturity. At maturity the issuer will pay the bond owner an
amount of money corresponding to the face value, also called the par value,
of the bond. This could be, e.g., an amount like $100 or $1000. In addition,
periodic payments may be made, called coupons for historical reasons.3 In
the simplest bonds, coupons are fixed and expressed as a percentage of face
value; coupons are usually paid annually or semi-annually. For instance, if the
bond has $100 face value, and the coupon rate is 6%, then the bond owner
will receive $6 each year, up to and including maturity, when she well receive
$106. If coupons are paid semi-annually, the bond owner will receive $3 every
six months, up to and including maturity.

There is another class of bonds, which just promise the payment of face
value at maturity. They are called zero-coupon bonds, and are typically char-
acterized by shorter maturities. We will see that zero-coupon bonds are fun-
damental in bond pricing. Sometimes, long-term zero-coupon bonds are built
by stripping coupons from a long-term bond and selling them separately.

The basic type of fixed-coupon bond explains why bonds are usually clas-
sified as fixed-income securities. Actually, coupons may depend on some un-
derlying variable, but the term “fixed-income” is used for such securities as
well. Generally, fixed-income securities are assets whose price depends on the
level of interest rates.

It is also important to note that bonds are not necessarily purchased at a
price corresponding to face value. This may be the case when bond are first

3Bonds were physical pieces of paper, and to get the periodic payment the bond owner had
to detach a coupon from the document.
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issued, and the coupon rate is chosen in order to reflect current interest rates.
Since there is a well-developed secondary market for bonds, there is no need
to buy a bond right when it is issued, nor to keep it until maturity. If a bond
is traded after issue date, we must be able to determine a fair price. This will
be the subject of section 2.3.2. Bond prices are quoted as a percentage of the
face value, so the actual face value is not so relevant. Assume the face value
is 100. If the bond is traded at price larger than 100, we say that it trades
above par; if the price is smaller, it trades below par, otherwise it trades at
par.

Actually, there are many complicating factors in bond pricing. If the
coupon rate is not fixed, but it depends on some random quantity, analyzing a
bond may be difficult. Even if the coupon rate is fixed, bond prices may differ
depending on the probability of default. Default occurs if the bond issuer
is not able to honor his debt and stops paying coupons, or he repays just a
fraction of face value. There are different types of default, which represent a
risk factor for the investor. This factor is called credit risk. Bonds issued by
some governments may be considered risk-free, but corporate bonds cannot;
the role of rating agencies is precisely to analyze the financial situation of
firms in order to assess how risky their bonds are. Bonds affected by credit
risk must sell at lower prices, or promise higher coupon rates. It should also
be noted that bonds may be classified in legal terms which are relevant when
the firms defaults. We will not consider default issues and credit risk in this
book. Furthermore, some bonds have embedded options which complicate the
analysis. For instance, a callable bond may be redeemed by the issuer before
maturity at a certain price; again, since the issuer may redeem the bond when
she finds this advantageous, this must be somehow reflected in the bond price
and/or the coupon rate. In this case, the investor is exposed to reinvestment
risk, as it is quite likely that she will be forced to reinvest the proceeds from
early bond reimbursement in a situation of unfavorable interest rates.

2.2.2 Stocks

Unlike bonds, stocks entitle the owner to a share of the issuing firm. This
raises a potentially troublesome legal issue. If you are a stock owner of a firm,
and the firm gets involved in a lawsuit, whereby it is liable to pay for some
significant damage its products have caused, what is your position? Luckily,
stocks are limited liability assets; in practice, this means that the worst that
may happen is that the stock price goes to zero and you lose all of your
investment.

Another difference between stocks and bonds is that the formers do not
have a predefined maturity (although the firm can well go out of business).
They also entitle the owner to some stream of payments under the form of
dividends. Unlike fixed bond coupons, dividends are by their very nature
stochastic. They depend on how well the firm is faring, and on the dividend
policy which is followed by the firm, which may distribute or reinvest its
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profit. The dividend policy, and the decisions of financing by equity (issuing
stocks) or debt (issuing bonds) pertain to a body of knowledge called corporate
finance.

If you buy a stock share at a price So, and then you sell it at a price Si,
you may have a loss or a gain. If you also receive a dividend D, total return

Si+D
So
and the rate of return is
Si+D-5S0
So

Strictly speaking, we should also consider the timing of dividend payments in
order to account for the time value of money, but let us leave this issue aside
for now by assuming that dividends are paid exactly when you sell the stock.
Since stocks are limited liability assets, the worst-case rate of return is —1.
This means that whenever we use a normal distribution to model uncertainty
in stock returns, we are committing an error; however, the approximation,
per se, could be an acceptable one if the probability of an unfeasible return is
negligible.4

In this book we will not consider pricing issues for stocks. This means that
stock prices will be modeled by some stochastic process (see section 2.5) or
by some probability distribution, but we will take these as exogenously given.
There are “rational” models aimed at suggesting a correct stock value by
analyzing the fundamentals of a firm, but they are based on rather uncertain
data, and prices may be quite irrational. Nevertheless, such models are useful
when trying to assess if some stock is under- or over-priced with respect to
other assets, and this is certainly relevant in portfolio management. However,
since this is not a matter necessarily dealt with by sophisticated numerical
methods, and it calls for integration with qualitative insights, we will leave it
aside.

In principle, one would think that an investor buys a stock if she thinks
that its price will increase. Actually, with certain limitations, an investor can
exploit a strategy called short-selling if she thinks the stock price will sink.

Example 2.1 (Short-selling) Suppose a stock is currently selling for $20,
and you think that in the near future it will sell for a lower price. In such
a case, you may borrow the stock from someone who owns it, and sell it
immediately on the market. After a while, you will have to give the stock
back to the owner, but if you were right and the price went down to $18, you
might buy the stock for this price and close your position. In this case, your
return would be (—18 + 20)/20 = 10%. If the stock pays dividend during the

4Another implicit assumption, when using a normal distribution to model returns, is that
these are symmetric, which may not really be the case.
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time period over which the stock is lent, dividends must also be paid to the
stock lender.

Short-selling is not this easy, as there are several rules constraining it to
avoid excessive speculation. Furthermore, it is restricted to certain types of
traders; some institutional investors such as pension funds cannot use short-
selling because of its speculative nature. Short-selling is very risky: If you are
wrong and the price goes up, you may be forced to give the stock back at the
worst possible time (this is called short-squeezing).

2.2.3 Derivatives

Derivatives are a broad family of financial contracts, owing their name to the
dependency of their payoff on the value of some underlying variable, which
may be a stock price, a set of stock prices, an interest rate, an index, or a
generic non-fmancial asset. Suppose that the value of the underlying asset,
say a stock which does not pay dividends, is modeled by a stochastic process
S(t), depending on time t.

The most common derivatives are forward/future contracts and options.
A forward contract binds two parties to, respectively, buy and sell a certain
asset, in a certain quantity, at a certain date T, and at a fixed forward price F.
The party agreeing to buy is said to hold the long position, whereas the seller
holds the short position. By entering a forward contract you basically lock in a
fixed price for the underlying asset. You may have two quite different reasons
for doing that. You might wish to eliminate, or reduce, risk; in fact, by locking
the price for an asset you have to buy or sell, you eliminate the effect of price
uncertainty. This does not mean that the final outcome will necessarily be
more favorable. If you hold the long position in a forward contract specifying
a price F, and the price of the asset when the delivery takes place turns out
to be S(T) < F, in a sense you have lost an amount F —S(T)-, if, on the
contrary, S(T) > F, you have gained a corresponding amount. The point is
that if you really need to buy or sell that asset, it may be wise to lock in a
certain price rather than taking chances. This type of policy is called hedging.
Hedging may not be this easy, as you may have difficulties in finding a forward
contract for the underlying asset you are interested in, in which case you could
settle for a somewhat correlated asset; furthermore, delivery date might differ
from the one you would like; finally, one could also decide for a partial hedge,
depending on risk attitude. However, you could also be a speculator with a
very precise idea of where the price S(T) is going to be, and you may enter
a forward contract as a bet. The payoff of a forward contract is depicted in
figure 2.6(a) for a long position, in which case it is S(T) —F (it is F —S(T)
for the short position). This payoff depends on the random price S(T), and
the forward contract is the simplest example of a derivative. Since the payoff
is random, we need some way to value a forward contract. We will do this in
section 2.6. Here we just note that there is no initial payment with forward
contracts; at time t = 0 the forward price F is determined in such a way that
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Hg 2.6 Payoff diagrams for the long position in a forward contract (a), a call option
(b), and a put option (c).

the initial value of the contract is zero to both parties. However, at a later
time, the value of the contract will not be zero in general.

Derivatives may be private contracts issued by two parties for possibly
very peculiar and specific reasons. Alternatively, they may be traded actively
on exchanges and quoted on newspapers. In this case, some standardization
and regulation is needed to make sure that the derivatives are sufficiently
liquid to trade. This is not really the case for forwards, where there is some
possibility of default on the part on the part losing money; for this reason
future contracts have been devised. A future contract is similar to a forward
contract; the main difference is that there is an intermediation process such
that the detailed working is different. Rather than collecting the payoff at
maturity, there is a daily transfer of cash between the two parties, depending
on the movement of the underlying asset price. This mechanism is a protection
for traders and makes pricing of futures more difficult than forwards, and we
refer the reader to references for details on this. It can be shown that prices
for futures and forwards are the same if interest rates are deterministic. From
a practical point of view, standardized future contracts make trading easier,
but hedging more difficult. It may be impossible to find the exact contract
you need in terms of time of delivery or underlying asset; in such a case,
hedging will eliminate only part of the risk. Nevertheless, futures are a very
liquid tool, and it is also interesting to note that, by taking a position with
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futures, one may also emulate short-selling on assets for which this would be
otherwise impossible.

A common feature of forward and future contracts is that the two parties
are compelled to buy and sell the asset at delivery (unless you sell the contract
to someone else before maturity, as is usually the case with futures). With an
option, you get the right, but not the obligation, to buy or sell a certain asset
for a specified price. The two simplest option contracts are the European
style call and put options. When you buy a call option, you get the right
to buy the underlying asset for a price K, called the exercise price (or strike
price), at a certain date T, called expiration date or maturity. If at maturity
the actual price S(T) of the underlying asset is larger than the exercise price
K, you would exercise the option and buy the stock, since you may sell the
stock immediately and gain S(T) —K. If the contrary holds, you would not
exercise the option, which expires worthless. Thus, the payoff of this option

max{5(T) —K, 0}

and is depicted in figure 2.6(b). If at time t we have S(t) > K, we say that
the call option is in-the-money, this means that we would get an immediate
profit by exercising the option. If S(t) < K, the call option is said to be
out-of-the-money. If S{t) = K the option is said to be at-the-money . With
a put option, you have the right to sell the stock. In this case, you would
exercise the option only if the exercise price is larger than the actual price.
So the payoff is
max{K —S(T), 0}.

The payoff diagram for a vanilla European put option is depicted in figure
2.6.(c).

With a European option you may exercise your right only at maturity; an
American option may be exercised whenever you wish within a prescribed
time. European or American call and put options on a single underlying asset
are called vanilla options, owing their name to their simplicity. A Bermudan
option is halfway between an American and a European option: It may be
exercised at a set of prescribed dates within the horizon. Asian options have
a payoff depending on the average price of a stock (or some other underlying
variable); thus they depend on a set of stock prices. Indeed, quite complex
exotic options are actually designed and traded; we will describe the simplest
exotic options in section 2.7.

Observing the payoff diagrams for the vanilla European call and put, we see
that they cannot be negative, unlike a forward contract. Does this imply that
you cannot lose money? Well, as you can imagine, the option comes with a
price. With a forward contract, you pay nothing when you enter the contract,

5A simplistic consideration would suggest that an at-the-money option is not worth exercis-
ing; however, when considering the transaction costs involved in purchasing a stock, we see
that there are circumstances where exercising an at-the-money option may be interesting.
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whereas the option has a price depending on several factors including the strike
price. Hence, figures 2.6(b) and 2.6(c) are not quite correct, as the payoffs
should be shifted down to account for the option price. Indeed, finding this
price is the major concern with options, and this is why numerical methods
are so important.

Why are options traded? As with futures and forwards, there are two basic
reasons. On the one hand, they can be used to control risks. If you hold a
stock in your portfolio and you are worried about the possibility of a large
drop in its price, you may reduce the risk by buying a protective put. If you
hold a portfolio consisting of a stock and a put with strike price K, then the
value of the portfolio at option maturity is

S(T) + max{K - S(T), 0} = max{K, S(T)}

from which we see that the downside risk is limited. This insurance comes
with a price, since the option is not free, but in this way you avoid the risk
of a large loss. By the same token, you may reduce the interest-rate risk of a
fixed-income portfolio by buying interest-rate derivatives. On the other hand,
options may also be used for speculation, as shown in the following example.

Example 2.2 Suppose that a stock price is $50, and you believe that it will
rise in the near future. You could then buy the stock anticipating a large
return. Let’s say that you are right and the price rises to $55. Then your rate
of return will be

A = 10%.
50

But now imagine that a call option is available with a strike price $50, and
that this option costs $5 (this may or may not be a reasonable price, but let
us take it as given for the sake of the argument). In this case you will exercise
the option, and the rate of return will be much larger:

5 = 100%.
This effect is called leverage or gearing. As you may expect, there is another
side to the coin. If you are wrong and the stock price drops to $49, then by
buying the stock you will lose $1, i.e., 2% of the investment; with the call
option you will lose 100%. You are also exposed to other sources of risk if you
are interested in selling the option before maturity, as unfavorable movements
in the factors determining the option value may have an adverse impact on
the value of your portfolio. )

Pricing options on stocks is a major topic in the book, and we will see
that, depending on the complexity of the model of the underlying asset price
dynamics, it may be a rather straightforward task or not. Interest-rate deriva-
tives are definitely more complex, and we will just have an outlook on them
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in section 2.8. We should observe that if we consider stochastic interest rates,
bonds too can be considered as derivatives, as their price is heavily dependent
on interest rates.

2.2.4 Asset pricing, portfolio optimization, and risk management

We have seen that we need some model to price assets such as bonds and
options. In principle, prices are the result of an equilibrium between demand
and supply of an asset. Equilibrium pricing models are an attempt to capture
this equilibrium resulting from the preferences and, possibly, the initial wealth
of investors. In the next example we try to illustrate the approach by a very
simple example from Microeconomics.

Example 2.3 (Equilibrium pricing in a pure exchange economy) Let
us consider a pure exchange economy. In such an economy, we have a set of
goods and a set of agents, and production is not considered. Each agent has
some endowment of each good, and a preference for consumption of each good.
For instance, let us assume that we have two agents, a and b, and two goods.
Let the initial endowments for the two agents be, respectively,

ri + 0
Ga—- o ) €b 1

=
The two agents would probably like to exchange part of the goods they own,
at some price which we want to determine. Let p\ and p2 be the prices of the
two goods. To express the preferences of the two agents, we may introduce a
utility function. For instance, let us assume a so-called Cobb-Douglas utility
form:

~Q
Ua{x\a, Z2a) = W(%1b, X2b) = X~ X

where x " is the consumption of good i = 1,2 by agent j = a,b, and a,(3 £
(0,1) are parameters specifying the preferences of the two agents. Nota that
this utility function indeed models preference for consumption bundles con-
sisting of both goods, thus agents have an incentive to exchange. We have
an equilibrium if each agent solves his optimal consumption problem and if
markets “clear,” i.e., consumption equals availability of each good.

For given prices, agent a will determine optimal consumption by maximiz-
ing his utility, subject to a budget constraint. Formally, he should solve the
optimization problem:

max xfax|-a
St PIXia+tP2X2a= W a,

where Wa = pi is his initial wealth, i.e., the value of his (unit) endowment
of good 1 given price pi. Strictly speaking, the budget constraint should
be written as an inequality, but given the form of utility functions we may
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assume that non-satiation applies: This means that the two agents are always
happier if they can consume some more. By the same token, we should also
include non-negativity constraints on consumption (Xij > 0), but given the
form of utility we may assume an interior solution, i.e., a solution in which
consumption of each good is strictly positive. The optimal solutioné is

¥ —api — v G—_‘__&‘_ZEi.
X1la Pi a X 2a P2
By the same token, agent b solves
max  xibxzb°
St PIXib + P2x2b = Wb
where Wb = p2, yielding
x* -EB1 X* - (1-Pp2-1 o
6" PI %~ P2 - P

However, prices should be compatible with market clearing, i.e., total demand
for a good is equal to its total availability. Hence, we must have:

x’;a + x’;b_— a f——— — 11 =u —P2— —l -—a
Pi Pi
Requiring market clearing for the second good yields the same condition. This
is reasonable as only the ratio of prices matters: a proportional increase in
both prices will increase initial wealth without changing the problem. We
could normalize prices by setting pi = 1, i.e., by selecting good 1 as a nu-
meraire.

We see that, in principle, we could find equilibrium prices if we knew the
preferences of each agent. Clearly, this does not look very practical. Fur-
thermore, in finance we must also account for time and uncertainty. This
means that we should know how investors value immediate consumption rela-
tive to future consumption, as well as their attitude towards risk. The task is
even more difficult if we take information asymmetries or heterogeneous be-
liefs into account. Unless very specific hypotheses are made, there is no hope
to come up with a feasible pricing approach. However, by making suitable
assumptions, interesting equilibrium pricing models have been devised. For
stock prices, this leads, e.g., to the Capital Asset Pricing Model (CAPM);
equilibrium models have been also proposed for interest-rate dynamics.

6In this specific case, we could simply get rid of one decision variable by eliminating the
equality constraint and enforcing the first-order condition, i.e., by requiring the first-order
derivative of the utility function is zero at optimum. We will give a solution by the method
of Lagrangian multipliers in chapter 6, page 352.
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Nevertheless, in financial engineering a much less ambitious attitude is
usually taken. We take the prices of a set of assets as given (and observable in
the market), and we try to find the price of other assets in such a way to avoid
obvious inconsistencies, like the one illustrated in the following example.

Example 2.4 (Arbitrage in a binomial model) Consider a binomial
model of uncertainty, like the one in figure 2.1, and an economy consisting
of two assets. The first asset is risk-free, in the sense that its price now is
$1, and it will be $1.1 in both future states. We may think of this risk-free
asset as a bank account offering a 10% interest rate for the period of time we
consider. The second asset is risky: its current price is $1 too, and its future
price could be $2 or $3 with equal probability.

It is easy to see that these prices are not consistent. If an investor borrows
$1 from the bank in order to buy the risky asset, she will be sure to have
a profit: in the worst-case scenario she will gain $(2 - 1.1) = 0.9, and she
will make even more money if the price of the risky asset turns out to be $3.
Assuming that unlimited borrowing is allowed, she could make an unbounded
amount of money, without incurring any risk. This is an example of an ar-
bitrage opportunity. Loosely speaking, an arbitrage opportunity is a money
making machine. Such a free lunch is not compatible with economic theory
or, for that matter, with common sense.

In general, if we assume a binomial model with multiplicative shocks n and
d, and there is a risk-free interest rate denoted by rf, the following inequalities
should apply: d< 1+ 71/ <. D

Clearly, the assumptions in the example are not quite reasonable, as unlimited
borrowing is not possible and assets are available in limited supply. However,
those prices are not reasonable, as they cannot be equilibrium prices, since
investors taking advantage of arbitrage opportunity will influence prices. In
practice, limited arbitrage opportunities are sometimes available, and there
are traders taking advantage of them, but they tend to disappear quickly and
are only feasible for very special traders.7 Hence, typical models for asset
pricing are based on the assumption that arbitrage is not possible.

Ruling out arbitrage opportunities leads to arbitrage-free, or relative, pric-
ing. We price assets in such a way that their prices are consistent with ob-
served prices for other assets. We will not investigate the relationships be-
tween equilibrium and lack of arbitrage, but it is intuitive that arbitrage op-
portunities are not compatible with equilibrium. The advantage of arbitrage
pricing is that it does not rely on too many critical assumptions about the
behavior of investors. Their aggregate risk attitude may somehow be taken
into account by parameters which are inferred by observing market prices; this
model calibration concept is fundamental to deal with interest-rate derivatives.

7T>ansaction costs may make arbitrage opportunities unprofitable, and so they allow for
some slight mispricing; large institutional investors may have to pay very small transaction
costs making arbitrage available to them.
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A large part of the book is devoted to asset pricing under the no-arbitrage
hypothesis. The second large body of applications is portfolio optimization.
Actually, asset pricing and portfolio optimization, from a theoretical point
of view, are not disjoint. After all, allocating wealth to assets in a portfolio
generates demand for such assets, and demand contributes to determine asset
prices. In financial economics, equilibrium asset pricing models are based on
optimization models which are generalizations of the pure exchange economy
of example 2.3. However, in everyday portfolio management, it is common to
treat uncertainty as purely exogenous. This means that we need first to model
uncertainty, and then to select a suitable model for portfolio optimization,
together with some computationally feasible way of solving it. Actually, there
is much more to that and portfolio optimization is just one part of portfolio
management. For instance, risks must be assessed by some sensitivity analysis
with respect to the assumed model of uncertainty, which must be somehow
stress-tested. Portfolio optimization is only part of a decision process involving
different actors with different organizational responsibilities.

In its basic form, portfolio optimization entails some form of stochastic op-
timization. By selecting a portfolio, we implicitly select a probability distri-
bution for its return or, equivalently, for future wealth. How can we compare
probability distributions corresponding to different portfolio choices? One
trivial approach would be to maximize the expected value of return. The fol-
lowing examples show that this would result in unreasonable portfolio choices.

Example 2.5 (Putting all of your eggs in one basket) Consider an
investor who must allocate her wealth to n assets. The return of each asset,
indexed by i = 1,... ,n, is a random variable Ri with expected value fii =
E[jRi]. The asset allocation decision may be modeled by introducing a set of
decision variables Xi representing the fraction of wealth invested in asset i. If
we rule out short-selling, these decision variables are naturally bounded by
0 < Xi < 1. The expected value of return from our portfolio is

n n n
E /\/\Rlxl _ A A A A

Hence, we should solve the following optimization model:

n
max

St
i=1
Xi > 0.

whose solution is quite trivial: we should simply pick up the asset with max-
imum expected return, i* —argmaxj=ir.)n  and set X{* ~ 1. It is easy
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to see that this portfolio is a very dangerous bet; in practice, portfolios are
diversified, which means that there must be something else beyond expected
values. In practice, one would also have some constraints on portfolio compo-
sition, limiting exposure to certain geographical areas or types of industry, and
this would make the trivial solution above not feasible. However, if we take
only expected return into account, the solution is basically shaped by these
constraints. By the way, if short-selling is allowed, the decision variables are
unrestricted, and the expected value of future wealth goes to infinity. In fact,
one would short-sell assets with low expected return, to make money to be
invested in the most promising asset. This is clearly unreasonable.

Example 2.6 (St. Petersburg paradox) Consider the following proposi-
tion. You are offered a lottery, whose outcome is determined by flipping a fair
and memoryless coin. The coin is flipped until it lands tail. Let k be the num-
ber of times the coin lands head; then, the payoff you get is $2fc Now, how
much should you be willing to pay for this lottery? The reader is invited to
consider this problem as a pricing problem: the lottery is a sort of derivative
with respect to some random outcome. We could consider the expected value
of the payoff as the fair price for this rather peculiar asset. The probability
of winning $2t is the probability of having k consecutive heads followed by
one tail, which stops the game, after k + 1 flips of the coin. Given indepen-
dence of events, the probability of this sequence is |/2fct], i.e., the product
of individual event probabilities. Then, the expected value of the payoff is

ko k=0

This game looks so beautiful that we should be willing to pay any amount of
money to play it! No one would probably do so. Again, we see that expected
value does not tell the whole story.

These two examples show that expected values must be complemented by
some other information, such as variance or quantiles, in order to take sensible
decisions. More generally, we need a way to model decision making under
uncertainty, and this calls for a way to model risk aversion. One way to do so
is to introduce the concept of expected utility, which is done in section 2.4.1.
Expected utility is an interesting concept, with some theoretical and practical
pitfalls. In fact, it basically postulates that decision makers are very rational,
consistent, and very well informed, all of which is often contradicted. But
even if we believe that decision makers are consistently rational, it is difficult
to elicit the utility function from any investor. A practical way out is to define
suitable risk measures, which can be accounted for in formulating portfolio
optimization models. A typical approach is to constrain the expected return
of the portfolio, and then to minimize a suitably chosen risk measure. By
varying expected return, we can trace a set of reasonable portfolios among
which the decision maker may select the best compromise solution, trading off
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expected return against risk. If we measure risks by the variance of return, we
obtain a well-known theory based on mean-variance efficiency (section 2.4.2).
Recently, different risk measures have been adopted, such as Value at Risk,
which is described in section 2.4.5. This leads to another important body of
finance, risk management, which may take advantage from numerical methods
as well. We should emphasize again that portfolio optimization models are
only a part of the more general portfolio management process, which also
includes risk assessment and management.

We have said that asset pricing is somewhat related to portfolio optimiza-
tion, which in turn is related to risk management. It is also important to
understand the link between asset pricing and risk management. On the one
hand, we need to understand the sensitivity of asset prices to random fluctu-
ations in underlying factors, so that hypothetical scenarios for the evolution
of the underlying factors can be mapped to changes in portfolio value. Fur-
thermore, we would like to devise approaches to design our portfolio in such a
way that sensitivity to such changes is minimized. For instance, we may want
to understand how interest rates affect bond prices, and to devise portfolios
which are at least partially immunized against shocks; this is the subject of
the next section.

On the other hand, however, there is a much less obvious link, which will
be apparent when we treat option pricing in section 2.6. Consider the point
of view of the option writer, i.e., the guy who sells an option. Options may
be risky for people buying them, but they are even riskier for the party who
sells them; in fact the option holder has a right to exercise, but the option
writer must comply with this right. To get the point, consider the extreme
case of a call option with strike price K = 20 which is exercised when the
underlying asset price is St = 80; this is trouble for the writer if he has to
buy the underlying stock at 80 to sell it at 20. Hence, the option writer needs
a reliable way to hedge against such risks. We will see that, in an idealized
world, the option price is basically the price of a hedging strategy for the
option writer.

2.3 FIXED-INCOME SECURITIES: ANALYSIS AND PORTFOLIO
IMMUNIZATION

In this section we deal only with “really fixed” income assets, i.e., fixed-coupon
and zero-coupon bonds. Even in this simple setting we may introduce several
useful concepts.

2.3.1 Basic theory of interest rates: compounding and present value

In order to understand bond pricing, the first concepts we need are related to
interest rates and how they are compounded. Assume you have wealth Wo
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and you invest it in, say, a bank account for one year. After this period, you
will get an amount of money W\ > Wo. Hence, you could measure the rate
of return of your investment by

In other words, at the end of the investment period you collect an amount of
money which is the sum of the principal, the original amount you owned, plus
interest

W1 =W0+rWo= (1+r)WO0.

The quantity r is referred to as interest rate over the time period we are
considering. Now assume that you leave your money in the bank account for
two years and that the same interest rate r applies for both years. How much
money will you get? If the simple interest rule applies, you will get twice the
interest:

W2 = (1+ 2r)WO.

If the period of your investment is n years, the simple interest rule yields
W, = (1 + nr)Wo.

In the general case including fractions of years, one possible rule assumes
proportionality:
Wt = (I +tr)Wo,

where t is any real number. More often than not, however, you earn interest on
interest; after the first year, the interest you earned is added to the original
wealth, and the interest rate for the next year will be applied to the new
wealth:

W2 = (I+r)Wi =(1 +r)2WO0.

In this case we speak of compound interest, and for n years we have
Wn = (1 + r)nWO0.

Note that, in the case of compounding, wealth grows more rapidly, according
to a geometric progression.

Compounding can occur at any frequency. For instance, let us assume
that you get interest every six months. Typically, a nominal interest rate r
is quoted yearly, but it is applied dividing it by the number of periods in the
year:

W\ = (I+r/2)2WQ

We obtain the effective yearly rate by equating wealth at the end of the year:

L+7r/2)2Wo = (1+ re)Wo = re=r+r2/4>r.
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If interest is compounded m times per year, we have
Wi =1+ r/m)mWO.

For a given nominal rate, the more frequent the compounding, the faster the
growth and the higher the effective yearly rate. What happens if, in the
limit, interest is compounded continuously? By taking the limit as m goes to
infinity, and using a well-known result from calculus, we get

Wi = lim (1 + r/m)mWo = erWO.
m—00

Continuous compounding looks a bit artificial, but in this case many things
turn out to be simpler, including the application of an interest rate to an
arbitrary period of time t. We may think of dividing the time interval t in
small slices of length 1/m years, i.e., t n k/m for some integer k. Using
discrete-time compounding and then taking the limit we get:

K fint ( st
Tt tas TRt ) et
Again, we may find the effective yearly rate re corresponding to the continu-
ously compounded rate r: re = er —1.

Another fundamental concept in the basic theory of interest rates is the
present value of a stream of cash flows in time. We will see that absence
of arbitrage implies that the price of a bond must be the present value of a
cash flow stream. Consider a cash flow stream, i.e., a sequence of periodic
payments Ct at discrete-time instantst = 0,1,..., n. Given an interest rate r
with discrete compounding, applied over each time period, the present value
of the cash flow stream is defined as

PV =V Ct
k (1+rY

Note that cash flows need not be positive; for instance, in investment analysis
we typically have Co < 0, corresponding to an initial cash outlay. We say
that cash flows are discounted, reflecting the fact that the value of $1 in the
future is something less now; the discount factor by which each cash flow is
multiplied is smaller for distant periods. When the nominal interest rate is
quoted yearly but the payments occur more frequently, the formula may be
easily adapted following the previous treatment. If there are m payments per
year at regular time intervals, we have

™ .-+<r$SF- M

where K indexes the time periods and n is the number of periods, i.e., the
number of years times the number of periods within one year.



FIXED-INCOME SECURITIES: ANALYSIS AND PORTFOLIO IMMUNIZATION 45

All of the considerations we have made on compounding apply here. If the
interest rate is continuously compounded, present value is

il

PV = J 2 Cte-rt.
t—o

Continuous compounding is very convenient when cash flows are not regular
in time. Let us denote by t{, i = 1,..., n, the time at which cash flow C* is
received. Then

PV = £ Cte-Tti.
i=0
In the case of discrete compounding, one possible convention is using fraction
of years. For instance, the present value P of cash flow C occurring in nine
months could be expressed by

P = - ¢ -
(I'+ r)9/12"
if we assume that all months consist of the same number of days.

It is important to note that we have assumed that the same interest rate
r, however it is quoted, is applied to any time interval. This need not be the
case actually, as we will see later. Furthermore, it is also worth stressing that
we have not considered inflation. When inflation is taken into account, we
should distinguish between nominal and real interest rate, but we will always
disregard inflation in this book. The calculations above, possibly adjusted
to cope with these issues, are very common and have been implemented in a
large number of software packages, including MATLAB. Typical functions of
this kind have been included in the Financial Toolbox.

Example 2.7 The Financial toolbox includes different functions to analyze
cash flow streams, including pvvar, which computes the present value of a
stream, given an interest rate. Consider for instance the cash flow stream
corresponding to a bond maturing in five years, with face value 100, and a
8% coupon rate. This cash flow can be represented by the following vector:

» cf=[0 8 8 8 8 108]
cf =
0 8 8 8 8 108

The zero in the first position corresponds to an immediate cash flow, which in
this case is zero, as the first coupon will be paid in one year (you may think
that a coupon have just been paid). What is the present value of this stream
if we discount it by an interest rate corresponding to the coupon rate? Not
surprisingly, present value is equal to face value:

>> pvvar(cf,0.08)
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function pv = mypvvar(cf,r)

I, get number of periods

n = length(cf);

# get vector of discount factors
df = L./(I+r)."(0:n-1I);

¥ compute result

pv = dot(cf,df);

Fig. 2.7 Function to compute present value with discrete compounding and regular
cash flows.

ans
100.0000

If we increase that discount rate, present value is decreased:

» pvvar(cf,0.09)
ans =
96.1103

On the contrary, if the discount rate is decreased, present value is increased:

>> pvvar(cf,0.07)
ans =
104.1002

Indeed, we will see that when interest rates rise, bond prices fall, whereas
bond prices increase when interest rates drop. A major task in bond portfolio
management is to take interest-rate risk into account.

How can we evaluate present value without the Financial Toolbox? Func-
tion mypvvar in figure 2.7 is a possible answer. Note that, in computing the
vector of discount factors, we must use a vector from 0 to length n minus
1; also note the use of the dot operator both in the division (./) and in the
power (."). The function dot computes the dot product of vectors:

7

1

provided that the vectors have the same number m ofelements. The advantage
of using dot is that we do not need worrying whether vectors are row or column
vectors, as is the case when we use matrix multiplication.

» cf =[08 888 108];
» mypvvar(cf,0.08)
ans =
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100.0000
» mypvvar(cf,0.09)
ans =

96.1103
>> mypw ar (cf,0.07)
ans =

104.1002

D

Another quite common concept linked to analyzing cash flow streams is the
internal rate of return. Given a stream of cash flows Ct (t = 0,1,2,... ,n),
the internal rate of return is defined as a value p such that the present value of
the stream is zero. In other words, it is a solution of the non-linear equation

(2.2)

Clearly, in order to find a solution, we must assume that at least one cash flow
is negative. Typically, this is the initial cash flow Co, which may correspond to
an investment or to the price you pay to purchase a bond. MATLAB provides
us with useful functions to compute the internal rate of return.

Example 2.8 We will describe methods to solve general non-linear equa-
tions in section 3.4. However, the equation defining internal rate of return may
be easily transformed to a specific non-linear equation, a polynomial equation,
which is relatively easy to solve. With the change of variable h = 1/(1 + p),
we may rewrite equation (2.2) as

n
YsCthl=0

which is readily solved by the MATLAB function roots. All we have to do is
to represent a cash flow stream as a vector, as done in the following MATLAB
interaction snapshot.

» cf=[-100 8 8 8 8 108]

cf =

-100 8 8 8 8 108
>> h=roots(fliplr(cf))
h =

-0.8090 +0.5878i
-0.8090 - 0.5878i
0.3090 + 0.9511i
0.3090 - 0.9511i
0.9259
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>> rho=I./h -1

rho =
-1.8090 - 0.5878i
-1.8090 + 0.5878i
-0.6910 - 0.9511i
-0.6910 + 0.9511i
0.0800

+

A few comments are in order. First, we define a variable cf and we associate a
cash flow to it. Then, in a single command line, we flip the cash flow from left
to right with the function flip Ir and we invoke the roots function to assign
the roots of the resulting polynomial to the variable h. Flipping the cash flow
vector is necessary since roots assumes that a polynomial is represented by
a vector in which the first components correspond to the highest power terms
in the polynomial, whereas when we represent cash flows we put such terms
at the end. After obtaining the solution in terms of h, we go back to the
original variable p (note that the dot in ./ is necessary since h is a vector of
solutions). Since in this example n = 5, we have a vector of five roots: four
are complex conjugates, and the one we are interested in is the real one, i.e.,
p = 0.08. Indeed, it can be shown that for a cash flow stream with Co < 0 and
Ct>0(t=1,...,n) and Ylt=i Ct > 0, we have a unique real and positive
solution of the non-linear equation (see, e.g., [15, chapter 2]).

If we want to devise a function filtering complex roots away, we may use
the MATLAB find function, which returns the indexes of the elements in a
vector meeting some condition:

>> index = find(abs(imag(rho)) < 0.001)
index =
5
>> rho(index)
ans =
0.0800

What we have done here is finding the indexes of elements in rho such that
the absolute value of their imaginary part is less than a specified tolerance;
then we get the elements from the vector. It is tempting to think that we
should look for elements such that the imaginary part is exactly zero, but
this type of “exact thinking” should be avoided when numerical computing is
involved. To get the point, consider the trivial equation

(x - 1)3=x3- 300a:2+ 30,000a; - 1,000,000= 0
and use roots to solve it:

» v = [1 -300 30000 -1000000];
» h=roots(v)
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1.0e+002 *
1.0000 + O.00QCi
1.0000 - O.00QCi
1.0000
>> index = find(abs(imag(h)) == 0)
index =
3

The nasty thing occurring here is that multiple real roots may turn out as
complex conjugates with a very small imaginary part. This is arguably un-
likely to occur when computing internal rates of return of non-pathological
cash flow streams, but it is a good example of pitfalls in numerical computing
and it points out the care we need to take. All the work above (including filter-
ing complex roots out) is done by the irr function available in the Financial
toolbox:

» irr(cf)
ans =
0.0800

We urge the reader to try writing a function doing all of this automatically;
then, readers having access to the Financial Toolbox may compare their func-
tion with irr. D

With respect to present value, when computing internal rate of return we
are going the other way around, in some sense. Moreover, the present value
may be computed using a set of discount factors linked to different interest
rates applied over time periods differing in length; the internal rate of return
is one rate which, applied over all of the time periods, would give the same
present value.

2.3.2 Basic pricing of fixed-income securities

Pricing a zero-coupon bond Consider a zero-coupon bond, with a face value
F, maturing in one year, which is currently sold at price P. If we purchase
this security and we keep it until maturity, we will have a total return

and a rate of return

An obvious relationship between r, F, and P is

(2.3)
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We may see this relationship the other way around. If we fix F and r, this
may be interpreted as a pricing relationship.

What rate r should we use in pricing? If the bond is default-free, as is
usually the case with government bonds, this should be the prevailing risk-
free interest rate: no more, no less. To see why, we may use a common
principle in finance, i.e., the no-arbitrage principle. Assume that the bond is
underpriced, i.e., it sells for a price P\ such that

and that we may take out a loan at the risk-free interest rate r (we are
assuming that borrowing and lending rates are equal). Then we can borrow
an amount L and use it to purchase L/P\ bonds. Note that the immediate
net cash flow is zero. Then, at maturity, we must pay L(1+ r) to our money
lender, and we get an amount FL/P\ when the face value is redeemed for
each bond. But since, by hypothesis,

F

the net cash flow at maturity will be

Hence, we pay nothing at the beginning and receive a positive amount in the
future; since the bargain is an interesting one, we might well exploit it, in
the limit, to ensure an unbounded profit for increasing L. This is a simple
example of arbitrage. Of course, limitless borrowing is not available; more
important, purchasing a huge amount of those bonds would raise their prices,
and the arbitrage opportunity would soon disappear. Indeed, a common as-
sumption in many financial problems is that arbitrage opportunities do not
exist. Note that this does not imply that they actually do not exist; on the
contrary, it is the very fact that many people are out there to exploit those
opportunities which tends to eliminate them quickly. The argument may be
repeated similarly if the inequality is reversed and the bond is overpriced:

In this case we should borrow the bond itself, rather than the cash needed to
buy it. This is accomplished by selling the bond short (see example 2.1 on
page 32 for an illustration of short-selling a stock). There are many limitations
to short-selling in practice, but for pricing models it is often (not always)
reasonable to assume that it is possible. Then we may sell the overpriced
bond and invest the proceeds at the risk-free rate; let us assume that we
borrow bonds for a total value L, we sell them at price P\, and we invest the
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money we obtain. The immediate net cash flow is again zero. At maturity,
we get L(1 + r) from our investment, and we have to pay the face value F to
the owner for each bond that we have borrowed. Hence the net cash flow at
maturity is again positive:

We have also implicitly assumed that transaction costs are negligible and that
we may lend or borrow money at the same rate. Again, these assumptions are
violated in practice, but they may be close enough to reality, at least for some
large investors, to warrant their use. The reader may have the impression that
the arbitrage argument is, at least in this case, an unnecessary complication to
obtain an almost obvious result: the price is obtained by taking the present
value of its future cash flows. However, the no-arbitrage principle is used,
with some modification, to price quite complex securities where uncertainty
is involved and intuition does not help (as in the case of options; see section
26.2).

No-arbitrage and linearity of pricing Before proceeding and considering pric-
ing coupon-bearing bonds, it is useful to point out a couple of important
implications of the no-arbitrage principle.

The first implication is the law of one price. Different assets cannot sell
for different prices, in idealized markets, otherwise an immediate arbitrage
opportunity arises. In practice, markets are not perfect, and we all know that
the same product may be sold at different prices in different countries. In this
case, arbitrage opportunities are eliminated by transportation costs, taxes,
etc. Financial markets, also thanks to Internet, are closer to perfect markets,
and for modeling purposes we may assume that the law of one price makes
sense. We will also see that it makes sense when uncertainty is involved.

Another implication is that pricing is a linear operator. To get the point,
let us denote by P(-) an abstract pricing operator that maps assets to prices.
Linearity means that the price of a portfolio of assets should be the weighted
sum of the prices of each single asset. Formally, if we denote an asset by Xi,
i=1,...,n, we have

where P(Xi) is the price of asset i and a* is the number of assets of type i
in the portfolio. To see this, let us break the argument in two parts. If we
consider one asset, we should have P(2X) = 2P(X). If, for instance, P(2X) <
2P(X), we may make an immediate profit by purchasing two assets and selling
them separately. A similar consideration applies if P(2X) > 2P(X). The
same reasoning can be applied with an arbitrary number of assets, at least in
idealized markets with no friction; in real markets, transaction costs, round



52 FINANCIAL THEORY

lots, etc., make the argument only approximately valid. By the same token,
we must have P (Xi + X2) —P{Xi) + P{X2). If, for instance, P(Xi + X2) <
P(Xi) + P(X2), we may buy the bundle of two assets and then make an
immediate profit by .selling them separately. Again, reality is a bit different.
Prices may be non-linear when transaction costs are involved or when assets
are in limited supply and markets are thin.

Linearity of pricing has an important implication on pricing coupon-bearing
bonds; if we regard such a bond as a portfolio of zero-coupon bonds, it is
immediate to see that we may price each coupon as a zero-coupon bond and
sum the results.

Pricing a coupon-bearing bond Linearity of pricing implies that a bond may
be priced by pricing each coupon separately, including payment of face value
at maturity. Consider a bond with face value F, paying a coupon C per
period. Pricing is very simple, if we assume that the bond is default-free, so
that a riskless interest rate may be applied, and that this rate can be applied
to any period length (provided that we account for compounding). It is easy
to see that the fair bond price may be obtained by computing the present
value of its cash flow stream:

(2.4)

This is the basic principle, which links present values and prices. As expected,
several complications may arise in practice.

e If r is quoted yearly and there is more than one coupon payment per
year, the formula could be adjusted in the same vein as equation (2.1).
If m coupons are paid in a year:

where n is the number of periods.

« Another fundamental issue is that different interest rates are typically
associated to different time horizons. This implies that bond pricing
requires knowledge of several discount factors. If we denote by rt the
interest rate which applies from now to time t, i.e.,, the spot rate, we
should discount each coupon Ct appropriately:

i=1

The set of rates rt is related to the term structure of interest rates. The
idea is depicted in figure 2.8, where we see an upward-sloping structure;
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Fig. 2.8 Term structure of the interest rate; years are reported on the horizontal axis,
and the corresponding (percentage) spot interest rates are plotted.

this corresponds to the intuitive notion that longer interest rates are
usually associated with longer terms. Actually, other shapes are possible
in general. A downward sloping curve is usually associated to recession,
whereby interest rates are expected to drop in the future. Note that an
upward sloping curve does not necessarily imply that interest rates are
expected to rise.

« If these simple formulas were generally applicable, any bond with the
same coupon rate and maturity date should have the same price, which
is actually not the case. A first point is that not all bonds are issued
by institutions with the same credit rating. Although a bond issued by
some governments may be default-free, a corporate bond may not be of
the same quality; hence, all other things being equal, you would require
a lower price for it. This difference may be captured by the bond vyield,
which is introduced in the next section.

Measuring return ofa bond: yield to maturity We have seen that the price of a
fixed-coupon bond is basically the present value of its cash flow stream, which
may depend on a whole set of interest rates. But how can we measure the
return of a bond of given price by a single number? One possible idea is to
compute the internal rate of return of the bond. The internal rate of return
of a bond is called the yield,s and for a bond with price P it is the solution,

8Actually, there are different concepts of yield (see, e.g., [6] or [7]), but we will stick to this
one for the sake of simplicity, even though it may be subject to some criticism.
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A of the following equation:

If more than one coupon payment is made during a year, the equation defining
yield is immediately adapted:

From these equations it is easy to see that bond prices will drop if there is
an increase in required yield J1, and vice versa. Required yield may increase
if bond rating gets worse, which calls for some risk premium, or if the general
level of interest rates rises. Analyzing the relationship between price and yield
is relatively easy, but it is just an approximation. A full term structure of
interest rates should be taken into account, as the curve may not only go up
or down, but it may also twist and change its qualitative shape. Nevertheless,
an approximate analysis is often valuable, as we will see shortly.

Issues in bond portfolio management: interest-rate risk Intuitively, the higher
the required yield, the lower the price, and higher yields must be offered for
risky bonds. If the credit rating of the bond issuer changes, the bond price
will change accordingly to reflect the new situation. But is credit risk the
only source of risk for bonds? Unfortunately, the answer is no. To begin
with, coupon rates may depend on some other economic or financial variable,
resulting in some uncertainty in the cash flow, so we have a form of financial
risk. Another point is that some bonds have embedded options which may
be unfavorable for the holder; for instance, the issuer may call the bond,
that is, redeem it before maturity, which results in reinvestment risk since we
would have to reinvest the cash we receive from the bond issuer (bonds with
embedded options may be analyzed using techniques we discuss later when
we deal with options).

But even if all of these risks are ruled out, there may still be a form of
risk, depending on the intended use of the security. The point is that any
portfolio of bonds has some purpose, and the portfolio risk must be evaluated
with reference to this purpose. A common use of a bond portfolio is to enable
some institution (e.g., a pension fund) to comply with a stream of future
liabilities. To be more concrete, assume that we have to pay a sequence of
liabilities over a time horizon which is discretized in T periods and that the
liability in period t = 1,...,T is Lt. Now, we could just purchase bonds in
such a way as to meet all the liabilities. In fact, this is possible, at least in
principle. Consider a set of N bonds, each with a price Pi (i = 1,..., N). If
the cash flow from a unit of security i at time t is represented by Fa, we may
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consider the following cash flow matching model:

N
min PiXi
i=i
N
st N2 Fitxi > Lt Vi
t=i
Xi > 0.

Here the decision variable Xj represents the amount of bond i purchased
(rather than the weight in the portfolio). If we neglect the possibility of
default and assume that the liabilities are known in advance, the resulting
portfolio would certainly meet the obligations; unfortunately, it is likely to
be quite expensive. Unless bond maturities are matched to the liabilities, we
will have to meet the obligations with coupon payments, requiring a possibly
large number of bonds. Note also that liabilities are taken into account by an
inequality constraint, which may turn out to be strict, since it is unlikely that
a perfect match of cash flows and liabilities may be obtained with a given set
of bonds. In the case of a long planning horizon, the lack of suitable long-term
bonds may compound these difficulties.

Hence, we must manage our bond portfolio in a more dynamic manner,
buying and selling bonds along the way. But here comes the trouble. Bond
prices are related to interest rates, and these may change in unpredictable
ways. For instance, is a five-year zero-coupon bond riskless?

Example 2.9 Consider a five-year zero-coupon bond, with face value 100,
sold with required yield r\ = 0.08. Which is the percentage change in its price
if the yield is increased immediately after purchase to 2 = 0.09?

» rl=0.08;
» r2=0.09;
» PI=100/(l+rl)~5
Pl =
68.0583
» P2=100/(1+r2)"5
P2 =
64.9931
» (P2-PD/P1
ans =
-0.0450

We see that we have a 4.5% decrease the value of the bond. Note that this
loss occurs only if you have to sell the bond before maturity. No harm is done
if you keep the bond to maturity, but this makes sense only if the liability
you want to match coincides with maturity. Now what if the maturity is 20
rather than five years?
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» PI=100/(1+rl)~20
Pl =

21.4548
» P2=100/(1+r2)~20
P2 =

17.8431
» (P2-P1)/P1
ans =

-0.1683

We see that the loss is now much larger, almost 17%. Although zero-coupon
bonds with long maturities may not be available easily, it is a general rule
that the longer the maturity, the more sensitive to yield changes the bond
price is. Coupon rates play some role, too. We may compare two bonds with
coupon rates of 4% and 8%, respectively.

» cfi1=[0 8 88888888 108];
» cf2=[0 444444444 104];
>> Pl=pvvar(cfl,0.08)
Pl =
100.0000
» P2=pvvar(cfl,0.09)
P2 =
93.5823
» (P2-P1)/P1
ans =
-0.0642
» Pl=pvvar(cf2,0.08)
Pl =
73.1597
» P2=pvvar(cf2,0.09)
P2 =
67.9117
» (P2-PD/P1
ans =
-0.0717

We see that a lower coupon rate implies a larger sensitivity. D

The problem is that the interest rates are not constant over time; they
may change, depending, e.g., on inflation or general economic conditions. The
changes in interest rates may be complex, as we should take a whole curve
of spot rates into account. The curve may shift up or down, but it may also
change shape, as it may steepen or flatten. In the example above we have
just captured these complex changes with one measure, yield. If rates move
up, a higher yield will be required for new bonds of the same characteristics.
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For bonds issued in the past and traded on secondary markets, an increase in
the yield results in a decrease in the price at which they may be sold. On the
contrary, if interest rates drop, we may gain something from the decrease in
the required yield, which results in an increase in the price. Depending on the
maturity and the coupon rate, we have seen that a bond may be more or less
sensitive to yield changes. We need a formal way to measure the interest-rate
risk associated with bonds, in order to figure out a way to shape a fixed-
income portfolio. A relatively simple answer is represented by the duration
and convexity concepts discussed in the next section.

2.3.3 Interest rate sensitivity and bond portfolio immunization

Imagine that you are an investor facing a stream of known liabilities in the
future and you want to hold a portfolio of bonds such that you may meet the
liabilities. On the one hand, you would like to do it at minimum cost, but you
would also like to hold a portfolio that is not likely to get you in trouble in
case of changes in the interest rates. As a simple example, imagine that you
have one liability L to be paid in five years. If you may find a safe zero-coupon
bond maturing in five years, with face value F, you may just buy an amount
L/F of these bonds. However, if the bond maturity is less than five years,
you will face reinvestment risk; if the bond maturity is more than five years,
you will face interest rate risk, as we have seen in example 2.9. Ideally, you
would like to find a zero-coupon bond with maturity corresponding exactly to
the date of each liability. Unfortunately, it is practically impossible to do so,
and we must find another way to protect the bond portfolio against interest
rate uncertainty. Immunization is a possible, and simple, solution.

Formally, we have a function P (A) that gives the relationship between the
yield and the price of a bond. We may draw this curve (how this may be done
in MATLAB is explained in example 2.11), obtaining something like the curve
illustrated in figure 2.9. We see that the curve is convex,9 which is actually
the case for usual bonds. Now, consider small movements in the required
yield; we would like to find out a way to approximate the change in price with
respect to a change in yield. Indeed, there are two concepts, duration and
convexity, which can be used to this aim.

Given a stream of cash flows occurring at times to, t\,..., tn, the duration
of the stream is defined as

pi _ PV(£o)™o + PV (£i)ti 4PV (£2)"2 + ess+ PV(£n)t,
~ PV :

where PV is the present value of the whole stream and PV(£,) is the present
value of cash flow G occurring at time ti, i = 0,1,..., n. In some sense, the

9Formally, a function f is convex on a set if, for any choice of x and y in that set, /(Ax +
1 —A)y) < A/(x) + (1 —A)/(y) holds for 0 < A< 1; more on this in supplement S6.1.



58 FINANCIAL THEORY

Fig. 2.9 Price yield curve.

duration looks like a weighted average of cash flow times, where the weights
are the present values of the cash flows. Note that for a zero-coupon bond,
which has a single cash flow, the duration is simply the time to maturity.
When we consider a generic bond and use the yield as the discount rate in
computing the present values, we get Macaulay duration:

K Ck

£
5o &=m 1+ \/m)k
&
@+ X/m)k

where it is assumed that there are m coupon payments per year. In order
to see why duration is useful, let us compute the derivative of the price with
respect to yield:

(6 o]
=< fm (14 Umykd @Y

If we define the modified duration Dm = D/{1+ JUm), we get

dpP n ,

2.
dx = ~DmR (26)
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Thus, we see that the modified duration is related to the slope of the price-
yield curve at a given point; technically speaking, it is the price elasticity of
the bond with respect to changes in the yield. This suggests the opportunity
of using a first-order approximation:

5P « -DUP SX

An even better approximation may be obtained by using a second-order ap-
proximation. This may be done by defining the convexity:

Note that the unit of measure of convexity is time squared. Convexity is
actually a desirable property of a bond, since a large convexity implies a slower
decrease in value when the required yield increases, and a faster increase in
value if the required yield decreases. Using both convexity and duration, we
have the second-order approximation

5Pk -DmP6X+— (5\)2.

Example 2.10 We may check the quality of the price change approximation
based on duration and convexity with a simple example. Let us consider a
stream of four cash flows (10,10,10,10) occurring at times t —1,2,3,4. We
may compute the present values of this stream under different yield values
using MATLAB function pvvar:

» cf = [10 10 10 10]
cf =

10 10 10 10
>> pl=pvvar([0, cf], 0.05)
pi =

35.4595
>> p2=pvvar([0, cf], 0.055)
p2 =

35.0515
>> p2-pl
ans

-0.4080

Note that we have to add a 0 in front of the cash flow vector cf since pvvar
assumes that the first cash flow occurs at time 0. We see that increasing the
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yield by 0.005 results in a price drop of 0.4080. Now we may compute the
modified duration and the convexity using the functions cfdur and cfconv.
The function cfdur returns both Macauley and modified duration; for our
purposes, we must pick up the second output value.

» [dl dm] = cfdur(cf,0.05)
dl =
2.4391
dm =
2.3229
» c¢v = cfconv(cf,0.05)
cv =
8.7397
>> -dm*pl*0.005
ans =
-0.4118
>> -dm*pl*0.005+0.5*cv*pl*(0.005) ~2
ans =
-0.4080

We see that at least for a small change in the yield, the first-order approxima-
tion is satisfactory and the second-order approximation is practically exact.

We have defined duration and convexity for a single bond; what about a
bond portfolio? If the yield is the same for all the bonds, it can be shown that
the duration of the portfolio is simply a weighted average of all the durations
(the weight is given by the weight of each bond within the portfolio). This is
not exactly true if yields are not the same; however, the weighted average of
the durations may be used as an approximation. How can we take advantage
of this? In the case of asset liability management, one possible approach is to
match the duration (and possibly the convexity) of the portfolio of bonds and
the portfolio of liabilities. This process is called immunization. To carry out
the necessary calculations, we may use the functions available in the Financial
toolbox.

2.3.4 MATLAB functions to deal with fixed-income securities

When turning our attention from simple cash flows streams to real-life bonds,
various complications arise. The first one is that in order to represent the
settlement date and the maturity date of a bond correctly, we must be able
to cope with a calendar, taking leap years into account. MATLAB has an
internal way of dealing with dates, which is based on converting a date to
an integer number. For instance, if we type today, MATLAB replies with a
number corresponding to the current date; this number may be converted to
a more meaningful string by using datestr:
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» today
ans =

732681
» datestr(today)
ans =
04-Jan-2006

You may wish to check which date corresponds to day 1. The inverse of
datestr is datenum:

>> datenum(’04-Jan-2006")
ans =
732681

There is a wide variety of string formats that you may use to input a date in
MATLAB; the one you see above is only one of them (note that it is neces-
sary to enclose the string between quotes). Dates must be taken into account
for different reasons. Consider buying a bond after it is issued; if you buy a
bond at a date between two coupon payments, the time elapsed from the last
coupon payment date must be taken into account. If not, you would receive
a coupon benefit to which the previous owner is partially entitled. Actually,
by computing the present value of the cash flow stream you would take it into
account; however, the market convention is to quote a bond price without
considering this issue. What you read is the clean price, to which accrued
interest must be added in order to obtain the correct price. Accrued interest
may be computed by prorating the coupon payment over the period between
two payments. Roughly speaking, if coupons are paid every six months and
you buy a bond two months before the next coupon payment, you owe some-
thing like two-thirds of the coupon to the previous owner. However, there
are different day count conventions to make the necessary calculations. These
issues are considered in the bndprice function, which is used to price a bond,
for a given yield value. To understand the input arguments required, we may
use the online help (we have included only the first few lines appearing on the
screen):

>> help bndprice

BNDPRICE Price a fixed income security from yield to maturity.
Given NBONDS with SIA date parameters and semi-annual yields to
maturity, return the clean prices and the accrued interest due.

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle, Maturity)

[Price, AccruedInt] = bndprice(Yield, CouponRate, Settle,
Maturity, Period, Basis, EndMonthRule, IssueDate,
FirstCouponDate, LastCouponDate, StartDate, Face)

We see that, as usual in MATLAB, this function may be called with a minimal
set of input arguments, which are required yield, coupon rate, settlement date
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(i.e., when the bond is purchased), and maturity date. The two output values
are the clean price and the accrued interest, which must be summed in order
to get the real (dirty) price:

» [clPr accrint] = bndprice(0.08, 0.1, ’10-aug-2007’, *31-dec-20207)
clPr =

116.2366
accrint =

1.1141

>> clPr+accrint
ans =

117.3507

When calling the function this way, all the other arguments take a default
value. For instance, the Period parameter, which is the number of coupon
payments per year, is assumed to be two, and the face value (Face) is assumed
to be 100. Another possibly important parameter is Basis, which controls
the day count convention in computing the accrued interest; the default value
is 0, which corresponds to the actual/actual convention; if the parameter is
set to 1, the convention is 30/360 (i.e., it is assumed that all months consist of
30 days). To appreciate the difference between the day count conventions, we
may compute the number of days between two dates by the 30/360 convention
and the actual number of days:

» days360(”27-Feb-2006", *4-Apr-2006~)
ans =

37
» daysact(’27-Feb-2006", ’4-Apr-20067)
ans =

36

Other day count conventions are possible and used for different securities (see,
e.g., [7]). The remaining parameters are related to the coupon structure and
are described in the Financial toolbox manual.

Example 2.11 To obtain the price-yield curve of figure 2.9, we may use the
following code fragment:

settle = 719-Mar-2000";
maturity = 715-Jun-20157";
face = 1000;

CouponRate = 0.05;
yields = 0.01:0.01:0.20;
[cleanPrices , accrints] = bndprice(yields, CouponRate, settle,

maturity, 2, O, [1.[1.[C1.LC1.[1., face);
plot(yields, cleanPrices+accrints);
grid on

Note that when we have to provide a function with an optional argument,
such as the face value, but we do not want to use optional arguments which
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should occur before that one, we have to pass empty vectors represented by
[1 so that the arguments are properly matched. D

For now, we have computed a price given a required yield. We may also
go the other way around; we may compute the yield given the price, using
another predefined function:

>> CleanPrices = [95 100 105] ;
>> bndyield(CleanPrices, 0.08, datenum(’31-Jan-20067), ’31-Dec-20157)
ans =

0.0876

0.0800

0.0728

The minimal set of parameters for the bndyield function are: the clean price,
with no accrued interest; the coupon rate; the settlement date; and the matu-
rity date. In this case we have used a common feature of MATLAB functions.
If a vector is passed as an argument, where a scalar would be used in the
simplest case, the output is, typically, the vector of the results obtained by
applying the function to each component of the input vector. Here we have
used different prices, and we see that a bond selling below par (95) has a
yield higher than the coupon rate; yield and coupon rate are equal for a bond
selling at par (100); yield is lower for a bond selling above par (105). Optional
parameters may be passed to bndyield, which are similar to the parameters
of bndprice.

Other useful functions may be used to compute duration and convexity,
given the price or the yield of a bond. They are best illustrated by a simple
immunization example.

Example 2.12 A common problem in bond portfolio management is to
shape a portfolio with a given (modified) duration D and convexity C. Sup-
pose that we have a set of three bonds; we would like to find a set of portfolio
weights wi, U=, and Ws, one for each bond, such that

3

DiWi = D
i=1
3
YACIWINC
i=1
3
Y2 wi =,

i=i
where G\ and Di are the bond durations and convexities, respectively (i =
1,2,3). Note that we have assumed that both the duration and the convex-

ity of the portfolio can be computed as weighted combinations of the bond
characteristics; actually, this is not true in general, but for the moment we
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. SET BOND FEATURES (bondimmun.m)

settle = ’28-Aug-2007";

maturities = [’15-Jun-2012~ ; ’31-0ct-2017” ; ’01-Mar-20277] ;
couponRates = [0.07 ; 0.06 ; 0.08];

yields = [0.06 ; 0.07 ; 0.075];

7. COMPUTE DURATIONS AND CONVEXITIES
durations = bnddury(yields, couponRates, settle, maturities);
convexities = bndconvy(yields, couponRates, settle, maturities);

¥. COMPUTE PORTFOLIO WEIGHTS
A = [durations”’
convexities’
11 1];
b= [10
160
11

weights = A\b

Hg. 2.10 Simple code for bond portfolio immunization.

will consider this as a simple approximation. All we have to do is to compute
the coefficients C, and Di and to solve a system of three equations and three
unknowns. This is easily accomplished by the script in figure 2.10. Note that
we have assumed a given yield, and that we have used the functions bnddury
and bndconvy to compute durations and convexities. It is possible to carry
out a similar computation starting from the clean bond prices; we have just
to use functions bnddurp and bndconvp. By running the script, we obtain the
following solution:

weights =
0.1209
-0.4169
1.2960

Note that we have to sell bond 2 short, which may not be feasible. D

2.3.5 Critique

The naive immunization and cash flow matching models, that we have just
discussed, leave room for many criticisms.

To begin with, duration is only an approximate measure of bond price
sensitivity. It is a correct measure only if the term structure is flat (i.e.,
the same rate applies to any period length) or if there is a parallel shift on
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the term structure. In practice, shape changes are possible, calling for more
sophisticated sensitivity measures and immunization approaches.

Another issue is that immunization protects against small changes in the re-
quired yield. But after such a change, the duration and convexity are changed
and the portfolio is no longer immunized. In fact, we are not paying due atten-
tion to the dynamic character of portfolio management. In the limit, consider
a portfolio consisting of two bonds, one with a short and the other with a
long duration, bracketing the target duration. It may be the case that the
first bond has a short maturity; when maturity is reached, we are left with
only one bond and a portfolio that is far from immunized. Continuous port-
folio rebalancing may lead to nervous trading and high transaction costs. An
alternative is to use dynamic optimization models, accounting for uncertainty
in the interest rates and for dynamic trading. This leads to stochastic pro-
gramming models, which are described in chapter 11. With such models, the
stochastic nature of liabilities can also be accounted for.

Apart from using more sophisticated models, one can use more sophisti-
cated assets. In fact, the need for interest-rate risk management has produced
a vast array of interest-rate derivatives (see section 2.8). Both pricing such
derivatives and managing interest-rate risk requires modeling the term struc-
ture of interest rates; this is a vast and difficult topic, which is actually beyond
the introductory aim of this book.

24 STOCK PORTFOLIO OPTIMIZATION

Unlike bonds and derivatives, we do not consider pricing problems for stocks.
There are models aimed at finding a “rational” price for a stock share of a
firm, but they are beyond the scope of the book. Hence, we will consider stock
prices as exogenous and we will only consider stock portfolio management.
There is a set of n stocks and we must allocate our wealth among them. For
simplicity, we do not consider dividend issues nor consumption, and we tackle
a simple single-period problem, leaving multi-period portfolio optimization to
later chapters. Our basic assumption is that uncertainty can be modeled by a
probability distribution, which we treat as it were objective, and likely built on
the basis of historical data. This need not be the case in portfolio management,
as one could have some view, or information, which should be reflected in the
decision problem. By selecting a portfolio, we select a probability distribution
of future wealth, which is a random variable. We have seen in examples
2.5 and 2.6 on page 40 that using plain expected values in decision making
under uncertainty may lead to unreasonable results. We must find a sensible
way to model preferences under uncertainty, which essentially means that
we must express risk aversion. The simplest approach to do so is based on
utility theory, which is introduced in section 2.4.1. Since finding the utility
function of a decision maker is no trivial task, practical approaches have been
proposed based on risk measures. The best-known concept is mean-variance
efficiency, which is dealt with in section 2.4.2; in section 2.4.3 we also illustrate
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a few MATLAB functions to cope with mean-variance portfolio optimization.
Alternative risk measures, most notably Value at Risk, are discussed in section
2.4.5.

2.4.1 Utility theory

The idea that most investors are risk averse is intuitively clear, but what does
risk aversion really mean? A theoretical answer, commonly used in economic
theory, can be found by assuming that decision makers order uncertain out-
comes by some utility function. To introduce the concept, let us consider
simple lotteries, which may be regarded as investments under uncertainty. If
a lottery has discrete outcomes, then it corresponds to a random variable X,
with possible values Xi and probabilities pr, and it can be represented by a fan
like figure 2.2. The decision maker should select among alternative lotteries
or she may also combine them, forming new random variables. For instance,
consider an agent who has to choose between the following two lotteries: lot-
tery oi, which is actually deterministic and ensures a payoff fi, and lottery
a2, which has two equally likely payoffs 1, + ¢ and u —5. The two lotteries
are clearly equivalent in terms of expected payoff, but a risk-averse agent will
arguably select lottery oi. More generally, if we have a random variable X
and we add a mean-preserving spread, i.e., a random variable e with E[e] = 0,
this addition is not welcome by a risk-averse decision maker.

Given a set of lotteries, the agent should be able to pick up the preferred
one; or, given any pair of lotteries, the agent should be able to tell which one
she prefers or to decide that she is indifferent among them. In this case, we
would have a preference relationship among lotteries. Since preference rela-
tionships are a bit cumbersome and are not easy to deal with, we could map
each lottery to a number, measuring the utility of that lottery to the agent,
and use the standard ordering of numbers to sort lotteries. For arbitrary pref-
erence relationships, a function representing them may not exist, but under a
set of more or less reasonable assumptions, 10 such a mapping does exist and it
can be represented by a utility function. A particularly simple form of utility
function, which looks reasonable but is justified by specific hypotheses on the
preference relationship it models, is the Von Neumann-Morgenstern utility:

n

for some function u(-), where a is a lottery with outcomes xr and probabilities
Pi. The function u(-) is the utility of a certain payoff, and U(-) is clearly
the expected utility. If u{x) = x, then the utility function boils down to the

10The discussion of these assumptions is best left to books on Microeconomics; we should
mention that most of them look rather innocent and reasonable under most circumstances,
but they may lead to surprising effects in paradoxical examples.
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Fig. 2.11 How concave utility functions imply risk aversion; the certainty equivalent
is also shown.

expected value of the payoff, but by selecting the utility 1 we may model

different attitudes towards risk. For our problems, it is reasonable to assume

that utility u(-) is an increasing function, since we prefer more wealth to less.
In the case of the two lotteries above, preference for a\ is expressed by

u{n) = n(p.) > -S) + ruffi - S) = U(a2).

Since the inequality is not strict, we should say that lottery a\ is at least
as preferred as 02, as the agent could be indifferent between the two. More
generally, if we have two possible outcomes x\ and x2, with probabilities
p\ =pand P> = 1—p, a risk-averse decision maker would prefer not taking
chances:

M(ELX]) = u{px1+ (1 - p)x2) > pu(x1) + (1 - p)u(x2) = E[u(X)].

This condition basically states that the function u(-) is concave. We see that
concavity is linked to convexity, as the two concepts are related by a change
m the sense of the inequality, and a function /(m) is concave if and only if the
function —#(*) is convex (see supplement S6.1). Figure 2.11 illustrates the
role of concavity. It can be shown that for a continuous or discrete random
variable, the following Jensen's inequality holds for a concave function:

«(E[X]) > E[«(X)]. 2.7

It is fundamental to observe that the exact numerical value of the utility
assigned to lotteries is irrelevant; only the relative ordering of alternatives is
essential. 11 fact, we speak of ordinal rather than cardinal utility. Given the
linearity of expectation, we also see that an affine transformation of utility
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has no effect, provided it is increasing: if we use au(x) + b instead of u(x),
the ordering is preserved, provided that a > 0.

How can we say something about the properties of a specific utility func-
tion? In particular, we would like to come up with some way to measure
risk aversion. We have said that a risk-averse agent would prefer a certain
payoff rather than an uncertain one, when the expected values are the same.
She would take the gamble only if the expected value of the risky lottery
were suitably larger than the certain payoff. In other words, she requires a
risk premium. The risk premium depends partly on the risk attitude of the
agent, partly on the uncertainty of the gamble itself. We will denote the risk
premium by pu(X); note that it is a number, which a decision maker with
utility u(-) associates to a random variable X. The risk premium is defined
by requiring

u(E[X}-pu(X)) = U(X). (28)

The risk premium implicitly defines a certainty equivalent, i.e. a certain payoff
such that the agent would be indifferent between the lottery and this payoff:

CEU(X) = E[X] - Pu(X).

Note that the certainty equivalent is smaller than the expected value, and the
difference is larger when the risk premium is larger. These concepts may be
better grasped by looking again at figure 2.11.

A difficulty with the risk premium concept is that it mixes the intrinsic risk
of a lottery with the risk attitude of the agent. We might wish to separate
the two sides of the coin. Consider a lottery X = x + 6, where a is a given
number and 6 is a random variable with E[e] = 0 and Var(e) = a2. Assume
that the random variable | is a “small” perturbation, in the sense that each of
its realizations e is a relatively small number.11 Hence, we may approximate
both sides of equation (2.8) by Taylor expansions. Consider for instance the
expression u(x + e). Since only numbers are involved here, we may write

u{x + e) n u(x) -leu'(x) + ~eau™(x).

By writing the same approximation for the random variable i and taking
expected values, we may approximate the right-hand side of (2.8):

u(x) + bl\x) + A 2u™(x)
= u(x) +E[?Qu'(a:) + “E [i2Ju"(x)
1 For the sake of convenience, in this section we denote by £ a random variable and by e

a realization of that variable. This notation is common in Economics; in Statistics, one
typically uses X and x with the corresponding pair of meanings.
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u(x) +0m'(x) + *Yar(6)n"(:r)

u{x) + i azu"(x).

In the second-to-last line we have used Var(e) = E[e2] —E2[¢] = E[e2] —0. We
may also approximate the left-hand side of (2.8), which only involves numbers,
by a first-order expansion around E[X] = x:

ELN] - pu{X)) n u{x) - Pu{X)u'{x).

Equating both sides and rearranging yields

Pu\X) 2 0'(%) a
Since we assume utility is concave and increasing, the right-hand side is pos-
itive.12 We may also see that the risk premium is factored as the product of
one term depending on agent’s risk aversion and of another one depending
on uncertainty. This justifies the definition of the coefficient of absolute risk
aversion:

K (x) - (2.9)

We have said that, given the linearity of the expectation operator, an (increas-
ing) affine transformation of a utility function u(x) is inconsequential. The
definition of the risk-aversion coefficient is consistent with this observation,
as it is easy to see that the coefficients for u(x) and au(x) + b are the same.

Note that r*“(x) does not depend on uncertainty, but it does depend on the
expected value of the lottery. From an investor’s point of view, this implies
that risk aversion depends on the current level of wealth. The more concave
the utility function, the larger risk aversion.

By the same token, we may define a coefficient of relative risk aversion.
This is motivated by considering a multiplicative, rather than additive, shock
on an expected value x: X = x(I +?). Using a similar reasoning, we get:

1 u'{x) 2
paIx) = ’

which motivates the definition

PO

12 A useful property of differentiable concave function of one variable is u,f(x) < 0; see
supplement S6.1.
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Example 2.13 (A few standard utility functions) A typical utility
function is logarithmic utility13:

u(x) = log(a;).

Clearly this makes sense only for positive values of wealth. It is easy to check
that for the logarithmic utility we have

Ra(x) = K Ruo(x) = 1

Hence, logarithmic utility has decreasing absolute risk aversion, but constant
relative risk aversion. We say that logarithmic utility belongs to the families of
DARA (decreasing absolute risk aversion) and CRRA (constant relative risk
aversion) utility functions. We will see that this has important implications
in portfolio optimization.

Another common utility function is quadratic utility:

u(x) = x —"x2. (2-11)

Note that this function is not monotonically increasing and makes only sense
for x 6 [0, I/A]. Another odd property of quadratic utility is that it is IARA
(increasing absolute risk aversion):

na, , A dR*“ (x) A2
KW = Tnral » = > °.

This is usually considered at odds with typical behavior of investors. Never-
theless, we may also see that quadratic utility emphasizes the role of variance,
since for this utility

U(X) = E[X - ~X2]= E[X] - ~ (Var(X) + E2[X]).

A decision maker with quadratic utility is basically concerned only with the
expected value and the variance of an uncertain outcome. We will see how
quadratic utility is linked to mean-variance portfolio optimization. D

Armed with the utility function concept, we may formalize portfolio optimiza-
tion problems. In a single period portfolio optimization problem, we have an
investor with given initial wealth Wq, which must be allocated to different
assets, in such a way to maximize expected utility. Let G be the wealth in-
vested inasseti = 1, ,n, and let Rt be the random return of the asset. The

131In the following we will use the notation log, rather than In, to denote the natural loga-
rithm.
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simplest formulation of the portfolio optimization problem is:

max E

(2.12)

The formulation is single-period, in the sense that no rebalancing is involved:
a buy and hold strategy is assumed over the time period of interest. If short-
selling is ruled out, we should also add non-negativity restrictions 0~ > 0. It is
common to include in the model a risk-free asset, whose return is deterministic,
but this does not affect the form of the optimization model (it may affect the
solution, of course).

In general, we should not take for granted that the above optimization
model has a solution. For instance, if the model of uncertainty is not ar-
bitrage free, we may expect an unbounded solution exploiting the arbitrage
opportunity. But for non-pathological cases, an optimal portfolio (not neces-
sarily unique) exists. It is important to note that the optimal portfolio may
depend on the initial wealth WO0. Quite often, we may see models in which the
decision variables are the weights Wi = G/Wo of each asset in the portfolio,
and the budget constraint (2.12) is rewritten as

n
£ > =1.
=1

The drawback of such a model formulation is that we do not see clearly the
effect of initial wealth on the optimal solution. Since risk aversion depends
on wealth, the optimal solution does depend on Wo. There are exceptions,
however, as shown by the following example.

Example 2.14 Consider the following portfolio optimization problem:

* Uncertainty is modeled by a binomial distribution: There are two pos-
sible states of the world in the future, the up and down state, with
probabilities p and g, respectively.

e There are two assets: one is risk-free, the other one is risky.

» The risk-free asset has total return Rf in both states (total return is
one plus interest rate).

» Current price for the risky asset is So and its total return is u in the
up-state and d in the down-state.

* Initial wealth is Wo and the investor has logarithmic utility.
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In this problem, there is actually one decision variable, which we may take
as 5, the number of stock shares purchased by the investor. To get rid of
the budget constraint, we observe that 6 Sq is the wealth invested in the risky
asset, and Wo —SSq is invested in the risk-free asset. Then, future wealth will
be, for each of the two possible states:

Wu = 5S0u+ (Wo-6S0)Rf
Wd 6S0d + (W0 -6 SO)Rf

5S0{u - R f) + WORf
5S0{d-Rf) + WoRf,

and expected utility is plog(Wu) + glog(W,i)- The problem is then

max plog{<5So(u - Rf) + WaRj} + glog{5S0(d —Rf) + WoR/} .

A necessary condition for optimality is stationarity (the first-order derivative
vanishes):

SO(u - Rf) SO0(d-RT)

PESofu-Rf) + WoRf T "6So(d- Rf) + WORF ~ °°
In order to solve for § we may rewrite the equation a bit:
6So(u- Rf)+ WORf _  6So{d-Rf)+ WoRFf
pSO(u - Rf) qSo(d-Rf) "

Straightforward manipulations yield

_S+ WoRf WoRf

p pSo(u-Rf) g qSo(d-Rf)
and

.2 WpRf [q(d- Rf) +p(u - A/)]

P q pgSQu - Rf)(d - Rf)
and, finally

650  Rf [up + dq —Rf]

w = Uu-RHORF-d)
This relationship implies that the fraction of initial wealth invested in the
risky asset does not depend on the initial wealth itself. We have derived this

property in a simplified setting, but it holds more generally for logarithmic
utility, and is essentially due to its CRRA characteristic.

Specifying a utility function may be a difficult task, since assessing the trade-
off between risk and return is far from trivial. This may be no concern in
Economics, if the aim is to build a model explaining some observed behavior
and qualitative insights are of interest; however, in Financial Engineering and
operational decision making, this is a difficulty. A relatively simple approach
is based on the idea of restricting the choice to “reasonable” portfolios. If you
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fix the expected return you want to get from the investment, you would like
to find the portfolio achieving that expected return with minimal risk. By
the same token, if you fix the level of risk you are willing to take, you would
like to select a portfolio maximizing the expected return. This approach
leads to mean-variance portfolio theory, which, despite considerable criticism,
underlies quite a significant part of financial theory.

2.4.2 Mean-variance portfolio optimization

Let us go back to the asset allocation problem, when only two risky assets
are available. Let us denote by fi, ?i, and ar the random rate of return for
asset r= 1,2 and its expected value and standard deviation respectively. It
is tempting to say that the problem is trivial when f\ > f2 and <a2 In
this case, stock 1 has a larger expected return than stock 2, and it is also
less risky; hence, a naive argument would lead to the conclusion that asset 2
should not be considered at all. Actually, this may not be the case, since we
have neglected the possible correlation between the two assets. The inclusion
of asset 2 may, in fact, be beneficial in reducing risk, if its return is negatively
correlated with the return of asset 1. So we see that there is some need for
formalization in order to solve the problem.

Assume that we are interested in defining the portfolio weights, w\ and w2
in our case. A natural constraint is

wi + w2 = 1.

Note that we are not considering the initial wealth level Wq, since we deal
with the allocation of fractions of wealth. If we want to rule out short-selling,
we must also require Wi > 0. Elementary probability theory tells us that the
portfolio rate of return will be

f = Wif\ + waf2,
and the expected return will be
= W\f\ + w2f2.

More generally, when we must devise a portfolio of n risky assets, the expected
return is given by m
f = wifi = W 7r.
1=1

The variance of f is given, for the two-asset case, by
a2 = Var(u;iri + war2) = w\cr\ + 2w\waai2 +

where o\2 is the covariance between r\ and r2. For n assets we have
n
als= WWCHj = w'Sw,
ij=1
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where all covariances <Jij have been collected in the covariance matrix S.

By choosing the weights Wi, we will get different portfolios characterized
by the expected value of the return and by its variance or standard deviation,
which we may assume as a risk measure. Any investor would like both to
maximize the expected return and to minimize variance. Since these two
objectives are, in general, conflicting, we must find a trade-off. The exact
trade-off will depend on the degree of risk aversion, which is hard to assess,
but it is reasonable to assume that for a given target value fx of the expected
return, one would like to minimize variance. This is obtained by solving the
following optimization problem:

min w'Sw

s.t. w'r = fr (2-13)
n
Xi:1" = 1
Wi > 0.

This is a quadratic programming problem, which may be solved by numerical
methods described in chapter 6, where we also show how to use MATLAB
functions provided by the Optimization Toolbox. The Financial Toolbox also
includes functions to solve mean-variance portfolio optimization problems,
which are described in the next section.

By changing the target expected return, one may obtain a set of efficient
portfolios. Roughly speaking, a portfolio is efficient if it is not possible to
obtain a higher expected return without increasing risk. There are infinite
efficient portfolios in general, and it is reasonable to assume that the preferred
portfolio will be one of them.

2.4.3 MATLAB functions to deal with mean-variance portfolio
optimization

MATLAB includes a set of functions based on mean-variance portfolio the-
ory. They rely on the Optimization toolbox to solve optimization problem
(2.13) for different values of expected return. The first function we consider
is frontcon. In the simplest case, frontcon receives three arguments: the
vector of expected rates of return, covariance matrix, and the number of effi-
cient portfolios we wish to find. The last argument is actually the number of
risk minimization subproblems we wish to solve; this yields a finite subset of
the efficient frontier, which may be enough to trace a good plot. The output
arguments are: a vector of expected portfolio risks (standard deviation) for
each efficient portfolio; expected rates of return; portfolio weights for each
asset in each portfolio. It is instructive to go back to the case of two assets.
Assume the following data:

fi= 0.2 f2=10.1
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a\ =0.2 o\=04
Cl2= -0.1.

Note that asset 2 is apparently useless, but it is negatively correlated with
asset 1; hence, when asset 1 performs poorly, we may hope that asset 2 will
perform well (and vice versa). Hence, including asset 2 may result in some
beneficial diversification. Let us find a set of efficient portfolios:

» r = [0.2 0.1];

» s =1[0.2 -0.1; -0.1 0.4];

» [PRisk, PRoR, PWts] = frontcon(r,s,10);

>> [PWts, PRoOR, PRisk]

ans =
0.6250 0.3750 0.1625 0.2958
0.6667 0.3333 0.1667 0.2981
0.7083 0.2917 0.1708 0.3051
0.7500 0.2500 0.1750 0.3162
0.7917 0.2083 0.1792 0.3312
0.8333 0.1667 0.1833 0.3496
0.8750 0.1250 0.1875 0.3708
0.9167 0.0833 0.1917 0.3944
0.9583 0.0417 0.1958 0.4200
1.0000 0 0.2000 0.4472

Here we display a table showing expected rate of return, in the first column,
standard deviation, and portfolio weights. Each line correspond to one of
the ten portfolios we wanted to find. The last line correspond to the riskiest
portfolio, yielding the largest expected return. As we could expect, return
is maximized by investing 100% of our wealth in the first asset, with f\ and
ai = \Al2 = 0.4472 (recall that we are forbidding short sales in this model).
It is interesting to note that it is possible to obtain portfolios whose standard
deviation of return is lower than the standard deviation of both assets, which
is due to negative correlation between returns in this case. The first portfolio
displayed in the first line corresponds to the portfolio of minimal risk. We may
also plot the efficient frontier by calling frontcon without output arguments:

>> frontcon(r,s,10) ;

We get the plot in figure 2.12.
We may repeat the experiment with more complex portfolios:

>> ExpRet = [ 0.15 0.2 0.08];
» CovMat = [ 0.2 0.05 -0.01 ; 0.05 0.3 0.015 ;
-0.01 0.015 0.17];
» [PRisk, PRoR, PWis] = frontcon(ExpRet, CovMat, 10);
>> [PWts, PRoR, PRisk]
ans =
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Mean-Variance-Efficient Frontier

Risk{Standard Deviation)

Fig. 2.12 Efficient frontier for a portfolio with two risky assets.

0.2914 0.1155 0.5931 0.1143 0.2411
0.3117 0.1831 0.5052 0.1238 0.2456
0.3320 0.2506 0.4174 0.1333 0.2588
0.3524 0.3181 0.3295 0.1428 0.2794
0.3727 0.3857 0.2417 0.1524 0.3060
0.3930 0.4532 0.1538 0.1619 0.3370
0.4133 0.5207 0.0659 0.1714 0.3714
0.3811 0.6189 0 0.1809 0.4093
0.1905 0.8095 0 0.1905 0.4682

0 1.0000 -0.0000 0.2000 0.5477

By the way, we should not get fooled by the apparent negative weight of an
asset in the last portfolio:

» PWts(10,3)
ans =
-1.4461e-017

This is a typical example of small numerical errors that we must expect.

Like any professionally crafted code, frontcon is safe in the sense that some
consistency checks are carried out on the input arguments. For instance, a
covariance matrix must be positive semidefmite. The reader is urged to try
frontcon with the following covariance matrix:
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CovMat = [0.2 0.1 -0.1 ; 0.1 0.2 0.15 ; -0.1 0.15 0.2]

We have considered trivial portfolio optimization problems with no additional
constraints. In real life, it is typical to have some constraints enforcing lower
and upper bounds on the allocation to single assets or groups of assets. This
may make sense if you want to limit the exposure to certain risky stocks or to
market sectors (e.g., telecommunications or energy). The frontcon function
is able to cope with such constraints, which may be represented by using
additional arguments. However, a richer function, from this point of view, is
portopt, which is able to cope with more general constraints.

To illustrate, consider a problem involving five assets. Suppose that you
do not want to consider short-selling and that the following upper bounds are
given on each asset weight in the portfolio:

0.35 0.3 0.3 0.4 0.5.

Furthermore, the assets can be partitioned into two groups, consisting of assets
1 and 2 and of assets 3, 4, and 5, respectively. You might wish to enforce
both lower and upper bounds on asset allocation to each group; say the lower
bounds are 0.2 and 0.3 and the upper bounds are 0.6 and 0.7. Formally, this
would result in a constraint set like the following, which should be added to
our quadratic programming problems:

0 < roi <0.35 0<HK2<03 0<re3<03
O<u4<04 0<u%s<05

0.2 <wi+uw2<06

0.3 <W8+ 14+ w5 < 0.7.

The optimization functions available in MATLAB can easily cope with such
constraints, but they must be represented in matrixform. In other words, it is
customary to specify (linear) constraints as systems of equations Aeqw = beq
or inequalities Aw < b. Writing constraints in such a form is conceptually
simple, but practically difficult. In the past, persons working on numerical
optimization had to write matrix generators in order to solve large problems
by numerical libraries. Then, to ease a tedious and error-prone task, algebraic
languages have been developed, such as AMPL, which is used in chapters 11
and 12 (see also appendix C). Algebraic languages allow us to express an
optimization model in a quite natural way. In MATLAB there is no high-
level way to express optimization models, but for mean-variance problems
there is a sort of specialized matrix generator, called portcons.

For our small example, we would call this function as illustrated in figure
2.13, obtaining the constraint matrix in figure 2.14.14 Note that we must

14We should note that frontcon can also be used for such a problem, but we prefer using
portcons and portopt to illustrate a more general point related to matrix generators.
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'/, CallPortcons.m

NAssets = 5;

AssetMin = NaN;

AssetMax = [0.35 0.3 0.3 0.4 0.5] ;
Groups = [1 1000 ;00 11 1];
GroupMin = [ 0.2 0.3 ];

GroupMax = [ 0.6 0.7 ];

ConstrMatrix = portcons(Default ”’, NAssets, ...
’AssetLims’, AssetMin, AssetMax, NAssets, ...
*GroupLims”, Groups, GroupMin, GroupMax)

Fig. 2.13 How to use portcons to build the constraint matrix.

ConstrMatrix =
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

-1.0000 0 0 0 0 0
0 -1.0000 0 0 0 0

0 0 -1.0000 0 0 0

0 0 0 -1.0000 0 0

0 0 0 0 -1.0000 0
1.0000 0 0 0 0 0.3500
0 1.0000 0 0 0 0.3000

0 0 1.0000 0 0 0.3000

0 0 0 1.0000 0 0.4000

0 0 0 0 1.0000 0.5000
-1.0000 -1.0000 0 0 0 -0.2000
0 0 -1.0000 -1.0000 -1.0000 -0.3000
1.0000 1.0000 0 0 0 0.6000
0 0 1.0000 1.0000 1.0000 0.7000

Fig. 2.14 Sample constraint matrix built by portcons.
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7, CallPortopt .m
CallPortcons;
[0.03 0.06 0. 13 0..14 0.15] »

L

01 0 0 0 0

0 0.4 -0,.06 0 0

0 -0.05 0.30 0 0

0 0 0 0,.40 0.20

0 0 0 0,.20 0.40
[PRisk, PRoR, PWts] = portopt(ExpRet, CovMat, 10, [], ConstrMatrix);
[PROR, PRisk]
PWts

Fig. 2.15 Calling portopt.

include a 'Default’ argument in order to specify that the sum of weights
does not exceed 1 and short selling is ruled out. This is why we use NaN
(not-a-number) as a lower bound on asset allocation AssetMin: otherwise, we
would have twice the same constraints Wi > 0. Also note how the equality
constraint 52i=l wi ~ 1 is represented by two inequalities, 52"=] wi —1 anc®
52i=i (~w«) ——1- This is because portopt assumes inequality constraints
only. Then the matrix may be used by calling portopt as illustrated in figure
2.15 (some optional arguments are omitted; see MATLAB online help).
Using that script, we get the following output:

0.0816 0.1487
0.0860 0.1620
0.0904 0.1762
0.0948 0.1906
0.0991 0.2054
0.1035 0.2203
0.1079 0.2361
0.1122 0.2526
0.1166 0.2799
0.1210 0.3995
0.3000 0.3000 0.2250 0.0875 0.0875
0.2623 0.3000 0.2309 0.0905 0.1163
0.2220 0.3000 0.2496 0.0998 0.1286
0.1816 0.3000 0.2683 0.1091 0.1410
0.1413 0.3000 0.2870 0.1185 0.1533
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0.1017 0.3000 0 3000 0.1299 0.1684
0.0639 0.3000 0 3000 0.1463 0.1899
0.0260 0.3000 0 3000 0.1627 0.2113
0.0000 0.3000 0 2650 0.1075 0.3275

0 0.3000 0 0.2000 0.5000

It is useful to check that the maximum return portfolio allocates 50% of wealth
to asset 5, which is the maximum return asset; the upper bound w$ < 0.5
prevents us from investing all of our wealth in this asset. Then 20% is allocated
to asset 4 and nothing to asset 3, because wj, + Wa 4-w$ < 0.7. The last 30%
is allocated to asset 2.

Another consideration we should point out isthat portcons generates a full
matrix with many zero entries. Good optimization solvers deal with sparse
matrices, which avoid storing zero entries in order to save memory space.
Algebraic languages exploit this possibility, which is essential to deal with
large-scale problems with special structure.

A last function we describe here may be used to find an optimal portfolio.
So far, we have dealt with efficient portfolios, leaving the risk/return trade-off
unresolved. We may resolve this trade-off by linking mean-variance portfolio
theory to the more general utility theory illustrated in section 2.4.1. Actually,
mean-variance theory is not necessarily compatible with an arbitrary utility
function: An optimal portfolio for some utility function need not be on the
mean-variance efficient frontier. It can be shown that this inconsistency does
not arise if the returns are normally distributed or if the utility function is
quadratic (see, e.g., [11] or [15]). The last point implies that if may specify a
quadratic utility function such as (2.11), the optimal solution will be a mean-
variance efficient portfolio. All we have to do is to choose the A parameter
according to our degree of risk aversion. In the Financial toolbox the function
portalloc is provided, which yields the optimal portfolio assuming quadratic
utility with some risk-aversion parameter; its default value is 3 and suggested
alternative values range between 2 and 4. There is still another issue that we
have neglected so far. We have considered mean-variance efficient portfolios,
assuming that only risky assets were available. However, we may obtain a
known return by investing in a bank account with a fixed interest rate or in
a safe zero-coupon bond (with maturity equal to our investment horizon, to
avoid interest rate risk issues). What is the effect of the inclusion of such
a risk-free asset in our portfolio? A detailed analysis of this issue is rich in
implications in financial theory, but it would lead us too far. For our purposes
it is sufficient to say that the optimal portfolio will be a combination of the
risk-free asset and one particular efficient portfolio. The amounts invested in
the risk-free asset and in the risky portfolio depend on our risk aversion, but
the risky portfolio involved does not. An important implication of this, if we
believe in the theory, is that investors could live with just one “mutual” fund,
mixing it with the risk-free asset. The portalloc function yields the optimal
combination of the risky portfolio and the risk-free asset; it assumes further
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7. CallPortAlloc.m

ExpRet = [ 0.18 0.25 0.2] ;

CovMat = [ 0.2 0.05 -0.01 ; 0.05 0.3 0.015 ; ...
-0.01 0.015 0.1] ;

RisklessRate = 0.05;

BorrowRate = NaN;

RiskAversion = 3;

[PRisk, PRoR, PWts] = frontcon(ExpRet, CovMat, 100);

[RiskyRisk , RiskyReturn, RiskyWts, RiskyFraction,
PortRisk, PortReturn] = portalloc(PRisk, PRoR, PWts,
RisklessRate, BorrowRate, RiskAversion);
AssetAllocation = [1-RiskyFraction, RiskyFraction*RiskyWts]

Fig. 2.16 Calling portalloc.

that cash may be borrowed at some rate. Figure 2.16 illustrates a script to
call this function.

Some explanation is in order. First, we give the vector of the expected
rates of return and the covariance matrix, which are used by frontcon to
generate an approximation of the efficient frontier with a given number of
points. We also give a riskless rate (for investing) and a risk-aversion coeffi-
cient. The borrowing rate is set to NaN since we do not consider the possibility
of borrowing. There are several output returned by portalloc: RiskyRisk,
RiskyReturn, and RiskyWts are the risk, the expected return, and the com-
position of the ideal fund. RiskyFraction is the fraction we should invest in
the risky portfolio; PortRisk and PortReturn are the risk and return of the
portfolio consisting of the risky portfolio and the risk-free asset.

Callingportalloc with these parameters will produce the following output:

>> CallPortAlloc
AssetAllocation =
0.1401 0.2004 0.1640 0.4954

One could wonder why we should compute first the efficient frontier. In
fact, this is due to the way portalloc is built. We can formulate and solve an
optimization problem directly, using the concepts we will illustrate in chapter
6 (see also section C.2).

2.4.4 Critical remarks

Mean-variance portfolio theory leads to relatively simple numerical problems.
However, despite its prominent role in financial theory, the approach has been
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the subject of widespread criticism. We have pointed out that mean-variance
portfolio theory is consistent with the utility function framework in the case
of normally distributed returns and in the case of a quadratic utility function.
Both conditions may be debated.15

One important feature of the normal distribution is its symmetry. If the
return distribution is symmetric, then using variance or standard deviation as
a measure of risk may make sense; in fact, variance takes into account returns
that are both higher and lower than the average. The former are actually
desirable, but in the case of normal distribution a potential for good perfor-
mance is exactly counterbalanced by the risk of underperformance. However,
if the distribution is not symmetric, we must distinguish the upside potential
from the downside risk. While symmetric returns may be assumed for stocks,
derivative assets, such as those we shall describe shortly, may lead to more
complex distributions. As for the quadratic utility function, we have seen that
it implies increasing absolute risk aversion, which is itself a counterintuitive
behavior for the usual investor. A solution to both issues would be the use of a
carefully chosen utility function, which is hard to come up with, when dealing
with real investors. We could also enforce constraints on the probability of
large losses; if L is the random variable modeling the portfolio loss, we could
require something like

P{L > v} < a,

where a is a small probability and w is a threshold parameter; such a prob-
abilistic constraint is known as chance constraint. All of these ideas lead to
more complex optimization problems, namely stochastic programming prob-
lems, which are dealt with in chapter 11.

A further reason for using stochastic programming models is another dif-
ficulty in mean-variance theory. The covariance matrix is assumed to be
constant over time. Unfortunately, it is likely that correlation may rise when
stock market crashes occur, just when diversification should help. So we
should use more complex models in describing the uncertainty. Stochastic
programming does so by building a set of multiperiod scenarios, like the tree
in figure 2.3 on page 27. This also enables us to consider another feature
that is disregarded by mean-variance models: the dynamic nature of portfolio
management, which is not considered in single-period models. Portfolios are
revised in time, and the impact of transaction costs should not be neglected.

Modeling transaction costs exactly may be rather difficult. They depend in
a non-trivial way on the amounts traded. For instance, it may be preferable
to buy and sell stocks in round lots, since trading in odd lots may increase
transaction costs. It might also be advisable to avoid a portfolio with a very

15See, e.g., [13] for a discussion of alternative utility functions in portfolio optimization.
We should also mention that mean-variance theory is justified not only when returns are
assumed normally distributed, but in the more general case of elliptic distributions, which
include the normal; see [11].
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small weight on some assets; the benefit of diversification will probably be lost
because of increasing transaction costs. So we could require that if a stock
enters the portfolio, it does so with a minimal weight. We may also look for
portfolios including no more than a predetermined number of assets. Such
constraints require the introduction of integer programming models, which
are the subject of chapter 12.

2.4.5 Alternative risk measures: Value at Risk and quantile-based
measures

Mean-variance portfolio theory is based on the use of variance or standard
deviation as risk measures. We have already pointed out that this may not be
always appropriate, but another practical issue is that they may be difficult
to interpret by a portfolio manager. This is why alternative risk measures
have been proposed and adopted, based on the concept of a portfolio loss. In
general, a risk measure is a function mapping a random variable to a number;
the larger this number, the riskier the distribution. More specifically, some
measures are based on quantiles of the probability distribution of portfolio
loss. The most widely known such measure is Value at Risk, or VaR (not to
be confused with variance or, for people with a background in Econometrics,
with a Vector Auto-Regressive, VAR, model).

The VaR concept was introduced as an easy-to-understand measure of port-
folio risk. In fact, measuring, monitoring, and managing risk are fundamental
activities for any portfolio manager. Bonds and stocks involve different forms
of risk, and derivatives, if used for speculation, may be even riskier. Basically,
VaR aims at measuring the maximum portfolio loss one could suffer, over a
given time horizon, within a given confidence level. Technically speaking, it is
a quantile of the probability distribution of future wealth. Suppose that our
initial wealth is Wo and the future (random) wealth is, at the end of the time
horizon,

W = Wo (l+f),
where f is the random rate of return. We are interested in characterizing the
potential loss, which occurs when the wealth increment

SW=W - Wo=WOr

turns out to be negative. The VaR at confidence level a is implicitly defined
by the following condition:

P{sW < -VaR} = 1- a, (2.14)

which shows that VaR is, disregarding the change in sign to make it positive,
a quantile with confidence level a. Typical values for the confidence level
could be a = 0.95 or a = 0.99. To be precise, the definition above holds
for a continuous probability distribution, but it can be extended to a discrete
probability distribution.
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For the VaR over the time period St, with a confidence level a, we have
VaR = —zi-adVSt NS, (2-15)

where the term NS is the current wealth Wo- If the time horizon is longer,
we should not neglect the drift due to the expected return. In such a case, we
should modify (2.15) as follows:

VaR = NS(fj,St —zi-acry/St),

where U is the expected daily return. For a portfolio of assets, computing VaR
is again easy if normality is assumed. We have just to evaluate the portfolio
risk as in mean-variance theory.

Example 2.15 Suppose that we hold a portfolio of two assets. The portfolio
weights are w\ =2/3 and w2 = 1/3, respectively; the two daily volatilities are
til = 2% and a2 = 1%, and the correlation is p = 0.7. Let the time horizon
St be 10 days. To obtain the portfolio risk, we compute the variance:

az —[wi w2]

hence a = 0.05011. Assuming that the overall portfolio value is $10 million,
and that the confidence level is 99%,

Var = 107 +2.3263 «0.05011 = $1,165,709.

The same result can be obtained by using the MATLAB functions portstats
and portvrisk. The first one, given the expected return vector for each asset,
the covariance matrix, and the portfolio weights, computes the portfolio risk
and the expected return:

[PRisk, PReturn] = portstats (ExpReturn, CovMat, Wts).

The second one computes the VaR, given the expected portfolio return, its
risk, the risk threshold 1- a, and the portfolio current value:

VaR = portvrisk(PReturn, PRisk, RiskThreshold, PValue)

Using these functions, we get

>> format bank

» si = 0.02 * sqrt(10);

>> s2 = 0.01 * sqrt(10);

>> rho = 0.7;

» CovMat = [ sl~2 rho*sl*s2 ; rho*sl*s2 s2~2];
>> s = PortStats([0 0], CovMat, [2/3 1/3]):

>> var = portvrisk(0,s,0.01,10000000)
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var =
1165755.90

Note that the previous result was a bit different because of truncation errors
in the pencil-and-paper calculation.

The general formula for a portfolio of n assets with current price Si, i =
1,...,n, daily volatility <r, correlation pij between assets i and j, where we
hold a number Ni of shares for each asset is

n n

Needless to say, this formula holds if normality is assumed. But what if the
assumption is not warranted? Indeed, empirical data do not suggest that
stock returns are normally distributed. Furthermore, we may have to deal
with assets which depend on risk factors, and even if a risk factor is normally
distributed, non-linear dependence of the price with respect to the underlying
factor will destroy normality. A familiar example is the non-linear dependence
of a bond price with respect to required yield. In this case, however, if we
recall equation (2.6), we may settle for a duration-based approximation like

SPk DmPSa.

Hence, if 5X is normally distributed, SP will be too, and normality holds
approximately. Similar considerations apply in the case of derivatives, if we
are able to compute suitable sensitivities of the price of the derivative with
respect to the price of the underlying asset.

If we look for a better approximation, we must give up normality and deal
with the consequences. Indeed, in this case there are many issues. To begin
with, we cannot find the quantile of the wealth distribution by looking at
the quantile of the standard normal distribution. In this case, a numerical
solution can rely on Monte Carlo simulation (see chapter 4). A thornier issue
concerns the way we model the dependence among the different risk factors.
In fact, correlation tells the whole story when normality is assumed, but not in
general. This requires the adoption of more sophisticated statistical models,
such as copula theory, which is beyond the scope of this book (see references).

Even if we leave all such modeling and computational issues aside, and we
assume that we can compute VaR, there is something wrong with the VaR
concept itself. For instance, a quantile cannot distinguish between different
distributions. Consider figure 2.17. The plot on the left shows the normal
case; if we assume a sort of truncated distribution like the one on the right,
VaR will be the same, since the area under the density function to its left is
the same. However, the potential loss in the second case is quite different.
In particular, it is different the expected value of loss conditional on being
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Fig. 2.17 Value at risk can be the same in different cases.

on the left (unlucky) tail of the portfolio value distribution. This has led to
the definition of alternative risk measures, such as Conditional Value at Risk
(CVaR), which is the expected value of loss, conditional on being to the left
of VaR.

Risk measures like VaR or CVaR could be also used in portfolio optimiza-
tion by solving optimization problems with the same structure as 2.13, with
variance replaced by such measures. The resulting problem can be rather
complex. In particular it may lack convexity properties that are so important
in numerical optimization (see chapter C). It turns out that minimizing VaR
when uncertainty is modeled by a finite set of scenarios (which may be useful
to capture complex distributions and dependencies among asset prices) is a
nasty noil-convex problem, whereas minimizing CVaR is (numerically) easier.

There is one last issue with VaR that deserves mention. Intuitively, risk
is reduced by diversification. This should be reflected by any risk measure
/> we consider. A little more formally, we should require a subadditivity
condition like

P(A +B)<p(A)+p(B),

where A and B are two portfolio positions. The following counter-example is
often used to show that VaR lack this property.

Example 2.16 Let us consider two corporate bonds, A and B, whose issuers
may default with probability 4%. Say that, in the case of default, we lose $100
(in practice, we might partially recover the face value of the bond). Let us
compute the VaR of each bond with confidence level 95%.

Before doing so, we should clarify what VVaR is, when uncertainty is modeled
by a discrete distribution. Definition (2.14) can be extended by defining VaR
as the smallest value 7 such that

PjdW < —7}>1 —0.

Basically, with a discrete distribution we may not find a value such that
equation (2.14) is satisfied and we must resort to an inequality. Since default
probability is only 4%, and 1 —0.04 = 0.96 > 0.95, we have in our case

VaR@l) = VaR(B) = VaR(A) + VaR(B) = 0.
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Now what happens if we hold both bonds, and assume independent defaults?
We will suffer

 aloss 0, with probability 0.962 = 0.9216;
 aloss 200, with probability 0.042 = 0.0016;
» aloss 100, with probability 2 x 0.96 x 0.04 = 0.0768.

Hence, with that confidence level, VaR(A + B) = 100 > VaR(A) + VaR(B),
which means that diversification increases risk, if we measure it by VaR. 0

Subadditivity is one of the properties that sensible risk measures should
enjoy. The term coherent risk measure has been introduced to label a risk
measure that meets a set of sensible requirements. VaR is not a coherent risk
measure, whereas it can be shown that CVaR is.

25 MODELING THE DYNAMICS OF ASSET PRICES

In mean-variance portfolio theory we have considered a buy-and-hold portfo-
lio. Hence, we were not interested in modeling the dynamics of asset prices,
but only the distribution of return at the end of a given time interval. For
more complex portfolio management models, we do need a dynamic model of
asset prices. This is also required to solve option pricing models, as we will
see in section 2.6. A model of the dynamics of asset prices must reflect the
random nature of price movements, and the asset price S(t) must be described
as a stochastic process. This could be a discrete- or a continuous-time pro-
cess. It turns out that for option pricing purposes, a continuous-time model is
most useful, based on random walks. In this section with deal with modeling
asset prices as stochastic processes in continuous time, which will lead us to
consider stochastic differential equations and stochastic integrals.

2.5.1 From discrete to continuous time

It is a good idea to start with a discrete-time model and then derive a
continuous-time model. Consider a time interval [0, T\, and imagine that
we discretize the interval with a time step dt such that T = N m5t; we may
index the discrete-time instants by t = 0,1,2,..., N. Let St be the stock price
at time t. One possible and reasonable model is the multiplicative form:

St+i = utst, (2.16)

where wy is a nonnegative random variable and the initial price So is known.
If we consider continuous random variables ut, the model is continuous-state.
The random variables ut are assumed identically distributed and independent.
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Independency is an assumption linked to market efficiency. Under this (debat-
able and debated) assumption, current prices reflect all information available
so far.

The multiplicative model is reasonable since it ensures that prices will stay
nonnegative, which is an obvious requirement for stock prices. If we used an
additive model such as St+1 = ut + St, we should admit negative values for
the random variables w, to model price drops, and we would not have the
guarantee St > 0. With the multiplicative form, a price drops when ut < 1,
but it stays positive. Furthermore, the actual price change depends on the
present stock price (a $1 increase is different if the present price is $100 rather
than $5), and this is easily accounted for by the multiplicative form.

In order to determine a plausible probability distribution for the random
variables ut, it is helpful to consider the natural logarithm of the stock price:

log St+i = log St + logut —log St + zt.

The random variable zt is the increment in the logarithm of price, and a
common assumption is that it is normally distributed, which implies that ut
is lognormal.17 Starting from the initial price So and unfolding (2.16), we get

£
St —11 ukSo,
k=0
which implies that o1
log St = log So + "2 z k.
fc=0

Since the sum of normal random variables is still a normal variable (see ap-
pendix B), we have that logSt is normally distributed, which in turn implies
that, according to this model, stock prices are lognormally distributed. Using
notation

E[zt] Var(zt)
we see that
t-i
E[log St E logSo + 72 zk
k=0
t-1
log So + 22 E izK] = loSSo + vt (2.17)
fc=0
t-1
Var(logSt) = Var™logSq + zkj = Var(zfc) = ta2, (2.18)
fco fc=0

171f X is a normal random variable, then taking the exponential exp(X) yields a lognormal
random variable; see appendix B.
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where intertemporal independence of zt is used in computing variance. The
important point to see here is that the expected value and the variance of the
increment in the logarithm of the stock price scale linearly with time; this
implies that the standard deviation scales with the square root of time.

The next step is to obtain a model in continuous time. In the deterministic
case, when you take the limit of a difference equation, you get a differential
equation. Informally, in the deterministic case, we may recast what we have
seen in discrete time as

Slog S(t) = log S(t + St) —log S(t) = v St

(note that we are basically working with the expected values, since for the
moment we do not include randomness). If we take the limit as St —0, we
obtain:

dlogS(t) = y dt.

Integrating both differentials over the interval [0,t] yields
J/ d\ogS{T) = VJ( dr =>1log S(t) —log5(0) =vt=>S{t) =S(0)evt. (2.19)
0 0

This is coherent with the discrete time result. Actually, in the deterministic
case, it is customary to write the differential equation as

dlog S(t)
dt
or, equivalently, as

where we have used calculus to rewrite the differential
dlogS(i) = (2.20)

We see that v is linked to the continuously compounded return of the asset.
When we include noise, there are a few important changes. The first, is
that we should write the equation in the form

dlogS(t) = i/dt +a dw(t), (2-21)

where dW (t) can be considered as the increment of a stochastic process over
the interval [t,t + dt}. This is a rather tricky object, called a stochastic dif-
ferential equation. It is reasonable to guess that the solution of a stochastic
differential equation is a stochastic process, rather than a deterministic func-
tion of time. However, this topic is quite difficult to deal with rigorously, as it
requires some background in measure theory and stochastic calculus (see the
references at the end of the chapter). We will limit ourselves to a reasonably
detailed treatment.
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The first thing we need is to investigate which type of continuous-time
stochastic process W(t) we can use as a building block. In the next section
we introduce such a process, called the Wiener process, which plays more or
less the same role as process Z above. It turns out that this process is not
differentiable, whatever this may mean for a stochastic process. Hence, we
cannot write the stochastic differential equation as

d\ogS(t) _ dW(t)
dt Voo odt

Actually, a stochastic differential equation must be interpreted as a shorthand
for an integral equation much like (2.19), involving increments of a stochastic
process. This calls for the definition of a stochastic integral and the related
stochastic calculus. A consequence of the definition of the stochastic integral
is that working with differentials as in equation (2.20) is not possible. We
need a way to generalize the chain rule for differentials from the deterministic
to the stochastic case. This leads to a fundamental tool of stochastic calculus

called Itos lemma.

2.5.2 Standard Wiener process

In the discrete-time model, we have assumed normally distributed increments
in logarithmic prices, and we have also seen that the expected value of the
increment of the logarithm of price scales linearly with time, whereas standard
deviation scales with the square root of time.

In discrete time, we could consider the following process as a building block:

wit+l = wt + etvst,

where et is a sequence of independent standard normal variables. We see that,

fork >j,
k-1

wk-Wj =Y "Vt
=]
which implies that

E[wk- wj] = 0
(k-j)St.

Var(wk -w j)

Passing to continuous time, we may define the standard Wiener process as
a continuous-time stochastic process characterized by the following properties.

1. W(0) = 0, which is actually a convention.

2. Given any time interval [s, f], the increment W(t) —W(s) is distributed
as M{0,t —s), a normal random variable with zero expected value and
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Fig. 2.18 Sample paths of a “degenerate” stochastic process.

standard deviation \/t —s. Increments are stationary, as they do not
depend on where the time interval is, but only on its width.

3. Increments are independent: If we take time instants t\ < t2 < t3 <
fA4, then W (t2) —w (t1) and W{t") — W (t3) are independent random
variables.

To see the importance of the independent increments assumption, let us com-
pare the sample path of the Wiener process, which was shown in figure 2.5
on page 29, with the sample paths of a process defined as Q(t) = ey, with
e ~ jV(0, 1), which are shown in figure 2.18. This is a “degenerate” stochastic
process, since knowledge of one point on a sample path implies knowledge of
the whole sample path, which makes the process quite predictable. However,
if we just look at the marginal distribution of Q(t), it seems just like the
Wiener process, since

E[<3(t)] = 0= E[W(D}
var[Q(t)] = t = Var[MK®E)].

It is lack of independence that makes the difference. From figure 2.5, we also
see that sample paths of the Wiener process look continuous, but not differ-
entiable. This may be stated precisely, but it is not very easy. Introducing
continuity and differentiability rigorously calls for specifying some concept of
stochastic convergence. In fact, we should say that the Wiener process is
nowhere differentiable with probability 1. To get an intuitive feeling for this
fact, let us consider the incremental ratio:

SW(t) _ W{t+ St)- Wt
St St
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Given the above properties, it is easy to see that

Var [W(i +ft)-W (t)] 1
(St)2 ~ st

If we take the limit for St —* 0, this variance goes to infinity. Strictly speaking,
this is no proof of non-differentiability of w (t), but it does suggest that there
is some trouble in using something like dw (t)/dt\ indeed, you will never see a
notation like this. We only use the differential dw (t) of the Wiener process.
Informally, we may think of dw(t) as a random variable with distribution
jV(0O, dt). Actually, we should think of this differential as an increment, which
may be integrated as follows:

J dW(r) = W(t) - W(s).

This looks reasonable, doesn’t it? We may even go further and use W (t) as
the building block of stochastic differential equations. For instance, given real
numbers a and b, we may imagine a stochastic process X(t) satisfying the
equation
dX(t) = adt + bdW(t).
This is a generalized Wiener process and straightforward integration yields
X(t) = X{0)+at + bW(t).

But if we consider something more complicated, like

dX(t) = a(t, X(t)) dt + b(t, X{t)) dw(t) (2.22)

things are not that intuitive. A process satisfying an equation like (2.22) is
called an Ito process. We could argue that the solution should be something
like t t
X(t) = X(0) + [ a(s,X(s))ds+ [ B X(T))dw(r). (2.23)
Jo Jo
Here the first integral looks like a standard Riemann integral of a function over
time, but what about the second one? We need to assign a precise meaning
to it, and this leads to the definition of a stochastic integral.

2.5.3 Stochastic integrals and stochastic differential equations

In a stochastic differential equation defining a process X (t), where a Wiener
process W (t) is the driving factor, we may assume that the value X (t) depends
only on the history of w(t) over the time interval from O to t. Technically
speaking, we say that process X (t) is adapted to process W (t). Now let us
consider a stochastic integral like

[ X(t)ydW (t).
Jo
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How can we assign a meaning to this expression? To begin with, it is rea-
sonable to guess that a stochastic integral is a random variable. If we inte-
grate a deterministic function of time we get a number; so, it is natural to
guess that, by integrating a stochastic process over time, we should get a ran-
dom variable. Furthermore, the stochastic integral above looks related to the
sample paths of process W(t), and an approximation could be obtained by
partitioning the integration interval in small subintervals by selecting points
0 = to, ti, t2, mmm, tn = T and considering the sum

-
Y X (tk)[W (tk+l)-W (tKk)}. (2.24)
fc=o

It is very important to notice how we select the time instants in the expression
above: X{tk) is a random variable which is independent from the increment
W (tk+1) —W (tk) by which it is multiplied. This is actually one possible
choice, which may be motivated as follows.

Example 2.17 Consider a set of n assets, whose prices are modeled by
stochastic processes Si(t), i = 1,..., n, which are described by stochastic
differential equations like (2.22), and assume that we have a portfolio strat-
egy represented by functions hi(t). These functions represent the number of
stock shares we hold in the portfolio. But which functions make sense? An
obvious requirement is that functions /i*(-) should not be anticipative: hi(t)
may depend on all the history so far, over the interval [0,t], but clairvoyance
should be ruled out. Furthermore, we should think of hi(t) as the number of
shares we hold over a time interval of the form [i, t + dt).

Now, assume that we have some initial wealth that we invest in our port-
folio, whose initial value, depending on portfolio strategy h, is

n
Vh(0) = £/ii(0)Si(0) = h'(0)S(0),
i=1

where we have grouped hi and Si in vectors and use notation h'S to denote
inner vector product. What about the dynamics of the portfolio value? If the
portfolio is self-financing, i.e., we can trade assets but we do not invest (nor
withdraw) any more cash after t = 0, it can be shown that the portfolio value
will satisfy the equation

dvh(t) = J2h I{t)dSi{t) = h'{t)dS(t)
i=1

This looks fairly intuitive and convincing, but some careful analysis is needed
to prove it.18 In particular, we may guess that the wealth at time t = T will

18See, e.g., [1, chapter 6].
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be:

Vh{T) = Vh(0)+ / h'(t)dS(t).
Jo
However, it is fundamental to interpret the stochastic integral as the limit of
an approximation like (2.24), i.e,,

/ h\t) dS(t) u £ h'(ti) [S(ifcHl) - S(it)].
0 k=0

The number of stock shares we hold at time tk does not depend on future
prices S(Efct+i). First we allocate wealth, and then we observe return. This
is why Ito stochastic integrals are defined the way they are, and this makes
financial sense. D

Now, if we take approximation (2.24) and consider finer and finer partitions
of the interval [0,i], letting n — 00, what do we obtain? The answer is
technically involved. We must select some concept of stochastic convergence
and check that everything makes sense. Using mean square convergence, it
can be shown that the definition makes indeed sense, and we get the so-called
stochastic integral in the sense of Ito.

The definition of stochastic integral has some important consequences. To
begin with, what is the expected value of the integral above? We may get a
clue by considering approximation (2.24):

E [ x(dw(t) * E |£x(if[W(ifct)-~ (if]]
Jo uk=0 J
n—

= AE{X (if)[" (ifcH)-~ (£ )]}

n—1
= "EV[X(tK)]-E[W(tk+l)-W (tk)}=0,
k=0

where we have used independence of X (tk) from the increments of the Wiener
process, along with the fact that the expected value of the increments is zero.

The definition of stochastic integral does not yield a precise way to compute
it. We may try, however, to consider a specific case to get some intuition. The
following example illustrates one nasty consequence of the way we have defined
the stochastic integral.

Example 2.18 (The chain rule does not apply to stochastic differ-
entials) Say that we want to “compute” the stochastic integral

[ W(t)dw(t).
Jo



96 FINANCIAL THEORY

Analogy with ordinary calculus would suggest using the chain rule of differen-
tiation to obtain a differential which can be integrated directly. Specifically,
we might guess that

dW2(t) = 2W (t) dW (t).

This would suggest

F*W(t)dW(t) = \E£d W 21 = \w2(T).

But this cannot be true. We have just seen that the expected value of the
integral is zero, but

(M) =1e[W2(M} =i {Var[w(m)j + E2[W(T)}} = T¢p O

We see that the expected values do not match. D

The last example shows that the chain differentiation rule does not work in
Ito stochastic calculus. To proceed further, we need to find the right rule, and
the answer is Ito’s lemma which is introduced below.

We close this section by noting that we started from differential equation
(2.22) and we ended up studying the equivalent integral form (2.23). Actually,
from a mathematical point of view, only the latter makes sense, and we should
regard the differential form as a shorthand notation for the integral form. An
obvious advantage of the differential form is its readability; working on this
form helps intuition, which is essential in devising sensible models for asset
prices and interest rates.

2.5.4 Ito’s lemma

We now give an informal argument (following [10, chapter 10]) to obtain
Ito’s lemma. Recall that an Ito process X {t) satisfies a stochastic differential
equation such as

dX = a(X, t) dt+ b(X, t) dW, (2.25)

which is in some sense the continuous limit of
6X = a{X, t)St + b(X, t)e(t)\/dt, (2.26)

where e ~ N(0,1), i.e., it has a standard normal distribution. Our aim is to
derive a stochastic differential equation for a function F (X,t) of X(t). One
key ingredient is the formula for the differential of a function G (x,y) of two
variables:
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which may be obtained from Taylor expansion,

dG . dG . 192G ,r Id 2G ,, d2G r r
5G = -SiSx+” Sy+?w (SX) +i W m + M i SxSy+ ""
when Sx,Sy —0. Now we may apply this Taylor expansion to F(X,t), lim-
iting it to the leading terms. In doing so it is important to notice that the
term \[St in equation (2.26) needs careful treatment when squared. In fact,
we have something like
(6X)2 = b2e2St +mmm,

which implies that the term in (<56X)2 cannot be neglected in the approxima-
tion. Since eis a standard normal variable, we have E[e2] = 1and E[e2 St} = St.
A delicate point is the following. It can be shown that, as St tends to zero,
the term e2 St can be treated as non-stochastic, and it is equal to its expected
value. A useful way to remember this point is the formal rule

(dW)2 = dt. (2.27)
Hence, when St tends to zero, in the Taylor expansion we have
(<56X)2 -» b2dt.
Neglecting higher-order terms and taking the limit as both SX and St tend
to zero, we end up with

Ir, dF dF , 1d2F ,2,
dF~dXd X +dtdt+ 24X~ b dt’

which, substituting for dX, becomes the celebrated Ito’'s lemma:

d—={aM +a +\k" ) dHokdV 228>

Although this proof is far from rigorous, we see that all the trouble is due to
the term of order ySt linked to the Wiener process. Indeed, if we set 6 = 0,
i.e.,, there is no random term due to the Wiener process in the differential
equation, Ito’s lemma boils down the chain rule for derivatives

dF dF dx dF
dt dx dt ~ dt’

and thus, given differential equation (2.22) for x,

Jr dF J dF J
dF —a’r—dt+ — dt
dx at
In 1to’s lemma we have an extra term in dw, which is expected given the

input stochastic process, and an unexpected term:
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In the deterministic case, second-order derivatives occur in second-order terms
linked to {St)2, which can be neglected; but here we have a term of order \fdt
which must be taken into account even when it is squared. In order to grasp
Ito’s lemma, we should try a couple of examples.

Example 2.19 Let us consider again example 2.18. In order to compute
the stochastic integral of W 2(t), we may simply apply Ito’s lemma to the case
X (t) = W(t), by setting a(X,t) = 0, b(X,t) = 1, and F(X, t) = X 2(t). Hence
we have:

= < 29>
dF
— =2X (2.30)
d2F
Wp = 2' (2'31)

It is important to point out that in equation (2.29) the partial derivative with
respect to time is zero; it is true that F(X(t),t) depends on time through
X (t), but here we have no direct dependence on t, thus the partial derivative
with respect to time vanishes.

Ito’s lemma tells us

dF = d(W2) =dt + 2WdW.

It is instructive to note that dt is the term which we would not expect by
applying the usual chain rule. But this term allows us to get the correct
expected value of W 2(T), since

W2(T) = W2(0)+ [ dW2() = 0+ [ Tdt+ [TW{t) dw{t).
Jo Jo Jo

Taking expected values we get

E[w2(T)] - T,
which is coherent with what we have seen in example 2.18. D
Ito’s lemma may be used to find the solution of a stochastic differential equa-
tion, at least in relatively simple cases. A most important one is geometric

Brownian motion.

Example 2.20 Geometric Brownian motion. Geometric Brownian mo-
tion is defined by the stochastic differential equation

dS(t) = vS(t) dt + aS(t) dW(t),
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where 1 and m are constant parameters referred to as drift and volatility,
respectively. Intuition would suggest to rewrite the equation as

-, - = pdt+ adW(t),

and then to consider the differential of dlog S, which would be dS/S in deter-
ministic calculus, to get the integral. However, we know that some extra care
is needed. Nevertheless, it is useful to find the stochastic differential equa-

tion for F(S,t) = logS(t). To apply Ito’s lemma, we first compute partial
derivatives:

5F _ 1

ds ~ S

d2F

0s2 S2

from which we may write

dy

Now we see that our guess was not that bad, as this equation may be integrated
and yields

Recalling that w (t) has a normal distribution, as it can be written as W (t) =
t\ft, where e ~ AT(0,1), we see that the logarithm of price is normally dis-
tributed:

We can rewrite the solution in terms of S(t):
S(t) = s@)e("N2) +7(().

or
S(t) = 5'(0)e('i- CI2QHCIV £.

This shows that prices, according to the geometric Brownian motion model,
are lognormally distributed. Recalling the relationships between normal and
lognormal variables (see appendix B), we may also conclude that

E[5(H] = S(0)e™,
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from which we see that the drift parameter fi is linked to continuously com-
pounded return. The volatility parameter a is related to standard deviation
of the increment of logarithm of price.

The roles of drift and volatility can also be grasped intuitively by consid-
ering the following approximation of the equation defining Brownian motion:

AA
— ~ p.6t+ asw,
(@)

where SS/S is the return of the asset over small time interval St. According
to this approximation, we see that return can be approximated by a normal
variable with expected value u dt and standard deviation o\f8t. Actually, this
normal distribution is only a local approximation of the “true” (according to
the model) lognormal distribution. D

Example 2.21 In the next sections we will apply Ito’s lemma to pricing
options written on an underlying asset whose price follows geometric Brownian
motion. Assuming that the option price at time t is a function of time and
price only, i.e., a function f(S,t), let us write a differential equation for the
value of an option. Applying again Ito’s lemma, with a = fiS and b = aS,
yields

- %odt+%ds+\°2slU d- Q3>

This seems an intractable object, since it looks like a partial differential equa-
tion involving a stochastic process. Actually, by exploiting the no-arbitrage
principle, it can be simplified and transformed to a deterministic partial dif-
ferential equation, which is amenable to solution by numerical methods. In
some cases it may even be solved analytically. D

2.5.5 Generalizations

Geometric Brownian motion is not the only type of stochastic process relevant
in finance, and the Wiener process is not the only relevant building block.
One of the main features of these processes is the continuity of sample paths.
However, discontinuities do occur sometimes, such as jumps in prices. In this
case, different building blocks are used, such as the Poisson process, which is
used to count events occurring with a certain rate. We should also note that
continuous sample paths do not make sense for certain state variables such as
credit rating. Another point is that the lognormal distribution, that we get
from geometric Brownian motion, is a consequence of the normality associated
to the Wiener process. Distributions with fatter tails are typically observed,
guestioning the validity of the models we have seen so far. However, dealing
with sophisticated stochastic processes is beyond the scope of this book.
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What we should consider, at least, is generalizing the Wiener process to a
multidimensional process; we should also point out different forms of stochas-
tic differential equations, leading to qualitatively different processes, such as
mean reverting processes.

Correlated Wiener processes and multidimensional Ito's lemma When an option
depends on more than one underlying asset, the simplest model is a general-
ization of geometric Brownian motion. According to this approach, we assume
that the price Si(t) of asset i = 1, ,n satisfies

dSi{t) = ptSi{t) dt -k ViSiit) dWi(t),

where the Wiener processes Wi{t) are not necessarily independent. They
are characterized by a set of instantaneous correlation coefficients pij, whose
meaning can be grasped by an extension of the usual formal rule:

dw{ mdWj = pij dt.

Another point of view is that when simulating correlated Wiener processes, we
must generate standard normal variates e, which are correlated; how this can
be accomplished will be explained in the chapter on Monte Carlo simulation.
It is relatively easy to generalize the results of example 2.21 to an option
whose price at time t depends on time and a set of asset prices. To generalize
Ito’s lemma, we write the differential of /(Si (t), Si(t),... ,Sn,t), using Taylor
expansion to get

jt _df n df JC , 1 d2f JO XX
df - dt dt+ EI dS dsl+ 2~ ds\ds) |l
1=

i>j=1

where terms have been included or neglected according to the formal multi-
plication rules:

(dt)2= 0

dt mdWi = 0 Vz

dWi mdWj = pij dt Vi, j
and pti = 1.

If we plug the equation of geometric Brownian motion here, we get the
multidimensional Ito’s lemma:

i=1 ij=1 3) =i OSt e

Mean reverting processes With geometric Brownian motion, the expected
value of a price should go to infinity as time goes by, which is not really
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what happens in practice. In fact, stocks pay dividends, and no-arbitrage
arguments show that the stock price should drop when dividends are paid.
Other relevant variables, such as interest rates, cannot grow without bound.
On the contrary, they tend to swing around long-term values, depending on
economic conditions. We say that interest rates are characterized by mean
reversion. Modeling interest rates is needed when dealing with interest rate
derivatives which are used to control risk in fixed-income portfolios. We will
have a brief look at such models in section 2.8. We just note here that we
could model interest rates, and any variable showing mean reversion, by a
stochastic differential equation like

dr = a(r —r)dt + adw,

where a > 0. There is much to say about a model like this, since we should
investigate consistency with the entire term structure of interest rates and
with no-arbitrage properties. Actually, a model like this is only concerned
with the short term interest rate. Yet it is easy to see that the process r(t)
tends to swing around the value r. If r > r, the drift term is negative,
and r(t) tends to drop; if r < f, the drift term is positive and r(t) tends to
increase. Variations of such a model may be needed in order to make sure
that the output is consistent with observed dynamics and that interest rates
stay positive.

Similar considerations hold when modeling a stochastic and time-varying
volatility cr(t). Indeed, geometric Brownian motion assumes constant volatil-
ity, whereas in practice we may observe time periods in which volatility is
higher than usual. One possible model for stochastic volatility consists of a
pair of stochastic differential equations:

dS(t) = nS(t) dt + a(t)S{t) dWi (t)
dVv(t) = a(V - V() dt+ Zy/VWdW 2(t)

where V(t) = a2(t), Y is a long-term value, and different assumptions can be
made on the correlation of the two driving Wiener processes. According to
this model, volatility displays mean reversion, and it can be shown that the
square root term prevents negative values of v (t). Complex models may also
link volatility to price.

2.6 DERIVATIVES PRICING

There are two basic issues in dealing with derivatives. The first issue is pricing.
What is the fair price of a forward or an option contract? The second issue
is hedging. Suppose that you are the writer of an option rather than the
holder. In some sense the holder is at an advantage, since she is not forced
to exercise the option if the circumstances are unfavorable (although example
2.2 on page 36 shows that careless management of an option portfolio may
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lead to a disaster). If you are the writer of an option and this is exercised, you
have to meet your obligation, and in principle there may be no limit to your
loss. Thus, you are interested in trading policies to reduce the risk to which
you are exposed. We will not pursue real-life hedging in any detail in this
book (see, e.g., [26]), but it is worth noting that, at least in theory, hedging
is related to pricing.

A key role in pricing is played by the no-arbitrage argument we have already
used, in a trivial situation, for bond pricing. This is best illustrated by a couple
of examples. In the first one we derive the price of a forward contract. In the
second one we derive a fundamental relationship between the price of a call
and the price of a put, called put-call parity.

Example 2.22 Consider a forward contract for delivery at time T of an
asset whose spot price now is 5(0). The spot price 5(T) at delivery is a
random variable; hence, it would seem that randomness is involved in finding
the fair forward price F that the holder of the long position of the forward
will have to pay to the holder of the short position to purchase the underlying
asset. Actually, a simple arbitrage argument shows that this is not the case.

Suppose that we hold the short position in the contract, and consider the
following portfolio. We may borrow an amount 5(0) at the risk-free interest
rate r, assuming continuous compounding, to buy the asset. The net cash
flow now is zero. Then, at time T we may deliver the asset at price F, and we
must pay back S(0)erT. Despite the randomness in the spot price, the value
of our portfolio at T is deterministic and given by F —5(0)erT. But since
the portfolio value at time t = O is zero, the same must hold at time t = T.
Hence,

F = S(0)erT.

Any different forward price would lead to an arbitrage opportunity. If F >
S(0)erT, the portfolio above will lead to a safe gain F —S(0)eTT, with no initial
commitment. If F < S(0)erT, we may reverse the portfolio by short-selling
the asset and investing the proceeds. The reasoning assumes that short-selling
the asset is possible and that no storage charge is paid for keeping the asset.
See [10] for a full account of forward pricing.

It is interesting to note that a simple-minded approach would suggest a
guess like F = E[S(T)], i.e., that the fair forward price is the expected price
of the underlying in the future. This could look reasonable, assuming risk
neutrality (linear utility function). The trouble with a reasoning like this
is that we know most individual decision makers are characterized by some
degree of risk aversion, but coming up with the “market” risk aversion, on
the basis of individual utility functions, is awkward. Actually, in the idealized
case we are considering, risk aversion does not play any role. This does not
mean that risk aversion is not important, but that in this case we are using a
sort of relative pricing, in which the attitude towards risk is irrelevant.

Finally, we should note that we could write the forward price as an expected
value, if we assume that the underlying asset price S(t) satisfies an equation
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dS(t) = rS(t) dt + as(t) dW(t),

where the “true” drift has been replaced by the risk free rate. Indeed, in a
risk neutral world investors would not care about risk and they would not
require a risk premium. Hence, all assets would have the same return r. We
begin seeing here a powerful principle: risk-neutral pricing. D

Example 2.23 Consider acall and a put options, both European-style, writ-
ten on an underlying asset whose current price is 5(0), with the same exercise
price K and maturity T. For now, we are not able to figure out the fair prices
C and P of the two options, but it is easy to see that a precise relationship
must hold between them. Consider two portfolios:

1. Portfolio Pi consists of one European call option and an amount of cash
equal to Ke~rT, where r is the risk-free interest rate.

2. Portfolio P2 consists of one European put option and one share of the
underlying stock.

The value of portfolio Pi at time t = 0 is C + Ke~rT\the value of portfolio
P2 at timet = 0is P + 5(0). At time T, we may have two cases, depending
on the price S(T). If S(T) > K, the call option will be exercised and the put
option will not. Hence, under this hypothesis, portfolio Pi at time t — T will
be worth

[S{T)-K]T + K = §{T),

and portfolio P2 will be worth
0+ 5(T) = 5(T).

If S(T) < K, the put option will be exercised and the call option will not. In
this case, portfolio Pi is worth

0+ K = K

and portfolio P2
[K - S(T)} + S(T) = K.

In both cases, the two portfolios have the same value at time T. Hence, their
values at time t = 0 must be equal; otherwise, there will be an arbitrage
opportunity. We have shown that the following put-call parity relationship
must hold:

C + Ke~rT = P + S(0).

This implies that if we are able to find the fair price for one of the two options,
the other one is obtained as well. D

We will see that the use of arbitrage arguments leads to pricing equations
in the form of partial differential equations. These may sometimes be solved
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us,

Id

Fig. 2.19 Simple single-period binomial lattice.

analytically to yield a pricing formula in closed form, as in the case of Black
and Scholes. In other cases, an analytical approach to option pricing may lead
to useful approximate pricing formulas. In general, however, we need to resort
to numerical procedures. There are basically three numerical approaches to
price a derivative:

= Solving a partial differential equation, e.g., by finite difference approxi-
mations

e Monte Carlo simulation
« Binomial or trinomial lattices

All of them will be pursued in later chapters.

The first ingredient of an option pricing model is a model for the dynamics
of the underlying asset price. The simplest such model, in continuous time,
is geometric Brownian motion, which we have introduced in example 2.20.
However, it is best to start with an even simpler representation model of price
uncertainty: a one-step binomial model.

2.6.1 Simple binomial model for option pricing

Consider a single time step of length St. We know the asset price S() at the
beginning of the time step; the price S\ at the end of the period is a random
variable. The simplest model we may think of specifies only two possible
values, accounting, e.g., for the possibility of an increase and a decrease in
the stock price. To be specific, let us consider figure 2.19. We start with a
price So; at the next time instant we assume that the price may take either
value Sou or Sod, where d < u, with probabilities pu and pd, respectively.
Note the similarity with the multiplicative model of equation (2.16); this is
a discrete-time model as well, but it is also discrete-state. Now, imagine an
option whose unknown value now is denoted by fa. If the option can only
be exercised after St, it is easy to find its values /,, and fa corresponding to
the two outcomes. They are simply the option payoffs, which are determined
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by the type of contract. How can we find /0? We may again exploit the
no-arbitrage principle. Let us set up a portfolio consisting of two assets: a
riskless bond, with initial price Bo — 1 and future price By = er St, and the
underlying asset with initial value So. We denote the number of stock shares
in the portfolio by [ and the number of bonds by ®. The initial value of this
portfolio is

Mo = ASo + &)

and its future value, depending on the realized state, will be either
M, = ASOu + derit’, or Ll = Asod + 4>er5t.

Now let us try to find a portfolio which will exactly replicate the option payoff,
ie.,

ASou + '$er'st = fu
ASOd +yer'6t = fd.
Solving this system of two linear equations in two unknown variables, we get

fu ~ fd

r<aufd dfu
n—d

But in order to avoid arbitrage, the initial value of this portfolio must be
exactly f0:

fo — ASo+ o
fu fd r-Stufd  dfu
u—d u—d
rst erH-d u - erSt

d U + e J-fd . (2.34)
It is important to note that this relationship does not depend on the objective
probabilities pu and pd- In particular, the option price is not the, discounted,
expected value of the payoff, which could have been a seemingly reasonable
guess. If we think again at example 2.22 on forward pricing, we could wonder
if we can nevertheless interpret equation (2.34) as an expected value. Indeed,
if we set

er'st-d u - er'st
Tu i ] ~d — 3!
u—d u—a

we may notice that
7T, + 71d = 1

* 7Au and >a are positive if d < erSt < u, which must be the case if there
is no arbitrage strategy involving the riskless and the risky asset; hence,
we may interpret #u and Itd as probabilities;
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the option price (2.34) can be interpreted as the discounted expected
value of payoff under those probabilities:

/lo=e-"L bl =e-"W u + *dfd), (2-35)

where notation E is used to point out that expectation is taken with
respect to a different probability measure;

= the expected value of Si under probabilities >w and is

E[Si] = ttuSOu + 7idSod = SOersSt.

The last observation explains why the “artificial probabilities” - and are
called risk-neutral. What we have found is coherent with pricing of a forward
contract and suggests that derivatives can be priced by taking expectations
under a risk-neutral measure. The objective probability measure does not
play any role here, as the option payoff can be perfectly replicated by the
two “primary” assets. When a set of “primary” assets allows us to replicate
an arbitrary payoff, we say that the market is complete. It can be proved
that a risk-neutral measure exists if arbitrage is impossible and it is unique if
the market is complete. The risk-neutral valuation principle has far-reaching
consequences; we refer the reader to a book like [20] for a deeper, yet readable,
analysis.

What we have seen is a typical pricing argument based on replication. We
may obtain the same result by taking a slightly (but equivalent) view. Assume
that we have written a call option on a stock. How can we hedge against our
risk? One possibility would be to purchase one stock share, so that if the
holder will exercise the option, our position is covered. However, this strategy
may be too conservative and expensive, if the option expires worthless. We
could try to find the “right” number of shares to hold. Say that we purchase
[, stock shares to cover the writer’s risk for a generic option with payoffs fu
and fd- If we have written the option, the initial value of our portfolio is

Mo = ASo —/o-

Note that the option value, /o, has a minus sign because we have a short
position in the option, whose value in the future is a liability. The possible
portfolio values after time period St are

M, = AusO- fu
[Md = AdSo —fd.

In the replication argument, we have built a synthetic option using the stock
and the riskless asset. Here we may replicate the riskless asset by choosing [,
such that

nu=nd=4 = so{u - fg)
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must hold. But due to the no-arbitrage principle, if this portfolio is riskless,
it must earn the risk-free interest rate r. Assuming continuous compounding,
we must have

SoA - /o = (AusO- fu)e~rSt,

fOer & = AusO- er5tsoAa - /,,.

Substituting the expression for A and rearranging, we obtain equation (2.34)
again.

We may interpret A as a hedging parameter, in the sense that it is the
number of stock shares we should hold in order to hedge risk away. It is also
useful to interpret

O fu-~ fd fu ~ fd
Sqg(u - d) Su-

as a discretized approximation of the derivative of the option value with re-
spect to changes in the underlying price, i.e., A = df/dS. In the next section
we show that, in the continuous-time and continuous-state case, this interpre-
tation is indeed correct.

2.6.2 Black-Scholes model

In the single-step binomial model, we are able to price an option assuming
that future prices of the underlying will take one of two values. Hence, using
only two assets, we are able to replicate any payoff. But two states make a
rather crude model of uncertainty. What if we want to use a better probabil-
ity distribution? One possibility would be to use more assets for replication,
but this may be rather impractical. An alternative is to allow for trading at
intermediate times. We should model asset prices not only now and at ma-
turity, but also along the whole way. This can be done by using the binomial
scheme recursively and devising a full recombining binomial lattice; this route
yields interesting numerical schemes which are treated in chapter 7. Multi-
stage binomial lattices are discrete-state and discrete-time models. But what
if we want to account for a continuous distribution of future prices, such as
the lognormal distribution associated with geometric Brownian motion? The
answer is that we should allow for trading at infinite times, which calls for a
continuous-time, continuous-state model. Curiously enough, this apparently
complex model may yield simple solutions in closed form.

Consider a vanilla option like a European-style call option written on a non-
dividend paying stock, whose price S(t) follows a geometric Brownian motion.
Since increments in the driving Wiener process are independent, we may say
that future history does not depend on the past. And we may also show that
the value of the option at a time t before maturity will depend only on time
(more precisely, time to maturity) and current price of the underlying. If we
denote this value by f(S(t),t), we have seen in example 2.21 that it satisfies



DERIVATIVES PRICING 109

the stochastic differential equation:

df=%dt+% dSH 1s:B <23%)

What we know is that, at maturity, the option value is just the payoff,
F{S(T),T) = max{S(T) - K, 0},

and what we would like to know is f(S (0), 0), the fair option price now. Equa-
tion (2.36) does not suggest an immediate way to find the option price, but it
would look a little bit nicer without the random term dS. Remember that by
using no-arbitrage arguments, we have obtained deterministic relationships
in examples 2.22 and 2.23, despite the randomness involved. To get rid of
randomness, we may try to use options and stock shares to build a portfolio
whose value is deterministic, just as we did in the simple binomial setting.
Consider a portfolio consisting of a short position in an option and a long po-
sition in a certain number, say [, of stock shares. The value of this portfolio

M= [ <5 - £(S, t).

Differentiating 'l and using equation (2.32), we get
m = O«ds-df= (4-9g ) .- (f + dt (2.37)
We may eliminate the term in dS by choosing

= N |
A oS

With this choice of A, our portfolio is riskless; hence, by no-arbitrage argu-
ments, it must earn the risk-free interest rate r:

<ffl = rlldt (2.38)

Eliminating (ffl between equations (2.37) and (2.38), we obtain

df , 1 20Q2d2f\ M (f edf\ m
ai+r s a”n)dt=r\{~sas)dt

and finally

Now we have a deterministic partial differential equation describing an option
value /(5, t). This equation applies to any option whose payoff depends only
on the current price of the underlying asset, or its price at maturity. When
the payoff depends on the whole history of prices, as in the case of Asian
options, we get a slightly more complex equation. Typical partial differential
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For a generic option of value f(S, t),

n_ 9f(s, v
8s

measures the sensitivity of the option price to small variations in the stock
price. Other sensitivities may be obtained, such as

r d2f(s,t) _df(S, b _df(S,t) _df(S, 1)
ds2 dt P dr da

These sensitivities, collectively nicknamed the Greeks, may be used to evaluate
the risk involved in holding a portfolio of options. They are known in closed
form for some options and must be estimated numerically in general. [ and
Ir play a somewhat similar role to that of duration and convexity in bond
portfolios. 0 measures the change in option value as the expiration date is
approached, whereas p and V (vega) measure the sensitivity to changes in the
riskless rate and in volatility. [ is particularly significant due to its role in
the riskless portfolio we have used to derive the Black-Scholes equation. In
fact, the writer of an option might use that portfolio to hedge the option. In
principle, this requires a continuous portfolio rebalancing since 4, will change
in time; since practical considerations and transaction costs make continuous
rebalancing impossible, some hedging error would result. In practice, hedging
is not just based on option [; furthermore, a whole portfolio of options must
be typically hedged.

2.6.3 Risk-neutral expectation and Feynman-KaC formula

In the case of the simple binomial model, we have found that the option
value is the discounted expected value of future payoff, under a risk-neutral
measure. But in continuous time, so far, we have relied on an apparently
different framework, based on partial differential equations. Actually, they
are two sides of the same coin, and the gap can be bridged by one version of
the Feynman-Kac formula.

THEOREM 2.1 Feynman—Kac representation theorem. Consider the
partial differential equation

dF , dF 1 2, d2F ”
Koo+ +r (1')3™ =rF

and let F = F(x, t) be a solution, with boundary condition
F(T,x) = ®(x).
Then, under technical conditions, F(x, t) can be represented as

F{x,t) = EXit[*{XT)],
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where X (t) is a stochastic process satisfying the differential equation
dXT—fI{XT,r)dr + a(XT,r) dWT
with initial condition Xt = Xx.

The notation EXjt points out that this is a conditional expectation, given that
at time t the value of the stochastic process is X (t) = x. From a mathematical
point of view, the theorem is a consequence of how Ito stochastic integral is
defined (see [1] for a clear proof). From a physical point of view, it is a
consequence of the connection between Brownian motion (which is a diffusion
process) and a certain type of PDEs which can be transformed into the heat
equation.19

Applying this representation theorem to Black-Scholes equation, for an
option with payoff function ®(-), immediately yields

/(50,0) = e-"TE[® (5T)],

which is consistent with (2.35). We point out that expectation is taken under a
risk-neutral measure, which essentially means that we work as if the stochastic
differential equation for S(t) were

dS = rSdt + crSdw.

It is interesting to note that changing measure in this case means changing
the drift coefficient, whereas volatility is not affected.20

We should recall that according to the geometric Brownian motion model,
a positive drift means that expected price in the future goes to infinity. This
does not happen because dividends are paid, which cause a corresponding
decrease in the stock price. It s fairly easy to show by no-arbitrage arguments
that the price should fall by an amount corresponding to the paid dividend.
Options on stocks paying lump sums at certain time instants can be priced by
numerical methods such as binomial lattices. Black-Scholes model is easily
extended if we assume that dividends are paid as a continuous stream at a
rate q (the rate is applied to the current stock price, just like a continuously
compounded interest rate). In this case, the risk neutral dynamics can be
described by the equation

ds = {r- gq)Sdt+ aSdw. (2.42)

A continuous dividend yield is a useful idealization in many circumstances.
We may think of a stock index, which aggregates many stocks: Their discrete
dividend cash flows may be aggregated to one dividend yield.

19We will introduce parabolic PDEs and the heat equation in chapter 5.
20Formally, this is a consequence of a theorem due to Girsanov; see [1].
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2.6.4 Black-Scholes model in MATLAB

Implementing the Black-Scholes formula in MATLAB is quite easy. We may
take advantage of the normcdf function provided by the Statistics toolbox to
compute the cumulative distribution function for the standard normal distri-
bution. Straightforward translation of equation (2.40) gives

dl = (log(S0/K)+(r+sigma~2/2)*T) / (sigma * sqrt(T));
d2 = dl - (sigma*sqrt(T));

C= S0 * normcdf(dl) - K* (exp(-r*T)*normcdf(d2));
P = K*exp(-r*T) * normcdf(-d2) - SO * normcdf(-dl);

where the variables SO, K, R, T, sigma are self-explanatory. The Finan-
cial toolbox function blsprice implements these formulas with a couple of
extensions. First, it may take vector arguments to compute a set of option
prices at once; second, it may take into account a continuous dividend rate
d (whose default value is zero). It is easy to adjust the Black-Scholes model
and the related pricing formula to cope with a continuous dividend rate (see
[28, chapter 5]). The following is an example of calling blsprice:

» SO = 50;
» K= 52;
» r = 0.1;
» T = 5/12;
» sigma = 0.4;
» g = 0;
>> [C P] = blsprice(S0, K r, T, sigma, Q)
C=
5.1911
5.0689

It is interesting to plot the value of an option, say a vanilla European call,
for different values of the current stock price while approaching the maturity.
Running the code illustrated in figure 2.20, we get the plot of figure 2.21. We
see that as time progresses, the plot approaches the kinky payoff diagram.21
An important point is that we have to be consistent in specifying the risk-free
interest rate, the volatility, and the expiration date. In the snapshot above
everything is expressed in a yearly base; hence, the expiration date is in five
months. Similar functions are available to compute the Greeks, too; they are
best illustrated through a simple example.

Example 2.24 The Greeks may be used to approximate the change in an
option value with respect to risk factors, just like duration and convexity for

21 See section A.2 to see how to get a surface, rather a set of plots.
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o PlotBLS.m

SO = 30:1:70;

K= 50;

r = 0.08;

sigma = 0.4;

for T=2:-0.25:0
plot(SO,blsprice(SO,K,r,T,sigma));

hold on;
end
axis([30 70 -5 35]);
grid on

Fig. 2.20 Valuing a European call for different current prices of the underlying stock
while approaching the expiration date.

Fig. 2.21 Option value approaching the expiration date.
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a bond portfolio, where the main risk factor is interest rate uncertainty. For
instance, consider the change in the price of a call option due to an increase
in the price of the underlying asset. Using a second-order Taylor expansion,
we get the following approximation of this change:

C (So + dS) « C(S0)+ [l *5S + =(SS)2. (2.43)

In MATLAB we may use such an approximation by exploiting the functions
blsdelta and blsgamma. It is important to note that, unlike the other two
functions, blsgamma returns only one argument, as it can be shown that I is
the same for a call and a put. A simple MATLAB snhapshot shows that the
approximation is fairly good:

>> CO = blsprice(50, 50, 0.1, 5/12, 0.3)
co =
4.8851
» dS = 2;
» Cl = blsprice(50+dS, 50, 0.1, 5/12, 0.3)
Cl =
6.2057
>> delta = blsdelta(50, 50, 0.1, 5/12, 0.3)
delta =
0.6225
>> gamma = blsgamma(50, 50, 0.1, 5/12, 0.3)
gamma -
0.0392
>> CO0 + delta*dS + 0.5*gamma*dS-~2
ans =
6.2086

Greeks, as we have said, may play a role in hedging, and A and I play
the same role as duration and convexity for bonds. We may come up with
strategies to build portfolios of options which are [-neutral, which means
that the overall value of the portfolio will not change for small changes in the
underlying price. Actually, from a practical point of view, small changes is
not enough, and it is arguably better to have an imperfect hedging for large
perturbations than a perfect hedging for infinitesimal perturbations.

Leaving hedging aside, we should note that Greeks also have a role in risk
management. Consider estimating Value at Risk for a portfolio of options.
Even if we assume that risk factors such as stock price perturbations SS are
normally distributed, the pricing formula is non-linear in So, and this will
destroy normality. However, if we use a [-based approximation like SC ~ [ =
SS we see that normality is preserved, resulting in easy calculations. Actually,
more accurate models and better descriptions of statistical dependence which
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go beyond correlation require numerical evaluation methods, such as Monte
Carlo simulation.

2.6.5 A few remarks on Black-Scholes formula

The Black-Scholes formula has been a remarkable achievement and has played
a fundamental role in the development of a huge and increasingly sophisticated
market. However, there is a little fly in the ointment. If the Black-Scholes
formula were “really correct,” there would be no market for derivatives. The
reason is disarmingly simple: The formula is based on replicating the option
with two basic assets, and if this were really that easy, there would be no need
for derivatives altogether. A little more formally, in a complete market there
is no need for further assets, which would be redundant by definition. But
of course, markets are not complete. The replication (or hedging) argument
we have used assumes a rather idealized market, whereas, in practice, perfect
hedging is made impossible by issues such as transaction costs, stochastic
volatility, jumps in asset prices, etc. Geometric Brownian motion does not
account for all of these features.

Furthermore, if we assume that perfect replication is feasible, there is no
need to consider risk aversion; in fact the machinery we have developed in
section 2.4.1 on utility theory does not play any role in simple option pricing
models. In fact, several alternative pricing models have been developed, based
on more sophisticated models of the dynamics of the underlying asset price.
Moreover, while lack of arbitrage implies that a risk-neutral measure exists,
market incompleteness implies that it is not unique. Hence, there is a range
of prices which are compatible with lack of arbitrage. Which one is the right
one? It depends on risk. From a theoretical point of view, we cannot get rid
of issues related to decision making under uncertainty.

From a practical point of view, the simplicity and intuitive appeal of the
Black-Scholes formula should not be discarded, however. Indeed, rather than
resorting to overly complex models, the common practical approach is to use
the Black-Scholes framework in a slightly different way, whose aim is to get
relative prices; in other words, given prices we observe in financial markets,
we use the arbitrage-free pricing machinery to price other assets in a way
that is consistent with observed prices. Indeed, the Black-Scholes formula is
sometimes considered as a sort of “interpolation” formula.

One common way to use the formula is by computing implied volatility. In
a naive view, the volatility parameter a in the formula should be estimated
by analyzing the time series of prices of the underlying asset; this is what we
mean by historical volatility. Implied volatility is computed the other way
around: We observe option prices, and compute the volatility that makes the
prices from the Black-Scholes formula consistent with the observed prices.
This looks a bit like chasing our tail, but it allows to price new instruments
in a consistent way. In practice, volatility surfaces are estimated as implied
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volatility depends on multiple factors, including time to maturity and strike
price.

Another way to extend the machinery we have just developed to cope with
incomplete market is by calibrating models directly under the risk-neutral
measure, which is implicitly chosen by the market. We will motivate the
idea in section 2.8, where we see that the Black-Scholes approach can be
generalized by introducing a market price of risk. Roughly speaking, for each
possible value of the market price of risk there is a risk-neutral measure, and
a price under that measure. By observing prices, we may try to recover the
market price of risk, or alternatively the risk-neutral measure; then, we may
proceed pricing other instruments whose value depends on interest rates. One
way to do so is to analyze bond prices to calibrate a model which can be used
to price interest-rate derivatives.

2.6.6 Pricing American options

Unlike their European counterparts, American options can be exercised at
any date prior to expiration. This seemingly innocent variation makes the
analysis of American options much more complex. One easy conclusion is
that an American option has a larger value than the corresponding European
option, as it gives more opportunity for exercise. Prom a theoretical point of
view, valuing an American option entails the solution of a dynamic stochastic
optimization problem. If you hold such an option, you must decide, for each
time instant, if it is optimal or not to exercise the option. You should compare
the intrinsic value of the option, i.e., the immediate payoff you would get from
exercising the option early, and the continuation value, which is linked to the
possibility of waiting for better opportunities.
Formally, the price of an American option can be written as

maxE [e-rr®(5r)] , (2.44)

where function @ is the option payoff, expectation is taken under a risk-
neutral measure, and r is a stopping time. The term “stopping time” has a
very precise meaning in the theory of stochastic processes, but here we may
simply interpret stopping time as the time at which we exercise the option.
The time of early exercise (if this occurs) is a random variable depending only
on the history of prices so far.

Clearly, early exercise will not occur if the option is not in-the-money. For
a put option, we do not exercise the option at time t if S(t) > K. But
even if S(t) < K, it may be better to keep the option and wait. Early
exercise will occur only if the option is “enough” in-the-money; by how much,
it will generally depend on time to expiration, and we may expect that when
expiration gets closer, we are more willing to exercise early. Qualitatively, for
an American put option we would expect an early exercise boundary like the
one depicted in figure 2.22. This boundary specifies a stock price S*(t) such
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Fig. 2.22 Qualitative sketch of the early exercise boundary for a vanilla American
put. The option is exercised within the shaded area.

that if S(t) < S*(t), i.e., the option is sufficiently deep in-the-money, then
we are in the exercise region and it is optimal to exercise the option.22 If we
are above the boundary, we are in the continuation region, and we keep the
option.

Finding this boundary is part of the problem and it is what makes it diffi-
cult. Unlike European options, we cannot simply compute an expected value,
and this makes the use of Monte Carlo methods for pricing American-style op-
tions much more difficult. In the past, this was considered impossible, but we
will see relatively simple approaches in chapter 10. Within the partial differen-
tial equation framework, this reasoning translates to a free boundary problem,
which is contrasted against typical problems in which boundary conditions
are given. However, in the context of finite difference methods of chapter 9,
we will see that this essentially boils down to comparing the intrinsic and the
continuation value to take a decision.

27 INTRODUCTION TO EXOTIC AND PATH-DEPENDENT
OPTIONS

The variety of options that have been conceived in the past years seems to
have no limit. You have options on stocks, commodities, and even options
on options. Interest-rate derivatives play a fundamental role in interest-rate
risk management. Some options are rather peculiar and are traded over-the-
counter for specific needs.23

22For a detailed treatment of the exercise boundary for American options, see, e.g., [14,
chapter 4].
2:iAs we mentioned, this means that they are not traded on an organized exchange.
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Exotic options on stocks may be designed by introducing a certain degree
of path dependency. The idea is that, unlike a vanilla European option,
the payoff depends not only on the underlying asset price at expiration, but
also on its whole path. In the following we briefly describe barrier, Asian,
and lookback options. They are of particular interest in learning and testing
numerical methods.

2.7.1 Barrier options

In barrier options, a specific asset price S, is selected as a barrier value. During
the life of the option, this barrier may be crossed or not. In knock-out options,
the contract is canceled if the barrier value is crossed at any time during the
whole life; on the contrary, knock-in options are activated only if the barrier
is crossed. The barrier Sb may be above or below the current asset price So:
if Sb > So, we have an up option; if Sb < So, we have a down option. These
features may be combined with the payoffs of call and put options to define
an array of barrier options.

For instance, a down-and-out put option is a put option that becomes void
if the asset price falls below the barrier Sf,; in this case Sf, < So, and Sb < K.
The rationale behind such an option is that the risk for the option writer is
reduced. So, it is reasonable to expect that a down-and-out put option is
cheaper than a vanilla one. From the point of view of the option holder, this
means that the potential payoff is reduced; however, if you are interested in
options to manage risk, and not as a speculator, this also means that you may
get cheaper insurance. By the same token, an up-and-out call option may be
defined.

Now, consider a down-and-in put option. This option is activated only if
the barrier level Sb < So is crossed. Holding both a down-and-out and a
down-and-in put option is equivalent to holding a vanilla put option. So we
have the following parity relationship:

P = Pdi + Pdo,

where P is the price of the vanilla put, and pdi and Pdo are the prices for the
down-and-in and the down-and-out options, respectively. Sometimes a rebate
is paid to the option holder if the barrier is crossed and option is canceled; in
such a case the parity relationship above is not correct.

In principle, the barrier might be monitored continuously; in practice, pe-
riodic monitoring may be applied (e.g., the price could be checked each day
at the close of trading). This may affect the price, as a lower monitoring
frequency makes crossing the barrier less likely.

Analytical pricing formulas are available for certain barrier options. As an
example, consider a down-and-out put with strike price K, expiring in T time
units, with a barrier set to Sb- The following formulas are known (see, e.g.,
[28, pp. 250-251]), where So, r, a have the usual meaning.
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P = Ke-rT{N(d4)-N (d2)-a[N{d7)-N (d5)}}
-So {N(ds) - N(di) - b[N(dg) - N(d6)}},

where

and

33

d4

db

ds

dj

ds

Sb 4 ~1+2>2
So

SbN 1+2r/cT2

log(SO/K) + (r+ a2/2)T

avT

log(so/k) + (r - a2/2)T
aVvf

\og(SO/Sb) + (r+ a2/2)T
ovT

log(so/sb) + (r - a2/2)T
aVvf

log(sO/sb) - (r- a2/2)T
avT

\og(SO/ISb)-(r + a2/2)T
oy/T

log(SoK/S%) - (r - a2/2)T
aVvf

\og(SOK /S 2) - (r+ <2/2)T
aVvf

A MATLAB code implementing these formulas is given in figure 2.23.

» [Call, Put] = blsprice(50,50,0.1,5/12,0.4);

» Put
Put =
4.0760

» DOPut(50,50,0.1,5/12,0.4,40)

ans =
0.5424

» DOPut(50,50,0.1,5/12,0.4,35)

ans =
1.8481
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/; DownOutPut.m

function P = DownOutPut(SO,K,r,T,sigma,Sh)
a = (Sb/S0)"(-1 + (2*r / sigma~2));

b = (Sb/S0)"(1 + (2*r / sigma~2));

dl = (log(S0/K) + (r+sigma~2 / 2)* T) / (sigma*sqrt(T7));
d2 = (log(S0/K) + (r-sigma~2 / 2)* T) / (sigma*sqrt(T));
d3 = (log(S0/Sb) + (r+sigma~2 / 2)* T) / (sigma*sqrt(T));
d4 = (log(S0/Sb) + (r-sigma”2 / 2)* T) / (sigma*sqrt(T));
d5 = (log(S0/Sb) - (r-sigma"2 / 2)* T) / (sigma+sqrt(T));
dé = (log(S0/Sb) - (r+sigma~2 / 2)* T) / (sigma*sqrt(T));
d7 = (log(S0*K/Sb~2) - (r-sigma~2 / 2)* T) / (sigma*sqrt(T));
d8 = (log(S0*K/Sh“2) - (r+sigma~2 / 2)* T) / (sigma*sqrt(T));

P = K*exp(-r*T)* (normcdf(d4)-normcdf(d2) - ...
a*(normcdf(d7)-normcdf(d5)))
- SO*(normcdf(d3)-normcdf(dl) -
b*(normcdf(d8)-normcdf(d6)));

Fig. 2.23 Implementing the analytical pricing formula for a down-and-out put option.

» DOPut(50,50,0.1,5/12,0.4,30)
ans =

3.2284
» DOPut(50,50,0.1,5/12,0.4,1)
ans =

4.0760

We see that the down-and-out put is indeed cheaper than the vanilla put; the
price of the barrier option tends to that of the vanillaput as sb tends to zero.
It is also interesting to see what happens with respect to wlatility:

» [Call, Put] = blsprice(50,50,0.1,5/12,0.4);

» Put
Put =
4.0760
» [Call, Put] = blsprice(50,50,0.1,5/12,0.3);
» Put
Put =
2.8446
» DOPut(50,50,0.1,5/12,0.4,40)
ans =
0.5424

» DOPut(50,50,0.1,5/12,0.3,40)
ans =
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0.8792
» DOPut(50,50,0.1,5/12,0.4,30)
ans =

3.2284
» DOPut(50,50,0.1,5/12,0.3,30)
ans =

2.7294

For a vanilla put, less volatility implies a lower price, as there is less uncer-
tainty; for the barrier option, less volatility may imply a higher price since
breaching the barrier may be less likely. We see that the dominating effect
depends on the barrier level.

In the formula above, it is assumed that barrier monitoring is continuous.
When monitoring discrete, we should expect that the price for a down-and-out
option is increased, since breaching the barrier is less likely. An approximate
correction has been suggested (see [2] or [14, p. 266]). The idea is using the
analytical formula above, correcting the barrier as follows:

Sb => Sbe+0.5826.<Tv"

where the term 0.5826 derives from the Riemann zeta function, St is time
elapsing between two consecutive monitoring time instants, and the sign *
depends on the option type. For a down-and-out put we should take the minus
sign, as the barrier level should be lowered to reflect the reduced likelihood
of crossing the barrier. For instance, if we monitor the barrier each day, the
prices above change approximately as follows:

» DOPut(50,50,0.1,5/12,0.4,40)
ans =
0.5424
» DOPut(50,50,0.1,5/12,0.4,40*%exp(-0.5826*0.4*sqrt(1/12/30)))
ans =

0.6380
» DOPut(50,50,0.1,5/12,0.4,30)
ans =

3.2284

» DOPut(50,50,0.1,5/12,0.4,30*exp(-0.5826*0.4*sqrt(1/12/30)))
ans =
3.3056

We have assumed here that each month consists of 30 days. It should be noted
that alternative analytical methods for discrete-time barrier options have been
developed, but we will stick to this one because of its conceptual simplicity.
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2 7.2 Asian options

Barrier options exhibit a weak degree of path dependency. A stronger degree
of path dependency is typical of Asian options, as the payoff depends on the
average asset price over the option life.

Different Asian options may be devised, depending on how the average is
computed. Sampling may be discrete or (in principle) continuous. Further-
more, the average may be arithmetic or geometric. The discrete arithmetic
average is

where ti, i — 1,..., n, are the discrete sampling times. The geometric average
is
n 1/n
Aig= T1 A)

If continuous sampling is assumed, we get

Given some way to measure the average A, you may use it to define a rate or
a strike. An average rate call has a payoff given by

Tax{/1 —K, 0},
whereas for an average strike call we have
ma.x{S(T) —A, 0}.
By the same token, we may define an average rate put:
max{/f —A, 0},
or an average strike put:
max{A —S(T), 0}.

Early exercise features may also be defined in the contract.

2.7.3 Lookback options

Lookback options come in many forms, just like Asian options. The basic
difference is that a maximum (or a minimum) value is monitored during the
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option life. Assuming continuous monitoring, we may measure the maximum
and the minimum asset price:

Smax — max S(£)
te[o, T]
Smin = t’é?(lJnr] S(t).

A European style lookback call has a payoff given by
S(T) - Smin,
whereas in the case of a lookback put we have
Smax ~S(T).

Just as in the Asian option case, you may use the maximum and minimum
to define rates or strikes, and you may also add early exercise features. As-
suming continuous monitoring, some analytical pricing formulas are known
for lookback options.

2.8 AN OUTLOOK ON INTEREST-RATE DERIVATIVES

In this book we will only deal with pricing equity options, as this is enough to
introduce and motivate the numerical methods we are interested in.24 How-
ever, there is a huge market of interest-rate derivatives, and in this section we
would like to point out why they are important and why they are so difficult
to deal with. Actually, any bond is an interest-rate derivative, since its value
depends on interest rates; if we model interest rates as stochastic processes,
we may apply the option pricing machinery to pricing a zero-coupon bond.
This may look like “overkill,” but it may play a fundamental role in pricing
more complex interest-rate derivatives, as we will see.

The following is a non-exhaustive list of the most basic assets that can be
classified as interest-rate derivatives.

- Interest-rate swaps. A swap is an arrangement between two parties,
which agree to exchange cash flows at predetermined dates in the future.
In the vanilla swap, one party will pay cash flows given by a fixed interest
rate applied to a nominal amount of money (the notional principal). The
other party will pay an amount given by a variable interest rate, applied
to a given interval of time (the tenure), on the same notional principal.
The net cash flow will depend on the level of future interest rates.

24This section is included for the sake of completeness, but it can be safely skipped by
readers just interested in numerical methods.
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e Bond options. A call option on a bond works more or less like a call
option on a stock, with a different underlying asset. In this case we
have two maturities: the maturity T of the option, at which the option
can be exercised, and the maturity S of the bond. Obviously, we must
have T < S. The payoff of the option will depend on the bond price
at T, which in turn depends on uncertain interest rates. Call options
are actually embedded in certain types of bonds. A callable bond can
be redeemed before maturity by the issuer, if prevailing interest rates
make this choice attractive, i.e., when interest rates drop and the bond
issuer may refinance its debt at lower rates. In this case, the investor
purchasing the bond implicitly sells a call option to the bond issuer.
Hence, the callable bond must cost less than its non-callable counterpart.

- Interest-rate caps. A cap offers protection against a rise in interest
rates. This may be interesting to someone who wants to borrow money
at a variable rate. A cap is a portfolio of caplets, applying to different
time intervals in the future. If L is a notional principal and Rk is the
cap rate, a caplet applying to a time interval of length 6t gives a payoff

L St amax{0, R —Rk},

where R is the interest rate prevailing for that interval. Should interest
rates rise in the future, the owner of the cap will receive a payoff covering
the payment interest above the cap rate. It can be shown that caps are
equivalent to portfolios of bond options.

= Interest-rate floors. A floor is similar to a cap, but it offers protection
against a drop in interest rates. The payoff of a floorlet is

L mSt *!max{0,Rk —R}-

The list of available interest-rate derivatives is increasing because of their use-
fulness as interest-rate risk management tools. They are, at least potentially,
more powerful than older-style practices based on immunization.

The elementary interest-rate derivatives we have just described can be
priced using fairly simple models, if some assumptions are made. But this
does not hold in general, and more sophisticated models are needed, either
to account for the complexity in the dynamics of interest rates, or to price
complex derivatives. In the following sections we will just offer some intuition
about the reasons behind such a complexity. In the Black-Scholes model for
stock options, we have assumed constant interest rates and constant volatility
for the price of the underlying asset. Of course the first assumption does not
make any sense for interest-rate derivatives. But also the second one cannot
be reasonable: The bond price, when maturity is approaching, is less and less
volatile (the duration gets smaller and smaller).
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2.8.1 Modeling interest-rate dynamics

Several models have been proposed over the years to capture the uncertain
dynamics of interest rates. They differ in the following basic features:

= The number of stochastic factors. In the simplest models, we describe
the dynamics of the short rate r(t), which is essentially a rate applying
for a very short time span (t,t + St) in the future. However, we know
that bond prices depend on a whole term structure of interest rates. If
we build a one-factor model, we are essentially assuming that we may
capture the dynamics of the whole term structure just by the short rate
and its future evolution. Actually, it is difficult to get a realistic model
based on one factor only, and more complex models based on a set of
factors should be built, with a corresponding increase in difficulty.

= The focus on equilibrium or arbitrage. It is possible to pursue the some-
what ambitious idea of building an economically sound model, which
yields interest rates as a consequence of market equilibrium. An alter-
native idea is trying to build models which match the currently observed
term structure. This is less ambitious, but it may better replicate ob-
served prices. In fact, a basic requirement of a credible model is that
it replicates the prices of basic assets, which may be observed in the
market. In general, arbitrage based approach aim at this idea of relative
pricing.

As a result, there is a significant variety of models, with advantages and
disadvantages, and there is no obvious choice among them. We do not want
to venture into this difficult domain but, given our knowledge of Ito processes,
we may at least sketch a few models based on stochastic differential equations
for the short rate.

The general structure of such models is

dr{t) = fi[t,r(t)]dt + a[t,r(t)]dW (t), (2-45)

where W (t) is a standard Wiener process. Multifactor models use multidi-
mensional Wiener processes. Geometric Brownian motion is a clearly inade-
guate model, at least in the long term, as interest rates cannot grow without
bound. Mean reversion is a common feature of many models, among which
we mention:

1. Vasicek:
dr = (b —ar)dt+ adWw,

where a > 0.

2. Cox-Ingersoll-Ross (CIR):

dr = a(b —r)dt + <I\frdw.



AN OUTLOOK ON INTEREST-RATE DERIVATIVES 127

3. Black Derman-Toy (BDT):

dr = O(t)r dt + a(t)r dw.

4. Hull-White (extended CIR):
dr = [0(i) —a(t)r] dt+ cr(t)y/rdw,
where a(t) > 0.

Vasicek model exhibits mean reversion, but the rate can get negative. Avoid-
ing negative rates is the rationale behind the \fr term in the CIR model. The
BDT model includes time-varying functions: On the one hand, this makes the
model more complicated, but it allows to match the current term structure
(which can be done only approximately with simpler models). The Hull-
White extension of CIR model, in some sense, puts all of the above ideas
together.

In the next chapters, we will see how continuous-time stochastic models
may be exploited computationally, either by Monte Carlo simulation or by
building discretized approximations such as binomial lattices or trees. The
same ideas, with significant complications may be applied to interest rate
models. For instance, the MATLAB Financial derivatives toolbox includes
functions to build trees for the BDT short rate model and the Heat-Jarrow-
Morton (HJM) model, which the best-known multifactor model. Whatever
model and computational technique we use, we must calibrate the parameters
of the models above. One would think that to accomplish this task, we should
gather market data for interest rates and use some numerical procedure to fit
model parameters to observed data. The next section shows that this is not
really the case.

2.8.2 Incomplete markets and the market price of risk

We have already pointed out that an apparently paradoxical feature of Black-
Scholes formula is that it prices an option under the very assumption that
options are no use. This is due to the fact the markets are assumed complete,
thus options can be replicated using a risk-free asset and the underlying asset.
In practice, this is not true for many reasons, including market imperfections
(e.g., transaction costs) and stochastic volatility. This does not imply that
the theory is useless: On the contrary, it is used to build internally coherent
prices by exploiting concepts such as implied volatility and volatility surfaces.

When we consider interest-rate derivatives, however, we are facing an im-
mediate difficulty: The interest rate is not an asset that can be included in
a portfolio. Hence, we cannot build a replicating portfolio. A similar diffi-
culty is faced with certain derivatives written on commodities which are not
investment goods and which cannot be included in an investment portfolio
leading to replication arguments. The fundamental difficulty is that markets
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are incomplete. Hence, while no-arbitrage conditions imply that a risk-neutral
measure exists, market incompleteness implies that it is not unique. All we
can do is to build an internally coherent price system, which is consistent with
some observed prices and is arbitrage-free. In other words, we need to pin
down a risk-neutral measure which is linked to observed prices.

When dealing with interest-rate derivatives, the simplest asset we may work
with is a zero-coupon bond. Actually, we need a set of zero-coupon bonds,
one for each possible maturity. Let us assume that a market exists for zero-
coupon bonds of any maturity. We may work with a short rate model like
(2.45) to explore the consequences of no-arbitrage. Let p(t, T) be the price at
time t of a zero-coupon bond with maturity T. Given a model for the short
rate, it is reasonable to assume that this price is a function of time t and the
current short rate r(t):

p(t,T) = F(t,r(ty,T).

As we have seen with pricing stock options, we need some boundary or termi-
nal condition. If we assume that the face value of the bond is $1, the terminal
condition is

F(T,r, T) = 1,

for any value of r. To ease the notation, we will denote the price of this
bond by FT. Assuming that the short rate is modeled by equation (2.45),
application of Ito’s lemma yields

vn T (dFT 8FT 1 2d2FT\ J dFT
o “ (ral +"'alf +I" Ssr)d+°-fraw

= VTFTdt+ ZTF T dWw,

where, for the sake of convenience, we have introduced

T 1 (dFT dFT 1 2d2FT\
FT\dt +(1 dr + 2a dr2)
a dFT

6r FT dr '

If we consider another bond, with maturity S, we have
dFs = vsFsdt+ £sFsdWw,

where W (t) is the same Wiener process, as both bonds depend on the same
underlying factor. Hence, we may eliminate the term dw by forming the
following portfolio of bonds:

M= (asFs)FT- (TFT)Fs.

It is important to realize that the expressions between parentheses are the
amounts of each bond we hold, which do not change over a short time period
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8t, whereas the bond value does. Hence, differentiation in the Ito sense yields

du (asFs)dFT - (aTFT)dFs

(1it&FsF T —hs™tFtFs)dt

But since this is a risk-free portfolio, lack of arbitrage opportunities implies
<ffl = rM dt,

which in turn gives
firrs — — rcrs —rcerT .

This equality must hold for any maturity. This means that if our bond market
is arbitrage free, there must exist a process X(t) such that

= A, (2.46)

for any maturity T. The process A(t) is called the market price of risk. If
we write /X = r + Aa, we may understand the reason behind this name: the
drift fi is the risk free rate plus a compensation depending on volatility and
the price of risk. If the price of risk is A = 0, as in the usual risk neutral
world, we have u = r, which is exactly the drift we use when pricing options
in the Black-Scholes world.

If we substitute yT and gt in (2.46), we get the following PDE:

dET dFT 1 2d2FT T
_r+_n,)y— +-, F -rf =0.

This PDE, together with the boundary condition FT(T, r) = 1, is called term
structure equation. Application of the Feynman-Kac formula to this PDE
yields the price of the zero-coupon bond as an expected value:

FT(Lr) = e, It r(s)ds

where notation E”r means that we are taking a conditional expectation given
t and r(t), under a risk-neutral measure Q, and the process r(s) satisfies the
stochastic differential equation:

dr(s) = {uy —Act}ds + adW(s),

with initial condition r(t) = r.

Using a similar procedure we could price other interest-rate derivatives,
provided we use the appropriate market price of risk. To spot the right A we
should calibrate the model, in the sense that we should find the market price
of risk that fits the observed prices of zero-coupon bonds. This means that
we should find a stochastic differential equation describing the dynamics of



130 FINANCIAL THEORY

the short rate directly in the risk-neutral world. Doing so basically requires
the solution of an inverse problem: Given bond prices and the term structure
equation, we should find the market price of risk. This task may be relatively
easy or not, depending on the model we assume for the short rate. Some
models result in an analytical solution, some do not. Of course, if a model
depends on three numerical parameters (like CIR), we cannot hope to find an
exact fit.

In practice, model calibration based on zero-coupon bonds is not that easy
because of the lack of enough assets. Actually, what we need is a model en-
abling coherent pricing with traded assets; hence, any asset related to interest
rates is a possible data source for calibration. Recently, many market models
have been developed which do not claim to be economically motivated mod-
els, but aim at making practical pricing easier. In fact, the short rate is a
mathematically convenient object, but it is not directly observable. Other
rates, such as LIBOR,25 are more convenient from this point of view.

For further reading

In the literature

A book dealing with investments in general and their mathematical
modeling is [15]. It is comprehensive and quite readable. A higher-level
treatment can be found in [11]. Another general reference is [28], which
has a sharper focus on derivatives.

= If you are interested in how a stock exchange actually works, see [27].

= More specific references for bond markets and fixed-income-related as-
sets are [6], [7], [8], and [25]. See also [16].

= Portfolio theory is covered in [5]; you might wish to have a look at
chapter 10 there to gain a deeper understanding of utility theory.

= Advanced issues in portfolio management are dealt with in [23].

« The classical reference for options and derivatives in general is [10]. For
a more formal treatment, see, e.g., [14].

= A good reference on Value at Risk is [12].

= A book dealing extensively with the intricacies of option hedging is [26];
it is not very readable for the uninitiated, but it gives a precise idea of
practical option trading.

25London Inter-Bank Offer Rate
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= There is a growing literature on continuous-time stochastic calculus in
finance. Many books in this vein are quite hard to read; but if you want
to find a good compromise between intuition and mathematical rigor,
take a look at [17] or [19]. A more recent text is [24].

« Discrete-time models are dealt with in [20], which is an excellent refer-
ence for an understanding of the relationship between risk-neutral prob-
ability measures and the no-arbitrage hypothesis.

e Readers interested in a broader view of Financial Economics should
consult [4]. Another readable reference is [3].

= Interest-rate derivatives are also covered in books on fixed-income secu-
rities such as [16]. A book which is more focused on this class of assets
is [21]. Recent market models are described in [22].

= For a mathematically rigorous yet readable treatment of the theoretical
background of interest-rate derivatives, see [1].

« Readers interested in the use of derivatives for interest-rate risk man-
agement are [9] and [18].

On the Web

= A site where you may find a list many interesting resources for finance
ishttp://fisher.osu.edu/fin/journal/jofsites.htm.

< An academic society that could be of interest to you is IAFE (Inter-
national Association of Financial Engineers, http://www.iafe.org).
Another interesting academic society is the Bachelier Finance Society
(http:/ mwww.bachelierfinance.com).
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Part 11

Numerical Methods






Basics of Numerical
Analysis

The core of the MATLAB system implements a set of functions to cope with
some classical numerical problems. Although there is no need for a really
deep knowledge of numerical analysis in order to use MATLAB, a grasp of
the basics is useful in order to choose among competing methods and to
understand what may go wrong with them. In fact, numerical computation is
affected by machine precision and error propagation, in ways that may result
in quite unreasonable outcomes. Hence, we begin by considering the effect of
finite precision arithmetic and the issues of numerical instability and problem
conditioning, which are outlined in section 3.1. This material is essential,
among other things, in understanding the pitfalls of pricing derivatives by
solving PDEs.

Then we describe methods for solving systems of linear equations in section
3.2; MATLAB provides the user with both direct and iterative methods to
this purpose, and it is important to understand the characteristics of the
two classes of methods. Section 3.3 introduces the reader to the problems
of approximating functions and interpolating data values. Solving non-linear
equations is the subject of section 3.4.

Other topics, such as numerical integration and finite difference methods for
PDEs are dealt with in specific chapters. With respect to standard textbooks
in numerical analysis, a few types of numerical problems have been omitted,
most notably the computation of matrix eigenvalues and eigenvectors and
the solution of ordinary differential equations. Both problems are solved by
methods available in MATLAB, but since they will not be used in the rest of
the book, we refer the reader to the references listed at the end of the chapter.
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3.1 NATURE OF NUMERICAL COMPUTATION

Real analysis is based on real numbers. Unfortunately, dealing with real
numbers on a computer is impossible. Each number is represented by a fi-
nite number of bits, taking the values 0 or 1. Hence, we have to settle for
binary and finite precision arithmetic. The progress in computing hardware
has improved the quality of the representation, since more bits may be used
efficiently without resorting to low-level software tricks. Yet some represen-
tation error is unavoidable, and its effect may lead to unexpected results. We
have seen some examples of what may go wrong in section 1.3. In this section
we try to explain why this may happen.

3.1.1 Number representation, rounding, and truncation

The usual way we represent numbers relies on a decimal base. When writing
1492, we actually mean

1x 103+ 4 x 102+ 9 x 101+ 2 x 10°.

Similarly, when we have to represent the fractional part of a number, we use
negative powers of the base 10:

0.42 4x 10" 1+2 x Mna.

Some numbers, such as 1/3 = 0.3, do not have a finite representation and
should be thought as limits of an infinite series. However, on a computer we
must use a binary base, since the hardware is based on a binary logic; for
instance,

(21.5)10 => 24+ 22+ 2°+ 2-1 = (10101.1)2-

How can we convert numbers from a decimal to a binary base? Let us begin
with an integer number N. It can be thought of as

N = (bk =2k) + (bfc x m2fc-1) + eeet (>t m21) + (DO =2°).

Dividing both sides by 2, we get

f = (ofc =2%-1) + (bfci *2fc-2) + mem+ (h =2°) +

Hence, the rightmost digit in the binary representation, bo, is simply the
remainder of the integer division of N by 2. We may think of TVas

N = 2 «Q 4 ho,

where Q is the result of the integer division by 2. Repeating this step, we
obtain all the digits of the binary representation. This suggests the algorithm
whose MATLAB code is illustrated in figure 3.1. The function DecToBinary



NATURE OF NUMERICAL COMPUTATION 139

function b=DecToBinary(n)

n0 = n;

i=l;

while (n0 > 0)
nl = floor(n0/2);
b(i) = n0 - nl*2;
n0=nl;
i = i+l;

end

b=fliplr(b);

Fig 3.1 MATLAB code to obtain the binary representation of an integer number.

takes an integer number n and returns a vector b containing the binary digitsl:

>> DecToBinary(3)
ans =
1 1
>> DecToBinary(8)
ans =
1 0 0 0
>> DecToBinary(13)
ans =
1 1 0 1

Similarly, the fractional part of a number is represented in a binary base as

(e]e)
R =J2 dk2“™*
fc=i
Some numbers, which can be represented finitely in a decimal base, cannot in
a binary base; for instance,

7/10 = (0.7)i0 = (ONIOTLLr-

Clearly, in such cases the infinite series is truncated, with a corresponding
error. The binary representation of a fractional number R can be obtained
by the following algorithm, which is similar to the previous one (int and frac
denote the integer and the fractional part of a number, respectively):

1 Set di = int(2P) and R\ = frac(2R).

'This is not the best implementation, as the output vector b is resized incrementally. We
could compute the number of necessary bits and preallocate b.
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2. Recursively compute dk = int(2Ffc_i) and Fk = frac(2i<\_i) for k —
2,3,....

Knowing how to change the base may seem useless, but we will see an ap-
plication of these procedures in section 4.6, dealing with quasi-Monte Carlo
simulation.

In practice, we have to represent both quite large and quite small numbers.
Hence we resort to a floating-point representation like

X & g x 2",

where q is the mantissa and n is the exponent. The exact details of the
representation depend on the chosen standard and the underlying hardware.
In any case, since only a finite memory space is available to store the mantissa,
we will have a roundoff error.

Rounding off is not the only source of error in numerical computation. An-
other one is truncation. This occurs, for instance, when we substitute a finite
sum for an infinite sum. As an example, consider the following expression for

the exponential function:
@ u

e = Z.oh
When we truncate a sum like this, a truncation error occurs.

Example 3.1 One typically troublesome situation is when you subtract two
nearly equal numbers. To see why, consider the following example2:

e = 0.3721478693
y = 0.3720230572
x -y = 0.0001248121.

If you represent the numbers by five significant digits only (rounding the last
one), the actual result will be

x —y = 0.37215 - 0.37202 = 0.00013,

with a relative error of about 4% with respect to the correct result. In fact,
it is good practice to avoid expressions like

Vr+1—1,

which could result in remarkable losses in significance for small values of x.
In such cases, it is easy to rewrite the expression above as

yix2+ 1+ 1\ x2
Vx2+ 1+ 1/ Vx2+ 1+ 1

2See [13, pp. 58-59]
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Here there is no subtraction involved, but in other cases, there is no easy way
to avoid the difficulty. D

3.1.2 Error propagation, conditioning, and instability

Roundoff errors have been mitigated by the increase in the number of bits
used to store numbers on modern computers. From a practical perspective,
numbers are virtually represented exactly. Nevertheless, such errors may ac-
cumulate within the steps of an algorithm, possibly with disruptive effects,
as we have seen in example 1.3. Hence, algorithms should be analyzed with
respect to their numerical stability properties. We typically have alternative
algorithms for the same problem, and it may happen that some of them are
subject to instability issues and some are not. A typical case we will con-
sider in chapter 5 is the choice between explicit and implicit methods to solve
PDEs by finite differences. Sometimes, but not always, there is a trade-off
between potential instability and computational efficiency. As an example,
an advanced optimization library like ILOG CPLEX offers different interior
point solvers to tackle large-scale linear programming problems3; in case of
numerical difficulties we may switch to more robust but slower options.

We see that stability is a property of a specific algorithm to solve a numer-
ical problem. There is still another issue, which is related to the difficulty of
solving the problem per se, which is called conditioning. When we consider
the numerical conditioning of a problem, we are not dealing with specific al-
gorithms to compute a solution, but with the intrinsic difficulty of a problem.
Hence, it is important to have a conceptually clear view of how stability and
conditioning are related.

From an abstract point of view, a numerical problem may be considered as
a mapping

Y = fix),

which transforms the input data x into the output y. An algorithm is a compu-
tationally workable approach to computing that function; different algorithms
may be used to solve the same numerical problem, possibly with different char-
acteristics with respect to computational effort and stability properties. When
using a computer, roundoff errors will be introduced in the representation of
the input; we should check the effects on the output of a perturbation Sx in
the input data. Denoting the actual input by x = x + Sx, the output should
be J3{x), whereas an algorithm will yield some answer, say y*. An algorithm
is stable if the relative error

1 (x) -Y* |
Ne )11

3lInterior point methods are dealt with in section 6.4.4.
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is of the same order of magnitude as the machine precision.4
By comparing f(x) with f(x), we analyze a different issue, called the condi-
tioning of the numerical problem. We should compare the error in the output
with the error in the input; when the input error is small, the output error
should be small, too. Ideally, it would be nice to have a bounding relationship
like
H0*0- /(M) <t aneoann
nwir - w1 ( }

where J=]is an appropriate norm.5 The number K is called the condition
number of the problem. Later, we investigate the condition number for the
problem of solving a system of linear equations, but a simple example will
illustrate the point.

Example 3.2 Consider the following non-linear equation:

p{x) = xs- 36a7+ 546a:6- 4536a:5+ 22449a:4- 67284a;3
+118124z2 - 109584a: + 40320 = O.

This is actually a specific type of non-linear equation, as it is a polynomial
equation, and it can be solved by special purpose methods, one of which is
implemented in the function rootsé6:

» pl=[ 1 -36 546 -4536 22449 -67284 118124 -109584 40320];

» roots(pi)

ans =
8.0000
7.0000
6.0000
5.0000
4.0000
3.0000
2.0000
1.0000

Note how the polynomial is represented by a vector containing its coefficients.
We see a clear pattern in the solution. In particular, we have one root in
the interval [5.5,6.5]. Now let us change the second coefficient from -36 to

4To get an intuitive idea of what machine precision is about, consider the inequalities
1—e < 1< 1+ e, which are obviously true for any t > 0. With computer arithmetic,
there is a smallest t such that the inequalities hold; below that value, we cannot tell the
difference between the two sides of the inequalities.

5The reader should be familiar with the norm concept for vectors; anyway, it is recalled in
section 3.2.1.

6We have already met roots when computing the internal rate of return in example 2.8 on
page 47.



NATURE OF NUMERICAL COMPUTATION 143

36.001. This is a small change in the problem data, and one would expect a
corresponding slight change in the solution:

» p2=[ 1 -36.001 546 -4536 22449 -67284 118124 -109584 40320];
>> roots(p2)
ans =
8.2726
6.4999 + 0.7293i
6.4999 - 0.7293i
4.5748
4.1625
2.9911
2.0002
1.0000

Some roots do not move that much, but now there is no root in the interval
[5.5, 6.5], and we have a pair of complex conjugate roots, instead. Note again
that the conditioning issue is linked to the numerical problem itself, not to
the specific algorithm used to solve it: With roots we are able to find a
very good approximation of the solution, but this is significantly changed
by a slight change in the problem data. Indeed finding the roots of a high-
degree polynomial is an ill-conditioned problem, and you may imagine the
potentially dramatic effects of errors in collecting empirical data to define a
numerical problem. D

Putting the two concepts together, we will find a “good” answer to a specific
problem when the problem is well-conditioned and the algorithm is stable.

3.1.3 Order of convergence and computational complexity

Sometimes, we are able to find a solution of a numerical problem directly by
a relatively straightforward procedure. In other cases, we use iterative algo-
rithms which generate a sequence of approximations. Given an approximate
solution x(k\ some transformation is applied to obtain an improved approx-
imation x(fc+1). The minimal requirement of a good algorithm is that the
sequence generated converges to the correct solution x*. Furthermore, one
would hope that such convergence is reasonably fast. The speed of conver-
gence may be quantified by a rate. The rate of convergence is at least linear
if there are a constant ¢ < 1 and an integer N such that

I+l - X* |l<c lIx, - x* |, n > N.

The rate of convergence is at least quadratic if there are a constant C and
an integer N such that

Ipn+i - x* JI<C |- x* |R, n > N.
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In this case we do not require C < 1. This can be generalized to an arbitrary
order of convergence a:

Ibo+i-x* 1< C 1% -x*1 1", n>N.

The larger the rate g, the better; quadratic convergence (q = 2) is preferred
to linear convergence (q = 1). An iterative method need not always converge.
Sometimes, convergence depends on the initial estimate x A and its distance
from the solution.

When we use an iterative algorithm, we may have no precise idea of the
number of iterations we need to get a satisfactory solution. In other cases,
some direct method will yield the answer. By direct method we mean a pro-
cedure which, after a known number of steps, gives the desired solution (if no
difficulty due to instability arises). For direct methods, it may be possible to
quantify the number of elementary operations (e.g., additions and multiplica-
tions) needed to get the answer; this measures the computational complexity
of the algorithm. The amount of computation will be a function of the size
of the problem. The number of operations may depend on implementation
details, and the size of the problem may depend on the type of encoding
used to represent the problem. In practice, it is not necessary to be overly
precise in this measure as it is usually enough to have an idea of the rate of
growth of the computational effort with respect to the increase in problem
size. Furthermore, the computational burden of running an algorithm may
depend on the specific problem instance at hand, where by problem instance
we mean a specific problem with specific numerical data. Sometimes, it is
possible to analyze the average complexity with respect to the universe of
problem instances. Usually, it is easier to quantify the worst-case complexity.

Computational complexity issues are quite important for discrete optimiza-
tion problems, as they must often solved by potentially time-consuming algo-
rithms.

Example 3.3 Consider again the knapsack model for capital budgeting,
which was introduced in example 1.2. Since there is a finite set of possi-
ble solutions, in principle one could find the optimal solution by enumerating
all of them. However, since each project may or may not be financed, there
may be up to 2N solutions, where N is the number of competing projects and
is the essential measure of the problem size. This number is actually only an
upper bound on the number of solutions, since many will be infeasible with
respect to the budget constraint. Yet we may say that the worst-case com-
plexity of complete enumeration is in the order of 2N [technically speaking,
we say that the complexity is 0 (2N)}.7

Clearly, an exponential growth like this is quite undesirable. Efficient algo-
rithms are usually characterized by a polynomial growth of the computational

7A function is 0(g(n)) if limn—o00f{n)/g(n) < oo.
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effort; their complexity is something like 0 (N P) for some constant p. When
we find a polynomial algorithm for an optimization problem, we say that the
problem has polynomial complexity. However, if we cannot find a polynomial
algorithm and only methods with worst-case exponential complexity are avail-
able, does this mean that the problem has exponential complexity? Actually,
this need not be the case: Maybe there is a polynomial algorithm, but we are
not smart enough to come up with it. So, while considering the complexity of
an algorithm may be relatively easy, doing that for a problem is not trivial in
general. We wee here the same problem-algorithm duality that we have seen
with stability and conditioning.

3.2 SOLVING SYSTEMS OF LINEAR EQUATIONS

The solution of systems of linear equations is an important problem per se;
however, it is also instrumental for a variety of other problems. For instance,
Newton’s method for solving systems of non-linear equations calls for the
repeated solution of linear systems (see section 3.4.2); in chapter 5 we will
also see how solving linear systems is needed in certain methods to cope with
PDEs.

In pencil-and-paper mathematics, when we have to solve a system of linear
equations like Ax = b, we use matrix inversion to get x = A-1b (provided
the matrix is non singular). Although MATLAB offers a function, called inv,
to invert a matrix, it may sound surprising to the newcomer that this is not
used to solve systems of linear equations. More efficient approaches are used.

It is not our aim to dwell too deeply on this subject; we limit ourselves to
the basic concepts needed to understand what MATLAB offers to solve linear
equations. Methods for solving linear equations can be broadly classified
as direct or iterative. Direct methods have a clearly defined computational
complexity, as they yield the result directly within a given number of steps;
iterative methods build a sequence of solutions whose limit is (under some
conditions) the desired solution. For iterative methods, the number of steps
is not known a priori, as it depends on convergence speed. They are useful
for some large systems characterized by sparse matrices (i.e., matrices with a
small number of non-zero entries). Both classes are available in MATLAB, and
there exist definite situations where application of one class is advantageous
over application of the other.

We have seen in example 1.3 that solving linear systems may be a difficult
task with certain matrices. One would expect that when a matrix is close to
singular, solving the related system may be numerically hard. While this is
reasonably true, there are other reasons why numerical difficulties may arise.
In order to see why, we need to analyze problem conditioning, which in this
case amounts to consider the condition number of the matrix. Before doing
so, we must introduce preliminary concepts related to the norms of vectors
and matrices.
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3.2.1 Vector and matrix norms

We are all familiar with the concept of vector length in the Euclidean sense.
The norm is a generalization of that idea, which can be extended to matrices
and functions, and it is extremely useful in analyzing convergence, stability,
and conditioning issues in numerical analysis.

The vector norm is a function mapping vectors x € Rn to real humbers
Ix Bsuch that:

e [x |> 0 forany x~O, and Jx ||=0 if and only if x = O;
< jlxil = Icl1IK] for any ce I
e lix+y|[I< X1+ Iy Iforany x,y e Rn.

These properties are the intuitive properties a measure of vector length should
satisfy. The most natural way to define a vector length is through the Eu-
clidean norm

However, there are different notions of vector length, which satisfy the condi-
tions above for a vector norm. The most common ones are:

e X llok= maxi<i<n I?il) which is known as L\ norm;
e lix M= X)"=i I1»Uwhich is known as L<>norm.

Generally speaking, one may define a vector Lp norm as

Letting p tend to infinity we get norm.

Example 3.4 Vector and matrix norms are computed in MATLAB by the
norm function.

» v=1[24-13];
» [norm(v,l) norm(v,2) norm(v,inf)]
ans =

10.0000 5.4772 4.0000

The function takes two arguments: the vector and an optional parameter
specifying the type of norm. The default value for the optional parameter is
2. A call like norm(v,p) corresponds to

sum(abs(v).~p)~(1/p).
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The Loo norm is computed when the value of the optional parameter is inf.
0

Example 3.5 Quite often we consider the norm of an “error.” In numerical
analysis the error can be the distance between the solution of a problem and
the current approximation in an iterative algorithm, or an error due to round-
off or truncation. Most people in Finance and Economics are familiar with
the idea of least squares. In the simplest setting, given a set of experimental
data represented by pairs (¥*y*), i = 1,..., n, we look for a linear law like

y = a+ bx,

which fits the experimental data as best as possible. Since perfect fitting is
impossible in practice, one defines an “error” e, such that for each experimen-
tal point yi = a+ bxi + Ci. Typically, the term residual is used rather than
error, which in any case we would like to keep as low as possible. This can be
accomplished by minimizing the norm Je Jof the residual by solving

min
i=1
s.t. yi —a+ bxi + ei Vi.

Taking squares makes sense in order to avoid compensation between positive
and negative residuals, but we should wonder if there is something wrong in
using alternative norms such as L\ and solving

n
min lei |

»=|

or, if we consider the Loo norm, solving the min-max problem

min < max |ei
ab 1li=l,..., n

The first case makes perfect sense, as it is related to plain average of residu-
als in absolute value, whereas using Euclidean norm tends to penalize large
errors a bit more. However, given the non-differentiability of absolute value
as a function, minimization using the L\ norm requires numerical solution by
linear programming, whereas the least squares problem has a straightforward
analytical solution which paves the way to statistical interpretations in the
case of linear regression. The L& norm makes sense when we are interested in
controlling the worst-case deviation, rather than minimizing a measure related
to average residual. D

A less familiar concept is the matrix norm, which can be defined by requir-
ing the same properties as above. In the case of square matrices, the norm
function maps M"xn to R. The required properties are:
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« JA J> O0forany A~0O, and JA |J=0 if and only if A = 0.
e IcA =] c|mJA Jfor any c € K.
- JA+B < JA ]+ IB Jfor any A, B € Knxn.
Sometimes, the following additional condition is required:
I1IAB |< JAll =B |.

It may also be important to connect vector and matrix norms. We say that a
vector and a matrix norm are compatible if the following inequality holds:

IAX KKIA TIX]

for any matrix A and vector b (note that in the left-hand side of the inequality
we are using the vector norm).
Typical matrix norms are:

® IHAHo = maxi<j<n I7Nijl-

« JA |l = maxi<j<,~"=1 |af].

« JA |If = (»2i=i H"=i \aij\29) i the Frobenius norm.

« JA Ie= ~/p(A'A), the spectral norm, where p(-) is the spectral radius
of a matrix, i.e.,, p(B) = max{] A* } Xk is an eigenvalue of B}.

The first two norms may look a bit weird, but they are easy to compute. In
the first case, for each matrix row we sum absolute values of the elements in
each column, and then we take the maximum over the rows. In the second
case the two roles are swapped.

Example 3.6 The norm function may be used to compute matrix norms as
well. A call like

» A=[24-1 ;315 ; -2 3 -1];
» [norm(A,inf) norm(A,I) norm(A,2) norm(A, fro’)]
ans =

9.0000 8.0000 6.1615 8.3666

computes the four matrix norms we have defined, including the spectral and
Frobenius norms. For the spectral norm, you may check the result by com-
puting the square root of the eigenvalues of A'A:

» sqrt(eig(A’ * A))
ans =

2.2117

5.2100
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6.1615
and picking up the largest value. D

The Frobenius norm looks like a straightforward generalization of Euclidean
vector norm, but the other three norms look somewhat unnatural. In fact,
there is a natural way to introduce a matrix norm, given a vector norm.
A square matrix may be considered as an operator transforming vectors: it
rotates a vector and it changes its length, making it longer or shorter. We
may consider the degree of “amplification” of the vectors as the norm of the
matrix. Formally, given a vector norm, we may define its subordinate norm

as
Ax 1

]
1A 1= S ax ilp = rlnw'il_xl IAx I - (€R))
In this case we also say that the matrix norm is induced by the vector norm.
It is easy to see that in this case the two norms are compatible. Now it can
be shown that the vector |m]jonorm induces the matrix Je]j@norm and that
the same holds for the [m]li norms. A surprising fact is that the Euclidean
vector norm does not induce the Frobenius norm. In fact it is easy to see that
the Frobenius norm is not a subordinate norm, by considering the identity

matrix I: From (3.2) we should have [lIll = 1, but |JI]If = f°r a matrix
of order n. The matrix norm induced by the Euclidean vector norm is the

spectral norm, and this explains why it is denoted by [ulL® (see, e.g., [13]).

A fundamental property of compatible matrix norms is the following.

THEOREM 3.1 For any matrix norm that is compatible with a vector norm,

we have
p{A) < IA I

The proof is straightforward. Given a pair of compatible vector and matrix
norms, consider any eigenvalue A of A and let v be a related eigenvector of
unit length, jv = 1 Then we have

IAF 1AV IHIAV KITA Hy IHIA 11

Since this holds for any eigenvalue of the matrix, the theorem follows.

3.2.2 Condition number for a matrix

Now we are ready to start analyzing the effect of numerical errors on the
solution of a linear system. Consider the system

AX =b

and suppose that we perturb » by adding a term sb»; such a perturbation
may indeed occur due to rounding off. Then the solution will somehow be
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perturbed, too. We will have
A(x + Sx) = b 4 6b,
which implies that
A *5x = 6b => 6Xx —A - 16b.

We would like to assess the error in the solution, Sx, as a function of the input
error 6b. If we adopt compatible matrix and vector norms, we may write

I<xI= IA-"b < A" 1]-]éb |
Ibll = 1Ax I< JA B Ix 1.

Dividing term by term these two inequalities yields

151 N diaii o mn-in  1IMH

L _, 1w
1A pux it HA Ik = bsd- WL D1

which is analogous to (3.1). The condition number K{A) =] A | 1A -1 ]
gives an upper bound on the ratio of the relative error in the solution to the
relative perturbation. Generally speaking, the higher the condition number,
the more difficult it is to solve a linear system.

Example 3.7 The cond function computes the condition number. An op-
tional parameter may be provided to select a norm; the default value corre-
sponds to the spectral norm.

» cond(hilb(3))
ans =
524.0568
» cond(hilb(7))
ans =
4.7537e+008
» cond(hilb(10))
ans =
1.6025e+013

Checking these numbers it is easy to see why solving a linear system involving
the Hilbert matrix is a difficult task. D

Intuitively, we expect that a matrix which is close to singular will be difficult
to deal with. The following theorem, due to Gastinel, somewhat supports this
view.

THEOREM 3.2 Let A a non-singular matrix of order n. Then for any
subordinate matrix norm we have

IA - B |

— = B is a singular matrix
conW(Z)T mm
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The theorem basically states that when condition number is large, the matrix
can be well approximated by a singular matrix, which may mean trouble
when we deal with that matrix numerically. However, ill-conditioning is not
necessarily related to singularity, as the following example clearly shows.

Example 3.8 Consider the system8

X\~ X2- x3- ...-xXxn = -1
X2- X3 - ...- Xn - -1
X3 ... Xji 1
Xji—4 xn — 1
Xn = 1
Note that the matrix
-1 -1 -1 -1 -1
0 1 -1 . -1 -1
© 0 1. -1 -1
© 0 0o . 1 -1
4o 0 0 0 1

is not singular, as det(A) = 1 We have
b=[--1, -1, ..., -1, if,

and the solution is easy to find by a process called “backsubstitution.” We
see xn = 1 Then we may find xn-\ = xn—1= 0. Knowing xn-i, we find
xn”2, and so on. Using this strategy systematically, we get

x=1[0,0,0,..., 0 1T.

We may also “verify” this using MATLAB:

»  N=20;

» A = eye(N);

>> for i=I:N, for j=i+l:N, A(i,j) = -1;, end, end
>> b=-ones(N,1);

» b(N,1) = 1;
» A\b
ans =

0

8See chapter 3 of E.A. Volkov, Numerical Methods, M IR Publishers, 1986.
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P OO0OO0OO0OO0ODO0ODO0O0O0OO0O0O0ODO0OO0OO0OO0OO0OOo

Now, assume that we apply a small perturbation to the right-hand side vector
b, adding e to the last component. Then we should find a different solution.
The first step of backsubstitution shows a small effect of this small perturba-
tion:

Xxn —xn+ 8xn= 1+ 6.

However, if we go on finding the remaining unknown variables, we see that
the perturbation gets amplified:

» b(N,1) = 1.00001;

» A\b

ans =
2.6214
1.3107
0.6554
0.3277
0.1638
0.0819
0.0410
0.0205
0.0102
0.0051
0.0026
0.0013
0.0006
0.0003
0.0002
0.0001
0.0000
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0.0000
0.0000
1.0000

Thus, a negligible error in the input may result in a large error in the output.
Please note that this is due to the structure of the matrix itself, even though it
is not singular. We are facing a difficulty with the conditioning of the problem
itself, not with stability. Indeed, we can try to figure out what's happening
analytically. The error vector Sx satisfies the system of equations:

SxX\ - Sx2- Sx3- ... - bxn =
SX2 —Sx3 —... —Sxn =
SX3 —... —SxXn =

Sxn-1 - Sxn = 0

Sxn — e

By backsubstitution we see

Sxr e
SXfi— — SXfi —€
Sxn-2 = Sxn+ Sxn-1 = e+ e= 2
<Sn_3 = Sxn+ Sxn-i + Sxn-2 = e+ e+ 2e= 22

Sxi = <5x,(n_1 = 2(n it = 2n 2e
In our case
11(5x1100= 2"~ 2 le |, ix]loo= 1, 11(5b] Joo=]e], lb l]oo= 1,
and
Ka(A) =]]A My« JA” 1|JU> UNLOON A~ 00 = 2n_2.
) = I I H' I_l'joo/ IO Ifoo -
In fact,
» cond(A.inf)
ans =
10485760
» 2"18

ans =
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262144
» 0.00001 * 2~18
ans =
2.6214

3.2.3 Direct methods for solving systems of linear equations

Direct methods for solving linear equations are based on the idea of trans-
forming the matrix into a suitable form. Example 3.8, among other things,
shows that if the matrix is in upper triangular form, we may immediately find
the last unknown xn and then the other ones by backsubstitution. Let us
make the approach explicit for a system

AXx b

where A is an upper triangular matrix:

auX\ + ai2X2+ eee+ a\nxn = h
a22*2 + eee+ (0-2n%n = b2
OonnXn ~ bn.

Backsubstitution starts from the last variable x,, and proceeds backwards as
follows:

Now we should come up with a systematic method to transform a linear
system of equations into an equivalent triangular form. Gaussian elimination
is such a procedure. In principle, the idea is rather simple; we must form linear
combinations of equations in order to eliminate some coefficients from some
equations. Since combining equations linearly does not change the solution,
the resulting system is equivalent to the original one. Starting from the system
in the form

(Ei) an”i + o,12x2 H---- hai,,x,, = @l
&2

(E2) 021*1 + a22*2 + '+ 0,2nXn =

(m~n) dnIXl «- Gtn2*2 “b ' **  &nn*n — bn,
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we may try to obtain a column of zeros under the coefficient ay. This is the
first step in getting an equivalent triangular system. For each equation (EK)
(k = 2,..., n), we must apply the transformation

Ek) <- (EK) - 2 (S i),
(Ek) (EK) al_i )
which leads to the equivalent system:

anXi + Q\2+
022X2 + {han  — bl

af2x2 +

Now we may repeat the procedure to obtain a column of zeros under the

coefficient a”yY, and so on, until the desired form is obtained, allowing for
backsubstitution.

Example 3.9 Consider the following system:

1 2 1 Xi "0
2 2 3 X2 = 3

— —A9
- © g .3. 2

It is convenient to represent the operations of Gaussian elimination on an
augmented matrix:

1 2 1 O 2 © 0 1 2 1 0
2 2 3 3 0o -2 1 =*> 0 -2 1 3
-1 -3 0 2 _ o) ) o o A 21
From this it is easy to get X3= 1, X2 = —1, and xX\ = 1 D

We will not quantify exactly the number of operations needed for the overall
procedure, but it is evident that the algorithm has a quantifiable computa-
tional complexity, which is of order 0 (n3) for a system of order n.

Actually, what we have explained is only the starting point of Gaussian
elimination, as many things may go wrong with this naive procedure. A first
point is that we must have ay ¢ O to carry out the first step of the Gaussian
elimination; by the same token, we must have a*Y ¢ 0, and so on. Fortunately,
if the original system is non-singular, this may be accomplished by a suitable
permutation of variables (columns) or equations (row).

Example 3.10 Consider the matrix

A =

oo wm
P O
N Wb
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If we try Gaussian elimination to get rid of element 032 = 1, we are in trouble
since @2 = 0. However, to avoid the difficulty, we may simply swap the
second and the third equation. Formally, permutations may be represented by
suitable matrices, called permutation matrices, characterized by the following

properties:
e All elements are either O or 1
e For each row, one element is equal to 1.
e For each column, one element is equal to 1

As an example, consider

1 0 O
P = 0O 0 1
0 1 0O

We may check the effect on matrix A:

1T 0 0' *'5 1 4" "5 1 4
PA= 0 0 1 0 03 = 012
0 10 0 1 2 0 0 3

There is another reason why Gaussian elimination should include the pos-
sibility of swapping rows or columns: Some care is needed to minimize the
effects of finite precision arithmetic. We have seen in example 3.1 that sub-
traction is a potentially dangerous operation, because of the potential loss of
significance. Suitable row and column permutations may help in keeping the
trouble to a minimum; such operations are called pivoting. Scaling the size
of the coefficients may be used, too. These points are well treated in any
numerical analysis book, and the details are beyond the scope of this one.

There are alternative ways to see Gaussian elimination. A compact rep-
resentation is obtained if we see Gaussian elimination as a way of factoring
the matrix A into the product of a lower triangular matrix L and an upper
triangular matrix U. More precisely we have

PA = LU,

where P is a permutation matrix which may be necessary or advisable to
introduce for the above-mentioned reasons. We may try to understand, at
least intuitively, where the above factorization comes from. The permutation
matrix P corresponds to the pivoting operations; if pivoting is not required
for a matrix, then this matrix can be neglected. The upper triangular matrix
U corresponds to the end result of Gaussian elimination we just described.
The lower triangular matrix L corresponds to the transformations we must
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carry out to obtain the equivalent system in upper triangular form. These
transformations are linear combinations of rows, which can be obtained by
multiplying the original matrix by suitable elementary matrices; the matrix
L is linked to the product of these elementary matrices. This factorization is
called LU-decomposition.

Example 3.11 LU-decomposition is obtained in MATLAB by calling the
lu function with a matrix argument.

» A= 14 -2 ;-398; 51-6];
» [L,U,P] = lu(A)

L =
1.0000 0 0
-0.6000 1.0000 0
0.2000 0.3958 1.0000
U =
5.0000 1.0000 -6.0000
0 9.6000 4.4000
0 0 -2.5417
P =
0] 0] 1
0 1 0]
1 0 0]
With such a factorization, solving a system like Ax = b is equivalent to

solving the two systems

Ly = Pb
U x

1
<

in cascade.

» b = [1;2;3] ;
>> X = A\b

1.0820
0.1967
0.4344

» x =UN\N (L \ (P*b))

1.0820
0.1967
0.4344
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7 TryLU.m
N=2000;
A=rand(100,100);

tic

for i=1:1000
b=rand(100,1);
x=A\b;

end

toe

tic

[L.U.P] = lu(A);

for i=1:1000
b=rand(100,1);
x=U\(L\(P*b));

end

toe

Fig. 3.2 Script to check the advantage of using LU decomposition.

LU-decomposition may be advantageous when it is necessary to solve a sys-
tem repeatedly with different right-hand sides, as it occurs in the solution of
certain PDEs by finite difference methods. In order to appreciate the point
immediately, let us try a little experiment by running the MATLAB script in
figure 3.2. In the example we generate a random9 matrix of order n = 2000
and then solve 1000 systems with randomly generated right-hand sides. We
may compare the CPU time with standard Gaussian elimination (cold start)
and LU decomposition (warm start):

»  TryLU
Elapsed time is 0.904283 seconds.
Elapsed time is 0.096623 seconds.

Basically, with LU decomposition we obtain the same advantage we would
have with matrix inversion, without all of its potential numerical difficulties.

LU-decomposition takes a special form when applied to symmetric positive
definite matrices; such matrices occur in many optimization problems, and a
typical example is a covariance matrix. If A is a symmetric positive definite
matrix, it can be shown that there exists a unique upper triangular matrix

9The function rand generates a pseudo-random variable in the interval (0,1). It will be
used extensively for Monte Carlo simulation.
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U such that A = U'U; this is called Cholesky factorization10 Cholesky
factorization may be a suitable alternative to the usual Gaussian elimination
for special matrices.

Example 3.12 The Cholesky factorization is computed in MATLAB by the
chol function. For instance, let us define a matrix and check that it is positive
definite, by verifying that its eigenvalues are positive:

» A=[314 ;153 ;437]

A =
3 1 4
1 5 3
4 3 7
» eig(A)
ans =
0.3803
3.5690
11.0507

Given a known term b, we may factor A and solve the system.

» b=(1:3)";
» U=chol (A)

1.7321 0.5774 2.3094
0 2.1602 0.7715

0 0 1.0351
» UN (U”\ b)
ans =
-1.0000
-0.0000
1.0000 0

In chapter 4 we will see that the Cholesky factorization is also useful when we
have to simulate random variables with a multivariate normal distribution.

3.2.4 Tridiagonal matrices

In certain applications, the matrix of a system of linear equations has a very
specific form. One such case is the tridiagonal matrix, which may occur in
the solution of option pricing problems by PDEs. A tridiagonal matrix has

10In many texts, a lower triangular matrix L is considered, and the factorization is written
as A = LL'. It is easy to see that the two definitions are actually equivalent. We will stick
to this one, since the MATLAB function chol returns an upper triangular matrix.
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the following form:

an O@ 0 0 0 0

«21 a 23 0 0 0
0 «32 «33 034 0 0
0 On—271-3 ~n-2,n—2 On—2,n—1 0
0 0 on—,n—2 On—2,n—1 On—
0] (0] (0] On,n—1 Onl

This matrix has a banded form, and it is sparse; i.e., it has few non-zero
entries. Without loss of generality, assume that a,J+i (@ 0. If cij,j+i = O, it is
easy to see that the original system may be decomposed into two subsystems,
since in such a case we have an upper block of lower triangular form. We may
solve the system by a specially structured direct method. Consider the first
equation:

aU Xl + 012*2 — &i-

We may solve for x2, in terms of Xi:
x2: 02+ d2(i,

where C2= bi/ \2and d2= —ayuy/a\2. By the same token, we may obtain an
expression of XQin terms of xi. In fact, given the second equation

MN21*1 + 022*2 + 023*3 = b2,

we may express 13 as a function of x\ and x2. But since we know X2as a
function of xi, we may get an expression of the form

*3 = ¢3+ d3x1.

Going on the same way for all equations up to the (n — I)th one, we obtain
expressions like Xk — c* + dkXl, for all K = 2,..., n. Finally, plugging the
expressions for xn-\ and xn into the last equation, we end up with

on,n—*n—1"s Oonn*n = ol ) 1(cn-1i --dn-\X\) -l-dnn{cn + dnXi) = bn,

which yields xi, and, by substitution, all the other unknowns. The approach
may be adapted in the case of similar banded matrices. It is also worth noting
that memory savings may be obtained by storing only the non-zero matrix
entries.

3.2.5 Iterative methods for solving systems of linear equations

In many situations we must solve a large system of linear equations, charac-
terized by a sparse matrix. PDEs are a typical source of such systems, but
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there are others, such as computing the long-term probability distribution of
some discrete-state, discrete-time stochastic systems (Markov chains). Stor-
ing a sparse matrix is a waste of memory, since many entries are zero; special
techniques have been developed to avoid the problem. However, applying a
direct method such as Gaussian elimination to a sparse matrix may destroy its
characteristic. So we may try a different approach. One possibility is an iter-
ative method, generating a sequence of vectors that converges to the solution
desired. The process may be stopped when a reasonable accuracy has been
achieved. Note that, unlike direct methods, the number of steps required by
an iterative algorithm is not known a priori, and its behavior should be char-
acterized in terms of convergence speed, along the lines illustrated in section
3.1.3. The first issue to consider is how to characterize the conditions under
which an iterative method converges; in fact, the method could simply blow
up due to instability, giving rise to an unbounded sequence.

Here we illustrate the basic iterative approaches described in any numerical
analysis text. It is worth emphasizing that MATLAB has efficient capabilities
to represent sparse matrices and provides the user with a rich set of iterative
methods, which are much more sophisticated than the ones we describe here.
Nevertheless, we believe that the background behind relatively simple itera-
tive methods will be a useful reading, for at least a couple of reasons. On the
one hand, they have been proposed in the literature on financial engineering to
solve PDEs (see, e.g., [20, pp. 895-901] for a comparison of LU-decomposition
and successive overrelaxation in option pricing). Second, in chapter 5 we inves-
tigate the numerical stability of finite difference methods for solving PDEs,
using the same concepts we use here to study the convergence of iterative
methods.

Iterative schemes are one possible approach when the fixed point of an
operator is needed. Consider a generic operator G(-) and assume that you
want to find a fixed point of G, i.e., a point satisfying the equation

X = G(X).

A possible approach is to generate a sequence of approximations of the solu-
tion, according to the iteration scheme

x (fc+i) = G (x (fd)), (3.3)

starting from some initial approximation x”~. This approach, called fixed-
point iteration, may be used for both linear and non-linear equations, and for
many other problems as well. Now the question is if and when this scheme
will converge to a fixed point of G. The general answer lies in the contraction
mapping concept, which is widely applied in many diverse settings. To keep it
simple, let us investigate the idea in the case of the familiar system of linear
equations Ax = b, which can be rewritten as

x= (A +1)x —b = Ax —b.
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We want to find a fixed point of the operator G(x) = AX - b, and we could
consider the iterative approach (3.3). Would such a scheme converge? To be-
gin with, consider starting from a first guess x © , and trace the first iteration
steps:

x(i) = Ax()-b
X" = Ax~-b=A2X(0)—Ab—b
x@® = AX0-A2-Ab-b

Intuition suggests that if the elements of the matrix A" grow without bound
as N —» oo, the iteration scheme will diverge. Indeed, it can be shown that
convergence will occur only if all the eigenvalues of A have an absolute value
less than 1 (see below). Since this may well not be the case for an arbitrary
system of equations, it is better to take a slightly different approach and split
the matrix A as follows:

A =D + C,

which yields an equivalent system
Dx = -Cx + b.
Then we may apply the iteration scheme

d<fco = -Cx(fc)+b
Dx<*+1) = d(f9 (3.9

in order to generate a sequence of approximations x*c\ In some sense, this
is a generalization of the previous fixed-point approach, but the flexibility
in choosing D may be exploited to improve convergence. To investigate the
convergence issue further, we may write, as before,

x(fcdl) = -D _1Cx(fd + D -1b.

Letting B = —D_1C = | —D-1A, we may check how the absolute error
e(fc) _ x* _ x(fc) evolveS) where X* is the correct solution:

e(ferD = x*-x (fctl) = (Bx*+D-1b)-(Bx (fog+D ~1b) = B (x*-x (fc) = Be(fo),

from which it is easy to see that

lim e<fcc= lim B M 0).
k—o00 fc—e0
It can be shown that
lim Bt= 0

k—00
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if and only if the spectral radius of B is strictly less than 1, i.e., if all of its
eigenvalues have an absolute value less than 1. This implies that the approach
will converge if and only if

p(l —D-1A) < 1

To verify this condition, we should compute the eigenvalues of a possibly large
matrix (actually only the largest one in absolute value is needed). We may
avoid this trouble by recalling that

P(B) <18 |

for any matrix norm compatible with a vector norm. Hence, we may settle
the convergence question, in the sense of characterizing sufficient but not
necessary conditions for convergence, by considering easily computable matrix
norms such as |B |li or |IB Lbo. From a practical point of view, the whole
approach makes sense only if solving the linear equation (3.4) is easy. By a
proper choice of D, we obtain the methods described in the following.

Jacobi method A particularly convenient choice for D is a diagonal matrix:

/ an 0 0O <« O \
O 2 O m O
D = 0 0 (o< WL 0

v O 0 O°lam/

which is easily inverted provided that ay ¢ O; this condition may be obtained
by proper row/column permutations if A is non-singular. Choosing norm,
we obtain a sufficient condition for convergence:

]1-D ~ 100= max ~2 < i,

I<»<n

which actually boils down to diagonal dominance, i.e.

M
J«ii j~ jdij | Vi.
31

To implement the method, we must rewrite the initial equations as

\ Y /
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function [x,i] = Jacobi(A,b,x0,eps,Maxlter)
dA = diag(A); 7 get elements on the diagonal of A
C= A - diag(dA);
Dinv = diag(l./dA);
B= - Dinv * C;
bl = Dinv * b;
oldx = x0;
for i=l:Maxlter
x = B* oldx + bl;
if norm(x-oldx) < eps*norm(oldx) break; end
oldx = x;
end

Fig. 3.3 Implementation of the Jacobi iterative method.

which leads immediately to the iteration scheme

/ \
r(fcH) IRV o/q.XJ(k)
3=i
\ 3&

The iterations should be stopped when a satisfactory precision has been
achieved. One possible condition to check is related to relative error. Having
specified a tolerance parameter e, we could stop the algorithm when

IIx (fc+ D _x (fc) | | <€ iix (fc) Il .

Example 3.13 Jacobi method is easily coded in MATLAB, as illustrated
in figure 3.3. Input arguments are matrix A and vector b of course, an
initial approximation xo, convergence parameter e, and maximum number of
iterations. The implementation is based on vector and matrices as preferred
in MATLAB. Note the twofold use of the diag function; given a matrix, it
yields the vector of its elements on the diagonal ; given a vector, it builds a
matrix with the elements of the vector on the diagonal.

To check jacobi, we may use the script of figure 3.4. Note that the first
matrix is diagonally dominant; the second one is too, but to a lesser extent;
the third one is not diagonally dominant. In the script, we compare the
solution we get from the iterative method with the “correct” one obtained
by Gaussian elimination; iterations are stopped after at most 10,000 steps.
Please also note the use of the format string in fprintf (see online help).
This is the output of the script.

Case of matrix
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7, ScriptJacobi

Al = [31
A2 = [2.5
A3 =

b=[14-

10; 15-12; 1031; 0114];
110; 14.1 -12; 10 2.1 1; 01 12.1];

[2110; 13.5 -12; 102.11; 0112.17;

211 7

exactl = Al\b;

x1,i1] =
fprintf(l,
disp(Al);
fprintfd,
fprintf(l,
fprintf(l,

Jacobi(Al,b,zeros(4,1),1e-08,10000);
Tase of matrix\n ?;

Terminated after 7d iterations\n?, il);
* Exact JacobiXn ?);
7 -10.59g 7. -10.59g \n 7, [exactl ~; xI1 7);

exact2 = A2\b;

[x2,i2] =
fprintfd,
disp(A2);
fprintfd,
fprintfd,
fprintfd,

Jacobi (A2, b,zeros(4,1),1e-08,10000);
AnCase of matrix\n?;

Terminated after 7d iterations™” 7, i2) ;
” Exact Jacobi\n ?);
7 -10.59g ¥ -10.59 \n 7, [exact2™; x2 7);

exact3 = A3\b;

[x3,i3] =
fprintfd,
disp(A3);
fprintfd,
fprintfd,
fprintfd,

Jacobi (A3,b,zeros(4,1),1e-08,10000);
AnCase of matrixNn ?);

Terminated after 7d iterations\n?, i3);

* Exact JacobiXn ?;
7 -10.59 7 -10.59 \n 7, [exact3”; x37);

Fig. 3.4 Script to check jacobi.m.

165
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3 0
1 2
1 1
0 4
Terminated after 41 iterations
Exact Jacobi

0.55556 0.55556
0.32407 0.32407
-0.99074  -0.99074
0.41667 0.41667

Case of matrix

2.5000 1.0000 1.0000 0
1.0000 4.1000 -1.0000 2.0000
1.0000 0 2.1000 1.0000
0 1.0000 1.0000 2.1000
Terminated after 207 iterations
Exact Jacobi
3.1996 3.1996
-2.7091 -2.7091
-4.2898 -4.2898
3.809 3.809

Case of matrix

2.0000 1.0000 1.0000 0
1.0000 3.5000 -1.0000 2.0000
1.0000 0 2.1000 1.0000

0 1.0000 1.0000 2.1000
Terminated after 10000 iterations

Exact Jacobi

-42.808 1.6603e+027
47.769 -1.8057e+027
38.846 -1.5345e+027
-40.769 1.5812e+027

We see that convergence is faster in the first case than in the second, and
that divergence occurs in the third case. This is no surprise, if we check
the degree of diagonal dominance, but we should note that lack of diagonal
dominance does not necessarily imply divergence. The reader is urged to
check the spectral radius of matrix B in the three cases:

p(Bi) = 0.6489, p(B2) = 0.9257, p(B3) = 1.0059.

It may also be interesting to check the speed of convergence by plotting the
norm of relative error with respect to the true solution. To this aim we modify
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function [x,i] = JacobiBIS(A,b,x0,eps,Maxlter)
TrueSol = A\b;
aux = norm(TrueSol) ;
Error = zeros(Maxlter,l);
dA = diag(A); 7 get elements on the diagonal of A
C= A - diag(dA);
Dinv = diag(l./dA);
B= - Dinv * C;
bl = Dinv * b;
oldx = x0;
for i=l:Maxlter
x = B* oldx + bl;
Error(i) = norm(G<«TrueSol)/aux;
if norm(x-oldx) < eps*norm(oldx) break; end
oldx = x;
end
plot(l:i .Error(l:i))

Fig. 3.5 Modifying Jacobi to plot residual.

7 ScriptJacobiBIS
Al =[3110; 15-12; 103 1; 011 41;

A2 = [2.5110; 14.1 -12; 102.11;0112.1];
A3=[2110; 135-12; 10211 0112.1];
b=1_[14-21] 7

hold on

[x1.11] = JacobiBIS(Al,b,zeros(4,1),1e-08,10000);
pause(3);

[x2,i2] = JacobiBIS(A2,b,zeros(4,1),1e-08,10000);
pause(3d);

P03 = JacobiBIS(A3 ,b,zeros(4,1), 1e-08,10000);
pause(3);

axis ([1 100 0 2])

Fig. 3.6 Script to tun JacobiBIS.

jacobi and the relative script as shown in figures 3.5 and 3.6. The resulting
plot is displayed in figure 3.7.

We see how important the spectral radius of matrix B is. In fact, later we
discuss methods aimed at shifting its eigenvalues to speed up convergence.
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10 20 30 40 50 60 70 80 90 100

Fig. 3.7 Error in Jacobi method.

Gauss-Seidel method The Gauss-Seidel method is a variant of the Jacobi
method. The idea is to use the updated values of x-fc+1*immediately, as soon
as they are computed. The iteration scheme is therefore

r—1
H - a%ix
(fc+1) _ j=1 J=»+1

* 1 '
£V Gijxe

r=1,...,n. (3.5)

To analyze convergence of this method, we may note that this corresponds to
choosing as D the lower triangle of A:

( an 0 0 e 0 \

cel  «22 0 ee O

D = ast 032 «33 ‘ * 0
Na,i onz on3z T * a,, J

Then it can be shown that diagonal dominance is again a sufficient condition
for convergence:

]1-D 1A]]00< max < 1.

I<i<n
7=1

Speeding up convergence: successive overrelaxation Consider the iteration

scheme
X (feH) = B X @) + «
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Since we move from the current point to the updated point x (k+1\ we
may think of it as the addition of a displacement to the old approximation:

X (fc+i) _ x(fo) 4 r(fo

Even though this method will converge if p(B) < 1, convergence will be slow
if the spectral radius of B is close to 1 (see example 3.13). We could try to
speed up convergence by modifying the iteration:

X(fc+D = x(fo) + wir(k) = wx(*+i) + (! _ w)x(*).

Intuitively, if is a good direction, we might think of accelerating the
movement by setting u>> 1. We must make sure that a poor choice of u» does
not lead to instability. On the other hand, if the starting iteration is itself
unstable, we might think that the difficulty stems from moving “too much”
along the directions which leads to oscillations and instability. In this
case, we might think of dampening the oscillations with a suitable modification
of the iteration scheme. To pursue this dampening, we may form a convex
combination1l of the new and the old point as follows:

x (o) = wxk+1>+ (1- wx'®
= u(Bx<fg+d)+ (1- w)x(fco= Bux(fc+ wd. (3.6)

This is actually a convex combination if w € (0,1). It is worth noting that
it looks like common exponential smoothing methods for time series analysis,
where the aim is just to dampen oscillations in the estimates. The iterative
scheme is stable if p{Buw) < 1. Moreover, by a suitable choice of ui, the spectral
radius will be reduced, with a corresponding improvement in convergence
speed.

The reasoning above suggests that we may try to pursue modifications of
the iterative approaches we have just described. For instance, we may try
the idea on the Gauss-Seidel scheme. We may replace (3.5) by the following
iteration:

(fori) _ 1 o (0
z bi -J 2 aHxj - Y1 oaiixj
j=1 j=i+1
A = o

In order to analyze the effect of this modification, let us rewrite the Gauss-
Seidel scheme in a compact form, based on the following decomposition of
A:

A =L+D+U,

11A convex combination of two points xi and X2 is just a particular linear combination
with nonnegative weights, such that their sum is 1: Axi + (1 —A)xr for A £ [0,1].
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where
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With this notation, the modified Gauss-Seidel scheme may be rewritten in
matrix form as

z(feH) = D-i(b _ Lx(fct)) - Ux(fo)
X (fctl) =wz(fctl) + (1-w ) XW.

Eliminating z(fc+tl) and rearranging yields
(I + wD_1L)x<fctl>= [(1 - w)l - uD_1U]x(fc-+ wD_1b,
which will be stable if
p((l+ wD-1L)-1[(l - w)l - wD_1U]) < 1

This method is called SOR (Successive OverRelaxation) and by proper selec-
tion of the parameter w, we may reduce the spectral radius of the matrix,
thus improving convergence.

Example 3.14 Figure 3.8 shows a possible implementation of successive
overrelaxation, based on the Gauss-Seidel scheme. We may try to see the
effect on convergence on the second matrix of example 3.13, which took 207
steps to converge with the Jacobi method. We do so by plotting the number
of iterations needed for convergence as a function of different values of w in
the interval [0, 2], which is obtained by running the script of figure 3.9. We
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function [x,k] = SORGaussSeidel(A,b,x0,omega,eps.-Maxlter)
oldx = x0;
X = X0;
N = length(x0);
omegal = 1-omega;
for k=1:Maxlter
for i=I:N
z = (b(i) - sum(ACi,(L:i-D)*x(1:(-1))) -..
- sum(ACE, (1+1):N)*x((i+1):N))) 7 A(i,i);

x(i) = omega*z + omegal*oldx(i);

end
if norm(x-oldx) < eps*norm(oldx) break; end
oldx = x;

end

Fig. 3.8 Implementation of SOR modification of Gauss-Seidel method.

7, ScriptSOR

A2 = [25110; 14.1 -12; 10 2.1 1; 011 2.1];

b=1[14-21] 7

omega = 0:0.1:2;

N = length(omega);

Numlterations = zeros(N,l);

for i=I:N
[x,k] = SORGaussSeidel (A2,b,zeros(4,1),omega(i),le-08,1000);
Numlterations(i) = k;

end

plot(omega,Numlterations)

grid on

Fig. 3.9 Script to check SOR modification of Gauss-Seidel method.

get the plot in figure 3.10. This shows the impact of w on speed of conver-
gence. Actually, when the number of iterations exceeds the limit, we have
divergence, since by playing with the relaxation parameter a stable case may
result in instability and vice versa. With w = 1, we have the standard Gauss-
Seidel approach, which requires 117 iterations; the best result, 49 iterations,
is obtained with yj = 1.4. D

This example shows that finding the right value of the relaxation parameter is
far from trivial, and in fact it is subject of quite some literature. For specific
applications, there are strategies to estimate a good value for = By the way,
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Fig. 3.10 Number of iterations in modified Gauss-Seidel as a function of the relaxation
parameter oj.

the careful reader may wonder why in 3.10 we considered values of w in the
range [0,2]. In fact, it can be proved that this acceleration method cannot
converge for values of u> outside this interval. Finally, looking at equation
(3.6) we may also guess why the method is actually called under-relaxation
when w < 1, and overrelaxation when ui > 1.

The conjugate gradient method In MATLAB you will not find either Jacobi or
Gauss-Seidel functions, as they are just the basic iterative methods to solve
systems of linear equations. Some functions are related to an apparently
weird approach to solving such systems, i.e., the solution of an optimization
problem. In fact, solving the system AX = b is equivalent to solving the
optimization problem:

min JAX —b |R,

where we are using Euclidean norm. Clearly, the objective function cannot
be negative, and it will be zero for the solution of that system of equation
(assuming it is unique). We may make the objective function more explicit:

JAx —Db]|2 (AX —b)'(AXx —x) = (X'A'- b")(AXx —Db)

X'A'AX —2b'Ax + b'b,

where the last term is actually irrelevant, as it is constant. We will see in
chapter 6 that this is a quadratic programming problem (much like risk min-
imization in mean-variance portfolio optimization), and it can be solved by a
number of ways. The most general approach, as we will see, is based on the
gradient of the objective function, which yields a search direction to maximize
or minimize its value.
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In general, there is no advantage in using this approach, but for the case of
a symmetric positive definite matrix, it can be shown that solving the system
of equations is equivalent to the following problem:

min -x'Ax —b'x.
2

The conjugate gradient method is based on a peculiar set of search directions,
such that in theory the method would converge in a number of steps given
by the order of the matrix. Hence, the method could be classified as a direct
method. In practice, due to roundoff errors, this property does not hold and
the method is considered as iterative. With recent improvements, conjugate
gradient methods have become quite competitive for problems with specific
structure. Such a structure occurs quite often in the numerical solution of
PDEs.

3.3 FUNCTION APPROXIMATION AND INTERPOLATION

There are several reasons why we need the ability to approximate a function.

e Sometimes, we know an expression of the function, but it is impossible
or expensive to evaluate. A typical example is the standard normal
distribution function

which occurs in the Black-Scholes pricing formula.

 More generally, we may be able to evaluate the function itself, but we
need something different, like the integral of the function. An approxi-
mation of the original function may be easier to integrate.

« Finally, there are situations in which the function is known or computed
only at a discrete set of points (nodes), and we would like to find a
suitable function which takes the same value (or a close one) at those
nodes but can be evaluated outside this set.

In some cases, it is enough to find a local approximation, in the neighborhood
of a given point xq, in which case a Taylor expansion would suffice:

f(x) « f(x0)+ f(x0)(Xx - xQ + A" (XO0)(X - X0)2+ eee,
We have seen such an idea in the duration convexity approximation used for

bond portfolio immunization and the delta-gamma approximation used with
derivatives (see examples 2.10 and 2.24 on pages 59 and 113, respectively).
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In this section, however, we are interested in an approximation valid over an
extended range of values of the independent variable.

Another criterion to classify approximation methods is based on the gen-
erality of the approach. In the case of the cumulative function for the normal
distribution, we may look for some ad hoc approximation. In other cases we
look for more general strategies based on classes of approximating functions.
A possible choice for the class of approximating functions is represented by the
class of polynomials of given degree m; let Pm{x; a) denote such a polynomial,
with coefficients represented by the vector a. One reason behind this choice is
that polynomials are continuous functions, as well as their derivatives, which
lend themselves to easy differentiation and integration. One possible metric to
select the best approximation is the least squares approximation, whereby we
try to minimize the average square deviation of the approximating function
from / on a set of selected points Xi, for which we know the value f(xi). The
approximation problem can be stated as

n
™n. YA[f(xi) - Pm(xi;a)]2.
i—1

Different objective functions could be used, basically corresponding to differ-
ent ways of measuring the norm of the vector of the approximation errors.
Another typical choice is the “min-max” metric, which is based on the Je|lo
norm:

moiin max \f(xi) - Pm(xi;a)\.

Sometimes, it is very useful to take a slightly more explicit view of function
approximation. What we usually try to find, given a function /(x), is a
suitable approximation expressed as a linear combination of a set of basis
functions. |f we consider a set of m basis functions (x),j = 1,...,m, we

want something like
m

/(x) FO/(x) = $>*,(*).
ji=l
The basis functions may be polynomials, but there are alternatives. Finding
the approximation means finding the m coefficients Cj in the linear combina-
tion. In function approximation by least squares, we have a set of n nodes
at which we know the value of the function, and n > m. In this case, we
have too few degrees of freedom, and we cannot enforce an exact match. In
other words, we would like to find the approximation by solving a set of linear

equations like
m

"2 cj<t>j(xi) = f(xi), i=1,...,n
j=1

or, in compact form,
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where yi — f(xi) and (pij = (j>j(xi). Unfortunately, if n > m the system is
overdetermined and it cannot be solved. What we can do is finding the least
squares approximation, which requires the minimization of the sum of squared
residuals e;, where

m
et = f{xi) - YjCj'frjixi), i=1,...,n.
i=i
Using relatively straightforward calculus, we can show that the least squares
solution is
c= (P'd D'y,
If, however, the number of nodes and the number of basis function is the same,

m = n, then we may be able to find an exact match of the function values at
nodes. We find the solution by enforcing the interpolation conditions:

m
N C3ONIXN = i=1,...,n.
J=1
This process is called function interpolation and, within this framework, it

leads to the solution of a system of linear equations. The following example
will illustrate the difference between approximation and interpolation.

Example 3.15 Say that we want to approximate/interpolate an increasing
concave function, such as log(x). We are given a set of five nodes, which may
be plotted as follows:

» xdata = [1 5 10 30 50];
>> ydata = log(xdata);

>> plot(xdata,ydata,’0’)
>> hold on

resulting in the plot of figure 3.11 We may try fitting a second-order polyno-
mial, ax2+ bx+ c¢. Note that this may correspond to selecting basis functions:

0i(z) = 1, g2{x)-x, d3(x) = x2.

This choice is referred to as the monomial basis, but a different set of poly-
nomials could be used. Polynomial fitting, in the least squares sense, can be
accomplished by the MATLAB polyfit function:

>> p = polyfit(xdata,ydata,?2)
P =

-0.0022 0.1802 0.3544
>> xvet=1:0.1:50;
» plot(xvet,polyval(p,xvet))

This snapshot produces the plot in figure 3.12. The approximating polyno-
mial does not really pass through the data point, but this is expected, as the
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Fig. 3.11 Data points (nodes) for example 3.15.
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Fg. 3.12 Fitting a second-order polynomial in example 3.15.

number of nodes is larger than the set of coefficients in the polynomial. The
trouble may be that, even if the fit is good, the approximating function is not
monotonically increasing. If the logarithm is actually a utility function, we
would require an increasing approximation which shows non-satiation. Since
using a second-order polynomial is not that satisfactory, we could try increas-
ing the order of the polynomial. We have five data points, and a fourth-order
polynomial may result in exact polynomial interpolation. Note that the order
of the polynomial is one less the number of nodes. To remember this, think
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that there is one line (polynomial of order one) passing through two points.
This is also easily accomplished in MATLAB:

>> p = polyfit(xdata,ydata,4)
P =

-0.0000 0.0017 -0.0529 0.6705 -0.6192
» plot(xvet,polyval(p,xvet))

and we get the plot in figure 3.13. Now we do pass through the data points,
which is nice, but there are spurious oscillations and the approximating func-
tion is neither concave nor increasing, which is certainly bad for a utility
function. In finance, we could have similar trouble when we try to define a
term structure of interest rates fitted on the basis of a limited set of bond
prices. Hence we see, that polynomial approximation and interpolation is not
that trivial. D

Function interpolation and approximation is a vast sub-field of numerical anal-
ysis. In the next sections we will just cover the essentials: an example of ad
hoc methods is given in section 3.3.1; straightforward polynomial interpola-
tion is the topic of section 3.3.2; cubic splines are introduced in section 3.3.3;
section 3.3.4 deals with least squares approximation at a more general level.
We should also mention that the methods we illustrate here can be extended
to multivariate cases.

3.3.1 Ad hoc approximation

In this section we consider an example of ad hoc approximation by a rational
function. While polynomials enjoy nice characteristics, sometimes approxi-
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function z = mynormcdf(x)

c= [ 0.31938153 , -0.356563782 , 1.781477937 ,
-1.821255978 , 1.330274429];

gamma = 0.2316419;

vx = abs(x);

K= 1./(l+gamma.*vx);

n = exp(-vx.*2./2) ./sqrt(2*pi);

matk = ones(5,1) * k;

matexp = (ones(length(x),1)*(1:5)) 7

matv = matk."matexp;

z=1-n.*(c*matv);

i = find(x < 0);

z(i) = 1-z(i);

Fg. 3.14 MATLAB code to approximate the cumulative normal distribution.

mations involving rational functions fit more nicely. For instance, there are
various approximation formulas that can be used to evaluate the standard
normal distribution function N(x). One is the following12:

1- N'(x)(aik + a™k2+ a3k3+ a™k4 + a™k5) ifx >0

N (x) .
1- N(—x) ifx <0,
where
_ 1

N'<s> - /2 1+ 71

7 = 0.2316419, 01 = 0.31938153

a2= -0.356563782, a3 = 1.781477937

a4 = -1.821255978, a5 = 1.330274429.

The MATLAB code for this function is shown in figure 3.14; it is a little
involved, as we have made sure it can operate on vector arguments (as it should
be the case with good MATLAB functions). This is not really the formula
used in the equivalent MATLAB function normcdf, but we may compare the
two approximations:

» normcdf([-1.5 -1 -0.5 0.5 1 1.5])
ans =

12This formula is proposed in [9, p. 248]. It is based on approximation 7.1.26 of the error
function in [1], which in turn refers to [8]. If you have some archaeological instinct, you
may go further back in time.
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0.0668 0.1587 0.3085 0.6915 0.8413 0.9332
» mynormcdf([-1.5 -1 -0.5 0.5 1 1.5])
ans =

0.0668 0.1587 0.3085 0.6915 0.8413 0.9332

3.3.2 Elementary polynomial interpolation

We consider here elementary interpolation by polynomials of sufficient degree.
Let us consider a set of support points (Xi,y*), i = 0,1,..., n, wherey; = f(xi)
and Xi ¢p xj fori @ j. It is easy to find a polynomial of degree (at most) n
such that Pn(xr) = y* for any i. We may rely on the Lagrange polynomials
Li(x), defined as

Note that these are polynomials of degree n and that

rea \ 1 ifr=+1f
1 k 10 otherwise.

Now an interpolating polynomial can be easily written as

n
Pn(x) = YiLj(x).
i=0
In practice, no one should use this form for computational purposes, and

some tricks are needed for the sake of computational efficiency, but the idea
is hopefully clear.

Example 3.16 We consider here the interpolation of a set of ten data points.
We may try interpolating them by a polynomial of degree 9:

» x=1:10;

» y=[825-2052474.5 2];

» plot(x,y, D9

» hold on

» x2=1:0.05:10;

» p=polyfit(x,y,9);

Warning: Polynomial is badly conditioned. Remove repeated
data points or try centering and scaling as described
in HELP POLYFIT.

» plot(x2,polyval(p,x2))

We get some warning from MATLAB, which we disregard for a moment. The
result is shown in figure 3.15. We may see that the polynomial passes through
the data set but, unfortunately, we also see that the interpolating polynomial
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Fig. 3.15 Interpolating a given data set by a polynomial of degree 9.

has some undesirable oscillation behavior near the end points of the interval.
This is not surprising: a polynomial of degree n may have up to n zeros, which
means it may have up to n —1 local minima and maxima and oscillations are
to be expected. D

The oscillation of high-degree interpolating polynomials is a typical diffi-
culty, and there are a few ways to try overcoming it. One obvious way is to use
more sophisticated functions, for both approximation and interpolation. But
actually there is still another basic mistake we are doing in the last example:
we did a poor choice in selecting nodes. In selecting nodes over an interval
[a, 6], the natural choice is taking evenly spaced ones:

This choice may have nasty effects in itself. It turns out that a better choice
is given by Chebyshev nodes:

a+b b—a /n —i+ 05 \ A
Xi= = 2—%—-2— CS| - qy— 7’ r=

An investigation of why this seemingly odd choice is an improvement over
a naive placement of nodes goes beyond the scope of this book, but we will
illustrate the effect with a typical example.

Example 3.17 We consider polynomial interpolation for a well-known func-

tion, called Runge function:
1

1+ 25z2
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7, RungeScript.m

7, define inline function

runge = inline( 7./ (1+25*x.*2)");

/; use equispaced nodes

EquiNodes = -5:5;

peq = polyfit(EquiNodes,runge(EquiNodes),10);
x=-5:0.01:5;

figure

plot(x,runge(x));

hold on

plot(x.polyval(pl0,x));

7. use Chebyshev nodes

ChebNodes = 5*cos(pi*(Il - (1:11) + 0.5)/11);
pcheb = polyfit(ChebNodes, runge(ChebNodes),10);
figure

plot(x,runge(x));

hold on

plot(x,polyval(pcheb,x));

Fig. 3.16 MATLAB script for example 3.17.

over the interval [5,5]. As we mentioned, a seemingly obvious and natu-
ral choice is to place equally spaced interpolation nodes, for instance Xi =
—b5, 4, —3,..., 4,5. These are eleven nodes, and we may try interpolating by
a polynomial of degree ten.

Straightforward interpolation is accomplished by the MATLAB script in
figure 3.16. Selecting equally spaced nodes results in the first plot, depicted
in figure 3.17. We see the usual oscillation near the end points, but in this
case the behavior looks really pathological. The reader is invited to verify
that increasing the order of approximation only makes things worse. If we use
Chebyshev nodes, which is done in the second half of the script, we get the
result in figure 3.18. While the result is not yet satisfactory, at least it looks
a bit less pathological. D

Even though choosing Chebyshev nodes helps in the last example, there
is still something wrong with the quality of the approximation we get by
interpolating with one high-degree polynomial. Using the right nodes, we
may try increasing the order of the polynomial, but there is an easier way
out: using piecewise polynomial functions. A look at figure 3.18 suggests that
there are regions in which the function is essentially zero, and we should use
a different approximation there. Using piecewise polynomial interpolation is
pursued in the next section on splines.

We close the section here by noting that we have still another issue when
using simple-minded polynomial interpolation. Consider again the basis func-
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Fig. 3.17 Polynomial interpolation for Runge function: equally spaced nodes.

Fig. 3.18 Polynomial interpolation for Runge function: Chebyshev nodes.
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tion framework. If we want polynomial approximation or interpolation, the
monomial basis (1, X, ..., x”_1) is the natural choice when selecting basis
functions. However, this may lead to a badly conditioned matrix ® in equa-
tion (3.7), along with a few numerical difficulties. In fact, several alternative
families of polynomials have been proposed to avoid them. Since we men-
tioned Chebyshev nodes, we should at least mention in passing Chebyshev
polynomials, which are recursively defined as follows:

TOo(x) = 1

T\{x) = x

T2(x) = 2x2—1 (3.9)
T3(x) = HK3- 3x

Tn(x) = 2xTj-i(x) - Tj-2{x).

3.3.3 Interpolation by cubic splines

One possible way to avoid oscillating polynomials in function interpolation is
resorting to low-degree polynomials, interpolating the data points piecewise.
The simplest idea is to use piecewise linear interpolation. Given the N +
1 nodes (or knots) (Xi,yi), we may use N first-degree polynomials Si(x),
each one valid on the interval (xi,xi+1). An obvious requirement is that the
resulting function is continuous, i.e., 5i(ajj+i) = 5j+i(a;i+i). Recalling the
Lagrange polynomials defined in equation (3.8), we have

. X+ * r |

8% —yi xi xi+i Py o 00 O
This type of interpolation is called linear spline. Whereas the interpolat-
ing function is continuous, its derivative is not, which may have undesirable
consequences. If the data we are interpolating are prices of an asset as a
function of an underlying factor, non-differentiability prevents the estima-
tion of sensitivities. If we are approximating a function which must then be
optimized, as is the case with the value function in dynamic programming,
non-differentiability is clearly a complication.

We may enforce the continuity of the derivatives of the spline by increas-
ing the degree of the polynomials. The most common spline is obtained by
“joining” N third-degree polynomials Si(x), with coefficients s;o, sti, Si2, s™,
which must satisfy the following requirements:

S(X) = Si(x) = SO+ Sn(x - Xi) + si2(x - Xi)2+ si3(x - Xi)3
XE£[xi,xi+1], r=0,1,...,AT-1
S{xt) = i, i=0,1,..., N



184 BASICS OF NUMERICAL ANALYSIS

SinXi-f-i)  —  BIL(Ni+]) i—0,1,...,N 2
AONIHD) = AL (M) *=0,1,...,N —2
Sj'fo+i) = Sj+iri+i) r=0,1,...,iV- 2

The resulting spline S(x) is called a cubic spline. The condition above re-
quire continuity for the spline itself and for its first and second derivatives.
To specify a spline, we must give 4N coefficients. Passage through the sup-
port points gives N + 1 conditions; the continuity of the spline and the two
derivatives enforces 3(N - 1) conditions, yielding a total of 4.N—2 conditions.
Hence, we have two degrees of freedom which may be eliminated by enforcing
further requirements. Usually, they involve some conditions at, or near, the
end points xq and x~. Among the most common conditions, we recall the
following ones:

e S"{x0) = S"{xn) = 0, which leads to natural splines.

e S'(x0) = f'(x0) and S'(xn) = f'(xn), which may be used if we have a
precise idea of the behavior of f(x) near the end points.

e The not-a-knot condition, which is obtained by requiring that the third-
order derivative S"'(x) be continuous in xX\ and xnT-i- This implies that
S(x) would be a spline for knots xo, X2,X3,..., x”~-2,xn, but it would
interpolate through xi and x”~-i too (hence the name).

We should note that these conditions are symmetric with respect to the end
points of the interval; actually we could make different choices for the two end
points. It is also interesting to note that we have no degree of freedom in linear
splines; in the case of splines of degree 2, we would have one degree of freedom,
with a corresponding asymmetry in end points. Despite the appealing name,
natural splines are usually avoided. Their importance stems from the following
theorem, which we state without proof.13

THEOREM 3.3 Let f" be continuous in (a, b) and let a —xg < X\ < mmm<
xn = b. If S is the natural cubic spline interpolating f on the knots xt, then

The importance of this theorem can be understood by recalling that the
curvature of the curve described by the equation y —f(x) is given by

N (X)N-{1 + f(x )2}-3/2

If /' is sufficiently small, we see that |f"(x) |approximates the curvature;
hence, the natural spline is, in some sense, an approximation of minimal

13See, e.g., [13, pp. 380-381].
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Fig. 3.19 Interpolating a given data set by a cubic spline.

curvature over the interval (a, b). When nothing is known about the function,
the not-a-knot condition is the recommendable choice; in fact, this is the
default option in MATLAB.

To find the unknown coefficients, we have to set up a system of linear
equations; the details are a bit tedious, and since they are implemented in a
ready-to-use MATLAB function, they are omitted. Yet it is interesting to note
that for most choices of free conditions, the resulting system has a tridiagonal
form like that discussed in section 3.2.4; furthermore, it is symmetric and
diagonally dominant, hence it is particularly easy to solve.

Splines are so important that an entire MATLAB toolbox is devoted to
them. In the base MATLAB system, you have two functions that may be
used for cubic spline interpolation. One is interpl, provided that you call it
with the parameter 'spline’; the other one is spline.

Example 3.18 Let us compare the interpolation we obtain for the cases
we have already discussed in examples 3.16 and 3.17. Running the following
script, we get the result in figure 3.19:

x=1:10;

y= [8 2.5-2 052474.5 2],
plot(x,y, 0’)

hold on

x2=1:0.05:10;
y2=interpl(x,y,x2,’spline’) ;
plot(x,y,’ 0’ ,x2,y2);

We see that spurious oscillations are avoided. The same result is obtained by
calling spline, which also returns a spline object; this object may be used
for later evaluations by the function ppval:
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7. RungeSpline .m

7 define inline function

runge = inline(1./(1+25*x.72) ?);
7 use 11 equispaced nodes
EquiNodesll = -5:5;

ppeqll = spline(EquiNodesll,runge(EquiNodesll));
x=-5:0.01:5;

subplot(3,1,1)

plot(x,runge(x));

hold on

plot(x,ppval (ppeqll,x));
axis([-5 5 -0.15 1]

title( ™1 equispaced points ?;

¥, use 20 equispaced nodes
EquiNodes20 = linspace(-5,5,20);
ppeq20 = spline(EquiNodes20,runge(EquiNodes20));
subplot(3,1,2)

plot(x,runge(x));

hold on

plot(x,ppval (ppeq20,x));
axis([-5 5 -0.15 1]

title( 20 equispaced points ?;

7. use 21 equispaced nodes
EquiNodes21 = linspace(-5,5,21);
ppeq2l = spline(EquiNodes21, runge(EquiNodes21));
subplot(3,1,3)

plot(x,runge(x));

hold on

plot(x,ppval(ppeq2l,x));
axis([-5 5 -0.15 1])

title( 21 equispaced points ?);

Fg. 3.20 MATLAB script to interpolate Runge function by cubic splines.

x=1:10;

y =825 -205247 45 2];
plot(x,y,’0o")

hold on

pp=spline(x.,y);

x2=1:0.05:10;

y2 = ppval(pp,x2) ;
plot(x,y, 0’ ,x2,y2);

We may also check the result with the Runge function. Running the script
of figure 3.20 we get the plots in figure 3.21. We may notice that using 21



Fig. 3.21

FUNCTION APPROXIMATION AND INTERPOLATION

11 equispaced points

20 equispaced points

21 equispaced points

Interpolating Runge function by a cubic spline.
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points rather than 11 improves the approximation, whereas an even number
of points result in a very poor match near the maximum. The approximation
is still not satisfactory: the reader is urged to try placing nodes in points
-5, -3,3,5 and distributing 17 nodes on the interval [—2, 2]. D

As we have pointed out, in MATLAB the default way to define the two degrees
of freedom in cubic splines is the not-a-knot condition. But if you provide the
function spline with an y vector with two more components than the vector
X, the first and last components are used to enforce a value for the spline
slopes at the extreme points of the interval.

Cubic splines are only the basic type of spline; many more have been pro-
posed. A typical application in finance is in estimating term structures of in-
terest rates given a limited set of market data related to bond prices (see, e.g.,
[3], [4], and the references therein). In economics, shape-preserving splines are
sometimes used, which make sure that the resulting spline has certain quali-
tative features which are essential from an economical point of view.

3.3.4 Theory of function approximation by least squares

This section is somewhat more theoretical, and basically aims at providing a
more general and abstract framework for function approximation. The basic
concept we use here is a generalization of orthogonality between vectors. We
should start with a general formulation of the best approximation problem.
We are given a normed linear space E and a subspace G of E. By “normed”
we mean that the objects in that space have an associated norm (e.g., the
vector norms we have discussed in section 3.2.1); by “linear” we mean that
by taking any linear combination of objects in G or E, we get another object
in that set.

Given a norm, we may define distances between arbitrary objects in the
space. The distance between two elements /,g € E is simply given by §/—g ||
More generally, the distance of / € E from the subspace G is defined by

dist(/, G) = inf ||/- .
st/ 6) = int 11/~ dll

An interesting specific case occurs when we have an inner-product space,
whereby norm is based on the inner product defined on the space:

1Al =

Typical examples of inner products are

n
< X,y > = *"Xiyi, (3.10)
=1
for >x, y GMn, and
<f,g>= f(x)g(x) dx

Ja
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for /7,9 £ C(a, b), i.e., the space of continuous functions on the interval (a, b).
We say that two elements f,g € E are orthogonal (denoted by f-Lg) if

</,9>=0.

We say that a finite or infinite sequence of elements /1,/2,/3, ==+ G blis an
orthogonal system if
<fi,fj>=0 Vz j.

Furthermore, if all elements in the subset have unit norm, we say that the
system is orthonormal.

Example 3.19 The following polynomials:

po(x) = 1
Pi{x) = x

p2(x) = x2- 1

3(x x3- \X
p3(x) N

4 6.2, 3
~JX

p4(x)\= X + N

form an orthogonal system, on interval [—1, 1], if the inner product

<f,9> =J f(x)g(x) dx.

They are the first polynomials in the family of Legendre polynomials. Simi-
larly, the Chebyshev polynomials defined in (3.9) form an orthogonal system
with respect to the inner product:

<l.9>=j ()92

Actually, there are general strategies to build orthogonal systems, which will
be outlined in section 4.1.2.

We should also mention that orthogonal systems of random variables can
also be built. The idea, said very roughly in financial terms, is to decompose
risk (a random variable) into the sum of uncorrelated sources of risk, each one
carrying a piece of information in such a way that redundancy is avoided and
a simple representation of risk is obtained.

The fundamental result of approximation in a normed space is that, if the
space is equipped by an inner product, there is an equivalence between the
two conditions:

1. g is a best approximation to / in G.
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Fig. 3.22 Orthogonal projection.

2. The residual is orthogonal to the subspace: f —g LG.

This is again a generalization of the familiar geometric concept of orthogonal
projection in Euclidean spaces (see figure 3.22). If we have a vector in the
(K, v, z) space, and we want to find the closest vector on the (x, y) plane, we do
an orthogonal projection. The following example shows how this equivalence
can be exploited.

Example 3.20 Consider the space E = C{0,1) of continuous functions over
interval (0, 1), and assume that we want to find an optimal approximation (in
the least-squares sense) in the subspace G consisting of polynomials of degree
n. We may build the linear subspace G by using monomials gj(x) = x:i,
j —0,1,...,4, as the basis. Thus, g(x) = Ylj=0aj9j(x) = a3xm We
want to minimize the deviation

n
dx.

If / —g is orthogonal to G, then we must require

< 9-/,9r> =0, r=20,..., n,

or, in other words,

?

In our case, this yields a set of linear equations:

n
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These equations are collectively called the normal equations. Unfortunately,
the matrix of coefficients includes definite integrals evaluating to

i
i+j +1 i+ + 1

But this is the (dreaded) Hilbert matrix that we already met in example 1.3
on page 18. D

The example shows that a simple-minded approach may lead to ill-condition-
ed numerical problems. Proper selection of the basis functions is fundamental
from the numerical point of view, and this is why families of orthogonal poly-
nomials are often used.

We have so far considered the continuous least squares problem, in order to
motivate the introduction of orthogonal polynomials. Typically, in numerical
applications, we have to solve a discrete problem in which a set of n data
points (Xi,yi), i = 1,.. .,n, is given, where yi = f(xi), and we look for an
approximation in terms of a linear combination of m basis functions (e.g.,
polynomials). Using the Euclidean norm, as we have already seen, we get the
ordinary least squares problem:

mmllel_ £ f(Xi) ~~2 c3d3(xr)
i=1 3=1

In this case the normal equations (or ordinary calculus) yield
c= (®'®)-1P'y

In this case too, solving the normal equations may be easier with a proper
selection of basis functions. In chapter 10 we will see an application of lin-
ear regression with polynomials to pricing American options by Monte Carlo
simulation.

3.4 SOLVING NON-LINEAR EQUATIONS

Solving non-linear equations is a common task in finance; the most elementary
example is the computation of the internal rate of return (see example 2.8 on
page 47), which calls for finding the roots of a polynomial. A polynomial
equation is a particular case of general non-linear equations, and it is a very
lucky case, in the sense that we are typically able to find all of the roots of
the equation by specific methods. For instance, if we consider

X+ bx2- 2x2+ 4= 0,

we may use the MATLAB roots function and get
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Fig. 3.23 Example of the bisection method.

>> roots([1 3-2 4])
ans =
-3.8026
0.4013 + 0.9439i
0.4013 - 0.9439i

In general we must settle for one root near some prespecified point.
You might wish to find a solution of an equation in a single variable, such

f(x) =0
or a system of equations in several variables, such as
F(x) = 0.

MATLAB offers different functionalities to this purpose. We first outline
the basic features of numerical methods for non-linear equations, limiting the
treatment to bisection and Newton methods.

3.4.1 Bisection method

The bisection method is the simplest method for solving the scalar equation
f{x) =0

without requiring anything more than the ability to evaluate, or estimate, the
function / at a given point. This is an important feature, since in some cases
we do not even have an analytical expression for the function /, and there-
fore we are not able to apply more sophisticated methods such as Newton's
method, which calls for computation of the derivative of /. Suppose that we
know two points a,b (a < b) such that f(a) < 0 and f(b) > 0. Then, if the
function is continuous, it is obvious that it must cross the zero axis somewhere
in the interval [a, 6] (see figure 3.23). The same observation holds if the signs
of the function in a and b are reversed. So [a, €] is an interval encapsulating
a root of the equation. Then we may try to reduce this interval by checking
the sign of /7 in the midpoint of the interval, i.e.,

a+ b
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Fig. 3.24 Bisection cannot be applied to a discontinuous function.

ans =
-2.7776e-016

We get a very small number, virtually zero. But this is not really a root:

» 1/ans
ans =
-3.6003e+015

In this case we get a “false” zero. Of course it is our fault: we are applying
bisection to a discontinuous function (see figure 3.24). But what bisection sees
is a function with a change in sign and a shrinking interval which eventually
satisfies the first termination criterion, but not the second one.

In other cases (e.g., x2 = 0) you do not get any root by bisection:

» fzero(Q(x) x~2, 3)

Exiting fzero: aborting search for an interval containing a
sign change because NaN or Inf function value encountered
during search.

(Function value at -1.8203e+154 is Inf.)

Check function or try again with a different starting value,

ans =

NaN

The problem here is that we have a root where the graph is tangent to the
x-axis and the initialization function is clearly not able to find an interval
with a change in sign. D

Despite all of its weaknesses, the bisection method has the remarkable
characteristic that it requires nothing more than the ability to evaluate, or
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estimate, the function / at a given point. To appreciate this, think of a func-
tion defined as a complicated expected value, or a function defined implicitly
by an optimization problem:
f(x) = Ew[™Na:,w)] or g(x) = minG(x,y).
yes
In both cases, getting more information on /7 and g (e.g., the value of the
derivative, if it exists), may be no easy task. Moreover, bisection does not

require the differentiability of the function. On the other hand, it can only be
applied to problems in one unknown variable.

3.4.2 Newton’s method

Unlike bisection, Newton’s method exploits more knowledge of the function /;
in particular, it requires computing the first-order derivative of the function
/. The method can be applied to solving a system of non-linear equations,
but let us first consider Newton’s method for the scalar equation

f(x) = 0

and assume that / 6 C2,i.e., is sufficiently well-behaved in terms of continuity
and differentiability. Consider a point x~°\ which is not a solution of the
equation since f(x ) ¢ 0. We would like to move by a step [da;, such that
the new point x = g"0"+ [a; solves the equation, i.e.,

f(x + Oa;)=0.
To obtain the displacement [a;, we may consider the Taylor expansion:
fOx + Ax)« f(x(%) + ' (x(°) Ax.

Solving this equation for Oa;, we get

Since the Taylor expansion is truncated, we will not find a root of the equation
in one step, but we may use the idea to define a sequence of points:

HHH) = XW _
f(xwy

Geometrically, the method uses the tangent of f in x to improve the es-
timate of the solution, as shown in figure 3.25. Like any method, Newton’s
method has strengths and weaknesses:

* Convergence, unlike bisection, is quadratic, which is good news.
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e The bad news is that convergence is only local: This means that unless
you start near the root, the method may fail; homotopy continuation
methods (section 3.4.5) are a possible approach to ease this difficulty.

e Many things may go wrong, and stalling may result; in practice, many
adjustments are needed to get a robust implementation of this meth-
ods.14

As an example of application of bisection and Newton’s method, we consider
next the computation of implicit volatility.

Example 3.23 As we have pointed out in section 2.6.5, sometimes Black-
Scholes formula is used in an apparently weird way to find the value of volatil-
ity such that the theoretical price predicted by the formula matched the ob-
served price. This is the implied volatility. This might be useful in order to
estimate volatility as perceived by the market participants rather than using
historical data; indeed, this approach has been advocated for VaR calcula-
tions.

This is easily accomplished in MATLAB. Consider a call option with strike
price $54, expiring in five months, on a stock whose current price is $50,
volatility is 30%, when the risk-free interest rate is 7%. Its price is obtained
as follows:

>> c=blsprice(50, 54, 0.07, 5/12, 0.3)

2.8466

14For a full treatment of Newton's method, including MATLAB code, see [12].
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Now let’s go the other way around, and check which volatility would yield this
price. We may define an anonymous function handle and find a zero using
fzero:

» fzero(Q(x) blsprice(50, 54, 0.07, 5/12, x) - 2.8466, 1)
ans =
0.3000

Alternatively, we could use an M-file to define the function.

Since in the Black-Scholes formula we have the option price in analytical
terms, one might wonder if it is better to use Newton’s method rather than
simpler methods such as bisection. This requires computing the derivative of
the non-linear function, but this effort could pay off in terms of efficiency. In
fact, the Financial toolbox includes a function, blsimpv, which computes the
implied volatility of a European call by Newton’s method. Its performance
may be compared with that of fzero.

» tic, blsimpv(50,54,0.07,5/12,2.8466), toe
ans =
0.3000
Elapsed time is 0.030920 seconds.
>> tic, fzero(@(x) blsprice(50, 54, 0.07, 5/12, x)-2.8466,1), toe
ans =
0.3000
Elapsed time is 0.039830 seconds.

You see that there is a (small) advantage in using Newton’s method. 0

A significant advantage of Newton’s method is that its is immediately gener-
alized to a vector equation such as

where F = [/i /2 <<+ fn}- Given an approximation = [XN X mmmx/"}'
of the root x* — \X\ X2 eem£*]', we may write

(X)) + (! _*<!*>){ ) 4+ eee + - )W)/&EA 0
dxi ; y=x (% \dxnJ %=x (%
f2(xW) + (x1-x\K)) IA5X77Jx-x(fn>+ -t <-4 fo) (‘CJ))/(\n-)x-x(ﬁ:) -0

¢ = x (fc)

which is simply a system of linear equations in which the matrix coefficients
form the Jacobian matrix
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\Ndxi J x_ x (fc) N®@x2) x-x (k) (/\)X:X
(a&\
W = J(x7) Vaxi/x=x<fc \ax2/x=x(fg ()) ) «
(B&N (a™n \ _
S VAXI/ X=X« VIX2/x=x<f@ W/ x=x(r9

A sequence of solution estimates is built by solving the linear systems

Ifc) Ax(*) = _F (XW)

and setting
X (fc+i) = x(fo + g x(K).

A disadvantage of this approach is that it requires computation of the Jacobian
matrix at each step. Coding that may be difficult and error-prone. Hence
numerical approximations of the Jacobian are often used, leading to quasi-
Newton methods.

3.4.3 Optimization-based solution of non-linear equations

Newton’s method and its variants are a possible strategy to solve systems
of non-linear equations. However, there are alternative approaches based on
optimization. We have already established the connection between optimiza-
tion and equation solving by the conjugate gradient method in section 3.2.5.
When tackling a system of linear equations, like the one we have discussed in
the previous section, we may consider the following reformulation:

min [IF)L12= 1T 7 2(x).
i=1

The idea is illustrated graphically in figure 3.26. Since the squared norm
cannot be negative, if we find a minimizer such that the function value is
zero, then the minimizer is a root of the equation. This is the approach
taken in the MATLAB f solve function; this function, unlike fzero, aims at
solving systems of linear equations and is part of the Optimization Toolbox,
not the MATLAB core. The figure also explains why, in general, finding the
whole set of roots is a tough issue, corresponding to a non-convex optimization
problem, possibly featuring several minima. The root we find will depend on
the starting point. Furthermore, some numerical care is needed as shown in
the following example.
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Fig. 3.26 Solving non-linear equations by optimization methods.
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Fig. 3.27 Function for example 3.24.

Example 3.24 To solve the equation
X3e~x2 =0

we may use fsolve as follows. First we define the function (and we plot it,
obtaining the graph illustrated in figure 3.27):

» f = Q) (x.“3).*exp(-x.n2);
» VvXx=-4:0.05:4;
» plot(vx,f(vx))

Then we may easily apply fsolve, providing a starting point:

» fsolve(f,I)
Optimization terminated:
first-order optimality is less than options.TolFun.
ans =
0
» fsolve(f,2)
Optimization terminated:
first-order optimality is less than options.TolFun.
ans =
3.4891

We see that the root we get depends on the starting point, which is expected.
Unfortunately, the second point is not an actual root of the equation. Looking
at the graph of the function, we may see that for x —»+00 the function tends
to zero. This implies that we get a numerical “false” zero when the value of
the function is smaller than a prescribed tolerance. D
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Example 3.25 To illustrate the advantage of quasi-Newton methods, we
consider here a classical example in Microeconomics, i.e., the computation of
a Cournot equilibrium for a duopoly. For the unfamiliar reader, the problem
is finding the two production outputs for two firms, in such a way that no
firm would find advantageous to deviate (unilaterally) from that output. The
problem each firm faces is that increasing output may increase revenue (the
firm sells more) but it may also decrease prices (because of larger availability).
Hence, we should look for production quantities maximizing net profit.
The two firms have cost functions:
20€i 7
which display increasing marginal cost. We assume the inverse demand func-
tion (for the whole market):

P(gq) = g“ Vi.

This function yields the market price, given the joint supply q= qi+q2- The
profit for firm i is revenue minus cost:

nu(<ro 92) = P(qi + g2)qi ~ Ci(qi), i= 1,2

To find the Cournot equilibrium, we should enforce the optimality condition
of profit for firm 1, as a function of its output g\, and of profit for firm 2, as
a function of ¥2- The stationarity condition15 yields the following set of two
non-linear equations:

fM) = (< + <72rym - + qi)~lh~Ilgi- og =0 r=i, 2.
We also need the Jacobian matrix, and to improve readability it is better to
rewrite the function above as

fi(q) = <f + ege~Ilqgi -oa,
where e — —1/7/. Then straightforward calculations yield
N = 2eqe~1+ e(e- l)ge~2qi - <k
aqi

. = eqge-! + e(e - 1)ge~2qu idj.
daj
Assume 77= 1.6, ci = 0.6, and @ = 0.8. To solve the problem by Newton’s
method, we need a function computing both the function itself and the Ja-
cobian. This is accomplished by the code displayed in figure 3.28, which also
includes a script to call the function.

15More on this in chapter 6.
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function [fval.fjac] = cournotJac(q, Geta)

e = -1/eta;

qtot = sum(q) ;

fval = qtot"e + e*qtot"(e-1)*q - c.*q;

fjac = zeros(2,2);

fjac(l,1) = 2*e*qtot~ (e-1) + e*(e-1)*qtot"(e-2)*q(l) - c(l);
fjac(l,2) = e*qtot"(e-1) + e*(e-1)*qtot“{e-2)*q(2);
fjac(2,1) e*qtot“(e-1) + e*(e-1)*qtot~(e-2)*q(l);
fjac(2,2) = 2*e*qtot”(e-1) + e*(e-1)*qtot“(e-2)*q(2) - c(2);

7 CournotJacScript

c= [0.6; 0.8] ;
eta = 1.6;
Q@ = [1; 1];

options = optimset( Jacobian® n?, TDerivativeCheck? Tn?);
[q,fval,exitflag,output] = fsolve(0(g)cournotJac(q,c,eta), q0, options);
fprintfd, "ql = ¥.fAnqg2 = 7Z,f\nZ, q(l) , q(2));

fprintfd, “number of iterations = /Z,d\n~, output.iterations);

Fig. 3.28 Code and script for Cournot duopoly.

With optimset we tell MATLAB that we are going to provide the Jacobian,
and we ask to check derivatives against a finite difference approximation.
Running the script, we get

» CournotJacScript

Maximum discrepancy between derivatives = 3.12648e-009
Optimization terminated:

first-order optimality is less than options.TolFun.

ql = 0.839568

g2 = 0.688796

number of iterations = 5

It is interesting to note what happens if we introduce an error in the compu-
tation of the Jacobian. For instance, if the last line in cournotJac is changed

fjac(2,2) = e*qtot"(e-1) + e*(e-1)*qtot <(e-2)*q(2) - c(2);

we get an error message:

» CournotJacScript
Maximum discrepancy between derivatives = 0.202631
Warning: Derivatives do not match within tolerance
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function [fval.fjac] = cournotNoJac(q,c,eta)
e = -1/eta;

qtot = sum(q) ;

fval = qtot~e + e*qtot~(e-1)*q - c.*q;

CournotNoJacScript
c= [0.6; 0.8];
eta = 1.6;
o0 = [1; 1] ;
[, fval, exitflag, output] = fsolve(®(q) cournotNoJac(q,c,eta), q0);
fprintf (1, “ql = /Afn g2 = /.f\n7, q(D) , q(2));
fprintfCl, “number of iterations = "/,d\n~, output.iterations) ;

Fig. 3.29 Code and script for Cournot duopoly using quasi-Newton method.

Derivative from finite difference calculation:
-0.8406 -0.0380
-0.0380 -1.0406

User-supplied derivative, @(q) cournotJac(q,c,eta):
-0.8406 -0.0380
-0.0380 -0.8380

Difference:
0.0000 0.0000
0.0000 0.2026

Strike any key to continue or Ctrl-C to abort

To avoid this kind of potential trouble, we may rely on numerical approx-
imations of derivatives. This is easily accomplished by writing a function
which does not compute the Jacobian, and by calling fsolve with default
options. This is accomplished by the function and script in figure 3.29, which
is definitely less prone to errors. Running the script, we get

>> CournotNoJacScript

Optimization terminated:

first-order optimality is less than options.TolFun.
gl = 0.839568

g2 = 0.688796

number of iterations = 3

We get the same solution, and what looks surprising is that less iterations
are reported. Intuitively, we would expect less iterations by providing more
information in the form of the Jacobian. However, we are not really using
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Newton’s method for non-linear equations, and intuition may fail. In fact,
the performance of an algorithm depends on many features: fsolve is based
on a choice of three optimization methods and several options may be selected
influencing the number and speed of iterations. D

3.4.4 Putting two things together: solving a functional equation by a
collocation method

Assume we have to solve a functional equation of the form
g(x,f(x)) =0  Yxe[al

where g is given and f is the unknown function. Note that since we want
to find a function defined over a real interval, this is an infinite-dimensional
problem. The first step to deal with such a problem numerically is to find
a suitable way to discretize it. One possibility would be to select a discrete
subset of n points Xi in the interval and solve a system of non-linear equations:

where the unknown is really yr = f{xi). Then we may use interpolation to
“complete” the function on the whole interval.

However there is a more elegant alternative, known as the collocation
method. The idea is still to fix a set of n points, called collocation nodes,
and to approximate / by a linear combination of n basis functions:

n
f(x) tt"Teci<pi{x).
1=1

Then our problem boils down to finding the coefficients ¢* by solving a system
of non-linear equations:

We will meet other functional equations in the form of partial differential
equations or recursive equations associated to dynamic programming. The
collocation method is at the heart of the finite element method for solving
PDEs and of some computational approaches to solve stochastic optimization
problems by dynamic programming.

3.4.5 Homotopy continuation methods

Since Newton’s method is not globally convergent, a good initial guess may
be necessary. To overcome this difficulty, and enhance global convergence, we
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may embed the problem within a parameterized family of problems. Assume
that we want to solve the equation f(x; t) = O for a specific value t* of the
parameter t. If we know that for t = t° we have a solution x°, then we may
generate a sequence of problems corresponding to parameters t°, tl,t2,...,
using xl~1 as the initial guess for problem i. More generally, if we know a
solution of the equation g(x) = 0, in order to solve f(x) = O we may define

h(t, x) - tf(x) + (1 - t)g(x) (3.11)

and “move” t from O to 1. In practice we are “deforming” an easy problem
into a hard one. This idea may be formalized by a homotopy. Given two
functions f,g . X — >Y, a homotopy between 7/ and g is a continuous map

h:[0,1] x X — »Y

such that h(0,x) = g(x) and h(l,x) — f(x) Equation (3.11) is the linear
homotopy. Newton’s homotopy is

h(t, x) = tf(x) + (L - )[f(x) - f(x0)] = f(x) + (t- 1)f(x0),

where xq is the solution for t = O.

We have a parameterized family of problems, such that a path of solutions
X(t) results. Strictly speaking, this makes sense if h(t, x) = 0 has one root for
each t € [0,1]. Assuming this property holds, we must come up with a way
to follow the path of solutions, leading to the one we are interested in. In
the following example, based on [13, pp. 140-141], we give an idea of a path
following strategy.

Example 3.26 Assuming differentiability of the involved functions, we may
differentiate the equation
h(t, x(t)) = 0

and get

+ 'X® =°

This yields the following differential equation
x'(t) = - [hx{t,x(t))]-1 ht(t, x(t)),

where we have eased the notation by using hx and ht to denote partial deriva-
tives. We could integrate this equation, with initial condition x(0), to get the
solution a;(l).

As a numerical example, consider the following problem, where X —Y =
R2:

FAx)=112 t 3]1=0.

Nea)
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Using Newton’s homotopy with x° = (1,1), we have

dF dfi/dxi dfi/dx2 2\ —6x2
fa - A/Z/.qxr df2/dx2 X2 Xi
. ' 0 1
ht = F(x°) o

We may invert hx:

1 zi 6x2
h,.1= . A = 2x\ + 6x2-
O —X2 2xi

Finally, we get the ordinary differential equations:

tx[ 1 X\ 6x2 '1m 1 Xi+42x2
x2 . = -X 2 2Xi 7 . A X2+ 14xi

By numerical integration, we get x(I) = (—2.961,1.978). Now we are in a
neighborhood of the solution of the original equation; to polish the solution,
we may take a few iterations of Newton’s method, which yields the solution
(-3,2). D

We have included the example above to illustrate the overall idea, but there
is a rich set of path following approaches. The same idea can be applied to op-
timization problems; in fact, we will meet path following again, since it is the
foundation of advanced optimization methods such as interior point methods
for linear programming (section 6.4.4). The homotopy continuation method
is quite sophisticated and powerful; for advanced applications to economics,
see [7] and [10].

For further reading

In the literature

e The literature on numerical methods is quite extensive. One classical
reference is [18]. Other references are [2], [13], and [17].

* An interesting book on numerical methods from an economist’s point of
view is [10].

e Splines are dealt with in depth in [5]. They are a widespread tool, both
in engineering (e.g., in computer-aided design) and in economics. For a
recent application in financial economics, see [11].

A classical source for special function evaluation is [1].
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* Approximation theory is the subject of [15] and [19].

e If you would like a “cookbook” collection of algorithms, [16] is a well-
known reference providing many C-language codes implementing nu-
merical methods (a Fortran version is available, too).

« Several numerical analysis books have been written based on MATLAB;
see, e.g., [6] and [14].

On the Web

e http://www.netlib.org is a web site offering many pointers to numer-
ical analysis material.

e http://www.mathworks.com/support/books lists several MATLAB-
based books, including basic numerical analysis texts.
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Numerical Integration:

Deterministic and Monte
Carlo Methods

Numerical integration is a standard topic in numerical analysis. We have
preferred to dedicate a specific chapter to it because of its importance in
computational finance. Furthermore, we include topics such as Monte Carlo
integration which are not always covered in standard textbooks on numerical
analysis. Usually, the term Monte Carlo simulation is used, which is somewhat
more appealing, but it is important to cast this approach within a numerical
integration framework in order to pave the way to quasi-Monte Carlo methods.
Classical approaches to numerical integration based on quadrature formulas
are deterministic, just as quasi-Monte Carlo methods. Monte Carlo methods
are based on random sampling, at least conceptually, and so some connection
with statistics is expected.

We have seen that option pricing requires computing an expected value
under a risk-neutral measure, but an expected value is actually an integral.
The expected value of a function g(-) of a random variable X with probability
density fx (x) is

In one-dimensional cases, we may find an analytical solution, like in the Black-
Scholes case, but this is difficult in general. If the random variable X is a
scalar, classical deterministic methods work quite well, but when expectation
is taken with respect to a random vector and we must integrate over a high-
dimensional space, random sampling may be necessary. Random sampling
is a natural way to simulate dynamics affected by uncertainty, such as prices
modeled by stochastic differential equations. Natural applications, apart from

209
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option pricing, are portfolio optimization, risk management, and estimation
of Value at Risk.

It is worth noting that numerical integration may be implicitly used to
estimate probabilities. If A is an event which may occur or not depending on
a random variable X, then

where 2a(x) is the indicator function for event A (taking the value 1 if A
occurs when X = x, 0 otherwise). When A is a rare event, clever strategies
are needed to get an accurate estimate with a reasonable computational effort.

Finally, there are situations in which we define a function by an integral. A
typical case is the expected value of a function depending on a control variable
(modeling our decisions) and a random variable (modeling what we cannot
control):

This is quite common in stochastic optimization and dynamic programming,
whereby we want to find a maximizer (or minimizer) of H(z), and this calls
for a suitable approximation of H by discretization of the continuous distribu-
tion. In other words, we want to generate a discrete set of scenarios yielding a
reasonable approximation of the underlying uncertainty. Numerical methods
such as Gaussian quadrature are helpful here. Indeed, all numerical integra-
tion methods require some form of discretization, or sampling, via regular
grids or other mechanisms. We should also note that we may also be inter-
ested in the derivative of H(z), not only for optimization purposes, but also
to evaluate sensitivities. A familiar case is computing the Greeks of an option.

We start the chapter with a very brief overview of classical deterministic
quadrature in section 4.1. We will just present very basic approaches in order
to point out the conceptual basis of quadrature functions available in MAT-
LAB. We will also deal with Gaussian quadrature because of its importance
in computational dynamic programming.

Then we introduce Monte Carlo integration in section 4.2. Monte Carlo
simulation is based on random number generation; actually, we must speak
of pseudorandom numbers, since nothing is random on a computer. How this
is accomplished is described in section 4.3.

If we feed random numbers into a simulation procedure, the output will be a
sequence of random numbers. Given this output, we use statistical techniques
to build an estimate of a quantity of interest. We would like to evaluate the
reliability of this estimate in some way, e.g., by a confidence interval, or the
other way around, we would like to carry out the simulation experiments in
such a way that the estimation error is controlled. Section 4.4 deals with the
issue of setting the number of simulation experiments (replications) properly.
Intuitively, the more replications we run, the more reliable our estimates will
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be. Unfortunately, reaching a suitable precision might require a prohibitive
number of experiments. Improving the quality of the estimates without in-
curring huge CPU times calls for proper variance reduction techniques, which
are the subject of section 4.5. Using pseudorandom numbers on a computer
and then applying statistical techniques may raise some philosophical issues;
after all, the sequences of numbers we use are deterministic. It can be argued
that the success of Monte Carlo simulation simply shows that there are some
deterministic sequences that work well and that there could be others that
work even better. Pursuing this idea leads to quasi-Monte Carlo simulation,
which is dealt with in section 4.6.

A final consideration is that simulation may be used to evaluate the con-
sequences of a certain policy, but it cannot generate the policy itself. To this
end, we should use the optimization methods which will be described in chap-
ter 6. Unfortunately, most of those techniques require an analytical model
that may be too complex or not available at all, which is the very reason
why we resort to simulation so often. Possible ways to couple simulation and
optimization techniques are described in section 6.6.

In order to better illustrate the material we will use simple examples from
elementary integration and pricing of vanilla options. We should bear in mind
that for those vanilla options analytical formulas are available, and that our
examples are just illustrative. We will consider practically relevant cases in
chapter 8.

4.1 DETERMINISTIC QUADRATURE

Consider the problem of approximating the value of a definite integral like

over a bounded interval [a, b\ for a function / of a single variable. Since the
integration is a linear operator, it is natural to look for an approximation
preserving this property. Using a finite number of values of / over a set of

nodes Xj such that
a=12q < x\ < mmm< xn = b,

we may define a quadrature formula such as
rn
QI[f]

j=0

A quadrature formula is characterized by the weights wj and by the nodes xj.
To be precise, a quadrature formula like the one we are describing is called a
closed formula, since evaluation of the function in the extreme points of the
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interval is used. Sometimes, open formulas are used when the function is not
well-behaved near a or b, or when we are integrating on an infinite interval.
Any quadrature formula is characterized by a truncation error:

A reasonable requirement is that the error should be zero for sufficiently simple
functions such as polynomials. We may define the order of a certain quadra-
ture formula as the maximum degree m such that the truncation error is zero
for all the polynomials of degree m or less. In other words, if the original
function is substituted by an interpolating polynomial, we should not commit
any error in integrating the polynomial. It is quite common to see expressions
for the truncation error like

where 7 is some constant depending, among other things, on a and b, £ is some
unknown point in the interval (a, 6), and «k is the order of some derivative.
Since the derivative of order k is zero for a polynomial of degree not exceeding
k — 1, there is clear link between k and the order of the quadrature formula.
If the function / is smooth enough, we may hope that high order translates
to high accuracy.

4.1.1 Classical interpolatory formulas
One way to derive quadrature formula is to consider equally spaced nodes:
Xj —a+ jh, J=0,1,2,...,n,

where h = (b —a)/n; also let fj = f(xj). We have seen in function interpo-
lation that this choice need not be the best one, but it is a natural starting
point. Selecting equally spaced nodes yields the set of Newton-Cotes quadra-
ture formulas.

Given those n + 1 nodes, we may consider the interpolating polynomial
Pn(x) using Lagrange polynomials of degree n:

mn
j—o

Then we may compute the correct weights as follows:
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Fig. 41 Example of the trapezoidal quadrature formula.

Consider the case of two nodes only, xg = a and Xj = b. Here we are just
interpolating / by a straight line:

A straightforward calculation yields

r Pi(x)dx= hiizA.
Jx0

Actually, what we are saying is that we may approximate the area below the
function using trapezoidal elements, as depicted in figure 4.1, and the formula
above gives the area of one element. Applying the idea to more subintervals,
we get the trapezoidal rule:

n—1

QIfl=h 9/0 +  fj + Tefi
i=1

Given any quadrature formula for an interval, we may get a composite formula
by applying the same pattern to small subintervals of a large one.

A quadrature formula based onu + 1 nodes is by construction exact for
polynomials of degree < n. We may go the other way around, and build a
formula by requiring a certain order. Consider the case

! f(x) dx ¢ wof{0) + wif(0.5) + w2f(l),
(o]

and say we want a formula that is exact for polynomials of degree < 2. Having
fixed the nodes, we may find the weights by solving the system of linear
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equations:

which yields w0 = 1/6, w\ = 2/3, w2 = 1/6. Applying the same idea on the
interval [a, £ we get Simpson’s rule:

f{x) dx « —gq— + f{b) =

It fairly easy to see that, somewhat surprisingly, this formula is actually exact
for polynomials of degree < 3. In fact, we have

Applying Simpson’s rule we have, by some straightforward algebra:

n [a3+ 1 (a3 + 3a2b+ 3ab2+ £3) + b3| =

Simpson’s rule may be applied to subintervals of (a, b) in order to get a com-
posite formula.

It is important to see the connection between the approach we have just
pursued and the idea of moment matching in probability. We may discretize
a continuous probability distribution in such a way that the discrete distri-
bution matches moments of the continuous distribution, e.g., expected value
and variance. This idea is used to approximate stochastic processes, such as
geometric Brownian motion, by binomial and trinomial lattices and it will be
pursued in chapter 7. Now, what we have seen is that for given nodes we
may find suitable weights to obtain a quadrature formula with desired order.
We have also seen that in function interpolation equispaced nodes need not
be the best choice. Generalizing the idea we should wonder if there is a way
to find weights and nodes jointly, in order to obtain a quadrature formula of
maximal order. This idea leads to Gaussian quadrature formulas.

4.1.2 Gaussian quadrature

In Newton- Cotes formulas we fix nodes and try to find suitable weights so
that the order of the formula is as large as possible. The rationale behind
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Gaussian quadrature is that if we do not fix nodes a priori, we essentially
double the degrees of freedom, in such a way that the order can be more or
less doubled. Furthermore, Gaussian quadrature formulas are developed with
respect to a non-negative weight function w(x). We look for a quadrature

formula like
/| 6 n

w(x)f(x)dx (4.1)
- i=l
which is exact when / is a polynomial. Note that in this section, unlike
the previous one, it is convenient to consider n nodes xr, i = 1,..,,n. The
weight function w(x) can be used to encapsulate undesired singularities of
the integrand function. In our setting, w(x) will be interpreted as a proba-
bility density. In fact we will only outline the development of Gauss-Hermite
quadrature, where w(x) —e~x , and there is a clear connection with comput-
ing the expected value of a function of a normal random variable.
Let Y be a random variable with normal distribution JIf{fi, cr2). Then

n 1= f ;
/oo J[—oo \271(7 (dy

In order to use weights and nodes from a Gauss-Hermite formula, we need
the following change of variable

-Xx2= = * > y=V2ax +n = -=d x .
2\ « ) sfta

Hence
E[/00] ~ J= it , wif{\p2axi + /i).

Now, how should we select the nodes and weights in (4.1) in order to get a
quadrature formula with maximum order? We should choose as nodes the
n roots of a polynomial of order n, selected within a family of orthogonal
polynomials with respect to the inner product (see also section 3.3.4):

< f,9> = w(x)f(x)g(x)dx.
Ja
It can be shown that a polynomial of degree k within that family has k distinct
real roots. Furthermore, these roots are interleaved, in the sense that each of
the k —1 roots of the polynomial of degree k —1 lies in an interval defined by
a pair of consecutive roots of the polynomial of degree k. Using this choice of
nodes, along with a proper choice of weights, yields a quadrature formula with
order 2n — 1. To see this, consider a polynomial g £ N, i.e., a polynomial of
degree n, which is orthogonal to all polynomials in n,,_i:
fb

w(x)q(x)p(x) dx = 0 Vpe nn_i.
Ja
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Any polynomial / € IMrn-i can be divided by g, obtaining a quotient p and a
remainder r:
f=ap+r

where p,r £ I, _i. Now let us integrate wf by a quadrature formula on n
nodes Xi, i = 1,..., n, which are the zeros of g

w(x)f(x)dx
Ja
pb rb
I wx)p(x)q(x) dx + 1 w(x)r(x) dx (division)
Ja Ja
fb

0+ w(x)r(x) dx (q is orthogonal to p)
Ja

= w, X (Xi) (quadrature is exact for r 6 IIn_i)
i=i

= Y'Wifixi) (xi is a zero of q).
i=i

A family of orthogonal polynomials Pj(x) may be built by the following
procedure:

p~i(x) = 0
po(x) = 1
pi+i(x) = (x —appi(x) —§Pj_i(x), j=20,1,2.3,...,
where
< Xp N j=0,1,2,...
<Pj,Pj >
bj= <p~n > , j =12 —

<Pj-hPj-1 >

Here coefficient bo is arbitrary and it can be set to 0. At each step, the
procedure generates a new polynomial of degree one plus the degree of the
previous polynomial. In the end, we have a family of orthogonal polynomials,
one for each degree. Actually there are different choices of normalizations
yielding different families of polynomials.

In the Gauss-Hermite case, whereby w(x) = e~x , applying the proce-
dure above results in the following recursive procedure yielding a sequence of
Hermite polynomials Hy.

Hj+\ = 2xHj - 2jHj-i.

It is worth noting that this procedure is not quite numerically viable, as it
implicitly computes factorials which tend to overflow for large n. This is
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why a different normalization can be used, yielding a family of orthonormal
polynomialsl:

H—i =20

= 4.2
Ho= 1, (4.2)
Hj+i = x Hi - Hj~i i —0,1,2,3,.

i+1 j+1

In order to select weights, one possibility would be to require exact integration
for the first n polynomials in the family, including the polynomial of degree
0. Since po(x) = 1, this means that the (weighted) integrals of Pj(x), j =
1,...,n —1 should be zero, since they are all orthogonal to po(x). These
conditions yield the following system of linear equations:

~ Po(*l) mm Po(xn) W faW(x) dx
PIXi)  .ee  PI{xn) W2 0
.Pn-I(xi) . m Pn-I(Xn) _ ,Wh . . 0

It can be shown that a possibly more convenient way of getting weights is by
using the following recursion:
. ~ Pn—hPn—1"
Wi
Pn~1(Xj)Pn(Xj)"’
where p ., is the derivative of the polynomial. In the Gauss-Hermite case,
using the orthonormal set of polynomials, this boils down to:

) 2
Wi =
(HUXj))
where the derivative of polynomial j is
W = yJITjHi-i.

MATLAB code to implement Gauss-Hermite quadrature is displayed in figure
4.2. Polynomials are stored in vectors; HPolyl, HPoly2, and HPoly3 play the
roles of polynomials Hj-i, Hj, and Hj+i in recursion (4.2), respectively. In
the for loop, we must pay attention to i, since there is the typical shift in
index values because of the MATLAB convention (array indexing starts from
1). On exit from the loop, HPoly3 contains 1 n and HPolyl contains H n-

In computing roots, we use the standard roots function. This need not be

~ee, e.g., [13, pp. 150-154].
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function [x,w] = GaussHermite(mu,sigma2,N)
HPolyl = [ 1/pi 0.25 ];
HPoly2 = [sqrt(2) / pi“0.25, 0];

for j=1:N-1
HPoly3 = [sqrt(2/(j+1))*HPoly2 , 0] - [0, 0, sqrt(j/(g+1)*HPolyl] ;
HPolyl = HPoly2;
HPoly2 = HPoly3;

xl = roots(HPoly3);

wl = zeros(N,1);

for i=1:N

wl(i) = I/(N)/(polyval(HPolyl, xI(i)))"2;

[X, index] = sort(xl*sqrt(2*sigma2)+mu);
w = wl(index)/sqrt(pi);

Fig. 4.2 Code to implement Gauss Hermite quadrature.

the best approach, as using the interleaving property one can compute roots
for each polynomial in the sequence by the Newton’s method, using previous
roots for initialization.2 The last two lines are used to sort nodes in increasing
order, and the index vector is used to sort weights accordingly.

It is interesting to check the weights and nodes we get from this function.
For instance, let us consider a normal random variable with y = 10 and
cr2 = 20, and let us apply a quadrature formula based on five nodes:

» [x,w] = GaussHermite(10,20,5)

-2.7768

3.9375
10.0000
16.0625
22.7768

0.0113
0.2221
0.5333
0.2221
0.0113
>> sum(w)

2This is the approach taken in [13]. A MATLAB implementation, which generalizes to mul-
tidimensional integration, can be found in the Computational Economics Toolbox described
in [10].
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7, GHScript.m
N =[5, 10, 15, 20] ;
mu = 4;
sigma2 = 4;
TrueValue = exp(mu+0.5*sigma2);
for i=I:length(N)
[x,w] = GaussHermite(mu,sigma2,N(i));
ApproxValue = dot(w,exp(x));
fprintf (1, N=/,2d True=/g Approx="/,g PercError="/.g \n >, N(i) , ...
TrueValue, ApproxValue, abs(TrueValue-ApproxValue)/TrueValue);

Fig. 4.3 Script to check Gauss-Hermite quadrature.

ans =
1.0000

Nodes, as expected, are symmetrically centered around the expected value;
furthermore, the sum of weights is 1, which is only convenient, since this
should be a discretization of a continuous distribution. As a complete exam-
ple, we may deal with the case of integrating an exponential function. From
the properties of the lognormal distribution (see section B.2.1) we know that
if X ~ a2), then

E[ex]=e ™ 22

A script to check this is displayed in figure 4.3. Running the script, we may see
that remarkable precision is obtained with a fairly modest number of nodes:

>> GHScript

N= 5 True=403.429 Approx=398.657 PercError=0.0118287
N=10 True=403.429 Approx=403.429 PercError=5.53771e-007
N=15 True=403.429 Approx=403.429 PercError=1.90343e-012
N=20 True=403.429 Approx=403.429 PercError=3.95931e-014

Actually, the number of nodes needed to obtain a suitable accuracy depends
on variance. The reader is urged to write a function pricing a vanilla European
call option using Gauss-Hermite quadrature and to compare the result with
blsprice.

4.1.3 Extensions and product rules

The interpolatory rules of section 4.1.1 are extended in many ways, which we
just outline here. To begin with, nodes should be added dynamically until a
prespecified accuracy is obtained. This can done according to clever strategies
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in order to avoid unnecessary function re-evaluations. This leads to recursive
quadrature formulas and to Romberg integration. Furthermore, the choice of
the nodes may be improved by adapting it to the function characteristics; more
nodes are needed where there is more variation, and less are needed where the
function is more “constant”; this leads to adaptive quadrature formulas. All
these improvements are exploited in scientific libraries, including MATLAB
functions.

Product rules are used when we want to extend quadrature formulas to
multidimensional integration. Suppose we want to compute an integral on
the unit hypercube

where [0, \)d= [0, 1] x [0, 1] X ===x [0, 1], and that we have weights and nodes
for, say, a Newton-Cotes quadrature formula along each dimension; more

precisely, for dimension k, k — 1,... ,d, we have weights and nodes xf,
i=1,..., TOkt. A product rule approximates the integral above as
mi 7712 md

A product rule builds nodes taking the Cartesian product of node sets along
each dimension. It is easy to see that this regular grid is going to be impracti-
cal for large d, and this motivates Monte Carlo integration based on random
sampling.

4.1.4 Numerical integration in MATLAB

There are a few MATLAB functions to compute one-dimensional integrals.
They are based on refinements of basic schemes, such as adaptive extensions
of Simpson'’s rule.

Example 4.1 Consider the integral

®-n

Integration by parts yields

2t
1= x [sin(10a) + 10cos(10x)] 0.0988.
0

Using the quad function, we get

» F=0(x) exp(-x).*sin(10*x)
f =
®(x) exp(-x).*sin(10*x)
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» quad(f,0,2*pi)
ans =
0.0987

Precision may be improved by specifying a tolerance parameter:

>> quad(f,0,2*pi, 10e-6)
ans

0.0987
>> quad(f,0,2*pi, 10e-8)
ans =

0.0988

We may also adopt alternative strategies, based on adaptive Lobatto quadra-
ture;

» quadl(f,0,2+pi)

0.0988

0

MATLAB also provides us with functions for multidimensional integration.
In the bidimensional case, dblquad can be used, whereas triplequad is used
for triple integrals. Actually, the latter is a relatively recent addition and was
not available in earlier MATLAB versions. You can see that we cannot go
beyond three dimensions. This is due to the intrinsic difficulty of using regular
grids when we integrate in several dimensions. The typical way to avoid this
difficulty is resorting to random sampling.

4.2 MONTE CARLO INTEGRATION

The definite integral of a function is a number, and computing that number is
a deterministic problem involving no randomness. Nevertheless, we may cast
the problem within a stochastic framework by interpreting the integral as an
expected value. Consider an integral on the unit interval [0,1]:

We may think of this integral as the expected value E[g([/)], where U is a uni-
form random variable on the interval (0,1), i.e,, U ~ (0,1). We may estimate
the expected value (a number) by a sample mean (a random variable). What
we have to do is generating a sequence {[/*} of independent random samples
from the uniform distribution and then evaluate the sample mean:
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The strong law of large numbers implies that, with probability 1,

Iim Im= 1.

Random sampling, which is where “Monte Carlo” comes from, is not really
possible with a computer, but we can generate a sequence of pseudo-random
numbers using generators provided by most programming languages and en-
vironments.

Example 4.2 Consider the trivial case

To generate uniformly distributed random numbers, we may use the MATLAB
rand function; a call like rand(m,n) yields a m xn matrix of uniform random
numbers. Please note that the parameters mand n have nothing to do with
the distribution, which is U(0,1) anyway. We can see the reliability of our
estimates as a function of the sample size m:

» rand( Btate 7, 0)
>> mean(exp(rand(l,10)))
ans =
1.8318
» mean(exp(rand(l,10)))
ans =
2.0358
» mean(exp(rand(l,10)))
ans =
1.3703
» mean(exp(rand(1,1000000)))
ans =
1.7189
» mean(exp(rand(1,1000000)))
ans =
1.7178
>> mean(exp(rand(1,1000000)))

1.7174

In order to understand the role of the command rand(’state ' ,0), we should
consider how “random” numbers are generated on a computer. For now it is
enough to say that the command resets the generator so that the experiment
can be replicated obtaining the same results. We see that the estimate is not
quite reliable for m = 10, whereas variance of the estimator is much lower
when m = 1,000,000, and the result is close to the correct number. Needless
to say, we do not know the exact result in practice, and we should wonder
how to qualify the reliability of the estimate, and how to improve it. D
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For one-dimensional integration, Monte Carlo is hardly competitive with de-
terministic quadrature, but when computing a multidimensional integral it
may be the only viable option. In general, if we have an integral like

(4.3)

where 1 C Kn, we may estimate 1 by randomly sampling a sequence of points
x! GA, i= 1,...,m, and building the estimator

(4.4)

where vol(.4) denotes the volume of the region A. To understand the formula,
we should think that the ratio (1/m) Y1T=10 (x*) estimates the average value
of the function, which must be multiplied by the volume of the integration
region in order to get the integral.
We will see that in practice we need only to integrate over the unit hyper-
cube, i.e.,
A = [0,1] x [0,1] x ===x [0,1]

hence vol(.4) = 1. Considering the unit hypercube looks restrictive. In gen-
eral, we have a vector random variable

Xi
*2

with joint density function f(xi,..., xn), and we use Monte Carlo integration
to estimate the expected value of an arbitrary function of X:

E[g(X)] = g(xi,...,xn)f{xi,...,xn) dxi---dxn.

MATLAB provides us with many functions to generate random variables, but
we will see that the primary input is always a stream of uniform random
numbers U ~ U{0,1). These generators are actually part of the Statistics
Toolbox, but the core MATLAB environment also offers a function (randn)
to sample the standard normal distribution. Using this function, we may use
Monte Carlo integration to price a vanilla call option.

Example 4.3 We know that the price of a European style option is the
expected value, under the risk-neutral measure, of the discounted payoff of
the option:

f = e~rTE[/T],
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Y. BIsMCI.m

function Price = BIsMCI(SO,K,r,T,sigma,NRepl)

nuT = (r - 0.5*sigma"2)*T;

siT = sigma * sqrt(T);

DiscPayoff = exp(-r*T)*max(0, SO*exp(nuT+siT*randn(NRepl,1))-K);
Price = mean(DiscPayoff);

Fig 4.4 Code to price a vanilla European call by Monte Carlo simulation.

where fr is the payoff at the maturity date T and a constant risk-free rate r
is assumed. The notation E[-] is used to emphasize that expectation is taken
with respect to the risk-neutral measure. If we assume geometric Brownian
motion, this means that the drift /1 for the asset price must be replaced by
the risk-free rate r (see section 2.6). Depending on the nature of the option at
hand, we may need to generate the full sample paths, or simply the terminal
asset price. Path generation will be dealt with in chapter 8, but a vanilla call
option requires just sampling the payoff max{0, S(T) - K}, where S(T) is
the price of the underlying asset at maturity and K is the strike price. From
example 2.20 on page 98, we know that we may easily accomplish this by
generating a standard normal random variable e ~ Af(0, 1):

/T = max{0, S(0)eir- a2~ T+aVTc - K}.

A MATLAB function to price the call option is displayed in figure 4.4. The
first five input parameters are self-explanatory and are those required by the
blsprice function implementing Black-Scholes formula. The last parameter
NRepl is the number of replications, i.e., samples we want to take. We may
check the impact of this parameter:

» S0=50;
» K=60;
» r=0.05;
» T=1;
» sigma=0.2;
>> randn( 3tate 7, 0)
» BIsMCI(SO,K,r,T,sigma,1000)
ans =
1.2562
» BIsMCI(SO0,K,r,T,sigma,1000)
ans =
1.8783
» BIsMCI(SO,K,r,T,sigma,1000)
ans =
1.7864
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» BIsMCI(SO, K I, T,sigma,1000000)
ans =

1.6295
» BIsMCI(SO,K,r,T,sigma,1000000)
ans =

1.6164
>> BIsMCI(SO,K r,T,sigma,1000000)
ans =

1.6141

As before, we reset first the state of the randn generator, so that the exper-
iment can be repeated by the reader. With only 1000 samples, we see quite
some variability in the estimate, which starts looking reasonable when the
number of samples is increased considerably. Clearly, we cannot yield just
a point estimate: we should also compute some confidence interval for the
estimate. Possibly, we should understand how many samples are needed in
order to attain a given precision. Another point is that too many samples are
needed; things may be worse with higher volatility, and with complex path-
dependent options we cannot afford taking a huge number of samples. Hence
we need clever ways to reduce the variance of the estimator. D

Needless to say, the example above is presented for illustrative purposes,
as there is no need to resort to Monte Carlo simulation to price a vanilla
European-style call option. What we need is a numerical approximation of
the integrals involved in the cumulative distribution function for standard nor-
mal random variables. Nevertheless, we will see that pricing “easy” options
by simulation may be useful in variance reduction by control variates.

4.3 GENERATING PSEUDORANDOM VARIATES

The usual way to generate pseudorandom variates, i.e., samples from a given
probability distribution, starts from the generation of pseudorandom num-
bers, which are simply variates from the uniform distribution on the inter-
val (0,1). Then, suitable transformations are applied in order to obtain the
desired distribution. We discuss briefly the most common transformations:
the inverse transform method, the acceptance-rejection approach, and ad hoc
strategies such as those used to generate standard normal variates. The MAT-
LAB Statistics toolbox provides the user with a rich library of random variate
generators, so that the user need not herself program the procedures we de-
scribe in the following. Nevertheless, we believe it is important to have at
least a grasp of what is done, in order to properly apply variance reduction
procedures to improve the estimates.
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function [USeq, ZSeq] = LCG(a,c,m,seed,N)
ZSeq = zeros(N,1);
USeq = zeros(N,1);

for

end

Fig.

4.3.

i=I:N

seed = mod(a*seed+c, m);
ZSeq(i) = seed;

USeq(i) = seed/m;

4.5 Code to generate random numbers by a linear congruential generator.

1 Generating pseudorandom numbers

The standard textbook method to generate U (0,1) variates, is based on linear
congruential generators (LCGs). A LCG generates a sequence of non-negative
integer numbers zi as follows; given an integer number Zi_i, we generate the
next number in the sequence by computing

Zi  (azi-i + c¢) mod m,

where a (the multiplier), ¢ (the shift), and m (the modulus) are properly
chosen parameters and mod denotes the remainder of integer division (e.g.,
15 mod 6 = 3). Then, to generate a uniform variate on the unit interval, we
return the number (Zi/m).

Ex

ample 4.4 In figure 4.5 we display MATLAB code to implement a LCG.

Running the code with some choice of the parameters a, ¢, and m yields

>>
»
»
>>
»
>>

»

© 00 N O WN

=
o

a=5;

c=3;

m=16;

seed=7;

N=20;

[USeq, ZSeq] = LCG(a,c,m,seed,N);

fprintf (1, =724 %7, */.6.4F \n\ [(1:N) %, ZSeq, USeq] ?

6 0.3750
1 0.0625
8 0.5000
11 0.6875
10 0.6250
5 0.3125
12 0.7500
15 0.9375
14 0.8750
9 0.5625



GENERATING PSEUDORANDOM VARIATES 227

11 0 0.0000
12 3 0.1875
13 2 0.1250
14 13 0.8125
15 4 0.2500
16 7 0.4375
17 6 0.3750
18 1 0.0625
19 8 0.5000
£0 11 0.6875

It is clear that there is nothing random in the sequence generated by a LCG.
To begin with, it must start from an initial number Zo; this is called the seed
of the sequence. Starting the sequence from the same seed will always yield
the same sequence. Indeed, any time you start MATLAB and type rand, you
get the same number; if you keep typing rand, you see a sequence of numbers
that look random and uniformly distributed. However, this sequence is always
the same, since starting MATLAB sets the seed to a precise value. This may
seem rather dull, and using a command like

rand( Beed 7,sum(100*clock)),

which sets the seed of the random generator to a number depending on the
current clock value, may seem a brilliant idea. In practice this is not a good
idea at all; on the one hand, it makes debugging difficult; on the other one,
the variance reduction techniques we describe in the following may call for
the ability to control the seeds.3

A few remarks are in order. A first observation is that with a LCG we
actually generate rational numbers rather than real ones; this is not a serious
problem, provided that m is large enough. But there is another reason to
choose a large value for m; the generator is periodic. In fact, we may generate
at most m distinct integer numbers Zzi, in the range from 0 to m —1, and
whenever we repeat a previously generated number, the sequence repeats itself
(which is not very random at all). We may see from the previous example
that we get back to the initial seed zq = 7 after 16 steps. This is not too bad,
as 16 is the maximum possible period, for m = 16. We do much worse if we
select a = 11, c = 5 and m = 16. In this case, starting from zq = 3, we get
the following sequence of integer numbers Zzf.

6, 7, 2, 11, 14, 15 10, 3

which has half the maximal period. Since the maximum possible period is
m, we should make it very large in order to have a large period. The proper

3Actually, this need is evident when we have a complex simulation with multiple sources of
uncertainty.
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choice of a and ¢ ensures that the period is maximized and that the sequence
looks random. A sequence like

ui = i=0,1,....m- 1,

which is obtained if a = ¢ = 1, has a maximum period and is, in some sense,
uniformly distributed on the interval (0,1), but it is far from satisfactory. The
point is that the samples should also look independent; to be more precise,
they should be able to trick statistical testing procedures into “believing” that
they are a sequence of independent samples from the uniform distribution.
This is why designing a good random number generator is not easy; luckily,
when you purchase good numerical software, someone has already solved the
issue for you.

Example 4.5 Consider the generator zi = (aZ,_i) mod m with a= 216+ 3
and m = 231. It is fairly easy to show that for the sequence Ut = ZI/m the
expression

flj+2 —6{7j+i + oui

takes integer values.4 In fact, given zI (integer) we have
Zi+1= azi mod m = aZi —k\m
for some integer k\. We also have

Zi+2 azi+1mod m = a(azi mod m) mod m = a(azZ, - kirn) - k2m
= a2Zi —(ak\ + £2771 a2zZi mod m

for some integer fc2- This implies

(216 + 3)2Zj mod m —6(216+ 3)Zj mod m + 9Zi
= [(216+ 3)2Zi - 6(216+ 3)zi + 9Zi] - km

Zi+2 —6Zi+i + 9Zi

= (232+ 6216+ 9- 6 *216- 18+ 9)Zi - km
= 232Zi - km.

Therefore
- . 2322 —A231
uH2- uHl+m =

is integer. This means that points of the form (ui,ui+i,ui+2) lieon a limited
number of hyperplanes. Q

The type of phenomenon illustrated in the example results in a lattice struc-
ture of LCGs. This concept may also be illustrated by the MATLAB script in

4The examples below are taken from [14, pp. 22-25].
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7, RipleyLCG.m

m = 2048;
a = 65;
c= 1;
seed = 0;

U = LCG(a,gm,seed, 2048);
subplot(2,1,1)
plot(U(1:m-1),U(2:m), ~.7);
subplot(2,1,2)

plot(U(l:511), U(2:512), ~.7);

=1365;
I.

LCG(a,c,m,seed, 2048);
figure
plot(U(l:m-1), U(2:m), =~ 7);

Fig. 4.6 Script to illustrate the lattice structure of LCGs.

figure 4.6, which yields the plot displayed in figures 4.7 and 4.8. The top part
of figure 4.6 shows a fairly good filling of the unit square by points of the form
(Ui,Ui+i), for the choice a = 65, ¢ = 1, and m = 2048. This may suggest
that the distribution is uniform and that consecutive samples behave as if
they were “statistically independent”. However, the second part of the figure
shows that the first part of the sequence follows some definite pattern. This
is even worse in the second case, where a = 1365, whose pattern is displayed
in figure 4.8. We see that selecting parameters for LCGs is not trivial, and
many commercially used generators in the past were indeed flawed.

The examples above show that LCGs may have several limitations. Indeed,
LCGs were state of the art in the past. In fact, they were used in the release
4 of MATLAB. Now a different approach is taken; we will not enter in any
detail, but it suffices to say that the new generator is based on a state vector
with 35 components (see [11] for more information). By issuing a command
like rand (state' ,0), we tell MATLAB to reset this state vector to the config-
uration which is loaded when MATLAB is started. Another important point
is that when generating normal variates, MATLAB uses the randn function;
this function generates standard normal variates, and it has a separate state
from the uniform generator. The state mechanism for randn is similar to that
of rand; the important point to keep in mind is that they are separate, and
resetting the state for the uniform generator is no use when you are generating
normal variates (which is a common task when pricing options).



230 NUMERICAL INTEGRATION: DETERMINISTIC AND MONTE CARLO METHODS
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Fig. 4.7 Plots obtained by running the RipleyLCG script.

4.3.2 Inverse transform method

Suppose we are given the distribution function F(x) = P{X < x}, and that
we want to generate random variates according to F. If we are able to invert
F easily, we may apply the following inverse transform method:

1. We draw a random number U ~ U(0,1).
2. We return X = F~x(1J).

It is easy to see that the random variate X generated by this method is
actually characterized by the distribution function F:

P{X < x}=P{F_1({7) < x} = P{U < F{x)} = F{x),
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Fig. 4.8 Plot obtained by running the RipleyLCG script.

where we have used the monotonicity of F and the fact that U is uniformly
distributed.

Example 4.6 A typical distribution which can be simulated easily by the
inverse transform method is the exponential distribution. If X ~ exp(/i),
where 1//i is the expected value of X, its distribution function is

F(x) = 1—e~"x.

Direct application of the inverse transform yields
x = —In(l —U).

Since the distributions of U and (1 —U) are actually the same, it is custom-
ary to generate exponential variates by drawing a random number U and by
returning —In(U)/p- We may check that this is indeed the method used in
the Statistics toolbox to simulate exponential random variables through the
exprnd function:

>> rand( Btate' ,0)
» exprnd(l)
ans =

0.0512
>> rand( Btate",0)
>> -log(rand)
ans =

0.0512
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Generating exponential random variables is useful when you have to simulate
a Poisson process, which is a possible model for shocks in asset prices or credit
rating. D

The inverse transform method is quite simple, and it may also be applied
when no theoretical distribution model is available and all you have is a set
of empirical data. You just have to build a sensible distribution function
based on your data set (see, e.g., [9]); one way to build a distribution function
in this case is linear interpolation, and inverting a piecewise linear function
is easily accomplished. However, we may not apply the inverse transform
method when F is not invertible, as it happens with discrete distributions (in
this case the distribution function is piecewise constant, with jumps where
probability mass is concentrated). Nevertheless, we may adapt the method.
Consider a discrete empirical distribution with a finite support:

P{X =xj}=p]j, i=05L2,...n
Then we should generate a uniform random variate U and return X as
"xi ifU < pi

w2 ifPi < U < pi +P2

xi IfEU Pk<U < Zk=1Pk

It may be instructive to see how this code may be implemented in a simple
way (not the most efficient one, however). Suppose we have a distribution
defined by probabilities

01 02 04 02 01
over values 1,2,3,4,5. First we define cumulative probabilities:
0.1 03 0.7 09 10

then we draw a uniform random number, say U = 0.82. For each cumulative
probability P we may check if U > P, yielding a vector

1110 0,

where 1 corresponds to “true” and O to “false.” To select the right value to
return, we must sum the ones in this vector (the total is 3 here) and add
1; in this case we should return the value 4. Using MATLAB, this may be
accomplished by working on vectors; code is displayed in figure 4.9 (howmany
is the number of samples we want). For the example we are considering, we
may check the function by plotting a histogram:

» rand( Btate 7,0)
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function samples = EmpiricalDrnd(values, probs, howmany)

7, get cumulative probabilities

cumprobs = cumsum(probs);

N = length(probs);

samples = zeros(howmany,l);

for k=1:howmany
loc=sum(rand*cumprobs(N) > cumprobs) + 1;
samples(k)=values(loc);

end

Fig. 4.9 Sampling from an empirical discrete distribution.
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Fig. 4.10 Histogram produced by calling EmpiricalDrnd.

>> values=I:5;

» probs=]0.1 0.2 0.4 0.2 0.1];

>> samples=EmpiricalDrnd(values,probs,10000);
>> hist(samples,5)

The resulting histogram is displayed in figure 4.10.

For many relevant distributions, the distribution function is invertible, but
this is not easily accomplished. In such a case, one possibility is to resort to
the acceptance-rejection method.

4.3.3 Acceptance-rejection method

Suppose we must generate random variates according to a probability density
Hx), and that the difficulty in inverting the corresponding distribution func-
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Fig. 4.11 Graphical example of the acceptance-rejection method.

tion makes the inverse transform method unattractive. Assume that we know
a function t(x) such that

t{x) > f(x) VX £/,

where 1 is the support of /. The function t(x) is not a probability density,
but the related function r(x) = t(x)/c is, provided that we select

= J t(x) dx.

If the distribution r(x) is easy to simulate, it can be shown that the follow-
ing acceptance-rejection method generates a random variate X distributed
according to the density /:

1 GenerateY J_
2. Generate U ~ 17(0,1), independent of Y.
3 Ifu < f(Y)/t(Y): return X = Y\ otherwise, repeat the procedure.

If the support 1 is bounded, a natural choice for r(x) is simply the uniform
distribution on /, and we may choose

t(x) = r&a}x/(x).

We will not prove the correctness of the method, but an intuitive grasp can be
gained from figure 4.11. In the figure, the support of f{x) is the unit interval.
A typical distribution that looks like / is the beta distribution:

Ll
(f- =)

*) = 0.1],
) = B (ai,a2) xe ol
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provided that the parameters satisfy 0:1,02 > 1 (the beta distribution does
not require this condition, but its appearance would be different from figure
4.11). The beta function is defined as

The Y variables are generated according to the uniform distribution and will
spread evenly over the unit interval. Consider point A; since f(A) is close to
t(A), A is likely to be accepted, as the ratio f(A)/t(A) isclose to 1. When we
consider point B, where the value of the density / is small, we see that the
ratio f(B)/t(B) is small; hence, B is unlikely to be accepted, which is what
we would expect. It can also be shown that the average number of iterations
to terminate the procedure with an accepted value is c.

Example 4.7 Consider the density
f(x) = 30(x2—2x3+ x4), x € [0,1].

The reader is urged to verify that this is indeed a density (actually, it is the
beta density with oi = 02 = 3). If we apply the inverse transform method,
we have to invert a fifth-degree polynomial at each generation, which suggests
use of the acceptance-rejection method. By ordinary calculus we see that

max fix) = 30/16

for x* = 0.5. Using the uniform density as the easy density r, we get the
following algorithm:

1. Draw two independent and uniformly distributed random variables U\
and U2-

2. If U2 < 16(Uf - 2Uf + Uf), accept X — U\; otherwise, reject and go
back to step 1.

The average number of iterations to generate one random variate is 30/16.

D

4.3.4 Generating normal variates by the polar approach

The inverse transform and acceptance-rejection methods are general purpose,
but they are not always applicable. In the case of normal variables inverting
the cumulative distribution function is no easy task, nor may we easily find a
majorant function for the normal density, since its support is not finite. Actu-
ally, efficient approximations have been developed for the inverse distribution
function for normal random variables. In MATLAB, a function call like

X = norminv(p,mu,sigma)
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returns the quantile for probability p of a variable with expected value nu
and standard deviation sigma This can be used to generate samples from the
standard normal distribution, but it may not be the most efficient way:

>> tic, Z = norminv(rand(1000000,1));, toe
Elapsed time is 1.279080 seconds.

>> tic, Z = randn(1000000,1);, toe
Elapsed time is 0.048054 seconds.

Here, function randn uses a recent ad hoc method for the generation of
normal variates. We outline here the basics of the classical polar approach,
which may be outdated but is a nice example of ad hoc method.

Recall first that if X ~ N(0,1), then fi + aX ~ 7V(/x, oQ); hence we just
need a method for generating standard normal variables. One old-fashioned
possibility, which is still suggested in some textbooks, is to exploit the central
limit theorem and to generate and sum a suitable number of uniform variates.
Although this approach would work in the limit, computational efficiency
would restrict the number of uniform variates that we use. The result is
that we obtain a variate which could be of sufficient quality in noncritical
simulations in which we are interested in average values, but is of debatable
quality when we are interested in critical behavior in the tail of the distribution
(as is the case in Value at Risk computations).

An alternative method is the Box-Muller approach. Consider two indepen-
dent variables X, Y ~ N(0,1), and let (R, 9) be the polar coordinates of the
point of Cartesian coordinates (X, Y) in the plane, so that

d= R2= X2+ Y2 9 = tan-1 Y /X
The joint density of X and Y is

f(x y)= _ L e-*2/2_ L e-y2/2= J_e-(*2+ty2)/2 _ J_e-d/2
n V) v~ yfa 2Tr6 ~ 2ir .

The last expression looks like a product of an exponential density for d and
a uniform distribution; the term 27T may be interpreted as the uniform
distribution for the angle 9 £ (0, 2n), However, we are missing some constant
term in order to obtain the exponential density. To express the density in
terms of (d, B), we should properly take the Jacobian of the transformation
from (x, y) to (d, B) into account.5 Some calculations yield

dd dd

3= dx dy _ 2,
89 d9
dx dy

5See, e.g., [16] for details.
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and the correct density in the alternative coordinates is

Hence, we may generate R2 as an exponential variable with mean 2 and
B as a uniformly distributed angle, and then transform back into Cartesian
coordinates in order to obtain two independent standard normal variates. The
Box-Muller algorithm may be implemented as follows:

1. Generate two independent uniform variates U\, U2 ~ U(0,1).
2. Set R2= —210gC/i and B = 2tlJ2-
3. Set X = Rcosd, Y = i?sin0.

In practice, this algorithm may be improved by avoiding the costly evaluation
of trigonometric functions and integrating the Box-Muller approach with the
rejection approach. The idea results in the following polar rejection method:

1. Generate two independent uniform variates U\,U2 ~ U(0,1).
2. Set Vi =2U\-1,V2=2U2-1,S =V2+ V2.

3. If S > 1, return to step 1, otherwise, return the independent standard
normal variates:

We refer the reader to [15, section 5.3] for a justification of the polar rejection
method.

Example 4.8 We have seen that LCGs may exhibit a lattice structure. Since
the Box-Muller transformation is non-linear, one might wonder if the com-
position of these two features may yield weird effects. We may check this
in a somewhat peculiar case (see [14]), using the MATLAB script in figure
4.12. The script generates 2046 uniform random numbers for a sequence with
modulus m = 2048; we discard the last pair, because the generator has maxi-
mum period and reverts back to the seed, which is 0 and causes trouble with
the logarithm. Vectors Ul and U2 contain odd- and even-numbered random
numbers in the sequence. The first part of the resulting plot, displayed in
figure 4.13, shows poor coverage of the plane. The second part shows that
swapping the pairs of random numbers may have a significant effect, whereas
with truly random numbers the swap should be irrelevant. Of course, using
better LCGs, or better random number generators prevents pathological be-
havior like this. However, it may be sometimes preferable to use the inverse

transform method.
0
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7 Ripley2.m

m = 2048;

a = 1229;

c =1,

N = m-2;

seed = 0;

U = LCG(a,c,m,seed,N);
Ul = UQ@:2:N-1);

U2 = U(2:2:N);

X=sqrt(-2*log(Ul)).* cos(2*pi*U2);
Y=sqrt(-2*log(Ul)).* sin(2*pi*U2);
figure

subplot(2,1,1)

plot(X,Y, = ?Y;
X=sqrt(-2*1og(U2)).* cos(2*pi*Ul);
Y=sqrt(-2*log(U2)).* sin(2*pi*Ul);
subplot(2,1,2)

plot(X,Y, ~.7;

Fig. 4.12 Script to check Box Muller approach.

In many financial applications one has to generate variates according to a
multivariate normal distribution with (vector) expected value fj, and covari-
ance matrix £. This task may be accomplished by obtaining the Cholesky
factor for £, i.e.,, an upper triangular matrix U such that £ = UTU (see
section 3.2.3). Then we may apply the following algorithm:

1. Generate n independent standard normal variates Z\,..., Zzn ~ Or(0,1).

2. Return X = uy + UTZ, where Z = [2\,..., Zn]T.

Example 4.9 A rough code to simulate multivariate normal variables is
illustrated in figure 4.14. The code builds a matrix whose columns correspond
to the different variables, and the rows correspond to the different realizations
of them. Assume that we have the following parameters:

» Sigma =[41-2; 131 ;-2 15];
» mu=[8 ;6 ; 10];
» eig(Sigma)
ans =
1.2855
4.1433
6.5712
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Fig. 4.13 Effect of swapping random numbers in the Box-Muller transformation.

Note that we make sure that the matrix £ is positive definite, as it should be,
by checking its eigenvalues. Now we may generate a few samples and verify
the results.

>> rand( Btate 7,0) ;
>> Z = MultiNormrnd(mu,Sigma,10000);
>> mean(Z)
ans =
8.0266 6.0234 9.9703
>> cov(2)
ans =
4.0159 1.0193 -1.9671
1.0193 3.0011 1.0171
-1.9671 1.0171 5.0060

We leave to the reader the exercise of improving the code, by checking that
the vector and matrix sizes of the input arguments agree, by checking that
the matrix Sigma is a positive definite symmetric matrix, and by avoiding the
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function Z = MultiNormrnd(mu,sigma,howmany)
n = length(mu);
Z = zeros(howmany,n);
mu = mu(:); 7 make sure it3 a column vector
U = chol(sigma);
for i=I1:howmany
Z(i,:) =mu ™+ randn(l,n) * U;
end

Fig. 4.14 Code to simulate multivariate normal variables.

for loop. Then have a look at the function mvnrnd, included in the Statistics
toolbox, which does just this job. D

4.4 SETTING THE NUMBER OF REPLICATIONS

Carrying out a Monte Carlo simulation entails the generation of samples of
the quantity of interest and then an estimation of the relevant parameters.
One would expect that the larger the number of samples, or replications, the
better the quality of the estimates will be. From appendix B we recall that
given a sequence of independent (and we stress the independence) samples X i,
drawn from the same underlying distribution, we may build the sample mean:

X(n) = -T X i,
Ni-t

which is an unbiased estimator of the parameter /i = E[X<], and the sample
variance:

X» -~ 1 TE N -apg]2'
i=i

We may try to quantify the quality of our estimator by considering the ex-
pected value of squared error of estimate:

EL(X(n)-M2]=Var[X(n)] = -,

where &2 may be estimated by the sample variance. Clearly, increasing the
number n of replications improves the estimate; but how can we reasonably
set the value of n?

Recall that the confidence interval at level (1 —a) may be computed as

X(n) £ z1™a/2~ S 2{n)/n, (4.5)
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where zi_a/2 is the quantile of the standard normal distribution corresponding
to probability 1 —a. Strictly speaking, this is just an approximation, which
will be a good one provided that n is large enough, both because X(n) will
be approximately normal (central limit theorem) and because the quantile
tn_1a_a/2 from the t distribution with n — 1 degrees of freedom tends to
2\—a-

Suppose you are interested in controlling the absolute error in such a way
that, with probability (1 —a),

IX(n) - fi\<o0,

where /3 is the maximum acceptable tolerance. But the confidence interval
(4.5) is just built in such a way that

P{X(n) - 4 </z< X(n) + H} » 1—q,
where we denote the half-length of the interval by
H = Zi_a/2\/S2{n)In
of the confidence interval. This implies that, with probability 1 —a, we have
X{n)-u<H, @i—X(n) < H = \X(n)-yu\<H.

Hence, linking H to /3, we should simply run replications until H is less than
or equal to the tolerance j3, and the number n must satisfy

Zl1-a/2\fS2{n)/n < 0. (4.6)

Actually, we are chasing our tail a bit here, since we cannot estimate the
sample variance S2(n) until the number n has been set. One way out is to
run a suitable number, say k — 30, of pilot replications, in order to come up
with an estimate S2(k). Then we may apply (4.6) using S2(k) to determine
n. After running the n replications, it is advisable to check that equation
(4.6) holds with the new estimate S2(n). Alternatively, we may simply add
replications, updating the sample variance, until the criterion is met; however,
with this approach we do not control the amount of computation we are willing
to spend.
If you are interested in controlling the relative error, so that

holds with probability (1 —a), things are a little more involved. The difficulty
is that we may run replications until the half-length H satisfies
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function [Price, CI] = BIsMC2(SO0,K,r,T,sigma,NRepl)

nuT = (r - 0.5*sigma“2)*T;

siT = sigma * sqrt(7);

DiscPayoff = exp(-r*T)*max(0, SO*exp(nuT+siT*randn(NRepl,1))-K);
[Price, VarPrice, CI] = normfit(DiscPayoff);

Fig. 4.15 Revised code to price a vanilla European call by Monte Carlo simulation.

but in this inequality we are using the known quantity X (n) rather than the
unknown parameter /i. Nevertheless, if the inequality above holds, we may
write

< P{l X(n) = |<7 IX(n) 1}

PINX{n)-fji,\<'y\X(n)-fi + ii\}
P{\X{n)-L <7 IX(n)-fi I+7 Iy 1} 4.7)

A

where inequality (4.7) follows from the triangle inequality and the last equa-
tion is obtained by a slight rearrangement. Therefore, we see that if we pro-
ceed without care, the actual relative error we get is bounded by 7/(1 —7),
which is larger than the desired bound 7; so, we should choose n such that
the following criterion is met:

X(n) (4.8)

where

Again, we should run some pilot replications in order to get a first estimate
of the sample variance S2(n).

Confidence intervals in MATLAB may be computed using the normfit
function. This function is part of the Statistics Toolbox and it assumes that
we are fitting a normal distribution based on samples from the normal distri-
bution, which is not exactly what we have in mind; nevertheless, the way it
computes confidence intervals fits our purpose. By default, normfit returns
a 95% confidence interval, and different values may be specified, as usual in
MATLAB, by passing an optional parameter.

Example 4.10 We may extend the code for pricing a vanilla call in order
to compute confidence intervals on prices, as shown in figure 4.15. Note that
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in the last line we must collect three output arguments from normfit; the
second one is sample variance, which is discarded. We can play a bit with
BISMC2 in order to get a feeling for how many replications are needed to get
a fairly accurate estimate:

» randn("state 7, 0)
» S0=50;
» K=55;
>> r=0.05;
» T=5/12;
>> sigma=0.2;
>> Call = blsprice(S0,K,r,T,sigma)
Call =
1.1718
» [CalIMC, CI] = BIsMC2(SO0,K,r,T,sigma,50000)
CallMC =
1.1953
Cl =
1.1704
1.2201
» (CI(2)-CI(1))/CallmC
ans =
0.0416

We may notice that with 50000 samples the estimate is not quite satisfactory;
however the true value is within the confidence interval, even though close
to the left end-point. Of course, in a practically relevant case, we could only
notice that the confidence interval is fairly wide. It may take a very large
number of replications to get a reliable estimate:

» [CallMC, CIT = BIsMC2(S0,K,r,T,sigma,1000000)

CallMC =
1.1749
Cl =
1.1694
1.1804
»  (C1(2)-ClI(L))/CallNC
ans =
0.0094

From equation (4.5) we see that the rate of improvement of the quality of our
estimate, i.e., the rate of decrease of the error, is something like 0 (1/y/n). In
practice, this means that the more samples we get the better, but the rate of
improvement is slower and slower as we keep adding samples. Thus a brute-
force Monte Carlo simulation may take quite some amount of computation to
yield an acceptable estimate. One way to overcome this issue is to adopt a
clever sampling strategy in order to reduce the variance a2 of our samples;
the other one is to adopt a quasi-Monte Carlo approach.
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4.5 VARIANCE REDUCTION TECHNIQUES

We have seen in section 4.4 that one way to improve the accuracy of an
estimate is to increase the number of replications n, since Var(X(n)) =
Var(Xi)/n. However, this brute-force approach may require an excessive com-
putational effort. An alternative is to work on the numerator of this fraction
and to reduce the variance of the samples Xi directly. This may be accom-
plished in different ways, more or less complicated, and more or less rewarding
as well.

4.5.1 Antithetic sampling

A first approach that is easy to apply and does not require deep knowledge of
what we are simulating is antithetic sampling. In plain Monte Carlo, we gen-
erate a sequence of independent samples. However, inducing some correlation
in a clever way may be helpful. Consider the idea of generating a sequence of
paired replications XN),i=1,...,n

X N
2 2 Hem /12 =

These samples are “horizontally” independent, in the sense that X ~ 1~ and
X~ 21 are independent however we choose j,k = 1,2, provided i\ ¢ i2. Thus

the pair-averaged samples X ~ + X~)/2 are independent, and we
may build a confidence interval based on them. However, we do not require
“vertical” independence, since for a fixed i, X ~ and X ~ may be dependent.
If we build the sample mean X (n) based on the samples X~I\

Yar(Xn)
Var[X(n)] =

Yar(X”) + Var(X”) + 2Coy(X"}L X ™)
4n

Var(X)
on 1+ p(X1,X2)).

We see that, in order to reduce the variance of the sample mean, we should
take negatively correlated replications within each pair. Each sample x [\ is
obtained by generating random variates according to one of the methods we
have described before; but all of these methods exploit a stream of uniformly
distributed random numbers. Hence, to induce a negative correlation, we may
use a random number sequence {Uk} for the first replication in each pair, and
then {1 —UK} in the second one. Since the input streams are negatively
correlated, we hope that the output streams will, too.
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Example 4.11 Let us repeat example 4.2, where we used Monte Carlo in-
tegration to estimate

With only 100 samples, we do not get a reliable estimate:

>> randn( Btate 7,0)

>> X=exp(rand(100,1));

>> [1,dummy,Cl] = normfit(X);
»

1.7631
»  (C1(2)-CI(1))/1
ans

0.1089

Antithetic sampling is easily accomplished here. We must store random num-
bers and take their complements to one. In order to have a fair comparison,
we consider 50 antithetic pairs, which means 100 function samples as before:

>> randn( State %,0)

» Ul=rand(50,1);

» U2=1-U1;

>> X=0.5*(exp(Ul)+exp(U2));
>> [1,dummy,CI] = normfit(X);

»

1.7021
»  (C1(2)-CI(1))/1
ans

0.0200

Now the confidence interval is much smaller and, despite the limited number
of samples, the estimate is fairly reliable. D

The antithetic sampling method looks quite easy to apply and, in the example
above, it works pretty well. May we always expect a similar pattern? Of course
not. To begin with, if we integrate the exponential function over [0,1] there is
a strong positive correlation between U and eu because the function is almost
linear there. We should not expect impressive results in more complex cases.
Moreover, the following counterexample shows that the method may actually
backfire, resulting in an increase in the variance.

Example 4.12 Consider the function h(x), defined as

'0, x <0
2X, 0<x<05
2- 21, 05<x<1
.0, x> 1

h(x) = .



A =
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function [Price, CI] = BIsMCAV(SO,K,r,T,sigma,NRepl)
nuT = (r - 0.5*sigma~2)*T;

siT = sigma * sqrt(T);

Veps = randn(NRepl,1);

Payoffl = max( 0 , SO*exp(nuT+siT*Veps) - K);
Payoff2 = max( 0 , SO*exp(nuT+siT*(-Veps)) - K);
DiscPayoff = exp(-r*T) * 0.5 * (Payoffl+Payoff2);
[Price, VarPrice, CI] = normfit(DiscPayoff);

Fig. 4.16 Using antithetic variates to price a vanilla European call by Monte Carlo
simulation.

Indeed, there is a trivial explanation. The two antithetic samples have the
same value h(U) = h(l —U), so that Cov[h(U), h(l —U)} = Cov[h(U), h(U)\ =
Var[/i([/)]. In this (pathological) case, the variance of the single sample is
doubled by applying antithetic sampling. D

What is wrong with example 4.12? The variance of the antithetic pair is
actually increased due to the non-monotonicity of h(x). In fact, while it is true
that the random numbers {Ui} and {1 —Ut} are negatively correlated, there

is no guarantee that the same holds for and X-2nin general. To be sure
that the negative correlation in the input random numbers yields a negative
correlation in the output samples, we must require a monotonic relationship
between them. The exponential function is a monotonic function, but the
triangle function of the second example is not. We should also pay attention
to how random variates are generated. The inverse transform method is based
on the distribution function, which is a monotonic function; hence, there is a
monotonic relationship between the input random numbers and the random
variates generated. This is not necessarily the case with the acceptance-
rejection method or the Box-Muller method. Luckily, when we need normal
variates, we may simply generate a sequence zZi, where zt ~ N (0,1), and use
the sequence —zi for the antithetic samples. This idea is best illustrated by
applying antithetic sampling to option pricing in the simplest setting.

We may easily incorporate antithetic sampling in our function BISMC2 to
price a European-style call option. MATLAB code is shown in figure 4.16.
We simply generate a stream of standard normal variates and use the same
sequence, with a change in sign, in the antithetic run. Each pair of antithetic
samples is averaged and used as an estimator. Note that the last input pa-
rameter, NPairs, is the number of antithetic pairs, rather than samples; this
must be taken into account when checking the variance reduction with respect
to crude Monte Carlo:

>> randn( State 7,0)
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» [Price, CI] = BIsMC2(50,50,0.05,1,0.4,200000)

Price =
9.0843
Cl =
9.0154
9.1532
» (CI(2)-CI(1))/Price
ans =
0.0152

>> randn( State ~,0)
» [Price, CI] = BIsMCAV(50,50,0.05,1,0.4,100000)

Price =
9.0553
Cl =
8.9987
9.1118
»  (CI(2)-CI1(1))/Price
ans =
0.0125

We see that some improvement is obtained, but it is not that impressive,
in this case. Clearly, one run for one example does not allow to draw any
conclusion, but it is a fact that antithetic sampling is a simple technical trick
which does not exploit too much knowledge.

In the case of a vanilla call option, the monotonicity condition required by
antithetic sampling is met: the higher the sample from the standard normal
distribution, the higher the terminal price of the underlying, and the higher
the payoff. With non-monotonic payoffs, this need not be the case. We may
illustrate this by using a payoff which is similar to the triangle function of
example 4.12. The butterfly spreadé6 is a trading strategy involving options
on the same underlying asset, with the same maturity, but with different strike
prices. The payoff from this combination is illustrated in figure 4.17. It can
be obtained by buying one call option with strike price K\, one call option
with strike price K3 (K\ < K 3), and by selling two call options with a strike
K 2 halfway between the other two. Since the butterfly spread is simply a
combination of European calls, an option with that payoff may be directly
priced by using Black-Scholes formula.

Since the payoff is clearly non-monotonic, and we know the “correct” price,
it is interesting to check whether antithetic sampling works in this case. A
crude Monte Carlo approach leads to the code in figure 4.18. The function
MCButterfly receives the usual input arguments, plus the three strikes. Note
the use of vectors Ini and In2 to collect the indexes corresponding to repli-
cations in which the terminal asset price falls in the increasing region of the

6See, e.g., [6, chapter 8] for more option trading strategies.
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Fig. 4.17 Payoff from a butterfly spread.

function [P, CI] = MCButterfly(SO,r,T,sigma,NRepl,KL,K2,K3

nuT = (r-0.5*sigma®2)*T;

siT = sigma*sqrt(T);

Veps = randn(NRepl,1);

Stocks = SO*exp(nuT + siT*Veps);

Ini = find((Stocks > KI) & (Stocks < K2));

In2 = find((Stocks >= K2) & (Stocks < K3));

Payoff = exp(-r*T)* [(Stocks(Ini)-KI); (K3-Stocks(In2)); ...
zeros(NRepl - length(Inl) - length(In2),D)];

[P, V, CI] = normfit(Payoff);

Fig. 4.18 Crude Monte Carlo code to price a butterfly spread combination.

payoff (Ki < St < K2) or in the decreasing region (K2 < St < K-\ outside
those regions the payoff is zero. The two vectors are used to avoid for loops.

The function MCAVButterfly of figure 4.19 is a modification based on an-
tithetic sampling. The vector Veps contains the samples from the standard
normal distribution, which are changed in sign to obtain the antithetic stock
price samples Stocks2. Note that in this case we must preserve the order
of the samples so as to pair the corresponding payoffs properly; this is why
the code looks a bit more involved, and it uses find in order to spot samples
falling in the interval of zero, increasing, or decreasing payoff.

It is common to choose K2 close to the current stock price So, as this
strategy is based 011 the bet that the stock price will not move too much. Let
us check the results in such a case. Using blsprice we may get the theoretical
result.

» SO = 60;
» Kl 55;
» K2 60;
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function [P, CI] = MCAVButterfly(SO,r,T,sigma,NPairs,Kl,K2,K3)
nuT = (r-0.5*sigma"2)*T;

siT = sigma*sqrt(T);

Veps = randn(NPairs,1);

Stocksl = SO*exp(nuT + siT*Veps);

Stocks2 = SO*exp(nuT - siT*Veps);

Payoffl = zeros(NPairs,1);

Payoff2 = zeros(NPairs,1);

In = find((Stocksl > KI) ft (Stocksl < K2));
Payoffl(In) = (Stocksl(ln) - KI1);

In = find((Stocksl >= K2) ft (Stocksl < K3));
Payoffl(Iln) = (3 - Stocksl(In));

In = find((Stocks2 > KI) ft (Stocks2 < K2));
Payoff2(In) = (Stocks2(In) - KI);

In = find((Stocks2 >= K2) ft (Stocks2 < KJ));
Payoff2(In) = (K3 - Stocks2(In)) ;

Payoff = 0.5 * exp(-r*T) * (Payoffl + Payoff2);
[P, V, CI] = normfit(Payoff);

Fig. 4.19 Using antithetic sampling to price a butterfly spread combination.

» K3= 65;
» T = 5/12;
» r = 0.1;

>> sigma = 0.4;
>> calls = blsprice(S0, [KI, K2, K3], r, T, sigma);
» Price = calls(l) - 2*calls(2) + calls(3)
Price =
0.6124

Next, we may compare the two Monte Carlo methods:
» randn( Btate 7,0)

[P, CI] = MCButterfly(SO,r,T,sigma,100000,K1,K2, K3);
» P

P =

0.6095
»  (CI(2)-CI(1))/P
ans =

0.0256

>> randn( Btate 7,0)

» [P, CI] = MCAvVButterfly(SO,r,T,sigma,50000,K1,K2, K3);

» P

P =
0.6090
(C1(2)-C1(1))/pP

M
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ans =
0.0355

We may see that variance is actually increased in this case. This does not
mean that you will always have an increase in variance, as this depends on
the input data (try changing the strikes to see this). Anyway, since one run
does not tell us much, a better comparison may be carried out by checking
the standard error of estimate with respect to the exact result using multiple
runs:

>> randn( State ~,0)
>> VI = zeros(100,1);
» Ffor i=1:100, VI(i)=MCButterfly(SO,r,T,sigma,100000,K1,K2,K3);, end
» V2 = zeros(100,1);
» for 1=1:100, V2(i)=MCAVButterfly(SO,r,T,sigma,50000,K1,K2,K3);, end
>> sqrt(mean((Vl - Price).*“2))
ans =
0.0040
» sqrt(mean((V2 - Price).*“2))
ans =
0.0055

Indeed, we see that the standard error of estimate is increased by antithetic
sampling.

452 Common random numbers

The common random numbers (CRN) technique is very similar to antithetic
sampling, but it is applied in a different situation. Suppose that we use Monte
Carlo simulation to estimate a value depending on a parameter a. In formulas,
we are trying to estimate something like

h(a) = Ew[/(a;w)],

where we have emphasized randomness through the variable w. We could also
be interested in evaluating the sensitivity of this value on the parameter a:

dh(a)
da

This would be of interest when dealing with option sensitivities beyond the
Black-Scholes model. Clearly, we cannot compute the derivative analytically;
otherwise, we wouldn't use simulation to evaluate h in the first place. So the
simplest idea would be using simulation to estimate the value of the finite

difference,
h(a + Sa) —h(a)
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for a small value of the increment 5a. However, what we can really do is to
generate samples of the difference

f(a + 5a;w) - f(a;w)

8a

and to estimate its expected value. Unfortunately, when the increment 6a
is small, it is difficult to tell if the difference we obtain from the simulation
is due to random noise or to variation in the parameter. A similar problem
arises when we want to compare two portfolio management policies on a set
of scenarios; in this case, too, what we need is an estimate of the expected
value of the difference between two random variables.

Let us abstract a little and consider the difference of two random variables

where, in general, E[XjJ ¢ E[X2], since they come from simulating two dif-
ferent systems, possibly differing only in the value of a single parameter. By
Monte Carlo simulation we get a sequence of independent samples

= Xi,)~Xx2]j

and use statistical techniques to build a confidence interval for E[-Xi —X 2]. To
improve our estimate, it would be useful to reduce the variance of the samples
%

Var(Xij - X2j) = Var(Xij) + Var(X2j) - 2 Coy(X13, X 2j).

To achieve this, we may try inducing some positive correlation between Xij
and X-2] =« This can be obtained by using the same stream of random numbers
in simulating both Xi and X 2. The technique works much like antithetic
sampling, and the same monotonicity assumption is required to ensure that
the technique does not backfire. We will see an application of these concepts
in section 8.5, where we apply Monte Carlo sampling to estimate option price
sensitivities.

4.5.3 Control variates

Antithetic sampling and common random numbers are two almost foolproof
techniques that, provided the monotonicity assumption is valid, do not require
much knowledge about the systems we are simulating. Better results might
be obtained by exploiting some more knowledge. Suppose that we want to
estimate B8 = E[X], and that there is another random variable Y, with a
known expected value v, which is somehow correlated with X. Such a case
occurs when we use Monte Carlo simulation to price an option for which an
analytical formula is not known: B is the unknown price of the option, and wn
is the price of a corresponding vanilla option.
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The variable ¥ is called the control variate. Additional knowledge about
Y may be exploited by adopting the controlled estimator

Xc =X +c(Y-v),

where c is a parameter we must choose. Intuitively, when we run a simulation
and we observe that our estimates are such that

E[Y] > ¢,

we may argue that the estimate E[X] should be increased or reduced accord-
ingly, depending on the sign of the correlation between X and Y. Indeed, we
may see that

E[Xc\= B
Var(Xc) = Var(X) + c2vVar(¥Y) + 2c Coy(X, Y).

The first formula says that the controlled estimator is, for any choice of the
control parameter ¢, an unbiased estimator of 9. The second formula suggests
that by a suitable choice of ¢, we could reduce the variance of the estimator.
We could even minimize the variance by choosing the optimal value for c:

, Cov(X,y)
T Yar(Y)

in which case we get
Var(X£) 2
Var(X) — 1~ PXY>

where pxy is the correlation between X and Y. Note that the sign of ¢
depends on the sign of this correlation. For instance, if Cov(X, ¥) > 0, then
¢ < 0. This implies that if E[Y] > v, we should reduce E[-X], which does
make sense, because if our sample values for ¥ are larger than the average,
the sample values for X are probably too.

In practice, the optimal value of ¢ must be estimated, since Cov(X, Y)
and possibly Yar(Y) are not known. This may be accomplished by a set of
pilot replications. It would be tempting to use these replications both for
selecting c* and to estimate 9\ however, in doing so you induce some bias in
the estimate of 9, since in this case c* is a random variable depending on X
itself. So, unless suitable statistical techniques are used, which are beyond
the scope of this book, the pilot replications should be discarded.

The control variates approach may be generalized to as many control vari-
ates as we want, with a possible improvement in the quality of the estimates.
Of course, this requires more knowledge about the system we are simulating
and more effort in setting the control parameters. We may illustrate the ap-
proach using again the vanilla call option. In this case the stock price is a
natural control variate, as both its expected value and the variance at the
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function [Price, CI] = BIsMCCV(SO,K,r,T,sigma,NRepl,NPilot)
nuT = (r - 0.5*sigma"2)*T;
siT = sigma * sqrt(T);
compute parameters first
StockVals = SO*exp(nuT+siT*randn(NPilot,1));
OptionVals = exp(-r*T) * max( 0 , StockVals - K);
MatCov = cov(StockVals, OptionVals);
VarY = S0~2 * exp(2*r*T) * (exp(T * sigma~2) - 1);
c= - MatCov(1,2) / Vary;
ExpY = SO * exp(r*T);
¥
NewStockVals = SO*exp(nuT+siT*randn(NRepl,1));
NewOptionVals = exp(-r*T) * max( 0 , NewStockVals - K);
ControlVars = NewOptionVals + c* (NewStockVals - ExpY);
[Price, VarPrice, CI] = normfit(ControlVars);

Fig. 4.20 Using control variates to price a vanilla European call by Monte Carlo
simulation.

expiration of the option are known. To apply the method, we must compute
an estimation of the covariance between the option value and the underlying
asset price. The MATLAB code is illustrated in figure 4.20. The BIsMCCV
function requires as an additional input parameter the number NPilot of pi-
lot replications we want to run to estimate the covariance. Note that the first
set of pilot replications is discarded to avoid biasing the estimator.

» randn( Btate 7,0)
» [P,CI] = BIsMC2(50,52,0.1,5/12,0.4,200000);

» P

5.2328
» (C1(2)-CI(1))/P
ans =

0.0149

» randn( Btate 7,0)
» [P.CI] = BIsMCCV(50,52,0.1,5/12,0.4,195000,5000);

» P

5.2008
»  (CI(2)-CI(1))/P
ans =

0.0066

From these runs it would seem that there is some reduction in variance by
using control variates. We should prepare a script in order to systematically
check gain in efficiency. This is left as an exercise for the reader.
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4.5.4 Variance reduction by conditioning

Computing expected values by conditioning is a common technique in proba-
bility theory. When we want to compute (or estimate) E[X], it is sometimes
useful to condition with respect to another random variable ¥, as the following
formula holds:

E[X] = E[E[X Y]] (4.9)

Variances may be computed by conditioning, too. We recall the conditional
variance formula [see also equation (B.2) in appendix B]

Var(X) = E[Var(X |Y)] + Var(E[X |Y]).

We do not use the conditional variance formula directly in this book. However,
since all the involved quantities are non-negative, we immediately see that the
formula implies two consequences:

1 Var(X) > E[Var(X |Y)].
2. Var(X) > Var(E[X |IYD.

Using the first inequality to reduce the variance of an estimator leads to
variance reduction by stratification, which is discussed in the next section.
The second one leads to variance reduction by conditioning.

Using conditioning is useful when our aim is to estimate 8 — E[X] and
there is another random variable ¥ such that the value of E[X |Y = y] is
known. From equation (4.9) we see that E[X |¥Y] is also an unbiased estimator
for 9, and the conditional variance formula implies that it may be a better
one. In practice, to apply variance reduction by conditioning, we simulate ¥
rather than X. Unlike antithetic sampling, variance reduction by conditioning
requires some careful thinking and is strongly problem dependent.

As an example of conditioning, we consider the problem of pricing an “as-
you-like-it” option (also known as chooser option). The option is European-
style and has maturity T2. At time T\ < T2 you may choose if the option is a
call or a put; the strike price K is fixed at time t = 0. Clearly, at time T\ we
should compare the values of the two options and choose the more valuable
one. This can be done by using Black-Scholes formula to evaluate the price of
call and put options with initial underlying price S(T\) and time to maturity
T2 —T1. This means that, conditional on S(I\), we may get an exact estimate
of the expected payoff at time T2, under the risk-neutral probability. However,
it is extremely instructive to write a pure Monte Carlo code, in which we only
use sampling to get estimates.

In this case, this is not that trivial, as we must take a decision at time
T\, this is similar to the early exercise decision we must take with American
options. To get a feeling for the issues involved, let us consider figure 4.21.
Starting from the initial node, with price So, we generate four samples of
price S(T\), and for each of these, we sample three prices *5(Tr). We have
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Fig. 4.21 Scenario tree for the as you like it option.

4 x 3 = 12 scenarios, but they are tree-structured. We need this structure,
because the decision at time T\ (we like the put or the call) must be the
same for all scenarios departing from each node at time T\. Without this
structure, our decisions would be based on perfect foresight about the future
price at time T, This non-anticipativity concept is fundamental in dynamic
stochastic optimization and in pricing American options.

A crude Monte Carlo code to price the option is displayed in figure 4.22.
Here NRepl 1 is the number of samples (replications) at time Ti and NRepl2
is the number of samples at time T2, for each node at time Ti; hence, the
overall number of scenarios is the product of NRepl1l and NRepl2. The vector
DiscountedPayoffs has size corresponding to the overall number of scenar-
ios. For each node at Ti, which is generated as usual with geometric Brownian
motion, we generate nodes at time T2, and we compare the estimates of ex-
pected payoff if we take the option as a call and if we take it as a put. Then
we select one of the two alternatives and we fill a block (of size NRepl2) in
the vector of discounted payoffs. Then we compute average and confidence
intervals as usual. Later, we discuss if this is really correct.

Clearly, we are doing much more work than necessary in the crude Monte
Carlo code. Conditional on a price S(T\), we know how to estimate expected
payoff from each of the two choices, as this is given (apart from a discount
factor) by the Black-Scholes formula. A code exploiting such a knowledge is
displayed in figure 4.23. The code is actually much simpler: for each node at
time S(Ti) we take the larger value between the price of a call and the price of
a put with initial price S(T\) and time to maturity T2 —T i, and we discount
this value back from T\ to time t = 0.

A script to compare crude and conditional Monte Carlo is given in figure
4.24. Running the script, we get
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function [Price, CI] = AYLIMC(SO,K,r,TI,T2,sigma,NRepll,NRepl2)

7, compute auxiliary quantities outside the loop

DeltaT = T2-T1;

muTl = (r-sigma~2/2)*Tl;

muT2 (r-sigma"2/2)*(T72-T1);

siTl = sigma*sqrt(Tl);

siT2 = sigma*sqrt(T2-Tl);

7, vector to contain payoffs

DiscountedPayoffs = zeros(NRepl1*NRepl2, 1);

7, sample at time TI

Samplesl = randn(NRepll,1);

PriceTl = SO*exp(muTl + siTl*Samplesl);

for k=I:NRepll
Samples2 = randn(NRepl2,1);
PriceT2 = PriceTl(k)*exp(muT2 + siT2*Samples2);
ValueCall = exp(-r*DeltaT)*mean(max(PriceT2-K, 0));
ValuePut = exp(-r*DeltaT)*mean(max(K-PriceT2, 0));
if ValueCall > ValuePut

DiscountedPayoffs(1+(k-1)*NRepl2:k*NRepl2) =
exp(-r*T72)*max(PriceT2-K, 0);

else
DiscountedPayoffs(l+(k-1)*NRepl2:k*NRepl2)
exp(-r*72)*max(K-PriceT2, 0);

end

[Price, dummy, CI] = normfit(DiscountedPayoffs);

Fig. 4.22 Crude Monte Carlo code to price an as-you-like-it option.

function [Price, CI] = AYLIMCCond(SO,K,r,TI,T2,sigma,NRepl)
muTl = (r-sigma~2/2)*TIl;

siTl = sigma*sqrt(Tl);

Samples = randn(NRepl,1);

PriceTl = SO*exp(muTl + siTl*Samples);

[calls, puts] = blsprice(PriceTl,K,r,T2-Tl,sigma);

Values = exp(-r*Tl)*max(calls, puts);

[Price, dummy, CI] = normfit(Values);

Fig. 4.23 Using conditioning to price an as-you-like-it option.
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7, AYLIScript.m

SO = 50;

K= 50;

r = 0.05;

T1 = 2/12;

T2 = 7/12;

sigma = 0.4;

NRepll = 100;

NRepl2 = 100;

[Call, Put] = blsprice(S0,K,r,T2,sigma);

randn( State 7,0);

[Price, CI] = AYLIMC(SO,K,r,TI,T2,sigma,NRepl1,NRepl2);
rand( State 7,0);

[PriceCond, ClCond] = AYLIMCCond(SO,K,r,T1,T2,sigma,NRepllI*NRepl2);
fprintf (1, Tall = ¥f Put = */.f\n~, Call, Put);

fprintf (1, MC -> Price = 7/f CI = (/f, /6 \n?7,
Price, CI(1), Cl1(2) ;
fprintf(l,~ Price = 7.6 "\77/O0v, ...

100*(CI1(2)-CI(l))/Price);

fprintf (1, MC+Cond -> Price = ¥f Cl = (/f, /) \n?7,
PriceCond, CICond(l), ClICond(2));

fprintf (1, ~ Price = yb.4f%yadn >, ...
100*(CICond(2)-ClCond(l))/PriceCond);

Fig. 4.24 Script to compare pricing methods for an as-you-like-it option.

a

S|

g
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» AYLIScript

Call = 6.728749 Put = 5.291478

MC -> Price = 8.698173 CI
Ratio = 4.7902%/,

MC+Cond -> Price = 9.298894 CI
Ratio = 1.7321*%/,

(8.489842, 8.906504)

(9.218362, 9.379426)

A few things should be noticed:

1. The value of the as you like it option is larger than the value of the call
and the put options; deferring the choice has a significant value.

2. Conditioning seems to reduce variance, using the same number of sce-
narios in the two cases.

3. The value obtained by conditional Monte Carlo is larger.

The last point is quite relevant. Using conditional Monte Carlo, we do not
only reduce variance; we take truly optimal decisions, whereas in crude Monte
Carlo we may take the wrong choice at time Ti because we are comparing esti-
mates of the expected payoff. This may happen even if we estimate the payoffs
with the same samples of price at time T2 (which is essentially variance re-
duction by common random numbers). Hence, we have a bias. The estimator
with crude Monte Carlo is biased low, since we are getting less money from
a suboptimal strategy. And the bias does not disappear by increasing the
number of replications. We urge the reader to run the script setting both
NRepll and NRepl2 to 1000, which results in the following output:

» AYLIScript

Call = 6.728749 Put = 5.291478

MC -> Price = 8.930494 CI
Ratio = 0.4670%/,

MC+Cond -> Price = 9.259405 CI = (9.251437, 9.267372)
Ratio = 0.1721%/,

(8.909643, 8.951345)

We see that the bias is still there. This must be taken into account when
using Monte Carlo methods to price American options (see chapter 10). If we
use suboptimal exercise strategies, than we get a lower bound on the option
price. It is also worth noting that this pricing problem is essentially a one-
dimensional integration problem which may be solved more efficiently by other
techniques.

To close this section, we should ask ourselves if the procedure we have
followed is really correct. We have computed a confidence interval using the
standard procedure, which assumes that samples are independent, but is this
actually the case? Consider an intermediate node in our scenario tree, at time
T\, and its successor nodes at time T2. Are the payoffs we receive in these
successor nodes independent? Arguably, they are not, since we have used all
of them to decide which option type we like at time T\. The problem is that
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we are mixing two issues. The first one is learning an optimal decision rule by
sampling; the second one is estimating the payoff we receive with that rule.
A sound procedure would require two separate sampling phases. Doing so,
we would be sure that payoffs are independent in the second sampling phase,
and that the estimate we get is low-biased (since we are probably using a
sub-optimal decision rule). We will meet such issues again in section 10.4,
where we consider pricing American options by Monte Carlo sampling.

4.5.5 Stratified sampling

Suppose, as usual, that we are interested in estimating E[X] and that X is
somehow dependent on the value of another variable random Y, which may
take a finite set of values yj with known probability. Thus, Y has a discrete
probability distribution with a known probability mass function:

p{Y = Vi) =Pj, i

1,...,m.

Using conditioning, we see that

m
E[X] = £E[X] Y = yjlPj.
j=i

So, we may use simulation to estimate the values E[X |Y = yj], forj =
1,...,m, and use the formula above to put the results together. The condi-
tional variance formula implies that this may yield a variance reduction with
respect to crude sampling. The approach may look like variance reduction
by conditioning. The key difference is that here we select a value for Y and
then we sample X, conditioned on the event Y = yj\ this event is a stratum.
In variance reduction by conditioning, you actually sample Y, not X. The
following example justifies why such sampling is called stratified.

Example 4.13 As a simple example of stratification, consider using simu-
lation to compute

0= [ h(x)dx = E[h(U)}.

Jo
In crude Monte Carlo simulation you would simply draw n uniform random
numbers [/* ~ C/(0, 1) and compute the sample mean

An improved estimator over crude sampling may be obtained by parti-
tioning the integration interval (0, 1) into m subintervals (G — 1)/m,j/m),
j = 1,..., 7. Each event Y = yj corresponds to a random number falling
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in the jth subinterval; in this case we have pj = 1/m. For each stratum
j = 1,..., m we may generate rij random numbers £4 ~ U(0,1) to estimate

Then we build the overall estimator:
m

§ = " N§jPj. I
How should we determine the nlJJmIber of samples rij to be allocated to
each stratum? A uniform allocation in example 4.13 makes sure that we
sample uniformly over the integration interval (0, 1), but this need not be the
optimal solution. Consider the variance of the estimator B, and denote by Xj
the random variable sampled in each stratum. If the strata are independently
sampled, we have
m m 2
Var(0) =J2pp Var(<9j) = ~ ~ - Var(X,-).
j=i =i ]
To minimize the overall variance, we should allocate more samples to the
strata where Var(Xj) is larger. So we could run a set of pilot replications
to estimate Var(Xj) by sample variances Sj and then obtain the fraction of
samples to be allocated to each stratum by solving a non-linear programming
problem:

mm >
1n,
i=1 3
m
s.t. =n
i=1
rij > 0.

4.5.6 Importance sampling

Unlike other variance reduction methods, importance sampling is based on the
idea of “distorting” the underlying probability measure. It may be particularly
useful when simulating rare events or sampling from the tails of a distribution.
Consider the problem of estimating

0= E[A)] = J M*)/(x)dx,

where X is a random vector with joint density /(x). If we know another
density g such that /(x) = 0 whenever g(x) = 0, we may write
"h(X)f(XY
s(X)

(4.10)
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where the notation E3 is used to stress the fact that the last expected value is
taken with respect to another measure. The ratio f(x)/g(x) isused to correct
the change in probability measure, and it is typically called the likelihood
ratio. when using random sampling, this ratio will be a random variable.7
That changing the underlying probability measure may be useful should not be
a surprise for people interested in finance; risk-neutral valuation does just that.
However, it is not so obvious why this should be helpful in reducing variance.
Indeed, the method may backfire if g is not chosen with care. Intuitively, we
may argue that when looking for rare but important events, as is the case in
estimating Value at Risk, we should distort the probability measure in order
to sample from the critical region, provided that we compensate for this bias.
This is exactly what is done in equation (4.10).

To gain more insight into how density g should be chosen, let us introduce
the notation

&= E/[N(X)]

and assume for simplicity that h(x) > 0. As we have pointed out above, there
are two possible ways of estimating s:
E/NNi(X)] = J h)f{xX)dx =3 " "~-g(x)dx

= J h*(X)g(x) dx = E9Q[/i*(X)],

where h*(X) = h(x)f(x)/g(x). Note that the condition on the support of /
and g is needed in order to avoid any trouble with the case g(x) = 0 in the
definition of h*\ we may think of integrating only on the support.

The two estimators have the same expectation, but what about the vari-
ance? Using the well-known properties of the variance, we obtain

Var/[li(X)] = J h2(x)f(x)dx-92
Varg[l*(X)] = J h2(x) f(x) d x - B2.

From the second equation, it is easy to see that the choice

h{x)f{x)

»(*) 5

leads to the ideal condition Varg[/i*(X)] = 0. Unfortunately, this is indeed
“ideal,” as using this density requires knowledge of B; still, we may at least
try to use approximations of the ideal density (see the example below). Note

7Readers with a background in stochastic calculus would probably use the term “Radon-
Nikodym derivative.”
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function out=estpi(m)
z=sqrt(l-rand(l,m).*2);
out = 4*sum(z)/m;

Fig. 4.25 Trivial code to estimate n.

also that the condition h(x) > 0 is needed in order to ensure that this is a
density; see, e.g., [17, p. 122] to see how to deal with a generic function h.
In general, the difference between the two variances is

From this expression we see that, in order to ensure that we do reduce variance,
we should select a new density g such that

fg(x) > /(x) when the term /i2(x)/(x) is large,
1g(x) < /(*) when the term h2(x)f(x) is small.

The name “importance sampling” derives from this observation.

Example 4.14 We may use a trivial integration example to illustrate the
idea. Let us consider a way to compute . We know that8

since this is simply the area of a quarter of a unit circle; hence, estimating the
value of this integral is a possible way to obtain an estimate of n. A trivial
code to do this is shown in figure 4.25, where the input parameter mis the
number of points we want to sample. From the snapshot below we see that
with 1000 samples, the estimates are not so reliable.

» rand( Btate 7,0)
>> estpi(1000)
ans =
3.1378
>> estpi(1000)
ans =
3.1311
» estpi(1000)
ans =

8This example is based on [2].
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3.0971
» estpi(1000)
ans =

3.1529

So, let us try to improve our estimates by using importance sampling. A
possible idea to approximate the ideal probability distribution is to divide the
integration interval [0,1] into L equally spaced subintervals of width 1/L. The
extreme points of the fcth subinterval (k = 1,..., L) are (k —1)/L and k/L,
and the midpoint of this subinterval is St = (k —1)/L + 1/(2L). A rough
estimate of the integral is obtained by computing

Sfc=I Msfc) _ Q@ Q

Then, an approximation of the ideal density g{x), we could use something like

h(x)f(x) h(x)L
9(x) =
Z L i HskY

since f(x) = 1 (uniform distribution). Unfortunately, this need not be a den-
sity integrating to one over the unit interval. In order to avoid this difficulty
and to simplify sampling, we may define a probability of sampling from a
subinterval and use a uniform density within each subinterval. To this aim,
consider the quantities

r

S k-1, 0

gk = ,
L7j=1 h(sj)

Clearly, J2k 4k — 1 and gk > 0, since our function h is non-negative; hence,
the numbers gk may be interpreted as probabilities. In our case, they may be
used as the probabilities of selecting a sample point from the fcth subinterval.
To summarize, and to cast the problem within the general framework, we have

h(x) = y/l —x2
f(x) = 1
g(x) = Lgk, (k—1)/L < x < K/L.

Here, g(x) is a piecewise constant density; the L factor multiplying the gk in
g(x) is just needed to obtain the uniform density over an interval of length
1/L. The resulting code is illustrated in figure 4.26, where mis the number of
sampled points and L is the number of subintervals. The code is fairly simple,
and sub-intervals are selected as described in the last part of section 4.3.2, on
page 233, where we have seen how to sample discrete empirical distributions
by the function EmpiricalDrnd.

» rand( Btate O0)
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function z=estpilS(m,L)
7. define left end-points of sub-intervals
s= (0:(1/L):(1-1/L)) + 1/(2*L);
hvals = sqrt(l - s."2);
7, get emulative probabilities
cs=cumsum(hvals);
for j=I:m
7, locate sub-interval
loc=sum(rand*cs(L) > cs) +1;
7, sample uniformly within sub-interval
x=(loc-1)/L + rand/L;
p=hvals(loc)/cs(L);
est(j) = sqrt(l - x.~2)/(p*L);
end
z = 4*sum(est)/m;

Fig. 4.26 Importance sampling-based code to estimate n.

» estpilS(1000,10)
ans =

3.1491
>> estpilSd000, 10)
ans =

3.1434
» estpilSd0o00, 10)
ans =

3.1311
>> estpilSd000, 100)
ans =

3.1403
>> estpilSd000, 100)
ans =

3.1416
» estpilSd000, 100)
ans =

3.1411

We see that the improved code, although not a very sensible way to compute
7, yields a remarkable reduction in variance.

The approach we have just taken looks suspiciously like stratified sampling.
Actually, there is a subtle difference. In stratified sampling we define a set
of strata, which correspond to events of known probability; here we have not
used strata with known probability, as we have used sampling to estimate the
probabilities gk. 0
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Importance sampling is often used when small probabilities are involved.
Consider, for instance, a random vector X with joint density /, and suppose
that we want to estimate

9= E/i(X) IX e 4],

where {X € A} is a rare event with a small, but unknown probability P {X 6
A}- Such an event could be the occurrence of a loss larger than the Value at
Risk. The conditional density is

for x £ A. Defining the indicator function /(X)) as

we may rewrite 9 as

L €a M x)/(x) dx _ E[/r.(X)7a(X)]
P{X e A} E [14(X)]

If we use crude Monte Carlo simulation, many samples will be wasted, as the
event {X € A} will rarely occur. Now, assume that there is a density g such
that this event is more likely under the corresponding probability measure.
Then, we may generate the samples X ? according to g and estimate

Sti MXQJIAXQ/CXQMXi)
£m=1 /p(X,)7 (X0 /7<?(X;)

Importance sampling is certainly more difficult to apply than antithetic sam-
pling or control variates: It requires more knowledge about what we are sim-
ulating, since we must be able to figure out a suitably distorted probability
measure.

As an example, let us consider pricing a deep out-of-the-money vanilla call.
If So is the initial price of the underlying, we know that its expected value at
maturity is, according to geometric Brownian motion under the risk-neutral
measure, SoerT. If this expected value is small with respect to the strike price
K, it is unlikely that the option will be in-the-money at maturity. If we apply
crude Monte Carlo, many replications are wasted because the payoff will be
zero in most of them. We should change the drift in order to increase the
probability that the payoff is positive. It is easy to find a drift such that the
expected value of St is the strike price:
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While under the risk neutral measure we sample St = Soez by generating
normal variates

avr),

we should sample by generating

which in turn requires generating standard normal variates e and then using

y =log( f) ““F +W A

Now the tricky part is to compute the likelihood ratio. For the sake of clarity,
assume that we sample Y from a normal distribution whereas the
original distribution isAf(a, £). Then, the ratio of the two probability densities

= e-[(Y -a)2-(Y-/3)2]/2£2 = e-[2(a-(3)Y-a2+P2}/2e

1 (Y-0)2
-—e 2

Now it is easy to extend BIsMC2 to the function BISMCIS displayed in figure
4.27. We may check the efficiency gain of importance sampling by running the
script CheckBIsSMCIS of figure 4.28. For a deep out-of-the-money option, we
compute price with crude Monte Carlo and with importance sampling, and
we compare the percentage error with respect to the exact price. We reset
the random variate generator randn twice in order to use exactly the same
stream of standard normal variates. Running the script, we get

» CheckBIsMCIS
Average Percentage Error:
MC 3.0607,
MC+IS 1.155%/.

We should note that this improvement is not to be expected for at-the-money
options.

46 QUASI-MONTE CARLO SIMULATION

In the preceding sections, we have considered the use of variance reduction
techniques, which are based on the idea that random sampling is really ran-
dom. However, the random numbers produced by a LCG or by more sophisti-
cated algorithms are not random at all. Hence, one could take a philosophical
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function [Price, CI] = BIsMCIS(SO,K,r,T,sigma,NRepl)

nuT = (r - 0.5*sigma“2)*T;

siT = sigma * sqrt(7);

ISnuT = log(K/S0) - 0.5*sigma~2*T;

Veps = randn(NRepl.1l);

VY = ISnuT + siT*Veps;

ISRatios = exp( (2*(nuT - ISnuT)*VY - nuT"2 + ISnuT 22)/2/siT~2);
DiscPayoff = exp(-r*T)*max(0, (SO0*exp(VY)-K));

[Price, VarPrice, CI] = normfit(DiscPayoff.*ISRatios);

Fig. 4.27 Importance sampling-based code to price an out-of-the-money vanilla call.

9. CheckBIsMCIS.m

SO = 50;

K= 80;

r = 0.05;
sigma = 0.4;
T = 5/12;

NRepl = 100000;

MCError = zeros(NRepl,1);

MCISError = zeros(NRepl,1) ;

TruePrice = blsprice(S0,K,r,sigma,T);

randn(lstate ~,0);

for k=1:100
MCPrice = BIsMC2(S0,K.r,sigma,T,NRepl);
MCError = abs(MCPrice - TruePrice)/TruePrice;

end

randn( State 7,0);

for k=1:100
MCISPrice = BIsMCIS(SO,K,r,sigma,T,NRepl);
MCISError = abs(MCISPrice - TruePrice)/TruePrice;

end

fprintf (1, Average Percentage Error:\n?;

fprintf (1, *MC = "/6.3F/,"”/,\n7, 100*mean(MCError) ) ;

fprintf (1, *MC+IS = /.6.3f7.*/.\n~, 100*mean(MCISError));

Fig. 4.28 Script to check effectiveness of importance sampling.
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view and wonder about the very validity of variance reduction methods, and
even the Monte Carlo approach itself. Taking a more pragmatic view, and
considering the fact that Monte Carlo methods have proven their value over
the years, we should conclude that this shows that there are some determinis-
tic number sequences that work well in generating samples. So one could try
to devise alternative deterministic sequences of numbers which are in some
sense evenly distributed. This idea may be made more precise by defining the
discrepancy of a sequence of numbers.

Assume that we want to generate a sequence of N “random” vectors
X1,X2, ..., Xw in the m-dimensional hypercube Im = [0, 1]m C Rm. Now,
given a sequence of such vectors, if they are well distributed, the number of
points included in any subset G of I m should be roughly proportional to its
volume vol(G). Given avector X = (xi,x2,---, xm), consider the rectangular
subset Gx defined as

Gx = [0,xi) X [0,x2) X **eXx [0,xm),

which has a volume x\x2mmmxm- If we denote by Sn (G) the function counting
the number of points in the sequence, which are contained in a subset G C I m,
a possible definition of discrepancy is

D{x},.. .,xN) = sup [Sn(Gx)~ Nxix2mmxT |.
xeim

When computing a multidimensional integral on the unit hypercube, it is
natural to look for low-discrepancy sequences; an alternative name for a low-
discrepancy sequence is quasirandom sequence, which is why the term quasi-
Monte Carlo is used. Actually, the quasirandom term is a bit misleading,
as there is no randomness at all. Some theoretical results suggest that low-
discrepancy sequences may perform better than pseudorandom sequences ob-
tained through a LCG or its variations. The point is that from section 4.4 we
know that the estimation error with Monte Carlo simulation is something like
0(1/y/N), where N is the number of samples. With certain low-discrepancy
sequences, it can be shown that the error is something like <9(In N )m/N, where
m is the dimension of the space in which we are integrating. We refer the
reader to the comprehensive book [12] for a detailed and rigorous account on
this subject. Different sequences have been proposed in the literature. In the
following, we illustrate the basic ideas behind two low-discrepancy sequences,
Halton and Sobol sequences, and their implementation. Low-discrepancy se-
guences are sequences in the unit interval (0, 1); from what we know about
the generation of generally distributed random variates, we see that this is
what we need to simulate according to any distribution we need.

4.6.1 Generating Halton low-discrepancy sequences

Halton low-discrepancy sequences are based on a simple recipe:
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function h=Halton(n,b)

n0 = n;
h =0;
f = 1/b;

while (n0 > 0)
nl = floor(n0/b);
r = n0 - nl*b;

h = h+f*r;

f = f/b;

nO=nl;
end

Fig. 429 MATLAB code to generate the nth element of a Halton sequence with a
given base.

e Representing an integer number n in a base b, where bis a prime number:
n = (**edid dt didf*b-

» Reflecting the digits and adding a radix point to obtain a number within
the unit interval:
h = (O.dodidid™d" mee)(,.

More formally, if we represent an integer number n as

m
n=Y jdkbk,
k=0

the nth number in the Halton sequence with base b is

m
h(n, b) = J2 dkb~(k+1K
k=0

To be precise, what we get is known as Van der Corput sequence. Halton
sequences are obtained in multiple dimensions when a Van der Corput gen-
erator is associated to each dimension, making sure different prime numbers
are used for each base which is associated to each dimension. For the sake of
simplicity we will only speak of Halton sequences.

Using the principles illustrated in section 3.1.1 on the binary representation
of numbers on a computer, it is easy to generate the nth number in a Halton
sequence with base b. The code is illustrated in figure 4.29. Let us generate
the first 10 numbers in the sequence with base 2:

» seq = zeros(10,1);
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function Seq = GetHalton(HowMany, Base)
Seq = zeros(HowMany,1);
NumBits = l+ceil(log(HowMany)/log(Base));
VetBase = Base.*(-(1:NumBits));
WorkVet = zeros(1.NumBits);
for i=I:HowMany
7 increment last bit and carry over if necessary
J=i;
ok = 0;
while ok ==
Workvet(J) = Workvet(j)+I;
if WorkvVet(j) < Base

ok = 1;
else
WorkVet (j) = O;
J =i+
end
end
Seq(i) = dot(WorkVet,VetBase);
end
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Fg. 4.30 MATLAB code to generate a Halton low-discrepancy sequence with a given

base.

» For i=1:10, seq(i) = Halton(i,2); , end
>> seq

seq =
.5000
.2500
.7500
.1250
.6250
.3750
.8750
.0625
.5625
.3125

O OO OO0 OO0 oo ol

We see how Halton sequences work; by reflecting and adding more bits, we
fill the space between 0 and 1 with finer and finer intervals. A code to ob-
tain a whole sequence is illustrated in figure 4.30; the input parameters are
HowMany, i.e., how long the sequence should be, and the base Base. Rather
than generating each number in the sequence one at a time, we generate the
sequence 1,...,n by incrementing the bit representation in base b, which is

immediately converted into H(n, b).
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Fig. 4.31 Random sample in two dimensions.

Fig. 4.32 Covering the bidimensional unit square with Halton sequences.
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Fig. 4.33 Bad choice of bases in Halton sequences.

Example 4.15 It is instructive to compare how a pseudorandom sample
covers the square (0,1) x (0,1) in two dimensions. Using the MATLAB random
generator, we get the plot of figure 4.31:

>> plot(rand(100,1),rand(100,1), 3 ?)
>> grid on

To do the same with Halton sequences we must use different bases, which
should be prime numbers. Let us try with 2 and 7:

» plot(GetHalton(100,2),GetHalton(100,7), 3
» grid on

The result is shown in figure 4.32. The judgment is a bit subjective here, but
it could be argued that the covering of the Halton sequence is more even. On
the other hand, using a non-prime number as the base, as in

>> plot(GetHalton(100,2), GetHalton(100,4), 0
>> grid on

may result in quite unsatisfactory patterns, such as the one shown in figure
4.33. D

Example 4.16 Let us explore the use of Halton low-discrepancy sequences
in a bidimensional integration context. Suppose that we want to compute

N

e_xy(sin67ra; + cos8n?) dx dy.
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Fig. 4.34 Plot of the integrand function in example 4.16.

>
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To begin with, let us set up a function in order to plot the integrand and to use
the dblquad MATLAB function to get an estimate by traditional quadrature

formulas.

» f=®(X,y) exp(-X.*y).*(sin(6*pi*x)+cos(8*pi*y));
>> dblquad(f,0,1,0,1)
sms =
0.0199
» [X,Y] = meshgrid(0:0.01:1 , 0:0.01:1);
» Z = f(X,Y);
>> surf(X,Y,2)

Please note how the function is defined using the dot operator, in order to
receive vector or matrix arguments and to compute the vector or matrix of
the corresponding function values. The resulting surface is illustrated in figure
4.34. It is easy to see that Monte Carlo estimates with 10,000 sampled points
are not reliable:

>> rand(’state’ ,0);
» mean(f(rand(l,10000),rand(1,10000)))

ans =

0.0276
>> mean(f(rand(1,20000),rand(l,10000)))
ans =

0.0332
» mean(f(rand(l,10000),rand(l1,10000)))
ans =

0.0098

So, we may try with Halton sequences, changing the bases and keeping the
same number of samples:

» seq2 = GetHalton(10000,2);

» seq4 = GetHalton(10000,4);

>> seq5 = GetHalton(10000,5);
( )
)

>> seq7 = GetHalton(10000,7);
» mean(f(seq2,seqb))
sms =

0.0200
>> mean(f(seq2,seq4))
ans =

0.0224
» mean(f(seq2,seq7))
ans =

0.0199
>> mean(f(seq5,seq7))
ans =

0.0198
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We see that, provided that we use prime numbers as the bases, the results are
much more accurate. It is also instructive to compare the results for a small
number of samples.

>> rand('state’,0)
» mean(f(rand(l,100),rand(1,100)))
ans =

-0.0032
» mean(f(rand(1,500),rand(1,500)))
ans =

0.0197
>> mean(f(rand(l1,1000),rand(1,1000)))
ans =

0.0577
>> mean(f(rand(l,1500),rand(1,1500)))
ans =

0.0461
>> mean(fCrandCl,2000),rand(1,2000)))
ans =

0.0311

>> mean(f(seq2(1:100),seq7(1:100)))
ans =

0.0267
>> mean(f(seq2(1:500),seq7(1:500)))
ans =

0.0197
» mean(f(seq2(1:1000),seq7(1:1000)))
ans =

0.0210
» mean(f(seq2(1:1500),seq7(1:1500)))
ans =

0.0190
» mean(f(seq2(1:2000),seq7(1:2000)))
ans =

0.0197

The potential advantage of low-discrepancy sequences is evident even if the
optimal choice of bases is an issue. D

Example 4.17 As a more practical exercise, we may try pricing the usual
vanilla European call using a low-discrepancy sequence. We use here the
simplest sequence, the Halton sequence. To generate normal variates, we
may either use the Box-Muller method, which we described in section 4.3.4
or the inverse transform method. We cannot apply polar rejection, because
when using low discrepancy sequences we must integrate over a space with a
well-defined dimensionality. We must know exactly how many quasi-random
numbers we need, whereas with rejection-based methods we cannot anticipate
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function Price = BlsHaltonBM(SO,K,r,T,sigma,NPoints,Basel,Base2)
nuT = (r - 0.5*sigma~2)*T;
siT = sigma * sqrt(T);
Use Box Muller to generate standard normals
HI = GetHalton(ceil(NPoints/2).Basel);
H2 = GetHalton(ceil(NPoints/2),Base2);
VLog = sqrt(-2*log(Hl));
Norml = VLog .* cos(2*pi*H2);
Norm2 = VLog .* sin(2*pi*H2);
Norm = [Norml ; Norm2];

DiscPayoff = exp(-r*T) * max( 0 , SO*exp(nuT+siT*Norm) - K);
Price = mean(DiscPayoff);

Fig. 4.35 Using Halton sequences and Box-Muller algorithm to price a vanilla Euro-
pean call

that. This is an important remark to keep in mind when pricing complex
options.

We recall the Box-Muller algorithm here for convenience. To generate two
independent standard normal variates, we should first generate two indepen-
dent random numbers U\ and A2, and then set

X = \/—2In U\ cos(27t{/2)
Y = ~N—=2InU\sin(27r[/2)-

Rather than generating pseudorandom numbers, we may use two Halton se-
quences with two prime numbers as bases. This is accomplished by the code
displayed in figure 4.35.

An alternative approach is based on the inverse transform method. Given
the potentially weird effects of the Box-Muller transformation, which we have
illustrated in figure 4.12 on page 238, one could argue that this is a safer

approach. The code is given in figure 4.36
Let us check first the use of Halton sequences with Box-Muller transfor-
mation first:

» blsprice(50,52,0.1,5/12,0.4)

ans =

5.1911
» BlsHaltonBM(50,52,0.1,5/12,0.4,5000,2,7)
ans =

5.1970
» BlsHaltonBM(50,52,0.1,5/12,0.4,5000,11,7)
ans =

5.2173
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function Price = BlsHaltonINV(SO,K,r,T,sigma,NPoints,Base)
nuT = (r - 0.5*sigma~2)*T;

SiT = sigma * sqrt(T);

7 Use inverse transform to generate standard normals

H = GetHalton(NPoints.Base);

Veps = norminv(H);

7

DiscPayoff = exp(-r*T)*max(0,S0*exp(nuT+siT*Veps)-K);
Price = mean(DiscPayoff);

Fig. 436 Using Halton sequences and inverse transform to price a vanilla European

» BlsHaltonBM(50,52,0.1,5/12,0.4,5000,2,4)
ans =
6.2485

The first run shows the potential of low-discrepancy sequences; we get a good
estimate of the option with a limited number of samples. It is instructive to
see the variability of a Monte Carlo estimate with 5000 samples:

» randnOstate 7,0)
» BIsMC2(50,52,0.1,5/12,0.4,5000)
ans =

5.2549
» BlsMC2(50,52,0.1,5/12,0.4,5000)
ans =

5.1090
» BIsMC2(50,52,0.1,5/12,0.4,5000)
ans =

5.2777

From the second run with Halton sequences, we also see that the quality
of the estimate may depend on the choice of the bases; the third run shows
that using a non-prime number as a basis yields a very poor result.

Using the inverse transform, an interesting pattern emerges:

» BlsHaltonINV(50,52,0.1,5/12,0.4,1000,2)
ans =

5.1094
» BlsHaltonlINV(50,52,0.1,5/12,0.4,2000,2)
ans =

5.1469
» BlsHaltonlINV(50,52,0.1,5/12,0.4,5000,2)
ans =

5.1688
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» BlsHaltonINV(50,52,0.1,5/12,0.4,10000,2)
ans =

5.1789
» BlsHaltonINV(50,52,0.1,5/12,0.4,50000,2)
ans =

5.1879

We see that prices look monotonically increasing with respect to the number
of samples. This is not really the case, as a detailed plot of the price as a
function of number of samples would show that there are oscillations, yet there
is a tendency for the price to increase from below. We can try to find a reason
for this trend: Using Halton sequence with base 2, we fill the unit interval
with consecutive runs from a low extreme to a high extreme, according to the
following scheme:

0.5

0.25 0.75

0.125 0.625 0.375 0.875

0.0625 0.5625 0.3125 0.8125 0.1875 0.6875 0.4375 0.9375
0.0313

Each subsequence is delimited by the new lowest and the new highest point.
We see that the current maximum found so far increases according to a regular
pattern; and high values of these numbers correspond to large prices of the
underlying asset, which are those contributing to the increase of the option

price.
If we use 17 as the basis, we see longer monotonically increasing sequences:

>> GetHalton(17,17)
ans
.0588
.1176
.1765
.2353
.2941
.3529
.4118
.4706
.5294
.5882
.6471
.7059
. 7647
.8235
.8824
.9412
.0035

[elelelNeNeNeNeNeNoNeNeNeoNe Ne o lo NNl
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Hence, it is not surprising that if we use a large prime number as the basis,
the price we get is, in a sense, “more low-biased” :

» BlsHaltonlINV(50,52,0.1,5/12,0.4,1000,499)
ans =

5.1139
» BlsHaltonlINV(50,52,0.1,5/12,0.4,2000,499)
tins =

5.1141
» BlsHaltonlINV(50,52,0.1,5/12,0.4,5000,499)
ans =

5.1148
» BlsHaltonINV(50,52,0.1,5/12,0.4,10000,499)
ans =

5.1159
» BlsHaltonlINV(50,52,0.1,5/12,0.4,50000,499)
ans =

5.1252

Using a large base, even if it is a prime number, has an even more detri-
mental effect if we use the Box-Muller transformation:

» BlsHaltonBM(50,52,0.1,5/12,0.4,5000,59,83)
ans =

5.3232
» BlsHaltonBM(50,52,0.1,5/12,0.4,5000,101,103)
ans =

6.0244

To understand why using large bases is a bad idea, we may plot the first 1000
points in the bidimensional sequence when 109 and 113 are used:

» plot(GetHalton(1000,109), GetHalton(1000,113), 3%%)

yields the plot displayed in figure 4.37. The result should be compared
against figure 4.32.

Since pricing certain options is a high-dimensional problem, straightfor-
ward use of Halton sequences is not feasible, as this would require using large
bases. As an alternative, Faure sequences have been proposed. The basic
idea in Faure sequences is using only one base, a prime number which must
be greater than problem dimensionality; coordinates are generated by suitable
permutations of Van der Corput sequences. This net effect is using a smaller
base than the largest one used by Halton sequences. Another alternative is
represented by Sobol sequences, which are discussed in the next section. In
Sobol sequences only the base 2 is used, which is good. In order to gener-
ate multidimensional sequences, the Van der Corput sequence with base 2 is
permuted by a mechanism linked to polynomials in a binary arithmetic.
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Fg. 4.37 Poor coverage of the unit square when large bases are used in Halton se-
quences.

4.6.2 Generating Sobol low-discrepancy sequences

In this section we would like at least to take a look at a more sophisticated
alternative than Halton sequences, i.e., Sobol sequences. For the sake of
clarity, it is better to consider the generation of a one-dimensional sequence
xn in the [0,1] interval. A Sobol sequence is generated on the basis of a set
of “direction numbers” vi,v2,.m; we will see shortly how direction numbers
are selected, but for now just think of them as numbers which are less than
1 To get the nth number in the sequence, consider the binary representation
of the integer n:
n=(...636261)2.

The result is obtained by computing the bitwise exclusive or of the direction
numbers Vi for which bi ¢ 0:

XN —b\W\\ ® 622 O eme, (4-11)

If direction numbers are chosen properly, a low-discrepancy sequence will be
generated [18]. A direction number may be thought as a binary fraction:

Vi = {Q.viivi2vI3...)2,

where Ny < 2r is an odd integer. To generate direction numbers, we ex-
ploit primitive polynomials over the field Z2, i.e., polynomials with binary
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function [v, m] = GetDirNumbers(p,mO,n)

degree = length(p)-1;

p = p(2:degree);

m= [mO , zeros(1l,n-degree) ];

for i= (degree+l):n
m(i) = bitxor(m(i-degree), 2"degree * m(i-degree));
for j=1:(degree-1)

m(i) = bitxor(m(i), 293 * p() * m(i-j));

end

end

v=m./(2."(1:length(m)));

Fig. 438 MATLAB code to generate direction numbers for Sobol sequences.

Given the integer numbers 1w, we may build the direction numbers br. To
implement the generation of direction numbers, we may use a function like
GetDirNumbers, which is given in figure 4.38. The function requires a primi-
tive polynomial p, a vector of initial numbers m and the number n of direction
numbers we want to generate. On exit we obtain the direction numbers v and
the integer numbers m

» p=[1011];

» m0 = [13 7];
>> [v,m]=GetDirNumbers(p,m0,6)

0.5000 0.7500 0.8750 0.3125 0.2188 0.6719

1 3 7 5 7 43

The code is not optimized; for instance, the first and last coefficients of the
polynomial should be 1 by default, and no check is done on the congruence in
size of the input vectors. 0

After computing the direction numbers, we could generate a Sobol sequence
according to equation (4.11). However, an improved method was proposed by
Antonov and Saleev [1], who proved that the discrepancy is not changed by
using the Gray code representation of n. Gray codes are discussed, e.g., in
[13, chapter 20]; all we need to know is the following:

1 A Gray code is a function mapping an integer r to a corresponding binary
representation G(i)\ the function, for a given integer N, is one-to-one
forO<i< 2n - 1.

2. A Gray code representation for the integer n is obtained from its binary
representation by computing

+<B92gi = (++-636261)2 © (m.-646362)2-
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3. The main feature of such a code is that the codes for consecutive num-
bers n and n + 1 differ only in one position.

Example 4.19 Computing a Gray code is easily accomplished in MATLAB.
For instance, we may define an inline function and compute the Gray codes
for the numbers i = 0,l,...,15as follows:

» gray = inline( Ditxor(x,bitshift(x,-1)) ?);

» codes = zeros(16,4);

» for i=1:16, codes(i,:)=bitget(gray(i-1), [4 3 2 1]);, end
» codes

codes =

o O oo

OO0 O0OO0OO0OO0OOoOOo

We have used the function bitshift to shift the binary representation of x one
position to the right and the function bitget to get specific bits of the binary
representation of a number. We see that indeed the Gray codes for consecutive
numbers i and i + 1 differ in one position; that position corresponds to the
rightmost zero bit in the binary representation of i (adding leading zeros if
necessary). D

Using the feature of Gray codes, we may streamline generation of a Sobol
sequence. Given xn, we have

Xn+l = xn®vec,

where c is the index of the rightmost zero bit bc in the binary representation
of n.

Example 4.20 To implement the mechanism in MATLAB, we need a way
to find the rightmost zero bit in the binary representation of a number. A
function like the following one will do (provided that at most eight bits are
used to represent x):
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function SobSeq = GetSobol(GenNumbers, x0, HowMany)
Nbits = 20;
factor = 2°Nbits;
BitNumbers = GenNumbers * factor;
SobSeq = zeros(HowMany +1, 1);
SobSeq(l) = fix(x0*factor);
for i=1:HowMany
c= min(find( bitget(i—%,1:16) == 0));
SobSeq(i+l) = bitxor(SobSeq(i), BitNumbers(c));
end
SobSeq = SobSeq / factor;

Fig. 439 MATLAB code to generate a Sobol sequence by the Antonov and Saleev
approach.

rightbit = inline("min(find( bitget(x,1:8) == 0))

Now we may put it all together. First, we generate the direction numbers.
Then we initialize the sequence in some way, e.g., Xx° = 0, and apply the code
of figure 4.39. The code is straightforward; the only point is that in theory we
should compute the exclusive or on bits of a binary fraction; however, bitxor
works on integer numbers only. This is why we shift everything to the left by
Nbits position, which is accomplished multiplying by factor and dividing on
exit from the function. Also, we truncate the initial number in order to make
sure that we are “xoring” integer numbers.

» p= [10 1 1];
» m0 = [13 71;
>> [v,m]=GetDirNumbers(p,m0,6);
» GetSobol(v,0,10)
ans =
0
.5000
.2500
.7500
.1250
.6250
.3750
.8750
.6875
.1875
.9375

[=lelNelNeNeNoNoNeNeNe)

Using a different set of generating numbers and a different starting point, we
generate different sequences.
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»
»

»

ans

p
mO
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=[LO1111];

=359 11];

[v,m]=GetDirNumbers(p,m0,8);
>> GetSobol(v,0.124,10)

O OO OO0 O0OO0OO O ool

.1240
.6240
.3740
.8740
.4990
-9990
.2490
.7490
.1865
.6865
.4365

Note that to generate longer sequences, more generating numbers are needed.

D

For further reading

In the literature

For a general introduction to simulation, see [9] or [15], both of which
have heavily influenced the presentation in this chapter; [14] is another
classical reference.

For a more theoretical treatment of Monte Carlo simulation and random
number generation, see [4]. The random number generators used in
MATLAB are described in [11].

Low-discrepancy sequences are treated in [12], which is at a quite ad-
vanced level.

An excellent and very readable introduction to Monte Carlo and quasi-
Monte Carlo methods in finance is [5]. See also [7] for a discussion on
selecting primitive polynomials for Sobol sequences. A table of primitive
polynomials is also given in [13].

See [8] for an early account on the use of low-discrepancy sequences
within financial engineering.

On the Web

For a list of resources on Monte Carlo and quasi-Monte Carlo simulation,
see http://www.mcgmc.org.


http://www.mcqmc.org
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Finite Difference
Methods for Partial
Differential Equations

Partial differential equations (PDEs) play a major role in financial engineer-
ing. Since the seminal work leading to the Black-Scholes equation, which
we introduced in section 2.6.2, PDEs have become an important tool in op-
tion valuation. It turns out that PDEs provide a powerful and consistent
framework for pricing rather complex derivatives. Unfortunately, as analyti-
cal solutions like the Black and Scholes formula are not available in general,
one must often resort to numerical methods.

The numerical solution of PDEs is a common tool in mathematical physics
and engineering, and quite sophisticated methods have been developed. The
complexity of the methods also depends on the specific type of PDE at hand.
As expected, non-linear equations are generally more difficult than linear
ones, but there is also a subtler dependence on numerical parameters, since
a change in the value of a coefficient may drastically change the character-
istics of an equation. In the financial engineering case, it happens that in
many cases rather simple methods are enough to obtain a reasonably accu-
rate solution. Indeed, we deal here only with relatively straightforward finite
difference methods, which are based on the natural idea of approximating par-
tial derivatives with difference quotients. Even so, the topic is not as trivial
as one may think, since careless use of finite difference schemes may lead to
unreasonable results. In fact, while some authors suggest the use of PDEs
as the single most useful tool in derivatives pricing [9, p. 615], others suggest
that they are quite vulnerable to numerical difficulties and, while acknowledg-
ing the role of finite difference methods, they suggest the use of lattice-based
methods whenever possible (see, e.g., [2, p. 365]). Actually, this is a bit a
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matter of taste, and when confident with a method, one is able to squeeze
the most out of it. Fortunately, when numerical difficulties occur in solving
a PDE for a financial problem, often the answers we get from the algorithm
are so blatantly senseless that we may easily spot the trouble; in other cases,
however, unreliable answers may have nasty effects. In this chapter we also
introduce concepts related to convergence, consistency, and stability in or-
der to understand the basic issues connected with the numerical solution of
PDEs. It should be stressed that PDEs are actually a difficult topic requiring
advanced mathematical concepts for a rigorous treatment, and as usual we
will rely mostly on relatively informal arguments and intuition.

We first classify PDEs in section 5.1. Then in section 5.2 we introduce dif-
ferent ways to approximate partial derivatives by finite differences, leading to
different solution schemes which may turn out numerically stable or unstable.
We devote a particular attention to the heat equation, which is the subject of
section 5.3, since the Black-Scholes PDE is strongly linked to diffusion pro-
cesses. We generalize to multiple spatial dimensions in section 5.4, where we
consider the heat equation in two dimensions; the Alternating Direction Im-
plicit approach is described. Finally, in section 5.5 we briefly point out a few
theoretical concepts concerning the convergence of finite difference methods.

51 INTRODUCTION AND CLASSIFICATION OF PDEs

We introduced the Black-Scholes PDE in section 2.6.2 to find the theoretical
price f(S, t) of a derivative security depending on the price S of one underlying
asset at time t. Using a stochastic differential equation to model the dynamics
of the underlying asset price and using no arbitrage arguments, we have found
that / must satisfy the PDE

A1+ 1la23271 ,rS<?L rf=0 f51)
dt 2 ds2 ds ~ } ("

where r is the risk-free interest rate and a is the asset price volatility. Suitable
boundary conditions must be added to find a specific solution corresponding
to the option type we are considering. This equation has various features:

e It is second-order.
e It is linear.
e It is a parabolic equation.

All these features refer to how PDEs are classified; such a classification is
relevant in that the choice of a numerical method to cope with a PDE generally
depends on its characteristics.

In order to classify PDEs, let us abstract from the financial interpretation
of the variables involved and refer to an unknown function d(x, y), depending
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on variables x and A for simplicity we deal with a function of two independent
variables only, but the classification scheme may be applied in a more general
setting. The order of a PDE is the highest order of the derivatives involved.
For instance, a generic first-order equation has the form

ax'N B+ BXTA %+ O+ d(X A =

where a, b, ¢, d are given functions of the independent variables. This equation
is first-order since only first-order derivatives are involved. Furthermore, it
is linear, since the functions a, b, ¢, and d depend only on the independent
variables x and y and not on ditself. By the same token, the generic form of
a linear second-order equation is

42t a2 42 ,ad filed
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where again all the given functions, from a to g, depend only on x and y. An
example of a first-order non-linear equation is

a 1* ® ° - » »

An example of a second-order non-linear equation is

A\ a2, iYss) 1o B
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° (5-3)

Equation (5.3) is non-linear but in a different way than (5.2). In this equation,
the coefficient a of the highest-order derivative depends only on the first-
order derivative. We have a quasilinear equation whenever the highest-order
derivatives occur linearly, with coefficients depending only on the independent
variables, the unknown function ¢y and its lower-order derivatives. For the
sake of simplicity, in this introductory book we deal only with linear equations.
It should be noted that while most of the models you will see in finance
are linear, non-linear equations may be obtained when relaxing some of the
assumptions behind the Black-Scholes model; for an example of a non-linear
equation that arises when introducing transaction costs, see [9, chapter 21].

It is customary to classify quasilinear second-order equations depending on
the sign of the expression b2 —4ac:

e If f® —4ac > 0, the equation is hyperbolic.
e If 62—4ac = 0, the equation is parabolic.
e If b2—4ac < 0, the equation is elliptic.

It is easy to see that the discriminant term b2 —4ac is formally similar to
the analogous term we have in second-degree algebraic equations. Elliptic



292 FINITE DIFFERENCE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

equations may arise in equilibrium models (where time is not involved). A
typical example is the Laplace equation

420 n2g
dx2 py2

Here we have a —c = 1 and b = 0, so that b2 —4ac — —4 < 0. The wave
equation
020 2&e _ N
dt2 ~ dx2
where t is time, is a typical example of a hyperbolic equation, since the dis-
criminant term is 4p2 > 0. The prototype parabolic equation is the heat (or
diffusion) equation:
Ab _ &b
Ot ~ dx2'

where t is time and  is the temperature of a point with coordinate x on a
line. In this case, b2 —4ac = 0. By a change of variables, the equation may
be cast into a dimensionless form:

4% p2dp
m =W M

Now consider the Black-Scholes equation; again b = ¢ = 0, so the equation
is parabolic. This does not happen by chance, since with a transformation
of coordinates it can be shown that the Black-Scholes equation actually boils
down to the heat equation.

An equation like (5.4) must be integrated with suitable conditions in order
to pinpoint a meaningful solution. For instance, assume that d (x”) is the
“temperature” at point x £ [0, 1] of a rod of length 1 at time t; the end points
are kept at a constant temperature w, and the initial temperature of the rod
is given over all of its length. Then we must add the initial condition

o, 0) = u),  0<x<],
and the boundary conditions
0,0 = dl,p=vo, t>0

Here the domain is bounded with respect to space and unbounded with re-
spect to time. In financial problems, the initial condition is usually replaced
by a terminal condition, as the option payoff is known at expiration; therefore,
the time domain is bounded, whereas the domain with respect to the price of
the underlying asset may be (in principle) unbounded. From a computational
point of view, the domain must be limited in some sensible way. Boundary
conditions are easy to spot for vanilla European options. With exotic op-
tions, enforcing boundary conditions may be more complicated, e.g., when
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the boundary conditions must themselves be approximated by some numeri-
cal scheme. In other cases, such as barrier options, the boundary conditions
may actually result in a simplification of the problem. American options raise
another issue; for each time before expiration, there is a critical value for the
price of the underlying asset at which it is optimal to exercise the option (see
figure 2.22 on page 118); depending on the option type (call or put), it will
also be optimal to exercise the option for prices above and below the critical
price.1 So with American options we should cope with a free boundary, i.e.,
a boundary within the domain, which separates the exercise and no-exercise
region. We deal with these issues in chapter 9.

A noteworthy feature of the heat equation is that any discontinuity in the
initial conditions is somehow smoothed out, so that the solution for t > 0 is
differentiable everywhere. On the contrary, in the wave equation, the irreg-
ularities are propagated along lines called characteristics.2 Another feature
of parabolic equations is that they are relatively easy to work with from the
numerical point of view.

A final remark is that the form of the equation and the boundary conditions
determine if a given problem involving a PDE is well-posed. A problem is well-

posed if:
e There exists a solution.

e The solution is unique (at least within a certain class of functions of
interest).

e The solution depends in a nice way on the problem data (i.e., a small
perturbation in the problem data results in a small perturbation of the
solution).

We will trust our intuition that the equations we write make sense and will
assume implicitly that all our problems are well-posed.

5.2 NUMERICAL SOLUTION BY FINITE DIFFERENCE METHODS

Finite difference methods to solve PDEs are based on the simple idea of ap-
proximating each partial derivative by a difference quotient. This transforms
the functional equation into a set of algebraic equations. As in many nu-
merical algorithms, the starting point is a finite series approximation. Under
suitable continuity and differentiability hypotheses, Taylor’'s theorem states

1Recall that a vanilla American call should be never exercised unless the stock pays divi-

dends.

2In hyperbolic equations, two characteristic lines exist, and this is actually linked to the
fact that the discriminant 62 —4ac is positive, a property that is linked to the existence of
two roots in algebr