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Forward
The past few years have witnessed a rapid growth in the  number and varie ty 
of applications of fuzzy logic. The applications range from consumer products 
such as cameras, camcorders, washing machines, and microwave ovens to 
industria l process control, medical ins trum enta tion , decision-support systems, 
and portfo lio  selection.

To understand the reasons for the  growing use of fuzzy logic it is necessary, 
firs t, to  c la rify  what is meant by fuzzy logic.

Fuzzy logic has tw o d ifferent meanings. In a narrow sense, fuzzy logic is a 
logical system, which is an extension of m ultiva lued logic. But in a w ider 
sense—which is in predominant use today— fuzzy logic (FL) is almost 
synonymous w ith  the  theory of fuzzy sets, a theory which relates to  classes of 
objects w ith  unsharp boundaries in which membership is a m atter of degree. 
In th is  perspective, fuzzy logic in its  narrow sense is a branch of FL. W hat is 
im portant to  recognize is tha t, even in its  narrow sense, the  agenda of fuzzy 
logic is very d ifferent both in sp irit and substance from the  agendas of 
trad itiona l m ultiva lued logical systems.

In the  Fuzzy Logic Toolbox, fuzzy logic should be interpreted as FL, tha t is, 
fuzzy logic in its  w ide sense. The basic ideas underlying FL are explained very 
clearly and ins igh tfu lly  in the  Introduction. W hat m ight be added is tha t the 
basic concept underly ing FL is tha t of a lin g u is tic  variable, tha t is, a variab le 
whose values are words rather than numbers. In effect, much of FL may be 
viewed as a methodology for computing w ith  words rather than numbers. 
A lthough words are inherently  less precise than numbers, th e ir use is closer to  
human in tu ition . Furtherm ore, computing w ith  words exploits the  tolerance 
for imprecision and thereby lowers the  cost of solution.

Another basic concept in FL, which plays a central role in most of its  
applications, is tha t of a fuzzy if-then ru le  or, sim ply, fuzzy rule. A lthough 
rule-based systems have a long h istory of use in A I, what is m issing in such 
systems is a machinery for dealing w ith  fuzzy consequents and/or fuzzy 
antecedents. In fuzzy logic, th is  machinery is provided by what is called the 
calculus of fuzzy rules. The calculus of fuzzy rules serves as a basis for what 
m ight be called the  Fuzzy Dependency and Command Language (FDCL). 
A lthough FDCL is not used exp lic itly  in Fuzzy Logic Toolbox, it is effectively 
one of its  principal constituents. In th is  connection, what is im portant to



Forward

recognize is tha t in most of the  applications of fuzzy logic, a fuzzy logic solution 
is in rea lity  a transla tion  of a human solution in to  FDCL.

What makes the  Fuzzy Logic Toolbox so powerful is the  fact tha t most of 
human reasoning and concept form ation is linked to  the  use of fuzzy rules. By 
providing a system atic fram ework for computing w ith  fuzzy rules, the  Fuzzy 
Logic Toolbox greatly am plifies the  power of human reasoning. Further 
am plification results from the use of M ATLAB and graphical user interfaces -  
areas in which The M athW orks has unparalle led expertise.

A trend which is growing in v is ib ility  relates to  the  use of fuzzy logic in 
combination w ith  neurocomputing and genetic algorithm s. More generally, 
fuzzy logic, neurocomputing, and genetic a lgorithm s may be viewed as the 
principal constituents of what m ight be called soft computing. U n like  the 
trad itiona l, hard computing, soft computing is aimed at an accommodation 
w ith  the  pervasive imprecision of the  real world. The guid ing p rinc ip le  of soft 
computing is: Exploit the  tolerance for imprecision, uncerta inty, and partia l 
tru th  to  achieve tra c ta b ility , robustness, and low solution cost. In coming 
years, soft computing is like ly  to  play an increasingly im portant role in the 
conception and design of systems whose M IQ  (Machine IQ) is much higher than 
tha t of systems designed by conventional methods.

Among various combinations of methodologies in soft computing, the  one 
which has highest v is ib ility  at th is  junc tu re  is tha t of fuzzy logic and 
neurocomputing, leading to  so-called neuro-fuzzy systems. W ith in  fuzzy logic, 
such systems play a pa rticu la rly  im portant role in the  induction of rules from 
observations. An effective method developed by Dr. Roger Jang for th is  
purpose is called A N FIS  (Adaptive Neuro-Fuzzy Inference System). Th is 
method is an im portant component of the  Fuzzy Logic Toolbox.

The Fuzzy Logic Toolbox is h igh ly impressive in all respects. It makes fuzzy 
logic an effective tool for the  conception and design of in te lligen t systems. The 
Fuzzy Logic Toolbox is easy to  master and convenient to  use. And last, but not 
least im portant, it provides a reader-friendly and up-to-date introduction to  the 
methodology of fuzzy logic and its  w ide-ranging applications.

Lotfi A. Zadeh 
Berkeley, CA 
January 10, 1995
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Before You Begin

This section describes how to  use the  Fuzzy Logic Toolbox. It explains how to 
use th is  guide and points you to  additional books for toolbox insta lla tion  
inform ation.

W hat Is the Fuzzy Logic Toolbox?
The Fuzzy Logic Toolbox is a collection of functions bu ilt on the  M ATLAB® 
num eric computing environment. It provides tools for you to  create and edit 
fuzzy inference systems w ith in  the  fram ework of M ATLAB, or i f  you prefer you 
can in tegrate your fuzzy systems in to  s im ulations w ith  S im ulink® , or you can 
even build stand-alone C programs tha t call on fuzzy systems you build w ith  
M ATLAB. This toolbox relies heavily on graphical user interface (GUI) tools to  
help you accomplish your work, although you can work entire ly  from the 
command line  if  you prefer.

The toolbox provides three categories of tools:

• Command line functions

• Graphical, in teractive  tools

• S im u link  blocks and examples

The firs t category of tools is made up of functions tha t you can call from the 
command line  or from your own applications. Many of these functions are 
M ATLAB M-files, series of M ATLAB statements tha t implement specialized 
fuzzy logic algorithm s. You can view the  M ATLAB code for these functions 
using the  statement

type  function_nam e

You can change the way any toolbox function w orks by copying and renaming 
the  M-file, then m odifying your copy. You can also extend the  toolbox by adding 
your own M-files.

Secondly, the  toolbox provides a number of in teractive  tools tha t let you access 
many of the  functions through a GUI. Together, the  GUI - based tools provide 
an environment for fuzzy inference system design, analysis, and 
im plem entation.

The th ird  category of tools is a set of blocks for use w ith  the  S im ulink 
sim ulation software. These are specifically designed for high speed fuzzy logic 
inference in the  S im u link  environment.
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How to Use This Guide
I f  you are new to  fuzzy log ic, begin w ith  Chapter 1, “ In troduction .” This 
chapter introduces the  m otivation behind fuzzy logic and leads you smoothly 
in to  the  tu to ria l.

I f  you are an experienced fuzzy log ic  user, you may want to  start at the  
beginning of Chapter 2, “T u to ria l,” to  make sure you are comfortable w ith  the 
fuzzy logic term inology as used by the Fuzzy Logic Toolbox. I f  you jus t want an 
overview of each graphical tool and examples of specific fuzzy system tasks, 
tu rn  d irectly  to  the section in Chapter 2 entitled “B u ild ing Systems w ith  the 
Fuzzy Logic Toolbox.”

I f  y o u ju s t w an t to s ta rt as soon as possib le and experiment, you can open an 
example system righ t away by typ ing

fuzzy  t ip p e r

This brings up the  Fuzzy Inference System (FIS) editor for an example problem 
that has to  do w ith  tipp ing . I f  you like  you can refer to  the  one page summary 
of the  fuzzy inference process shown at the  beginning of Chapter 3, “Reference.”

A ll toolbox users should use Chapter 3, “Reference,” for in form ation on specific 
tools. Reference descriptions include a synopsis of the  function ’s syntax, as well 
as a complete explanation of options and operation. Many reference 
descriptions also include helpful examples, a description of the  function ’s 
algorithm , and references to  additional reading m ateria l. For GUI-based tools, 
the  descriptions include options for invoking the  tool.

Insta l la t ion
To insta ll th is  toolbox on a workstation or a large machine, see the  Insta lla tion  
Guide for U N IX . To insta ll the  toolbox on a PC or Macintosh, see the 
Insta lla tion  Guide for PC and Macintosh.

To determ ine if  the  Fuzzy Logic Toolbox is already installed on your system, 
check for a subdirectory names fuzzy  w ith in  the  main toolbox d irectory or 
folder.

3



Before You Begin

Typograph ica l  Conventions

To Indicate This Guide Uses Example

Example code Monospace type To assign the  value 5 to  A, 
enter

A = 5

M ATLAB output Monospace type M ATLAB responds w ith
A =

5

Function names Monospace type The cos function finds the 
cosine of each array ele­
ment.

New term s Ita lics An array  is an ordered col­
lection of in form ation.

Keys Boldface w ith  an 
in itia l capital le tter

Press the  R eturn  key.

Menu names, 
items, and GUI con­
tro ls

Boldface w ith  an 
in itia l capital le tter

Chose the  F ile  menu.

Mathematical
expressions

Variables in italics. 
Functions, opera­
tors, and constants 
in standard type.

This vector represents the 
polynomial

p = x2+2x+3.

4
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1 Introduction

Fuzzy logic is all about the  re la tive  importance of precision: How im portant is 
it to  be exactly righ t when a rough answer w ill do? A ll books on fuzzy logic 
begin w ith  a few good quotes on th is  very topic, and th is  is no exception. Here 
is what some clever people have said in the past:

Precision is not tru th .

— Henri Matisse 

Sometimes the more measurable drives out the  most im portant.

— Rene Dubos

Vagueness is no more to be done away w ith  in the world of logic than fric tion  in 
mechanics.

— Charles Sanders Peirce

I believe that nothing is uncond itiona lly  true, and hence I am opposed to every 
statement of positive tru th  and every man who makes it.

— H. L. Mencken

So fa r as the laws of mathematics refer to reality, they are not certain. And so 
fa r as they are certain, they do not refer to reality.

—A lbert Einstein

As complexity rises, precise statements lose meaning and meaningful 
statements lose precision.

— Lotfi Zadeh

There are also some pearls of fo lk wisdom tha t echo these thoughts:

Don’t lose sight of the  forest for the trees.

Don’t be penny wise and pound foolish.

The Fuzzy Logic Toolbox for use w ith  M ATLAB is a tool for solving problems 
w ith  fuzzy logic. Fuzzy logic is a fascinating area of research because it does a 
good job of trad ing  off between significance and precision—something tha t 
humans have been managing for a very long time.

Fuzzy logic sometimes appears exotic or in tim ida ting  to  those un fam ilia r w ith  
it, but once you become acquainted w ith  it, it seems almost surpris ing tha t no 
one attempted it sooner. In th is  sense fuzzy logic is both old and new because,
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although the  modern and methodical science of fuzzy logic is s till young, the  
concepts of fuzzy logic reach righ t down to  our bones.

Precision and S ign ificance in the  Real W orld

A 1500 kg mass 
is approaching 
your head at 
45.3 m/sec.

L I
Precision

LOOK
OUT!!

LA
Sign ificance
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1 Introduction

W hat Is Fuzzy Logic?
Fuzzy logic is a convenient way to  map an input space to  an output space. This 
is the  s ta rting  point for everything else, and the  great emphasis here is on the 
word “convenient.”

What do I mean by mapping input space to  output space? Here are a few 
examples: You te ll me how good your service was at a restaurant, and I ’ll te ll 
you what the  t ip  should be. You te ll me how hot you want the  water, and I ’ll 
adjust the  faucet valve to  the righ t setting. You te ll me how far away the 
subject of your photograph is, and I ’ll focus the  lens for you. You te ll me how 
fast the  car is going and how hard the  motor is working, and I ’ll sh ift the  gears 
for you. A graphical example of an input-output map is shown below.

I t ’s all jus t a m atter of mapping inputs to  the appropria te outputs. Between the 
input and the output we’ll put a black box tha t does the  work. W hat could go in 
the  black box? Any number of th ings: fuzzy systems, linear systems, expert 
systems, neural networks, d iffe rentia l equations, interpolated 
m ulti-d im ensional lookup tables, or monkeys w ith  typew rite rs  jus t to  name a 
few of the  possible options. C learly the  list could go on and on.

Of the  dozens of ways to  make the  black box work, it tu rn s  out tha t fuzzy is 
often the  very best way. W hy should tha t be? As Lotfi Zadeh, who is considered 
to  be the  fa ther of fuzzy logic, once remarked: “ In almost every case you can 
build the  same product w ithou t fuzzy logic, but fuzzy is faster and cheaper.”

In p u t Space
(all possible service 

quality ratings)

O u tp u t Space
(all possible tips)

An input-output map for the tipping problem: 
Given the quality of service, how much should I tip? ’

1-4



What Is Fuzzy Logic?

W hy Use Fuzzy Logic?
Here is a list of general observations about fuzzy logic.

• Fuzzy logic is conceptually easy to  understand.

The m athematical concepts behind fuzzy reasoning are very simple. W hat 
makes fuzzy nice is the  “naturalness” of its  approach and not its  far-reaching 
complexity.

• Fuzzy logic is flexible.

W ith  any given system, i t ’s easy to  massage it or layer more functiona lity  on 
top of it w ithou t s ta rting  again from scratch.

• Fuzzy logic is to lerant of imprecise data.

Everyth ing is imprecise if  you look closely enough, but more than tha t, most 
th ings  are imprecise even on careful inspection. Fuzzy reasoning builds th is  
understanding in to  the  process rather than tacking it onto the  end.

• Fuzzy logic can model nonlinear functions of a rb itra ry  complexity.

You can create a fuzzy system to  match any set of input-output data. This 
process is made pa rticu la rly  easy by adaptive techniques like  A N F IS  (Adap­
tive  Neuro-Fuzzy Inference Systems) which are available in the Fuzzy Logic 
Toolbox.

• Fuzzy logic can be bu ilt on top of the  experience of experts.

In direct contrast to  neural networks, which take tra in in g  data and generate 
opaque, im penetrable models, fuzzy logic lets you stand on the  shoulders of 
people who already understand your system.

• Fuzzy logic can be blended w ith  conventional control techniques.

Fuzzy systems don’t necessarily replace conventional control methods. In 
many cases fuzzy systems augment them  and s im p lify  the ir im plem entation.

• Fuzzy logic is based on natura l language.

The basis for fuzzy logic is the  basis for human communication. Th is obser­
vation underpins many of the  other statem ents about fuzzy logic.

The last statement is perhaps the  most im portant one and deserves more 
discussion. N atura l language, tha t which is used by ord inary people on a da ily 
basis, has been shaped by thousands of years of human h istory to  be convenient 
and efficient. Sentences w ritten  in ord inary language represent a trium ph  of 
efficient communication. We are generally unaware of th is  because ord inary 
language is, of course, something we use every day. But since fuzzy logic is bu ilt
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1 Introduction

atop the  structures of everyday language, it not only makes it easy for us to  use 
it (since fuzzy logic more closely “speaks our language”) but it also takes 
advantage of the  long history of natural language. In other words, language is 
a fuzzy logic tool the  human race has spent a hundred generations developing.

Clear language is about getting at the  big picture. Fuzzy logic keeps you from 
bogging down in unnecessary deta il. I t ’s all a m atter of perspective. L ife  is 
complicated enough already.

P rec is ion  C ity  1.62533741 x 101 miles 

F u z z y v ille  About 20 miles

When Not to Use Fuzzy Logic
Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest 
statement is the  firs t one made in th is  in troduction : fuzzy logic is a convenient 
way to  map an input space to  an output space. I f  you find  i t ’s not convenient, 
t ry  something else. I f  a sim pler solution already exists, use it. Fuzzy logic is the  
codification of common sense— use common sense when you implement it and 
you w ill probably make the  righ t decision. Many controllers, for example, do a 
fine  job w ithou t being tweaked by fuzzy logic. But if  you take the  tim e  to  
become fam ilia r w ith  fuzzy logic, you’ll see it can be a very powerful tool for 
dealing qu ickly and e ffic iently w ith  imprecision and non linearity . N on linearity  
is everywhere, and if  you don’t go and find  it, it w ill eventually come and find 
you.
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What Can the Fuzzy Logic Toolbox Do?

W hat Can the Fuzzy Logic Toolbox Do?
The Fuzzy Logic Toolbox allows you to  do several th ings, but the  most 
im portant th ing  it lets you do is create and edit fuzzy inference systems. You 
can create these systems by hand, using graphical tools or command-line 
functions, or you can generate them autom atica lly using e ither clustering or 
adaptive neuro-fuzzy techniques.

I f  you have access to  S imulink®, the  sim ulation tool tha t runs alongside 
M ATLAB, you can easily test your fuzzy system in a block diagram sim ulation 
environm ent. I f  you have Real-Time Workshop® capabilities available, you can 
generate rea ltim e or non-realtim e code from the  S im u link  environment.

The toolbox also lets you run your own stand-alone С programs directly, 
w ithou t the  need for S im u link. This is made possible by a stand-alone Fuzzy 
Inference Engine tha t reads the  fuzzy systems saved from a M ATLAB session 
(the stand-alone code, uni ike tha t generated by the  Real-Time Workshop, does 
not run in real tim e). You can customize the stand-alone engine to  build fuzzy 
inference in to  your own code. A ll provided code is ANSI compliant.

Because of the  integrated nature of M A T LA B ’s environment, you can create 
your own tools to  customize the Fuzzy Logic Tool box or harness it w ith  another 
toolbox, such astheC ontro l System, Neural Network, or O ptim ization Toolbox, 
to  mention only a few of the  possibilities.
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1 Introduction

An Introductory Example: Fuzzy vs. Non-Fuzzy
A specific example would be helpful at th is  point. To illu s tra te  the value of 
fuzzy logic, w e’ll show tw o d ifferent approaches to  the same problem: linear 
and fuzzy. F irs t we w ill work through th is  problem the  conventional 
(non-fuzzy) way, w r it in g  M ATLAB commands tha t spell out linear and 
piecewise-linear relations. Then we’ll take a quick look at the  same system 
using fuzzy logic.

Consider the tipp ing  problem: what is the  “ r ig h t” amount to  t ip  your 
waitperson? Here is a clear statement of the  problem.

The Basic Tipping Roblem. Given a number between 0 and 10 tha t represents the  
qua lity  of service at a restaurant (where 10 is excellent), what should the tip  
be?

C u ltu ra l footnote: This problem is based on tipp ing  as it is typ ica lly  practiced 
in the  United States. An average t ip  for a meal in the  U.S. is 15%, though the 
actual amount may vary depending on the  qua lity  of the  service provided.

The Non-Fuzzy Approach
So le t’s s tart w ith  the  simplest possible re lationship. We can say tha t the  tip  
always equals 15% of the  tota l b ill. So

t i p  = 0.15

0.251--------------- .---------------.---------------.---------------.---------------1

0.2 - -

0 .1 5 ----------------------------------------------------------------------------

0.1 - - 

0.05 - -

0l--------------- ,---------------,---------------,---------------,---------------
0 2 4 6 8 10

service

But th is  doesn’t really take in to  account the qua lity  of the  service, so we need 
to  add a new term  to  the  equation. Since service is rated on a scale of zero to
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ten, then we m ight have the tip  go linearly  from 5% if  the  service is bad to  25% 
if  the  service is excellent. Now our relation looks like  th is:

tip = 0 .2 0 /1 0 *s e rv ic e + 0 .0 5

service

So far so good. The form ula does what we want it to  do, and i t ’s pretty 
stra ightforw ard. But we may want the  t ip  to  reflect the  qua lity  of the  food as 
well. Th is extension of the  problem is defined as follows:

The Extended Tipping Problem. Given numbers between 0 and 10 (where 10 is 
excellent) tha t represent the  qua lity  of the  service and the  qua lity  of the  food, 
respectively, at a restaurant, what should the  tip  be?

How w ill our form ula be affected now tha t we’ve added another variable? 
Here’s one attem pt:

t i p  = 0 .2 0 /2 0 *(se rv ice + fo o d )+ 0 .0 5 ;

0.25

0.2

# 0 .1 5

0.1

0.05
10
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W ell, th a t ’s one way to  do it, and the  p icture is pretty, but when I look at it 
closely, it doesn’t seem qu ite  righ t. I want the  service to  be a more im portant 
factor than the  food qua lity . Le t’s say tha t I want the  service to  account for 80% 
of the  overall tipp ing  “grade” and I ’ll let the  food make up the  other 20%. So let 
me try :

se rvR atio=0 .8 ;
t ip = s e rv R a tio * (0 .2 0 /1 0 *s e rv ic e + 0 .0 5 )  + . . .

(1 -s e rv R a tio )* (0 .2 0 /1 0 * fo o d + 0 .0 5 );

025 

0.2- ^

£ 0 .1 5 .  A t 

01

0.05 J< - ^ 0 ?
10

5

food

But s till the  response is somehow too linear all the  way around. I want more of 
a fla t response in the  middle; in other words, I want to  give a 15% tip  in general, 
and I w ill depart from th is  plateau only i f  the  service is exceptionally good or 
bad. This, in tu rn , means my pleasant linear re lations go out the  window. But 
we can s till salvage th ings by using a piecewise linear construction. Le t’s 
return to  the  one-dimensional problem of jus t considering the  service. I can 
s tring  together a sim ple conditional statement using breakpoints like  th is:

i f  service<3,
t ip = (0 .1 0 /3 )*s e rv ic e + 0 .0 5 ; 

e ls e i f  service<7, 
tip = 0 .1 5 ; 

e ls e i f  service<=10,
t ip = (0 .1 0 /3 )* (s e rv ic e -7 )+ 0 .1 5 ;

end

0 0

5

service

10
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And the plot looks like  th is.

service

I f  we extend th is  back out to  tw o dimensions, where we take food in to  account 
again, something like  th is  results:

se rvR atio=0 .8 ; 
i f  serv ice<3,

t ip = ((0 .1 0 /3 )* s e rv ic e + 0 .0 5 )* s e rv R a t io  + . . .  
(1 -s e rv R a tio )* (0 .2 0 /1 0 * fo o d + 0 .0 5 ); 

e ls e i f  service<7,
t ip = (0 .1 5 )* s e rv R a t io  + . . .

(1 -s e rv R a tio )* (0 .2 0 /1 0 * fo o d + 0 .0 5 );
e lse,

t ip = ( (0 .1 0 /3 )* (s e rv ic e -7 )+ 0 .1 5 ) * s e rv R a t io  + . . .  
(1 -s e rv R a tio )* (0 .2 0 /1 0 * fo o d + 0 .0 5 );

end

0.25

0.2

£ 0 .1 5

0.1

0.05
10
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Wow! The plot looks good, but the  function is su rpris ing ly  complicated 
considering its  hum ble start. How did we end up here? It was a li t t le  tr ic ky  to 
code th is  correctly, and i t ’s de fin ite ly  not easy to  modify in the  fu ture. It works, 
but i t ’s not easy to  troubleshoot. It has hard-coded numbers going through the 
whole th ing . I t ’s even less apparent how the  a lgorithm  works to  someone who 
d idn ’t w itness the original design process.

The Fuzzy Approach
It would be nice i f  we could just capture the  essentials of th is  problem, leaving 
aside all the  factors tha t could be a rb itra ry . I f  we make a list of what really 
m atters in th is  problem, we m ight end up w ith  th is:

1. if  service is poor then tip  is cheap

2. if  service is good then t ip  is average

3. if  service is excellent then tip  is generous

The order in which the  rules are presented here is a rb itra ry . It doesn’t m atter 
which rules come firs t. I f  we wanted to  include the food’s effect on the  tip , we 
m ight add the  fo llow ing tw o rules:

4. if  food is rancid then tip  is cheap

5. if  food is delicious then tip  is generous

In fact, we can combine the  tw o different lis ts  of rules in to  one tig h t list of three 
rules like  so:

1. if  service is poor or the food is rancid then tip  is cheap

2. if  service is good then t ip  is average

3. if  service is excellent or food is delicious then t ip  is generous

These three rules are the  core of our solution. And coincidentally, we’ve just 
defined the  rules for a fuzzy logic system. Now if  we give mathematical 
meaning to  the  lin g u is tic  variables (what is an “average” tip , for example?) we

1-12



An Introductory Example: Fuzzy vs. Non-Fuzzy

would have a complete fuzzy inference system. Of course, the re ’s a lot left to  
the methodology of fuzzy logic tha t we’re not m entioning righ t now, th ings like:

• How are the  rules all combined? or

• How do I define m athem atically what an “average” t ip  is?

These are all questions we’ll provide detailed answers to  in the  next few 
chapters. But the  deta ils of the  method don’t really change much from problem 
to  problem—the  mechanics of fuzzy logic aren’t te rr ib ly  complex. W hat m atters 
is what we’ve shown in th is  p re lim inary  exposition: fuzzy is adaptable, simple, 
and easily applied.

0.25

0.2

£ 0 .1 5

0.1

0.05
10

Here is the  p icture associated w ith  the fuzzy system tha t solves th is  problem. 
The p icture above was generated by the three rules above. The mechanics of 
how fuzzy inference works w ill be thoroughly explained in the  next two 
sections. In the  “B u ild ing  Systems w ith  the  Fuzzy Logic Toolbox” section after 
tha t the  entire  tipp ing  problem w ill be worked through using the graphical 
tools in the Fuzzy Logic Toolbox.

Some O bserva t ions
Here are some observations about the  example so far. We found a piecewise 
linear relation tha t solved the  problem. It worked, but it was something of a 
nuisance to  derive, and once we w rote it down as code it wasn’t very easy to 
in terpre t. On the  other hand, the  fuzzy system is based on some “common 
sense” statements. Also, we were able to  add tw o more rules to  the bottom of 
the  lis t tha t massaged the  shape of the  overall output w ithou t needing to  hack 
in to  what had already been done. In other words, the  subsequent modification 
was pre tty  easy.
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Moreover, by using fuzzy logic rules, the  maintenance of the  a lgorithm  
decouples along fa ir ly  clean lines. My notion of an average tip  m ight change 
from day to  day, city to  city, country to  country. But the  underly ing logic is the 
same: i f  the  service is good, the  tip  should be average. I don’t have to  change 
tha t part, no m atter where in the world I travel. I can recalibrate the  method 
qu ickly by sim ply sh ifting  the  fuzzy set tha t defines average w ithou t rew riting  
my rule.

You can do th is  sort of th ing  w ith  lis ts  of piecewise linear functions, but the  
medium is w ork ing against you. You’re more like ly  to  get tangled up in w ires 
than you are to  recalibrate the  problem quickly. You can also buttress the 
piecewise linear solution by including many helpful comments. However, even 
if  we lig h tly  pass over the  fact tha t the  vast m ajority  of code is woefully 
uncommented, i t ’s s till tru e  tha t as code gets revised and updated, the  
comments can qu ickly slip  in to  uselessness, or worse, they can actua lly provide 
m isinform ation.
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Let me illu s tra te  what I mean. Here is the  piecewise linear tipp ing  problem 
s ligh tly  rew ritten  to  make it more generic. It performs the same function as 
before, only now the constants can be easily changed.

% E s ta b lis h  constan ts
lowTip=0.05; averT ip=0.15; h ighT ip=0.25;
tipR ange=h ighT ip -low T ip ;
badService=0; okayService=3;
goodService=7; greatServ ice=10;
serv iceR ange=greatS erv ice-badS ervice ;
badFood=0; greatFood=10;
foodRange=greatFood-badFood;

%o I f  s e rv ic e  is  poor or food is  ranc id , t i p  is  cheap 
i f  serv ice<okayS erv ice ,

t ip = (((a v e rT ip - lo w T ip ) /(o k a y S e rv ic e -b a d S e rv ic e ))  . . .  
*s e rv ic e + lo w T ip )*s e rv R a tio  + . . .  
(1 -se rvR a tio )*(tip R a n g e /fo o d R a n g e *fo o d + lo w T ip );

%o I f  s e rv ic e  is  good, t i p  is  average 
e ls e if  serv ice<goodService,

t ip = a v e rT ip *s e rv R a tio  + (1 -s e rv R a tio )*  . . .  
(tipR ange/foodR ange*food+ low T ip);

%o I f  s e rv ic e  is  e x c e lle n t or food is  d e lic io u s , t i p  is  generous 
e lse,

t ip = ( ( (h ig h T ip -a v e rT ip ) /  . . .
(g re a tS e rv ic e -g o o d S e rv ic e ))*  . . .  
(s e rv ic e -g o o d S e rv ic e )+ a v e rT ip )*s e rv R a tio  + . . .  
(1 -se rvR a tio )*(tip R a n g e /fo o d R a n g e *fo o d + lo w T ip );

end

Notice the  tendency here, as w ith  all code, for creeping generality to  render the 
a lgorithm  more and more opaque, th reaten ing eventually to  obscure it 
completely. W hat we’re doing here isn ’t (shouldn’t be!) tha t complicated. True, 
we can figh t th is  tendency to  be obscure by adding s till more comments, or 
perhaps by try in g  to  rew rite  it in s ligh tly  more self-evident ways. But the  
medium is not on our side.
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And the tru ly  fascinating th ing  to  notice is tha t if  we remove everything except 
for th ree comments, what remain are exactly the  fuzzy rules we w rote down 
before:

% I f  se rv ic e  is  poor or food is  ranc id , t i p  is  cheap
% I f  se rv ic e  is  good, t i p  is  average
% I f  se rv ic e  is  e x c e lle n t or food is  d e lic io u s , t i p  is  generous

If, as w ith  a fuzzy system, the  comment is identical w ith  the  code, th in k  how 
much more like ly  your code is to  have comments! Fuzzy logic lets the  language 
th a t ’s clearest to  you, high level comments, also have meaning to  the machine, 
which is why i t ’s a very successful technique for bridging the gap between 
people and machines.

Or th in k  of it th is  way: by making the  equations as sim ple as possible (linear) 
we make th ings  sim pler for the  machine but more complicated for us. But 
really the  lim ita tion  is no longer the computer— i t ’s our mental model of what 
the  computer is doing. We all know tha t computers have the  a b ility  to  make 
th ings  hopelessly complex; fuzzy logic is rea lly about reclaim ing the m iddle 
ground and le tting  the  machine work w ith  our preferences ra ther than the 
other way around. I t ’s about tim e.
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2  Tutorial

This section is designed to  guide you through the  fuzzy logic process step by 
step. The firs t several sections are meant to  provide an introduction to  the 
theory and practice of fuzzy logic.

The firs t th ree sections of th is  chapter are the  most im portan t—they move 
from general to  specific, firs t in troducing underlying ideas and then discussing 
implem entation deta ils specific to  the  toolbox. These three areas are

• F ounda tio ns  of fuzzy log ic, which is an introduction to  the general con­
cepts. I f  you’re already fam ilia r w ith  fuzzy logic, you may want to  skip  th is  
section.

• Fuzzy in fe rence  systems, which explains the  specific methods of fuzzy 
inference used in the  Fuzzy Logic Toolbox. Since the  fie ld of fuzzy logic uses 
many term s tha t do not yet have standard in terpretations, you should con­
sider reading th is  section just to  become fam ilia r w ith  the  fuzzy inference 
process as it is employed here.

• B u ild in g  systems w ith  the  Fuzzy Log ic  Toolbox, which goes in to  detail 
about how you build and edit a fuzzy system using th is  toolbox. This in tro ­
duces the  graphical user interface tools available in the  Fuzzy Logic Toolbox 
and guides you through the  construction of a complete fuzzy inference 
system from start to  fin ish . I f  you just want to  get up to  speed as qu ickly as 
possible, s tart here.

A fte r th is  there are sections tha t touch on a varie ty of topics, such as S im ulink 
use, autom atic ru le  generation, and demonstrations. But from the  point of view 
of getting to  know the  toolbox, these firs t th ree sections are the  most crucial.

The Big Picture
We’ll s ta rt w ith  a l i t t le  motivation for where we are headed in th is  chapter. The 
point of fuzzy logic is to  map an input space to  an output space, and the prim ary 
mechanism for doing th is  is a list of if-then statements called rules. A ll rules 
are evaluated in paralle l, and the  order of the  rules is un im portan t. The rules 
themselves are useful because they refer to  variables and the  adjectives tha t 
describe those variables. Before we can build a system tha t in te rp re ts  rules, we 
have to  define all the  term s we plan on using and the  adjectives tha t describe 
them. I f  we want to  ta lk  about how hot the  water is, we need to  define the  range 
tha t the  w a te r’s tem perature can be expected to  vary over as well as what we 
mean by the  word hot. These are all th ings  we’ll be discussing in the  next 
several sections of the  manual. The diagram below is something like  a roadmap
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for the  fuzzy inference process. It shows the  general description of a fuzzy 
system on the  left and a specific fuzzy system (the tipp ing  example from the 
Introduction) on the  right.

The G e n e ra l  Case.

Inpu t O u tp u t

Rules

/  \
Inpu t
te rm s
( in te r p r e t )

O u tp u t
t e rm s

A Spec if ic  E xa m p le .

Л
t ip

i f  s e rv  
i f  s e rv  
i f  s e rv

s p o o r  th e n  t ip  is  c h e a p  
s g o o d  th e n  t ip  is  a v e r a g e  
s e x c e l le n t  th e n  t ip  is  g e n e r o u s

/  \
serv ice

is  interpreted as 

{ p o o r ,  
g o o d ,  

e x c e l le n t }

t ip
is  assigned to  be 

{c h e a p , 
a v e r a g e ,  

g e n e r o u s }

The whole idea behind fuzzy inference is to  in terpre t the  values in the  input 
vector and, based on some set of rules, assign values to  the  output vector. And 
th a t ’s rea lly all there is to  it.
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Foundations of Fuzzy Logic
Everything is vague to a degree you do not realize t i l l  you have tried to make it 
precise. — Bertrand Russell

Fuzzy Sets
Fuzzy logic s ta rts  w ith  the  concept of a fuzzy set. A fuzzy set is a set w ithou t a 
crisp, clearly defined boundary. It can contain elements w ith  only a partia l 
degree of membership.

To understand what a fuzzy set is, firs t consider what is meant by what we 
m ight call a classical set. A classical set is a container tha t w ho lly  includes or 
w ho lly  excludes any given element. For example, the  set of days of the  week 
unquestionably includes Monday, Thursday, and Saturday. It jus t as 
unquestionably excludes butter, liberty , and dorsal fins, and so on.

e r t y

D o r s a l  
F ins

Days of the week

We call th is  set a classical set because i t ’s been around for such a long tim e. It 
was A ris to tle  who firs t form ulated the  Law of the  Excluded M iddle, which says 
X must e ither be in set A or in set not-A. Another version runs like  th is:

Of any subject, one th ing  must be e ither asserted or denied.

Here is a restatement of the  law w ith  annotations: “O f any subject (say 
Monday), one th ing  (being a day of the  week) must be either asserted or denied 
(I assert tha t Monday is a day of the  week).” Th is law demands tha t opposites, 
the  tw o categories A and not-A, should between them contain the  entire  
universe. Everyth ing fa lls  in to  either one group or the  other. There is no th ing  
tha t is both a day of the  week and not a day of the  week.

S h o e
P o l is h

B u t t e r
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Now consider the set of days tha t make up the weekend. The diagram below is 
one attem pt at classifying the weekend days.

S h o e  
P o l is h

M o n d a y

B u t te r

Most would agree tha t Saturday and Sunday belong, but what about Friday? 
It “ feels” like  a part of the  weekend, but somehow it seems like  it should be 
technically excluded. So in the  diagram  above Friday tr ie s  its  best to  sit on the 
fence. Classical or “norm al” sets w ouldn ’t to lerate th is  kind of th ing . E ither 
you’re in or you’re out. Human experience suggests something d ifferent, 
though: fence s ittin g  is a part of life.

Of course we’re on tr ic ky  ground here, because we’re s ta rting  to  take indiv idua l 
perceptions and cu ltu ra l background in to  account when we define what 
constitutes the weekend. But th is  is exactly the  point. Even the  d ic tionary is 
imprecise, defin ing the  weekend as “the  period from Friday n ight or Saturday 
to  Monday m orning.” We’re entering the  realm where sharp edged yes-no logic 
stops being helpful. Fuzzy reasoning becomes valuable exactly when we’re 
ta lk ing  about how people rea lly perceive the  concept “weekend” as opposed to  
a simple-m inded classification useful for accounting purposes only. More than 
anyth ing else, the  fo llow ing statement lays the  foundations for fuzzy logic:

In fuzzy logic, the tru th  of any statement becomes a matter of degree.

Any statement can be fuzzy. The tool tha t fuzzy reasoning gives is the  ab ility  
to  reply to  a yes-no question w ith  a not-quite-yes-or-no answer. Th is is the  kind 
of th ing  tha t humans do all the  tim e  (th ink  how rarely you get a stra ight 
answer to  a seemingly sim ple question) but i t ’s a rather new tr ic k  for 
computers.

How does it work? Reasoning in fuzzy logic is jus t a m atter of generalizing the 
fam ilia r yes-no (boolean) logic. I f  we give “tru e ” the  numerical value of 1 and

L ib e r t y

F r id a y T h u r s d a y

D o r s a l
F ins

Days of the weekend
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“false” the  numerical value of 0, we’re saying tha t fuzzy logic also perm its 
in-between values like  0.2 and 0.7453. For instance:

Q: Is Saturday a weekend day?

A: 1 (yes, or true)

Q: Is Tuesday a weekend day?

A: 0 (no, or false)

Q: Is Friday a weekend day?

A: 0.8 (for the  most part yes, but not completely)

Q: Is Sunday a weekend day?

A: 0.95 (yes, but not qu ite  as much as Saturday).

Below on the  left is a plot tha t shows the  tru th  values for “weekend-ness” if  we 
are forced to  respond w ith  an absolute yes or no response. On the r igh t is a plot 
tha t shows the  tru th  value for weekend-ness if  we are allowed to  respond w ith  
fuzzy in-between values.

1.0

0 .0 □
Days of the weekend two-valued membership

T h u rs d a y  F r id a y  S a tu rd a y  S u n d a y  M o n d a y  

Days of the weekend multivalued membership

Technically, the  representation on the  righ t is from the domain of m ultiva lued 
logic (or m ultiva len t logic). I f  I ask the question “ Is X a member of set A ? ’ the  
answer m ight be yes, no, or any one of a thousand in term ediate values in 
between. In other words, X m ight have partia l membership in A. M ultiva lued 
logic stands in direct contrast to  the  more fa m ilia r concept of two-valued (or 
bivalent yes-no) logic. Two-valued logic has played a central role in the h istory 
of science since A ris to tle  firs t codified it, but the  tim e  has come for it to  share 
the  stage.

To re turn to  our example, now consider a continuous scale tim e  plot of 
weekend-ness shown below.
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Days of the weekend two-valued membership Days o f the weekend multivalued membership

By making the  plot continuous, we’re defin ing the  degree to  which any given 
instant belongs in the  weekend rather than an entire  day. In the  plot on the 
left, notice tha t at m idnight on Friday, jus t as the  second hand sweeps past 12, 
the  weekend-ness tru th  value jum ps discontinuously from 0 to  1. Th is is one 
way to  define the  weekend, and w h ile  it may be useful to  an accountant, it 
doesn’t really connect w ith  our real-world experience of weekend-ness.

The plot on the righ t shows a smoothly varying curve tha t accounts for the  fact 
tha t all of F riday and parts of Thursday to  a small degree partake of the  qua lity  
of weekend-ness and thus  deserve partia l membership in the  fuzzy set of 
weekend moments. The curve tha t defines the weekend-ness of any instant in 
tim e  is a function tha t maps the  input space (tim e of the  week) to  the  output 
space (weekend-ness). Specifically it is known as a membership function. We’ll 
discuss th is  in greater detail in the  next section.

As another example of fuzzy sets, consider the  question of seasons. What 
season is it righ t now? In the  northern hemisphere, summer o ffic ia lly  begins at 
the  exact moment in the  ea rth ’s orbit when the  north pole is pointed most 
d irectly  toward the  sun. It occurs exactly once a year, in late June. Using the  
astronomical defin itions for the  season, we get sharp boundaries as shown on 
the left in the  figure  on the  next page. But what we experience as the  seasons 
varies more or less continuously as shown on the  righ t below (in tem perate 
northern hemisphere climates).
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Time of the year Time of the year

Mem bersh ip  Functions
A membership function (MF) is a curve tha t defines how each point in the  input 
space is mapped to  a membership value (or degree of membership) between 0 
and 1. The input space is sometimes referred to  as the  universe of discourse, a 
fancy name for a sim ple concept.

One of the  most commonly used examples of a fuzzy set is the  set of ta ll people. 
In th is  case the universe of discourse is all potential heights, say from 3 feet to 
9 feet, and the word “ta l l ” would correspond to  a curve tha t defines the  degree 
to  which any person is ta ll. I f  the  set of ta ll people is given the well-defined 
(crisp) boundary of a classical set, we m ight say all people ta lle r than six feet 
are o ffic ia lly  considered ta ll. But such a d istinction is clearly absurd. It may 
make sense to  consider the  set of all real numbers greater than six because 
numbers belong on an abstract plane, but when we want to  ta lk  about real 
people, it is unreasonable to  call one person short and another one ta ll when 
they d iffe r in height by the  w id th  of a hair.

You m ust 
be ta lle r  

than  th is  
line  to be 

considered 
TALL

But if  the  kind of d istinction shown above is unworkable, then what is the  right 
way to  define the  set of ta ll people? Much as w ith  our plot of weekend days, the
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figure  below shows a smoothly varying curve tha t passes from not-ta ll to  ta ll. 
The output-axis is a number known as the  membership value between 0 and 1. 
The curve is known as a membership function and is often given the 
designation of ц. Th is curve defines the trans ition  from not ta ll to  ta ll. Both 
people are ta ll to  some degree, but one is s ign ifican tly  less ta ll than the other.

1.0

degree of 
membership, p

0.0

1.0

degree of 
membership, p

0.0

sharp-edged 
membership 
function for 

TALL

height

continuous *
membership

function for
TALL

height

ta l l  (m = 1 .0)

no t ta l l  (m = 0 .0 )

d e f in i te ly  a ta l l  
pe rson  (m = 0 .9 5 )

rea l ly  no t  ve ry  
ta l l  at a ll  (m = 0 .3 0 )

Subjective in te rp re ta tions and appropria te un its  are bu ilt righ t in to  fuzzy sets. 
I f  I say “She’s ta ll, ” the  membership function “ta l l” should already take  in to  
account whether I ’m referring to  a six-year-old or a grown woman. S im ila rly , 
the  un its  are included in the curve. C erta in ly  it makes no sense to  say “ Is she 
ta ll in inches or in meters?”

Membership Functions in the Fuzzy Logic Toolbox
The only condition a membership function must rea lly satisfy is tha t it must
vary between 0 and 1. The function itse lf can be an a rb itra ry  curve whose
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shape we can define as a function tha t su its  us from the  point of view of 
s im p lic ity , convenience, speed, and efficiency.

A classical set m ight be expressed as

A = {x | x  > 6}

A fuzzy set is an extension of a classical set. I f  X is the  universe of discourse 
and its  elements are denoted by x, then a fuzzy set A in X is defined as a set of 
ordered pairs:

A = {x, ha(X) I x  e X}

iaA(x) is called the  membership function (or MF) of x  in A. The membership 
function maps each element of X to  a membership value between 0 and 1.

The Fuzzy Logic Toolbox includes 11 bu ilt-in  membership function types. 
These 11 functions are, in tu rn , bu ilt from several basic functions: piecewise 
linear functions, the  Gaussian d is tribu tion  function, the  sigmoid curve, and 
quadra tic  and cubic polynomial curves. For detailed inform ation on any of the  
membership functions mentioned below, tu rn  to  Chapter 3, Reference. By 
convention, all membership functions have the  le tters mf at the  end of the ir 
names.

The simplest membership functions are formed using stra ight lines. Of these, 
the  simplest is the  tr ia n g u la r membership function, and it has the  function 
name C o d e tr im f. I t ’s nothing more than a collection of th ree points form ing a 
triang le . The trapezoidal membership function, tra p m f, has a fla t top and 
really is jus t a truncated tr iang le  curve. These stra igh t line  membership 
functions have the  advantage of s im plic ity .

trimf, P = [3 6 8] trapmf, P = [1 5 7 8]

trimf trapmf

Two membership functions are bu ilt on the Gaussian d is tribu tion  curve: a 
sim ple Gaussian curve and a two-sided composite of tw o  different Gaussian 
curves. The tw o functions are gaussmf and gauss2mf.
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The generalized bell membership function is specified by three parameters and 
has the  function name g b e llm f. The bell membership function has one more 
parameter than the  Gaussian membership function, so it can approach a 
non-fuzzy set if  the  free parameter is tuned. Because of the ir smoothness and 
concise notation, Gaussian and bell membership functions are popular 
methods for specifying fuzzy sets. Both of these curves have the  advantage of 
being smooth and nonzero at all points.

aaussmf. P = [2 51 aauss2mf. P = [1 3 3 4] abellmf. P = [2 4 6]

gaussmf gauss2mf gbellmf

Although the Gaussian membership functions and bell membership functions 
achieve smoothness, they are unable to  specify asym m etric membership 
functions, which are im portant in certain applications. Next we define the 
sigmoidal membership function, which is e ither open left or righ t. Asym m etric 
and closed (i.e. not open to  the left or righ t) membership functions can be 
synthesized using tw o sigmoidal functions, so in addition to  the basic s ig m f, we 
also have the  difference between tw o sigmoidal functions, ds igm f, and the 
product of tw o sigmoidal functions ps igm f.

sigmf

dsiamf. P = [5 2 5 7]

dsigmf

psiamf. P = [2 3 -5 8]

psigmf

siamf. P = [2 4]

Polynomial based curves account for several of the  membership functions in 
the toolbox. Three related membership functions are the Z, S, and Pi curves, all 
named because of the ir shape. The function zmf is the  asymmetrical 
polynomial curve open to  the  left, smf is the  m irror-im age function tha t opens 
to  the  righ t, and pimf is zero on both extremes w ith  a rise in the  middle.
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zmf, P = [3 71 pimf, P = [1 4 5 101 smf, P = [1 81

zmf pimf smf

There’s a very w ide selection to  choose from when you’re selecting your favorite  
membership function. And the Fuzzy Logic Toolbox also allows you to  create 
your own membership functions if  you find  th is  lis t too restrictive. On the  other 
hand, if  th is  list seems bewildering, jus t remember tha t you could probably get 
along very well w ith  jus t one or tw o types of membership functions, for example 
the  tr iang le  and trapezoid functions. The selection is w ide for those who want 
to  explore the possibilities, but exotic membership functions are by no means 
required for perfectly good fuzzy inference systems. F ina lly , remember tha t 
more deta ils are available on all these functions in the  reference section, which 
makes up the  second ha lf of th is  manual.

Summary of Membership Functions

• Fuzzy sets describe vague concepts (fast runner, hot weather, weekend days)

• A fuzzy set adm its the  possib ility of partia l membership in it (Friday is sort 
of a weekend day, the  weather is rather hot)

• The degree an object belongs to  a fuzzy set is denoted by a membership value 
between 0 and 1. (Friday is a weekend day to  the  degree 0.8)

• A membership function associated w ith  a given fuzzy set maps an input 
value to  its  appropria te membership value

Logical O pera t ions
We now know w h a t’s fuzzy about fuzzy logic, but what about the  logic?

The most im portant th ing  to  realize about fuzzy logical reasoning is the  fact 
tha t it is a superset of standard boolean logic. In other words, if  we keep the 
fuzzy values to the extremes of 1 (completely true) and 0 (completely false),
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standard logical operations w ill hold. As an example, consider the  standard 
tru th  tables below:

A B A  and B

0 0 0
0 1 0
1 0 1 0
1 1 1

AN D

A B A or B

0 0 0
0 1 1
1 0 1 1
1 1 1

OR

A not A

0 1
1 0

NOT

Now remembering tha t in fuzzy logic the  tru th  of any statement is a m atter of 
degree, how w ill these tru th  tables be altered? The input values can be real 
numbers between 0 and 1. W hat function w ill preserve the  results of the  AND 
tru th  tab le  (for example) and also extend to  all real numbers between 0 and 1?

One answer is the  min operation. That is, resolve the  statement A AND B, 
where A and B are lim ited  to  the  range (0,1), by using the function m in(A,B). 
Using the  same reasoning, we can replace the OR operation w ith  the  max 
function, so tha t A OR B becomes equivalent to  max(A,B). F ina lly , the  
operation NOT A becomes equivalent to  the  operation 1-A. Notice how the 
tru th  tab le  above is completely unchanged by th is  substitu tion .

A B min(A,B)

00 0
0 1 0
1 0 1 0
1 1 1

AN D

A B max(A,B)

0 0 0
0 1 1
1 0 1 1
1 1 1

OR

A 1 - A

0 1
1 0

NOT

Moreover, since there  is a function behind the tru th  table rather than just the 
tru th  tab le  itself, we can now go on to  consider values other than 1 and 0.

The next figure  uses a graph to  show the  same inform ation. We’ve converted 
the tru th  tab le  to  a plot of tw o fuzzy sets applied together to  create one fuzzy 
set. The upper part of the  figure  displays plots corresponding to  the  two-valued
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tru th  tables above, w h ile  the lower part of the  figure  displays how the 
operations work over a continuously varying range of tru th  values A and B 
according to  the  fuzzy operations we’ve defined.

two-valued
logic

multivalued
logic

Given these three functions, we can resolve any construction using fuzzy sets 
and the  fuzzy logical operation AND, OR, and NOT.

Additional Fuzzy Operators
We’ve only defined here one particu la r correspondence between two-valued 
and m ultiva lued logical operations for AND, OR, and NOT. But th is  
correspondence is by no means unique.

In more general terms, we’re defin ing what are known as the  fuzzy intersection 
or conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement 
(NOT). We have defined above what we’ll call the  classical operators for these 
functions: AND = m in, OR = max, and NOT = add itive  complement. Typically 
most fuzzy logic applications make use of these operations and leave it at tha t. 
In general, however, these functions are a rb itra ry  to  a surpris ing degree. The 
Fuzzy Logic Toolbox uses the  classical operator for the  fuzzy complement as 
shown above, but the  AND and OR operators can be easily customized if 
desired.

The intersection of tw o fuzzy sets A and B is specified in general by a function 
T which aggregates tw o membership grades as follows

^An B(x) = T(na (x), Ц,b (x)) = Ha (x) ® Ц.B(x)

A

B

J A  o r B

A

B

A  and B

A B

A  and B

m in (A ,B ) m a x (A ,B ) (1-A )
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where ® is a b inary operator for the  function T. These fuzzy intersection 
operators, which are usually referred to  as T-norm (T riangu lar norm) 
operators, meet the  fo llow ing basic requirements.

A T-norm  operator is a two-place function T(.,.) satisfying 

boundary: T(0, 0) = 0, T(a, 1) = T(1, a) = a 

monotonicity: T(a, b) <= T(c, d) if  a <= c and b <= d 

com m utativ ity: T(a, b) = T(b, a) 

associativity: T(a, T(b, c)) = T(T(a, b), c)

The firs t requirement imposes the  correct generalization to  crisp sets. The 
second requirement im plies tha t a decrease in the  membership values in A or 
B cannot produce an increase in the membership value in A intersection B. The 
th ird  requirement indicates tha t the  operator is ind ifferent to  the order of the  
fuzzy sets to  be combined. F ina lly , the  fourth  requirement allows us to  take the 
intersection of any number of sets in any order of pairw ise groupings.

L ike  fuzzy intersection, the  fuzzy union operator is specified in general by a 
function S:

M-Aub (x) = S(ha(x), Ц.b (x)) = M x )  © (Ib (x)

where © is a b inary operator for the  function S. These fuzzy union operators, 
which are often referred to  as T-conorm (or S-norm) operators, satisfy the 
fo llow ing basic requirements.

A T-conorm (or S-norm) operator is a two-place function S(.,.) satisfying 

boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a 

monotonicity: S(a, b) <= S(c, d) if  a <= c and b <= d 

com m utativ ity: S(a, b) = S(b, a) 

associativity: S(a, S(b, c)) = S(S(a, b), c)

The jus tifica tion  of these basic requirem ents is s im ila r to  tha t of the  
requirem ents for the  T-norm operators.

Several parameterized T-norm s and dual T-conorms have been proposed in the 
past, such as those of Yager [Yag80], Dubois and Prade [Dub80], Schweizer and 
Sklar [Sch63], and Sugeno [Sug77]. Each of these provides a way to  vary the 
“ga in” on the function so tha t it can be very restric tive  or very permissive.
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If-Then Rules
Fuzzy sets and fuzzy operators are the  subjects and verbs of fuzzy logic. But in 
order to  say anyth ing useful we need to  make complete sentences. Conditional 
statements, if-then rules, are the  th ings tha t make fuzzy logic useful.

A single fuzzy if-then ru le  assumes the form

if  x  is A then y is B

where A and B are lingu is tic  values defined by fuzzy sets on the  ranges 
(universes of discourse) X and Y, respectively. The if-part of the  ru le  “x  is A ” is 
called the  antecedent or premise, w h ile  the then-part of the  ru le  “y is B” is 
called the  consequent or conclusion. An example of such a ru le  m ight be

if  service is good then tip  is average

Note tha t the  antecedent is an in terpre ta tion  tha t re tu rns a single number 
between 0 and 1, whereas the  consequent is an assignment tha t assigns the 
entire  fuzzy set B to  the  output variab le  y. So the  word “ is” gets used in two 
entire ly  d ifferent ways depending on w hether it appears in the  antecedent or 
the  consequent. In M ATLAB terms, th is  is the  d istinction between a relational 
test using “==” and a variab le assignment using the  “=” symbol. A less 
confusing way of w r it in g  the ru le  would be

if  service == good then tip  = average

So the input to  an if-then ru le  is the  current value for the  input variab le  
(service) and the  output is an entire  fuzzy set (average).

In te rp re ting  an if-then ru le  involves d istinct parts: firs t evaluating the 
antecedent (which involves fuzzify ing  the  input and applying any necessary 
fuzzy operators) and second applying tha t result to  the consequent (known as 
im plication). In the case of two-valued or b inary logic, if-then rules don’t 
present much d ifficu lty . I f  the  premise is true, then the  conclusion is true. But 
if  we relax the  restrictions of two-valued logic and let the  antecedent be a fuzzy 
statement, how does th is  reflect on the conclusion? The answer is a sim ple one: 
if  the  antecedent is tru e  to  some degree of membership, then the consequent is 
also tru e  to  tha t same degree. In other words

in binary logic: p ^  q (p and q are e ither tru e  or false)

in fuzzy logic: 0.5 p ^  0.5 q (partia l antecedents im ply pa rtia lly )

The antecedent of a ru le  can have m u ltip le  parts: 

if  sky is gray and w ind is strong and barometer is fa lling , then ...
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in which case all parts of the  antecedent are calculated sim ultaneously and 
resolved to  a single number using the  logical operators discussed in the 
preceding section. The consequent of a ru le  can also have m u ltip le  parts:

if  temperature is cold then hot water valve is open and cold water valve is shut

in which case all consequents are affected equally by the  result of the  
antecedent. But how is the  consequent affected by the  antecedent? The 
consequent specifies a fuzzy set be assigned to  the  output. The im plication 
function then modifies tha t fuzzy set to  the degree specified by the  antecedent. 
The most common ways to  modify the  output fuzzy set are truncation using the 
min function (where the fuzzy set is “chopped off” as shown below) or scaling 
using the  prod function (where the  output fuzzy set is “squashed”). Both are 
supported by the  Fuzzy Logic Toolbox, but we w ill be using truncation  for the 
examples in th is  section.

1. Fuzzify 
inputs

2. A pp ly  
O r operator 

(max)

3. A pp ly  
Im plication  

operator (min)

A n te ce d e n t C onse que n t

If se rv ice  is e x c e lle n t or fo o d  is d e lic io u s  then tip  = g e n e ro u s

(̂service==excellent) -  0 .0 V(food--delicious) -  0 .7

If ( 0 .0  or 0 .7  )

0.7 -

Г0.0

then tip  = g e n e ro u s

'0
max(0.0, 0.7) -  0.7

( 0 .7  ) then tip  = g e n e ro u s

0.7 - .........Д
g e n e ro u s

min(0.7, generous) tip (fuzzy)

f
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Summary of If-Then Rules
In te rp re ting  if-then rules is a th ree part process.

1 Fuzzify inputs

Resolve all fuzzy statements in the  antecedent to  a degree of membership 
between 0 and 1. I f  there  is only one part to  the antecedent, th is  is the  degree 
of support for the  rule.

2 Apply fuzzy operator

I f  there  are m u ltip le  parts to  the  antecedent, apply fuzzy logic operators and 
resolve the antecedent to  a single number between 0 and 1. Th is is the 
degree of support for the  rule.

3 Apply im plication method

Use the  degree of support for the  entire  ru le  to  shape the output fuzzy set. 
The consequent of a fuzzy ru le  assigns an entire  fuzzy set to  the output. If 
the  antecedent is only p a rtia lly  true, then the  output fuzzy set is truncated 
according to  the  im plication method.

In general, one ru le  by itse lf doesn’t do much good. W hat’s needed are tw o or 
more rules tha t can play off one another. The output of each ru le  is a fuzzy set, 
but in general we want the  output for an entire  collection of rules to  be a single 
number. How are all these fuzzy sets d is tilled  in to  a single crisp result for the 
output variable? F irs t the  output fuzzy sets for each ru le  are aggregated in to  a 
single output fuzzy set. Then the  resu lting set is defuzzified, or resolved to  a 
single number. The next section shows how whole process w orks from 
beginning to  end.
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Fuzzy Inference Systems
Fuzzy inference is the  actual process of mapping from a given input to  an 
output using fuzzy logic. The process involves all the  pieces tha t we have 
discussed in the  previous sections: membership functions, fuzzy logic 
operators, and if-then rules.

Fuzzy inference systems have been successfully applied in fie lds such as 
autom atic control, data classification, decision analysis, expert systems, and 
computer vision. Because of its  m u lti-d isc ip lina ry  nature, the  fuzzy inference 
system is known by a number of names, such as fuzzy-rule-based system, fuzzy 
expert system, fuzzy model, fuzzy associative memory, fuzzy logic controller, 
and sim ply (and ambiguously) fuzzy system. Since the  term s used to  describe 
the various parts of the  fuzzy inference process are far from standard, we w ill 
try  to  be as clear as possible about the  d ifferent term s introduced in th is  
section.

Dinner fo r  Two, Reprise
In th is  section, we’ll see how everyth ing fits  together using the  same two-input 
one-output th ree-ru le  t ipp ing  problem tha t we saw in the  introduction . Only 
th is  tim e  we won’t skip over any details. The basic s tructu re  of th is  example is 
shown in the  diagram below.

Inform ation flows from left to  righ t, from tw o inputs to  a single output. The 
parallel na ture of the  rules is one of the  more im portant aspects of fuzzy logic

Dinner for two 
a 2 input, 1 output, 3 rule system

The inputs are crisp 
(non-fuzzy) numbers 
lim ited to a specific 
range

A il rules are 
evaluated in parallel 
using fuzzy 
reasoning

The results o f the rules 
are combined and  
distilled (defuzzified)

The result is  a crisp 
(non-fuzzy) number
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systems. Instead of sharp sw itching between modes based on breakpoints, we 
w ill g lide smoothly from regions where the  system’s behavior is dominated now 
by th is  rule, now by tha t one.

In the  Fuzzy Logic Toolbox, there are five parts of the  fuzzy inference process: 
fuzzification of the  input variables, application of the  fuzzy operator (AND or 
OR) in the  antecedent, im plication from the antecedent to  the  consequent, 
aggregation of the  consequents across the  rules, and defuzzification. These 
sometimes cryp tic  and odd names have very specific meaning tha t we’ll define 
carefully as we step through each of them in more detail below.

Step 1. Fuzzify Inputs
The firs t step is to  take the  inputs and determ ine the degree to  which they 
belong to  each of the  appropria te fuzzy sets via membership functions. The 
input is always a crisp numerical value lim ited  to  the  universe of discourse of 
the  input variab le (in th is  case the  in terva l between 0 and 10) and the  output 
is a fuzzy degree of membership (always the  in terva l between 0 and 1). So 
fuzzification rea lly doesn’t amount to  anyth ing more than tab le  lookup or 
function evaluation.

The example we’re using in th is  section is bu ilt on th ree rules, and each of the  
rules depends on resolving the inputs in to  a number of d ifferent fuzzy lingu is tic  
sets: service is poor, service is good, food is rancid, food is delicious and so on. 
Before the  rules can be evaluated, the  inputs must be fuzzified against these 
lingu is tic  sets. For example, to  what extent is the  food rea lly delicious? The 
figure  below shows how well the  food at our hypothetical restaurant (rated on 
a scale of 0 to  10) fits  the  lingu is tic  variab le “delicious” . In th is  case, we rated 
the  food as an 8, which, given our graphical defin ition  of delicious, corresponds 
to  ц = 0.7.

1. Fuzz ify  
in p u ts

food is delicious

fo o d  = 8 

input

Г I 0 7 1

delicious resu lt o f
fuzz ifica tion
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(The compliment to  the  chef would be “your food is delicious to  the  degree 0.7.”) 
In th is  manner, each input is fuzzified over all the  membership functions 
required by the rules.

Step 2. Apply Fuzzy Operator
Once the  inputs have been fuzzified, we know the degree to  which each part of 
the  antecedent has been satisfied for each rule. I f  the  antecedent of a given ru le  
has more than one part, the  fuzzy operator is applied to  obtain one number tha t 
represents the  result of the  antecedent for tha t rule. Th is number w ill then be 
applied to  the  output function. The input to  the fuzzy operator is tw o or more 
membership values from fuzzified input variables. The output is a single tru th  
value.

As described in the  section on fuzzy logical operations, any number of 
well-defined methods can f il l in for the  AND operation or the  OR operation. In 
the Fuzzy Logic Toolbox, tw o  bu ilt-in  AND methods are supported: min 
(m inim um ) and prod (product). Two bu ilt-in  OR methods are also supported: 
max (maximum), and the  probab ilis tic  OR method probor. The probab ilis tic  OR 
method (also known as the  algebraic sum) is calculated according to  the 
equation

probor(a,b) = a + b - ab
In addition to  these bu ilt-in  methods, you can create your own methods for 
AND and OR by w rit in g  any function and setting tha t to  be your method of 
choice. There w ill be more inform ation on how to  do th is  later.

Shown below is an example of the  OR operator max at work. We’re evaluating 
the antecedent of the  ru le  3 for the  tipp ing  calculation. The tw o different pieces 
of the  antecedent (service is excellent and food is delicious) yielded the  fuzzy 
membership values 0.0 and 0.7 respectively. The fuzzy OR operator sim ply 
selects the  maximum of the  tw o values, 0.7, and the  fuzzy operation for ru le  3
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is complete. I f  we were using the  probab ilis tic  OR method, the  result would s till 
be 0.7 in th is  case.

1. Fuzzify 
inputs

" ’ 1 + 0  

o.o I  resu lt o f  
J  fuzzy o p e ra to r

service is excellent or food is delicious

se rv ice  = 3 fo o d  = 8

input 1 input 2

Step 3. Apply Implication Method
Before applying the  im plication method, we must take care of the  ru le ’s weight. 
Every ru le  has a weight (a number between 0 and 1), which is applied to  the 
number given by the antecedent. Generally th is  weight is 1 (as it is for th is  
example) and so it has no effect at all on the im plication process. But from tim e  
to  tim e  you may want to  weight one ru le  re la tive  to  the  others by changing its  
weight value to  something other than 1.

The im plication method is defined as the  shaping of the  consequent (a fuzzy 
set) based on the antecedent (a single number). The input for the  im plication 
process is a single number given by the  antecedent, and the  output is a fuzzy 
set. Im plication occurs for each rule. Two bu ilt-in  methods are supported, and 
they are the  same functions tha t are used by the  AND method: min (m inim um )

excellent

J  o "  delicious ш

2. A p p ly
O r o p e ra to r  (m a x )
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which truncates the  output fuzzy set, and prod (product) which scales the  
output fuzzy set.

A n te c e d e n t  C o n s e q u e n t

1. Fuzzify 2. A pp ly  3  A P P ly
inputs O r operator (max) Im p lic a t io n

o p e ra to r  (m in )

excellent _

I  generous 
delicious I

If service is excellent or food is delicious then tip = generous re s u lt o f  
im p lic a tio n

s e rv ic e  = 3 

input 1

fo o d  = 8 

input 2

Step 4. Aggregate All Outputs
Aggregation is when we un ify  the  outputs of each ru le  by jo in ing  the parallel 
threads. I t ’s jus t a m atter of tak ing  all the  fuzzy sets tha t represent the  output 
of each ru le  and combining them in to  a single fuzzy set in preparation for the  
fifth  and fina l step, defuzzification. Aggregation only occurs once for each 
output variable. The input of the  aggregation process is the  list of truncated 
output functions returned by the im plication process for each rule. The output 
of the  aggregation process is one fuzzy set for each output variable.

Notice tha t as long as the aggregation method is com m utative (which it always 
should be), then the  order in which the  rules are executed is un im portan t. 
Three bu ilt-in  methods are supported: max (maximum), probor (probabilis tic  
or), and sum (simply the  sum of each ru le ’s output set).
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In the  diagram below, all th ree rules have been placed together to  show how 
the  output of each ru le  is combined, or aggregated, in to  a single fuzzy set for 
the  overall output.

1. fuzzify inputs

1 .

2. apply
fuzzy
operation

3. apply 
implication 
method (min)

poor rancid

(or = max) 

1
cheap

service is poor or food is rancid then tip = cheap

If service is excellent or food is delicious then tip = generous

s e rv ic e  = 3 

input 1

fo o d  = 8 

input 2

4. a p p ly  
a gg re ga tio n  
m ethod  (m ax)

re s u lt o f  
a g g re g a tio n

Step 5. Defuzzify
The input for the  defuzzification process is a fuzzy set (the aggregate output 
fuzzy set) and the  output is a single num ber— crispness recovered from 
fuzziness at last. As much as fuzziness helps the  ru le  evaluation during the 
interm ediate steps, the  fina l output for each variab le  is generally a single crisp 
number. So, given a fuzzy set tha t encompasses a range of output values, we 
need to  return one number, thereby moving from a fuzzy set to  a crisp output.

Perhaps the  most popular defuzzification method is the  centroid calculation, 
which re tu rns the  center of area under the curve. There are five bu ilt-in  
methods supported: centroid, bisector, m iddle of maximum (the average of the
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maximum value of the  output set), largest of m aximum, and smallest of 
maximum.

5. d e fu z z i fy  th e  
a g g r e g a te  o u tp u t  
(c e n tro id )

t ip  = 1 6 .7 %

resu l t  o f  
d e fu z z i f ic a t io n

The Fuzzy Inference D iagram
The fuzzy inference diagram is the  composite of all the  sm aller diagram s we’ve 
been looking at so far in th is  section. It s im ultaneously displays all parts of the 
fuzzy inference process we’ve examined. Inform ation flows through the  fuzzy 
inference diagram as shown below.

Interpreting the 
Fuzzy Inference 

Diagram

Notice how the  flow proceeds up from the inputs in the lower left, then across 
each row, or rule, and then down the  ru le  outputs to  fin ish in the  lower right. 
Th is is a very compact way of showing everyth ing at once, from lingu is tic  
variab le  fuzzification all the  way through defuzzification of the  aggregate 
output.

Shown below is the  real fu ll-s ize fuzzy inference diagram. There’s a lot to  see 
in a fuzzy inference diagram, but once you become accustomed to  it, you can 
learn a lot about a system very quickly. For instance, from th is  diagram w ith  
these particu la r inputs, we can easily te ll tha t the  im plication method is
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truncation w ith  the  min function. The max function is being used for the  fuzzy 
OR operation. Rule 3 (the bottom-most row in the  diagram shown opposite) is 
having the  strongest influence on the  output. And so on. The Inference Viewer, 
described in the  next section, is a M ATLAB implem entation of the  fuzzy 
inference diagram.

1. fuzzify inputs

1 . poor rancid

• • • v ................

service is poor or food is rancid

2. apply 
fuzzy 
operation 
(or = max)

3. apply 
implication 
melhod (min)

cheap

I
. good

- >
rule 2 has 
no dependency 
on input 2 .1averageJ\_ ►  - 4 -

If service is good then tip  =  average

excellent

• - ►
delicious 1 _r►  • • • } •J\

If service is exce llen t or food is delic ious then

s e rv ic e  = 3 fo o d  = 8 

input 1 input 2

tip  =  generous

r ~

l l

t ip  = 16.7%  

output

Customization
The Fuzzy Logic Toolbox is designed to  give you as much freedom as possible, 
w ith in  the  basic constra ints of the  process described here, to  customize the 
fuzzy inference process for your application. For example, you can substitu te  
your own M ATLAB functions for any of the  default functions used in the  five 
steps detailed above: you make your own membership functions, AND 
methods, OR methods, im plication methods, aggregation methods, and 
defuzzification methods. An open and easily modified system is one of the

2-26



Fuzzy Inference Systems

prim ary goals of the  Fuzzy Logic Toolbox.The next section w ill detail exactly 
how to  make th is  system work using the tools provided.
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Building Systems w ith  the Fuzzy Logic Toolbox 

Dinner fo r  Two, from the Top
Now we’re going to  work through the exact same tipp ing  example, only th is  
tim e  we’ll be bu ild ing it using the  graphical user interface (GUI) tools provided 
by the  Fuzzy Logic Toolbox. A lthough i t ’s possible to  use the  Fuzzy Logic 
Toolbox by w ork ing s tr ic tly  from the  command line, in general i t ’s much easier 
to  build a system up graphically. There are five prim ary GUI tools for build ing, 
editing, and observing fuzzy inference systems in the Fuzzy Logic Toolbox: the 
Fuzzy Inference System or FIS Editor, the  Membership Function Editor, the  
Rule Editor, the  Rule Viewer, and the  Surface Viewer. These d ifferent G UIs 
are all effectively s iblings in tha t you can have any or all of them open for any 
given system.
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FIS Editor

Rule Edito r
M em b ersh ip  

Function Editor

Vf
I Ir 
к

Fuzzy
n fe re n c
S ys tem

e
J.

Read-only
tools

Rule V ie w e r S urface V ie w e r

The FIS  Editor handles the  high level issues for the  system: How many input 
and output variables? W hat are the ir names? The Membership Function 
Editor is used to  define the shapes of all the  membership functions associated 
w ith  each variable. The Rule E ditor is for editing the  lis t of rules tha t defines 
the behavior of the  system. The last tw o G UIs are used for looking at, as 
opposed to  editing, the  FIS. They are s tr ic tly  read-only tools. The Rule Viewer 
is a MATLAB-based display of the  fuzzy inference diagram shown at the  end of 
the  last section. Used as a diagnostic, it can show (for example) which rules are 
active, or how ind iv idua l membership function shapes are influencing the 
results. I t ’s a very powerful w indow fu ll of in form ation. The last of the  five  GUI 
sib lings is the  Surface Viewer. Th is tool can display how one of the  outputs 
depends on any one or tw o of the  inputs—tha t is, it generates and plots an
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output surface map for the  system. Some of the  GUI tools have the potential to 
influence the  others. For example, if  you add a rule, you can expect to  see the 
output surface change.

This chapter began w ith  an illus tra tion  s im ila r to  the one below describing the 
main parts of a fuzzy inference system. Shown below is how the  three Editors 
f it  together. The tw o Viewers examine the  behavior of the  en tire  system.

The G eneral Case.

Input O utpu t

Rules

/  \
Input O utpu t 
te rm s te rm s

A Specific Exam ple.

tip

i f  s e rv  
i f  s e rv  
i f  s e rv

s p o o r  th e n  t ip  is  c h e a p  
s  g o o d  th e n  t ip  is  a v e r a g e  
s  e x c e l le n t  th e n  t ip  is  g e n e r o u s

/  \
tip

{ p o o r ,
g o o d ,

e x c e l le n t }

{c h e a p ,
a v e r a g e ,

g e n e r o u s }

The GUI Editor.

The FIS Editor

The Rule Editor

/  \
The M em bersh ip  

Function Editor( in te r p r e t )

The five principal GUI editors all exchange inform ation, if  appropriate. Any 
one of them can read and w r ite  both to  the  workspace and to  the  disk. For any 
fuzzy inference system, any or all of these five  editors may be open. If more 
than one of these editors is open for a single system, the various GUI w indows 
are aware of the  existence of the  others, and w ill,  if  necessary, update related 
windows. Thus if  the  names of the  membership functions are changed using 
the  Membership Function Editor, those changes are reflected in the rules 
shown in the Rule Editor. The editors for any number of d ifferent FIS  systems 
may be open simultaneously.

Notice tha t the  FIS Editor, the  Membership Function Editor and the  Rule 
Editor can all read and modify the  FIS  data, but the  Rules Viewer and the 
Surface Viewer do not modify the  FIS data in any way.
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Getting Started
We’ll s tart from scratch again w ith  a basic description of the  problem (noting 
that it is based on tipp ing  as practiced in the  U.S.)

The Basic Tipping Problem. Given a number between 0 and 10 tha t represents the 
qua lity  of service at a restaurant (where 10 is excellent), what should the tip  be?

The s ta rting  point is to  w rite  down the  three golden rules of tipp ing , based on 
years of personal experience in restaurants.

1. if  the service is poor then tip  is cheap
2. if  the service is good then tip  is average
3. if  the service is excellent then tip  is generous

We’ll assume tha t an average t ip  is 15%, a generous t ip  is 25%, and a cheap tip  
is 5%. I t ’s also useful to  have a vague idea of what the  tipp ing  function should 
look like.

service service

Obviously the  numbers and the  shape of the  curve are subject to  local 
trad itions, cu ltu ra l bias, and so on, but the  three rules are pre tty  universal. So 
we know the  rules, and we have an idea of what the  output should look like. 
Now we can begin w ork ing w ith  the  GUI tools.
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The FIS Editor

The menu items allow  you 
to save, open, and edit a 
fuzzy system using any of 
the five basic GUI tools.

The name o f the system 
is displayed here. It can 
be changed using one of 
the Save as... menu 
options.

These pop-up menus are 
used to adjust the fuzzy 
inference functions, such 
as  the defuzzification 
method.

This status line describes 
the most recent 
operation.

Double-click on an input Double-click on the
variab le  icon and you can system d iagram  and you
immediately jum p to the can immediately jum p to
Membership Function the Rule Editor.
Editor.

Double-click on an output 
variab le  icon and you can 
immediately jum p to the 
Membership Function 
Editor.

This edit fie ld is used to 
name and edit the names 
o f the input and output 
variables.

The H e lp  button gives 
some inform ation about 
how the FIS Editor w orks 
and the C lo se  button 
dismisses the window.

When creating a new fuzzy inference system from scratch, the  place to  s ta rt is 
the  FIS  Editor. To do tha t, type

fuzzy

This w ill call up a w indow tha t acts as the  high-level (or “big p ic ture”) view of 
a FIS. A t the  top of the  figure, the re ’s a diagram tha t shows inputs on the  left 
and outputs on the  righ t. The system tha t is displayed is a default “s ta rt-up ” 
system, since we d idn ’t specify any particu la r system.

The purpose of th is  section of the  manual is to  build a new system from scratch. 
But if  you want to  save tim e  and follow along quickly, you can load the already 
bu ilt system by typ ing

fuzzy  t i p p e r l
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This w ill load the  fuzzy inference system associated w ith  the  f ile  t i p p e r l . f i s  
(the f i s  is im plied) and launch the  FIS  Editor. More on loading and saving 
later.

The FIS  Editor displays general in form ation about a fuzzy inference system. 
There’s a sim ple diagram at the  top tha t shows the  names of each input 
variab le  and each output variable. The sample membership functions shown in 
the boxes are just icons and do not represent the  shapes of the  actual 
membership functions.

Below the diagram is the  name of the  system and the type of inference used. 
The default, M am dani-style inference, is what we’ve been describing so far and 
what we’ll continue to  use for th is  example. There is another s ligh tly  d ifferent 
type of inference, called Sugeno-style inference, tha t is explained in the  next 
section. Below the  name, on the  left side of the  figure, are the  pop-up menus 
that allow you to  modify the  various pieces of the  inference process. On the 
righ t side at the  bottom of the  figure  is the  area tha t displays the  names of the 
input and output variables. Below tha t are the  Help and Close buttons tha t 
call up on-line help and dism iss the  window, respectively, and fina lly , at the  
bottom is a status line  that relays inform ation about the  system from tim e  to 
time.

The firs t th ing  to  notice from the  diagram at the  top of the  figure  is tha t the  
default system already has one input and one output. That su its us well, since 
our one input is service and our one output is tip . We’d like  to  change the  names 
to  reflect tha t, though.

1 C lick once on the  left-hand (yellow) box marked input1 (the box w ill be high­
lighted in red).

2 In the  w h ite  edit fie ld on the righ t, change input1 to  service and press 
R e tu rn .

3 C lick once on the  right-hand (blue) box marked output1.

4 In the  w h ite  edit fie ld on the righ t, change output1 to  tip .
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5 From the  F ile  menu select Save to  w orkspace  as...

6 Enter the  variab le name tipper and click on OK.

You should see the  diagram updated to  reflect the  new names of the  input and 
output variables. There is now a new variab le  in the workspace called t i ppe r  
tha t contains all the  inform ation about th is  system. By saving to  the  workspace 
w ith  a new name, you also rename the  entire  system. Your w indow should look 
something like  th is .

- ] ________________________________ FIS Editor:

File Edit View

Ж tipper

(mamdani)
■.................... Ж

service tip

FIS Name: tipper F IS  Type : mamdani

And method min Current Variable

Or method max Name up

Implication min T ype output

Aggregation max -1
Range [0  1]

Defuzzification centroid Help Close

Renamed FIS to "tipper"

We’ll leave the  inference options in the  lower left in th e ir default positions for 
now. So we’ve entered all the  inform ation we need to  in th is  particu la r GUI. 
The next th ing  to  do is define the membership functions associated w ith  each 
of the  variables. To do th is , we need to  open up the Membership Function 
Editor by pu lling  down the V iew  menu item and selecting E d it M em bership 
Functions....
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The Mem bersh ip  Function Editor

The menu items allow  you 
to save, open, and edit a 
fuzzy system using any of 
the five basic GUI tools.

These text fie lds display 
the name and type of the 
current variable.

This edit fie ld lets you set 
the range o f the current 
variable.

This edit fie ld lets you set 
the display range of the 
current plot.

This status line describes 
the most recent 
operation.

This is the “ Variable Palette’ 
area. C lick on a variable 
here to make it current and 
edit its membership

C lick on a line to select it 
and you can change any of 
its attributes including 
name, type and numerical 
parameters.

This edit fie ld lets you 
change the name of the 
current membership 
function.

This pop-up menu lets you 
change the type o f the 
current membership 
function.

This edit field lets you 
change the numerical 
parameters for the 
current membership 
function.

The H e lp  button gives 
some inform ation about 
how the Membership 
Function Editor works, 
and the C lo se  button 
dismisses the window.

The Membership Function Editor shares some features w ith  the  FIS  Editor. In 
fact, all of the  five basic GUI tools have s im ila r menu options, sta tus lines, and 
Help and Close buttons. The Membership Function Editor is the  tool tha t lets 
you display and edit all of the  membership functions for the  entire  fuzzy 
inference system, including both input and output variables.

There are no membership functions to  start off w ith . On the left side of the 
graph area is a “Variab le  Palette” tha t lets you set the  current variable. The 
membership functions from the  current variab le are displayed in the main 
graph. Below the  Variab le  Palette is some inform ation about the  type and 
name of the  current variable. There is one text fie ld tha t lets you change the 
lim its  of the  current variab le ’s range (universe of discourse) and another tha t 
lets you set the  lim its  of the  current plot (which has no real effect on the
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system). In the  lower righ t of the  w indow are the controls tha t let you change 
the  name, position, and shape of the  cu rren tly  selected membership function.

1 Make sure the  input variab le  is selected in the Variab le  Palette. Set the 
Range to  vector [0  10].

2 Select Add MFs... from the  E d it menu and add three Gaussian curves to  the 
input variab le  service.

3 C lick once d irectly  on the  leftmost curve. Change the  name of the  curve to 
poor. Change the  parameters lis ting  to  [1.5 0].

4 Name the m iddle curve good and the rightm ost curve excellent and change 
the  firs t parameters to  1.5.

Next we need to  create the  membership functions for the  output variable, tip . 
We already know the  names for these membership functions: cheap, average, 
and generous. To display the  output variab le  membership functions, use the 
Variab le  Palette on the  left. The input range was a ra ting  scale of 0 to  10, but 
the  output scale is going to  be a t ip  between 5 and 25 percent.

We’ll use tr ia n g u la r membership function types for the  output. F irs t, set the  
Range (not the  Display Range) to  [0 30]. The cheap membership function w ill 
have the  parameters [0 5 10], the  average membership function w ill be [10 15 
20] and the generous membership function w ill be [20 25 30]. So each of these
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is a fuzzy set centered on the  typical number. Your system should look 
something like  th is.

0 5 10 15 20 25 30
output variable "tip"

Current Variable 

Name tip 

Type output 

Range | [0 30]

Current Membership Function 
Name | generous 

Type trimf
Params f[20 25 30]

Display Range | [0 30] Help | Close

Ready

Now tha t the  variables have been named, and the membership functions have 
appropria te shapes and names, we’re ready to  w rite  down the  rules. To call up 
the ru le  editor, go to  the  V iew  menu and select E d it rules....
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The Rule Editor

The menu items allow  you 
to save, open, and edit a 
fuzzy system using any of 
the five  basic GUI tools.

This pop-up menu lets 
you choose the style in 
wh ich the rules are 
displayed.

This status line describes 
the most recent 
operation.

The rules are  entered, 
displayed, and edited in 
th is editab le text field. After 
editing, use C trl-re turn to 
parse.

The H e lp  button gives 
some in form ation about 
how the Rule Editor 
works, and the C lo se  
button dismisses the 
w indow .

The Rule Editor contains a large editable text fie ld for displaying and editing 
rules. It also has some by now fam ilia r landm arks s im ila r to  those in the  FIS 
Editor and the  Membership Function Editor, including the menu bar and the 
status line. A format pop-up menu is the  only w indow specific control—th is  is 
used to  set the  format for the  display.

In the  main (white) text area, type the fo llow ing rules and then press 
C tr l-R e tu rn .

if  service is crum m y then tip  is cheap 
if  service is good then tip  is average 
if  service is excellent then tip  is generous 

It gets returned as

# i f  service is crum m y then tip  is cheap
1. I f  (service is good) then (tip  is average) (1)
2. I f  (service is excellent) then (tip  is generous) (1)

There should be a message in the  status w indow at the  bottom of the  figure  tha t 
reads “There is no MF called crum m y for the  input variab le  service.” The # 
symbol is inserted at the  beginning of the  firs t line  to  indicate there  was a 
problem parsing tha t rule. Every tim e  you press C tr l-R e tu rn , the  Rule Editor 
tr ie s  to  parse every rule. Any rules tha t confuse the  parser are marked w ith  the
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# symbol. Change the  word “crum m y” to  “poor” and press C tr l-R e tu rn  so the 
editor can in te rp re t the  ru le  properly.

1. I f  (service is poor) then (tip  is cheap) (1)
2. I f  (service is good) then (tip  is average) (1)
3. I f  (service is excellent) then (tip  is generous) (1)

The numbers in the parentheses represent weights tha t can be applied to  each 
ru le  if  desired. I f  you do not specify them, they are assumed to  be one. The Rule 
Form at pop-up menu in the lower left indicates tha t you’re looking at the 
verbose form of the  rules. T ry  changing it to  symbolic. You should see

1. (service==poor) => (tip=cheap) (1)
2. (service==good) => (tip=average) (1)
3. (service==excellent) => (tip=generous) (1)

Not much difference in the  display really, but i t ’s s ligh tly  more language 
neutral, since it doesn’t depend on term s like  “ i f ” and “then .” I f  you change the 
format to  indexed, you’ll see an extremely compressed version of the  rules tha t 
has squeezed all the  language out.

1, 1 (1) : 1
2, 2 (1) : 1
3, 3 (1) : 1

This is the  version tha t the  machine deals w ith . The firs t column in the m a trix  
corresponds to  the input variable, the  second column corresponds to  the  output 
variable, the  th ird  column displays the  weight applied to  each rule, and the 
fourth  column is shorthand tha t indicates whether th is  is an OR (2) ru le  or an 
AND (1) rule. The numbers in the  firs t tw o columns refer to  the  index number 
of the  membership function. So a lite ra l in terpre ta tion  of ru le  1 is: “ if  input 1 
is MF1 (the firs t membership function associated w ith  input 1) then output 1 
should be MF1 (the firs t membership function associated w ith  output 1) w ith  
the weight 1.” Since there  is only one input for th is  system, the  AND connective 
im plied by the  1 in the  last column is im m ateria l.

So the  symbolic form at doesn’t bother w ith  the term s if, then, and so on. But 
the  indexed format doesn’t even bother w ith  the  names of your variables. 
Obviously the  functiona lity  of your system doesn’t depend on how beautifu lly  
you named your variables and membership functions (if it did, it would be 
called fuzzy poetry instead of fuzzy logic). The whole point of naming variables 
descriptively is, as always, making the  system easier to  in terpret.
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Now the system has been completely defined: we’ve got the  variables, 
membership functions, and rules necessary to  calculate tips. It would be nice, 
at th is  point, to  look at a fuzzy inference diagram like  the  one presented at the 
end of the  previous section and verify  tha t everything is behaving the  way we 
th in k  it should. Th is is exactly the  purpose of the  Rule Viewer, the  next of the 
GUI tools we’ll look at. From the V iew  menu, select V iew  rules....

The Rule V ie w e r

The menu items allow  you 
to save, open, and edit a 
fuzzy system using any o f 
the five basic GUI too ls

Each row of plots 
represents one rule (here 
there are 3). C lick on a 
rule to display it in the 
status bar.

This edit field allow s you 
to set the input explicitly.

This status line describes 
the most recent 
operation.

This column (yellow) 
of plots shows how 
the input variab le  is 
used in the rules.

This column (blue) of 
plots shows how the 
output variab le  is 
used in the rules.

The bottom-right plot 
shows how the output of 
each rule is  combined to 
make an aggregate 
output and then 
defuzzified.

The H e lp  button gives 
some inform ation about 
how the Rule Viewer 
works, and the C lose  
button dismisses the 
w indow.

The Rule Viewer displays a roadmap of the  whole fuzzy inference process. I t ’s 
based on the  fuzzy inference diagram  described in the previous section. You’ll 
see a single figure  w indow w ith  seven small plots nested in it. In addition there 
are the  now fam ilia r items like  the status line  and the  menu bar. In the lower 
righ t there is a text fie ld where you can enter a specific input value, if  desired.

The tw o small plots across the  top of the  figure  represent the  antecedent and 
consequent of the  firs t rule. Each ru le  is a row of plots, and each column is a 
variable. So the  firs t column of plots (the three yellow plots) shows the 
membership functions referenced by the  antecedent, or if-part, of each rule. 
The second column of plots (the three blue plots) shows the  membership
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functions referenced by the  consequent, or then-part of each rule. I f  you click 
once on a ru le  number, the  corresponding ru le  w ill be displayed at the  bottom 
of the  figure.

There is a yellow index line  across the  input variab le  plots tha t you can move 
left and righ t by clicking and dragging w ith  the  mouse. Th is changes the input 
value. When you release the line, a new calculation is performed, and you can 
see the  whole fuzzy inference process take place before your eyes. Where the 
index line  representing service crosses the  membership function line “service 
is poor” in the  upper left plot w ill determ ine the  degree to  which ru le  one is 
activated. A yellow patch of color under the  actual membership function curve 
is used to  make the fuzzy membership value v isua lly  apparent. I f  we follow 
ru le  1 across the  top of the  diagram, we can see the consequent “t ip  is cheap” 
has been truncated to  exactly the  same degree as the antecedent—th is  is the  
im plication process in action. F ina lly  the  aggregation occurs down the  second 
column, and the  resultant aggregate plot is shown in the  single plot to  be found 
in the  lower righ t corner of the  plot field. The defuzzified output value is shown 
by the th ick  line  passing through the aggregate fuzzy set.

The Rule Viewer presents a busy scene, and in te rp re ting  it can take some 
getting used to, but once you become fa m ilia r w ith  it, you can take in the  whole 
fuzzy inference process in one sweeping view. The Rule Viewer is very good, for 
example, at showing how the  shape of certain membership functions is 
in fluencing the  overall result. Since it plots every part of every rule, it can 
become unw ieldy for pa rticu la rly  large systems, but in general it performs well 
(depending on how much screen space you devote to  it) w ith  up to  30 rules and 
as many as 6 or 7 variables.

The Rule Viewer shows one calculation at a tim e  and in great detail. In th is  
sense, it presents a sort of m icro view of the  fuzzy inference system. I f  you want 
to  see the  entire  output surface of your system, tha t is the  entire  span of the 
output set based on the  entire  span of the  input set, you need to  open up the 
Surface Viewer. Th is is the  last of our five  basic GUI tools in the Fuzzy Logic 
Toolbox, and not surpris ing ly, you open it by selecting V iew  surface... from the 
V iew  menu.
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The Surface V ie w e r

The menu items allow  you 
to save, open, and edit a 
fuzzy system using any of 
the five basic GUI tools»

These pop-up menus let 
you specify the one or 
two displayed input 
variab les

These edit fie lds let you 
determine how densely 
to grid  the input space.

This edit fie ld lets you set 
the input explicitly for 
unspecified inputs.

This status line describes 
the most recent 
operation.

This plot shows the 
output surface fo r any 
output o f the system 
versus any one or two 
inputs to the system.

This pop-up menu lets 
you specify the displayed 
output variable.

Fush th is button when 
you 're  ready to calculate 
and plot.

The H e lp  button gives 
some inform ation about 
how the Surface Viewer 
works, and the C lose  
button dismisses the 
window.

Upon opening the  Surface Viewer, we are presented w ith  a tw o dimensional 
curve tha t represents the  mapping from service qua lity  to  t ip  amount. Since 
th is  is a one-input one-output case, we can see the entire  mapping in one plot. 
Two-input one-output systems also w ork well, as they generate 
three-dimensional plots tha t M ATLAB can adeptly manage. But when we 
move beyond three dimensions overall, we start to  encounter troub le  
d isplaying the  results. Accordingly, the  Surface Viewer is equipped w ith  
pop-up menus tha t let you select any tw o inputs and any one output for 
p lotting. Just below the  pop-up menus are tw o text input fie lds tha t let you 
determ ine how many X-axis and Y-axis grid lines you want to  include. This 
allows you to  keep the  calculation tim e  reasonable for complex problems. 
Pushing the  E va lua te  button in itia tes  the  calculation, and the  plot comes up 
soon after the  calculation is complete.

The Surface Viewer has a special capability tha t is very helpful in cases w ith  
tw o (or more) inpu ts  and one output: you can actually grab the  axes and 
reposition them to  get a d ifferent three-dimensional view on the  data. The 
Reference Input fie ld is used in s itua tions when there are more inputs required 
by the system than are cu rren tly  being varied. Suppose you have a four-input
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one-output system and would like  to  see the  output surface. The Surface 
Viewer can generate a three-dimensional output surface where any tw o of the  
inputs vary, but tw o of the  inputs must be held constant since our m onitors 
sim ply cannot display a five-dimensional shape. In such a case the  Reference 
Input would be a four element vector w ith  NaNs holding the place of the  
varying inputs w h ile  numerical values would indicate those values that remain 
fixed.

This concludes the  quick w a lkthrough of each of the  main GUI tools. Notice 
that for the  tipp ing  problem, the  output of the  fuzzy system nicely matches our 
orig inal idea for what the  shape of the  fuzzy mapping from service to  tip . If, 
after all th is  work, th is  were the  only value we got from the fuzzy system, we 
m ight be tempted to  say “Why bother? I could have just drawn a quick lookup 
table and been done an hour ago!” But one of the  beauties of fuzzy logic is the  
ease w ith  which a system can be qu ickly modified, extended, and massaged.

Two- inputs  One-output ,  or W ha t  A bou t  the Food?
Now we might say: “Th is is all well and good, but I th in k  the  food qua lity  should 
be reflected in the  t ip  as w e ll.” We’ve looked at th is  problem in earlier sections, 
but for the  sake of c la rity , we w ill restate the extended tipp ing  problem.

The Extended Tipping Problem: Given numbers between 0 and 10 (where 10 is 
excellent) tha t represent the qua lity  of the service and the qua lity  of the food, 
respectively, at a restaurant, what should the tip  be?

The th ing  we need to  do righ t away is add another input variable, and to  do 
tha t, we need to  get back to  the  FIS  Editor.

1 Return to  the FIS  Ed ito r and from the E d it menu, select Add i npu t  v a r i ­
able.

2 Name the new variab le  food.

3 Return to  the Membership Function Editor and add tw o trapezoidal mem­
bership functions.

4 Change the  Range to  [0 10].

5 Name the  leftmost membership function rancid and give it the  parameters 
[-2 0 1 3]. Name the  rightm ost membership function delicious and give it the  
parameters [7 9 10 12].
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I f  you re turn  to  the  FIS  Editor at th is  point, you should see something like  th is.

Now we need to  update the  rules appropriately. Add tw o new rules to  the 
bottom of the  list:

4. i f  food is rancid then tip  is cheap
5. i f  food is delicious then tip  is generous
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In fact, because of the  parallel na ture in which the  rules get evaluated, it 
makes no difference whether these tw o rules are added to  the  bottom of the  ru le  
list, or the  three existing rules are modified like  so

1. if  service is poor or food is rancid then tip  is low
2. if  service is good then tip  is average
3. if  service is excellent or food is delicious then t ip  is generous

Rule Editor: tipper

File Edit View Options

1, If (service is poor) or (food is rancid) then (tip is cheap) (1)
2, If (service is good) then (tip is average) (1)
3, If (service is excellent) or (food is delicious) then (tip is generous) (1)

Rule Format verbose —«| Info | Close

FIS Name: tipper

F ina lly  re turn  to  the Surface V iewer— here is where we see the  real value of 
fuzzy logic. We o rig ina lly  bu ilt a system tha t was effectively doing a simple 
one-dimensional table lookup. But by adding only tw o new rules, we’ve 
generated a complex surface tha t nevertheless conforms to  our desires for the
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tipp ing  a lgorithm . Fuzzy logic systems are easily modified and sculpted to  suit 
the  needs of the  problem.

Im port ing  and Export ing from the GUI Tools
When you save a fuzzy system to  disk, you’re saving an ASCII text FIS  file  
representation of tha t system w ith  the  file  su ffix  . f i s . Th is text file  can be 
edited and modified and is sim ple to  understand. When you save your fuzzy 
system to  the  M ATLAB workspace, you’re creating a variab le  (whose name you 
choose) tha t w ill act as a FIS m a trix  for the  system. FIS  files and FIS  matrices 
can represent the  same system, but they ’re extremely d ifferent from one 
another.

Customizing Your Fuzzy System
I f  you want to  include customized functions as part of your use of the  Fuzzy 
Logic Toolbox, there are a few guidelines you need to  follow. The AND method, 
OR method, aggregation method, and defuzzification method functions you 
provide need to  work in a s im ila r way to  max, m n, or prod in M ATLAB. That is, 
they must be able to  operate down the  columns of a m atrix . The im plication

2-46



Building Systems with the Fuzzy Logic Toolbox

method does an element by element m a trix  operation, also like  the min 
function, as in

a=[1 2; 3 4 ]; 
b=[2 2; 2 2]; 
mn ( a , b )  
ans =

1 2
2 2

The only lim ita tion  on customized membership functions is tha t they cannot 
use more than four parameters.
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W ork ing  from the Command Line
The tipp ing  example system is one of many example fuzzy inference systems 
provided w ith  the  Fuzzy Logic Toolbox. To load th is  system (rather than 
bothering w ith  creating it from scratch), type

a = r e a d f i s ( ' t i p p e r . f i s ' ) ;

I f  you look at the  text file  t i p p e r . f i s  by entering 

t ype t i p p e r . f i s

you’ll see tha t th is  fuzzy system is stored as ASCII text in a fa ir ly  
s tra igh tfo rw ard  way. The function r e a d f i s  takes all the  inform ation in th is  
text file  and puts it in to  a big m atrix , in th is  case, a. The m a trix  a is known as 
a FIS (Fuzzy Inference System) m atrix . Th is m a trix  is sim ply a bookkeeping 
mechanism tha t keeps object-like in form ation in a two-dimensional m a trix  of 
floa ting  point numbers. Th is m a trix  is always cast as a an array of numbers, 
even though much of it is ASCII text. In fact, i t ’s almost never convenient to  
look at it as a raw variable. Because of th is , specialized access functions exist 
to  s im p lify  the  process of dealing w ith  the F IS  m atrix . To learn more about it, 
type

g e t f i s ( a )

This re tu rns some fa ir ly  generic in form ation about the  fuzzy inference system, 
such as its  name, the  number of input variables, output variables, and so on. 
You can use g e t f i s  to learn more about any fuzzy inference system. T ry  the 
following:

g e t f i s ( a , ' n a n e ' )
g e t f i s ( a , ' i n p u t ' , 1 )
g e t f i s ( a , ' o u t p u t ' , 1 )
g e t f i s ( a , ' i n p u t ' , 1 , ' m f ' , 1 )

The function g e t f i s  is loosely modeled on the  Handle Graphics™ function g e t . 
There is a function called s e t f i s  tha t acts as the  reciprocal to  g e t f i s .  It allows 
you to  change any property of a FIS. For example, if  you wanted to  change the 
name of th is  system, you could type

a = s e t f i s ( a , ' n a m e ' , ' g r a t u i t y ' )
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Now the  FIS  m a trix  a has been changed to  reflect the  new name. I f  you want a 
lit t le  more insight in to  th is  big FIS  m atrix , try

showf i s(a)

This re tu rns a long p rin tou t lis ting  all the  rows of a and what they store. Th is 
function is intended more for debugging than anyth ing else, but it shows all the  
inform ation recorded in the  FIS m a trix  row by row. As a rule, you w ill never 
have to  w orry about what in form ation goes on which line in the  FIS  m atrix. 
You need only keep stra ight which variab le  is associated w ith  which system.

Since a designates the fuzzy tipp ing  system, we can call up any of the  G UIs for 
the  tipp ing  system d irectly  from the  command line. Any of the  fo llow ing w ill 
bring up the  tipp ing  system w ith  the  desired GUI.

• fuzzy(a)  FIS Editor
• mfed i t ( a)  Membership Function Editor
• r u l e e d i t ( a )  Rule Editor
• r u l ev i ew(a)  Inference Viewer
• sur f v i ew(a)  Surface Viewer

And once any of these G UIs has been opened, you can jum p to  any of the  other 
GUIs using the  pull-down menu rather than the  command line.
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System Display Functions
There are three functions designed to  give you a high-level view of your fuzzy 
inference system from the  command line: p l o t f i s , p l o t m f , and gensur f . The 
firs t of these displays the whole system as a block diagram much as it would 
appear on the  F IS  Editor.

p l o t f i s ( a )
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The function plotmf w ill plot all the  membership functions associated w ith  a 
given variable.

p l o t m f ( a , ' i n p u t ' , 1 )

service

p l o t m f ( a , ' o u t p u t ' , 1 )

0 5 10 15 20 25 30
tip
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F ina lly , the  function gensurf w ill plot any one or tw o inputs versus any one 
output of a given system. The result is e ither a line or a three-dimensional 
surface.

gensur f (a)

25

20

tip15

10

5
10

Build ing a System from Scratch
It is possible to  use the Fuzzy Logic Toolbox w ithou t bothering w ith  the  GUI 
tools at all. For instance, to  build the  tipp ing  system entire ly  from the 
command line, you would use the  commands newf is,  addvar, addmf, and 
addrule.

Probably the trick ies t part of th is  process is learning the  shorthand tha t the  
fuzzy inference systems use for bu ild ing  rules. Each variable, input or output, 
has an index number, and each membership function has an index number. 
The rules are bu ilt from statements like  th is

if  in p u tl is MF1 or input2 is MF3 then o u tp u tl is MF2 (weight = 0.5)

This ru le  is turned in to  a m a trix  according to  the follow ing logic: I f  there  are m 
inputs to  a system and n outputs, then the  firs t m columns of the  ru le  m a trix  
correspond to  inputs 1 through m. The entry in column 1 is the  index number 
for the  membership function associated w ith  input 1. The entry in column 2 is 
the  index number for the  membership function associated w ith  input 2. And so 
on. The next n columns work the  same way for the  outputs. Column m + n + 1 
is the  weight associated w ith  tha t ru le  (typ ica lly 1) and column m + n + 2
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specifies the connective used (where AND = 1 and OR = 2). So the ru le  m a trix  
associated w ith  the  ru le  shown above is

1 3 2 0.5 2

Here is how you would build the  en tire  tipp ing  system from the  command line.

a = n e w f i s ( ' t i p p e r ' ) ;

a = a d d v a r ( a , ' i n p u t ' , ' s e r v i c e ' , [ 0  10]) ;

a = a d d m f ( a , ' i n p u t ' , 1 , ' p o o r ' , ' g a u s s m f ' , [ 1 . 5  0] ) ;  
a = a d d m f ( a , ' i n p u t ' , 1 , ' g o o d ' , ' g a u s s m f ' , [ 1 . 5  5] ) ;  
a = a d d m f ( a , ' i n p u t ' , 1 , ' e x c e l l e n t ' , ' g a u s s m f ' , [ 1 . 5  10]) ;

a = a d d v a r ( a , ' i n p u t ' , ' f o o d ' , [ 0  10] ) ;  
a = a d d m f ( a , ' i n p u t ' , 2 , ' r a n c i d ' , ' t r a p m f ' , [ - 2  0 1 3] ) ;  
a = a d d m f ( a , ' i n p u t ' , 2 , ' d e l i c i o u s ' , ' t r a p m f ' , [ 7  9 10 12]) ;

a = a d d v a r ( a , ' o u t p u t ' , ' t i p ' , [ 0  30] ) ;  
a = a d d m f ( a , ' o u t p u t ' , 1 , ' c h e a p ' , ' t r i m f ' , [ 0  5 10]) ;  
a = a d d m f ( a , ' o u t p u t ' , 1 , ' a v e r a g e ' , ' t r i m f ' , [ 1 0  15 20] ) ;  
a = a d d m f ( a , ' o u t p u t ' , 1 , ' g e n e r o u s ' , ' t r i m f ' , [ 2 0  25 30] ) ;

r u l eL i s t = [  . . .
1 1 1 1 2
2 0 2 1 1
3 2 3 1 2 ]; 
a = a d d r u l e ( a , r u l eL i s t ) ;

FIS Evaluat ion
To evaluate the output of a fuzzy system for a given input, use the  function 
e v a l f i s .

a = r e a d f i s ( ' t i p p e r ' )  
e v a l f i s ( [ 1  2],  a) 
ans =

5.5586
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This function can also be used for m u ltip le  collections of inputs, so each row of 
the  input m a trix  is a d ifferent input vector. By doing m u ltip le  evaluations at 
once, you get a tremendous boost in speed.

e v a l f i s ( [ 3  5; 2 7], a) 
ans =

12.2184
7.7885

M-File or MEX-File?
There are tw o d ifferent functions ( e v a l f i s . m  and eva l f i s .mex)  tha t can do the 
actual fuzzy inference for a given set of inputs, though only one of them is used 
at any given tim e. One is an M -file  and the other is a M EX-file, and they return 
exactly the  same result. The M EX -file  is much much faster, but if  you are 
curious about how the  a lgorithm s are implemented, you may want to  inspect 
or even modify the  M-file. As long as it is on the  M ATLAB path, eva l f i s .mex  
w ill be used pre ferentia lly  to  e v a l f i s . m  Every tim e  eva l f i s . mex  is called it 
builds a data s truc tu re  in memory, performs the  FIS  evaluation, and destroys 
the  data structure. You cannot access th is  data s truc tu re  directly.

The FIS Matr ix
The FIS m a trix  is the  M ATLAB object tha t contains all the  fuzzy inference 
system inform ation. Th is m a trix  is stored inside each GUI tool. Access 
functions such as g e t f i s  and s e t f i s  make it easy to  examine and modify its  
structure. The access functions are also im portant because they protect you 
from any changes to  the data s tructu re  in fu tu re  versions of the  toolbox. The 
data s tructu re  may change, but the  access functions w ill continue to  work as 
before.

A ll the  inform ation for a given fuzzy inference system is contained in the FIS 
m atrix , including variab le names, membership function defin itions, and so on.
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This object can itse lf be thought of as a hierarchy of other objects, as shown in 
the diagram below:

FIS
Name
Type
Numlnputs
NumOutputs
NumlnputMFs
NumOutputMFs
AndMethod
OrMethod
AggMethod
DefuzzMethod
InLabels
OutLabels
lnRange
OutRange
lnMFLabels
OutMFLabels
lnMFTypes
OutMFTypes
lnMFParams
OutMFParams
RuleList

Variable
Name
Range
MFLabels
MFTypes
MFParams

Variable
Name
Range
MFLabels
MFTypes
MFParams

MF
Name
Type
Params

MF
Name
Type
Params

MF
Name
Type
Params

Since M ATLAB deals only w ith  matrices of double precision floa ting  point 
numbers, the  FIS m a trix  is exactly tha t. The inform ation is arranged in it as 
shown below (the follow ing lis t is actually jus t the  output of the  showf i s 
command).

showf i s(a)
1. Name t i ppe r
2. Type mamdani
3. I nputs /Outputs [2 1]
4. NumInputMFs [3  2]
5. NumCutputMFs 3
6. NumRules 3
7. AndMethod min
8. OrMfethod max
9. ImpMethod min
10. AggMethod max
11. DefuzzlVfethod cen t r o i d
12. InLabels serv i ce
13. food
14. OutLabels t i p
15. InRange [0  10]
16. [0  10]
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17. OutRange [0  30]
18. InMFLabels poor
19. good
20. excel l ent
21. ranc id
22. d e l i c i ou s
23. OutMFLabels cheap
24. average
25. generous
26. InMFTypes gaussmf
27. gaussmf
28. gaussmf
29. t rapmf
30. t rapmf
31. OutMFTypes t r i m f
32. t r i m f
33. t r i m f
34. InMFParame [ 1 . 5  0 0 0]
35. [ 1 . 5  5 0 0]
36. [ 1 . 5  10 0 0]
37. [ 0  0 1 3]
38. [ 7  9 10 10]
39. OutMFParams [0  5 10 0]
40. [10 15 20 0]
41. [20 25 30 0]
42. RuleList [1 1 1 1 2]
43. [ 2  0 2 1 1]
44. [ 3  2 3 1 2]

Access functions for dealing w ith  th is  m a trix  include g e t f i s ,  s e t f i s ,  showf is,  
addvar, addmf , addrule,  rmvar , and rmmf. These are the  only functions tha t 
interact d irectly  w ith  the  elements of the  FIS  m atrix . O ther functions may use 
the  inform ation provided in the  FIS  m atrix , but they w ill do so by means of one 
of these functions. See Chapter 3, Reference, for more inform ation.

Since the  m a trix  is necessarily rectangular, zeros are used to  f il l out each row 
to  the required length. These matrices can therefore be saved as sparse 
matrices if  memory savings are desired.
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FIS Files on Disk
There is also a specialized text file  format tha t is used for saving fuzzy 
inference systems to  disk. The functions r ead f i s  and w r i t e f i s  are used for 
reading and w rit in g  these files.

If  you prefer, you can interact w ith  the  fuzzy inference system by editing its 
f i s  text file  rather than using any of the  GUIs. Th is is occasionally the  most 

convenient way to  edit a fuzzy inference system. You should be aware, 
however, tha t changing one entry may obligate you to  change another. For 
example if  you add a ru le  to  the  ru le  list you must also increment the  NumRules 
variab le  or the  system w ill not load properly. Also notice tha t the  rules are in 
“ indexed” form at. Here is the  file  t i p p e r . f i s .

[System]
№me=' t i pper '
Type='mamdani'
Num1nputs=2
NumCutputs=1
NumRules=3
AndMethod='min'
CrMethod='max'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='cent roid'

[ I npu t1 ]
Name='service'
Range=[0 10]
NumMFs=3
M F1= ' p oo r ' : ' g aus smf ' , [ 1 . 5  0]
MF2= ' good ' : ' gaussmf ' , [ 1 . 5  5]
M F 3 = ' e x c e l l e n t ' : ' g a u s s m f ' , [ 1 . 5  10]

[ I npu t2 ]
Name='food'
Range=[0 10]
NumMFs=2
M F 1 = ' r a n c i d ' : ' t r a p m f ' , [ 0  0 1 3]
M F 2 = ' d e l i c i o u s ' : ' t r a p m f ' , [ 7  9 10 10]
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[Output1]
Name=' t ip'
Range=[0 30]
NumMFs=3
M F 1 = ' c h e a p ' : ' t r i m f ' , [ 0  5 10] 
M F 2 = ' a v e r a g e ' : ' t r i m f ' , [ 1 0  15 20] 
M F 3 = ' g e n e r o u s ' : ' t r i m f ' , [ 2 0  25 30]

[Rules]
1 1, 1 (1) 2
2 0, 2 (1) 1
3 2, 3 (1) 2
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Sugeno-style Fuzzy Inference
The fuzzy inference process we’ve been referring to  so far is known as 
M am dani’s fuzzy inference method. I t ’s the  most commonly seen fuzzy 
methodology. M am dani’s method was among the  firs t control systems bu ilt 
using fuzzy set theory. It was proposed in 1975 by Ebrahim  Mamdani [Mam75] 
as an attem pt to  control a steam engine and boiler combination by synthesizing 
a set of lingu is tic  control rules obtained from experienced human operators. 
M am dani’s effort was based on Lotfi Zadeh’s 1973 paper on fuzzy a lgorithm s 
for complex systems and decision processes [Zad73]. A lthough the inference 
process we have described in previous sections d iffe rs somewhat from the 
methods described in the original paper, the  basic idea is much the  same.

M am dani-style inference, as we have defined it for the  Fuzzy Logic Toolbox, 
expects the  output membership functions to  be fuzzy sets. A fte r the  
aggregation process, there is a fuzzy set for each output variab le tha t needs 
defuzzification. I t ’s possible, and in many cases much more efficient, to  use a 
single spike as the output membership function rather than a d istribu ted fuzzy 
set. Th is is sometimes known as a singleton output membership function, and 
it can be thought of as a pre-defuzzified fuzzy set. It enhances the  efficiency of 
the  defuzzification process because it greatly s im plifies the  computation 
required to  find  the  centroid of a two-dimensional shape. Rather than 
in tegra ting  across a continuously varying two-dimensional shape to  find the 
centroid, we can just find the weighted average of a few data points. Sugeno 
systems support th is  kind of behavior.

In th is  section we w ill discuss the so-called Sugeno, or Takagi-Sugeno-Kang 
method of fuzzy inference firs t introduced in 1985 [Sug85]. It is s im ila r to  the 
Mamdani method in many respects. In fact the  firs t tw o parts of the  fuzzy 
inference process, fuzzify ing the  inpu ts  and applying the fuzzy operator, are 
exactly the  same.

A typical fuzzy ru le  in a zero-order Sugeno fuzzy model has the  form 

if  x  is A and y is В then z = k
where A and В are fuzzy sets in the antecedent, w h ile  k is a crisply defined 
constant in the  consequent. When the output of each ru le  is a constant like  th is, 
the  s im ila r ity  w ith  M am dani’s method is s trik ing . The only d is tinctions are the 
fact tha t all output membership functions are singleton spikes, and the 
im plication and aggregation methods are fixed and can not be edited. The 
im plication method is sim ply m u ltip lica tion , and the aggregation operator just 
includes all of the  singletons.
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1. fuzzify inputs
3. implication

If service is poor or food is rancid then tip  = cheap

4. aggregation

5. defuzzify
(weighted
average)

The figure  above shows the  fuzzy tipp ing  model developed in previous sections 
of th is  manual adapted for use as a zero-order Sugeno system. Fortunate ly it 
is frequently the  case tha t singleton output functions are completely sufficient 
for a given problem ’s needs. As an example, the  system t i p p e r s g . f i s  is the  
Sugeno-style representation of the  now-fam iliar tipp ing  model. I f  you load the
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system and plot its  output surface, you w ill see it is almost exactly the  same as 
the Mamdani system we’ve been looking at.

a = r e a d f i s ( ' t i p p e r s g ' )  
gensur f (a)

The more general first-order Sugeno fuzzy model has rules of the  form 

if  x  is A and y is В then z = p*x + q*y + r
where A and В are fuzzy sets in the antecedent, w h ile  p, q, and r are all 
constants. The easiest way to  visualize the  firs t-order system is to  th in k  of each 
ru le  as defin ing the  location of a “moving singleton.” That is, the  singleton 
output spikes can w alk around the  output space, depending on what the  input 
is. Th is also tends to  make the system notation very compact and efficient. 
H igher order Sugeno fuzzy models are possible, but they introduce significant 
complexity w ith  l i t t le  obvious m erit. Sugeno fuzzy models of greater than firs t 
order are not supported by the  Fuzzy Logic Toolbox.

Because of the  linear dependence of each ru le  on the  system’s input variables, 
the  Sugeno method is ideal for acting as an in te rpo la tive  supervisor of m u ltip le  
linear controllers tha t apply in d ifferent operating conditions of a dynam ic 
nonlinear system. For example, the  performance of an a ircra ft may change 
dram atica lly  w ith  a ltitude  and Mach number. Linear controllers, though easy 
to  compute and well-suited to  any given fligh t condition, must be updated 
regularly and smoothly to  keep up w ith  the  changing state of the  fligh t vehicle. 
A Sugeno fuzzy inference system is extremely well suited to  the  task of 
smoothly in terpo la ting  linear gains across the  input space; i t ’s a natura l and
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efficient gain scheduler. A Sugeno system is also suited for modeling nonlinear 
systems by in terpo la ting  m u ltip le  linear models.

An Example: Two Lines
To see a specific example of a system w ith  linear output membership functions, 
consider the  one input one output system stored in sugeno l . f i s .

f i smat  = r ead f i s ( ' sugeno1 ' ) ;
g e t f i s ( f i s m a t , ' o u t p u t ' , 1 )

Name = output 
NumMFs = 2 
MFLabels = 

l i ne1 
l i ne2  

Range = [0  1]

So the output variab le  has tw o membership functions

g e t f i s ( f i s m a t , ' o u t p u t ' , 1 , ' m f ' , 1 )
Name = l i ne1 
Type = l i nea r  
Params =

-1 -1
g e t f i s ( f i s m a t , ' o u t p u t ' , 1 , ' m f ' , 2 )

Name = l i ne2  
Type = l i nea r  
Params =

1 -1

Further, these membership functions are linear functions of the  input variable. 
The membership function lin e l is defined by the  equation

output = (-1)* input + (-1)

and the  membership function line2 is defined by the  equation 

output = (1)* input + (-1)
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The input membership functions and rules define which of these output 
functions w ill be expressed and when.

showrul e( f i smat )  
ans =
1. I f  ( i nput  i s  low) then (output  i s  l i n e l )  (1)
2. I f  ( i nput  i s  high) then (output  i s  l i ne2)  (1)

The function plotmf shows us tha t the  membership function low generally 
refers to  input values less than zero, w h ile  high refers to  values greater than 
zero. The function gensurf shows how the  overall fuzzy system output switches 
smoothly from the  line  called lin e l to  the  line called line2.

s ubp l o t ( 2 , 1 , 1 ) ,  p l o t m f ( f i s m a t , ' i n p u t ' , 1 )  
s ubp l o t ( 2 , 1 , 2 ) ,  gensur f ( f i smat )

input

input

This is jus t one example of how a Sugeno-style system gives you the freedom to 
incorporate linear systems in to  your fuzzy systems. By extension, we could 
build a fuzzy system tha t switches between several optimal linear controllers 
as a very nonlinear system moves around in its  operating space.

Conclusion
Any one Sugeno ru le  can be more expressive than a ru le  in a Mamdani system. 
Because it is a more compact and com putationally efficient representation than 
a Mamdani system, the  Sugeno system lends itse lf to  adaptive techniques. 
These adaptive techniques in tu rn  open up a whole new world by creating the 
entire  fuzzy system for you.
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Here are some fina l considerations about the  tw o d ifferent methods. 

Advantages of Sugeno's m ethod:

• Computational efficiency
• W orks well w ith  linear techniques (e.g. PID control, etc.)
• W orks well w ith  optim ization and adaptive techniques
• Guaranteed continu ity  of the  output surface
• Better suited to  mathematical analysis

Advantages of M am dan i's  m ethod:

• More in tu itive
• Widespread acceptance
• Better suited to  human input
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W ork ing  w ith  Simulink
The Fuzzy Logic Toolbox is designed to  work seamlessly w ith  S im u link, the 
sim ulation software available from The MathW orks. Once you’ve created your 
fuzzy system using the GUI tools or some other method, you’re ready to  embed 
your system d irectly  in to  a sim ulation.

An Example: W ater  Level Control
The example we’ll look at is one of water level control. P icture a tank w ith  a 
pipe flow ing in and a pipe flow ing out. We can change the  valve contro lling the 
water tha t flows in, but the  outflow rate depends on the  diameter of the  outflow 
pipe (which is constant) and the  pressure in the tank (which varies w ith  the 
water level). The system has some very nonlinear characteristics.

So a controller for the  water level in the  tank needs to  know the  current water 
level, and it needs to  be able to  set the  valve. Our contro lle r’s input w ill be the 
current error (desired water level m inus actual water level) and its  output w ill 
be the  rate at which the  valve is opening or closing. A firs t pass at w r it in g  a 
fuzzy controller for th is  system m ight be the  following.

1. I f  (level is okay) then (valve is no_change) (1)
2. I f  (level is low) then (valve is open_fast) (1)
3. I f  (level is high) then (valve is close_fast) (1)

One of the  great advantages of the  Fuzzy Logic Toolbox is the  ab ility  to  take 
fuzzy systems d irectly  in to  S im u link  and test them out in a sim ulation
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environment. A S im u link  block diagram for th is  system is shown below. The 
S im u link block diagram for th is  system is s l t ank .  Typing

s l t ank

at the  command line, causes the  system to  appear.

A t the  same tim e, the  file  t a n k . f i s  is loaded in to  the  FIS  m a trix  tank.  Some 
experimentation shows tha t these three rules are not very good by themselves, 
since the  water level tends to  oscillate around the  desired level.

We need to  add another input, the  water level’s rate of change, to  slow down 
the  valve when we get close to  the  righ t level.

4. I f  (level is good) and (rate is negative) then (valve is close_slow) (1)
5. I f  (level is good) and (rate is positive) then (valve is open_slow) (1)
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W ith all five rules in operations, the  step response looks like  th is

2

1

0
0 1 0 20 30 40 50 60 70 80 90 100 

Time (second)

One interesting feature of the  water tank  system is tha t the  tank empties much 
more slowly than it f i l ls  up because of the  specific value of the  outflow diameter 
pipe. We can deal w ith  th is  by setting the  close_slow valve membership 
function to  be s ligh tly  d ifferent from the  open_slow setting. Notice tha t a PID 
controller would not have th is  la titude. The error, error-change, valve 
command surface looks like  th is . I f  you look closely, you can see a slight 
asymmetry to  the plot.

Because the  M ATLAB technical computing environment supports so many 
tools (like  the Control System Toolbox, the  Neural Network Toolbox, the  
Nonlinear Control Design Toolbox, and so on), you can, for example, qu ickly do 
a fa ir comparison of a fuzzy controller versus a linear controller versus a neural 
network controller.
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To load the system from the  disk, type 

a = r e a d f i s ( ' t a n k . f i s ' ) ;

You can look at the  five rules in th is  system from the command line  by typ ing

showrule(a)

Or i f  you want to  use the  standard GUI tool for review ing them

r u l e e d i t ( a )

The command showrule is the  function tha t is called by r u l eed i t  when it 
displays the rules.

Build ing Your O w n S imula t ions
To build your own S im u link systems tha t use fuzzy logic, s im ply copy the Fuzzy 
Logic Contro ller block out of th is  system (or any of the  other demo S im u link  
systems available w ith  the  toolbox) and place it in your own block diagram. You 
can also open the  S im u link  system called fuzb l ock ,  which contains the  Fuzzy 
Logic Contro ller block all by itself. Make sure tha t the  fuzzy inference system 
(FIS) m a trix  corresponding to  your fuzzy system is both in the  M ATLAB 
workspace and referred to  by name in the  dialog box associated w ith  the  Fuzzy 
Logic Contro ller block.

The Fuzzy Logic Contro ller block is a masked S im u link  block based on the  
S-function s f f i s . ms x .  Th is function is itse lf based on the  same a lgorithm s as 
the  function e v a l f i s ,  but it has been ta ilored to  work optim a lly  w ith in  the  
S im u link environment.
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ANFIS
A N FIS  stands for Adaptive Neuro-Fuzzy Inference System. Fundam entally, 
A N F IS  is about tak ing  a fuzzy inference system (FIS) and tun ing  it w ith  a 
backpropagation a lgorithm  based on some collection of input-output data. Th is 
allows your fuzzy systems to  learn.

A network s tructu re  fac ilita tes the computation of the  gradient vector for 
parameters in a fuzzy inference system. Once the  gradient vector is obtained, 
we can apply a number of optim ization routines to  reduce an error measure 
(usually defined by the sum of the  squared difference between actual and 
desired outputs). Th is process is called learning by example in the  neural 
network lite ra tu re .

Some Constra ints
Since A N F IS  is much more complex than the  fuzzy inference systems discussed 
so far, you are not able to  use all the  available fuzzy inference system options. 
Specifically, A N F IS  only supports Sugeno systems subject to  the  follow ing 
constraints:

• F irs t order Sugeno-type systems
• Single output derived by weighted average defuzzification
• U n ity  weight for each ru le

An error occurs if  your FIS m a trix  for A N F IS  learning does not comply w ith  
these constraints.

Moreover, A N F IS  is h igh ly specialized for speed and cannot accept all the 
customization options tha t basic fuzzy inference allows, tha t is, you cannot 
make your own membership functions and defuzzification functions; you’ll 
have to  make do w ith  the  ones provided.

An Example
To start A N F IS  learning, firs t you need to  have a tra in in g  data set tha t 
contains desired input/ou tput data pairs of the  target system to  be modeled. 
Sometimes you also want to  have an optional checking data set tha t can check 
the generalization capability of the  resulting fuzzy inference system. Usually 
these data sets are collected based on observations of the  target system and
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then stored in separate files. Suppose the data sets are generated via the 
fo llow ing M ATLAB commands:

% Number of t o t a l  data pa i r s  
numPts = 51;
x = l i nspace ( - 1 , 1 , numPt s ) ' ;
y = 0 . 6 * s i n ( p i * x )  + 0 . 3 * s i n ( 3 * p i * x )  + 0 . 1 * s i n ( 5 * p i * x ) ;  
data = [ x  y] ;  %> t o t a l  data set
t r nData  = da ta (1 :2 : numPts , : ) ;  %> t r a i n i n g  data set 
chkData = da ta (2 :2 : numPts , : ) ;  %> checking data set

Now plot the  data set.

p l o t ( t r n D a t a ( : , 1 ) , t r n D a t a ( : , 2 ) , ' o ' ,  . . .
c h k D a t a ( : , 1 ) , c h k D a t a ( : , 2 ) , ' x ' )

Data Sets

X o ХО
• О X о  >

о X
x *  о о

° х о х о х о * '

о X

► X <

X о
о  tra in ing data

- Х 0 Х 0 Х 0 Х 0 х  checking data .
О О X X

X о  
. X О х  о

о о X

•0 .81------------- 1-------------1------------- 1-------------1-------------1-------------1-------------1-------------1-------------1-------------1
-1  - 0 .8  -0 .6  -0 .4  -0 .2  0 0.2 0.4 0.6 0.8 1

X

You s till need to  specify a fuzzy inference system for tra in ing . I f  you have 
preferable membership functions w ith  specific parameters or shapes, use 
fuzzy to create a fuzzy inference system and store it as a FIS  m a trix  in the  
workspace. On the other hand, if  you do not have any ideas of what the  in itia l 
membership functions should look like, use the  command genf i s1 instead. 
This command w ill examine the  tra in in g  data set and then generate a FIS
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m a trix  based on the  given numbers and types of membership functions. For 
example

numMFs = 5; % number of MFs
mfType = ' g b e l l m f ' ;  %> MF t ype i s  genera l i zed bel l  
fisimat = genf i s1( t rnData,numMFs,mfType) ;

This generates a FIS  m a trix  called f i s imat . To view the membership functions, 
type

[ x , m f ] = p l o t m f ( f i s m a t , ' i n p u t ' , 1 ) ;
p l o t ( x , m f )
t i t l e ( ' I n i t i a l  Membership Funct i ons ' )

-1  -0 .8  -0 .6  -0 .4  -0 .2  0 0.2 0.4 0.6 0.8 1

You can see that g e n f i s l  places these in itia l membership functions so they are 
equally spaced w ith  enough overlap w ith in  the  input range. To start the 
tra in in g  for 40 epochs, invoke the  M EX -file  an f i s .

numEpochs = 40;
[ f i s i mBt 1 , t r nEr r , ss , f i s i ma t 2 , chkEr r ]  = . . .

anf i s ( t rnData, f i smBt ,numEpochs,NaN,chkData) ;

Note tha t there  is a NaN (the IEEE symbol for “ not a num ber”) in the  input 
arguments; it s im ply acts as a place holder for the  display options. When it sees 
a NaN, an f i s  w ill take default values for the  display options. A fte r you type 
the above command, in form ation appears in the  M ATLAB command windows.
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A fte r the  40 epochs of batch learning, we can use e v a l f i s  to verify  the  learning 
results:

t rnCut  = e v a l f i s ( t r n D a t a ( : , 1 ) , f i s m a t 1 ) ;
trnRMSE = norm (trnCut -  t r n D a t a ( : , 2 ) ) / s q r t ( l e n g t h ( t r n C u t ) ) ;

Th is RMSE (root mean squared error) for tra in in g  data should match the  
number appeared on screen after the  an f i s  command. Note tha t the  output 
argum ents f i s m a t l  and f i smat2  are the FIS matrices corresponding to 
m inim al tra in in g  and checking errors, respectively. To plot error curves, type

epoch = 1:numEpochs;
p l o t ( e p o c h , t r n E r r , ' o ' , e p o c h , c h k E r r , ' x ' )  
hold on; p l o t ( e p o c h , [ t r n E r r  chkEr r ] ) ;  hold of f

Error C urves

epochs
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To plot step size, type

p l o t ( e p o c h , s s , ' - ' , e p o c h , s s , ' x ' )
x l ab e l ( ' e p o c h s ' ) ,  y l a b e l ( ' s s ' ) ,  t i t l e ( ' S t e p  S i zes ' )

Step Sizes

Note tha t the  step size is updated according to  the  fo llow ing heuris tic  
guidelines:

• I f  the  error measure undergoes four consecutive reductions, increase the  step 
size by m u ltip ly ing  it w ith  a constant (ssinc)  greater than one.

• I f  the  error measure undergoes tw o consecutive combinations of one increase 
and one reduction, decrease the step size by m u ltip ly ing  it w ith  a constant 
(ssdec) less than one.

The default value for the  in itia l step size is 0.01; the  default values for ss inc 
and ssdec are 1.1 and 0.9, respectively. A ll the  default values can be changed 
via the  tra in in g  option of an f i s .
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To plot the  final membership functions, type

[ x , m f ] = p l o t m f ( f i s m a t 1 , ' i n p u t ' , 1 ) ;
p l o t ( x , mf )
t i t l e ( ' F i n a l  Membership Func t i ons ' ) ;

1

0.8 

0.6 

0.4 

0.2 

0

-1  -0 .8  -0 .6  -0 .4  -0 .2  0 0.2 0.4 0.6 0.8 1

Compare these membership functions w ith  those before tra in in g  and you w ill 
see how the  final membership functions are try in g  to  catch the  local features of 
the  tra in in g  data set.

2-74



ANFIS

To plot the  fuzzy inference system outputs, type

an f i s_y  = e v a l f i s ( x , f i s m a t 1 ) ;  
p l o t ( t r n D a t a ( : , 1 ) , t r n D a t a ( : , 2 ) , ' o ' ,  . . .  

c h k D a t a ( : , 1 ) , c h k D a t a ( : , 2 ) , ' x ' ,  . . .  
x , a n f i s _ y , ' - ' ) ;

The fina l result is a good fit  for the  original data.

More on ANFIS
The command an f i s  takes at least tw o and at most five input arguments. The 
general format is

[ f i s m a t 1 , t r n E r r o r , s s , f i s m a t 2 , c h k E r r o r ]  = . . .
an f i s ( t r nDa t a , f i sma t , t r n Cp t , c l i s pCp t , chkDa t a ) ;

where t r n C p t , CispCpt , and chkData are optional. A ll the  output arguments 
are also optional.

Training Data
The tra in in g  data t rnDat  is a required argument to  an f i s .  Each row of t r nData  
is a desired input/ou tput pair of the  target system to  be modeled; it s ta rts  w ith  
an input vector and is followed by an output value. Therefore the  number of 
rows of t r nData  is equal to  the number of tra in in g  data pairs, and the number 
of columns is equal to  the  number of inputs plus one.
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Input FIS Matrix
The input FIS  m a trix  f i smat  can be obtained either from the FIS  E ditor (where 
you have to  specify all the  details) or g e n f i s l  (where you only need to  give 
numbers and types of membership functions). Th is FIS  m a trix  contains both 
the  s truc tu re  (which specifies number of rules in the FIS, number of 
membership functions for each input, etc.) and parameters (which specify the 
shapes of membership functions). Remember tha t A N F IS  learning employs the  
gradient descent for updating membership function parameters, so the 
learning process w ill drop in to  a local m in im um  if  it finds one. Therefore the 
more the in itia l membership functions resemble the  optimal ones, the  more 
like ly  the tra in in g  w ill converge to  the  optimal point in the  parameter space. 
Human expertise about the  target system to  be modeled can help when setting 
up these in itia l membership function parameters in the  FIS m atrix .

Note tha t g e n f i s l  produces a FIS  m a trix  w ith  a grid pa rtition  and it causes an 
explosion of the  number of rules when the  number of input is moderately large, 
tha t is, more than four or five. Th is curse of d im ensiona lity is inherent to  all 
fuzzy inference systems w ith  a grid pa rtition . To get around th is , an 
a lte rna tive  is to  generate a FIS m a trix  w ith  a scatter pa rtition . This can be 
done using the clustering a lgorithm  discussed in the  next chapter.

A N F IS  applies the  least-squares method to  identify  the  consequent parameters 
(the coefficients of the  output equations of each rules) at each epoch, so the 
in itia l values of consequent parameters in f i smat  are not used in the learning 
process at all.

Training Options
T ra in ing  option trnC pt is a vector tha t specifies the  stopping crite ria  and the 
step-size adaptation strategy:

• t r n C p t ( l ) : epoch number, default 10.
• t r nCp t ( 2 ) :  error goal, default 0.
• t r n C p t ( 3 ) : in itia l step size, default 0.01.
• t r n C p t ( 4 ) : step-size decrease rate, default 0.9.
• t r n C p t ( 5 ) : step-size increase rate, default 1.1.

I f  any element of t rnCpt  is NaN (Not a Number) or missing, then the default 
value is taken. The tra in in g  process stops if  the  designated epoch number is 
reached or the  error goal is achieved, whichever comes firs t.
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The step-size update strategy was touched on in the  early part of th is  section. 
Usually we want the  step-size profile  to  be a curve which goes uph ill in it ia lly , 
reaches some maximum, and then goes dow nhill t i l l  the  end of tra in ing . This 
ideal step-size pro file  is achieved by adjusting the  in itia l step-size and the 
increase and decrease rates (trn C p t(3 ) to  trn C p t(5 )) . The default values are 
set as the best guess to  deal w ith  a w ide range of learning tasks. For any 
specific application, you are encouraged to  modify these step-size options in 
order to  find  th e ir optimal values.

Display Options
Display option CispCpt is a vector of e ither ones or zeros tha t specifies what 
in form ation to  display before, during, and after the  tra in in g  process:

• C isp C p t(1 ): A N F IS  inform ation, default 1.
• C isp C p t(2 ): error measure, default 1.
• C ispC pt(3 ): step-size, default 1.
• C isp C p t(4 ): fina l results, default 1.

The default mode is verbose, tha t is, all available inform ation w ill be displayed. 
I f  any element of CispCpt is NaN (not a number) or missing, the  default value 
w ill be taken.

Checking Data
The checking data chkData is used for testing the  generalization capability  of 
the  fuzzy inference system at each epoch. The checking data has the same 
format as that of the  tra in in g  data, and its  elements are usually d is tinct from 
those of the  tra in in g  data.

The checking data is im portant for learning tasks where the  input number is 
large and/or the  data itse lf is noisy. In general we are not looking for a fuzzy 
inference system tha t can best f it  the  tra in in g  data. Instead, we are looking for 
a fuzzy inference system tra ined on the  tra in in g  data tha t can respond to  the 
checking data in a satisfactory manner. Th is cross-validation gives an 
unbiased estim ate of the  m inim al error measure tha t can be achieved in the 
tra in ing .

The parameter tha t corresponds to  the m inim al checking error is returned in 
the output argument f i smat2.  Th is is the  output FIS  m a trix  tha t should be 
used if  the  checking data is supplied for the  learning.
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Output FIS Matrix for Training Data
f i s m a t l  is t he output F IS  m a trix  for m inim al tra in in g  error. Th is is the  FIS 
m a trix  tha t should be used for fu rth e r calculation if  there is no checking data 
used for cross validation.

Training Error
The tra in in g  error t r n E r r o r  records the  RMSE (root mean squared error) for 
the  tra in in g  data set at each epoch. f i s m a t l  is the  snapshot of the  FIS m a trix  
when the tra in in g  error measure is at its  m inim um .

Step Size
The step-size array ss records the  step-size during the  tra in ing . P lotting ss 
gives the  step-size profile, which serves as a reference for adjusting the in itia l 
step size and the corresponding decrease and increase rates.

Output FIS Matrix for Checking Data
f i smat2  is t he output F IS  m a trix  for m inim al checking error. Th is is the  FIS 
m a trix  tha t should be used for fu rthe r calculation if  there is a checking data 
used for cross validation.

Checking Error
The checking error chkError  records the  RMSE (root mean squared error) for 
the  checking data at each epoch. f i smat2  is the snapshot of the  FIS  m a trix  
when the checking error is at its  m in im um .

Reference
For a detailed discussion of A N F IS  architecture, its  learning rules and other 
related issues, you may want to  read the  paper [Jan93] listed in the 
“References” section at the  end of th is  chapter.
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Fuzzy Clustering
Clustering of numerical data forms the  basis of many classification and system 
modeling algorithm s. The purpose of clustering is to  d is till natura l groupings 
of data from a large data set, producing concise representation of a system’s 
behavior. The Fuzzy Logic Toolbox is equipped w ith  some tools tha t allow you 
to  find  clusters in input-output tra in in g  data. You can use the cluster 
in form ation to  generate a Sugeno-style fuzzy inference system tha t models the 
data behavior.

Fuzzy C-Means  Cluster ing
Fuzzy cm eans (FCM) is a data clustering technique where each data point 
belongs to  a cluster to  a degree specified by a membership grade. This 
technique was o rig ina lly  introduced by Jim  Bezdek in 1981 [Bez81] as an 
improvement on earlier clustering methods. The idea is fa ir ly  simple: how do 
you lum p together data points tha t populate some m ultid im ensional space in to  
a specific number of d ifferent clusters?

We start w ith  the concept of cluster centers tha t mark the  mean location of each 
cluster. In it ia lly  these cluster centers are very inaccurately placed. 
A dd itiona lly , every data point has a membership grade for each cluster. By 
ite ra tive ly  updating the  cluster centers and the  membership grades for each 
data point, we can watch the cluster centers move to  the  “ r ig h t” location. This 
iteration is based on m in im iz ing  an objective function tha t represents the  
distance from any given data point to  a cluster center weighted by tha t data 
po in t’s membership grade.

The fina l output of fuzzy c-means is not a fuzzy inference system but rather a 
list of cluster centers and several membership grades for each data point. You 
can use the  inform ation returned by the  fuzzy c-means routine  to  help you 
build a fuzzy inference system.

2-79



2 Tutorial

An Example: 2-D Clusters
Le t’s use some quasi-random two-dimensional data to  illu s tra te  how fuzzy 
c-means clustering works. Load a data set and take a look at it.

load fcmdata.dat
p l o t ( f c m d a t a ( : , 1 ) , f c m d a t a ( : , 2 ) , ' o ' )

Now we invoke the  fcm  function and ask it to  find  tw o clusters in th is  data set

[ cen te r ,U,ob j Fcn ]  = f cmj f cmdata,2) ;
I t e r a t i o n  count = 1, obj .  f cn = 8.941176 
I t e r a t i o n  count = 2, obj .  f cn = 7.277177

and so on un til the  objective function is no longer decreasing much at all.

The variab le  center  contains the  tw o cluster centers, U contains the 
membership grades for each of the  data points, and objFcn contains a history 
of the  objective function across the iterations.

The fcm  function is actua lly an iteration loop bu ilt on top of several other 
routines, namely i n i t f c m  which in itia lizes  the  problem; d i s t f c m  which is 
used for distance calculations; and s t ep f cm which steps through one iteration.
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P lotting the  objective function shows the progress of the  clustering.

p l o t (ob j Fcn)

ob jective function values

F ina lly  here is a plot displaying the  tw o separate clusters as classified by the 
fcm  routine. C luster centers are shown by the  large characters.

Subt rac t i ve  Cluster ing
Suppose we don’t even have a clear idea how many clusters there should be for 
a given set of data. Subtractive clustering is a fast, one- pass a lgorithm  for 
estim ating the  number of clusters and the  cluster centers in a set of data. The 
cluster estimates obtained from the subclust  function can be used to  in itia lize
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ite ra tive  optim ization-based clustering methods (like  fuzzy c-means) and 
model identification methods (like  ANFIS). The subclust  function finds the 
clusters by using the  subtractive clustering method.

The genf i s2 function builds upon the subclust  function to  provide a fast, 
one-pass method to  take input-output tra in in g  data and generate a 
Sugeno-style fuzzy inference system tha t models the data behavior.

An Example: Suburban Commuting
In th is  example we apply the  genf i s2  function to  model the  re lationship 
between the  number of automobile tr ip s  generated from an area and the  area’s 
demographics. Demographic and t r i p  data are from 100 tra ff ic  analysis zones 
in New Castle County, Delaware. F ive demographic factors are considered: 
population, number of dwelling units, vehicle ownership, median household 
income, and tota l employment. Hence the  model has five input variables and 
one output variable.

Load the  data by typ ing

t r i p d a t a
s ubp l o t ( 2 , 1 , 1 ) ,  p l o t ( d a t i n )  
s ubp l o t ( 2 , 1 , 2 ) ,  p l o t ( d a t o u t )

Several vectors now exist in the  workspace. Of the orig inal 100 data points, we 
w ill use 75 as tra in in g  data (dat i n and da tou t ) and 25 as checking data 
(chkdat in and chkdatout ). The genf i s2  function generates a model from data 
by c lustering and requires you to  specify a cluster radius. The cluster radius 
indicates the  range of influence of a cluster when you consider the  data space
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as a un it hypercube. A small cluster radius w ill usually lead to  find ing  many 
small clusters in the  data (resulting in many rules); a large cluster radius w ill 
usually lead to  find ing  a few large clusters in the  data (resulting in fewer 
rules). Here we use a cluster radius of 0.5 and run the  genf i s2  function.

f i s m a t = g e n f i s 2 ( da t i n , d a t o u t , 0 . 5 ) ;

genf i s2  is a fast, one-pass method tha t does not perform any ite ra tive  
optim ization. A FIS m a trix  is returned; the  model in the  FIS m a trix  is a firs t 
order Sugeno model w ith  th ree rules. We can use e v a l f i s  to verify the  model.

f u z o u t = e v a l f i s ( d a t i n , f i s m a t ) ;
t r nRMSE=nor m( f uzou t - da t ou t ) / sq r t ( l eng t h ( f uzou t ) )
trnRMSE =

0.5276

The variab le  trnRMSE is the  root mean square error of the  system generated by 
the tra in in g  data. To check the  model, we use the  checking data.

c h k f u z o u t = e v a l f i s ( c h k d a t i n , f i s m a t ) ;
chkRMSE=norm(chkfuzout -chkdatout ) / sqr t ( l ength(chkfuzout ) )
chkRMSE =

0.6170
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Not surpris ing ly, the  model doesn’t do qu ite  as good a job on the checking data. 
A plot of the  checking data reveals the  difference.

p l o t ( chkda t ou t )  
hold on
p l o t ( c h k f u z o u t , ' o ' )  
hold of f

A t th is  point, we can use the  optim ization capability  of AN F IS  to  improve the 
model.

f i s m a t 2 = a n f i s ( [ d a t i n  d a t o u t ] , f i s m a t , [ 5 0  0 0 . 1 ] ) ;

Messages go by as the  tra in in g  progresses, after which we can type 

f u z o u t 2 = e v a l f i s ( d a t i n , f i s m a t 2 ) ;
t r nRM3E2=normj f uzou t 2 - da t ou t ) / sq r t ( l eng t h ( f uzou t 2 ) )  
trnRMSE2 =

0.3407
c hk f uz ou t 2 =ev a l f i s ( c hk da t i n , f i sma t 2 ) ;
chkRM3E2=normjchkfuzout2-chkdatout ) / sqr t ( l ength(chkfuzout2) )  
chkRMSE2 =

0.5827
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So the model has improved a lot w ith  respect to  the tra in in g  data, and a l i t t le 
w ith  respect to  the  checking data. Here is a plot of the  improved checking data.

p l o t ( chkda t ou t )  
hold on
p l o t ( c h k f u z o u t 2 , ' o ' )  
hold of f

Here we see tha t genf i s2  can be used as a stand-alone, fast method for 
generating a fuzzy model from data, or as a pre-processor to  A N F IS  for 
determ in ing the  in itia l rules. An im portant advantage of using a clustering 
method to  find  rules is tha t the  resultant rules form a good “scatter” partition  
of the  input space, in contrast to  a grid pa rtition  of the  input space. This 
overcomes the  problem w ith  combinatorial explosion of rules when the  input 
data has high dimension (the dreaded curse of d im ensionality).

Overfitting
Now le t’s go on to  consider what happens if  we continue to  exhaustively tra in  
th is  system using the  A N F IS  algorithm .

[ f i s m a t 3 , t r n E r r , s t e p S i z e , f i s m a t 4 , c h k E r r ]  = . . .
a n f i s ( [ d a t i n  d a t ou t ] , f i s m a t 2 , [ 2 0 0  0

0 . 1 ] , [ ] ,  . . .
[ chkda t i n  chkdatou t ] ) ;

The long lis t of output arguments re tu rns a h istory of the  step sizes, the  RMS 
error versus tra in in g  data, and the  RMS error versus checking data associated 
w ith  each tra in in g  epoch.
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ANFIS t r a i n i n g  completed at epoch 200.
Minimal t r a i n i n g  RMSE = 0.326566 
Minimal checking RMSE = 0.582545

This looks like  good news. The error w ith  the  tra in in g  data is the  lowest we’ve 
seen, and the  error w ith  the  checking data is also lower than before, though not 
by much at all. Th is suggests tha t maybe we had gotten about as close as 
possible w ith  th is  system already. Maybe we have even gone so far as to  overfit 
the  system to  the  tra in in g  data. O verfitting  occurs when we fit the  fuzzy 
system to  the  tra in in g  data so well tha t it no longer does a very good job of 
fit t in g  the  checking data. The result is a loss of generality. A look at the  error 
history against both the  tra in in g  data and the  checking data reveals much.

This is indeed a case of overfitting . The smallest error against the  checking 
data occurs at epoch 52 after which the  checking data error trends upward even 
as A N F IS  keeps w ork ing to  m in im ize the  error against the  tra in in g  data all the  
way to  epoch 200.

References
The fuzzy c-means a lgorithm  is described in [Bez81], w h ile  a fu ll description of 
the  subclust  a lgorithm  and the  underlying c lustering method can be found in 
the  paper by Chiu [Chi94]. Both are listed in the “ References” section at the  end 
of th is  chapter.
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Stand-Alone Code
In the  f uzzy / f uzzy  d irectory of the  toolbox, you can find tw o C files, f i sma i n . c  
and f i s c ,  which are provided as the  source codes for a stand-alone fuzzy 
inference engine. The stand-alone fuzzy inference engine can read a FIS  file  
and an input data f ile  to  perform fuzzy inference directly, or it can be embedded 
in other external applications.

To compile the stand-alone fuzzy inference engine on a UNI X  system, type 

% cc -O  -o  f i sma i n  f i s m a i n . c  - l m

(You do not have to  type f i s c  exp lic itly  since it is included in f i sma i n . c . )  
Upon successful compilation, type the executable command to  see how it works:

%o f i sma i n  

It responds w ith  the fo llow ing message:

%o Usage: f i sma i n  d a t a _ f i l e  f i s _f i l e

This means tha t f i sma i n  needs tw o files to  do its  w ork: a data file  containing 
rows of input vectors, and a F IS  file  tha t specifies the  fuzzy inference system 
under consideration.

For tu to ria l purposes, consider the  F IS  file  mam21.f is.  We can prepare the 
input data file  using M ATLAB:

[x , y] = meshgr id( -5:5,  - 5 : 5 ) ;  
i nput _da ta  = [ x ( : )  y ( : ) ] ;  
save f i s _ i n  i nput _da ta  - asc i i

Th is saves all the  input data as a 121-by-2 m a trix  in the  ASCII file  f i s _ i n ,  
where each row of the  m a trix  represents an input vector.

Now we can call the  stand-alone:

%o f i sma i n  f i s _ i n  mam21.f is

This w ill generate 121 outputs on your screen. You can direct the  outputs to 
another file:

%o f i sma i n  f i s _ i n  mam21.f is > f i s _ou t

Now the file  f i s _ou t  contains a 121-by-1 m atrix . In general, each row of the 
output m a trix  represents an output vector. The syntax of f i sma i n  is s im ila r to
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its  M E X -file  counterpart e v a l f i s . m  except tha t all m atrices are replaced w ith
files.

To compare the  results from the M ATLAB M EX-file  and the stand-alone
executable, type the  follow ing w ith in  M ATLAB:

f i smat  = r ead f i s ( ' man21 ' ) ;
matlab_out = e v a l f i s ( i n p u t _ d a t a ,  f i smat ) ;
load f i s_ou t
max(max(mBtlab_out -  f i s _ o u t ) )  
ans =

4.9583e-13

This t in y  difference comes from the lim ited length p rin tou t in the  file  f i s _ o u t .
There are several th ings you should know about th is  stand-alone executable:

• It is compatible w ith  both ANSI and K & R standards, as long a s__STDC__
is defined in ANSI compilers.

• Customized functions are not allowed in the  stand-alone executable. So you 
are lim ited to  the  11 membership functions tha t come w ith  the  toolbox, as 
well as other factory settings for AND, OR, IM P and AGG functions.

• f i s ma i n . c  contains only the  main() function and it is heavily documented 
for easy adaptation to  other applications.

• To add a new membership function or new reasoning mechanism in to  the 
stand-alone, you need to  change the  file  f i s c ,  which contains all the  neces­
sary functions to  perform fuzzy inference process.

• For the  Mac, the  compiled command f i sma i n  tr ie s  to  find f i s m a i n . i n  and 
f i s m a i n . f i s  as input data and FIS  description file, respectively. The output 
is stored in a file  f i sma i n . ou t .  These file  names are defined w ith in  Mac-spe­
c ific  #define symbols in f i s ma i n . c  and can be changed if  necessary.
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Applicat ions and Demos
A ll the  demos described in th is  section can be launched w ith  the  help of the  
demo gateway program fuzdemos.

Ball  Jugg l ing
Ball jugg ling  is an interesting discrete control problem. In th is  system, a ball 
follows a ba llis tic  curve in a two-dimensional plane, w h ile  a fla t board at 
ground tries  to  bounce the ball in order to  control the  next location of impact. 
The control goal is to  bring the  ball to  a desired location such tha t it bounces 
ve rtica lly  at the  center of the  board. We assume tha t there  is no loss of energy 
in the system; the  ball follows a perfect ba llis tic  curve in the  a ir and the 
collision w ith  the  board is elastic. The state equation for th is  system is

x k +1 = x k + д  sin (2 0 k + 4 uk)

0k +1 = 0k + 2 u k 

where

k  : count of impact 

x : horizontal location of impact

0 : angle of ball tra jectory w .r.t. horizontal axis at tim e  of impact 

u : angle of board w .r.t. to  horizontal axis, th is  is the  control input 

g : acceleration of g rav ity  

v : ball velocity at impact

2-89



2 Tutorial

This demo does not require S im u link. To bring up the  anim ation w indow, type 

j ugg l e r

You w ill see an anim ation window, w ith  a blue ball jum p ing  up and down, a 
yellow board where the  ball bounces, and a small red triang le  ind icating the 
target position. A fte r every eight or nine bounces, the  target position w ill move 
to  a random location autom atically, so you can constantly see how the  board is 
contro lling the  ball. I f  you want to  change the  target position d irectly, you can 
do so by clicking the  small red tr iang le  and drag it to  anywhere you like.

It is obvious tha t the  ball can usually reach the target position at the  firs t 
bounce and the  board’s angle w ill become zero righ t from the  second bounce. 
However, if  the  target is too far away, the  ball may bounce several tim es before 
h ittin g  the  target.

This demo provides an option for a human controller. To t ry  it, set the  
C o n tro lle r pop-up menu to  Human.

Now you can control the  t i l t  angle of the  board by clicking at the  li t t le  steering 
arrow at the  upper righ t corner. The t i l t  angle is restricted to  any angle 
between -45 and 45 degrees. I f  the  t i l t  angle is not set correctly such tha t the  
rebounding ball has a negative project angle, then you w ill see a message like  
th is:

Bouncing f r o m  the ground, pro ject  angle = 1.450950e+02

2-90



Applications and Demos

This im plies tha t the  ball has a negative project angle after h ittin g  the  board 
and it is bouncing upwards because it also h its  the  ground.

Inverse K inem a t ic s  of  Two-Jo in t  Robot  Arm

End effector

A two-jo in t p lanar robot arm, as shown above, is fu lly  specified when the  jo in t 
angles 01 and 0 2 are known. In particu la r, the  Cartesian position (x, y) of the  
end effector (“ hand”) can be derived from the  jo in t angles by the  follow ing 
equations:

X = 11 cos01 + 12cos(01 + 02)

y = l 1sin 01 + l2sin (01 + 0 2)

where l1 and l2 are the  lengths of the  rig id  arms, respectively. However, in 
robotic applications, we often face the  opposite problem, tha t is, given the 
desired position of the  end effector, find  the  corresponding jo in t angles. Th is is 
the  so-called inverse kinematics problem. This demo w ill use the  adaptive 
neuro-fuzzy inference system (ANFIS) to  solve th is  k ind of problem.

The forward kinem atics from the  jo in t angles 01 and 0 2 to  the end-point 
Cartesian position (x, y) are qu ite  stra igh tfo rw ard , as shown in the  above 
equations. However, the  inverse mappings from (x, y) to  (01, 02) are not too 
clear. In th is  particu la r case, it is possible to  solve the  inverse mappings 
algebraically. However, here we assume the  solutions are not available and we 
w ill tra in  tw o fuzzy inference systems to  approxim ate these tw o mappings. In 
other words, we want to  design tw o fuzzy systems FIS  1 and FIS  2 such tha t
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the  overall composite function of the  fo llow ing block diagram is an iden tity  
mapping.

Suppose tha t l1 is 10, l2 is 7, and the  value of 0 2 is restricted to  [0, n ]. The 
fo llow ing figure  demonstrates the mapping surfaces from (01, 02) to  (x, y) (the 
firs t row) and from (x, y) to  (01, 02) (the second row). These four plots are 
created by the  M ATLAB command i n v s u r f .

x x

y y

7 2 2x + y is greater than l1+ l2 or less than | l 1-l2| ,  there is no 
corresponding (01, 0 2) and the  corresponding regions are called unreachable 
workspace. For 01 and 0 2 in the  unreachable workspace, the ir values are 
assigned to  NaNs; the  effect is shown clearly in the  second row of the  above 
plots.

To fu rthe r s im p lify  our discussion, we assume the end-point position is lim ited 
to  the firs t quadrant of the  x-y plane. From the firs t quadrant, we collect 229 
tra in in g  data pairs of the  form at (x, y: 01, 0 2), respectively, for the  tra in in g  of 
tw o fuzzy inference systems. We use three membership functions on each 
input; thus  the  number of rules is nine and the  number of parameters is 45 for 
each FIS. A fte r 50 epochs of tra in ing , the  results are stored in tw o FIS files
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i n v 1 . f i s  and i n v 2 . f i s .  To see anim ation of how well these tw o fuzzy 
inference systems work, type

i nvk i ne

J  ShowTails | Clear Tails

158 Stop | Continue | Step Info Close

In the  anim ation w indow, an ellipse is chosen as the  reference path and the 
dashed line  shows how the  end-point follows the  desired path based on the 
inverse mappings. The 229 crosses indicate the  locations of the  tra in in g  data. 
You can even move the  ellipse by clicking inside it and dragging it to  a new 
location. As long as the  ellipse is inside the region covered by tra in in g  data, the 
end-point can follow the  path satisfactorily . However, if  part or all of the  ellipse 
is out of the  region, the  end-point w ill sometimes take a w ild  trajectory.

This example is only used to  demonstrate the concept; the  results are not 
necessarily optim ized. Better performance can be obtained through either 
extensive tra in in g  or a denser data set. Note tha t th is  example corresponds to 
a case of off-line design of open-loop control; other design approaches can force 
the end-point to  follow the desired tra jectory more closely if  closed loop control 
is perm itted.
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A d a p t i v e  No ise Cance l la t ion

prim ary 
input 

• —
measured

signal
reference

input nonlinear
characteristics

D

N

Adaptive noise cancellation is one interesting application of ANFIS . The basic 
situation for adaptive noise cancellation is shown above, where the  inform ation 
signal I comes from the  p rim ary input, w h ile  the  noise source N comes from the 
reference input. A t the  receiving end, the  measured signal M is equal to  the 
sum of I and D, where D is a distorted version of N due to  some nonlinear 
characteristics f. In symbols,

M(k) = I (k) + D(k) = I (k) + f(N(k), N((k-1), ... ))

Our task is to  e lim inate  D from M and recover the  orig inal in form ation signal I.

I f  the  nonlinear characteristic f  is known exactly, it would be easy to  recover 
the  orig inal in form ation signal by subtracting D from M. However, f  is usually 
unknown in advance and it could be tim e-vary ing due to  changes in external 
environments. Moreover, the  spectrum of D m ight overlap tha t of I, which 
invalidates the  use of f ilte r in g  techniques in frequency domain.

To estim ate the  distorted noise signal D, we need to  model the  nonlinear 
characteristic f. We use A N F IS  to  model th is  nonlinear function. Before 
tra in in g  ANFIS , we need to  collect tra in in g  data pairs, but the  desired output 
D is not available since it is combined add itive ly in to  the  measured signal M. 
Fortunately, we can take M as a contaminated version (which is contaminated 
by the inform ation signal I) of the  desired output and proceed tra in in g  as usual; 
the  difference between M and D (that is, the  inform ation signal I) w ill hopefully
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average out during  the  tra in in g  process. Therefore for th is  scheme to  work, the  
fo llow ing conditions must hold:

• The noise source N must be available and free of the  inform ation signal I.
• The inform ation signal I must be zero-mean and uncorrelated e ither linearly  

or nonlinearly w ith  the  noise source N.
• The order of the  passage characteristics must be known. Th is determ ines the 

number of inputs for ANFIS.

Note tha t if  the  passage characteristic is linear, then we can use a linear model 
instead and the  whole setting is the  linear adaptive noise canceling proposed 
by W idrow [WidS85].

Now we can return to  the  M ATLAB demo. To start the  demo, type 

sshow noisedm 

and push the  S ta rt button when the  w indow opens.

In th is  demo, we assume the channel characteristic is 

D(k) = f(N(k), N(k-1)) = 4*sin(N (k))*N (k-1)/(1+N 2(k-1))
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Here is the  measured signal M

M easured Signal 
3 i----------------------1---------------------- 1---------------------- 1---------------------- 1—

2 -

1

E 0 -

- 3 I---------------------- 1---------------------- 1---------------------- 1---------------------- 1---------------------- 1---------------------- 1
0 1 2 3 4 5 6

time

And we use a 4-ru le  AN F IS  for tra in in g  10 epochs on 601 tra in in g  data pairs. 
W ithout extensive tra in ing , the  A N F IS  can already do a fa ir ly  good job; the  
orig inal in form ation signal and the  recovered one by A N FIS  are shown side by 
side in the  figure  below.

1 I 1 1 1 1 1 :

__ 0.5 - -

I
§  0 - -

t  - 0 .5 -  -

-1l______,______ ,______ ,______ ,______ ,______:
0 1 2 3 4 5 6

1 f  1 1 1 1 1 1

X 0.5 - -

0 - -
E
£  -0 .5  - -

-1t___ ,____,____,____,____,___ :
0 1 2 3 4 5 6
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Chaot i c  Time Series Predic t ion
The demo mgtsdemo shows how to  tra in  an A N FIS  for predicting a tim e  series 
defined by the  Mackey-Glass (MG) tim e-delay d iffe rentia l equation:

X (t) = 0 • 2 T ) -  0.1 x (t )
1 + x 10(t -  t )

Th is tu rn s  out to  be a chaotic tim e  series w ithou t a clearly defined period; it 
w ill not converge or diverge, and it is very sensitive to  in itia l conditions. This 
is a benchmark problem in the  neural network and fuzzy modeling research 
communities.

To obtain the  tim e  series value at integer points, we applied the fourth-order 
Runge-Kutta method to  find the  numerical solution to  the  above MG equation; 
the  result was saved in the  file  mgdata.dat .  Here we assume x(0) = 1.2, x = 17, 
and x(t) = 0 for t < 0. To plot the  MG tim e  series, type

load mgdata.dat 
t = mgdata(: ,  1) x = mgdata(: ,  2) ) ;  p l o t ( t ,  x)

M ackey-G lass chaotic tim e series

tim e (sec)

The task of tim e  series prediction is to  use known values of the  tim e  series up 
to  the  point x  = t to  predict the  value at some point in the  fu tu re  x  = t+P. The 
standard method for th is  type of prediction is to  create a mapping from D 
points spaced Д apart, tha t is, (x(t-(D-1)A,..., x(t-A), x(t)), to  a predicted fu tu re  
value x(t+P). Following the  conventional settings for predicting the  MG tim e

0 200 400 600 800 1000 1200
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series, we set D = 4 and Д = P = 6. In other words, the  tra in in g  data for AN F IS  
is of the  fo llow ing form at:

[ x ( t - 1 8 )  x ( t - 12 )  x ( t - 6 )  x ( t )  x ( t +6 ) ]

From t = 118 to  1117, we can extract 1000 data pairs of the  above form at. We 
use the  firs t 500 data pairs for tra in in g  ANFIS , w h ile  the  others are used for 
va lida ting  the  identified fuzzy model. Th is results in tw o data matrices, 
t r nData  and chkData; both are 500-by-5 matrices.

To start A N F IS  tra in ing , we need a F IS  m a trix  tha t specifies the  s tructu re  and 
in itia l parameters of the  FIS  for learning. This is the  task of g e n f i s l :

f i smat  = g e n f i s l ( t r n D a t a ) ;

Since we did not specify numbers and types of membership functions used in 
the  FIS, default values are assumed and we have tw o generalized bell 
membership functions on each input. The generated FIS  m a trix  contains 24 = 
16 fuzzy rules w ith  104 parameters, includ ing 80 linear parameters and 24 
nonlinear parameters. In order to  achieve good generalization capability, it is 
im portant to  have the  number of tra in in g  data points be several tim es larger 
than the  number of f it t in g  parameters. In th is  case, the  ra tio  between data and 
parameters is about five (500/104). The function g e n f i s l  also tries  to  generate 
in itia l membership functions tha t are equally spaced and cover the  whole input 
space; these in itia l membership functions are shown below.
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To start the  tra in ing , type

[ f i s m a t 1 , e r r o r 1 , s s , f i s m a t 2 , e r r o r 2 ]  = . . .
a n f i s ( t r n D a t a , f i s i m a t , [ ] , [ ] , c h k D a t a ) ;

Th is takes about four m inutes on a Sun SPARCstation 2 for 10 epochs of 
tra in ing . The membership functions after tra in ing , as shown below, do not 
change drastica lly. From th is , we can guess most of the  fit t in g  is done w ith  the 
linear parameters, w h ile  the nonlinear parameters are mostly for fine  tun ing .

To plot the  error curves, type 

p l o t ( [ e r r o r 1 ;  e r r o r 2 ] ) ;

where er ror1 and e r r o r 2  are root mean squared error for tra in in g  and 
checking data, respectively.
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To compare the  orig inal MG tim e  series and A N F IS  prediction side by side, try

anf i s_output  = e v a l f i s ( [ t r n D a t a ;  chkData] ,  f i s m a t l ) ;  
index = 125:1124;
subplot (211) ,  p l o t ( t i me ( i n d e x ) ,  [ x ( i ndex )  a n f i s _ o u t p u t ] ) ;  
subplot (212) ,  p l o t ( t i me ( i n d e x ) ,  x ( i ndex)  -  an f i s_ou t pu t ) ;

1

200 300 400 500 600 700 800 900 1000 1100

5

0

200 300 400 500 600 700 800 900 1000 1100

Note tha t the  difference between the original MG tim e  series and the A N FIS  
prediction is very small; tha t is why you can only see one curve in the  firs t plot. 
The prediction error of A N FIS  is shown in the  second plot w ith  a much finer 
scale. Note tha t we have tra ined the  A N F IS  only for 10 epochs; better 
performance is expected if  we apply more extensive tra in ing .

Com parative study shows tha t because of its  sparing use of param eterization, 
A N F IS  has better generalization capability on th is  problem when compared to 
auto-regressive models, cascade-correlation neural networks, 
back-propagation neural networks, radial basis function networks, and other 
polynomial prediction methods. More deta ils on th is  respect can be found in 
Jang’s paper listed in the  “References” section at the  end of th is  chapter. 
[Jan93].

x 10 Prediction Errors

MG T im e Serise and AN FIS  Prediction
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Fuzzy C-Means  Cluster ing Demos
Fuzzy c-means (FCM) is a data c lustering technique where each data point 
belongs to  a cluster to  a degree specified by a membership grade. To try  out 
FCM w ith  2-D data, type

fcmdemD

This brings up a w indow on screen, w ith  a scatter plot of the  data set to  be 
clustered and qu ite  a few GUI controls. The default data set obviously fa lls  in to  
th ree clusters; by clicking Star t ,  you see how the three cluster centers move to  
the “ r ig h t” positions.

A fte r the  clustering process is done, you can click C lear Traj  to clear the  
tra jectories and get a better view of the  cluster centers. You can now click S ta rt 
again to  see the repeatab ility  of FCM.

If  you set Label Data, each data point w ill have the  same color as its  cluster 
center (defined as the  cluster w ith  highest membership grade). I f  Label Data 
is set before the  c lustering process, you see how clusters are moving and 
settling; the  effect is most pronounced when FCM is applied to  data set 4 w ith  
four clusters.

Label Data can only let you see the  results due to  maximal membership 
grades. To view the membership grade of a cluster, select a cluster (by clicking 
mouse near a cluster center) and then press MF Plot .  M ATLAB uses the  
command g r i dda t a  to construct a MF surface on a grid base.
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You can select other data sets w ith  d ifferent numbers of clusters. Other 
parameters for FCM includes

Expo.: exponent for membership grades

I terat . :  m aximum number of ite rations

Improv. :  m in im um  amount of improvement between tw o iterations

The clustering process stops when the maximum number of ite ra tions is 
reached, or when the  m in im um  amount of improvement cannot be achieved.

This demo provides a sim ple and easy way to  try  out FCM for 2-D data. For 
data of higher dimensions, usually i t ’s harder to  visualize the  clustering 
process. Another sim ple program tha t deals w ith  higher-dimensional data is 
i r i s f c i r ,  which uses FCM to  cluster the  IRIS data. By typ ing

irisfcm

at the  command line, you can see how the cluster centers move on projected 2-D 
surfaces.

Note: The rem aining demos make use of S im u link. I f  you do not have access to  
S im u link, you can s till load the  f i s  files associated w ith  these demos and 
examine the  systems using the standard GUI tools, but the  anim ations and 
sim ula tions illus tra ted  below w ill not run.

Truck B a cke r - U p p e r  (S imu l ink  on ly )
The truck  backer-upper (TBU) problem has become a standard problem in the 
fuzzy logic fie ld. The problem is to  design a controller (driver) tha t can back up 
a truck  in to  a loading dock from any in itia l position tha t has enough clearance 
from the  back w all. The front wheels of the  truck  can reach any angles between 
-45 and 45 degrees, but only backing up is allowed; there  is no going forward.

To bring up the  S im u link  w indow for th is  demo, try

s l t bu
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A S im u link  w indow w ill appear on your screen.

S tart the  sim ulation by choosing S ta rt from the S im u la tion  menu. You w ill see 
an anim ation w indow for the  TBU problem, which contains the top view of a 
small truck , the  loading dock indicated as three small circles, a steering handle 
at the  lower righ t corner, and several UI controls.

_ l sltbuTruck Backer Upper Animation

■ H  i  ■ шт

m

1 И = Н 1 1
W ShowTails | Clear Tails Controller: Fuzzy

1 Time: 7,10 Start Simulation... Info Close

You should now see the  truck  (driven by a fuzzy controller) backing up to  the 
loading dock. The sim ulation stops whenever the rear end of the  truck  touches 
the back w all. To move the truck, click the  mouse inside the  truck  and drag ti l l  
it reaches a desired location. To rotate the  truck, click at any corners of the  
truck  and drag t i l l  it has a desired orientation. If you want to  revert to  the 
in itia l conditions for th is  demo, click the Variab le In itia liza tion  block in the
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S im u link w indow. Now you can start the  sim ulation from the  S im u link w indow 
as before, or just click the  S ta rt button in the anim ation window.

The default controller is a fuzzy controller. However, you can try  to  back the 
truck  yourself to  see how well you do compared to  the  fuzzy controller. To do 
th is , set the  Contro ller pop-up menu to  Human. Move the truck  to  a desired 
in itia l condition and start the  sim ulation as before. Now you can control the 
front steering wheel by clicking the  mouse on the  lit t le  steering handle at the  
lower righ t corner of the  anim ation window. This type of “human contro l” is 
usually not easy at the  firs t shot and requires some practice.

Other UI controls include:

• Show Tra i l s  to select e ither to  show the  tra ils  or not.
• C lear Tra i l s  to clear anim ation tra ils .

Inver ted Pendu lum (S imul ink  on ly )
Another standard problem in neuro-fuzzy lite ra tu re  is the  inverted pendulum 
control, also known as the  cart-pole (CP) problem. The system under control 
consists of a rig id  pole hinged to  a cart through a free jo in t w ith  one degree of 
freedom. The cart can be moved to  its  righ t or left depending on the  force 
exerted on it. Our task is to  design a control tha t generates appropria te force 
on the  cart such tha t we can move the  cart to  a desired position w h ile  keeping 
the  pole balanced.

To try  the  demo, type

s l cp

(Fuzzy  Log ic  C on tro lle r)
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This brings up the  S im u link  w indow for th is  demo. S tart the  sim ulation by 
choosing S ta rt from the  S im u la tion  menu. Now you can see how the  cart is 
fo llow ing a desired position of a square wave by a fuzzy controller. The arrow 
on the  cart indicate the  m agnitude and direction of the  exerted force; the  
triang le  is the  desired cart position.

This demo actua lly lets you have five choices for the  desired cart position: 
sinusoid wave, square wave, saw wave, random signal, and mouse driven 
signal. To change the  signal for the  target cart position, click the  Target 
Position  pop-up menu in the  anim ation w indow and select the  one you are 
interested in. You can pause the  sim ulation by clicking the  Pause button, after 
which you can either continue (C on tinue  button) or single-step (Step button) 
through the  sim ulation. Note tha t both Cont i nue  and Step buttons are hidden 
under the  Pause button, which means you w ill not be able to  do single-stepping 
of the  s im ulation un til you pause it firs t.

Other UI controls include:

• Show t ra i l s  to show tra ils  of anim ation.
• C lear t r a i l s  to clear tra ils .
The FIS  m a trix  for the  fuzzy controller of th is  demo is specified in the  file
s l c p . f i s .
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Ball  and Beam (S imul ink  on ly )
The ball-beam (BB) system consists of a ball ro lling  fric tion lessly on a beam; a 
motor generates a torque to  t i l t  the  beam in order to  send the  ball to  a desired 
location. A fuzzy controller is designed to  generate an appropria te torque to 
achieve the control goal.

To start the  demo, type

slbb

Fuzzy Inference System 
(Fuzzy Logic Controller)

This brings up the S im u link w indow for th is  demo. S tart the  sim ulation by 
choosing S ta rt from the  S im u la tion  menu. Now you can see how the ball is 
fo llow ing a desired position of a square wave by a fuzzy controller. The arrow 
on the tip s  of the  beam indicates the  magnitude and direction of the  exerted 
torque; the  small hollow triang le  is the  desired ball position.

_ | ShowTails | Clear Tails Target Position: Square Wave ■

Time: 7,60 Stop | Continue | Step Info Close
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The GUI layout of the  anim ation w indow is almost the  same as tha t of the  
cart-pole demo. Again we have five signals for desired cart positions. I f  the 
desired position is mouse-driven, you can click mouse inside the  small triang le  
and drag it to  a desired location. The sim ulation controls for th is  demo are very 
s im ila r to  the  ones used in the Inverted Pendulum demo.

The FIS  m a trix  for the  fuzzy controller of th is  demo is specified in the  file  
s l b b . f i s .
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Glossary
This section is designed to  brie fly  explain some of the  specialized term s tha t 
appear when discussing fuzzy logic.

aggregation - the  combination of the  consequents of each ru le  in a Mamdani 
fuzzy inference system in preparation for defuzzification.

ANFI S  - (Adaptive Neuro-Fuzzy Inference System) a technique for 
autom atica lly tun ing  Sugeno-type inference systems based on tra in in g  data.

antecedent - the  in itia l (or “ i f ”) part of a fuzzy rule.

consequent - the  fina l (or “then”) part of a fuzzy rule.

d e fu zz ifica tio n  - the  process of transform ing a fuzzy output of a fuzzy 
inference system in to  a crisp output.

degree of m em bership - the  output of a membership function, th is  value is 
always lim ited  to  between 0 and 1. Also known as a membership value or 
membership grade.

degree of f u l f i l l ment  - see f i r i ng  s treng th .

f i r i ng  s treng th  - the  degree to  which the antecedent part of a fuzzy ru le  is 
satisfied. The fir in g  strength may be the result of an AND or OR operation, and 
it shapes the  output function for the  rule. Also known as degree of fu lfillm e n t.

fu z z ifica tio n  - the  process of generating membership values for a fuzzy 
variab le  using membership functions.

fuzzy c-means c lu s te rin g  - a data clustering technique where each data point 
belongs to  a cluster to  a degree specified by a membership grade.

fuzzy inference system (FIS) - the  overall name for a system that uses fuzzy 
reasoning to  map an input space to  an output space.

fuzzy operators  - AND, OR, and NOT operators. These are also known as 
logical connectives.

fuzzy set - a set which can contain elements w ith  only a partia l degree of 
membership.

fuzzy s ing le ton  - a fuzzy set w ith  a membership function tha t is un ity  at a one 
particu la r point and zero everywhere else.
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impl i cat i on - the process of shaping the fuzzy set in the  consequent based on 
the results of the  antecedent in a M am dani-style FIS.

M am dan i-s ty le  i nference - a type of fuzzy inference in which the fuzzy sets 
from the  consequent of each ru le  are combined through the  aggregation 
operator and the  resu lting fuzzy set is defuzzified to  yield the output of the 
system.

m em bership f unct i on (MF) - a function tha t specifies the  degree to  which a 
given input belongs to  a set or is related to  a concept.

s ing le ton ou tp u t func t i on  - an output function tha t is given by a spike at a 
single number rather than a continuous curve. In the  Fuzzy Logic Toolbox it is 
only supported as part of a zero-order Sugeno model.

subt rac t i ve  c lu s te rin g  - a technique for autom atica lly generating fuzzy 
inference systems by detecting clusters in input-output tra in in g  data.

Sugeno-style inference - a type of fuzzy inference in which the consequent of 
each rule is a linear combination of the  inputs. The output is a weighted linear 
combination of the  consequents.

T-conorm  - (also known as S-norm) a tw o-input function tha t describes a 
superset of fuzzy union (OR) operators, including maximum, algebraic sum, 
and any of several parameterized T-conorms.

T-norm - a tw o-input function tha t describes a superset of fuzzy intersection 
(AND) operators, including m inim um , algebraic product, and any of several 
parameterized T-norms.

2-109



2 Tutorial

References
[Bez81] Bezdek, J.C., Pattern Recognition w ith  Fuzzy Objective Function 
A lgorithm s, Plenum Press, New York, 1981.

[Chi94] Chiu, S., “Fuzzy Model Identification Based on C luster Estim ation,” 
Journal of Inte lligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

[Dub80] Dubois, D. and H. Prade, Fuzzy Sets and Systems: Theory and 
Applications, Academic Press, New York, 1980.

[Jan91] Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks 
and Kalman F ilte r A lgo rithm ,” Proc. of the N in th  National Conf. on A rtif ic ia l 
Intelligence (AAAI-91), pp. 762-767, Ju ly  1991.

[Jan93] Jang, J.-S. R., “ANFIS : Adaptive-Network-based Fuzzy Inference 
Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 
3, pp. 665-685, May 1993.

[Jan94] Jang, J.-S. R. and N. Gulley, “Gain scheduling based fuzzy controller 
design,” Proc. of the International Jo in t Conference of the North American 
Fuzzy In form ation Processing Society B iannual Conference, the Industria l 
Fuzzy Control and Inte lligent Systems Conference, and the NASA Joint 
Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio, 
Texas, Dec. 1994.

[Jan95] Jang, J.-S. R. and C.-T. Sun, “Neuro-fuzzy modeling and control,” 
Proceedings of the IEEE, March 1995.

[Jan95] Jang, J.-S. R. and C.-T. Sun, “Neuro-Fuzzy and Soft Com puting,” 1995, 
(submitted for publication).

[Kau85] Kaufmann, A. and M.M. Gupta, “ Introduction to  Fuzzy A rith m e tic ,” 
V.N. Reinhold, 1985.

[Lee90] Lee, C.-C., “Fuzzy logic in control systems: fuzzy logic contro ller-part 1 
and 2,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2, 
pp 404-435, 1990.

[Mam75] Mamdani, E.H. and S. Assilian, “An experiment in lingu is tic  
synthesis w ith  a fuzzy logic contro ller,” International Journal of Man-M achine 
Studies, Vol. 7, No. 1, pp. 1-13, 1975.

2-110



References

[Mam76] M amdani, E.H., “Advances in the  lingu is tic  synthesis of fuzzy 
controllers,” In ternational Journal of M an-M achine Studies, Vol. 8, pp. 
669-678, 1976.

[Mam77] Mamdani, E.H., “Applications of fuzzy logic to  approxim ate reasoning 
using lingu is tic  synthesis,” IEEE Transactions on Computers, Vol. 26, No. 12, 
pp. 1182-1191, 1977.

[Sch63] Schweizer, B. and A. Sklar, “Associative functions and abstract 
semi-groups,” Publ. Math Debrecen, 10:69-81, 1963.

[Sug77] Sugeno, M., “Fuzzy measures and fuzzy integrals: a survey,” (M.M. 
Gupta, G. N. Saridis, and B.R. Gaines, editors) Fuzzy Autom ata and Decision 
Processes, pp. 89-102, North-H olland, New York, 1977.

[Sug85] Sugeno, M., Industria l applications of fuzzy control, Elsevier Science 
Pub. Co., 1985.

[Wan94] Wang, L.-X., Adaptive fuzzy systems and control:design and s tab ility  
analysis, Prentice H a ll, 1994.

[WidS85] W idrow, B. and D. Stearns, Adaptive Signal Processing, Prentice 
H all, 1985.

[Yag80] Yager, R., “On a general class of fuzzy connectives,” Fuzzy Sets and 
Systems, 4:235-242, 1980.

[Yag94] Yager, R. and D. Filev, “Generation of Fuzzy Rules by Mountain 
C lustering ,” Journal of Inte lligent & Fuzzy Systems, Vol.2, No. 3, pp. 209-219, 
1994.

[Zad65] Zadeh, L.A., “Fuzzy sets,” Inform ation and Control, Vol. 8, pp. 338-353, 
1965.

[Zad73] Zadeh, L.A., “O u tline  of a new approach to  the analysis of complex 
systems and decision processes,” IEEE Transactions on Systems, Man, and 
Cybernetics, Vol. 3, No. 1, pp. 28-44, Jan. 1973.

[Zad75] Zadeh, L.A., “The concept of a lingu is tic  variab le and its  application to 
approxim ate reasoning, Parts 1, 2, and 3,” Inform ation Sciences, 1975, 
8:199-249, 8:301-357, 9:43-80

[Zad88] Zadeh, L.A., “Fuzzy Logic,” Computer, Vol 1, No. 4, pp. 83-93, 1988.

[Zad89] Zadeh, L.A., “Knowledge representation in fuzzy logic,” IEEE 
Transactions on Knowledge and Data Engineering, Vol. 1, pp. 89-100, 1989.

2-111



2 Tutorial

Fuzzy Musings
“ It was the  best of times, it was the  worst of tim es...”

— from A Ta le  of Two C ities by Charles Dickens.

Dickens’ famous story about the  French revolution begins w ith  enough 
contradictions to  make a logician weep. How can great lite ra tu re  fly  so rashly 
in the  face of A ris to tle?  L e t’s rephrase the  firs t statement in a more 
mathematical format to  make the inconsistency as g laring as possible. Dickens 
is describing a setting in which

(times == best) and (times == worst)
That is, the  book begins at the  intersection of tw o m utua lly  exclusive sets. Can 
such a long book be devoted entire ly  to  the  empty set? The resolution must lie 
somewhere else. Dickens is using words that can be construed by a rig id 
lite ra lis t as quasi-m athematical in meaning, but obviously it would be foolish 
to  do so. He’s not referring to  the  realm of P latonic forms, he’s referring to  the 
real world, fu ll of d irt, sweat, and vagueness. And yet, these words do bear 
some re la tionship to  the ir s tric te r mathematical cousins. They must, else 
where would the  mathematical term s have come from? So w h a t’s going on 
here?

If  we approach our lexical analysis of the  firs t sentence w ith  fuzzy reasoning in 
mind, suddenly we find  there  is room for a book after a ll. The intersection of 
good tim es and bad tim es is not necessarily empty. On the other hand, if  
Dickens had t ru l y  been using two-valued logic, the  result would have been 
empty and the  book would have gone unw ritten . In other words, fuzzy logic 
perm itted the  novel to  exist!

Th is may all sound like  facile word play, but there  is a serious point to  be made 
here. I f  we really want to  analyze m athem atically the  language tha t we use 
every day, the  language tha t lets us grapple w ith  complexity and the  fu ll range 
of human experience, we can be sure tha t two-valued A ris to te lian  logic w ill let 
us down. Syllogisms like  “A ll fish swim, salmon are fish, therefore salmon 
sw im ” w ill only get you so far. Fuzzy logic brings more of human experience to 
bear, and therefore is more useful in trans la ting  what we know about the  world 
in to  useful engineering.
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3 Rfeference

This section contains detailed descriptions of all the  functions in the  Fuzzy 
Logic Toolbox. The fo llow ing tables contain the  functions listed by topic.

GUI Tools

Function Purpose

fuzzy Basic FIS  editor.

mfedi t Membership function editor.

r u l eed i t Rule editor and parser.

r u l ev i ew Rule viewer and fuzzy inference diagram.

s u r f v i ew O utput surface viewer.

M e m b e r s h ip  Funct ions

Function Purpose

dsigmf Difference of tw o sigmoid membership functions.

gauss2mf Two-sided Gaussian curve membership function.

gaussmf Gaussian curve membership function.

gbel lmf Generalized bell curve membership function.

pimf Pi-shaped curve membership function.

psigmf Product of tw o sigmoid membership functions.

smf S-shaped curve membership function.

sigmf Sigmoid curve membership function.

t rapmf Trapezoidal membership function.

t r i m f T riangu la r membership function.

zmf Z-shaped curve membership function.
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FIS Data St ructure M a n a g e m e n t

Function Purpose

addmf Add membership function to  FIS.

addrule Add ru le  to  FIS.

addvar Add variab le  to  FIS.

defuzz Defuzzify membership function.

e v a l f i s Perform fuzzy inference calculation.

evalmf Generic membership function evaluation.

gensurf Generate FIS output surface.

g e t f i s Get fuzzy system properties.

mf2mf Transla te parameters between functions.

newf is Create new FIS.

pars ru l e Parse fuzzy rules.

p l o t f i s Display FIS  input-output diagram.

plotmf Display all membership functions for one variable.

r ead f i s Load FIS  from disk.

rim f Remove membership function from FIS.

rmvar Remove variab le  from FIS.

s e t f i s Set fuzzy system properties.

showf is Display annotated FIS.

showrule Display FIS  rules.

w r i t e f i s Save FIS to  disk.
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3 Reference

Ad v a n c e d  Techniques

Function Purpose

an f i s T ra in ing  routine for Sugeno-type FIS  (MEX only).

fcm Find clusters w ith  fuzzy c-means clustering.

g e n f i s l Generate FIS  m a trix  using generic method.

genf i s2 Generate FIS  m a trix  using subtractive clustering.

subclust Find cluster centers w ith  subtractive clustering.

Simu l ink B locks

Function Purpose

fuzb l ock Fuzzy logic controller block.

s f f i s Fuzzy inference S-function.
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Demos

Function Purpose

defuzzdm Defuzzification methods.

fcmdemo Fuzzy c-means clustering demo (2-D).

fuzdemos List of all Fuzzy Logic Toolbox demos.

i nvk i ne Inverse kinem atics of a robot arm.

i r i s f c m Fuzzy c-means clustering demo (4-D).

noisedm Adaptive noise cancellation.

s lbb Ball and beam control (S im ulink only).

s l cp Inverted pendulum control (S im ulink only).

s l t ank Water level control (S im ulink only).

s l t bu Truck backer-upper (S im ulink only).
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3 Reference

Fuzzy Inference Quick Reference
1. fuzzify inputs 2. apply 

fuzzy 
operation 
(or = max)(or = max)

. poor rancid I  cheap

___________________  ____________________ J  ______________________________________________________________________ ____________________
If s e rv ic e  is p o o r  or fo o d  is ra n c id  then t ip  = c h e a p

rule 2 has 
no dependency 
on input 2

average□L
If s e rv ic e  is g o o d then t ip  = a v e ra g e

If s e rv ic e  is e x c e lle n t  or fo o d  is d e lic io u s  then t ip  = g e n e ro u s

service = 3

input 1

food = 8 

input 2

The point o f all fuzzy inference systems is to map an input space to an output 
space. The prim ary vehicle for doing th is is a list o f if-then statements (such 
as " i f  service is good then tip is average"). All rules are  evaluated in parallel. 
Shown above is the basic structure of a fuzzy inference system. There are  five 
distinct parts to the process

1. F u z z ify  th e  in p u ts . (s e rv ic e  is g o o d )
Fuzzification is the process of assgning a degree of truth (between 0 = FALSE 
and 1 = TRUE) to statements about the input variables (all those statements in 
the IF part, or antecedent, o f the rule). The mem ber^iip functions associated 
w ith the input variables determine this degree o f truth. Any statement in the 
antecedent evaluates to a number between 0 and 1.

2 . A p p ly  th e  fu z z y  o p e ra to r  (s e rv ic e  is  p o o r  o r fo o d  is  ra n c id )
If the antecedent is made up of multiple statements jo ined by connectives 
(AND or OR|, then the fuzzy operator resolves the overall antecedent based 
on the connective used. The fuzzy operator always resolves a multiple 
statement antecedent into a number between 0 and 1.

t ip  = 16.7%

output

3 . A p p ly  th e  im p lic a t io n  o p e ra to r  (th e n  t ip  =  c h e a p )
The consequent, or T H ^  part of the rule, is  a shape defined by the area 
under the output variable  mem ber^iip function curve. W hereas the 
antecedent statement is a mapping from  a single input value to a single truth 
value, the consequent statement is the assignment o f an entire fuzzy set to the 
output variable. The value (between 0 and 1) of the antecedent truncates or 
shapes the fuzzy set specified in the consequent by means o f the implication 
operator.

4. A g g re g a te  th e  o u tp u t  a c ro s s  a l l  ru le s
Steps 1, 2, and 3 occur fo r all rules so each rule has a fuzzy set to contribute 
to each output. Joining all these sets into a ang le  output membership function 
is known as aggregation and it is  mediated by the aggregation operator.

5 . D e fu z z ify  th e  a g g re g a te  o u tp u t  fu z z y  se t
The aggregate membership function for each output variable  must be reduced 
to a single value. The defuzzification function returns this value given the 
sometimes oddly shaped aggregate.
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a d d m f

Purpose

Synops is

Descrip tion

E xam ples

See Also

Add membership function to  FIS.

a = addi7f(a,varType,varIndex,irfName,mfType,iTfParaimB)

A membership function can only be added to  a variab le  tha t is already part of 
the  system. You cannot add a membership function to  input variab le  number 
tw o of a system if  only one input has been defined. Membership functions are 
given indices in the  order in which they are added, so the firs t membership 
function added to  a variab le  w ill always be known as membership function 
number one for tha t variable.

The function requires s ix input arguments. Here is an example of how it m ight 
be used:

a = n e w f i s ( ' t i p p e r ' ) ;
a = a d d v a r ( a , ' i n p u t ' , ' s e r v i c e ' , [ 0  10]) ;  
a = a d d T f ( a , ' i n p u t ' , 1 , ' p o o r ' , ' g a u s s m f ' , [ 1 . 5  0] ) ;  
a = a d d T f ( a , ' i n p u t ' , 1 , ' g o o d ' , ' g a u s s m f ' , [ 1 . 5  5] ) ;  
a = a d d m f ( a , ' i n p u t ' , 1 , ' e x c e l l e n t ' , ' g a u s s m f ' , [ 1 . 5  10]) ;  
p l o t m f ( a , ' i n p u t ' , 1 )

service

addrule,  addvar, p l o t m f , rmmf, rmvar
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addru le

Purpose

Synops is

Descrip tion

E xam ples

See Also

Add ru le  to  FIS.

a = a d d r u l e ( a , r u l e l i s t )

The variab le  r u l e l i s t  can be a list of one or more rows, each of which 
represents a given rule. The form at tha t the  ru le  list must take is very specific. 
I f  there are m inputs to  a system and n outputs, there must be exactly m + n +
2 columns to  the  ru le  list.

The firs t m columns refer to  the  inpu ts  of the  system. Each column contains a 
number tha t refers to  the  index of the  membership function for tha t variable.

The next n columns refer to  the outputs of the  system. Each column contains a 
number tha t refers to  the  index of the  membership function for tha t variable.

The m + n + 1 column contains the  weight tha t is to  be applied to  the  rule. The 
weight must be a number between zero and one, and is generally left as one.

The m + n + 2 column contains a 1 if  the  fuzzy operator for the  ru le ’s antecedent 
is AND. It contains a 2 if  the  fuzzy operator is OR.

r u l eL i s t = [
1 1 1 1 1
1 2 2 1 1]; 

a = a d d r u l e ( a , r u l e L i s t ) ;

I f  the above system a has tw o inpu ts  and one output, the  firs t ru le  can be 
interpreted as: “ I f  input 1 is MF 1 and input 2 is MF 1, then output 1 is MF 1.”

addmf , addvar, r mmf, r mvar, par sr ul e, showr ul e
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a d d va r

Purpose

Synops is

Descrip tion

E xam ples

See Also

Add variab le  to  FIS.

a = addvar(a,varType,varName,varBounds)

Variables are given indices in the order in which they are added, so the firs t 
input variab le  added to  a system w ill always be known as input variab le 
number one for tha t system. Input and output variables are numbered 
independently.

a = n e w f i s ( ' t i p p e r ' ) ;
a = a d d v a r ( a , ' i n p u t ' , ' s e r v i c e ' , [ 0  10]) ;  
g e t f i s ( a , ' i n p u t ' , 1 )

M ATLAB replies

Name = se r v i ce  
NumMFs = 0 
MFLabels =
Range = [0  10]

addmf , addrule,  rmmf, rmvar
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anf is

Purpose

Synops is

Descrip tion

Tra in ing  routine  for Sugeno-type FIS (MEX only).

[ f i s m a t , e r r o r 1 , s t e p s i z e ]  = an f i s ( t r nDa t a )
[ f i s m a t , e r r o r 1 , s t e p s i z e ]  = a n f i s ( t r n D a t a , f i s m a t )  
[ f i s m a t 1 , e r r o r 1 , s t e p s i z e ]  = . . .

a n f i s ( t r n D a t a , f i s m B t , t r n C p t , d i sp C p t )  
[ f i sm a t 1 , e r r o r 1 , s t e p s i z e , f i s i T B t 2 , e r r o r 2 ]  = . . .

an f i s ( t r nDa t a , t r nCp t , d i spCp t , chkDa t a )

This is the  major tra in in g  routine for Sugeno-type fuzzy inference systems. 
an f i s  uses a hybrid learn ing a lgorithm  to  identify  parameters of Sugeno-type 
fuzzy inference systems; it applies the  least-squares method and the 
backpropagation gradient descent for linear and nonlinear parameters, 
respectively.

I f  no checking data is involved, an f i s  can be invoked w ith  from one to  four 
input argum ents and it re tu rns th ree output arguments:

[ f i s m a t 1 , e r r o r , s t e p s i z e ]  = . . .  
a n f i s ( t r n D a t a , f i s m a t , t r n C p t , d i s p C p t )

t r nData  is a tra in in g  data m atrix , where each row is a desired input-output 
data pair, w ith  output at the  last column.

f i smat  is a FIS m a trix  tha t specifies the  s tructu re  and in itia l parameters for 
tra in ing . Th is FIS m a trix  can be generated from data d irectly  using the 
command g e n f i s 1 . I f  f i smat  is a single number or a vector, it is taken as the 
number of membership functions. Then both t r nData  and f i smat  are passed to 
genf i s1 to generate a valid FIS m a trix  before s ta rting  the  tra in in g  process.

t rnCpt  is a tra in in g  option vector which specifies various options during 
tra in ing :

t r n C p t ( 1 ) : tra in in g  epoch number (default: 10) 
t r n C p t ( 2 ) : tra in in g  error goal (default: 0) 
t r n C p t ( 3 ) : in it ia l step size (default: 0.01) 
t r n C p t ( 4 ) : step-size decrease rate (default: 0.9) 
t r n C p t ( 5 ) : step-size increase rate (default: 1.1)
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anf is

I f  any element of t rnCpt  is NaN (not a number), then the  default value is used. 
Default values can be changed d irectly  by m odifying th is  file. If t rnCpt  itse lf is 
missing, a null m atrix , or a NaN, then it takes the  default values.

The tra in in g  process stops whenever the  designated epoch number is reached 
or the  tra in in g  error goal is achieved.

The step size is decreased (by m u ltip ly ing  it w ith  the  decrease rate) if  the  error 
measure undergoes tw o consecutive combinations of an increase followed by a 
decrease. The step size is increased (by m u ltip ly ing  it w ith  the  increase rate) if 
the  error measure undergoes four consecutive decreases.

dispCpt is a display options vector which specifies what message to  display in 
the M ATLAB command window during tra in ing :

d i s p C p t ( l ) : A N F IS  inform ation, such as numbers of linear and nonlinear 
parameters, and so on (default: 1)
d i sp C p t ( 2 ) : error measure (default: 1)
d i sp C p t ( 3 ) : step size at each parameter update (default: 1)
d i sp C p t ( 4 ) : fina l results (default: 1)

The parsing ru le  of dispCpt is the  same as t r n C p t .

f i smat  1 is the FIS m atrix , which corresponds to  the  m in im um  tra in in g  error. 
e r ror  is an array of root mean squared errors. s t eps i ze  is an array of step 
sizes.

I f  checking data is involved in the  tra in in g  process, then a n f i s  should be 
invoked w ith  five  input arguments and it re tu rns five output arguments:

[ f i s m a t 1 , e r r o r 1 , s t e p s i z e , f i s m a t 2 , e r r o r 2 ]  = . . .  
a n f i s ( t r n D a t a , f i s m a t , t r n Cp t , d i sp Cp t , c h k Da t a ]

Here none of f i s m a t , t rnCpt  and dispCpt can be om itted. I f  the  default values 
of t rnCpt  and/or dispCpt are taken, they should be specified either as NaNs or 
empty matrices. The additional input argument chkData specifies the  checking 
data m atrix ; its  form at is the  same as t rnData.

f i s m a t l  is the FIS m a trix  tha t corresponds to  the m in im um  tra in in g  error. 
e r r o r l  is an array of root mean squared tra in in g  errors. s t eps i ze  is an array 
of step sizes. f i smat2  is the FIS m a trix  tha t corresponds to  the  m in im um  
checking error. e r r o r 2  is an array of root mean squared checking errors.
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E xam ples

See Also 

References

x = ( 0 : 0 . 1 : 1 0 ) ' ;
y = s i n ( 2 * x ) . / e x p ( x / 5 ) ;
t r nData  = [ x  y] ;
numMFs = 5;
mfType = ' g b e l l m f ' ;
epoch_n = 20;
i n_ f i smat  = genf i s( t rnData,numMFs,mfType) ;  
out_f i smBt  = a n f i s ( t r n D a t a , i n _ f i s m a t , 2 0 ) ;  
p l o t ( x , y , x , e v a l f i s ( x , o u t _ f i s m a t ) ) ;  
l egend ( ' T r a i n i ng  Data ' , 'ANFIS Cutpu t ' ) ;

g e n f i s 1 , an f i s

Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks and 
Kalman F ilte r A lgo rithm ,” Proc. of the N in th  National Conf. on A rtif ic ia l 
Intelligence (AAAI-91), pp. 762-767, Ju ly  1991.

Jang, J.-S. R., “ANFIS : Adaptive-Network-based Fuzzy Inference Systems,” 
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 
665-685, May 1993.
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de fuzz

Purpose

Synops is

Descrip tion

E xam ples

Defuzzify membership function.

out = de fuzz ( x ,mf , t ype)

de fuzz ( x ,mf , t ype)  re tu rns a defuzzified value of mf positioned at x, using 
d ifferent defuzzification strategies. The variab le type can be one of the 
following.

• cen t r o i d :  centroid of area method.
• b i sec t o r :  bisector of area method.
• mom mean of maximum  method.
• som smallest of maximum method.
• lom  largest of m aximum method.

I f  t ype is not one of the above, it is assumed to  be a user-defined function. x and 
mf are passed to  th is  function to  generate the defuzzified output.

x = -10:0 .1 :10;
mf = t r a p m f ( x , [ - 1 0  -8 -4 7] ) ;
xx = d e f u z z ( x , m f , ' c e n t r o i d ' ) ;
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d s ig m f

Purpose

Synops is

Descrip tion

E xam ples

See Also

Difference of tw o sigmoid membership functions.

y = dsigi r f (x,paramB) 
y = ds i gmf (x , [ a1  cl  a2 c2] )

The sigmoid curve depends on tw o parameters a and c given by

f (x = т+e^
This function is s im ply the  difference between tw o such curves 

f-i(x; a1, c-|) - f2(x; a2, c2)

The parameters are listed in the order: [a1 c1 a2 c2].

x=0:0.1:10;
y=ds i gmf ( x , [ 5  2 5 7] ) ;  
p l o t ( x , y )
x l a b e l ( ' ds i gm f ,  P=[5 2 5 7 ] ' )

dsigmf, P = Г5 2 5 71

gaussmf, gauss2mf, gbel lmf ,  evalmf,  mf2mf, pimf,  psigmf,  sigmf ,  smf, t rapmf ,  
t r i m f  , zmf
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eval f is

Purpose

Synops is

Descrip tion

E xam p le

See Also

Perform fuzzy inference calculation.

output = e v a l f i s ( i n p u t , f i s m a t )

This function computes the  output vector output of the  fuzzy inference system 
specified by the FIS  m a trix  f i s m a t . The function e v a l f i s  exists as both an 
M -file  and a M EX-file. The M EX-file  version is always used pre ferentia lly  (if 
available) because of its  speed advantage.

If  input  is an M-by-N m atrix , where N is number of input variables, then 
e v a l f i s  takes each row of input  as an input vector and re tu rns the  M-by-L 
m a trix  o u t p u t , where each row is a output vector and L is the  number of output 
variables.

f i smat  = r e a d f i s ( ' t i p p e r ' ) ;  
out = e v a l f i s ( [ 2  1; 4 9 ] , f i s m a t )

which generates the  response

out =
7.0169
19.6810

rulev iew,  gensurf
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e v a lm f

Purpose

Synops is

Descrip tion

E xam ples

See Also

Generic membership function evaluation.

y = evalimf(x,mfParaimB,mfType)

As long as mfType is a legal membership function, and irfParairs are 
appropria te parameters for tha t function, eva l r f  w ill evaluate any 
membership function.

I f  you want to  create your own custom membership function, eva l r f  w ill s till 
work, because it w ill “eval ” the  name of any membership function it doesn’t 
recognize.

x=0:0.1:10;  
mfparams = [2  4 6]; 
mf type = ' g b e l l m f ' ;  
y=eval imf(x,mfparaimB,mftype);  
p l o t ( x , y )
x l a b e l ( ' g b e l l m f ,  P=[2 4 6 ] ' )

gbellmf, P = Г2 4 61

ds i gmf , gaussmf, gauss2mf, g b e l l r f ,  mf2mf, p i r f ,  p s i g r f ,  s i g r f ,  s r f ,  t rapmf ,  
t r i m f  , zmf
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fcm

Purpose

Synops is

Descr ipt ion

Exam p le

Fuzzy c-means clustering.

[ c e n t e r , U , o b j _ f cn ]  = f c n ( d a t a , c l us t e r _n )

[ center ,  U, ob j _ f cn]  = fcm(data,  c l us t e r _n )  applies the fuzzy c-means 
clustering method to  a given data set. Input and output arguments of this 
function are

data:  data set to  be clustered; each row is a sample data point 
c l us te r _n :  number of clusters (greater than one) 
ce n t e r : fina l cluster centers, where each row is a center 
U: fina l fuzzy partition  m a trix  (or membership function m atrix) 
obj _ f cn:  values of the  objective function during ite ra tions 

f c n ( d a t a , c l u s t e r _ n , o p t i o n s )  uses an additional argument opt i ons  to 
control clustering parameters, stopping crite ria , and/or iteration inform ation 
display:

o p t i o n s ( 1 ) : exponent for the  pa rtition  m a trix  U (default: 2.0)
o p t i o n s ( 2 ) : maximum number of ite ra tions (default: 100)
o p t i o n s ( 3 ) : m in im um  amount of improvement (default: 1e-5)
o p t i o n s ( 4 ) : in fo display during iteration (default: 1)

If  any entry of opt i ons  is NaN (not a number), the  default value for tha t option 
is used instead. The clustering process stops when the maximum number of 
iteration is reached, or when the  objective function improvement between two 
consecutive iteration is less than the m in im um  amount of improvement 
specified.

data = rand(100, 2);
[ c e n t e r , U , ob j _ f cn ]  = fcm(data,  2); 
p l o t ( d a t a ( : , 1 ) ,  d a t a ( : , 2 ) , ' o ' ) ;  
maxU = max(U);
index1 = f i n d ( U ( 1 , : )  == maxU); 
index2 = f i nd(U(2,  : )  == maxU); 
l i ne ( da t a ( i n d e x 1 , 1 ) , d a t a ( i n d e x 1 , 2 ) ,  . . .

' l i n e s t y l e ' , ' * ' , ' c o l o r ' , ' g ' ) ;  
l i ne ( da t a ( i n d e x 2 , 1 ) , d a t a ( i n d e x 2 , 2 ) ,  . . .  

' l i n e s t y l e ' , ' * ' , ' c o l o r ' , ' r ' ) ;
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fuzblock

Purpose

Synops is

Descr ipt ion

See Also

S im ulink  fuzzy logic controller block.

fuzb l ock

This command brings up a S im u link system tha t contains exactly one block, 
the  fuzzy logic controller. The dialog box associated w ith  th is  block (found by 
double-clicking on the  block) should contain the  name of the  FIS  m a trix  in the  
workspace tha t corresponds to  the  desired fuzzy system.

If  the  fuzzy inference system has m u ltip le  inputs, these inputs should be 
m ultip lexed together before feeding them in to  the  fuzzy controller block. 
S im ila rly , i f  the  system has m u ltip le  outputs, these signals w ill be passed out 
of the  block on one m ultip lexed line.

Fuzzy Logic Controller

s f f i s
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fuzdemos

Purpose

Synops is

Descr ipt ion

List of all Fuzzy Logic Toolbox demos.

fuzdemos

This function brings up a GUI tha t allows you to  choose between any of the  
several Fuzzy Logic Toolbox demos, including the  pole and cart demo, the  truck  
backing demo, and others. The demos are all described in detail in Chapter 2, 
Tu toria l.
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fuzzy

Purpose

Synops is

The D iagram

Basic FIS  editor.

f uzzy
fuzzy( f i s imat )
April
1997

M FIS Editor: tipper N r i
I File Edit View ________ 1

FIS Name: tipper FIS Type: mamdani

And method min Current Variable

Or method max Name | service

Implication min 

Aggregation max

Type input 
Range [0 10]

Defuzzification centroid —< Help Close

System "tipper": 2 inputs, 1 output, and 3 rules

This GUI tool allows you to  edit the  highest level features of the  fuzzy inference 
system, such as the  number of input and output variables, the  defuzzification 
method used, and so on. Refer to  Chapter 2, Tu to ria l, for more inform ation 
about how to  use f u z z y .

The FIS Editor is the  high level display for any fuzzy logic inference system. It 
allows you to  call the  various other editors to  operate on the  system. This 
interface allows convenient access to  all other editors w ith  an emphasis on 
maximum fle x ib ility  for interaction w ith  the  fuzzy system.

The diagram displayed at the  top of the  w indow shows the inputs, outputs, and 
a central fuzzy ru le  processor. C lick on one of the  variab le boxes to  make the 
selected box the current variable. You should see the  box highlighted in red. 
Double-click on one of the  variables to  bring up the  Membership Function 
Editor. Double-click on the fuzzy ru le  processor to  bring up the  Rule Editor. If 
a variab le  exists but is not mentioned in the  ru le  base, it is connected to  the 
ru le  processor block w ith  a dashed rather than a solid line.

3-20



fu zzy

M e n u  I t e m s  The FIS Editor displays a menu bar, which allows you to  open related GUI 
tools, open and save systems, and so on.

• Fi le
New Mamdani  FIS... Opens a new M am dani-style system w ith  no variables 
and no rules called Un t i t l ed .
New Sugeno FIS... Opens a new Sugeno-style system w ith  no variables and 
no rules called Un t i t l ed .
Open f rom disk... Loads a system from a specified . f i s  file  on disk.
Save to  disk Saves the current system to  a f i s  file  on disk.
Save to  d isk as... Saves the  current system to  disk w ith  the  option to  rename 
or relocate the  file.
Open f rom w orkspace... Load a system from a specified FIS  m a trix  variab le  
in the  workspace.
Save to  workspace... Saves the system to  the  cu rren tly  named FIS m a trix  
variab le  in the workspace.
Save to  workspace as... Saves the  system to  a specified FIS  m a trix  variable 
in the  workspace.
Close w i ndow.

• Edi t
Add i nput  Add another input to  the  current system.
Add output  Add another output to  the  current system.
Remove var i ab l e  Delete the  current variable.
Undo Undo the  most recent change.

• V iew

Edi t  MFs... Invoke the  Membership Function Editor.
Edi t  ru les... Invoke the  Rule Editor.
V iew  rules... Invoke the  Rule Viewer.
V iew  output  surface... Invoke the  Surface Viewer.
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In ference 
M e th o d  Pop 
M enus

See Also

Five pop-up menus are provided to  change the func tiona lity  of the  five basic 
u p  steps in the  fuzzy im plication process.

And m ethod Choose m in, prod, or a custom operation.
Or m ethod Choose max, probor (probab ilis tic  or), or a custom operation.
Impl i ca t i on  method Choose m in, prod, or a custom operation. Th is selection 
is not available for Sugeno-style fuzzy inference.
A ggrega tion  method Choose max, sum, probor, or a custom operation. Th is 
selection is not available for Sugeno-style fuzzy inference.
D e fuzz ifica tion  method For M am dani-style inference, choose centroid, b i­
sector, mom (m iddle of maximum), som (smallest of maximum), lom (largest 
of maximum), or a custom operation. For Sugeno-style inference, choose be­
tween w taver (weighted average) or w tsum  (weighted sum).

m f e d i t , r u l eed i t  , r u l ev iew,  s u r f v i ew
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g a u s s 2 m f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Two-sided Gaussian curve membership function.

y = gauss2mf(x,paraimB) 
y = gauss2mf (x , [ s i g1 cl  s i g2 c2] )

The gaussian curve depends on tw o parameters sig and c as given by

- (  X -  С)2
f  (x;s, c) = e 2s2

The function gauss2mf is jus t a combination of tw o  such curves. The firs t curve 
should be the leftmost curve. The region between c1 and c2 is constrained to  be 
equal to  1. The parameters are listed in the  order:

[sigl, cl, sig2, c2], c l < c2. 

x=0:0.1:10;
y=gauss2mf(x, [1 3 3 4] ) ;  
p l o t ( x , y )
x l abe l ( ' gauss2mf ,  P=[1 3 3 4 ] ' )

gauss2mf, P = [1 3 3 41

dsigmf,  gauss2mf, gbel lmf ,  evalmf,  mf2mf, pimf,  psigmf,  sigmf,  smf, t rapmf ,  
t r i m f , zmf
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gaussmf

Purpose

Synops is

Descr ipt ion

Examples

See Also

Gaussian curve membership function.

y = gaussi7 f(x,para irs) 
y = gaussmf ( x , [ s i g  c] )

The gaussian curve depends on tw o parameters sig and c as given by

- (  X -  C )2

f (x;s, c) = e 2 s 2  

The parameters are listed in the order: [sig, c].

x=0:0.1:10;  
y=gaussmf (x, [2 5] ) ;  
p l o t ( x , y )
x l abe l ( ' gauss7 f ,  P=[2 5 ] ' )

gaussmf, P = [2 51

ds i gmf , gaussmf, g b e l l m f , evalmf,  mf2mf, p i mf , psigmf,  sigmf ,  smf, t rapmf ,  
t r i m f  , zmf
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g b e l lm f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Generalized bell curve membership function.

y = gbel l i 7f (x ,parai rs)  
y = g b e l l m f ( x , [ a  b c] )

The generalized bell curve depends on three param ters a, b, and c as given by 

1
f  (x; a, b, c) =

1 + x -  c
a

2 b

where the  parameter b is usually positive. The parameter c locates the  center 
of the  curve.

x=0:0.1:10;  
y= g b e l l m f ( x , [ 2  4 6] ) ;  
p l o t ( x , y )
x l a b e l ( ' g b e l l m f ,  P=[2 4 6 ] ' )

gbellmf, P = [2 4 6]

dsigmf,  gaussmf, gauss2mf, eva lmf , mf2mf, pimf,  psigmf,  sigmf,  smf, t rapmf ,  
t r i m f , zmf
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Generate FIS m a trix  using generic method.

f i smat  = g e n f i s l ( d a t a )
f i smat  = genf is1(data,numMFs,mfType)

genf i s1(data,numMFs,mfType) generates a FIS  m a trix  from tra in in g  data 
data,  using grid partition  style. numMFs is a vector specifying the  number of 
membership functions on all inputs. mfType is a s tring  array where each row 
specifies the  membership function type of an input variable.

I f  numMFs is a number and/or mfType is a single string, they w ill be used for all 
inputs. Default value for numMFs is 2; default s tring  for mfType is ' gbe l l mf '.

data = [ rand(10 ,1 )  10* rand(10,1) -5  r and(10,1 ) ] ;  
numMFs = [3  7];
mfType = s t r 2 m B t ( ' p i m f ' , ' t r i m f ' ) ;  
f i smat  = genf is1(data,numMFs,mfType);
[ x ,mf ]  = p l o t m f ( f i s m a t , ' i n p u t ' , 1 ) ;  
subp l o t ( 2 , 1 , 1 ) ,  p l o t ( x , m f ) ;  
x l a b e l ( ' i n p u t  1 ( p i m f ) ' ) ;
[ x ,mf ]  = p l o t m f ( f i s m a t , ' i n p u t ' , 2 ) ;  
subp l o t ( 2 , 1 , 2 ) ,  p l o t ( x , m f ) ;  
x l a b e l ( ' i n p u t  2 ( t r i m f ) ' ) ;

input 2 (trimf)

an f i s
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Purpose

Synops is

Descr ipt ion

Examples

Generate FIS  m a trix  using subtractive clustering.

f i smat  = g e n f i s 2 ( X i n , Xou t , r ad i i , x Bounds , o p t i ons )

Given a set of input and output data, th is  function extracts a set of rules tha t 
models the  data behavior. The ru le  extraction method firs t uses the  subclust  
function to  determ ine the  number of rules and antecedent membership 
functions and then uses linear least squares estimation to  determ ine each 
ru le ’s consequent equations. This function re tu rns a FIS m a trix  tha t contains 
the resultant fuzzy rulebase. X in is a m a trix  in which each row contains the 
input values of a data point. Xout is a m a trix  in which each row contains the 
output values of a data point. rad i i  is a vector tha t specifies a cluster center’s 
range of influence in each of the  data dimensions, assuming the data fa lls  
w ith in  a un it hyperbox.

For example, if  the  data dimension is 3 (e.g., X in has 2 columns and Xout has 
1 column), rad i i  = [0.5 0.4 0.3] specifies tha t the  ranges of influence in the  firs t, 
second, and th ird  data dimensions (i.e., the  firs t column of Xin,  the second 
column of Xin,  and the column of Xout) are 0.5, 0.4, and 0.3 tim es the  w id th  of 
the  data space, respectively. I f  rad i i  is a scalar, then the scalar value is 
applied to  all data dimensions, i.e., each cluster center w ill have a spherical 
neighborhood of influence w ith  the given radius. xBounds is a 2xN m a trix  tha t 
specifies how to  map the data in X in and Xout in to  a un it hyperbox, where N is 
the  data dimension. The firs t row contains the  m in im um  axis range values and 
the second row contains the m aximum  axis range values for scaling the data in 
each dimension.

For example, xBounds = [-10 0 -1; 10 50 1] specifies tha t data values in the  firs t 
data dimension are to  be scaled from the  range [-10 +10] in to  values in the 
range [0 1]; data values in the  second data dimension are to  be scaled from the 
range [0 50]; and data values in the  th ird  data dimension are to  be scaled from 
the range [-1 +1]. I f  xBounds is an empty m a trix  or not provided, then xBounds 
defaults to  the  m in im um  and maximum data values found in each data 
dimension. opt i ons is an optional vector for specifying a lgorithm  parameters 
to  override the default values. These parameters are explained in the  help text 
for the  subclust  function.

f i smat  = gen f i s 2 ( X i n , Xou t , 0 . 5 )
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See Also

This is the  m in im um  number of arguments needed to  use th is  function. Here a 
range of influence of 0.5 is specified for all data dimensions.

f i smat  = g e n f i s 2 ( X i n , X o u t , [ 0 . 5  0.25 0.3 ] )

This assumes the  combined data dimension is 3. Suppose X in has tw o columns 
and Xout has one column, then 0.5 and 0.25 are the ranges of influence for each 
of the  X in data dimensions, and 0.3 is the  range of influence for the  Xout data 
dimension.

f i smat  = g e n f i s 2 ( X i n , X o u t , 0 . 5 , [ - 1 0  -5 0; 10 5 20] )

This specifies how to  norm alize the  data in X in and Xout in to  values in the 
range [0 1] for processing. Suppose X in has tw o columns and Xout has one 
column, then the  data in the  firs t column of X in are scaled from [-10 +10], the  
data in the second column of X in are scaled from [-5 +5], and the  data in Xout 
are scaled from [0 20].

subclust
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Generate FIS  output surface.

g e n s u r f ( f i s )
g e n s u r f ( f i s , i n p u t s , o u t p u t )
g e n s u r f ( f i s , i n p u t s , o u t p u t , g r i d s , r e f i n p u t )

g e n s u r f ( f i s )  w ill generate a plot of the  output surface of a fuzzy system using 
the firs t tw o  inpu ts  and the firs t output.

g e n s u r f ( f i s , i n p u t s , o u t p u t )  w ill generate a plot using the  inputs (one or 
two) and output (only one is allowed) given by the  vector i nputs  and the scalar 
ou t p u t .

g e n s u r f ( f i s , i n p u t s , o u t p u t , g r i d s )  allows you to  specify the  number of grids 
in the X and Y directions. I f  g r i ds  is a two element vector, the  grids in the X 
and Y directions can be set independently.

g e n s u r f ( f i s , i n p u t s , o u t p u t , g r i d s , r e f i n p u t )  can be used i f  there  are more 
than tw o outputs. r e f i npu t  then specifies the  nonvarying inputs to  the  system.

[ x , y , z ] = g e n s u r f ( . . . )  re tu rns the  variables tha t define the  output surface 
and suppresses autom atic p lotting.

e v a l f i s ,  s u r f v i e w
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getf is

Purpose

Synops is

Descr ipt ion

Examples

Get fuzzy system properties.

g e t f i s ( a )
g e t f i s ( a , '  f i s p r o p ' )
g e t f i s ( a , '  v a r t y p e ' , v a r i n d e x , '  va rp rop ' )  
g e t f i s ( a , '  v a r t y p e ' , v a r i n d e x , ' 7 f ' , 7 f i n d e x )  
g e t f i s ( a , '  v a r t y p e ' , v a r i n d e x , ' 7 f ' , 7 f i n d e x , '  n f p r op ' )

Th is is the  fundam ental access function for the  FIS  m atrix . W ith  th is  one 
function you can learn about every part of the  fuzzy inference system.

One input argument (output is the  empty set)

a = r e a d f i s ( ' t i p p e r ' ) ;  
g e t f i s ( a )

Name = t i ppe r  
Type = mamdani 
Numlnputs = 2 
InLabels =

serv i ce  
food 

NumCutputs = 1 
CutLabels = 

t i p
NumRules = 3 
AndMfethod = min 
CrMethod = max 
ImpMfethod = min 
AggMfethod = max 
DefuzzMethod = c en t r o i d

Two input arguments

g e t f i s ( a , ' t y p e ' )
ans =
mamdani
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See Also

Three input arguments (output is the  empty set)

g e t f i s ( a , ' i n p u t ' , 1 )
Name = se r v i ce  
NumMFs = 3 
MFLabels = 

poor 
good
excel l ent  

Range = [0  10]

Four input arguments

g e t f i s ( a , ' i n p u t ' , 1 , ' n a m e ' )
ans =
serv i ce

Five input arguments

g e t f i s ( a , ' i n p u t ' , 1 , ' m f ' , 2 )
Name = good 
Type = gaussmf 
Params =

1.5000 5.0000

Six input arguments

g e t f i s ( a , ' i n p u t ' , 1 , ' m f ' , 2 , ' n a m e ' )
ans =
good

s e t f i s ,  showf i s
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Translate parameters between functions.

outParams = m ^ m f ^ n P a r a T s i n T y p e ^ u t T y p e )

This function does its  best to  trans la te  parameters among the  various 
membership function types. Occasionally th is  transla tion  w ill result in lost 
in form ation, so tha t if  the  output parameters are translated back in to  the  
original membership function type, the  transform ed membership function w ill 
not look the  same as it did orig ina lly .

The function tr ie s  to  match the  ц = 0.5 crossover points for both the  new and 
old membership functions.

x=0:0.1:5;  
mfpl  = [1 2 3];
mfp2 = 7 f 2 7 f ( 7 f p 1 , ' g b e l l 7 f ' , ' t r i 7 f ' ) ;  
p l o t ( x , g b e l l 7 f ( x , 7 f p 1 ) , x , t r i 7 f ( x , 7 f p 2 ) )

dsigmf , gaussmf , gauss2mf, gbel lmf  , eva l mf , pimf , ps i gmf , s i gmf , smf , 
t rapmf , t r i m f  , zmf
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mfedi t

Purpose

Synops is

Descr ipt ion

The D iagram 

Menu I tems

Membership function editor.

mfedi t (a)

The Membership Function Editor allows you to  inspect and modify all the  
membership functions in your fuzzy system. For each membership function you 
can change the  name, the type, and the  parameters. Eleven basic membership 
functions are provided for you to  choose from, although of course you can 
always create your own specialized versions. Refer to  Chapter 2, Tu to ria l, for 
more inform ation about how to  use mf e d i t .

Select the  current variab le  w ith  the  Variab le Palette on the  left side of the  
diagram (under the  heading “F IS  Variables”). Select membership functions by 
clicking once on them or th e ir labels.

On the  Membership Function Editor, there  is a menu bar tha t allows you to 
open related GUI tools, open and save systems, and so on. The F ile  menu for
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M em b ersh ip  
Function 
Pop-up Menu

See Also

the  Membership Function Editor is the  same as the one found on the  FIS 
Editor. Refer to  the  Reference entry fuzzy for more inform ation.

• Edi t
Add MF... Add membership functions to  the  current variable.
Add custom MF... Add a customized membership function to  the current 
variable.
Remove cur ren t  MF Delete the  current membership function.
Remove all MFs Delete all membership functions of the  current variable. 
Undo Undo the  most recent change.

• V iew
Edi t  FIS p roperties ... Invoke the  FIS  Editor.
Edi t  ru les... Invoke the  Rule Editor.
V iew  ru les... Invoke the Rule Viewer.
V iew  o u tp u t surface... Invoke the  Surface Viewer.

There are 11 bu ilt-in  membership functions to  choose from, and you also have 
the option of ins ta lling  a customized membership function. In general, any 
membership function can be converted to  any other. Customized membership 
functions, however, can never be converted.

f u z z y , r u l e e d i t , ru l ev iew,  s u r f v i e w
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Create new FIS.

a=newf i s( f i sName, f i sType,andMethod,orMethod, impMethod,  . . .
agglVkthod,defuzzlVethod)

This function creates new FIS matrices. newf is has up to seven input 
arguments, and the  output argument is a F IS  m atrix . The seven input 
arguments correspond to: name, type, AND method, OR method, im plication 
method, aggregation method, and defuzzification method.

The fo llow ing example shows what the  defaults are for each of the  methods:

>> a=newf i s ( ' newsys ' ) ;
>> g e t f i s ( a )

Name = newsys 
Type = mamdani 
Numlnputs = 0 
InLabels =
NumCutputs = 0 
OutLabels =
NumRules 0 
AndMethod min 
CrMethod max 
ImpMethod min 
AggMethod max 
DefuzzMethod c en t r o i d

ans =

r ead f i s ,  w r i t e f i s
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parsru le

Purpose

Synops is

Descr ipt ion

Examples  

See Also

Parse fuzzy rules.

f i s 2  = p a r s r u l e ( f i s , t x t R u l e L i s t , r u l e F o r m a t )

This function parses the  text tha t defines the  rules for a fuzzy system and 
re tu rns a FIS  m a trix  w ith  the  appropria te ru le  list in place. I f  the  original 
input m a trix  f i s  has any rules in itia lly , they are replaced in the new m a trix  
f i s 2 .  Three different ru le  form ats are supported: verbose, symbolic, and 
indexed.

a = r e a d f i s ( ' t i p p e r ' ) ;
ru leTxt  = ' i f  se r v i ce  i s  poor then t i p  i s  generous' ;  
a2 = p a r s r u l e ( a , r u l e T x t , ' v e r b o s e ' ) ;  
showrule(a2)  
ans =

1. I f  ( s e r v i c e  i s  poor) then ( t i p  i s  generous) (1) 

addrule,  r u l e e d i t ,  showrule
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p im f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Pi-shaped curve membership function.

y = p i i r f (x ,parai rs)  
y = p i m f ( x , [ a  b c d])

This spline-based curve is so named because of its  shape. The parameters a and 
d locate the  “feet” of the  curve, w h ile  b and c locate its  “shoulders.”

x=0:0.1:10;  
y=p i mf ( x , [ 1  4 5 10]) ;  
p l o t ( x , y )
x l a b e l ( ' p i m f ,  P=[1 4 5 10 ] ' )

pimf, P = Г1 4 5 101

dsigmf,  gaussmf, gauss2mf, gbel lmf ,  evalmf ,  mf2mf, psigmf,  sigmf ,  smf, 
t rapmf , t r i m f  , zmf
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Plot fuzzy inference system. 

p l o t f i s ( f i s m a t )

This function displays a high level diagram of a fuzzy inference system. Inputs 
and the ir membership functions are shown on the  left and outputs and the ir 
membership functions are shown on the  righ t.

a = r e a d f i s ( ' t i p p e r ' )  
p l o t f i s ( a )

p l o t f i s ,  evalmf
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Purpose

Synops is

Descr ipt ion

Examples

Plot membership functions for a variable.

p l o tmf ( f i sma t , va r Type , va r I ndex )

This function plots all of the  membership functions associated w ith  a given 
variable.

a = r e a d f i s ( ' t i p p e r ' )  
p l o t m f ( a , ' i n p u t ' , 1 )

See Also evalmf , p l o t f i s
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Product of tw o sigmoid curves membership functions.

y = psigi r f (x,paramB) 
y = ps i gmf (x , [ a1 cl  a2 c2] )

The sigmoid curve depends on tw o parameters a and c as given by

f  (x- ac) = T T i W

This function is s im ply the  product or tw o such curves 

f-i(x; a1, c-|) * f2(x; a2, c2)

The parameters are listed in the order: [a1 c1 a2 c2].

x=0:0.1:10;
y=ps i gmf ( x , [ 2  3 -5 8] ) ;  
p l o t ( x , y )
x l ab e l ( ' ps i gm f ,  P=[2 3 -5  8 ] ' )

psigmf, P = [2 3 -5  81

dsigmf,  gaussmf, gauss2mf, gbel lmf ,  evalmf,  mf2mf, pimf,  sigmf ,  smf, t rapmf ,  
t r i m f  , zmf
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Load FIS from disk.

f i smat  = r e a d f i s ( ' f i l e n a m e ' )

Read a fuzzy inference system from a . f i s  file  on disk and bring the  resulting 
file  into the workspace.

f i smat  = r ead f i s  (no input arguments) brings up a u i g e t f i l e  dialog box to  
assist w ith  the  name and directory location of the  file.

The extension . f i s  is assumed for f i l ename if  it is not already present.

f i smat  = r e a d f i s ( ' t i p p e r ' ) ;  
g e t f i s ( f i s m a t )

re turns

Name = t i ppe r  
Type = mamdani 
NumInputs = 2 
InLabels = 

ser v i ce  
food 

NumCutputs = 1 
CutLabels = 

t i p
NumRules = 3 
AndMethod = min 
CrMfethod = max 
ImpMethod = min 
AggMethod = max 
DefuzzMethod = cen t r o i d

w r i t e f i s
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r m m f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Remove membership function from FIS.

a = r mmf ( a , ' va r Type ' , va r I ndex , ' i 7 f ' , i 7 f I ndex )

For removing membership functions. You cannot remove a membership 
function cu rren tly  in use in the  ru le  list.

a = newf i s ( ' mysys ' ) ;
a = a d d v a r ( a , ' i n p u t ' , ' t e m p e r a t u r e ' , [ 0  100]) ;  
a = a d d m f ( a , ' i n p u t ' , 1 , ' c o l d ' , ' t r i m f ' , [ 0  30 60] ) ;  
g e t f i s ( a , ' i n p u t ' , 1 )

Name = temperature 
NumMFs = 1 
MFLabels =

cold 
Range = [0  100] 

b = r m m f ( a , ' i n p u t ' , 1 , ' m f ' , 1 ) ;  
g e t f i s ( b , ' i n p u t ' , 1 )

Name = temperature 
NumMFs = 0 
MFLabels =
Range = [0  100]

addmf , addrule,  addvar, rmvar
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Remove variab le  from FIS.

r i r va r ( a , ' va r Ty pe ' , va r I ndex )

For removing fuzzy variables. You cannot remove a fuzzy variab le  cu rren tly  in 
use in the  ru le  list. Th is command w ill autom atica lly a lter the  ru le  lis t to  keep 
its  size consistent w ith  the  current number of variables.

a = newf i s ( ' mysys ' ) ;
a = a d d v a r ( a , ' i n p u t ' , ' t e m p e r a t u r e ' , [ 0  100]);
g e t f i s ( a )

Name = mysys 
Type = mamdani 
Nunlnputs = 1 
InLabels =

temperature 
NumCutputs = 0 
OutLabels =
NumRules = 0

b = r m v a r ( a , ' i n p u t ' , 1 ) ;
g e t f i s ( b )

Name = mysys 
Type = mamdani 
Numnputs = 0 
InLabels =
NumCutputs = 0 
OutLabels =
NumRules = 0

addmf , addrule,  addvar, rmmf

3-43



ruleedi t

Purpose

Synops is

Descr ipt ion

Menu I tems

Rule editor and parser.

r u l e e d i t ( a )

The Rule Editor, like  the Membership Function Editor, is used to  modify the 
FIS m atrix . It can also be used sim ply to  inspect the  current rules being used 
by a system. In general, you sim ply type your rules in to  the  text field, and when 
you’re ready to  parse the rules press C t r l - Re t u r n . Refer to  Chapter 2, Tu to ria l, 
for more inform ation about how to  use r u l eed i t .

On the Rule Editor, there  is a menu bar tha t allows you to  open related GUI 
tools, open and save systems, and so on. The F ile  menu for the  Rule Ed itor is 
the  same as the one found on the  FIS  Editor. Refer to  the  Reference entry fuzzy 
for more inform ation.

• Edi t
Undo Undo the  most recent change.

• V iew
Edi t  FIS p roperties ... Invoke the  FIS  Editor.
Edi t  m em bership func tions ... Invoke the  Membership Function Editor. 
V iew  ru les... Invoke the Rule Viewer.
V iew  o u tp u t surface... Invoke the  Surface Viewer.
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Rule Formats  
Pop-up Menu

See Also

There is a pop-up menu in the  Rule Editor tha t allows you to  choose which ru le  
display form at you prefer. Three different form ats are available:

• verbose, which uses the  words “ i f ” and “then” and so on to  create actual sen­
tences.

• sym bo lic , which s im ply substitu tes some symbols for the  words described 
above. For example, “ if  A and B then C” becomes
“A & B => C.”

• indexed, which is the  simplest of the  three formats. Aside from some punc­
tuation  used to  ease in terpre ta tion , th is  form at exactly m irro rs  how the  ru le  
is stored in the FIS  m atrix .

See the  addrule and showrule commands for more inform ation about the  
composition of rules.

addrule,  fuzzy,  m f e d i t , parsru l e ,  r u l ev iew,  showrule,  s u r f v i ew
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ruleview

Purpose

Synops is

Descr ip t ion

Menu I tems

Rule viewer and fuzzy inference diagram.

ru l ev i ew(a)

The Rule Viewer is a “ liv in g ” version of the  fuzzy inference diagram. Much like  
the Surface Viewer, it is a read-only tool. It is used to  view the  entire  
im plication process from beginning to  end. You can move around the  line 
indices tha t correspond to  the  inputs and then watch the  system readjust and 
compute the  new output. Refer to  Chapter 2, Tu to ria l, for more inform ation 
about how to  use rulev iew.

On the Rule Viewer, there is a menu bar tha t allows you to  open related GUI 
tools, open and save systems, and so on. The F ile  menu for the  Rule Viewer is
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See Also

the  same as the one found on the  FIS  Editor. Refer to  the  Reference entry fuzzy 
for more inform ation.

• E d it
No options under Edi t .

• V iew
E d it F IS  p roperties ... Invoke the  FIS  Editor.
E d it ru les... Invoke the  Rule Editor.
V iew  o u tp u t surface... Invoke the  Surface Viewer.

• Opt i ons
Rule d isp lay f o rmat  If  you click on the ru le  numbers on the  left side of the  
fuzzy inference diagram, the  ru le  associated w ith  tha t number w ill appear in 
the  Status Bar at the  bottom of the  Rule Viewer. Th is menu item allows you 
to  set the  format in which the  ru le  appears.

fuzzy,  m f e d i t , r u l eed i t  , s u r f v i ew
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setfis

Purpose

Synops is

Descr ipt ion

Examples

Set fuzzy system properties.

a = se t f i s ( a , ' p r opname ' , newpr op)
a = s e t f i s ( a , ' v a r t y p e ' , v a r i n d e x , ' p r op n a me ' , n e w p r op )  
a = s e t f i s ( a , '  v a r t y p e ' , v a r i n d e x , ' i 7 f ' , i 7 f i n d e x ,  . . .

propname' ,newprop);

The command s e t f i s  can be called w ith  three, five, or seven input arguments, 
depending on whether you want to  set a property of the  entire  FIS  m atrix , a 
particu la r variab le belonging to  tha t FIS m atrix , or a particu la r membership 
function belonging to  one of those variables.

Called w ith  th ree arguments

a = r e a d f i s ( ' t i p p e r ' ) ;
a2 = s e t f i s ( a , ' n u m n p u t s ' , 3 ) ;
g e t f i s ( a 2 , ' n u m n p u t s ' )
ans =

3

The fo llow ing properties of any fuzzy system can be altered w ith  a three 
argument call to  s e t f i s :  name, type,  numnputs,  numoutputs, numrules, 
andmethod, ormethod, impmethod, aggmethod, defuzzmethod

If  used w ith  five arguments, s e t f i s  w ill update any of several variab le  
properties.

a2 = s e t f i s ( a , ' i n p u t ' , 1 , ' n a m e ' , ' h e l p ' ) ;  
g e t f i s ( a 2 , ' i n p u t ' , 1 , ' n a m e ' )  
ans = 

help

The fo llow ing properties of any fuzzy system can be altered w ith  a five 
argument call to  s e t f i s :  name, bounds
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I f  used w ith  seven arguments, s e t f i s  w ill update any of several membership 
function properties.

a2 = s e t f i s ( a , ' i n p u t ' , 1 , ' i T f ' , 2 , ' n a m e ' , ' w r e t c h e d ' ) ;
g e t f i s ( a 2 , ' i n p u t ' , 1 , ' i T f ' , 2 , ' n a m e ' )
ans =

wretched

The fo llow ing properties of any fuzzy system can be altered w ith  a seven 
argument call to  s e t f i s :  name, type,  params

See Also g e t f i s
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sffis

Purpose

Synops is

Descr ipt ion

See Also

Fuzzy inference S-function for S im u link.

output = s f f i s ( t , x , u , f l a g , f i s m a t )

This M EX -file  is used by S im u link to  do the  calculation norm ally performed by 
e v a l f i s .  It has been optim ized to  work in the  S im u link environm ent. This 
means, among other th ings, tha t s f f i s  builds a data s tructu re  in memory 
during the  in itia liza tion  phase of the  sim ulation which it then continues to  use 
un til the  sim ulation is complete.

The input to  the  fuzzy system comes in through the  argument u. If, for example, 
there  are tw o inputs to  f i smat  then u w ill be a tw o element vector.

e v a l f i s ,  f uzb l ock
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show f is

Purpose

Synops is

Descr ip t ion

Examples

Display annotated FIS.

showf i s ( f i smat )

showf i s ( f i smat )  p rin ts  a version of the  variab le  f i smat  annotated row by row, 
allow ing you to  see the  significance and contents of each row.

a = r e a d f i s ( ' t i p p e r ' ) ;  
showf i s(a)
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re turns

1. Name t i ppe r
2. Type mamdani
3. I nputs /Outputs [2 1]
4. NumlnputMFs [3  2]
5. NumCutputVFs 3
6. NumRules 3
7. AndMethod min
8. CrIVethod max
9. ImpMethod min
10. AggVethod max
11. DefuzzVethod c en t r o i d
12. InLabels serv i ce
13. food
14. CutLabels t i p
15. InRange [0  10]
16. [0  10]
17. CutRange [0  30]
18. InVFLabels poor
19. good
20. excel l ent
21. ranc id
22. d e l i c i ou s
23. CutVFLabels cheap
24. average
25. generous
26. InVFTypes gaussmf
27. gaussmf
28. gaussmf
29. t rapmf
30. t rapmf
31. CutVFTypes t r i m f
32. t r i m f
33. t r i m f
34. InVFParams [ 1 . 5  0 0 0]
35. [ 1 . 5  5 0 0]
36. [ 1 . 5  10 0 0]
37. [0 0 1 3]
38. [7 9 10 10]
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See Also

39. CutlVFParaiTB
40.
41.
42. RuleList
43.
44.

get f i  s

[0 5 10 0] 
[10 15 20 0] 
[20 25 30 0] 
[1 1 1 1 2] 
[2 0 2 1 1] 
[3 2 3 1 2]
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Purpose

Synops is

Descr ip t ion

Examples

See Also

Display FIS rules.

s howr u l e ( a , i ndex L i s t , f o r ma t )

This command is used to  display the rules associated w ith  a given system. It 
can re turn the  ru le  in any of th ree d ifferent formats: verbose (the default), 
symbolic, and membership function index referencing. The firs t argument is 
the  FIS  m atrix , the  second argument is the  ru le  number, and the  th ird  
argument, if  supplied, is the  return form at. One ru le  or a vector of rules can be 
provided to  th is  function.

a = r e a d f i s ( ' t i p p e r ' ) ;
showrule(a,1)
ans =
1. I f  ( se r v i ce  i s  poor) or ( food i s  rancid)  then ( t i p  i s  cheap) (1)

showrule(a,2)  
ans =
2. I f  ( s e r v i c e  i s  good) then ( t i p  i s  average) (1)

showr u l e ( a , [ 3  1 ] , ' s y m b o l i c ' )  
ans =
3. ( se r v i ce==exce l l en t )  | ( f ood==de l i c i ous )  => ( t i p=generous)  (1) 
1. ( serv i ce==poor )  | ( f ood==ranc id)  => ( t i p=cheap)  (1)

s h o wr u l e ( a , 1 : 3 , ' i ndex ed ' )  
ans =
1 1, 1 (1) : 2 
2 0, 2 (1) : 1 
3 2, 3 (1) : 2

parsru le ,  r u l eed i t
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s i gmf

Purpose

Synops is

Descr ipt ion

Examples

See Also

Sigmoid curve membership function.

y = sigi7f (x,params)  
y = s i g m f ( x , [ a  c] )

The sigmoid curve depends on tw o parameters a and c as given by 

f  (x-a c) =

Depending on the  sign of the  parameter a, a sigmoidal membership function is 
inherently  open righ t or left and thus  is appropria te for representing concepts 
such as “very large” or “very negative.” More conventional-looking membership 
functions can be bu ilt by tak ing  e ither the  product or difference of tw o different 
sigmoidal membership functions. You can find  more on th is  in the  entries for 
dsigmf and ps igmf .

x=0:0.1:10;  
y=s i gmf ( x , [ 2  4] ) ;  
p l o t ( x , y )
x l a b e l ( ' s i g m f ,  P=[2 4 ] ' )

sigmf, P = [2 41

ds igmf , gaussmf, gauss2mf, g b e l l m f , evalmf ,  mf2mf, pimf,  psigmf,  smf, 
t r a p mf , t r i m f , zmf
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Purpose

Synops is

Descr ipt ion

Examples

See Also

S-curve membership function.

y = smf(x,paramB) 
y = smf ( x , [ a  b])

This spline-based curve is so named because of its  shape. The parameters a and 
b locate the extremes of the  sloped portion of the  curve.

x=0:0.1:10;  
y=smf (x , [1 8] ) ;  
p l o t ( x , y )
x l ab e l ( ' sm f ,  P=[1 8 ] ' )

smf, P = Г1 81

dsigmf,  gaussmf, gauss2mf, gbel lmf ,  eva lmf , mf2mf, pimf,  psigmf,  sigmf,  
t r a p mf , t r i m f  , zmf

3-56



subclust

Purpose

Synops is

Descr ipt ion

Find cluster centers w ith  subtractive clustering.

[C,S]  = subc l us t ( X , r ad i i , xBounds , op t i ons )

This function estimates the  cluster centers in a set of data by using the  
subtractive c lustering method. The subtractive c lustering method assumes 
each data point is a potential cluster center and calculates a measure of the 
potential for each data point based on the  density of surrounding data points. 
The a lgorithm  selects the  data point w ith  the  highest potential as the  firs t 
cluster center and then destroys the potential of data points near the  firs t 
cluster center. The a lgorithm  then selects the  data point w ith  the  highest 
rem aining potential as the next cluster center and destroys the potential of 
data points near th is  new cluster center. Th is process of acquiring a new 
cluster center and destroying the potential of surrounding data points repeats 
un til the  potential of all data points fa lls  below a threshold. The subtractive 
clustering method is an extension of the  M ountain clustering method proposed 
by R. Yager [Yag92].

The m a trix  X contains the  data to  be clustered; each row of X is a data point. 
The variab le  rad i i  is a vector tha t specifies a cluster center's range of influence 
in each of the  data dimensions, assuming the data fa lls  w ith in  a un it hyperbox. 
Small r ad i i  values generally result in find ing  a few large clusters. Good values 
for r ad i i  are usually between 0.2 and 0.5.

For example, if  the  data dimension is tw o (X has tw o columns), 
rad i i  = [0.5 0.25] specifies tha t the  range of influence in the  firs t data 
dimension is ha lf the  w id th  of the  data space and the  range of influence in the 
second data dimension is one quarter the  w id th  of the  data space. I f  rad i i  is a 
scalar, then the  scalar value is applied to  all data dimensions, i.e., each cluster 
center w ill have a spherical neighborhood of influence w ith  the  given radius. 
xBounds is a 2xN m a trix  tha t specifies how to  map the data in X in to  a unit 
hyperbox, where N is the  data dimension.

The firs t row contains the  m in im um  axis range values and the  second row 
contains the  m axim um axis range values for scaling the  data in each 
dimension. For example, xBounds = [-10 -5; 10 5] specifies tha t data values in 
the firs t data dimension are to  be scaled from the range [-10 +10] in to  values 
in the range [0 1]; data values in the second data dimension are to  be scaled 
from the  range [-5 +5] in to  values in the  range [0 1]. I f  xBounds is an empty
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Examples

m atrix  or not provided, then xBounds defaults to  the  m in im um  and maximum 
data values found in each data dimension.

The opt i ons vector can be used for specifying c lustering a lgorithm  parameters 
to  override the  default values. These parameters are:

• op t i ons(1)  = squashFactor: Th is is used to  m u ltip ly  the  radii values to  de­
te rm ine  the  neighborhood of a cluster center w ith in  which the  existence of 
other cluster centers are to  be discouraged. (default: 1.25)

• op t i ons(2)  = acceptRat io:  Th is sets the potentia l, as a fraction of the  po­
ten tia l of the  firs t cluster center, above which another data point w ill be ac­
cepted as a cluster center. (default: 0.5)

• op t i ons(3)  = r e j ec t Ra t i o :  Th is sets the potentia l, as a fraction of the  po­
ten tia l of the  firs t cluster center, below which a data point w ill be rejected as 
a cluster center. (default: 0.15)

• op t i ons(4)  = verbose: I f  th is  term  is not zero, then progress inform ation 
w ill be printed as the  c lustering process proceeds. (default: 0)

The function re tu rns the  cluster centers in the  m a trix  C; each row of C contains 
the position of a cluster center. The returned S vector contains the  sigma values 
tha t specify the  range of influence of a cluster center in each of the  data 
dimensions. A ll cluster centers share the same set of sigma values.

[C,S] = subc l us t ( X , 0 . 5 )

This is the  m in im um  number of arguments needed to  use th is  function. A range 
of influence of 0.5 has been specified for all data dimensions.

[C,S] = s u b c l us t ( X , [ 0 . 5  0.25 0 . 3 ] , [ ] , [ 2 . 0  0.8 0 .7 ] )

This assumes the  data dimension is 3 (X has 3 columns) and uses a range of 
influence of 0.5, 0.25, and 0.3 for the  firs t, second and th ird  data dimension, 
respectively. The scaling factors for mapping the  data in to  a un it hyperbox w ill 
be obtained from the m in im um  and maxim um data values. The squashFactor 
is set to  2.0, ind icating tha t we only want to  find  clusters tha t are far from each 
other. The acceptRat i o is set to 0.8, ind icating tha t we w ill only accept data 
points tha t have very strong potential of being cluster centers. The 
r e j ec t Ra t i o  is set to 0.7, ind icating tha t we want to  reject all data points 
w ithou t a strong potentia l.
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See Also 
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surfv iew

Purpose

Synops is

Descr ipt ion

Menu I tems

O utput surface viewer.

sur f v i ew(a)

The Surface Viewer is a GUI tool tha t lets you examine the  output surface of a 
fuzzy inference system for any one or tw o inputs. Since it does not a lter the  
fuzzy system or its  associated FIS  m a trix  in any way, it is a read-only editor. 
Using the pop-up menus, you select which input variables you want to  form the 
tw o input axes (X and Y) as well the  output variab le  tha t you want to  form the 
output (or Z) axis. Then push the  E va lua te  button to  perform the  calculation 
and plot the  output surface.

By clicking on the  plot axes and dragging the  mouse, you can actually 
m anipulate the surface so tha t you can view it from different angles.

I f  there are more than tw o inpu ts  to  your system, you must supply, in the  
reference input section the  constant values associated w ith  any unspecified 
inputs.

Refer to  the  Tuto ria l section for more inform ation about how to  use sur f v i ew.

On the Surface Viewer, there is a menu bar tha t allows you to  open related GUI 
tools, open and save systems, and so on. The F ile  menu for the  Surface Viewer
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See Also

is the  same as the one found on the  FIS Editor. Refer to  the  Reference entry 
f uzzy for more inform ation.

• E d it
No options under Edit.

• V iew
E d it F IS  p roperties ... Invoke the  FIS  Editor.
E d it m em bership func tions... Invoke the Membership Function Editor. 
E d it ru les... Invoke the  Rule Editor.
V iew  rules... Invoke the  Rule Viewer.

• Opt i ons
P lo t Choose among eight d ifferent kinds of plot styles.
Color Map Choose among several d ifferent color schemes.
A lw ays eva luate  Check th is  menu item if  you want to  autom atica lly evalu­
ate and plot a new surface every tim e  you make a change tha t affects the  plot 
(like  changing the  number of grid points).

fuzzy,  g ensur f , m f ed i t , r u l eed i t  , r u l ev i ew
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t r a p m f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Trapezoidal membership function.

y = t rapmf(x,paraimB) 
y = t r a p m f ( x , [ a  b c d])

The trapezoidal curve depends on four parameters as given by

0, x  < a 
x -  a a < x < b

f  (x; a, b, c, d) =
b -  a ’
1, b < x < c 
d - x

c < x < d
d - c

0, d < x

or more compactly by

x _a d _x
f ( x; a, b, c, d) = m a x (m in (^ -=  ,1, ̂ ^ - ^ ) ,  0)

b _ a d _  c

The parameters a and d locate the  “feet” of the  trapezoid and the parameters b 
and c locate the  “shoulders.”

x=0:0.1:10;
y= t r apmf ( x , [ 1  5 7 8] ) ;  
p l o t ( x , y )
x l a b e l ( ' t r a p m f ,  P=[1 5 7 8]

trapmf, P = Г1 5 7 81

dsigmf,  gaussmf, gauss2mf, gbel lmf ,  evalmf,  mf2mf, pimf,  psigmf,  sigmf ,  smf, 
t r i m f  , zmf
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P u rp o s e

S y n o p s is

D e s c r ip t io n

E x a m p l e s

See A l s o

Triangu la r membership function.

y = t r i i 7 f ( x ,paramB)  
y = t r i m f ( x , [ a  b c] )

The tr ia n g u la r curve depends on three parameters as given by

0, x  < a 
x -  a

f ( x; a, b, c) = b -  a ’ 
c -  x

a < x < b

b < x < c
c -  b ’

0, c < x

or more compactly by

f (x; a, b, c) = m ax(m in(x a , ——-  ),0) 
b -  a c -  b

The parameters a and c locate the  “feet” of the  tr iang le  and the  parameter c 
locates the  peak.

x=0:0.1:10;  
y = t r i m f ( x , [ 3  6 8] ) ;  
p l o t ( x , y )
x l a b e l ( ' t r i T f ,  P=[3 6 8 ] ' )

trimf, P = Г3 6 81

dsigmf,  gaussmf, gauss2mf, g b e l l m f , evalmf,  mf2mf, pimf,  psigmf,  sigmf ,  smf, 
t rapmf
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Purpose

Synops is

Descr ipt ion

Examples  

See Also

Save FIS  to  disk.

w r i t e f i s ( f i s m a t )  
w r i t e f i s ( f i s m a t ,  f i l ename)  
w r i t e f i s ( f i s m a t ,  f i l e n a m e , ' d i a l o g '

Save fuzzy inference system as a f i s  file  on disk. w r i t e f i s ( f i s m a t )  brings 
up a u i p u t f i l e  dialog box to  assist w ith  the naming and directory location of 
the  file.

w r i t e f i s ( f i s m a t ,  f i l ename)  w rites  a f i s  file  corresponding to  the  FIS 
m a trix  f i smat  to a disk file  called f i l ename.  No dialog box is used and the  file  
is saved to  the  current directory.

w r i t e f i s ( f i s m a t ,  f i l e n a m e , ' d i a l o g '  
the  default name f i l ename supplied.

brings up a u i p u t f i l e  dialog box w ith

The extension f i s  is added to  f i l ename if  it is not already present.

a =
a = n e w f i s ( ' t i p p e r ' ) ;

i n p u t ' ,  
npu t ' , 1  
npu t ' , 1  
npu t ' , 1  

m y _ f i l e ' )

addvar(a,  
addmf(a, '  
addmf(a, '  
addmf(a, '  

w r i t e f i s ( a

a = 
a =
a =

s e r v i c e ' , [ 0  10] ) ;  
' p o o r ' , ' g a u s s m f ' , [ 1 . 5  0] ) ;  
' g o o d ' , ' g a u s s m f ' , [ 1 . 5  5] ) ;  
' e x c e l l e n t ' , ' g a u s s m f ' , [ 1 . 5 10]) ;

r ead f i s
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Purpose

Synops is

Descr ipt ion

Examples

See Also

Z-shaped membership function.

y = zmf (x.parans)  
y = z m f ( x , [ a  b])

This spline-based function is so named because of its  shape. The parameters a 
and b locate the extremes of the  sloped portion of the  curve.

x=0:0.1:10;  
y = t r i m f ( x , [ 3  7] ) ;  
p l o t ( x , y )
x l ab e l ( ' zm f ,  P=[3 7 ] ' )

zmf, P = Г3 7]

dsigmf,  gaussmf, gauss2mf, g b e l l m f , evalmf,  mf2mf, pimf,  psigmf,  sigmf ,  smf, 
t r a p mf , t r i m f
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f c m 3-17
fir ing  strength 2-108
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M
Mamdani's method 2-59 
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N
neuro-fuzzy inference 2-69 
newf i s  2-53, 3-35

P
p a r s r u l e  3-36 
pimf  2-11 
p l o t f i s  2-50 
p l o t mf  2-51, 3-38, 3-39 
probabilistic OR 2-21 
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r u l e e d i t  3-44 
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showru l e  3-54 
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singleton 2-59, 2-109 
smf 2-11, 3-56
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T
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truck backer-upper problem 2-102

W
w r i t e f i s  3-64

Z
zmf 2-11, 3-65

S
s e t f i s  2-56, 3-48 
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