MATLAB®

Fuzzy Logic
Toolbox

Computation

Visualization

VVVVVVVV

How to Contact The MathWorks:

508-647-7000 Phone
508-647-7001 Fax
The MathWorks, Inc. Mail

24 Prime Park Way
Natick, MA 01760-1500

http://www.mathworks.com Web

ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

support@ mathworks.com Technical support

suggest @mat hwor ks. com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mat hwor ks. com Documentation error reports

subscribe@ mathworks.com Subscribing user registration

service@ mathworks.com Order status, license renewals, passcodes
info@ mathworks.com Sales, pricing, and general information

Fuzzy Logic Toolbox User’s Guide
© COPYRIGHT 1984 - 1997 by The MathWorks, Inc. All Rights Reserved.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

U.S. GOVERNMENT: If Licensee is acquiring the software on behalf of any unit or agency of the U. S.
Government, the following shall apply:
(a) for units of the Department of Defense:

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the Government is subject to restric-
tions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software Clause
at DFARS 252.227-7013.

(b) for any other unit or agency:

NOTICE - Notwithstanding any other lease or license agreement that may pertain to, or accompany the
delivery of, the computer software and accompanying documentation, the rights of the Government
regarding its use, reproduction and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR.

Contractor/manufacturer is The MathWorks Inc., 24 Prime Park Way, Natick, MA 01760-1500.
MATLAB, Simulink, Handle Graphics, and Real-Time Workshop are registered trademarks and Stateflow
and Target Language Compiler are trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: January 1995 First printing
April 1997 Second printing (for MATLAB 5)

http://www.mathworks.com
ftp://ftp.mathworks.com
mailto:support@mathworks.com
mailto:bugs@mathworks.com
mailto:subscribe@mathworks.com
mailto:service@mathworks.com
mailto:info@mathworks.com

Forward

The past few years have witnessed a rapid growth in the number and variety
of applications of fuzzy logic. The applications range from consumer products
such as cameras, camcorders, washing machines, and microwave ovens to
industrial process control, medical instrumentation, decision-support systems,
and portfolio selection.

To understand the reasons for the growing use of fuzzy logic it is necessary,
first, to clarify what is meant by fuzzy logic.

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a
logical system, which is an extension of multivalued logic. But in awider
sense—which is in predominant use today—fuzzy logic (FL) is almost
synonymous with the theory of fuzzy sets, atheory which relates to classes of
objects with unsharp boundaries in which membership is a matter of degree.
In this perspective, fuzzy logic in its narrow sense is a branch of FL. What is
important to recognize is that, even in its narrow sense, the agenda of fuzzy
logic is very different both in spirit and substance from the agendas of
traditional multivalued logical systems.

In the Fuzzy Logic Toolbox, fuzzy logic should be interpreted as FL, that is,
fuzzy logic in its wide sense. The basic ideas underlying FL are explained very
clearly and insightfully in the Introduction. What might be added is that the
basic concept underlying FL is that of a linguistic variable, that is, a variable
whose values are words rather than numbers. In effect, much of FL may be
viewed as a methodology for computing with words rather than numbers.
Although words are inherently less precise than numbers, their use is closer to
human intuition. Furthermore, computing with words exploits the tolerance
for imprecision and thereby lowers the cost of solution.

Another basic concept in FL, which plays a central role in most of its
applications, is that of a fuzzy if-then rule or, simply, fuzzy rule. Although
rule-based systems have a long history of use in Al, what is missing in such
systems is a machinery for dealing with fuzzy consequents and/or fuzzy
antecedents. In fuzzy logic, this machinery is provided by what is called the
calculus of fuzzy rules. The calculus of fuzzy rules serves as a basis for what
might be called the Fuzzy Dependency and Command Language (FDCL).
Although FDCL is not used explicitly in Fuzzy Logic Toolbox, it is effectively
one of its principal constituents. In this connection, what is important to

Forward

recognize isthat in most of the applications of fuzzy logic, afuzzy logic solution
is in reality atranslation of a human solution into FDCL.

What makes the Fuzzy Logic Toolbox so powerful is the fact that most of
human reasoning and concept formation is linked to the use of fuzzy rules. By
providing a systematic framework for computing with fuzzy rules, the Fuzzy
Logic Toolbox greatly amplifies the power of human reasoning. Further
amplification results from the use of MATLAB and graphical user interfaces -
areas in which The MathWorks has unparalleled expertise.

A trend which is growing in visibility relates to the use of fuzzy logic in
combination with neurocomputing and genetic algorithms. More generally,
fuzzy logic, neurocomputing, and genetic algorithms may be viewed as the
principal constituents of what might be called soft computing. Unlike the
traditional, hard computing, soft computing is aimed at an accommodation
with the pervasive imprecision of the real world. The guiding principle of soft
computing is: Exploit the tolerance for imprecision, uncertainty, and partial
truth to achieve tractability, robustness, and low solution cost. In coming
years, soft computing is likely to play an increasingly important role in the
conception and design of systemswhose MIQ (Machine IQ) is much higher than
that of systems designed by conventional methods.

Among various combinations of methodologies in soft computing, the one
which has highest visibility at this juncture is that of fuzzy logic and
neurocomputing, leading to so-called neuro-fuzzy systems. Within fuzzy logic,
such systems play a particularly important role in the induction of rules from
observations. An effective method developed by Dr. Roger Jang for this
purpose is called ANFIS (Adaptive Neuro-Fuzzy Inference System). This
method is an important component of the Fuzzy Logic Toolbox.

The Fuzzy Logic Toolbox is highly impressive in all respects. It makes fuzzy
logic an effective tool for the conception and design of intelligent systems. The
Fuzzy Logic Toolbox is easy to master and convenient to use. And last, but not
least important, it provides areader-friendly and up-to-date introduction to the
methodology of fuzzy logic and its wide-ranging applications.

Lotfi A. Zadeh
Berkeley, CA
January 10, 1995

Before You Begin

What Isthe Fuzzy LOQiCc TOOIDOX? ..o 2
HOW t0 USE ThiS GUIAE ..oeiiiiiiiiiiie e 3
INSTAATION e s 3
Typographical Conventions ... 4

Introduction

1
What IS FUZZY LOGIC? ittt 1-4
Why USE FUZZY LOGIC? it 1-5
When Not to Use FUuzzy LOQiC....cccviiiiiiiiiiiiiiicicncec e 1-6
What Can the Fuzzy Logic TOOIbOX DO ? .cccceeiiiiiiiiiiiieieee 1-7
An Introductory Example: Fuzzy vs. Non-Fuzzy 1-8
The Non-Fuzzy Approach ... 1-8
The FUuzzy APProach . 1-12
SOME ODSEIVALIONS .ooiiiiiiiciee e 1-13
Tutorial
The Big PICIUIE oo 2-2
Foundations of FUZZY LOQIC .o 2-4

FUZZY SIS e 2-4
Membership Functions 2-8

Membership Functions in the Fuzzy Logic Toolbox 2-9
Summary of Membership Functions ... 2-12

Contents

Logical O PerationNS . 2-12

Additional Fuzzy Operatorscciiiiiiieeniiiieee e 2-14
If-Then RUIES e 2-16
Summary of If-Then RuUIES ... 2-18
Fuzzy Inference SYStEMS . 2-19
Dinner for TWO, REPIISE .ot 2-19
Step L FUZZIfY INPULS o 2-20
Step 2. Apply FUZzZY OpPerator... e 2-21
Step 3. Apply Implication Method ... 2-22
Step 4. Aggregate All OQULPULS .o 2-23
Step 5. DefUZZIfy i 2-24
The Fuzzy Inference Diagramccocceioiiiiiiine e 2-25
CUSTOMIZALION oo e 2-26
Building Systems with the Fuzzy Logic Toolbox 2-28
Dinner for Two, from the TOp . 2-28
Getting Started .o 2-31
The Membership Function Editorcccooiiiiiiiieeiieceeeee 2-35
The RUIE EITOr i 2-38
The RUIE VIEW BT i 2-40
The Surface VIEWET .. 2-42
Two-inputs One-output, or What About the Food? 2-43
Importing and Exporting from the GUI TooIScccceviiieieennns 2-46
Customizing Your FUzZzy SYSIEM ..o 2-46

Working from the Command Line
System Display FUNCHIONS ..o
Building a System from Scratch
FIS EVAIUATION oo e o

M-File or MEX-File? e
THhE FIS MATIIX i o
FIS Files 0n DiSK ..o

Sugeno-Style Fuzzy Inference
An Example: TWO LIiNeS ..o
CONCIUSION o

Contents

Working with Simulink ..., 2-65
An Example: Water Level Controlccccoviiiiiieiiiiiiieee e 2-65
Building Your Own Simulationsccccceeiiiiiiiiiiecees e 2-68

Some Constraints
AN EXAMPIE e
More on ANFIS
Training DAt ..oooccceeiiiieiiie e
INPUL FIS MATriX oo
Training OPUONS oo e
Display OPLONS oo
Checking Data ..o
Output FIS Matrix for Training Data
Training ETTOT oo
SEEP SIZE i s
Output FIS Matrix for Checking D ata
ChecCKiNg ETITOr ot
RETEIENCE oo

FUZZY ClUSTETIN G oot
Fuzzy C-Means Clustering
An Example: 2-D Clusters ...

Subtractive CIUSTEIING ..o
An Example: Suburban Commutingccccceeeiiiiiiiineiniiieeeee 2-82
OVETIFItEING o 2-85
RETEIENCES ..o 2-86
Stand-Alone COUE .o 2-87

Applications and Demos
Ball Juggling

Inverse Kinematics of Two-Joint Robot Arm ... 2-91
Adaptive Noise Cancellation ...
Chaotic Time Series PrediCtioncccooceeeviiie i
Fuzzy C-Means Clustering Demos

Truck Backer-Upper (Simulink only) ..o 2-102
Inverted Pendulum (Simulink only) ..o 2-104

Ball and Beam (Simulink only) ..o, 2-106

iv

Contents

G L0 S S AT ittt e s 2-108

RETEIENCES e 2-110
FUZZY M USIN S ittt 2-112
Reference
(10 1 B o o 1 PR
Membership Functions
FIS Data Structure Managementcoiiiiiiiiiiiniiiieieeeeeeeeenn. 3-3
Advanced TeChNIQUES ..o 3-4
SIMUIINK BIOCKS oo 3-4
D BMOS e 3-5
Fuzzy Inference Quick Reference ..., 3-6

Before You Begin

Before You Begin

This section describes how to use the Fuzzy Logic Toolbox. It explains how to
use this guide and points you to additional books for toolbox installation
information.

What Is the Fuzzy Logic Toolbox?

The Fuzzy Logic Toolbox is a collection of functions built on the MATLAB®
numeric computing environment. It provides tools for you to create and edit
fuzzy inference systems within the framework of MATLAB, or if you prefer you
can integrate your fuzzy systems into simulations with Simulink®, or you can
even build stand-alone C programs that call on fuzzy systems you build with
MATLAB. This toolbox relies heavily on graphical user interface (GUI) tools to
help you accomplish your work, although you can work entirely from the
command line if you prefer.

The toolbox provides three categories of tools:

e Command line functions
¢ Graphical, interactive tools

e Simulink blocks and examples

The first category of tools is made up of functions that you can call from the
command line or from your own applications. Many of these functions are
MATLAB M-files, series of MATLAB statements that implement specialized
fuzzy logic algorithms. You can view the MATLAB code for these functions
using the statement

type function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by adding
your own M-files.

Secondly, the toolbox provides a number of interactive tools that let you access
many of the functions through a GUI. Together, the GUI - based tools provide
an environment for fuzzy inference system design, analysis, and
implementation.

The third category of tools is a set of blocks for use with the Simulink
simulation software. These are specifically designed for high speed fuzzy logic
inference in the Simulink environment.

How to Use This Guide

If you are new to fuzzy logic, begin with Chapter 1, “Introduction.” This
chapter introduces the motivation behind fuzzy logic and leads you smoothly
into the tutorial.

If you are an experienced fuzzy logic user, you may want to start at the
beginning of Chapter 2, “Tutorial,” to make sure you are comfortable with the
fuzzy logicterminology as used by the Fuzzy Logic Toolbox. If you just want an
overview of each graphical tool and examples of specific fuzzy system tasks,
turn directly to the section in Chapter 2 entitled “Building Systems with the
Fuzzy Logic Toolbox.”

If youjust want to start as soon as possible and experiment, you can open an
example system right away by typing

fuzzy tipper

This brings up the Fuzzy Inference System (FIS) editor for an example problem
that hasto do with tipping. If you like you can refer to the one page summary
ofthe fuzzy inference process shown at the beginning of Chapter 3, “Reference.

All toolbox users should use Chapter 3, “Reference,” for information on specific
tools. Reference descriptions include a synopsis ofthe function’s syntax, aswell
as a complete explanation of options and operation. Many reference
descriptions also include helpful examples, a description of the function’s
algorithm, and references to additional reading material. For GUl-based tools,
the descriptions include options for invoking the tool.

Installation

To install this toolbox on aworkstation or alarge machine, seethe Installation
Guide for UNIX. To install the toolbox on a PC or Macintosh, see the
Installation Guide for PC and Macintosh.

To determine if the Fuzzy Logic Toolbox is already installed on your system,
check for a subdirectory names fuzzy within the main toolbox directory or
folder.

Before You Begin

Typographical Conventions

To Indicate

Example code

MATLAB output

Function names

New terms

Keys

Menu names,
items, and GUI con-
trols

Mathematical
expressions

This Guide Uses

Monospace type

Monospace type

Monospace type

Italics

Boldface with an
initial capital letter

Boldface with an
initial capital letter

Variables in italics.
Functions, opera-
tors, and constants
in standard type.

Example

To assign the value 5to A,
enter

A=5

MATLAB responds with
A =

5

The cos function finds the
cosine of each array ele-
ment.

An array is an ordered col-
lection of information.

Press the Return key.

Chose the File menu.

This vector represents the
polynomial

p = x2+2x+3.

Introduction

1-4 What Is Fuzzy Logic?
1-5 Why Use Fuzzy Logic?
1-6 When Not to Use Fuzzy Logic

1-7 What Can the Fuzzy Logic Toolbox Do?

1-8 An Introductory Example: Fuzzy vs. Non-Fuzzy
1-8 The Non-Fuzzy Approach

1-12 The Fuzzy Approach

1-13 Some Observations

1 Introduction

Fuzzy logic is all about the relative importance of precision: How important is
it to be exactly right when a rough answer will do? All books on fuzzy logic
begin with a few good quotes on this very topic, and this is no exception. Here
is what some clever people have said in the past:

Precision is not truth.

—Henri Matisse

Sometimes the more measurable drives out the most important.

— Rene Dubos

Vagueness is no moreto bedone away with in the world of logicthan friction in
mechanics.

— Charles Sanders Peirce

| believe that nothing is unconditionally true, and hence | am opposed to every
statement of positive truth and every man who makes it.

—H. L. Mencken

So far as the laws of mathematics refer to reality, they are not certain. And so
far as they are certain, they do not refer to reality.

—Albert Einstein

As complexity rises, precise statements lose meaning and meaningful
statements lose precision.

—Lotfi Zadeh
There are also some pearls of folk wisdom that echo these thoughts:
Don't lose sight of the forest for the trees.
Don't be penny wise and pound foolish.

The Fuzzy Logic Toolbox for use with MATLAB is a tool for solving problems
with fuzzy logic. Fuzzy logic is a fascinating area of research because it does a
good job of trading off between significance and precision—something that
humans have been managing for a very long time.

Fuzzy logic sometimes appears exotic or intimidating to those unfamiliar with
it, but once you become acquainted with it, it seems almost surprising that no
one attempted it sooner. In this sense fuzzy logic is both old and new because,

although the modern and methodical science of fuzzy logic is still young, the
concepts of fuzzy logic reach right down to our bones.

Precision and Significance in the Real World

A 1500 kg mass

is approaching LOOK
your head at
45.3 m/sec. O U T ' I
Precision Significance

1 Introduction

What Is Fuzzy Logic?

Fuzzy logic is a convenient way to map an input space to an output space. This
is the starting point for everything else, and the great emphasis here is on the
word “convenient.”

What do | mean by mapping input space to output space? Here are a few
examples: You tell me how good your service was at a restaurant, and I'll tell
you what the tip should be. You tell me how hot you want the water, and I'll
adjust the faucet valve to the right setting. You tell me how far away the
subject of your photograph is, and I'll focus the lens for you. You tell me how
fast the car is going and how hard the motor is working, and I'll shift the gears
for you. A graphical example of an input-output map is shown below.

Input Space Output Space
(all possible service (all possible tips)
quality ratings)

An input-output map for the tipping problem:
Given the quality of service, how much should Itip?’

It'sall just a matter of mapping inputs to the appropriate outputs. Between the
input and the output we’'ll put a black boxthat doesthe work. What could go in
the black box? Any number of things: fuzzy systems, linear systems, expert
systems, neural networks, differential equations, interpolated
multi-dimensional lookup tables, or monkeys with typewriters just to name a
few of the possible options. Clearly the list could go on and on.

Of the dozens of ways to make the black box work, it turns out that fuzzy is
often the very best way. Why should that be? As Lotfi Zadeh, who is considered
to be the father of fuzzy logic, once remarked: “In almost every case you can
build the same product without fuzzy logic, but fuzzy is faster and cheaper.”

What Is Fuzzy Logic?

Why Use Fuzzy Logic?

Here is a list of general observations about fuzzy logic.

Fuzzy logic is conceptually easy to understand.

The mathematical concepts behind fuzzy reasoning are very simple. What
makes fuzzy nice is the “naturalness” of its approach and not its far-reaching
complexity.

Fuzzy logic is flexible.

With any given system, it's easy to massage it or layer more functionality on
top of it without starting again from scratch.

Fuzzy logic is tolerant of imprecise data.

Everything is imprecise if you look closely enough, but more than that, most
things are imprecise even on careful inspection. Fuzzy reasoning builds this
understanding into the process rather than tacking it onto the end.

Fuzzy logic can model nonlinear functions of arbitrary complexity.

You can create a fuzzy system to match any set of input-output data. This
process is made particularly easy by adaptive techniques like ANFIS (Adap-
tive Neuro-Fuzzy Inference Systems) which are available in the Fuzzy Logic
Toolbox.

Fuzzy logic can be built on top of the experience of experts.

In direct contrast to neural networks, which take training data and generate
opaque, impenetrable models, fuzzy logic lets you stand on the shoulders of
people who already understand your system.

Fuzzy logic can be blended with conventional control techniques.

Fuzzy systems don't necessarily replace conventional control methods. In
many cases fuzzy systems augment them and simplify their implementation.

Fuzzy logic is based on natural language.

The basis for fuzzy logic is the basis for human communication. This obser-
vation underpins many of the other statements about fuzzy logic.

The last statement is perhaps the most important one and deserves more
discussion. Natural language, that which is used by ordinary people on a daily
basis, has been shaped by thousands of years of human history to be convenient
and efficient. Sentences written in ordinary language represent a triumph of
efficient communication. We are generally unaware of this because ordinary
language is, of course, something we use every day. But since fuzzy logic is built

1 Introduction

atop the structures of everyday language, it not only makes it easy for us to use
it (since fuzzy logic more closely “speaks our language”) but it also takes

advantage of the long history of natural language. In other words, language is
a fuzzy logic tool the human race has spent a hundred generations developing.

Clear language is about getting at the big picture. Fuzzy logic keeps you from
bogging down in unnecessary detail. It’s all a matter of perspective. Life is
complicated enough already.

Precision City 1.62533741 x 101 miles

Fuzzyville About 20 miles

When Not to Use Fuzzy Logic

Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest
statement is the first one made in this introduction: fuzzy logic is a convenient
way to map an input space to an output space. If you find it’s not convenient,
try something else. If asimpler solution already exists, use it. Fuzzy logicisthe
codification of common sense—use common sense when you implement it and
you will probably make the right decision. Many controllers, for example, do a
fine job without being tweaked by fuzzy logic. But if you take the time to
become familiar with fuzzy logic, you’'ll see it can be a very powerful tool for
dealing quickly and efficiently with imprecision and nonlinearity. Nonlinearity
is everywhere, and if you don't go and find it, it will eventually come and find
you.

What Can the Fuzzy Logic Toolbox Do?

What Can the Fuzzy Logic Toolbox Do?

The Fuzzy Logic Toolbox allows you to do several things, but the most
important thing it lets you do is create and edit fuzzy inference systems. You
can create these systems by hand, using graphical tools or command-line
functions, or you can generate them automatically using either clustering or
adaptive neuro-fuzzy techniques.

If you have access to Simulink®, the simulation tool that runs alongside
MATLAB, you can easily test your fuzzy system in a block diagram simulation
environment. If you have Real-Time Workshop® capabilities available, you can
generate realtime or non-realtime code from the Simulink environment.

The toolbox also lets you run your own stand-alone C programs directly,
without the need for Simulink. This is made possible by a stand-alone Fuzzy
Inference Engine that reads the fuzzy systems saved from a MATLAB session
(the stand-alone code, uniike that generated by the Real-Time Workshop, does
not run in real time). You can customize the stand-alone engine to build fuzzy
inference into your own code. All provided code is ANSI compliant.

Because of the integrated nature of MATLAB’s environment, you can create
your own tools to customize the Fuzzy Logic Tool box or harness it with another
toolbox, such astheControl System, Neural Network, or Optimization Toolbox,
to mention only a few of the possibilities.

tip

An Introductory Example: Fuzzy vs. Non-Fuzzy

ten, then we might have the tip go linearly from 5% if the service is bad to 25%
if the service is excellent. Now our relation looks like this:

tip=0.20/10*service+0.05

service

So far so good. The formula does what we want it to do, and it's pretty
straightforward. But we may want the tip to reflect the quality of the food as
well. This extension of the problem is defined as follows:

The Extended Tipping Problem. Given numbers between 0 and 10 (where 10 is
excellent) that represent the quality of the service and the quality of the food,
respectively, at a restaurant, what should the tip be?

How will our formula be affected now that we've added another variable?
Here’s one attempt:

tip = 0.20/20*(service+food)+0.05;

0.25
0.2
#0.15
0.1

0.05
10

1-9

1 Introduction

Well, that's one way to do it, and the picture is pretty, but when | look at it
closely, it doesn't seem quite right. | want the service to be a more important
factor than the food quality. Let's say that | want the service to account for 80%
ofthe overall tipping “grade” and I'll let the food make up the other 20%. So let
me try:

servRatio=0.8;
tip=servRatio*(0.20/10*service+0.05) + ...
(1-servRatio)*(0.20/10*food+0.05);

025

0.2- n

£0.15. At

01

0.05)< -~ 0 ?
10
10
5

food 00 service

But still the response is somehow too linear all the way around. | want more of
aflat response in the middle; in other words, | want to give a 15%tip in general,
and | will depart from this plateau only if the service is exceptionally good or
bad. This, in turn, means my pleasant linear relations go out the window. But
we can still salvage things by using a piecewise linear construction. Let’s
return to the one-dimensional problem ofjust considering the service. | can
string together a simple conditional statement using breakpoints like this:

if service<s3,
tip=(0.10/3)*service+0.05;
elseif service<7,
tip=0.15;
elseif service<=10,
tip=(0.10/3)*(service-7)+0.15;
end

1-10

An Introductory Example: Fuzzy vs. Non-Fuzzy

And the plot looks like this.

service

If we extend this back out to two dimensions, where we take food into account
again, something like this results:

servRatio=0.8;
if service<3,
tip=((0.10/3)*service+0.05)*servRatio + ...
(1-servRatio)*(0.20/10*food+0.05);
elseif service<?7,
tip=(0.15)*servRatio + ...
(1-servRatio)*(0.20/10*food+0.05);
else,
tip=((0.10/3)*(service-7)+0.15)*servRatio + ...
(1-servRatio)*(0.20/10*food+0.05);
end

0.25
0.2
£0.15
0.1

0.05
10

1-11

1 Introduction

1-12

Wow! The plot looks good, but the function is surprisingly complicated
considering its humble start. How did we end up here? It was a little tricky to
code this correctly, and it’s definitely not easy to modify in the future. It works,
but it’s not easy to troubleshoot. It has hard-coded numbers going through the
whole thing. It’s even less apparent how the algorithm works to someone who
didn't witness the original design process.

The Fuzzy Approach

It would be nice if we could just capture the essentials of this problem, leaving
aside all the factors that could be arbitrary. If we make a list of what really
matters in this problem, we might end up with this:

1. if service is poor then tip is cheap
2. if service is good then tip is average

3. if service is excellent then tip is generous

The order in which the rules are presented here is arbitrary. It doesnt matter
which rules come first. If we wanted to include the food’s effect on the tip, we
might add the following two rules:

4. if food is rancid then tip is cheap

5. if food is delicious then tip is generous

In fact, we can combine the two different lists of rules into one tight list ofthree
rules like so:

1. if service is poor or the food is rancid then tip is cheap
2. if service is good then tip is average

3. if service is excellent or food is delicious then tip is generous

These three rules are the core of our solution. And coincidentally, we've just
defined the rules for a fuzzy logic system. Now if we give mathematical
meaning to the linguistic variables (what is an “average” tip, for example?) we

An Introductory Example: Fuzzy vs. Non-Fuzzy

would have a complete fuzzy inference system. Of course, there’s a lot left to
the methodology of fuzzy logicthat we’re not mentioning right now, things like:

¢ How are the rules all combined? or

« How do | define mathematically what an “average” tip is?

These are all questions we’ll provide detailed answers to in the next few
chapters. But the details ofthe method don't really change much from problem
to problem—the mechanics of fuzzy logic aren't terribly complex. What matters
iswhat we've shown in this preliminary exposition: fuzzy is adaptable, simple,
and easily applied.

0.25
0.2
£0.15
0.1

0.05
10

Here is the picture associated with the fuzzy system that solves this problem.
The picture above was generated by the three rules above. The mechanics of
how fuzzy inference works will be thoroughly explained in the next two
sections. In the “Building Systems with the Fuzzy Logic Toolbox” section after
that the entire tipping problem will be worked through using the graphical
tools in the Fuzzy Logic Toolbox.

Some Observations

Here are some observations about the example so far. We found a piecewise
linear relation that solved the problem. It worked, but it was something of a
nuisance to derive, and once we wrote it down as code it wasn't very easy to
interpret. On the other hand, the fuzzy system is based on some “common
sense” statements. Also, we were able to add two more rules to the bottom of
the list that massaged the shape ofthe overall output without needing to hack
into what had already been done. In other words, the subsequent modification
was pretty easy.

1-13

1 Introduction

1-14

Moreover, by using fuzzy logic rules, the maintenance of the algorithm
decouples along fairly clean lines. My notion of an average tip might change
from day to day, city to city, country to country. But the underlying logic is the
same: if the service is good, the tip should be average. | dont have to change
that part, no matter where in the world | travel. | can recalibrate the method
quickly by simply shifting the fuzzy set that defines average without rewriting
my rule.

You can do this sort of thing with lists of piecewise linear functions, but the
medium is working against you. You're more likely to get tangled up in wires
than you are to recalibrate the problem quickly. You can also buttress the
piecewise linear solution by including many helpful comments. However, even
if we lightly pass over the fact that the vast majority of code is woefully
uncommented, it’s still true that as code gets revised and updated, the
comments can quickly slip into uselessness, or worse, they can actually provide
misinformation.

An Introductory Example: Fuzzy vs. Non-Fuzzy

Let me illustrate what | mean. Here is the piecewise linear tipping problem
slightly rewritten to make it more generic. It performs the same function as
before, only now the constants can be easily changed.

% Establish constants

lowTip=0.05; averTip=0.15; highTip=0.25;
tipRange=highTip-lowTip;

badService=0; okayService=3;
goodService=7; (greatService=10;
serviceRange=greatService-badService;
badFood=0; greatFood=10;
foodRange=greatFood-badFood,;

% If service is poor or food is rancid, tip is cheap
if service<okayService,
tip=(((averTip-lowTip)/(okayService-badService))
*service+lowTip)*servRatio + ...
(1-servRatio)*(tipRange/foodRange*food+lowTip);
% If service is good, tip is average
elseif service<goodService,
tip=averTip*servRatio + (l1-servRatio)*
(tipRange/foodRange*food+lowTip);
% If service is excellent or food is delicious, tip is generous
else,
tip=(((highTip-averTip)/
(greatService-goodService))*
(service-goodService)+averTip)*servRatio + ...
(1-servRatio)*(tipRange/foodRange*food+lowTip);
end

Notice the tendency here, aswith all code, for creeping generality to render the
algorithm more and more opaque, threatening eventually to obscure it
completely. What we’re doing here isn't (shouldn't be!) that complicated. True,
we can fight this tendency to be obscure by adding still more comments, or
perhaps by trying to rewrite it in slightly more self-evident ways. But the
medium is not on our side.

1-15

1 Introduction

1-16

And the truly fascinating thing to notice is that if we remove everything except
for three comments, what remain are exactly the fuzzy rules we wrote down
before:

% If service is poor or food is rancid, tip is cheap
% If service is good, tip is average
% If service is excellent or food is delicious, tip is generous

If, as with a fuzzy system, the comment is identical with the code, think how
much more likely your code is to have comments! Fuzzy logic lets the language
that’s clearest to you, high level comments, also have meaning to the machine,
which is why it's a very successful technique for bridging the gap between
people and machines.

Or think of it this way: by making the equations as simple as possible (linear)
we make things simpler for the machine but more complicated for us. But
really the limitation is no longer the computer—it’s our mental model of what
the computer is doing. We all know that computers have the ability to make
things hopelessly complex; fuzzy logic is really about reclaiming the middle
ground and letting the machine work with our preferences rather than the
other way around. It’s about time.

Tutorial

2-4 Foundations of Fuzzy Logic

2-19 Fuzzy Inference Systems

2-28 Building Systems with the Fuzzy Logic Toolbox
2-48 Working from the Command Line
2-59 Sugeno-style Fuzzy Inference
2-65 Working with Simulink

2-69 ANFIS

2-79 Fuzzy Clustering

2-87 Stand-alone Code

2-89 Applications and Demos

2-108 Glossary

2-110 References

2-112 Fuzzy Musings

2 Tutorial

2-2

This section is designed to guide you through the fuzzy logic process step by
step. The first several sections are meant to provide an introduction to the
theory and practice of fuzzy logic.

The first three sections of this chapter are the most important—they move
from general to specific, first introducing underlying ideas and then discussing
implementation details specific to the toolbox. These three areas are

e Foundations of fuzzy logic, which is an introduction to the general con-
cepts. If you're already familiar with fuzzy logic, you may want to skip this
section.

« Fuzzy inference systems, which explains the specific methods of fuzzy
inference used in the Fuzzy Logic Toolbox. Since the field of fuzzy logic uses
many terms that do not yet have standard interpretations, you should con-
sider reading this section just to become familiar with the fuzzy inference
process as it is employed here.

e Building systems with the Fuzzy Logic Toolbox, which goes into detalil
about how you build and edit a fuzzy system using this toolbox. This intro-
ducesthe graphical user interface tools available in the Fuzzy Logic Toolbox
and guides you through the construction of a complete fuzzy inference
system from start to finish. If you just want to get up to speed as quickly as
possible, start here.

After this there are sections that touch on a variety of topics, such as Simulink
use, automatic rule generation, and demonstrations. But from the point of view
of getting to know the toolbox, these first three sections are the most crucial.

The Big Picture

We'll start with alittle motivation for where we are headed in this chapter. The
point of fuzzy logic isto map an input spaceto an output space, and the primary
mechanism for doing this is a list of if-then statements called rules. All rules
are evaluated in parallel, and the order of the rules is unimportant. The rules
themselves are useful because they refer to variables and the adjectives that
describe those variables. Before we can build a system that interprets rules, we
have to define all the terms we plan on using and the adjectives that describe
them. If we want to talk about how hot the water is, we need to define the range
that the water’'stemperature can be expected to vary over as well as what we
mean by the word hot. These are all things we’ll be discussing in the next
several sections ofthe manual. The diagram below is something like a roadmap

for the fuzzy inference process. It shows the general description of a fuzzy
system on the left and a specific fuzzy system (the tipping example from the
Introduction) on the right.

The General Case. A Specific Example.
Input Output tip
if serv s poor then tip is cheap
Rules if serv s good then tip is average
if serv s excellent then tip is generous
Input Output service tip
terms terms is interpreted as is assigned to be
{poor, {cheap,

(interpret) good, average,
excellent} generous)

The whole idea behind fuzzy inference is to interpret the values in the input
vector and, based on some set of rules, assign values to the output vector. And
that's really all there is to it.

2 Tutorial

Foundations of Fuzzy Logic

2-4

Everything is vague to a degree you do not realize till you havetried to make it
precise. —Bertrand Russell

Fuzzy Sets

Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without a
crisp, clearly defined boundary. It can contain elements with only a partial
degree of membership.

To understand what a fuzzy set is, first consider what is meant by what we
might call a classical set. A classical set is a container that wholly includes or
wholly excludes any given element. For example, the set of days of the week
unquestionably includes Monday, Thursday, and Saturday. It just as
unquestionably excludes butter, liberty, and dorsal fins, and so on.

Shoe
Polish erty
Dorsal
Butter Fins

Days of the week

We call this set a classical set because it's been around for such a long time. It
was Aristotle who first formulated the Law ofthe Excluded Middle, which says
X must either be in set A or in set not-A. Another version runs like this:

Of any subject, one thing must be either asserted or denied.

Here is a restatement of the law with annotations: “Of any subject (say
Monday), one thing (being a day of the week) must be either asserted or denied
(I assert that Monday is a day ofthe week).” This law demands that opposites,
the two categories A and not-A, should between them contain the entire
universe. Everything falls into either one group or the other. There is nothing
that is both a day of the week and not a day of the week.

Foundations of Fuzzy Logic

Now consider the set of days that make up the weekend. The diagram below is
one attempt at classifying the weekend days.

Shoe Liberty
Polish
Friday Thursday
Monday
Dorsal
Butter Fins

Days of the weekend

Most would agree that Saturday and Sunday belong, but what about Friday?
It “feels” like a part of the weekend, but somehow it seems like it should be
technically excluded. So in the diagram above Friday tries its best to sit on the
fence. Classical or “normal” sets wouldn't tolerate this kind of thing. Either
you’re in or you're out. Human experience suggests something different,
though: fence sitting is a part of life.

Of coursewe’re on tricky ground here, because we're starting to take individual
perceptions and cultural background into account when we define what
constitutes the weekend. But this is exactly the point. Even the dictionary is
imprecise, defining the weekend as “the period from Friday night or Saturday
to Monday morning.” We're entering the realm where sharp edged yes-no logic
stops being helpful. Fuzzy reasoning becomes valuable exactly when we're
talking about how people really perceive the concept “weekend” as opposed to
a simple-minded classification useful for accounting purposes only. More than
anything else, the following statement lays the foundations for fuzzy logic:

In fuzzy logic, the truth of any statement becomes a matter of degree.

Any statement can be fuzzy. The tool that fuzzy reasoning gives is the ability
to reply to ayes-no question with a not-quite-yes-or-no answer. This is the kind
of thing that humans do all the time (think how rarely you get a straight
answer to a seemingly simple question) but it's a rather new trick for
computers.

How does it work? Reasoning in fuzzy logic isjust a matter of generalizing the
familiar yes-no (boolean) logic. If we give “true” the numerical value of 1 and

2-5

2 Tutorial

2-6

[N

weekend-ness

“false” the numerical value of 0, we're saying that fuzzy logic also permits
in-between values like 0.2 and 0.7453. For instance:

Q: Is Saturday a weekend day?

A: 1 (yes, or true)

Q: Is Tuesday a weekend day?

A: 0 (no, or false)

Q: Is Friday a weekend day?

A: 0.8 (for the most part yes, but not completely)
Q: Is Sunday a weekend day?

A: 0.95 (yes, but not quite as much as Saturday).

Below on the left is a plot that shows the truth values for “weekend-ness” if we
are forced to respond with an absolute yes or no response. On the right is a plot
that shows the truth value for weekend-ness if we are allowed to respond with
fuzzy in-between values.

1.0

0.0

Thursday Friday Saturday Sunday Monday

Days of the weekend two-valued membership Days of the weekend multivalued membership

Technically, the representation on the right is from the domain of multivalued
logic (or multivalent logic). If | ask the question “Is X a member of set A?’ the
answer might be yes, no, or any one of athousand intermediate values in
between. In other words, X might have partial membership in A. Multivalued
logic stands in direct contrast to the more familiar concept of two-valued (or
bivalent yes-no) logic. Two-valued logic has played a central role in the history
of science since Aristotle first codified it, but the time has come for it to share
the stage.

To return to our example, now consider a continuous scale time plot of
weekend-ness shown below.

weekend-ness

Foundations of Fuzzy Logic

Days of the weekend two-valued membership Days of the weekend multivalued membership

By making the plot continuous, we’re defining the degree to which any given
instant belongs in the weekend rather than an entire day. In the plot on the
left, notice that at midnight on Friday, just asthe second hand sweeps past 12,
the weekend-ness truth value jumps discontinuously from 0to 1. This is one
way to define the weekend, and while it may be useful to an accountant, it
doesn't really connect with our real-world experience of weekend-ness.

The plot on the right shows a smoothly varying curve that accounts for the fact
that all of Friday and parts of Thursday to a small degree partake ofthe quality
of weekend-ness and thus deserve partial membership in the fuzzy set of
weekend moments. The curve that defines the weekend-ness of any instant in
time is a function that maps the input space (time of the week) to the output
space (weekend-ness). Specifically it is known as a membership function. We’'ll
discuss this in greater detail in the next section.

As another example of fuzzy sets, consider the question of seasons. What
season is it right now? In the northern hemisphere, summer officially begins at
the exact moment in the earth’s orbit when the north pole is pointed most
directly toward the sun. It occurs exactly once a year, in late June. Using the
astronomical definitions for the season, we get sharp boundaries as shown on
the left in the figure on the next page. But what we experience as the seasons
varies more or less continuously as shown on the right below (in temperate
northern hemisphere climates).

2-7

2 Tutorial

2-8

Time of the year Time of the year

Membership Functions

A membership function (MF) is a curve that defines how each point in the input
space is mapped to a membership value (or degree of membership) between 0
and 1. The input space is sometimes referred to as the universe of discourse, a
fancy name for a simple concept.

One ofthe most commonly used examples of a fuzzy set is the set oftall people.
In this case the universe of discourse is all potential heights, say from 3 feet to
9 feet, and the word “tall” would correspond to a curve that defines the degree
to which any person is tall. If the set of tall people is given the well-defined
(crisp) boundary of a classical set, we might say all people taller than six feet
are officially considered tall. But such a distinction is clearly absurd. It may
make sense to consider the set of all real numbers greater than six because
numbers belong on an abstract plane, but when we want to talk about real
people, it is unreasonable to call one person short and another one tall when
they differ in height by the width of a hair.

You must
be taller
than this
line to be
considered
TALL

But if the kind of distinction shown above is unworkable, then what isthe right
way to define the set of tall people? Much aswith our plot of weekend days, the

Foundations of Fuzzy Logic

figure below shows a smoothly varying curve that passes from not-tall to tall.
The output-axis is a number known asthe membership value between 0 and 1.
The curve is known as a membership function and is often given the
designation of u. This curve defines the transition from not tall to tall. Both
people are tall to some degree, but one is significantly less tall than the other.

1.0 tall (m= 1.0)
sharp-edged
membership
degree of function for
membership, p TALL
0.0 not tall (m= 0.0)
height
1.0 * definitely a tall

continuous
membership
degree of function for
TALL

person (m= 0.95)

membership,
PP really not very

tall at all (m= 0.30)
0.0

height

Subjective interpretations and appropriate units are built right into fuzzy sets.
If | say “She’stall,” the membership function “tall” should already take into
account whether I'm referring to a six-year-old or a grown woman. Similarly,
the units are included in the curve. Certainly it makes no sense to say “Is she
tall in inches or in meters?”

Membership Functions in the Fuzzy Logic Toolbox

The only condition a membership function must really satisfy is that it must
vary between 0 and 1. The function itself can be an arbitrary curve whose

2-9

2 Tutorial

2-10

shape we can define as a function that suits us from the point of view of
simplicity, convenience, speed, and efficiency.

A classical set might be expressed as
A ={x| x>6}

A fuzzy set is an extension of a classical set. If X is the universe of discourse
and its elements are denoted by x, then afuzzy set A in X is defined as a set of
ordered pairs:

A ={x ha(X) | x e X}

i8A(x) is called the membership function (or MF) of x in A. The membership
function maps each element of X to a membership value between 0 and 1.

The Fuzzy Logic Toolbox includes 11 built-in membership function types.
These 11 functions are, in turn, built from several basic functions: piecewise
linear functions, the Gaussian distribution function, the sigmoid curve, and
quadratic and cubic polynomial curves. For detailed information on any of the
membership functions mentioned below, turn to Chapter 3, Reference. By
convention, all membership functions have the letters nf at the end of their
names.

The simplest membership functions are formed using straight lines. Of these,
the simplest is the triangular membership function, and it has the function
name Codetrimf. It’s nothing more than a collection of three points forming a
triangle. The trapezoidal membership function, trapmf, has a flat top and
really isjust atruncated triangle curve. These straight line membership
functions have the advantage of simplicity.

trimf, P =[3 6 8] trapmf, P=[157 8]

trimf trapmf

Two membership functions are built on the Gaussian distribution curve: a
simple Gaussian curve and a two-sided composite of two different Gaussian
curves. The two functions are gaussmf and gauss2mf.

Foundations of Fuzzy Logic

The generalized bell membership function is specified by three parameters and
has the function name gbellmf. The bell membership function has one more
parameter than the Gaussian membership function, so it can approach a
non-fuzzy set if the free parameter is tuned. Because of their smoothness and
concise notation, Gaussian and bell membership functions are popular

methods for specifying fuzzy sets. Both of these curves have the advantage of
being smooth and nonzero at all points.

aaussmf. P =[2 81 aauss2mf. P=[1 334] abellmf. P = [24 6]

gaussmf gauss2mf gbellmf

Although the Gaussian membership functions and bell membership functions
achieve smoothness, they are unable to specify asymmetric membership
functions, which are important in certain applications. Next we define the
sigmoidal membership function, which is either open left or right. Asymmetric
and closed (i.e. not open to the left or right) membership functions can be
synthesized using two sigmoidal functions, so in addition to the basic sigmf,we
also have the difference between two sigmoidal functions, dsigmf, and the
product of two sigmoidal functions psigmf.

siamf. P = [24] dsiamf. P=[5257] psiamf. P=[23-5 §

sigmf dsigmf psigmf

Polynomial based curves account for several ofthe membership functions in
the toolbox. Three related membership functions are the Z, S, and Pi curves, all
named because of their shape. The function zmf is the asymmetrical
polynomial curve open to the left, smf is the mirror-image function that opens
to the right, and pimf is zero on both extremes with a rise in the middle.

2-11

2 Tutorial

2-12

zmf, P=[3 7L pimf, P=[14 5 101 smf, P=[1 8
zmf pimf smf

There’s avery wide selection to choose from when you're selecting your favorite
membership function. And the Fuzzy Logic Toolbox also allows you to create
your own membership functions if you find this list too restrictive. On the other
hand, if this list seems bewildering, just remember that you could probably get
along very well with just one or two types of membership functions, for example
the triangle and trapezoid functions. The selection is wide for those who want
to explore the possibilities, but exotic membership functions are by no means
required for perfectly good fuzzy inference systems. Finally, remember that
more details are available on all these functions in the reference section, which
makes up the second half of this manual.

Summary of Membership Functions

* Fuzzy sets describe vague concepts (fast runner, hot weather, weekend days)

e A fuzzy set admits the possibility of partial membership in it (Friday is sort
of a weekend day, the weather is rather hot)

* The degree an object belongsto a fuzzy set is denoted by a membership value
between 0 and 1. (Friday is a weekend day to the degree 0.8)

« A membership function associated with a given fuzzy set maps an input
value to its appropriate membership value

Logical Operations
We now know what’s fuzzy about fuzzy logic, but what about the logic?
The most important thing to realize about fuzzy logical reasoning is the fact

that it is a superset of standard boolean logic. In other words, if we keep the
fuzzy values to the extremes of 1 (completely true) and 0 (completely false),

Foundations of Fuzzy Logic

standard logical operations will hold. As an example, consider the standard
truth tables below:

A B A and B A B AorB A not A
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 10 1 0 11
11 1 11 1

AND OR NOT

Now remembering that in fuzzy logicthe truth of any statement is a matter of
degree, how will these truth tables be altered? The input values can be real
numbers between 0 and 1. What function will preserve the results of the AND
truth table (for example) and also extend to all real numbers between 0 and 1?

One answer is the min operation. That is, resolve the statement A AND B,
where A and B are limited to the range (0,1), by using the function min(A,B).
Using the same reasoning, we can replace the OR operation with the max
function, sothat A OR B becomes equivalent to max(A,B). Finally, the
operation NOT A becomes equivalent to the operation 1-A. Notice how the
truth table above is completely unchanged by this substitution.

A B min(A,B) A B max(A,B) A 1-A
- - 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 10 1 0 11
1 1 1 1 1 1

AND OR NOT

Moreover, since there is a function behind the truth table rather than just the
truth table itself, we can now go on to consider values other than 1 and O.

The next figure uses a graph to show the same information. We've converted
the truth table to a plot of two fuzzy sets applied together to create one fuzzy
set. The upper part ofthe figure displays plots corresponding to the two-valued

2-13

2 Tutorial

2-14

truth tables above, while the lower part of the figure displays how the
operations work over a continuously varying range of truth values A and B
according to the fuzzy operations we've defined.

A A
B B
two-valued
logic
AorB
A and B
A B
multivalued
logic
A and B
min(A,B) max(A,B) (1-A)

Given these three functions, we can resolve any construction using fuzzy sets
and the fuzzy logical operation AND, OR, and NOT.

Additional Fuzzy Operators

We've only defined here one particular correspondence between two-valued
and multivalued logical operations for AND, OR, and NOT. But this
correspondence is by no means unique.

In more general terms, we're defining what are known asthe fuzzy intersection
or conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement
(NOT). We have defined above what we’ll call the classical operators for these
functions: AND = min, OR = max, and NOT = additive complement. Typically
most fuzzy logic applications make use of these operations and leave it at that.
In general, however, these functions are arbitrary to a surprising degree. The
Fuzzy Logic Toolbox uses the classical operator for the fuzzy complement as
shown above, but the AND and OR operators can be easily customized if
desired.

The intersection of two fuzzy sets A and B is specified in general by a function
T which aggregates two membership grades as follows

"AnB(x) = T(na(x), Up(x)) = Ha(x) ® LB(x)

Foundations of Fuzzy Logic

where ® is a binary operator for the function T. These fuzzy intersection
operators, which are usually referred to as T-norm (Triangular norm)
operators, meet the following basic requirements.

A T-norm operator is a two-place function T(.,.) satisfying
boundary: T(0, 0) =0, T(a, 1) =T(1, a) = a
monotonicity: T(a, b) <= T(c, d) ifa<=cand b<=d
commutativity: T(a, b) = T(b, a)
associativity: T(a, T(b, ¢)) = T(T(a, b), ¢

The first requirement imposes the correct generalization to crisp sets. The
second requirement implies that a decrease in the membership values in A or
B cannot produce an increase in the membership value in A intersection B. The
third requirement indicates that the operator is indifferent to the order of the
fuzzy setsto be combined. Finally, the fourth requirement allows usto take the
intersection of any number of sets in any order of pairwise groupings.

Like fuzzy intersection, the fuzzy union operator is specified in general by a
function S:
MAUb (x) = S(ha(x), Up(x)) = M x) © (Ib(x)

where © is a binary operator for the function S. These fuzzy union operators,
which are often referred to as T-conorm (or S-norm) operators, satisfy the
following basic requirements.

A T-conorm (or S-norm) operator is atwo-place function S(.,.) satisfying
boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a
monotonicity: S(a, b) <= S(c, d) ifa<=cand b<=d
commutativity: S(a, b) = S(b, a)
associativity: S(a, S(b, c)) = S(S(a, b), ¢)
The justification of these basic requirements is similar to that of the

requirements for the T-norm operators.

Several parameterized T-norms and dual T-conorms have been proposed in the
past, such asthose of Yager [Yag80], Dubois and Prade [Dub80], Schweizer and
Sklar [Sch63], and Sugeno [Sug77]. Each of these provides a way to vary the

“gain” on the function sothat it can be very restrictive or very permissive.

2-15

2 Tutorial

2-16

[f-Then Rules

Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. But in
order to say anything useful we need to make complete sentences. Conditional
statements, if-then rules, are the things that make fuzzy logic useful.

A single fuzzy if-then rule assumes the form

if x is A then y is B

where A and B are linguistic values defined by fuzzy sets on the ranges
(universes of discourse) X and Y, respectively. The if-part of the rule “x is A” is
called the antecedent or premise, while the then-part of the rule “y is B” is
called the consequent or conclusion. An example of such a rule might be

if service is good then tip is average

Note that the antecedent is an interpretation that returns a single number
between 0 and 1, whereas the consequent is an assignment that assigns the
entire fuzzy set B to the output variable y. Sothe word “is” gets used in two
entirely different ways depending on whether it appears in the antecedent or
the consequent. In MATLAB terms, this isthe distinction between a relational
test using “==" and a variable assignment using the “=" symbol. A less
confusing way of writing the rule would be

if service == good then tip = average

Sothe input to an if-then rule is the current value for the input variable
(service) and the output is an entire fuzzy set (average).

Interpreting an if-then rule involves distinct parts: first evaluating the
antecedent (which involves fuzzifying the input and applying any necessary
fuzzy operators) and second applying that result to the consequent (known as
implication). In the case of two-valued or binary logic, if-then rules don't
present much difficulty. If the premise is true, then the conclusion is true. But
if we relax the restrictions oftwo-valued logic and let the antecedent be afuzzy
statement, how doesthis reflect on the conclusion? The answer is a simple one:
if the antecedent is true to some degree of membership, then the consequent is
also true to that same degree. In other words

in binary logic: p™ q (p and q are either true or false)
in fuzzy logic: 0.5 p~ 0.5 g (partial antecedents imply partially)

The antecedent of a rule can have multiple parts:

if sky is gray and wind is strong and barometer is falling, then ..

Foundations of Fuzzy Logic

in which case all parts of the antecedent are calculated simultaneously and
resolved to a single number using the logical operators discussed in the
preceding section. The consequent of a rule can also have multiple parts:

if temperature is cold then hot water valve is open and cold water valve is shut

in which case all consequents are affected equally by the result of the
antecedent. But how is the consequent affected by the antecedent? The
consequent specifies a fuzzy set be assigned to the output. The implication
function then modifies that fuzzy set to the degree specified by the antecedent.
The most common ways to modify the output fuzzy set are truncation using the
min function (where the fuzzy set is “chopped off” as shown below) or scaling
using the prod function (where the output fuzzy set is “squashed”). Both are
supported by the Fuzzy Logic Toolbox, but we will be using truncation for the
examples in this section.

Antecedent Consequent

If service isexcellent or food isdelicious then tip = generous

1. Fuzzify
inputs

~(service=excellent) - 0 .0 V(food--delicious) - 0 .7

If (0.0 or 0.7) then tip = generous

2. Apply 0.7

1
Or operator O
(max) 0.0

max(0.0, 0.7) - 0.7

f (0.7) then tip = generous
3. Apply
Implication 07 - generous eeeeeeees pil
operator (min)
min(0.7, generous) tip (fuzzy)

2-17

2 Tutorial

2-18

Summary of If-Then Rules
Interpreting if-then rules is athree part process.

1

Fuzzify inputs

Resolve all fuzzy statements in the antecedent to a degree of membership
between 0 and 1. If there is only one part to the antecedent, this isthe degree
of support for the rule.

Apply fuzzy operator

If there are multiple parts to the antecedent, apply fuzzy logic operators and
resolve the antecedent to a single number between 0 and 1. This is the
degree of support for the rule.

Apply implication method

Use the degree of support for the entire rule to shape the output fuzzy set.
The consequent of a fuzzy rule assigns an entire fuzzy set to the output. If
the antecedent is only partially true, then the output fuzzy set is truncated
according to the implication method.

In general, one rule by itself doesn't do much good. W hat’s needed are two or
more rules that can play off one another. The output of each rule is a fuzzy set,
but in general we want the output for an entire collection of rules to be a single
number. How are all these fuzzy sets distilled into a single crisp result for the
output variable? First the output fuzzy sets for each rule are aggregated into a
single output fuzzy set. Then the resulting set is defuzzified, or resolved to a
single number. The next section shows how whole process works from
beginning to end.

Fuzzy Inference Systems

Fuzzy Inference Systems

Fuzzy inference is the actual process of mapping from a given input to an
output using fuzzy logic. The process involves all the pieces that we have
discussed in the previous sections: membership functions, fuzzy logic
operators, and if-then rules.

Fuzzy inference systems have been successfully applied in fields such as
automatic control, data classification, decision analysis, expert systems, and
computer vision. Because of its multi-disciplinary nature, the fuzzy inference
system is known by a number of names, such as fuzzy-rule-based system, fuzzy
expert system, fuzzy model, fuzzy associative memory, fuzzy logic controller,
and simply (and ambiguously) fuzzy system. Since the terms used to describe
the various parts of the fuzzy inference process are far from standard, we will
try to be as clear as possible about the different terms introduced in this
section.

Dinner for Two, Reprise

In this section, we’ll see how everything fits together using the same two-input
one-output three-rule tipping problem that we saw in the introduction. Only
this time we won't skip over any details. The basic structure ofthis example is
shown in the diagram below.

Information flows from left to right, from two inputs to a single output. The
parallel nature of the rules is one of the more important aspects of fuzzy logic

Dinner for two
a 2 input, 1 output, 3 rule system

The inputs are crisp Ail rules are The results of the rules The resultis a crisp
(non-fuzzy) numbers evaluated in parallel are combined and (non-fuzzy) number
limited to a specific using fuzzy distilled (defuzzified)

range reasoning

2-19

2 Tutorial

2-20

systems. Instead of sharp switching between modes based on breakpoints, we
will glide smoothly from regions where the system’s behavior is dominated now
by this rule, now by that one.

In the Fuzzy Logic Toolbox, there are five parts ofthe fuzzy inference process:
fuzzification of the input variables, application of the fuzzy operator (AND or
OR) in the antecedent, implication from the antecedent to the consequent,
aggregation of the consequents across the rules, and defuzzification. These
sometimes cryptic and odd names have very specific meaning that we’ll define
carefully as we step through each of them in more detail below.

Step 1. Fuzzify Inputs

The first step is to take the inputs and determine the degree to which they
belong to each of the appropriate fuzzy sets via membership functions. The
input is always a crisp numerical value limited to the universe of discourse of
the input variable (in this case the interval between 0 and 10) and the output
is a fuzzy degree of membership (always the interval between 0 and 1). So
fuzzification really doesnt amount to anything more than table lookup or
function evaluation.

The example we’re using in this section is built on three rules, and each of the
rules depends on resolving the inputs into a number of different fuzzy linguistic
sets: service is poor, service is good, food is rancid, food is delicious and so on.
Before the rules can be evaluated, the inputs must be fuzzified against these
linguistic sets. For example, to what extent is the food really delicious? The
figure below shows how well the food at our hypothetical restaurant (rated on
a scale of 0 to 10) fits the linguistic variable “delicious”. In this case, we rated
the food as an 8, which, given our graphical definition of delicious, corresponds
to y=0.7.

1. Fuzzify r 1071
inputs delicious result of
fuzzification

food isdelicious

food =8

input

Fuzzy Inference Systems

(The compliment to the chefwould be “your food is delicious to the degree 0.7.”)
In this manner, each input is fuzzified over all the membership functions
required by the rules.

Step 2. Apply Fuzzy Operator

Once the inputs have been fuzzified, we know the degree to which each part of
the antecedent has been satisfied for each rule. If the antecedent of a given rule
has more than one part, the fuzzy operator is applied to obtain one number that
represents the result of the antecedent for that rule. This number will then be
applied to the output function. The input to the fuzzy operator is two or more
membership values from fuzzified input variables. The output is a single truth
value.

As described in the section on fuzzy logical operations, any number of
well-defined methods can fill in for the AND operation or the OR operation. In
the Fuzzy Logic Toolbox, two built-in AND methods are supported: min
(minimum) and prod (product). Two built-in OR methods are also supported:
max (maximum), and the probabilistic OR method probor. The probabilistic OR
method (also known as the algebraic sum) is calculated according to the
equation

probor(a,b) =a+ b-ab

In addition to these built-in methods, you can create your own methods for
AND and OR by writing any function and setting that to be your method of
choice. There will be more information on how to do this later.

Shown below is an example ofthe OR operator max at work. We’re evaluating
the antecedent ofthe rule 3 for the tipping calculation. The two different pieces
of the antecedent (service is excellent and food is delicious) yielded the fuzzy
membership values 0.0 and 0.7 respectively. The fuzzy OR operator simply
selects the maximum ofthe two values, 0.7, and the fuzzy operation for rule 3

2-21

2 Tutorial

2-22

is complete. If we were using the probabilistic OR method, the result would still
be 0.7 in this case.

1. Fuzzify 2. Apply

inputs Or operator (max)

excellent

Tl + 0
J 0" delicious LLI 00 | result of
J fuzzy operator
service is excellent or food is delicious
service = 3 food =8
input 1 input 2

Step 3. Apply Implication Method

Before applying the implication method, we must take care ofthe rule’sweight.
Every rule has aweight (a number between 0 and 1), which is applied to the
number given by the antecedent. Generally this weight is 1 (as it is for this
example) and so it has no effect at all on the implication process. But from time
to time you may want to weight one rule relative to the others by changing its
weight value to something other than 1.

The implication method is defined as the shaping of the consequent (a fuzzy

set) based on the antecedent (a single number). The input for the implication
process is a single number given by the antecedent, and the output is a fuzzy
set. Implication occurs for each rule. Two built-in methods are supported, and
they are the same functions that are used by the AND method: min (minimum)

Fuzzy Inference Systems

which truncates the output fuzzy set, and prod (product) which scales the
output fuzzy set.

Antecedent Consequent
1. Fuzzify 2. Apply 3 APPly
inputs Or operator (max) Implication

operator (min)

excellent

. | generous
delicious |
If service isexcellent or food is delicious then tip = generous result of
implication
service = 3 food =8
input 1 input 2

Step 4. Aggregate All Outputs

Aggregation is when we unify the outputs of each rule by joining the parallel
threads. It'sjust a matter oftaking all the fuzzy sets that represent the output
of each rule and combining them into a single fuzzy set in preparation for the
fifth and final step, defuzzification. Aggregation only occurs once for each
output variable. The input of the aggregation process is the list of truncated
output functions returned by the implication process for each rule. The output
of the aggregation process is one fuzzy set for each output variable.

Notice that as long as the aggregation method is commutative (which it always
should be), then the order in which the rules are executed is unimportant.
Three built-in methods are supported: max (maximum), probor (probabilistic
or), and sum (simply the sum of each rule’s output set).

2-23

2 Tutorial

In the diagram below, all three rules have been placed together to show how
the output of each rule is combined, or aggregated, into a single fuzzy set for
the overall output.

2. apply 3 a_pply
1 fuzzify inputs fuzzy implication
operation method (min)
(or = max)
1. poor rancid cheap
service ispoor or food israncid then tip = cheap
- . . . 4. apply
If service isexcellent or food is delicious then tip = generous aggregation

method (max)
service = 3 food =8

input 1 input 2

result of
aggregation

Step 5. Defuzzify

The input for the defuzzification process is a fuzzy set (the aggregate output
fuzzy set) and the output is a single number—crispness recovered from
fuzziness at last. As much as fuzziness helps the rule evaluation during the
intermediate steps, the final output for each variable is generally a single crisp
number. So, given afuzzy set that encompasses a range of output values, we
need to return one number, thereby moving from a fuzzy set to a crisp output.

Perhaps the most popular defuzzification method is the centroid calculation,
which returns the center of area under the curve. There are five built-in
methods supported: centroid, bisector, middle of maximum (the average ofthe

2-24

Fuzzy Inference Systems

maximum value of the output set), largest of maximum, and smallest of
maximum.

5. defuzzify the
aggregate output
(centroid)

tip = 16.7%

result of
defuzzification

The Fuzzy Inference Diagram

The fuzzy inference diagram is the composite of all the smaller diagrams we've
been looking at so far in this section. It simultaneously displays all parts ofthe
fuzzy inference process we've examined. Information flows through the fuzzy
inference diagram as shown below.

Interpreting the
Fuzzy Inference
Diagram

Notice how the flow proceeds up from the inputs in the lower left, then across
each row, or rule, and then down the rule outputs to finish in the lower right.
This is a very compact way of showing everything at once, from linguistic
variable fuzzification all the way through defuzzification of the aggregate
output.

Shown below is the real full-size fuzzy inference diagram. There’s a lot to see
in a fuzzy inference diagram, but once you become accustomed to it, you can

learn a lot about a system very quickly. For instance, from this diagram with
these particular inputs, we can easily tell that the implication method is

2-25

2 Tutorial

truncation with the min function. The max function is being used for the fuzzy
OR operation. Rule 3 (the bottom-most row in the diagram shown opposite) is
having the strongest influence on the output. And so on. The Inference Viewer,
described in the next section, is a MATLAB implementation of the fuzzy
inference diagram.

2. apply 3. apply
1 fuzzify inputs fuzzy implication
operation melhod (min)
(or = max)
1 . poor rancid cheap
eoOV i
service is poor or food israncid I
Ve
> > 4
rule 2 has
no dependency
g[d on input 2
If service isgood then tip = avW
excellent > cos)e
delicious
[_J
-
If service isexcellent or food isdelicious then I S
[
service = 3 food = 8
input 1 input 2
r -~
tip = 16.7%
output

Customization

The Fuzzy Logic Toolbox is designed to give you as much freedom as possible,
within the basic constraints of the process described here, to customize the
fuzzy inference process for your application. For example, you can substitute
your own MATLAB functions for any ofthe default functions used in the five
steps detailed above: you make your own membership functions, AND
methods, OR methods, implication methods, aggregation methods, and
defuzzification methods. An open and easily modified system is one ofthe

2-26

Fuzzy Inference Systems

primary goals of the Fuzzy Logic Toolbox.The next section will detail exactly
how to make this system work using the tools provided.

2-27

2 Tutorial

Building Systems with the Fuzzy Logic Toolbox

2-28

Dinner for Two, from the Top

Now we’re going to work through the exact same tipping example, only this
time we’ll be building it using the graphical user interface (GUI) tools provided
by the Fuzzy Logic Toolbox. Although it’s possible to use the Fuzzy Logic
Toolbox by working strictly from the command line, in general it's much easier
to build a system up graphically. There are five primary GUI tools for building,
editing, and observing fuzzy inference systems in the Fuzzy Logic Toolbox: the
Fuzzy Inference System or FIS Editor, the Membership Function Editor, the
Rule Editor, the Rule Viewer, and the Surface Viewer. These different GUIs
are all effectively siblings in that you can have any or all ofthem open for any
given system.

Building Systems with the Fuzzy Logic Toolbox

FIS Editor
Membership
Rule Editor Function Editor

14 Fuzzy
I Imference
K System],

Read-only

tools
Rule Viewer Surface Viewer

The FIS Editor handles the high level issues for the system: How many input
and output variables? What are their names? The Membership Function
Editor is used to define the shapes of all the membership functions associated
with each variable. The Rule Editor is for editing the list of rules that defines
the behavior ofthe system. The last two GUIs are used for looking at, as
opposed to editing, the FIS. They are strictly read-only tools. The Rule Viewer
isa MATLAB-based display ofthe fuzzy inference diagram shown at the end of
the last section. Used as a diagnostic, it can show (for example) which rules are
active, or how individual membership function shapes are influencing the
results. It'savery powerful window full of information. The last ofthe five GUI
siblings is the Surface Viewer. This tool can display how one of the outputs
depends on any one or two of the inputs—that is, it generates and plots an

2-29

2 Tutorial

2-30

output surface map for the system. Some ofthe GUI tools have the potential to
influence the others. For example, if you add a rule, you can expect to see the
output surface change.

This chapter began with an illustration similar to the one below describing the
main parts of a fuzzy inference system. Shown below is how the three Editors
fit together. The two Viewers examine the behavior of the entire system.

The General Case. A Specific Example. The GUI Editor.
Input Output tip The FIS Editor
if serv s poor then tip is cheap
Rules it serv s good then tip is average The Rule Editor
if serv s excellent then tip is generous
Input Output tip

The Membership

terms terms {poor. {eheap. Function Editor

(interpret) good, average,
excellent} generous)

The five principal GUI editors all exchange information, if appropriate. Any
one ofthem can read and write both to the workspace and to the disk. For any
fuzzy inference system, any or all of these five editors may be open. If more
than one ofthese editors is open for a single system, the various GUI windows
are aware of the existence of the others, and will, if necessary, update related
windows. Thus if the names of the membership functions are changed using
the Membership Function Editor, those changes are reflected in the rules
shown in the Rule Editor. The editors for any number of different FIS systems
may be open simultaneously.

Notice that the FIS Editor, the Membership Function Editor and the Rule
Editor can all read and modify the FIS data, but the Rules Viewer and the
Surface Viewer do not modify the FIS data in any way.

Building Systems with the Fuzzy Logic Toolbox

Getting Started

We’'ll start from scratch again with a basic description of the problem (noting
that it is based on tipping as practiced in the U.S))

The Basic Tipping Problem. Given a number between 0 and 10 that represents the
quality of service at a restaurant (where 10 is excellent), what should the tip be?

The starting point is to write down the three golden rules of tipping, based on
years of personal experience in restaurants.

1. if the service is poor then tip is cheap
2. if the service is good then tip is average
3. if the service is excellent then tip is generous

We’'ll assume that an average tip is 15%, a generous tip is 25%, and a cheap tip

is 5%. It's also useful to have a vague idea of what the tipping function should
look like.

service service

Obviously the numbers and the shape of the curve are subject to local
traditions, cultural bias, and so on, but the three rules are pretty universal. So
we know the rules, and we have an idea of what the output should look like.
Now we can begin working with the GUI tools.

2-31

2 Tutorial

2-32

The FIS Editor

The menu items allow you
to save, open, and edit a
fuzzy system using any of
the five basic GUI tools.

The name of the system
is displayed here. Itcan
be changed using one of
the Save as... menu
options.

These pop-up menus are
used to adjust the fuzzy
inference functions, such
as the defuzzification
method.

This status line describes
the most recent
operation.

Double-click on an input
variable icon and you can
immediately jump to the
Membership Function
Editor.

Double-click on the
system diagram and you
can immediately jump to
the Rule Editor.

Double-click on an output
variable icon and you can
immediately jump to the
Membership Function
Editor.

This edit field is used to
name and edit the names
of the input and output
variables.

The Help button gives
some information about
how the FIS Editor works
and the Close button
dismisses the window.

When creating a new fuzzy inference system from scratch, the place to start is
the FIS Editor. To do that, type

fuzzy

This will call up awindow that acts as the high-level (or “big picture”) view of
a FIS. At the top ofthe figure, there’s a diagram that shows inputs on the left
and outputs on the right. The system that is displayed is a default “start-up”
system, since we didn't specify any particular system.

The purpose ofthis section ofthe manual is to build a new system from scratch.
But if you want to save time and follow along quickly, you can load the already
built system by typing

fuzzy tipperl

Building Systems with the Fuzzy Logic Toolbox

This will load the fuzzy inference system associated with the file tipperl.fis
(the fis is implied) and launch the FIS Editor. More on loading and saving
later.

The FIS Editor displays general information about a fuzzy inference system.
There’s a simple diagram at the top that shows the names of each input
variable and each output variable. The sample membership functions shown in
the boxes are just icons and do not represent the shapes of the actual
membership functions.

Below the diagram is the name of the system and the type of inference used.
The default, Mamdani-style inference, is what we’'ve been describing sofar and
what we’ll continue to use for this example. There is another slightly different
type of inference, called Sugeno-style inference, that is explained in the next
section. Below the name, on the left side of the figure, are the pop-up menus
that allow you to modify the various pieces of the inference process. On the
right side at the bottom of the figure is the area that displays the names of the
input and output variables. Below that are the Help and Close buttons that
call up on-line help and dismiss the window, respectively, and finally, at the
bottom is a status line that relays information about the system from time to
time.

The first thing to notice from the diagram at the top of the figure is that the
default system already has one input and one output. That suits us well, since
our one input is service and our one output istip. We'd like to change the names
to reflect that, though.

1 Click once on the left-hand (yellow) box marked inputl (the boxwill be high-

lighted in red).

2 In the white edit field on the right, change inputl to service and press
Return.

3 Click once on the right-hand (blue) box marked outputl.

4 In the white edit field on the right, change outputl to tip.

2-33

2 Tutorial

5 From the File menu select Save to workspace as...

6 Enter the variable name tipper and click on OK.

You should seethe diagram updated to reflect the new names ofthe input and
output variables. There is now a new variable in the workspace called tipper
that contains all the information about this system. By saving to the workspace

with a new name, you also rename the entire system. Your window should look
something like this.

-1 FIS Editor:

File Edit View
tipper
(mamdani)

service tip
FIS Name: tipper FIS Type: mamdani
And method min Current Variable
Or method max Name up
Implication min Type output

" Range 01
Aggregation max -1
Defuzzification centroid Help Close

Renamed FIS to "tipper"

We'll leave the inference options in the lower left in their default positions for
now. Sowe've entered all the information we need to in this particular GUI.
The next thing to do is define the membership functions associated with each
of the variables. To do this, we need to open up the Membership Function

Editor by pulling down the View menu item and selecting Edit Membership
Functions....

2-34

Building Systems with the Fuzzy Logic Toolbox

The Membership Function Editor

This is the “Variable Palette’
area. Click on a variable

Click on a line to select it
and you can change any of
its attributes including
name, type and numerical
parameters.

here to make it current and
edit its membership

The menu items allow you
to save, open, and edit a
fuzzy system using any of
the five basic GUI tools.

These text fields display
the name and type of the
current variable.

This edit field lets you set
the range of the current
variable.

This edit field lets you set
the display range of the
current plot.

This status line describes
the most recent
operation.

This edit field letsyou
change the name of the
current membership
function.

This pop-up menu lets you
change the type of the
current membership
function.

This edit field lets you
change the numerical
parameters for the
current membership
function.

The Help button gives
some information about
how the Membership
Function Editor works,
and the Close button
dismisses the window.

The Membership Function Editor shares some features with the FIS Editor. In
fact, all of the five basic GUI tools have similar menu options, status lines, and
Help and Close buttons. The Membership Function Editor is the tool that lets
you display and edit all ofthe membership functions for the entire fuzzy
inference system, including both input and output variables.

There are no membership functions to start off with. On the left side of the
graph area is a “Variable Palette” that lets you set the current variable. The
membership functions from the current variable are displayed in the main
graph. Below the Variable Palette is some information about the type and
name of the current variable. There is one text field that lets you change the
limits of the current variable’s range (universe of discourse) and another that
lets you set the limits of the current plot (which has no real effect on the

2-35

2 Tutorial

system). In the lower right of the window are the controls that let you change
the name, position, and shape of the currently selected membership function.

1 Make sure the input variable is selected in the Variable Palette. Set the
Range to vector [0 10].

2 Select Add MFs... from the Edit menu and add three Gaussian curvesto the
input variable service.

3 Click once directly on the leftmost curve. Change the name of the curve to
poor. Change the parameters listing to [1.5 0].

4 Name the middle curve good and the rightmost curve excellent and change
the first parameters to 1.5.

Next we need to create the membership functions for the output variable, tip.
We already know the names for these membership functions: cheap, average,
and generous. To display the output variable membership functions, use the

Variable Palette on the left. The input range was a rating scale of 0to 10, but
the output scale is going to be atip between 5 and 25 percent.

We'll usetriangular membership function types for the output. First, set the
Range (not the Display Range) to [0 30]. The cheap membership function will
have the parameters [0 5 10], the average membership function will be [10 15
20] and the generous membership function will be [20 25 30]. So each of these

2-36

Building Systems with the Fuzzy Logic Toolbox

is a fuzzy set centered on the typical number. Your system should look

something like this.

Current Variable
Name tip
Type output
Range 1[030]

Display Range |[0 30]

Ready

10 15 .20 25 30
output variable "tip"
Current Membership Function
Name | generous
Type trimf
Params f[20 25 30]
Help | Close

Now that the variables have been named, and the membership functions have
appropriate shapes and names, we’'re ready to write down the rules. To call up
the rule editor, goto the View menu and select Edit rules....

2-37

2 Tutorial

2-38

The menu items allow you
to save, open, and edita
fuzzy system using any of
the five basic GUI tools.

This pop-up menu lets
you choose the style in
which the rules are
displayed.

This status line describes
the most recent
operation.

The Rule Editor

The rules are entered,
displayed, and edited in
this editable text field. After
editing, use Ctrl-return to
parse.

The Help button gives
some information about
how the Rule Editor
works, and the Close
button dismisses the
window.

The Rule Editor contains a large editable text field for displaying and editing
rules. It also has some by now familiar landmarks similar to those in the FIS
Editor and the Membership Function Editor, including the menu bar and the
status line. A format pop-up menu isthe only window specific control—this is
used to set the format for the display.

In the main (white) text area, type the following rules and then press
Ctrl-Return.

if service is crummy then tip is cheap

if service is good then tip is average

if service is excellent then tip is generous

It gets returned as

if service is crummy then tip is cheap

1. If (service is good) then (tip is average) (1)

2. If (service is excellent) then (tip is generous) (1)
There should be a message in the status window at the bottom ofthe figure that
reads “There is no MF called crummy for the input variable service.” The #
symbol is inserted at the beginning of the first line to indicate there was a

problem parsing that rule. Every time you press Ctrl-Return, the Rule Editor
tries to parse every rule. Any rules that confuse the parser are marked with the

Building Systems with the Fuzzy Logic Toolbox

symbol. Change the word “crummy” to “poor” and press Ctrl-Return sothe
editor can interpret the rule properly.

1. If (service is poor) then (tip is cheap) (1)

2. If (service is good) then (tip is average) (1)

3. If (service is excellent) then (tip is generous) (1)

The numbers in the parentheses represent weights that can be applied to each
rule if desired. If you do not specify them, they are assumed to be one. The Rule
Format pop-up menu in the lower left indicates that you're looking at the
verbose form of the rules. Try changing it to symbolic. You should see

1. (service==poor) => (tip=cheap) (1)
2. (service==good) => (tip=average) (1)
3. (service==excellent) => (tip=generous) (1)

Not much difference in the display really, but it's slightly more language
neutral, since it doesn't depend on terms like “if” and “then.” If you change the
format to indexed, you’'ll see an extremely compressed version ofthe rules that
has squeezed all the language out.

1,1(1):1
2,21 :1
3,3(1):1

This is the version that the machine deals with. The first column in the matrix
corresponds to the input variable, the second column corresponds to the output
variable, the third column displays the weight applied to each rule, and the
fourth column is shorthand that indicates whether this is an OR (2) rule or an
AND (1) rule. The numbers in the first two columns refer to the index number
of the membership function. So a literal interpretation of rule 1 is: “if input 1
is MF1 (the first membership function associated with input 1) then output 1
should be MF1 (the first membership function associated with output 1) with
the weight 1.” Since there is only one input for this system, the AND connective
implied by the 1in the last column is immaterial.

So the symbolic format doesn’'t bother with the terms if, then, and so on. But
the indexed format doesnt even bother with the names of your variables.
Obviously the functionality of your system doesn’'t depend on how beautifully
you named your variables and membership functions (if it did, it would be
called fuzzy poetry instead of fuzzy logic). The whole point of naming variables
descriptively is, as always, making the system easier to interpret.

2-39

2 Tutorial

2-40

Now the system has been completely defined: we've got the variables,
membership functions, and rules necessary to calculate tips. It would be nice,
at this point, to look at afuzzy inference diagram like the one presented at the
end of the previous section and verify that everything is behaving the way we
think it should. This is exactly the purpose ofthe Rule Viewer, the next ofthe
GUI tools we’ll look at. From the View menu, select View rules....

The Rule Viewer

This column (yellow) This column (blue) of
of plots shows how plots shows how the
the input variable is output variable is
used in the rules. used in the rules.

The menu items allow you
to save, open, and edita
fuzzy system using any of
the five basic GUI tools

Each row of plots
represents one rule (here
there are 3). Click on a
rule to display it in the
status bar.

This edit field allows you
to setthe input explicitly.

This status line describes
the most recent
operation.

The bottom-right plot
shows how the output of
each rule is combined to
make an aggregate
output and then
defuzzified.

The Help button gives
some information about
how the Rule Viewer
works, and the Close
button dismisses the
window.

The Rule Viewer displays a roadmap of the whole fuzzy inference process. It’s
based on the fuzzy inference diagram described in the previous section. You'll
see asingle figure window with seven small plots nested in it. In addition there
are the now familiar items like the status line and the menu bar. In the lower
right there is a text field where you can enter a specific input value, if desired.

The two small plots across the top of the figure represent the antecedent and
consequent of the first rule. Each rule is a row of plots, and each column is a
variable. Sothe first column of plots (the three yellow plots) shows the
membership functions referenced by the antecedent, or if-part, of each rule.
The second column of plots (the three blue plots) shows the membership

Building Systems with the FUzzy Logic Toolbox

functions referenced by the consequent, or then-part of each rule. If you click
once on a rule number, the corresponding rule will be displayed at the bottom
of the figure.

There is ayellow index line across the input variable plots that you can move
left and right by clicking and dragging with the mouse. This changesthe input
value. When you release the line, a new calculation is performed, and you can
see the whole fuzzy inference process take place before your eyes. Where the
index line representing service crosses the membership function line “service
is poor” in the upper left plot will determine the degree to which rule one is
activated. A yellow patch of color under the actual membership function curve
is used to make the fuzzy membership value visually apparent. If we follow
rule 1 across the top of the diagram, we can see the consequent “tip is cheap”
has been truncated to exactly the same degree as the antecedent—this is the
implication process in action. Finally the aggregation occurs down the second
column, and the resultant aggregate plot is shown in the single plot to be found
in the lower right corner ofthe plot field. The defuzzified output value is shown
by the thick line passing through the aggregate fuzzy set.

The Rule Viewer presents a busy scene, and interpreting it can take some
getting used to, but once you become familiar with it, you can take in the whole
fuzzy inference process in one sweeping view. The Rule Viewer is very good, for
example, at showing how the shape of certain membership functions is
influencing the overall result. Since it plots every part of every rule, it can
become unwieldy for particularly large systems, but in general it performs well
(depending on how much screen space you devote to it) with up to 30 rules and
as many as 6 or 7 variables.

The Rule Viewer shows one calculation at atime and in great detail. In this
sense, it presents a sort of micro view ofthe fuzzy inference system. If you want
to see the entire output surface of your system, that is the entire span of the
output set based on the entire span of the input set, you need to open up the
Surface Viewer. This is the last of our five basic GUI tools in the Fuzzy Logic
Toolbox, and not surprisingly, you open it by selecting View surface... from the
View menu.

2-41

2 Tutorial

The Surface Viewer

The menu items allow you
to save, open, and edita
fuzzy system using any of
the five basic GUI tools»

These pop-up menus let
you specify the one or
two displayed input
variables

These edit fields let you
determine how densely
to grid the input space.

This edit field lets you set
the input explicitly for
unspecified inputs.

This status line describes
the most recent
operation.

This plot shows the
output surface for any
output of the system
versus any one or two
inputs to the system.

This pop-up menu lets
you specify the displayed
output variable.

Fush this button when
you're ready to calculate
and plot.

The Help button gives
some information about
how the Surface Viewer
works, and the Close
button dismisses the
window.

2-42

Upon opening the Surface Viewer, we are presented with atwo dimensional
curve that represents the mapping from service quality to tip amount. Since
this is a one-input one-output case, we can see the entire mapping in one plot.
Two-input one-output systems also work well, as they generate
three-dimensional plots that MATLAB can adeptly manage. But when we
move beyond three dimensions overall, we start to encounter trouble
displaying the results. Accordingly, the Surface Viewer is equipped with
pop-up menus that let you select any two inputs and any one output for
plotting. Just below the pop-up menus are two text input fields that let you
determine how many X-axis and Y-axis grid lines you want to include. This
allows you to keep the calculation time reasonable for complex problems.
Pushing the Evaluate button initiates the calculation, and the plot comes up
soon after the calculation is complete.

The Surface Viewer has a special capability that is very helpful in cases with
two (or more) inputs and one output: you can actually grab the axes and
reposition them to get a different three-dimensional view on the data. The
Reference Input field is used in situations when there are more inputs required
by the system than are currently being varied. Suppose you have a four-input

Building Systems with the FUzzy Logic Toolbox

one-output system and would like to see the output surface. The Surface
Viewer can generate athree-dimensional output surface where any two of the
inputs vary, but two of the inputs must be held constant since our monitors
simply cannot display a five-dimensional shape. In such a case the Reference
Input would be a four element vector with NaNs holding the place of the
varying inputs while numerical values would indicate those values that remain
fixed.

This concludes the quick walkthrough of each of the main GUI tools. Notice
that for the tipping problem, the output ofthe fuzzy system nicely matches our
original idea for what the shape of the fuzzy mapping from service to tip. If,
after all this work, this were the only value we got from the fuzzy system, we
might be tempted to say “Why bother? | could have just drawn a quick lookup
table and been done an hour ago!” But one of the beauties of fuzzy logic is the
ease with which a system can be quickly modified, extended, and massaged.

Two-inputs One-output, or What About the Food?

Now we might say: “This is all well and good, but I think the food quality should
be reflected in the tip aswell.” We've looked at this problem in earlier sections,
but for the sake of clarity, we will restate the extended tipping problem.

The Extended Tipping Problem: Given numbers between 0 and 10 (where 10 is
excellent) that represent the quality of the service and the quality of the food,
respectively, at a restaurant, what should the tip be?

The thing we need to do right away is add another input variable, and to do
that, we need to get back to the FIS Editor.

1 Return to the FIS Editor and from the Edit menu, select Add input vari-
able.

2 Name the new variable food.

3 Return to the Membership Function Editor and add two trapezoidal mem-
bership functions.

4 Change the Range to [0 10].

5 Name the leftmost membership function rancid and give it the parameters
[-2 0 13]. Name the rightmost membership function delicious and give it the
parameters [7 9 10 12].

2-43

2 Tutorial

If you return to the FIS Editor at this point, you should see something like this.

Now we need to update the rules appropriately. Add two new rules to the
bottom of the list:

4. if food is rancid then tip is cheap

5. if food is delicious then tip is generous

2-44

Building Systems with the Fuzzy Logic Toolbox

In fact, because of the parallel nature in which the rules get evaluated, it
makes no difference whether these two rules are added to the bottom ofthe rule
list, or the three existing rules are modified like so

1. if service is poor or food is rancid then tip is low

2. if service is good then tip is average

3. if service is excellent or food is delicious then tip is generous

Rule Editor: tipper
File Edit View Options
1, If (service is poor) or (food is rancid) then (tip is cheap) (1)

2, If (service is good) then (tip is average) (1)
3, If (service is excellent) or (food is delicious) then (tip is generous) (1)

Rule Format verbose —« Info Close

FIS Name: tipper

Finally return to the Surface Viewer—here is where we see the real value of
fuzzy logic. We originally built a system that was effectively doing a simple
one-dimensional table lookup. But by adding only two new rules, we've
generated a complex surface that nevertheless conforms to our desires for the

2-45

2 Tutorial

2-46

tipping algorithm. Fuzzy logic systems are easily modified and sculpted to suit
the needs of the problem.

Importing and Exporting from the GUI Tools

When you save a fuzzy system to disk, you'’re saving an ASCII text FIS file
representation of that system with the file suffix . fis . This text file can be
edited and modified and is simple to understand. When you save your fuzzy
system tothe MATLAB workspace, you're creating a variable (whose name you
choose) that will act as a FIS matrix for the system. FIS files and FIS matrices

can represent the same system, but they're extremely different from one
another.

Customizing Your Fuzzy System

If you want to include customized functions as part of your use of the Fuzzy
Logic Toolbox, there are a few guidelines you need to follow. The AND method,
OR method, aggregation method, and defuzzification method functions you
provide need to work in asimilar way to max, mn, or prod in MATLAB. That is,
they must be able to operate down the columns of a matrix. The implication

Building Systems with the Fuzzy Logic Toolbox

method does an element by element matrix operation, also like the min
function, as in

a=[1 2, 3 4];
b=[2 2, 2 2];
mn(a,b)
ans =
1 2
2 2

The only limitation on customized membership functions is that they cannot
use more than four parameters.

2-47

2 Tutorial

Working from the Command Line

2-48

The tipping example system is one of many example fuzzy inference systems
provided with the Fuzzy Logic Toolbox. To load this system (rather than
bothering with creating it from scratch), type

a = readfis('tipper.fis');
If you look at the text file tipper.fis by entering

type tipper.fis

you'll see that this fuzzy system is stored as ASCII text in a fairly
straightforward way. The function readfis takes all the information in this
text file and puts it into a big matrix, in this case, a. The matrix a is known as
a FIS (Fuzzy Inference System) matrix. This matrix is simply a bookkeeping
mechanism that keeps object-like information in atwo-dimensional matrix of
floating point numbers. This matrix is always cast as a an array of numbers,
even though much of it is ASCII text. In fact, it’'s almost never convenient to
look at it as a raw variable. Because of this, specialized access functions exist
to simplify the process of dealing with the FIS matrix. To learn more about it,

type
getfis(a)

This returns some fairly generic information about the fuzzy inference system,
such as its name, the number of input variables, output variables, and so on.
You can use getfis to learn more about any fuzzy inference system. Try the

following:

getfis(a,'nane’)
getfis(a,'input',1)
getfis(a,'output',1)
getfis(a,'input',1,'mf',1)

The function getfis is loosely modeled on the Handle Graphics™ function get.
There is a function called setfis that acts asthe reciprocal to getfis. It allows
you to change any property of a FIS. For example, if you wanted to change the
name of this system, you could type

a = setfis(a,'name’,'gratuity’)

Working from the Command Line

Now the FIS matrix a has been changed to reflect the new name. If you want a
little more insight into this big FIS matrix, try

showfis(a)

This returns a long printout listing all the rows of a and what they store. This
function is intended more for debugging than anything else, but it shows all the
information recorded in the FIS matrix row by row. As a rule, you will never
have to worry about what information goes on which line in the FIS matrix.
You need only keep straight which variable is associated with which system.

Since a designates the fuzzy tipping system, we can call up any ofthe GUIs for
the tipping system directly from the command line. Any of the following will
bring up the tipping system with the desired GUI.

fuzzy(a)
mfedit(a)
ruleedit(a)
ruleview(a)

surfview(a)

FIS Editor

Membership Function Editor
Rule Editor

Inference Viewer

Surface Viewer

And once any ofthese GUIs has been opened, you can jump to any of the other
GUIs using the pull-down menu rather than the command line.

2-49

2 Tutorial

System Display Functions

There are three functions designed to give you a high-level view of your fuzzy
inference system from the command line: plotfis, plotmf, and gensurf. The
first of these displays the whole system as a block diagram much as it would

appear on the FIS Editor.

plotfis(a)

2-50

Working from the Command Line

The function plotmf will plot all the membership functions associated with a

given variable.

plotmf(a,'input’,1)

service

plotmf(a,'output’',1)

tip

25

2-51

2 Tutorial

Finally, the function gensurf will plot any one or two inputs versus any one
output of a given system. The result is either a line or athree-dimensional
surface.

gensurf(a)

25
20

tpls

Building a System from Scratch

It is possible to use the Fuzzy Logic Toolbox without bothering with the GUI
tools at all. For instance, to build the tipping system entirely from the
command line, you would use the commands newfis, addvar, addmf, and
addrule.

Probably the trickiest part of this process is learning the shorthand that the
fuzzy inference systems use for building rules. Each variable, input or output,
has an index number, and each membership function has an index number.
The rules are built from statements like this

if inputl is MF1 or input2 is MF3 then outputl is MF2 (weight = 0.5)

This rule isturned into a matrix according to the following logic: If there are m
inputs to a system and n outputs, then the first m columns of the rule matrix
correspond to inputs 1through m. The entry in column 1 isthe index number
for the membership function associated with input 1. The entry in column 2 is
the index number for the membership function associated with input 2. And so
on. The next n columns work the same way for the outputs. Column m +n + 1
is the weight associated with that rule (typically 1) and column m + n + 2

2-52

Working from the Command Line

specifies the connective used (where AND = 1and OR = 2). Sothe rule matrix
associated with the rule shown above is

132052
Here is how you would build the entire tipping system from the command line.

a=newfis('tipper’);
a=addvar(a,'input','service',[0 10]);

a=addmf(a,'input',1,'poor’',"gaussmf',[1.5 O0]);
a=addmf(a,'input',1,'good’',"'gaussmf’',[1.5 5]);
a=addmf(a,'input’',1,'excellent','"gaussmf',[1.5 10]);

a=addvar(a,'input','food",[0 10]);
a=zaddmf(a,'input',2,'rancid’,"trapmf',[-2 0 1 3]);
a=addmf(a,'input',2,'delicious’,'trapmf',[7 9 10 12]);

a=addvar(a,'output’,'tip',[0 30]);
a=addmf(a,'output',1,'cheap’,'trimf',[0 5 10]);
a=addmf(a,'output',1,'average’,'trimf',[10 15 20]);
a=addmf(a,'output’',1,'generous’,'trimf',[20 25 30]);

r
1
2
3 I

a=addrule(a,rulelList);

FIS Evaluation

To evaluate the output of a fuzzy system for a given input, use the function
evalfis.

a = readfis('tipper")
evalfis([1 2], a)
ans =

5.5586

2-53

2 Tutorial

2-54

This function can also be used for multiple collections of inputs, so each row of
the input matrix is a different input vector. By doing multiple evaluations at
once, you get atremendous boost in speed.

evalfis([3 5 2 7], a)
ans =

12.2184

7.7885

M-File or MEX-File?

There are two different functions (evalfis.mand evalfis.mex) that can dothe
actual fuzzy inference for a given set of inputs, though only one ofthem is used
at any given time. One is an M-file and the other is a MEX-file, and they return
exactly the same result. The MEX-file is much much faster, but if you are
curious about how the algorithms are implemented, you may want to inspect
or even modify the M-file. As long as it is on the MATLAB path, evalfis.mex
will be used preferentially to evalfis.m Every time evalfis.mex is called it
builds a data structure in memory, performs the FIS evaluation, and destroys
the data structure. You cannot access this data structure directly.

The FIS Matrix

The FIS matrix isthe MATLAB object that contains all the fuzzy inference
system information. This matrix is stored inside each GUI tool. Access
functions such as getfis and setfis make it easy to examine and modify its
structure. The access functions are also important because they protect you
from any changes to the data structure in future versions of the toolbox. The
data structure may change, but the access functions will continue to work as
before.

All the information for a given fuzzy inference system is contained in the FIS
matrix, including variable names, membership function definitions, and so on.

Working from the Command Line

This object can itself be thought of as a hierarchy of other objects, as shown in
the diagram below:

FIS
Name
Type MF
Numlnputs Name
NumOutputs .
NuminputMFs Variable ;yauzgms
NumOutputMFs Name
AndMethod Range
OrMethod MFLabels ME
AggMethod MFTypes
DefuzzMethod MFParams Name
InLabels -;ya,:zms
OutLabels
InRange .
OUtRagnge Variable
InMFLabels Name
OutMFLabels Range MF
InMFTypes MFLabels M
OutMFTypes MFTypes
InMFParams MFParams I’yaprgms
OutMFParams
RuleList

Since MATLAB deals only with matrices of double precision floating point
numbers, the FIS matrix is exactly that. The information is arranged in it as
shown below (the following list is actually just the output of the showfis
command).

showfis(a)

1 Name tipper
2. Type mamadani
3. Inputs/Outputs [2 1]
4. NuminputMFs [3 2]
5 NumCutputMFs 3

6. NumRules 3

7. AndMethod min

8. OrMfethod max

9. ImpMethod min

10. AggMethod max

11. DefuzzlVfethod centroid
12. InLabels service
13. food
14. OutLabels tip

15. InRange [0 10]
16. [0 10]

2-55

2 Tutorial

2-56

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
3L
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,

OutRange
InMFLabels

OutMFLabels

INMFTypes

OutMFTypes

InMFParame

OutMFParams

RulelList

[0 30]

poor

good
excellent
rancid
delicious
cheap
average
generous
gaussmf
gaussmf
gaussmf
trapmf
trapmf

trimf

trimf

trimf

[1.5 0 0 Q]
[1.5 50 Q]
[1.5 10 0 Q]
[0 013

[7 9 10 10]
[0 5 10 Q]
[10 15 20 Q]
[20 25 30 Q]
[1 1112
[2 0217
[3 2312

Access functions for dealing with this matrix include getfis, setfis, showfis,
addvar, addmf , addrule, rmvar, and rmmf. These are the only functions that
interact directly with the elements ofthe FIS matrix. Other functions may use
the information provided in the FIS matrix, but they will do so by means of one
of these functions. See Chapter 3, Reference, for more information.

Since the matrix is necessarily rectangular, zeros are used to fill out each row
to the required length. These matrices can therefore be saved as sparse
matrices if memory savings are desired.

Working from the Command Line

FIS Files on Disk

There is also a specialized text file format that is used for saving fuzzy
inference systems to disk. The functions readfis and writefis are used for
reading and writing these files.

If you prefer, you can interact with the fuzzy inference system by editing its
fis text file rather than using any ofthe GUIs. This is occasionally the most
convenient way to edit a fuzzy inference system. You should be aware,
however, that changing one entry may obligate you to change another. For
example if you add a rule to the rule list you must also increment the NumRules
variable or the system will not load properly. Also notice that the rules are in
“indexed” format. Here is the file tipper.fis.

[System]
Neme="tipper’
Type='mamdani'
Numlnputs=2
NumCutputs=1
NumRules=3
AndMethod="min’
CrMethod="max'
ImpMethod="min’
AggMethod="max’
DefuzzMethod="centroid’

[Inputl]

Name='service'

Range=[0 10]

NumMFs=3
MFl='poor':'gaussmf',[1.5 (]
MF2="'good':'gaussmf',[1.5 §]
MF3='excellent':'gaussmf',[1.5 10]

[Input2]

Name='food'

Range=[0 10]

NumMFs=2

MF1l='rancid":'trapmf',[0 0 1 3]
MF2="delicious':"trapmf',[7 9 10 10]

2-57

2 Tutorial

2-58

[Outputl]

Name="tip’

Range=[0 30]

NumMFs=3

MF1l='cheap':'trimf',[0 5 10]
MF2='average':'trimf',[10 15 20]
MF3="generous':'trimf',[20 25 30]

[Rules]

11 1 (1) 2
20 2 (1 1
32 3 () 2

Sugeno-style Fuzzy Inference

Sugeno-style Fuzzy Inference

The fuzzy inference process we've been referring to so far is known as
Mamdani’s fuzzy inference method. It’sthe most commonly seen fuzzy
methodology. Mamdani's method was among the first control systems built
using fuzzy set theory. It was proposed in 1975 by Ebrahim Mamdani [Mam75]
as an attempt to control a steam engine and boiler combination by synthesizing
a set of linguistic control rules obtained from experienced human operators.
Mamdani’s effort was based on Lotfi Zadeh’s 1973 paper on fuzzy algorithms
for complex systems and decision processes [Zad73]. Although the inference
process we have described in previous sections differs somewhat from the
methods described in the original paper, the basic idea is much the same.

Mamdani-style inference, as we have defined it for the Fuzzy Logic Toolbox,
expects the output membership functions to be fuzzy sets. After the
aggregation process, there is a fuzzy set for each output variable that needs
defuzzification. It’s possible, and in many cases much more efficient, to use a
single spike asthe output membership function rather than adistributed fuzzy
set. This is sometimes known as a singleton output membership function, and
it can be thought of as a pre-defuzzified fuzzy set. It enhances the efficiency of
the defuzzification process because it greatly simplifies the computation
required to find the centroid of atwo-dimensional shape. Rather than
integrating across a continuously varying two-dimensional shape to find the
centroid, we can just find the weighted average of a few data points. Sugeno
systems support this kind of behavior.

In this section we will discuss the so-called Sugeno, or Takagi-Sugeno-Kang
method of fuzzy inference first introduced in 1985 [Sug85]. It is similar to the
Mamdani method in many respects. In fact the first two parts of the fuzzy
inference process, fuzzifying the inputs and applying the fuzzy operator, are
exactly the same.

A typical fuzzy rule in a zero-order Sugeno fuzzy model has the form

if xisA and yis Bthen z=Kk

where A and B are fuzzy sets in the antecedent, while k is a crisply defined
constant in the consequent. When the output of each rule is a constant like this,
the similarity with Mamdani’s method is striking. The only distinctions are the
fact that all output membership functions are singleton spikes, and the
implication and aggregation methods are fixed and can not be edited. The
implication method is simply multiplication, and the aggregation operator just
includes all ofthe singletons.

2-59

2 Tutorial

3. implication
1 fuzzify inputs

If service is poor or food israncid then tip = cheap

4. aggregation

5. defuzzify
(weighted
average)

The figure above shows the fuzzy tipping model developed in previous sections
of this manual adapted for use as a zero-order Sugeno system. Fortunately it
is frequently the case that singleton output functions are completely sufficient
for a given problem’s needs. As an example, the system tippersg.fis isthe

Sugeno-style representation of the now-familiar tipping model. If you load the

2-60

Sugeno-style Fuzzy Inference

system and plot its output surface, you will see it is almost exactly the same as
the Mamdani system we've been looking at.

a = readfis('tippersg')
gensurf(a)

The more general first-order Sugeno fuzzy model has rules of the form

if xisA and yis Bthen z=p*x +q*y +r
where A and B are fuzzy sets in the antecedent, while p, g, and r are all
constants. The easiest way to visualize the first-order system isto think of each
rule as defining the location of a “moving singleton.” That is, the singleton
output spikes can walk around the output space, depending on what the input
is. This also tends to make the system notation very compact and efficient.
Higher order Sugeno fuzzy models are possible, but they introduce significant
complexity with little obvious merit. Sugeno fuzzy models of greater than first
order are not supported by the Fuzzy Logic Toolbox.

Because ofthe linear dependence of each rule on the system’s input variables,
the Sugeno method is ideal for acting as an interpolative supervisor of multiple
linear controllers that apply in different operating conditions of a dynamic
nonlinear system. For example, the performance of an aircraft may change
dramatically with altitude and Mach number. Linear controllers, though easy
to compute and well-suited to any given flight condition, must be updated
regularly and smoothly to keep up with the changing state ofthe flight vehicle.
A Sugeno fuzzy inference system is extremely well suited to the task of
smoothly interpolating linear gains across the input space; it’s a natural and

2-61

2 Tutorial

efficient gain scheduler. A Sugeno system is also suited for modeling nonlinear
systems by interpolating multiple linear models.

An Example: Two Lines
To see a specific example of a system with linear output membership functions,
consider the one input one output system stored in sugenol.fis.

fismat = readfis(‘'sugenol');
getfis(fismat,'output',1)
Name = output
NumMFs = 2
MFLabels =
linel
line2
Range = [0 1]

So the output variable has two membership functions

getfis(fismat,'output',1,'mf',1)

Name = linel
Type = linear
Params =
-1 -1
getfis(fismat,'output',1,'mf',2)
Name = line2
Type = linear
Params =
1 -1

Further, these membership functions are linear functions ofthe input variable.
The membership function linel is defined by the equation

output = (-1)*input + (-1)

and the membership function line2 is defined by the equation

output = (1)*input + (-1)

2-62

Sugeno-style Fuzzy Inference

The input membership functions and rules define which of these output
functions will be expressed and when.

showrule(fismat)

ans =

1 If (input is low) then (output is linel) (1)
2. If (input is high) then (output is line2) (1)

The function plotmf shows usthat the membership function low generally
refers to input values less than zero, while high refers to values greater than
zero. The function gensurf shows how the overall fuzzy system output switches
smoothly from the line called linel to the line called line2.

subplot(2,1,1), plotmf(fismat,'input’,1)
subplot(2,1,2), gensurf(fismat)

input

input

This isjust one example of how a Sugeno-style system gives you the freedom to
incorporate linear systems into your fuzzy systems. By extension, we could
build a fuzzy system that switches between several optimal linear controllers
as avery nonlinear system moves around in its operating space.

Conclusion

Any one Sugeno rule can be more expressive than arule in a Mamdani system.
Because it is a more compact and computationally efficient representation than
a Mamdani system, the Sugeno system lends itself to adaptive techniques.
These adaptive techniques in turn open up awhole new world by creating the
entire fuzzy system for you.

2-63

2 Tutorial

2-64

Here are some final considerations about the two different methods.
Advantages of Sugeno's method:

« Computational efficiency

e Works well with linear techniques (e.g. PID control, etc.)
e Works well with optimization and adaptive techniques

¢ Guaranteed continuity of the output surface

« Better suited to mathematical analysis
Advantages of Mamdani's method:

e More intuitive
* Widespread acceptance

* Better suited to human input

Working with Simulink

Working with Simulink

The Fuzzy Logic Toolbox is designed to work seamlessly with Simulink, the
simulation software available from The MathWorks. Once you've created your
fuzzy system using the GUI tools or some other method, you're ready to embed
your system directly into a simulation.

An Example: Water Level Control

The example we’ll look at is one of water level control. Picture atank with a
pipe flowing in and a pipe flowing out. We can change the valve controlling the
water that flows in, but the outflow rate depends on the diameter ofthe outflow
pipe (which is constant) and the pressure in the tank (which varies with the
water level). The system has some very nonlinear characteristics.

So a controller for the water level in the tank needsto know the current water
level, and it needs to be able to set the valve. Our controller’s input will bethe
current error (desired water level minus actual water level) and its output will
be the rate at which the valve is opening or closing. A first pass at writing a
fuzzy controller for this system might be the following.

1. If (level is okay) then (valve is no_change) (1)
2. If (level is low) then (valve is open_fast) (1)

3. If (level is high) then (valve is close_fast) (1)

One of the great advantages of the Fuzzy Logic Toolbox is the ability to take
fuzzy systems directly into Simulink and test them out in a simulation

2 Tutorial

environment. A Simulink block diagram for this system is shown below. The
Simulink block diagram for this system is sltank. Typing

sltank

at the command line, causes the system to appear.

At the same time, the file tank.fis is loaded into the FIS matrix tank. Some
experimentation shows that these three rules are not very good by themselves,
since the water level tends to oscillate around the desired level.

We need to add another input, the water level’s rate of change, to slow down
the valve when we get close to the right level.

4. If (level is good) and (rate is negative) then (valve is close_slow) (1)

5. If (level is good) and (rate is positive) then (valve is open_slow) (1)

2-66

Working with Simulink

With all five rules in operations, the step response looks like this

2

0 50 6 70 8 90 10
Time (second)

One interesting feature ofthe water tank system isthat the tank empties much
more slowly than it fills up because ofthe specific value of the outflow diameter
pipe. We can deal with this by setting the close_slow valve membership
function to be slightly different from the open_slow setting. Notice that a PID
controller would not have this latitude. The error, error-change, valve
command surface looks like this. If you look closely, you can see a slight
asymmetry to the plot.

Because the MATLAB technical computing environment supports so many
tools (like the Control System Toolbox, the Neural Network Toolbox, the
Nonlinear Control Design Toolbox, and so on), you can, for example, quickly do
afair comparison of afuzzy controller versus alinear controller versus a neural
network controller.

2-67

2 Tutorial

2-68

To load the system from the disk, type
a=readfis('tank.fis");
You can look at the five rules in this system from the command line by typing

showrule(a)

Or if you want to use the standard GUI tool for reviewing them

ruleedit(a)

The command showrule is the function that is called by ruleedit when it
displays the rules.

Building Your Own Simulations

To build your own Simulink systems that use fuzzy logic, simply copy the Fuzzy
Logic Controller block out of this system (or any of the other demo Simulink
systems available with the toolbox) and place it in your own block diagram. You
can also open the Simulink system called fuzblock, which contains the Fuzzy
Logic Controller block all by itself. Make sure that the fuzzy inference system
(FIS) matrix corresponding to your fuzzy system is both in the MATLAB
workspace and referred to by name in the dialog box associated with the Fuzzy
Logic Controller block.

The Fuzzy Logic Controller block is a masked Simulink block based on the
S-function sffis.msx. This function is itself based on the same algorithms as
the function evalfis, but it has been tailored to work optimally within the
Simulink environment.

ANFIS

ANFIS

ANFIS stands for Adaptive Neuro-Fuzzy Inference System. Fundamentally,
ANFIS is about taking a fuzzy inference system (FIS) and tuning it with a
backpropagation algorithm based on some collection of input-output data. This
allows your fuzzy systems to learn.

A network structure facilitates the computation of the gradient vector for
parameters in a fuzzy inference system. Once the gradient vector is obtained,
we can apply a number of optimization routines to reduce an error measure
(usually defined by the sum of the squared difference between actual and
desired outputs). This process is called learning by example in the neural
network literature.

Some Constraints

Since ANFIS is much more complex than the fuzzy inference systems discussed
so far, you are not able to use all the available fuzzy inference system options.
Specifically, ANFIS only supports Sugeno systems subject to the following
constraints:

e First order Sugeno-type systems
» Single output derived by weighted average defuzzification
* Unity weight for each rule

An error occurs if your FIS matrix for ANFIS learning does not comply with
these constraints.

Moreover, ANFIS is highly specialized for speed and cannot accept all the

customization options that basic fuzzy inference allows, that is, you cannot
make your own membership functions and defuzzification functions; you’ll
have to make do with the ones provided.

An Example

To start ANFIS learning, first you need to have atraining data set that
contains desired input/output data pairs of the target system to be modeled.
Sometimes you also want to have an optional checking data set that can check
the generalization capability of the resulting fuzzy inference system. Usually
these data sets are collected based on observations of the target system and

2-69

2 Tutorial

then stored in separate files. Suppose the data sets are generated via the
following MATLAB commands:

% Number of total data pairs

numPts = 51;

x = linspace(-1,1,numPts)’;

y = 0.6*sin(pi*x) + 0.3*sin(3*pi*x) + 0.1*sin(5*pi*x);
data = [x y]; 9Y%total data set

trnData = data(l:2:numPts,:); %training data set
chkData = data(2:2:numPts,:); %checking data set

Now plot the data set.

plot(trnData(:,1),trnData(:,2),'0",
chkData(:,1),chkData(:,2),'x")

Data Sets

- o x o >
o X
x o o
X0X0X0*

o X
> X <
X o

o training data
x checking data
X0X0X0X0
o o X
X o
X 0 x o
o ox
0.8 oo menree oo e meees eememeneneen T T emeeroreremn Jornoe e Lormeoeeee T Loreeemeemen 1
1 0.8 -06 -04 02 0 0.2 0.4 0.6 0.8 1

You still need to specify a fuzzy inference system for training. If you have
preferable membership functions with specific parameters or shapes, use
fuzzy to create afuzzy inference system and store it as a FIS matrix in the
workspace. On the other hand, if you do not have any ideas of what the initial
membership functions should look like, use the command genfisl instead.
This command will examine the training data set and then generate a FIS

2-70

ANFIS

matrix based on the given numbers and types of membership functions. For
example

numMFs 5. % number of MFs
mfType = 'gbellmf'; % M type is generalized bell
fisimat = genfisl(trnData,numMFs,mfType);

This generates a FIS matrix called fisimat. To view the membership functions,
type

[x,mf]=plotmf(fismat,'input',1);

plot(x,mf)

title('Initial Membership Functions')

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

You can seethat genfisl placesthese initial membership functions sothey are
equally spaced with enough overlap within the input range. To start the
training for 40 epochs, invoke the MEX-file anfis.

numEpochs = 40;
[fisimBtl,trnErr,ss,fisimat2,chkErr] = ...

anfis(trnData,fismBt,numEpochs,NaN,chkData);

Note that there is a NaN (the IEEE symbol for “not a number”) in the input
arguments; it simply acts as a place holder for the display options. When it sees
a NaN, anfis will take default values for the display options. After you type
the above command, information appears in the MATLAB command windows.

2-71

2 Tutorial

2-72

After the 40 epochs of batch learning, we can use evalfis to verify the learning
results:

trnCut = evalfis(trnData(:,1),fismatl);
trnRMSE = norm(trnCut - trnData(:,2))/sqrt(length(trnCut));

This RMSE (root mean squared error) for training data should match the
number appeared on screen after the anfis command. Note that the output
arguments fismatl and fismat2 are the FIS matrices corresponding to
minimal training and checking errors, respectively. To plot error curves, type

epoch = 1:numEpochs;
plot(epoch,trnErr,'o',epoch,chkErr,'x")
hold on; plot(epoch,[trnErr chkErr]); hold off

Error Curves

epochs

ANFIS

To plot step size, type

plot(epoch,ss,'-',epoch,ss,'x")
xlabel('epochs'), ylabel('ss'), title('Step Sizes')

Step Sizes

Note that the step size is updated according to the following heuristic
guidelines:

» Ifthe error measure undergoes four consecutive reductions, increase the step
size by multiplying it with a constant (ssinc) greater than one.

» Ifthe error measure undergoes two consecutive combinations of one increase
and one reduction, decrease the step size by multiplying it with a constant
(ssdec) less than one.

The default value for the initial step size is 0.01; the default values for ssinc
and ssdec are 1.1 and 0.9, respectively. All the default values can be changed
via the training option of anfis.

2-73

2 Tutorial

To plot the final membership functions, type

[x,mf]=plotmf(fismatl,'input',1);
plot(x,mf)
title('Final Membership Functions');

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Compare these membership functions with those before training and you will
see how the final membership functions are trying to catch the local features of
the training data set.

2-74

ANFIS

To plot the fuzzy inference system outputs, type
anfis_y = evalfis(x,fismatl);
plot(trnData(:,1),trnData(:,2),'0",

chkData(:,1),chkData(:,2),'x",
x,anfis_y,"-");

The final result is a good fit for the original data.

More on ANFIS

The command anfis takes at least two and at most five input arguments. The
general format is

[fismatl,trnError,ss,fismat2,chkError] = ..
anfis(trnData,fismat,trnCpt,clispCpt, cthata)

where trnCpt, CispCpt, and chkData are optional. All the output arguments
are also optional.

Training Data

Thetraining data trnDat is arequired argument to anfis. Each row oftrnData
is a desired input/output pair of the target system to be modeled; it starts with
an input vector and is followed by an output value. Therefore the number of
rows oftrnData is equal to the number of training data pairs, and the number
of columns is equal to the number of inputs plus one.

2-75

2 Tutorial

2-76

Input FIS Matrix

The input FIS matrix fismat can be obtained either from the FIS Editor (where
you have to specify all the details) or genfisl (where you only need to give
numbers and types of membership functions). This FIS matrix contains both
the structure (which specifies number of rules in the FIS, number of
membership functions for each input, etc.) and parameters (which specify the
shapes of membership functions). Remember that ANFIS learning employsthe
gradient descent for updating membership function parameters, sothe
learning process will drop into a local minimum if it finds one. Therefore the
more the initial membership functions resemble the optimal ones, the more
likely the training will converge to the optimal point in the parameter space.
Human expertise about the target system to be modeled can help when setting
up these initial membership function parameters in the FIS matrix.

Note that genfisl produces a FIS matrix with agrid partition and it causes an
explosion ofthe number of rules when the number of input is moderately large,
that is, more than four or five. This curse of dimensionality is inherent to all
fuzzy inference systems with a grid partition. To get around this, an
alternative is to generate a FIS matrix with a scatter partition. This can be
done using the clustering algorithm discussed in the next chapter.

ANFIS appliesthe least-squares method to identify the consequent parameters
(the coefficients of the output equations of each rules) at each epoch, sothe
initial values of consequent parameters in fismat are not used in the learning
process at all.

Training Options
Training option trnCpt is a vector that specifies the stopping criteria and the
step-size adaptation strategy:

e trnCpt(l): epoch number, default 10.

trnCpt(2): error goal, default 0.

e trnCpt(3):initial step size, default 0.01.

e trnCpt(4):step-size decrease rate, default 0.9.

e trnCpt(5):step-size increase rate, default 1.1.

If any element of trnCpt is NaN (Not a Number) or missing, then the default

value is taken. The training process stops if the designated epoch number is
reached or the error goal is achieved, whichever comes first.

ANFIS

The step-size update strategy was touched on in the early part of this section.
Usually we want the step-size profile to be a curve which goes uphill initially,
reaches some maximum, and then goes downhill till the end of training. This
ideal step-size profile is achieved by adjusting the initial step-size and the
increase and decrease rates (trnCpt(3) totrnCpt(5)). The default values are
set as the best guess to deal with awide range of learning tasks. For any
specific application, you are encouraged to modify these step-size options in
order to find their optimal values.

Display Options
Display option CispCpt is a vector of either ones or zeros that specifies what
information to display before, during, and after the training process:

CispCpt(1): ANFIS information, default 1.

« CispCpt(2): error measure, default 1.

CispCpt(3): step-size, default 1.
 CispCpt(4):final results, default 1.

The default mode is verbose, that is, all available information will be displayed.
If any element of CispCpt is NaN (not a number) or missing, the default value
will be taken.

Checking Data

The checking data chkData is used for testing the generalization capability of
the fuzzy inference system at each epoch. The checking data has the same
format as that of the training data, and its elements are usually distinct from
those of the training data.

The checking data is important for learning tasks where the input number is
large and/or the data itself is noisy. In general we are not looking for a fuzzy
inference system that can best fit the training data. Instead, we are looking for
a fuzzy inference system trained on the training data that can respond to the
checking data in a satisfactory manner. This cross-validation gives an
unbiased estimate of the minimal error measure that can be achieved in the
training.

The parameter that corresponds to the minimal checking error is returned in
the output argument fismat2. This is the output FIS matrix that should be
used if the checking data is supplied for the learning.

2-77

2 Tutorial

2-78

Output FIS Matrix for Training Data

fismatl isthe output FIS matrix for minimal training error. This is the FIS
m atrix that should be used for further calculation if there is no checking data
used for cross validation.

Training Error

The training error trnError records the RMSE (root mean squared error) for
the training data set at each epoch. fismatl is the snapshot ofthe FIS matrix
when the training error measure is at its minimum.

Step Size

The step-size array ss records the step-size during the training. Plotting ss
gives the step-size profile, which serves as a reference for adjusting the initial
step size and the corresponding decrease and increase rates.

Output FIS Matrix for Checking Data

fismat2 isthe output FIS matrix for minimal checking error. This isthe FIS
m atrix that should be used for further calculation if there is a checking data
used for cross validation.

Checking Error

The checking error chkError records the RMSE (root mean squared error) for
the checking data at each epoch. fismat2 is the snapshot of the FIS matrix
when the checking error is at its minimum.

Reference

For a detailed discussion of ANFIS architecture, its learning rules and other
related issues, you may want to read the paper [Jan93] listed in the
“References” section at the end of this chapter.

Fuzzy Clustering

Fuzzy Clustering

Clustering of numerical data forms the basis of many classification and system
modeling algorithms. The purpose of clustering is to distill natural groupings
of data from a large data set, producing concise representation of a system’s
behavior. The Fuzzy Logic Toolbox is equipped with some tools that allow you
to find clusters in input-output training data. You can use the cluster
information to generate a Sugeno-style fuzzy inference system that models the
data behavior.

Fuzzy C-Means Clustering

Fuzzy cmeans (FCM) is a data clustering technique where each data point
belongs to a cluster to a degree specified by a membership grade. This
technique was originally introduced by Jim Bezdek in 1981 [Bez81] as an
improvement on earlier clustering methods. The idea is fairly simple: how do
you lump together data points that populate some multidimensional space into
a specific number of different clusters?

We start with the concept of cluster centersthat mark the mean location of each
cluster. Initially these cluster centers are very inaccurately placed.
Additionally, every data point has a membership grade for each cluster. By
iteratively updating the cluster centers and the membership grades for each
data point, we can watch the cluster centers move to the “right” location. This
iteration is based on minimizing an objective function that represents the
distance from any given data point to a cluster center weighted by that data
point’'s membership grade.

The final output of fuzzy c-means is not a fuzzy inference system but rather a
list of cluster centers and several membership grades for each data point. You
can use the information returned by the fuzzy c-means routine to help you
build a fuzzy inference system.

2-79

2 Tutorial

An Example: 2-D Clusters
Let’'s use some quasi-random two-dimensional data to illustrate how fuzzy
c-means clustering works. Load a data set and take a look at it.

load fcmdata.dat
plot(fcmdata(:,1),fcmdata(:,2),'0")

Now we invoke the fcm function and ask it to find two clusters in this data set

[center,U,objFcn] = fcmjfcmdata,?2);
Iteration count 1, obj. fcn 8.941176
Iteration count 2, obj. fcn = 7.277177

and so on until the objective function is no longer decreasing much at all.

The variable center contains the two cluster centers, Ucontains the
membership grades for each of the data points, and objFcn contains a history
of the objective function across the iterations.

The fcm function is actually an iteration loop built on top of several other
routines, namely initfcm which initializes the problem; distfcm which is
used for distance calculations; and stepfcm which steps through one iteration.

2-80

Fuzzy Clustering

Plotting the objective function shows the progress of the clustering.
plot(objFcn)

objective function values

Finally here is a plot displaying the two separate clusters as classified by the
fcm routine. Cluster centers are shown by the large characters.

Subtractive Clustering

Suppose we don't even have a clear idea how many clusters there should be for
a given set of data. Subtractive clustering is a fast, one- pass algorithm for

estimating the number of clusters and the cluster centers in a set of data. The
cluster estimates obtained from the subclust function can be used to initialize

2-81

2 Tutorial

2-82

iterative optimization-based clustering methods (like fuzzy c-means) and
model identification methods (like ANFIS). The subclust function finds the
clusters by using the subtractive clustering method.

The genfis2 function builds upon the subclust function to provide a fast,
one-pass method to take input-output training data and generate a
Sugeno-style fuzzy inference system that models the data behavior.

An Example: Suburban Commuting

In this example we apply the genfis2 function to model the relationship
between the number of automobile trips generated from an area and the area’s
demographics. Demographic and trip data are from 100 traffic analysis zones
in New Castle County, Delaware. Five demographic factors are considered:
population, number of dwelling units, vehicle ownership, median household
income, and total employment. Hence the model has five input variables and
one output variable.

Load the data by typing

tripdata
subplot(2,1,1), plot(datin)
subplot(2,1,2), plot(datout)

Several vectors now exist in the workspace. Ofthe original 100 data points, we
will use 75 as training data (datin and datout) and 25 as checking data
(chkdatin and chkdatout). The genfis2 function generates a model from data
by clustering and requires you to specify a cluster radius. The cluster radius
indicates the range of influence of a cluster when you consider the data space

Fuzzy Clustering

as a unit hypercube. A small cluster radius will usually lead to finding many
small clusters in the data (resulting in many rules); a large cluster radius will
usually lead to finding a few large clusters in the data (resulting in fewer
rules). Here we use a cluster radius of 0.5 and run the genfis2 function.

fismat=genfis2(datin,datout,0.5);

genfis2 is a fast, one-pass method that does not perform any iterative
optimization. A FIS matrix is returned; the model in the FIS matrix is a first
order Sugeno model with three rules. We can use evalfis to verify the model.

fuzout=evalfis(datin,fismat);

trnRMSE=norm(fuzout-datout)/sqrt(length(fuzout))
trnRMSE =
0.5276

The variable trnRMSE is the root mean square error of the system generated by
the training data. To check the model, we use the checking data.

chkfuzout=evalfis(chkdatin,fismat);

chkRMSE=norm(chkfuzout-chkdatout)/sqrt(length(chkfuzout))
chkRMSE =
0.6170

2-83

2 Tutorial

Not surprisingly, the model doesn’t do quite as good ajob on the checking data.
A plot of the checking data reveals the difference.

plot(chkdatout)
hold on
plot(chkfuzout,'o")
hold off

At this point, we can use the optimization capability of ANFIS to improve the
model.

fismat2=anfis([datin datout],fismat,[50 0 0.1]);

Messages go by as the training progresses, after which we can type

fuzout2=evalfis(datin,fismat2);
trnRM3E2=normjfuzout2-datout)/sqrt(length(fuzout2))
trnRMSE2 =

0.3407
chkfuzout2=evalfis(chkdatin,fismat2);

chkRM3E2=normjchkfuzout2-chkdatout)/sqgrt(length(chkfuzout2))
chkRMSE2 =

0.5827

2-84

Fuzzy Clustering

Sothe model has improved a lot with respect to the training data, and a little
with respect to the checking data. Here is a plot of the improved checking data.

plot(chkdatout)

hold on
plot(chkfuzout2,'0")
hold off

Here we see that genfis2 can be used as a stand-alone, fast method for
generating a fuzzy model from data, or as a pre-processor to ANFIS for
determining the initial rules. An important advantage of using a clustering
method to find rules is that the resultant rules form a good “scatter” partition
of the input space, in contrast to a grid partition ofthe input space. This
overcomes the problem with combinatorial explosion of rules when the input
data has high dimension (the dreaded curse of dimensionality).

Overfitting
Now let’s go on to consider what happens if we continue to exhaustively train
this system using the ANFIS algorithm.

[fismat3,trnErr,stepSize,fismatd,chkErr] = ...
anfis([datin datout],fismat2,[200 O

0.11.11,
[chkdatin chkdatout]);

The long list of output arguments returns a history of the step sizes, the RMS
error versus training data, and the RMS error versus checking data associated
with each training epoch.

2-85

2 Tutorial

2-86

ANFIS training completed at epoch 200.
Minimal training RMSE = 0.326566
Minimal checking RMSE = 0.582545

This looks like good news. The error with the training data is the lowest we've
seen, and the error with the checking data is also lower than before, though not
by much at all. This suggests that maybe we had gotten about as close as
possible with this system already. Maybe we have even gone so far as to overfit
the system to the training data. Overfitting occurs when we fit the fuzzy
system to the training data so well that it no longer does a very good job of
fitting the checking data. The result is a loss of generality. A look at the error
history against both the training data and the checking data reveals much.

This is indeed a case of overfitting. The smallest error against the checking
data occurs at epoch 52 after which the checking data error trends upward even
asANFIS keepsworking to minimize the error against the training data all the
way to epoch 200.

References

The fuzzy c-means algorithm is described in [Bez81], while afull description of
the subclust algorithm and the underlying clustering method can be found in
the paper by Chiu [Chi94]. Both are listed in the “References” section at the end
of this chapter.

Stand-Alone Code

Stand-Alone Code

In the fuzzy/fuzzy directory ofthe toolbox, you can find two Cfiles, fismain.c
and fisc, which are provided asthe source codes for a stand-alone fuzzy
inference engine. The stand-alone fuzzy inference engine can read a FIS file
and an input data file to perform fuzzy inference directly, or it can be embedded
in other external applications.

To compile the stand-alone fuzzy inference engine on a UNIX system, type

%cc -O -0 fismain fismain.c -Im

(You do not have to type fisc explicitly since it is included in fismain.c.)
Upon successful compilation, type the executable command to see how it works:

%fismain

It responds with the following message:

% Usage: fismain data_file fis_file

This means that fismain needs two files to do its work: a data file containing
rows of input vectors, and a FIS file that specifies the fuzzy inference system
under consideration.

For tutorial purposes, consider the FIS file mam21.fis. We can prepare the
input data file using MATLAB:

[x, y] = meshgrid(-5:5, -5:5);
input_data = [x(:) y()I;
save fis_in input_data -ascii

This saves all the input data as a 121-by-2 matrix in the ASCII file fis_in,
where each row of the matrix represents an input vector.

Now we can call the stand-alone:

%fismain fis_in mam21l.fis

This will generate 121 outputs on your screen. You can direct the outputs to
another file:

%fismain fis_in mam2l.fis > fis_out

Now the file fis_out contains a 121-by-1 matrix. In general, each row of the
output matrix represents an output vector. The syntax of fismain is similar to

2-87

2 Tutorial

its MEX-file counterpart evalfis.m except that all matrices are replaced with
files.

To compare the results from the MATLAB MEX-file and the stand-alone
executable, type the following within MATLAB:

fismat = readfis('man21');
matlab_out = evalfis(input_data, fismat);
load fis_out
max(max(mBtlab_out - fis_out))
ans =
4.9583e-13

This tiny difference comes from the limited length printout in the file fis_out.
There are several things you should know about this stand-alone executable:

e It is compatible with both ANSI and K & R standards, as long as__STDC__
is defined in ANSI compilers.

« Customized functions are not allowed in the stand-alone executable. So you
are limited to the 11 membership functions that come with the toolbox, as
well as other factory settings for AND, OR, IMP and AGG functions.

e fismain.c contains only the main() function and it is heavily documented
for easy adaptation to other applications.

« To add a new membership function or new reasoning mechanism into the
stand-alone, you need to change the file fisc, which contains all the neces-
sary functions to perform fuzzy inference process.

¢ For the Mac, the compiled command fismain tries to find fismain.in and
fismain.fis asinput data and FIS description file, respectively. The output
is stored in afile fismain.out. These file names are defined within Mac-spe-
cific #define symbols in fismain.c and can be changed if necessary.

2-88

Applications and Demos

Applications and Demos

All the demos described in this section can be launched with the help of the
demo gateway program fuzdemos.

Ball Juggling

Ball juggling is an interesting discrete control problem. In this system, a ball
follows a ballistic curve in atwo-dimensional plane, while aflat board at
ground tries to bounce the ball in order to control the next location of impact.
The control goal is to bring the ball to a desired location such that it bounces
vertically at the center of the board. We assume that there is no loss of energy
in the system; the ball follows a perfect ballistic curve in the air and the
collision with the board is elastic. The state equation for this system is

xk+1 = xk+ g sin (20k+ 4uk)

Ok+l = Ok+ 2uk

where

k : count of impact

x : horizontal location of impact

0 : angle of ball trajectory w.r.t. horizontal axis at time of impact
u :angle of board w.r.t. to horizontal axis, this is the control input
g : acceleration of gravity

v : ball velocity at impact

2-89

2 Tutorial

2-90

This demo does not require Simulink. To bring up the animation window, type

juggler

You will see an animation window, with a blue ball jumping up and down, a
yellow board where the ball bounces, and a small red triangle indicating the
target position. After every eight or nine bounces, the target position will move
to a random location automatically, so you can constantly see how the board is
controlling the ball. If you want to change the target position directly, you can
do so by clicking the small red triangle and drag it to anywhere you like.

It is obvious that the ball can usually reach the target position at the first
bounce and the board’s angle will become zero right from the second bounce.
However, if the target istoo far away, the ball may bounce several times before
hitting the target.

This demo provides an option for a human controller. To try it, set the
Controller pop-up menu to Human.

Now you can control the tilt angle of the board by clicking at the little steering
arrow at the upper right corner. The tilt angle is restricted to any angle
between -45 and 45 degrees. If the tilt angle is not set correctly such that the
rebounding ball has a negative project angle, then you will see a message like
this:

Bouncing from the ground, project angle = 1.450950e+02

Applications and Demos

This implies that the ball has a negative project angle after hitting the board
and it is bouncing upwards because it also hits the ground.

Inverse Kinematics of Two-Joint Robot Arm

End effector

A two-joint planar robot arm, as shown above, is fully specified when the joint
angles 01and 02 are known. In particular, the Cartesian position (x, y) ofthe
end effector (“hand”) can be derived from the joint angles by the following
equations:

X = 11cosO01+ 12cos(01+ 02)
y = 11sin 01+ 12sin (01+ 02)

where |1and 12 are the lengths of the rigid arms, respectively. However, in
robotic applications, we often face the opposite problem, that is, given the
desired position ofthe end effector, find the corresponding joint angles. This is
the so-called inverse kinematics problem. This demo will use the adaptive
neuro-fuzzy inference system (ANFIS) to solve this kind of problem.

The forward kinematics from the joint angles 01and 02to the end-point
Cartesian position (x, y) are quite straightforward, as shown in the above
equations. However, the inverse mappings from (x, y) to (01, 02) are not too
clear. In this particular case, it is possible to solve the inverse mappings
algebraically. However, here we assume the solutions are not available and we
will train two fuzzy inference systems to approximate these two mappings. In
other words, we want to design two fuzzy systems FIS 1 and FIS 2 such that

2-91

2 Tutorial

2-92

the overall composite function of the following block diagram is an identity
mapping.

Suppose that I1is 10, I12is 7, and the value of 02 is restricted to [0, n]. The
following figure demonstrates the mapping surfaces from (01, 02) to (x, y) (the
first row) and from (x, y) to (01, 02) (the second row). These four plots are
created by the MATLAB command invsurf.

7x2+ y2 is greater than 11+12 or less than ||1-12|, there is no
corresponding (01, 02) and the corresponding regions are called unreachable
workspace. For 01and 02 in the unreachable workspace, their values are
assigned to NaNs; the effect is shown clearly in the second row of the above
plots.

To further simplify our discussion, we assume the end-point position is limited
to the first quadrant ofthe x-y plane. From the first quadrant, we collect 229
training data pairs of the format (x, y: 01, 02), respectively, for the training of
two fuzzy inference systems. We use three membership functions on each
input; thus the number of rules is nine and the number of parameters is 45 for
each FIS. After 50 epochs of training, the results are stored in two FIS files

Applications and Demos

invl.fis and inv2.fis. To see animation of how well these two fuzzy
inference systems work, type

invkine

J ShowTails | Clear Tails

158 Stop | Continue | Step Info Close

In the animation window, an ellipse is chosen as the reference path and the
dashed line shows how the end-point follows the desired path based on the
inverse mappings. The 229 crosses indicate the locations of the training data.
You can even move the ellipse by clicking inside it and dragging it to a new
location. As long asthe ellipse is inside the region covered by training data, the
end-point can follow the path satisfactorily. However, if part or all ofthe ellipse
is out ofthe region, the end-point will sometimes take awild trajectory.

This example is only used to demonstrate the concept; the results are not
necessarily optimized. Better performance can be obtained through either
extensive training or a denser data set. Note that this example corresponds to
a case of off-line design of open-loop control; other design approaches can force
the end-point to follow the desired trajectory more closely if closed loop control
is permitted.

2-93

2 Tutorial

2-94

Adaptive Noise Cancellation

primary
input
measured
signal
reference D
input .
N nonlinear

characteristics

Adaptive noise cancellation is one interesting application of ANFIS. The basic
situation for adaptive noise cancellation is shown above, where the information
signal | comes from the primary input, while the noise source N comes from the
reference input. At the receiving end, the measured signal M is equal to the
sum of | and D, where D is a distorted version of N due to some nonlinear
characteristics f. In symbols,

M(k) = I(k) + D(k) = I(k) +f(N(k), N((k-1), ...))
Our task isto eliminate D from M and recover the original information signal I.

If the nonlinear characteristic f is known exactly, it would be easy to recover
the original information signal by subtracting D from M. However, f is usually
unknown in advance and it could be time-varying due to changes in external
environments. Moreover, the spectrum of D might overlap that of I, which
invalidates the use of filtering techniques in frequency domain.

To estimate the distorted noise signal D, we need to model the nonlinear

characteristic f. We use ANFIS to model this nonlinear function. Before

training ANFIS, we need to collect training data pairs, but the desired output
D is not available since it is combined additively into the measured signal M.
Fortunately, we can take M as a contaminated version (which is contaminated
by the information signal I) ofthe desired output and proceed training as usual;
the difference between M and D (that is, the information signal 1) will hopefully

Applications and Demos

average out during the training process. Therefore for this scheme to work, the
following conditions must hold:

* The noise source N must be available and free of the information signal I.

e The information signal | must be zero-mean and uncorrelated either linearly
or nonlinearly with the noise source N.

e The order ofthe passage characteristics must be known. This determines the
number of inputs for ANFIS.

Note that if the passage characteristic is linear, then we can use a linear model
instead and the whole setting is the linear adaptive noise canceling proposed
by Widrow [WidS85].

Now we can return to the MATLAB demo. To start the demo, type

sshow noisedm

and push the Start button when the window opens.

In this demo, we assume the channel characteristic is

D(k) = f(N(k), N(k-1)) = 4*sin(N(k))*N (k-1)/(1+N2(k-1))

2-95

2 Tutorial

2-96

Here is the measured signal M

Measured Signal

S

0 1 2 3 4 5 6
time

And we use a 4-rule ANFIS for training 10 epochs on 601 training data pairs.
Without extensive training, the ANFIS can already do a fairly good job; the
original information signal and the recovered one by ANFIS are shown side by
side in the figure below.

11 1 1 1 1 1
__ 05
§ [
t -05
-l , : : ; ,
0 1 2 3 4 5 6
1f 1 1 1 1 1 1
X 05
0-
E
£-05
1] 1]] 1
o T 4 B’ 6

Applications and Demos

Chaotic Time Series Prediction

The demo mgtsdemo shows how to train an ANFIS for predicting atime series
defined by the Mackey-Glass (MG) time-delay differential equation:

X(t) = 02 T) - 0.1x(t)
1+ x10(t - t)

This turns out to be a chaotic time series without a clearly defined period; it
will not converge or diverge, and it is very sensitive to initial conditions. This
is a benchmark problem in the neural network and fuzzy modeling research
communities.

To obtain the time series value at integer points, we applied the fourth-order
Runge-Kutta method to find the numerical solution to the above MG equation;
the result was saved in the file mgdata.dat. Here we assume x(0) = 1.2, x = 17,
and x(t) =0fort <0. To plot the MG time series, type

load mgdata.dat
t = mgdata(:, 1) x = mgdata(:, 2)); plot(t, x)

Mackey-Glass chaotic time series

0 200 400 600 800 1000 1200
time (sec)

The task of time series prediction is to use known values of the time series up
to the point x =t to predict the value at some point in the future x =t+P. The
standard method for this type of prediction is to create a mapping from D

points spaced [apart, that is, (x(t-(D-1)A,..., x(t-A), x(t)), to a predicted future
value x(t+P). Following the conventional settings for predicting the MG time

2-97

2 Tutorial

2-98

series, we set D =4 and [= P = 6. In other words, the training data for ANFIS
is of the following format:

[x(t-18) x(t-12) x(t-6) x(t) x(t+6)]

From t = 118 to 1117, we can extract 1000 data pairs of the above format. We
use the first 500 data pairs for training ANFIS, while the others are used for
validating the identified fuzzy model. This results in two data matrices,
trnData and chkData; both are 500-by-5 matrices.

To start ANFIS training, we need a FIS matrix that specifies the structure and
initial parameters ofthe FIS for learning. This is the task of genfisl:

fismat = genfisl(trnData);

Since we did not specify numbers and types of membership functions used in
the FIS, default values are assumed and we have two generalized bell
membership functions on each input. The generated FIS matrix contains 24 =
16 fuzzy rules with 104 parameters, including 80 linear parameters and 24
nonlinear parameters. In order to achieve good generalization capability, it is
important to have the number of training data points be several times larger
than the number of fitting parameters. In this case, the ratio between data and
parameters is about five (500/104). The function genfisl also tries to generate
initial membership functions that are equally spaced and cover the whole input
space; these initial membership functions are shown below.

Applications and Demos

To start the training, type

[fismatl,errorl,ss,fismat2,error2] = ...
anfis(trnData,fisimat,[],[],chkData);

This takes about four minutes on a Sun SPARCstation 2 for 10 epochs of
training. The membership functions after training, as shown below, do not
change drastically. From this, we can guess most ofthe fitting is done with the
linear parameters, while the nonlinear parameters are mostly for fine tuning.

To plot the error curves, type

plot([errorl; error2]);

where errorl and error2 are root mean squared error for training and
checking data, respectively.

2-99

2 Tutorial

2-100

To compare the original MG time series and ANFIS prediction side by side, try

anfis_output = evalfis([trnData; chkData], fismatl);
index = 125:1124;

subplot(211), plot(time(index), [x(index) anfis_output]);
subplot(212), plot(time(index), x(index) - anfis_output);

MG Time Serise and ANFIS Prediction

200 300 400 500 600 700 800 900 1000 1100

Prediction Errors

200 300 400 500 600 700 800 900 1000 1100

Note that the difference between the original MG time series and the ANFIS
prediction is very small; that is why you can only see one curve in the first plot.
The prediction error of ANFIS is shown in the second plot with a much finer
scale. Note that we have trained the ANFIS only for 10 epochs; better
performance is expected if we apply more extensive training.

Comparative study shows that because of its sparing use of parameterization,
ANFIS has better generalization capability on this problem when compared to
auto-regressive models, cascade-correlation neural networks,
back-propagation neural networks, radial basis function networks, and other
polynomial prediction methods. More details on this respect can be found in
Jang’s paper listed in the “References” section at the end of this chapter.
[Jan93].

Applications and Demos

Fuzzy C-Means Clustering Demos

Fuzzy c-means (FCM) is a data clustering technique where each data point
belongs to a cluster to a degree specified by a membership grade. To try out
FCM with 2-D data, type

fcmdemD

This brings up awindow on screen, with a scatter plot of the data set to be
clustered and quite afew GUI controls. The default data set obviously falls into
three clusters; by clicking Start, you see how the three cluster centers move to
the “right” positions.

After the clustering process is done, you can click Clear Traj to clear the
trajectories and get a better view ofthe cluster centers. You can now click Start
again to see the repeatability of FCM.

If you set Label Data, each data point will have the same color as its cluster
center (defined as the cluster with highest membership grade). If Label Data
is set before the clustering process, you see how clusters are moving and
settling; the effect is most pronounced when FCM is applied to data set 4 with
four clusters.

Label Data can only let you see the results due to maximal membership
grades. To view the membership grade of a cluster, select a cluster (by clicking
mouse near a cluster center) and then press MF Plot. MATLAB uses the
command griddata to construct a MF surface on a grid base.

2-101

2 Tutorial

2-102

You can select other data sets with different numbers of clusters. Other
parameters for FCM includes

Expo.: exponent for membership grades
Iterat.: maximum number of iterations
Improv.: minimum amount of improvement between two iterations

The clustering process stops when the maximum number of iterations is
reached, or when the minimum amount of improvement cannot be achieved.

This demo provides a simple and easy way to try out FCM for 2-D data. For
data of higher dimensions, usually it’s harder to visualize the clustering
process. Another simple program that deals with higher-dimensional data is
irisfcir, which uses FCM to cluster the IRIS data. By typing

irisfcm

at the command line, you can see how the cluster centers move on projected 2-D
surfaces.

Note: The remaining demos make use of Simulink. If you do not have access to
Simulink, you can still load the fis files associated with these demos and
examine the systems using the standard GUI tools, but the animations and
simulations illustrated below will not run.

Truck Backer-Upper (Simulink only)

The truck backer-upper (TBU) problem has become a standard problem in the
fuzzy logicfield. The problem is to design a controller (driver) that can back up
atruck into a loading dock from any initial position that has enough clearance
from the back wall. The front wheels ofthe truck can reach any angles between
-45 and 45 degrees, but only backing up is allowed; there is no going forward.

To bring up the Simulink window for this demo, try

sltbu

Applications and Demos

A Simulink window will appear on your screen.

Start the simulation by choosing Start from the Simulation menu. You will see
an animation window for the TBU problem, which contains the top view of a
small truck, the loading dock indicated asthree small circles, a steering handle
at the lower right corner, and several Ul controls.

| sltbuTruck Backer Upper Animation

sH | EUT

=Rl

W ShowTails | Clear Tails Controller: Fuzzy

1 Time: 7,10 Start Simulation... Info Close

You should now seethe truck (driven by a fuzzy controller) backing up to the
loading dock. The simulation stops whenever the rear end of the truck touches
the back wall. To move the truck, click the mouse inside the truck and drag till
it reaches a desired location. To rotate the truck, click at any corners of the
truck and drag till it has a desired orientation. If you want to revert to the
initial conditions for this demo, click the Variable Initialization block in the

2-103

2 Tutorial

2-104

Simulink window. Now you can start the simulation from the Simulink window
as before, or just click the Start button in the animation window.

The default controller is a fuzzy controller. However, you can try to back the
truck yourself to see how well you do compared to the fuzzy controller. To do
this, set the Controller pop-up menu to Human. Move the truck to a desired
initial condition and start the simulation as before. Now you can control the
front steering wheel by clicking the mouse on the little steering handle at the
lower right corner of the animation window. This type of “human control” is
usually not easy at the first shot and requires some practice.

Other Ul controls include:

¢ Show Trails to select either to show the trails or not.

e Clear Trails to clear animation trails.

Inverted Pendulum (Simulink only)

Another standard problem in neuro-fuzzy literature is the inverted pendulum
control, also known as the cart-pole (CP) problem. The system under control
consists of a rigid pole hinged to a cart through a free joint with one degree of
freedom. The cart can be moved to its right or left depending on the force
exerted on it. Our task is to design a control that generates appropriate force
on the cart such that we can move the cart to a desired position while keeping
the pole balanced.

To try the demo, type

slcp

(Fuzzy Logic Controller)

Applications and Demos

This brings up the Simulink window for this demo. Start the simulation by
choosing Start from the Simulation menu. Now you can see how the cart is
following a desired position of a square wave by a fuzzy controller. The arrow
on the cart indicate the magnitude and direction of the exerted force; the
triangle is the desired cart position.

This demo actually lets you have five choices for the desired cart position:
sinusoid wave, square wave, saw wave, random signal, and mouse driven
signal. To change the signal for the target cart position, click the Target
Position pop-up menu in the animation window and select the one you are
interested in. You can pause the simulation by clicking the Pause button, after
which you can either continue (Continue button) or single-step (Step button)
through the simulation. Note that both Continue and Step buttons are hidden
under the Pause button, which means you will not be able to do single-stepping
of the simulation until you pause it first.

Other Ul controls include:
¢ Show trails to show trails of animation.

¢ Clear trails to clear trails.

The FIS matrix for the fuzzy controller of this demo is specified in the file
slcp.fis.

2-105

2 Tutorial

Ball and Beam (Simulink only)

The ball-beam (BB) system consists of a ball rolling frictionlessly on a beam; a
motor generates atorque to tilt the beam in order to send the ball to a desired

location. A fuzzy controller is designed to generate an appropriate torque to
achieve the control goal.

To start the demo, type
slbb

Fuzzy Inference System
(Fuzzy Logic Controller)

This brings up the Simulink window for this demo. Start the simulation by
choosing Start from the Simulation menu. Now you can see how the ball is
following a desired position of a square wave by a fuzzy controller. The arrow
on the tips of the beam indicates the magnitude and direction of the exerted
torque; the small hollow triangle is the desired ball position.

_l ShowTails | Clear Tails Target Position: Square Wave =

Time: 7,60 Stop | Continue | Step Info Close

2-106

Applications and Demos

The GUI layout of the animation window is almost the same as that of the
cart-pole demo. Again we have five signhals for desired cart positions. If the
desired position is mouse-driven, you can click mouse inside the small triangle
and drag it to adesired location. The simulation controls for this demo are very
similar to the ones used in the Inverted Pendulum demo.

The FIS matrix for the fuzzy controller of this demo is specified in the file
slbb.fis.

2-107

2 Tutorial

Glossary

2-108

This section is designed to briefly explain some of the specialized terms that
appear when discussing fuzzy logic.

aggregation -the combination of the consequents of each rule in a Mamdani
fuzzy inference system in preparation for defuzzification.

ANFIS - (Adaptive Neuro-Fuzzy Inference System) a technique for
automatically tuning Sugeno-type inference systems based on training data.

antecedent -the initial (or “if”) part of a fuzzy rule.
consequent -the final (or “then”) part of a fuzzy rule.

defuzzification -the process of transforming a fuzzy output of a fuzzy
inference system into a crisp output.

degree of membership -the output of a membership function, this value is
always limited to between 0 and 1. Also known as a membership value or
membership grade.

degree of fulfillment - see firing strength.

firing strength -the degree to which the antecedent part of a fuzzy rule is
satisfied. The firing strength may bethe result ofan AND or OR operation, and
it shapes the output function for the rule. Also known as degree of fulfillment.

fuzzification -the process of generating membership values for a fuzzy
variable using membership functions.

fuzzy c-means clustering - a data clustering technique where each data point
belongs to a cluster to a degree specified by a membership grade.

fuzzy inference system (FIS) -the overall name for a system that uses fuzzy
reasoning to map an input space to an output space.

fuzzy operators - AND, OR, and NOT operators. These are also known as
logical connectives.

fuzzy set - a set which can contain elements with only a partial degree of
membership.

fuzzy singleton - afuzzy set with a membership function that is unity at a one
particular point and zero everywhere else.

Glossary

implication -the process of shaping the fuzzy set in the consequent based on
the results of the antecedent in a Mamdani-style FIS.

Mamdani-style inference - atype of fuzzy inference in which the fuzzy sets
from the consequent of each rule are combined through the aggregation
operator and the resulting fuzzy set is defuzzified to yield the output of the
system.

membership function (MF) - a function that specifies the degree to which a
given input belongs to a set or is related to a concept.

singleton output function - an output function that is given by a spike at a
single number rather than a continuous curve. In the Fuzzy Logic Toolbox it is
only supported as part of a zero-order Sugeno model.

subtractive clustering - atechnique for automatically generating fuzzy
inference systems by detecting clusters in input-output training data.

Sugeno-style inference - atype of fuzzy inference in which the consequent of
each rule is a linear combination ofthe inputs. The output is aweighted linear
combination of the consequents.

T-conorm - (also known as S-norm) atwo-input function that describes a
superset of fuzzy union (OR) operators, including maximum, algebraic sum,
and any of several parameterized T-conorms.

T-norm - atwo-input function that describes a superset of fuzzy intersection
(AND) operators, including minimum, algebraic product, and any of several
parameterized T-norms.

2-109

2 Tutorial

References

2-110

[Bez81] Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum Press, New York, 1981.

[Chi94] Chiu, S., “Fuzzy Model Identification Based on Cluster Estimation,”
Journal of Intelligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

[Dub80] Dubois, D. and H. Prade, Fuzzy Sets and Systems: Theory and
Applications, Academic Press, New York, 1980.

[Jan91] Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks
and Kalman Filter Algorithm,” Proc. of the Ninth National Conf. on Artificial
Intelligence (AAAI-91), pp. 762-767, July 1991.

[Jan93] Jang, J.-S. R., “ANFIS: Adaptive-Network-based Fuzzy Inference
Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No.
3, pp. 665-685, May 1993.

[Jan94] Jang, J.-S. R. and N. Gulley, “Gain scheduling based fuzzy controller
design,” Proc. of the International Joint Conference of the North American
Fuzzy Information Processing Society Biannual Conference, the Industrial
Fuzzy Control and Intelligent Systems Conference, and the NASA Joint
Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio,
Texas, Dec. 1994.

[Jan95] Jang, J.-S. R. and C.-T. Sun, “Neuro-fuzzy modeling and control,”
Proceedings of the IEEE, March 1995.

[Jan95] Jang, J.-S. R. and C.-T. Sun, “Neuro-Fuzzy and Soft Computing,” 1995,
(submitted for publication).

[Kau85] Kaufmann, A. and M.M. Gupta, “Introduction to Fuzzy Arithmetic,”
V.N. Reinhold, 1985.

[Lee90] Lee, C.-C., “Fuzzy logic in control systems: fuzzy logic controller-part 1
and 2,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2,
pp 404-435, 1990.

[Mam75] Mamdani, E.H. and S. Assilian, “An experiment in linguistic
synthesis with afuzzy logic controller,” International Journal of Man-Machine
Studies, Vol. 7, No. 1, pp. 1-13, 1975.

References

[Mam76] Mamdani, E.H., “Advances in the linguistic synthesis of fuzzy
controllers,” International Journal of Man-Machine Studies, Vol. 8, pp.
669-678, 1976.

[Mam77] Mamdani, E.H., “Applications of fuzzy logicto approximate reasoning
using linguistic synthesis,” IEEE Transactions on Computers, Vol. 26, No. 12,
pp. 1182-1191, 1977.

[Sch63] Schweizer, B. and A. Sklar, “Associative functions and abstract
semi-groups,” Publ. Math Debrecen, 10:69-81, 1963.

[Sug77] Sugeno, M., “Fuzzy measures and fuzzy integrals: a survey,” (M.M.
Gupta, G. N. Saridis, and B.R. Gaines, editors) Fuzzy Automata and Decision
Processes, pp. 89-102, North-Holland, New York, 1977.

[Sug85] Sugeno, M., Industrial applications of fuzzy control, Elsevier Science
Pub. Co., 1985.

[Wan94] Wang, L.-X., Adaptive fuzzy systems and control:design and stability
analysis, Prentice Hall, 1994.

[WidS85] Widrow, B. and D. Stearns, Adaptive Signal Processing, Prentice
Hall, 1985.

[Yag80] Yager, R., “On a general class of fuzzy connectives,” Fuzzy Sets and
Systems, 4:235-242, 1980.

[Yag94] Yager, R. and D. Filev, “Generation of Fuzzy Rules by Mountain
Clustering,” Journal of Intelligent & Fuzzy Systems, Vol.2, No. 3, pp. 209-219,
1994.

[Zzad65] Zadeh, L.A., “Fuzzy sets,” Information and Control, Vol. 8, pp. 338-353,
1965.

[zad73] Zadeh, L.A., “Outline of a new approach to the analysis of complex
systems and decision processes,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 3, No. 1, pp. 28-44, Jan. 1973.

[zad75] Zzadeh, L.A., “The concept of a linguistic variable and its application to
approximate reasoning, Parts 1, 2, and 3,” Information Sciences, 1975,
8:199-249, 8:301-357, 9:43-80

[zad88] Zadeh, L.A., “Fuzzy Logic,” Computer, Vol 1, No. 4, pp. 83-93, 1988.

[zad89] Zadeh, L.A., “Knowledge representation in fuzzy logic,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, pp. 89-100, 1989.

2-111

2 Tutorial

Fuzzy Musings

2-112

“It was the best of times, it was the worst oftimes...”
—from A Tale of Two Cities by Charles Dickens.

Dickens’ famous story about the French revolution begins with enough
contradictions to make a logician weep. How can great literature fly so rashly
in the face of Aristotle? Let’s rephrase the first statement in a more
mathematical format to make the inconsistency as glaring as possible. Dickens
is describing a setting in which

(times == best) and (times == worst)
That is, the book begins at the intersection oftwo mutually exclusive sets. Can
such a long book be devoted entirely to the empty set? The resolution must lie
somewhere else. Dickens is using words that can be construed by a rigid
literalist as quasi-mathematical in meaning, but obviously it would be foolish
to do so. He’s not referring to the realm of Platonic forms, he’s referring to the
real world, full of dirt, sweat, and vagueness. And yet, these words do bear
some relationship to their stricter mathematical cousins. They must, else
where would the mathematical terms have come from? Sowhat’s going on
here?

If we approach our lexical analysis ofthe first sentence with fuzzy reasoning in
mind, suddenly we find there is room for a book after all. The intersection of
good times and bad times is not necessarily empty. On the other hand, if
Dickens had truly been using two-valued logic, the result would have been
empty and the book would have gone unwritten. In other words, fuzzy logic
permitted the novel to exist!

This may all sound like facile word play, but there is a serious point to be made
here. If we really want to analyze mathematically the language that we use
every day, the language that lets us grapple with complexity and the full range
of human experience, we can be sure that two-valued Aristotelian logicwill let
us down. Syllogisms like “All fish swim, salmon are fish, therefore salmon
swim” will only get you so far. Fuzzy logic brings more of human experience to
bear, and therefore is more useful in translating what we know about the world
into useful engineering.

Reference

3-2 GUI Tools

3-2 Membership Functions

3-3 FIS Data Structure Management
3-4 Advanced Techniques

3-4 Simulink Blocks

3-5 Demos

3-6 Fuzzy Inference Quick Reference

3 Rfeference

This section contains detailed descriptions of all the functions in the Fuzzy
Logic Toolbox. The following tables contain the functions listed by topic.

GUI Tools
Function Purpose
fuzzy Basic FIS editor.
mfedit Membership function editor.
ruleedit Rule editor and parser.
ruleview Rule viewer and fuzzy inference diagram.
surfview Output surface viewer.

Membership Functions

Function Purpose

dsigmf Difference of two sigmoid membership functions.
gauss2mf Two-sided Gaussian curve membership function.
gaussmf Gaussian curve membership function.

gbellmf Generalized bell curve membership function.
pimf Pi-shaped curve membership function.

psigmf Product of two sigmoid membership functions.
smf S-shaped curve membership function.

sigmf Sigmoid curve membership function.

trapmf Trapezoidal membership function.

trimf Triangular membership function.

zmf Z-shaped curve membership function.

3-2

FIS Data Structure Management

Function
addmf
addrule
addvar
defuzz
evalfis
evalmf
gensurf
getfis
mf2mf
newfis
parsrule
plotfis
plotmf
readfis
rimf
rmvar
setfis
showfis
showrule

writefis

Purpose

Add membership function to FIS.

Add rule to FIS.

Add variable to FIS.

Defuzzify membership function.

Perform fuzzy inference calculation.
Generic membership function evaluation.
Generate FIS output surface.

Get fuzzy system properties.

Translate parameters between functions.
Create new FIS.

Parse fuzzy rules.

Display FIS input-output diagram.
Display all membership functions for one variable.
Load FIS from disk.

Remove membership function from FIS.
Remove variable from FIS.

Set fuzzy system properties.

Display annotated FIS.

Display FIS rules.

Save FIS to disk.

3-3

3 Reference

3-4

Advanced Techniques

Function
anfis
fcm
genfisl
genfis2

subclust

Simulink Blocks

Function
fuzblock

sffis

Purpose

Training routine for Sugeno-type FIS (MEX only).
Find clusters with fuzzy c-means clustering.
Generate FIS matrix using generic method.
Generate FIS matrix using subtractive clustering.

Find cluster centers with subtractive clustering.

Purpose
Fuzzy logic controller block.

Fuzzy inference S-function.

Demos

Function
defuzzdm
fcmdemo
fuzdemos
invkine
irisfcm
noisedm
slbb
slcp
sltank

sltbu

Purpose

Defuzzification methods.

Fuzzy c-means clustering demo (2-D).

List of all Fuzzy Logic Toolbox demos.
Inverse kinematics of a robot arm.

Fuzzy c-means clustering demo (4-D).
Adaptive noise cancellation.

Ball and beam control (Simulink only).
Inverted pendulum control (Simulink only).
Water level control (Simulink only).

Truck backer-upper (Simulink only).

3-5

3 Reference

3-6

Fuzzy Inference Quick Reference

o 2.
1 fuzzify inputs fuzzy
operation
or = max)
. poor rancid cheap
If service ispoor or food israncid then tip = cheap
average
rule 2 has
no dependency
on input 2
If service isgood then tip = average
If service isexcellent or food isdelicious then tip = generous
service = 3 food =8

input 1 input 2

The point of all fuzzy inference systemsisto map an input space to an output
space. The primary vehicle for doing this is a list of if-then statements (such
as "if service is good then tip is average"). All rules are evaluated in parallel.
Shown above isthe basic structure of a fuzzy inference system. There are five
distinct parts to the process

1. Fuzzify the inputs. (service is good)

Fuzzification isthe process of assgning a degree of truth (between 0 = FALSE
and 1 = TRUE) to statements about the inputvariables (all those statements in
the IF part, or antecedent, of the rule). The member”iip functions associated
with the inputvariables determine this degree of truth. Any statement in the
antecedent evaluates to a number between 0 and 1.

2. Apply the fuzzy operator (service is poor or food is rancid)
If the antecedent is made up of multiple statementsjoined by connectives
(AND or OR]|, then the fuzzy operator resolvesthe overall antecedent based
on the connective used. The fuzzy operator always resolves a multiple
statement antecedent into a number between 0 and 1.

tip = 16.7%
output

3. Apply the implication operator (then tip = cheap)

The consequent, or TH ~ part of the rule, is a shape defined by the area
under the output variable member~iip function curve. Whereas the
antecedent statement is a mapping from a single input value to a single truth
value, the consequent statement is the assignment of an entire fuzzy set to the
outputvariable. The value (between 0 and 1) of the antecedent truncates or
shapes the fuzzy set specified in the consequent by means of the implication
operator.

4. Aggregate the output across all rules

Steps 1, 2, and 3 occur for all rules so each rule has a fuzzy setto contribute
to each output. Joining all these sets into a angle output membership function
is known as aggregation and it is mediated by the aggregation operator.

5. Defuzzify the aggregate output fuzzy set

The aggregate membership function for each outputvariable must be reduced
to a single value. The defuzzification function returns this value given the
sometimes oddly shaped aggregate.

Purpose
Synopsis

Description

Examples

See Also

addmf

Add membership function to FIS.
a = addi7f(a,varType,varlndex,irfName,mfType,iTfParaimB)

A membership function can only be added to a variable that is already part of
the system. You cannot add a membership function to input variable number
two of a system if only one input has been defined. Membership functions are
given indices in the order in which they are added, so the first membership
function added to a variable will always be known as membership function
number one for that variable.

The function requires six input arguments. Here is an example of how it might
be used:

a=newfis('tipper");

a=addvar(a,'input','service',[0 10]);
a=addTf(a,'input',1,'poor','gaussmf',[1.5 0]);
a=addTf(a,'input',1,'good"',"gaussmf',[1.5 5]);
a=zaddmf(a,'input',1,'excellent',"gaussmf',[1.5 10]);
plotmf(a,'input',1)

service

addrule, addvar, plotmf, rmmf, rmvar

3-7

addrule

Purpose
Synopsis

Description

Examples

See Also

3-8

Add rule to FIS.
a = addrule(a,rulelist)

The variable rulelist can be a list of one or more rows, each of which
represents a given rule. The format that the rule list must take is very specific.
If there are minputs to a system and n outputs, there must be exactly m+ n +
2 columns to the rule list.

The first m columns refer to the inputs of the system. Each column contains a
number that refers to the index of the membership function for that variable.

The next n columns refer to the outputs of the system. Each column contains a
number that refers to the index of the membership function for that variable.

The m+n + 1column contains the weight that is to be applied to the rule. The
weight must be a number between zero and one, and is generally left as one.

Them+n+ 2 column contains a 1ifthe fuzzy operator for the rule’s antecedent
is AND. It contains a 2 if the fuzzy operator is OR.

ruleList=[
11111
1 221 1]
a = addrule(a,rulelList);

If the above system a has two inputs and one output, the first rule can be
interpreted as: “If input 1is MF 1 and input 2 is MF 1, then output 1is MF 1.”

addmf , addvar, r mmf, r mvar, par sr ul e, showr ul e

Purpose
Synopsis

Description

Examples

See Also

addvar

Add variable to FIS.
a = addvar(a,varType,varName,varBounds)

Variables are given indices in the order in which they are added, so the first
input variable added to a system will always be known as input variable

number one for that system. Input and output variables are numbered
independently.

a=newfis('tipper’);
a=addvar(a,'input','service',[0 10]);
getfis(a,'input',1)

MATLAB replies

Name = service
NumMFs = 0
MFLabels =
Range = [0 10]

addmf , addrule, rmmf, rmvar

3-9

anfis

Purpose

Synopsis

Description

3-10

Training routine for Sugeno-type FIS (MEX only).

[fismat,errorl,stepsize] = anfis(trnData)
[fismat,errorl,stepsize] anfis(trnData,fismat)
[fismatl,errorl,stepsize] = ...
anfis(trnData,fismBt,trnCpt,dispCpt)
[fismatl,errorl,stepsize,fisiTBt2,error2] = ...
anfis(trnData,trnCpt,dispCpt,chkData)

This is the major training routine for Sugeno-type fuzzy inference systems.
anfis uses a hybrid learning algorithm to identify parameters of Sugeno-type
fuzzy inference systems; it applies the least-squares method and the
backpropagation gradient descent for linear and nonlinear parameters,
respectively.

If no checking data is involved, anfis can be invoked with from one to four
input arguments and it returns three output arguments:

[fismatl,error,stepsize] = ...
anfis(trnData,fismat,trnCpt,dispCpt)

trnData is atraining data matrix, where each row is a desired input-output
data pair, with output at the last column.

fismat is a FIS matrix that specifies the structure and initial parameters for
training. This FIS matrix can be generated from data directly using the
command genfisl. If fismat is a single number or a vector, it is taken as the
number of membership functions. Then both trnData and fismat are passed to
genfisl to generate avalid FIS matrix before starting the training process.

trnCpt is atraining option vector which specifies various options during
training:

trnCpt(1):training epoch number (default: 10)

trnCpt(2):training error goal (default: 0)

trnCpt(3):initial step size (default: 0.01)

trnCpt(4): step-size decrease rate (default: 0.9)

trnCpt(5): step-size increase rate (default: 1.1)

anfis

If any element of trnCpt is NaN (not a number), then the default value is used.
Default values can be changed directly by modifying this file. If trnCpt itself is
missing, a null matrix, or a NaN, then it takes the default values.

The training process stops whenever the designated epoch number is reached
or the training error goal is achieved.

The step size is decreased (by multiplying it with the decrease rate) if the error
measure undergoes two consecutive combinations of an increase followed by a
decrease. The step size is increased (by multiplying it with the increase rate) if
the error measure undergoes four consecutive decreases.

dispCpt is adisplay options vector which specifies what message to display in
the MATLAB command window during training:

dispCpt(l):ANFIS information, such as numbers of linear and nonlinear
parameters, and so on (default: 1)
dispCpt(2): error measure (default: 1)
dispCpt(3):step size at each parameter update (default: 1)
dispCpt(4):final results (default: 1)

The parsing rule of dispCpt is the same astrnCpt.

fismat 1isthe FIS matrix, which corresponds to the minimum training error.

error is an array of root mean squared errors. stepsize is an array of step
sizes.

If checking data is involved in the training process, then anfis should be
invoked with five input arguments and it returns five output arguments:

[fismatl,errorl,stepsize,fismat2,error2] = ...
anfis(trnData,fismat,trnCpt,dispCpt,chkData]

Here none of fismat,trnCpt and dispCpt can be omitted. If the default values
oftrnCpt and/or dispCpt are taken, they should be specified either as NaNs or
empty matrices. The additional input argument chkData specifies the checking
data matrix; its format is the same as trnData.

fismatl isthe FIS matrix that corresponds to the minimum training error.
errorl is an array of root mean squared training errors. stepsize is an array
of step sizes. fismat2 isthe FIS matrix that corresponds to the minimum
checking error. error2 is an array of root mean squared checking errors.

3-11

anfis

Examples X = (0:0.1:10)";
y sin(2*x)./exp(x/5);
trnData = [x Vy];
numMFs = 5;
mfType = 'gbellmf’;
epoch_n = 20;
in_fismat = genfis(trnData,numMFs, mfType);
out_fismBt = anfis(trnData,in_fismat,20);
plot(x,y,x,evalfis(x,out_fismat));
legend('Training Data',"ANFIS Cutput');

See Also genfisl, anfis

References Jang, J.-S. R,, “Fuzzy Modeling Using Generalized Neural Networks and
Kalman Filter Algorithm,” Proc. of the Ninth National Conf. on Artificial
Intelligence (AAAI-91), pp. 762-767, July 1991.

Jang, J.-S. R., “ANFIS: Adaptive-Network-based Fuzzy Inference Systems,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp.
665-685, May 1993.

3-12

Purpose
Synopsis

Description

Examples

defuzz

Defuzzify membership function.

out = defuzz(x,mf,type)

defuzz(x,mf,type) returns a defuzzified value of nf positioned at x, using
different defuzzification strategies. The variable type can be one of the
following.

centroid: centroid of area method.
bisector: bisector of area method.
mom mean of maximum method.

som smallest of maximum method.

lom largest of maximum method.

Iftype is not one of the above, it is assumed to be a user-defined function. x and
nf are passed to this function to generate the defuzzified output.

X = -10:0.1:10;
nf trapmf(x,[-10 -8 -4 7]);
XX defuzz(x,mf,'centroid");

3-13

dsigmf

Purpose Difference of two sigmoid membership functions.
Synopsis y = dsigirf(x,paramB)
y = dsigmf(x,[al cl a2 c2])

Description The sigmoid curve depends on two parameters a and c given by
N\
fx .7TFe

This function is simply the difference between two such curves

f-i(x; al, c|) - f2(x; a2, c2)

The parameters are listed in the order: [al claZ2c2).
Examples x=0:0.1:10;

y=dsigmf(x,[5 2 5 7]);

plot(x,y)
xlabel('dsigmf, P=[5 2 5 7]")

dsigmf, P=T1525 71

See Also gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, psigmf, sigmf, smf, trapmf,
trimf , zmf

3-14

Purpose
Synopsis

Description

Example

See Also

evalfis

Perform fuzzy inference calculation.
output = evalfis(input,fismat)

This function computes the output vector output ofthe fuzzy inference system
specified by the FIS matrix fismat. The function evalfis exists as both an

M -file and a MEX-file. The MEX-file version is always used preferentially (if
available) because of its speed advantage.

If input is an M-by-N matrix, where N is number of input variables, then
evalfis takes each row of input as an input vector and returns the M-by-L
matrix output,where each row is a output vector and L isthe number of output
variables.

fismat = readfis('tipper');
out = evalfis([2 L 4 9],fismat)

which generates the response

out =
7.0169
19.6810

ruleview, gensurf

3-15

evalmf

Purpose
Synopsis

Description

Examples

See Also

3-16

Generic membership function evaluation.
y = evalimf(x,mfParaimB,mfType)

As long as mfType is a legal membership function, and irfParairs are
appropriate parameters for that function, evalrf will evaluate any
membership function.

If you want to create your own custom membership function, evalrf will still

work, because it will “eval " the name of any membership function it doesn't
recognize.

x=0:0.1:10;

mfparams = [2 4 6];

mftype = 'gbellmf’;
y=evalimf(x,mfparaimB, mftype);
plot(x,y)

xlabel('gbellmf, P=[2 4 6]")

gbellmf, P =24 61

dsigmf, gaussmf, gauss2mf, gbellrf, mf2mf, pirf, psigrf, sigrf, srf, trapmf,
trimf , zmf

fcm

Purpose Fuzzy c-means clustering.
Synopsis [center,U,obj_fcn] = fcn(data,cluster_n)
Description [center, U obj_fecn] = fcm(data, cluster_n) appliesthe fuzzy c-means

clustering method to a given data set. Input and output arguments of this
function are

data: data set to be clustered; each row is a sample data point
cluster_n: number of clusters (greater than one)

center:final cluster centers, where each row is a center

U final fuzzy partition matrix (or membership function matrix)
obj_fcn: values of the objective function during iterations

fcn(data,cluster_n,options) uses an additional argument options to
control clustering parameters, stopping criteria, and/or iteration information
display:

options(1): exponent for the partition matrix U (default: 2.0)

options(2): maximum number of iterations (default: 100)

options(3): minimum amount of improvement (default: 1le-5)

options(4):info display during iteration (default: 1)
If any entry of options is NaN (not a number), the default value for that option
is used instead. The clustering process stops when the maximum number of
iteration is reached, or when the objective function improvement between two

consecutive iteration is less than the minimum amount of improvement
specified.

Example data = rand(100, 2);
[center,U,obj_fcn] = fcm(data, 2);
plot(data(:,1), data(:,2),'0");
maxU = max(U);
indexl = find(U(1,:) == maxU);
index2 find(U(2, :) == maxV);
line(data(index1,1),data(index1,2),

'linestyle',"*",'color','g");
line(data(index2,1),data(index2,2),
‘linestyle',"*" ,'color','r'");

3-17

fuzblock

Purpose
Synopsis

Description

See Also

3-18

Simulink fuzzy logic controller block.
fuzblock

This command brings up a Simulink system that contains exactly one block,

the fuzzy logic controller. The dialog box associated with this block (found by
double-clicking on the block) should contain the name ofthe FIS matrix in the
workspace that corresponds to the desired fuzzy system.

If the fuzzy inference system has multiple inputs, these inputs should be
multiplexed together before feeding them into the fuzzy controller block.
Similarly, if the system has multiple outputs, these signals will be passed out
of the block on one multiplexed line.

Fuzzy Logic Controller

sffis

fuzdemos

Purpose List of all Fuzzy Logic Toolbox demos.
Synopsis fuzdemos
Description This function brings up a GUI that allows you to choose between any of the

several Fuzzy Logic Toolbox demos, including the pole and cart demo, the truck
backing demo, and others. The demos are all described in detail in Chapter 2,
Tutorial.

3-19

fuzzy

Purpose

Synopsis

The Diagram

3-20

Basic FIS editor.

fuzzy

fuzzy(fisimat)

April
1997

M

| File Edit View

FIS Name:

And method
Or method
Implication
Aggregation

Defuzzification

FIS Editor: tipper

tipper FIS Type:
min Current Variable
max Name
min Type
Range
max
centroid —< Help

System "tipper": 2 inputs, 1 output, and 3 rules

mamdani

| service
input
[0 10]

Close

This GUI tool allows you to edit the highest level features ofthe fuzzy inference
system, such as the number of input and output variables, the defuzzification
method used, and so on. Refer to Chapter 2, Tutorial, for more information

about how to use fuzzy.

The FIS Editor isthe high level display for any fuzzy logic inference system. It
allows you to call the various other editors to operate on the system. This
interface allows convenient access to all other editors with an emphasis on
maximum flexibility for interaction with the fuzzy system.

The diagram displayed at the top ofthe window shows the inputs, outputs, and
a central fuzzy rule processor. Click on one ofthe variable boxes to make the
selected box the current variable. You should see the box highlighted in red.
Double-click on one of the variables to bring up the Membership Function
Editor. Double-click on the fuzzy rule processor to bring up the Rule Editor. If
a variable exists but is not mentioned in the rule base, it is connected to the
rule processor block with a dashed rather than a solid line.

fuzzy

Menu Items The FIS Editor displays a menu bar, which allows you to open related GUI
tools, open and save systems, and so on.

File
New Mamdani FIS... Opens a new Mamdani-style system with no variables
and no rules called Untitled.

New Sugeno FIS... Opens a new Sugeno-style system with no variables and
no rules called Untitled.

Open from disk... Loads a system from a specified .fis file on disk.
Save to disk Savesthe current system to a fis file on disk.

Save to disk as... Savesthe current system to disk with the option to rename
or relocate the file.

Open from workspace... Load asystem from aspecified FIS matrix variable
in the workspace.

Save to workspace... Saves the system to the currently named FIS matrix
variable in the workspace.

Save to workspace as... Saves the system to a specified FIS matrix variable
in the workspace.

Close window.

Edit

Add input Add another input to the current system.
Add output Add another output to the current system.
Remove variable Delete the current variable.

Undo Undo the most recent change.

View

Edit MFs... Invoke the Membership Function Editor.
Edit rules... Invoke the Rule Editor.

View rules... Invoke the Rule Viewer.

View output surface... Invoke the Surface Viewer.

3-21

fuzzy

Inference Five pop-up menus are provided to change the functionality of the five basic
Method Pop up steps in the fuzzy implication process.
Menus

And method Choose min, prod, or a custom operation.
Or method Choose max, probor (probabilistic or), or a custom operation.

Implication method Choose min, prod, or a custom operation. This selection
is not available for Sugeno-style fuzzy inference.

Aggregation method Choose max, sum, probor, or a custom operation. This
selection is not available for Sugeno-style fuzzy inference.

Defuzzification method For Mamdani-style inference, choose centroid, bi-
sector, mom (middle of maximum), som (smallest of maximum), lom (largest
of maximum), or a custom operation. For Sugeno-style inference, choose be-
tween wtaver (weighted average) or wtsum (weighted sum).

See Also mfedit, ruleedit , ruleview, surfview

3-22

gauss2mf

Purpose Two-sided Gaussian curve membership function.
Synopsis y = gauss2mf(x,paraimB)
y = gauss2mf(x,[sigl cl sig2 c2])
Description The gaussian curve depends on two parameters sig and c as given by

S (X- c)2
f(X;S,c)=€e 22
The function gauss2mf isjust a combination oftwo such curves. The first curve
should be the leftmost curve. The region between cl and c2 is constrained to be
equal to 1. The parameters are listed in the order:

[sigl, cl, sig2, c2], cl < c2

Examples x=0:0.1:10;
y=gauss2mf(x,[1 3 3 4]);

plot(x,y)
xlabel('gauss2mf, P=[1 3 3 4]")

gauss2mf, P=[133 4

See Also dsigmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, psigmf, sigmf, smf, trapmf,
trimf, zmf

3-23

gaussmf

Purpose Gaussian curve membership function.
Synopsis y = gaussi7f(x,parairs)
y = gaussmf(x,[sig c])
Description The gaussian curve depends on two parameters sig and c as given by
S(x- 02

f(X;S, C) =€ 252

The parameters are listed in the order: [sig, c].

Examples x=0:0.1:10;
y=gaussmf(x,[2 5]);

plot(x,y)
xlabel(‘gauss7f, P=[2 5]")

gaussmf, P = [2 51

See Also dsigmf, gaussmf, gbellmf, evalmf, mf2mf, pimf, psigmf, sigmf, smf, trapmf,
trimf , zmf

3-24

Purpose

Synopsis

Description

Examples

See Also

gbellmf

Generalized bell curve membership function.

y = gbelli7f(x,parairs)
y gbellmf(x,[a b c])

The generalized bell curve depends on three paramters a, b, and c as given by
1
f(x;abc)= 2b
X-C
1+
a

where the parameter b is usually positive. The parameter c locates the center
of the curve.

x=0:0.1:10;
y=gbellmf(x,[2 4 6]);

plot(x,y)
xlabel('gbellmf, P=[2 4 6]")

gbellmf, P =[2 4 6]

dsigmf, gaussmf, gauss2mf, evalmf, mf2mf, pimf, psigmf, sigmf, smf, trapmf,
trimf, zmf

3-25

genfisl

Purpose Generate FIS matrix using generic method.
Synopsis fismat = genfisl(data)
fismat = genfisl(data,numMFs,mfType)

Description genfisl(data,numMFs, mfType) generates a FIS matrix from training data
data, using grid partition style. numMFs is a vector specifying the number of
membership functions on all inputs. mfType is a string array where each row
specifies the membership function type of an input variable.

If numMFs is a number and/or mfType is a single string, they will be used for all
inputs. Default value for numMFs is 2; default string for mfType is 'gbellmf".

Examples data = [rand(10,1) 10*rand(10,1)-5 rand(10,1)];
numMFs = [3 T7];
mfType = str2mBt('pimf',‘trimf");
fismat genfisl(data,numMFs, mfType);
[x,mf] = plotmf(fismat,'input',1);
subplot(2,1,1), plot(x,mf);
xlabel('input 1 (pimf)');
[x,mf] = plotmf(fismat,'input',2);
subplot(2,1,2), plot(x,mf);
xlabel('input 2 (trimf)");

input 2 (trimf)

See Also anfis

3-26

Purpose
Synopsis

Description

Examples

genfis2

Generate FIS matrix using subtractive clustering.
fismat = genfis2(Xin,Xout,radii,xBounds,options)

Given a set of input and output data, this function extracts a set of rules that
models the data behavior. The rule extraction method first uses the subclust
function to determine the number of rules and antecedent membership
functions and then uses linear least squares estimation to determine each
rule’s consequent equations. This function returns a FIS matrix that contains
the resultant fuzzy rulebase. Xin is a matrix in which each row contains the
input values of a data point. Xout is a matrix in which each row contains the
output values of a data point. radii is a vector that specifies a cluster center’s
range of influence in each of the data dimensions, assuming the data falls
within a unit hyperbox.

For example, if the data dimension is 3 (e.g., Xin has 2 columns and Xout has
1column), radii =[0.50.4 0.3] specifiesthat the ranges of influence in the first,
second, and third data dimensions (i.e., the first column of Xin, the second
column of Xin, and the column of Xout) are 0.5, 0.4, and 0.3 times the width of
the data space, respectively. If radii is a scalar, then the scalar value is
applied to all data dimensions, i.e., each cluster center will have a spherical
neighborhood of influence with the given radius. xBounds is a 2xN matrix that
specifies how to map the data in Xin and Xout into a unit hyperbox, where N is
the data dimension. The first row contains the minimum axis range values and
the second row contains the maximum axis range values for scaling the data in
each dimension.

For example, xBounds = [-10 0 -1; 10 50 1] specifies that data values in the first
data dimension are to be scaled from the range [-10 +10] into values in the
range [0 1]; data values in the second data dimension are to be scaled from the
range [0 50]; and data values in the third data dimension are to be scaled from
the range [-1 +1]. If xBounds is an empty matrix or not provided, then xBounds
defaults to the minimum and maximum data values found in each data
dimension. options is an optional vector for specifying algorithm parameters
to override the default values. These parameters are explained in the help text
for the subclust function.

fismat = genfis2(Xin,Xout,0.5)

3-27

genfis2

See Also

3-28

This isthe minimum number of arguments needed to use this function. Here a
range of influence of 0.5 is specified for all data dimensions.

fismat = genfis2(Xin,Xout,[0.5 0.25 0.3])

This assumes the combined data dimension is 3. Suppose Xin hastwo columns
and Xout has one column, then 0.5 and 0.25 are the ranges of influence for each
of the Xin data dimensions, and 0.3 is the range of influence for the Xout data
dimension.

fismat = genfis2(Xin,Xout,0.5,[-10 -5 0, 10 5 20])

This specifies how to normalize the data in Xin and Xout into values in the
range [0 1] for processing. Suppose Xin has two columns and Xout has one
column, then the data in the first column of Xin are scaled from [-10 +10], the
data in the second column of Xin are scaled from [-5 +5], and the data in Xout
are scaled from [0 20].

subclust

Purpose

Synopsis

Description

Examples

See Also

gensurf

Generate FIS output surface.

gensurf(fis)
gensurf(fis,inputs,output)
gensurf(fis,inputs,output,grids,refinput)

gensurf(fis) will generate a plot ofthe output surface of afuzzy system using
the first two inputs and the first output.

gensurf(fis,inputs,output) will generate a plot using the inputs (one or
two) and output (only one is allowed) given by the vector inputs and the scalar
output.

gensurf(fis,inputs,output,grids) allows you to specify the number of grids
in the X and Y directions. If grids is atwo element vector, the grids in the X
and Y directions can be set independently.

gensurf(fis,inputs,output,grids,refinput) can be used if there are more

than two outputs. refinput then specifies the nonvarying inputs to the system.

[x,y,z]=gensurf(...) returns the variables that define the output surface
and suppresses automatic plotting.

evalfis, surfview

3-29

getfis

Purpose

Synopsis

Get fuzzy system properties.

getfis(a)

getfis(a,' fisprop')

getfis(a,' vartype',varindex,' varprop')

getfis(a,' vartype',varindex,'7f",7findex)
getfis(a,' vartype',varindex,'7f',7findex,' nfprop')

This is the fundamental access function for the FIS matrix. With this one
function you can learn about every part of the fuzzy inference system.

Description

Examples One input argument (output is the empty set)

a = readfis('tipper');
getfis(a)
Name = tipper
Type = mamdani
Numlnputs = 2
InLabels =
service
food
NumCutputs = 1
CutLabels =
tip
NumRules = 3
AndMfethod = min
CrMethod = max
ImpMfethod = min
AggMfethod = max
DefuzzMethod = centroid

Two input arguments

getfis(a,'type’)
ans =
mamdani

3-30

Three input arguments (output is the empty set)

getfis(a,'input',1)
Name = service

NumMFs = 3
MFLabels =
poor
good
excellent

Range = [0 10]
Four input arguments

getfis(a,'input',1,'name")
ans =
service

Five input arguments

getfis(a,'input',1,'mf',2)
Name = good
Type = gaussmf
Params =
1.5000 5.0000

Six input arguments

getfis(a,'input',1,'mf',2,'"name")
ans =
good

See Also setfis, showfis

getfis

3-31

mf2mf

Purpose Translate parameters between functions.
Synopsis outParams = m mfAnParaTsinType~utType)
Description This function does its best to translate parameters among the various

membership function types. Occasionally this translation will result in lost
information, sothat if the output parameters are translated back into the
original membership function type, the transformed membership function will
not look the same as it did originally.

The function tries to match the u = 0.5 crossover points for both the new and
old membership functions.

Examples x=0:0.1:5;
mfpl [1 2 3];
mfp2 = 7f27f(7fpl,'gbell7f",'tri7f");
plot(x,gbell7f(x,7fpl),x,tri7f(x,7fp2))

See Also dsigmf , gaussmf , gauss2mf, gbellmf , evalmf, pimf , psigmf, sigmf, smf ,
trapmf ,trimf | zmf

3-32

Purpose

Synopsis

Description

The Diagram

Menu

Iltems

mfedit

Membership function editor.

mfedit(a)

The Membership Function Editor allows you to inspect and modify all the
membership functions in your fuzzy system. For each membership function you
can change the name, the type, and the parameters. Eleven basic membership
functions are provided for you to choose from, although of course you can
always create your own specialized versions. Refer to Chapter 2, Tutorial, for
more information about how to use mfedit.

Select the current variable with the Variable Palette on the left side of the
diagram (under the heading “FIS Variables”). Select membership functions by
clicking once on them or their labels.

On the Membership Function Editor, there is a menu bar that allows you to
open related GUI tools, open and save systems, and so on. The File menu for

3-33

mfedit

the Membership Function Editor is the same as the one found on the FIS
Editor. Refer to the Reference entry fuzzy for more information.
+ Edit

Add MF... Add membership functions to the current variable.

Add custom MF... Add a customized membership function to the current
variable.

Remove current MF Delete the current membership function.
Remove all MFs Delete all membership functions of the current variable.
Undo Undo the most recent change.
* View
Edit FIS properties... Invoke the FIS Editor.
Edit rules... Invoke the Rule Editor.
View rules... Invoke the Rule Viewer.

View output surface... Invoke the Surface Viewer.

Membership There are 11 built-in membership functions to choose from, and you also have
Function the option of installing a customized membership function. In general, any
Pop-up Menu membership function can be converted to any other. Customized membership

functions, however, can never be converted.

See Also fuzzy,ruleedit, ruleview, surfview

3-34

Purpose

Synopsis

Description

Examples

See Also

Create new FIS.

a=newfis(fisName,fisType,andMethod,orMethod,impMethod,
agglVkthod,defuzzlVethod)

This function creates new FIS matrices. newfis has up to seven input
arguments, and the output argument is a FIS matrix. The seven input
arguments correspond to: name, type, AND method, OR method, implication
method, aggregation method, and defuzzification method.

The following example shows what the defaults are for each of the methods:

>> a=newfis('newsys');

>> getfis(a)

Name = newsys
Type = mamdani
Numinputs = 0
InLabels =
NumCutputs = 0
OutLabels =

NumRules 0

AndMethod min
CrMethod max
ImpMethod min

AggMethod

DefuzzMethod

ans =

readfis, writefis

max

newfis

3-35

parsrule

Purpose
Synopsis

Description

Examples

See Also

3-36

Parse fuzzy rules.
fis2 = parsrule(fis,txtRulelList,ruleFormat)

This function parses the text that defines the rules for a fuzzy system and
returns a FIS matrix with the appropriate rule list in place. If the original
input matrix fis has any rules initially, they are replaced in the new matrix
fis2. Three different rule formats are supported: verbose, symbolic, and
indexed.

a = readfis('tipper');

ruleTxt = 'if service is poor then tip is generous’;
a2 = parsrule(a,ruleTxt,'verbose');

showrule(a2)

ans =

1 If (service is poor) then (tip is generous) (1)

addrule, ruleedit, showrule

Purpose

Synopsis

Description

Examples

See Also

pimf

Pi-shaped curve membership function.

y = piirf(x,parairs)
y pimf(x,[a b ¢ d])

This spline-based curve is so named because of its shape. The parameters a and
d locate the “feet” of the curve, while b and c locate its “shoulders.”

x=0:0.1:10;
y=pimf(x,[1 4 5 10]);

plot(x,y)
xlabel('pimf, P=[1 4 5 10]")

pimf, P =114 5 101

dsigmf, gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, psigmf, sigmf, smf,
trapmf ,trimf , zmf

3-37

plotfis

Purpose Plot fuzzy inference system.
Synopsis plotfis(fismat)
Description This function displays a high level diagram of a fuzzy inference system. Inputs

and their membership functions are shown on the left and outputs and their
membership functions are shown on the right.

Examples a = readfis('tipper")
plotfis(a)
See Also plotfis, evalmf

3-38

Purpose
Synopsis

Description

Examples

See Also

plotmf

Plot membership functions for a variable.
plotmf(fismat,varType,varindex)

This function plots all of the membership functions associated with a given
variable.

a = readfis('tipper")
plotmf(a,'input',1)

evalmf, plotfis

3-39

psigmf

Purpose Product of two sigmoid curves membership functions.
Synopsis y = psigirf(x,paramB)
y = psigmf(x,[al cl a2 c2])

Description The sigmoid curve depends on two parameters a and c as given by

f(x-ac)=T T iW
This function is simply the product or two such curves
f-i(x; al, cf) * f2(x; a2, c2)

The parameters are listed in the order: [al cl a2 c2].

Examples x=0:0.1:10;
y=psigmf(x,[2 3 -5 8]);

plot(x,y)
xlabel('psigmf, P=[2 3 -5 8]')

psigmf, P=[23-5 8

See Also dsigmf, gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, sigmf, smf, trapmf,
trimf , zmf

3-40

Purpose
Synopsis

Description

Examples

See Also

readfis

Load FIS from disk.
fismat = readfis('filename’)

Read a fuzzy inference system from a .fis file on disk and bring the resulting
file into the workspace.

fismat = readfis (no input arguments) brings up auigetfile dialog boxto
assist with the name and directory location of the file.

The extension .fis is assumed for filename if it is not already present.

fismat = readfis('tipper');
getfis(fismat)

returns

Name = tipper
Type = mamdani
Numlnputs = 2
InLabels =

service

food
NumCutputs = 1
CutLabels =

tip
NumRules = 3
AndMethod = min
CrMfethod = max
ImpMethod min
AggMethod = max
DefuzzMethod = centroid

writefis

3-41

rmmf

Purpose Remove membership function from FIS.
Synopsis a = rmmf(a,'varType',varindex,'i7f",i7fIndex)
Description For removing membership functions. You cannot remove a membership

function currently in use in the rule list.

Examples a = newfis('mysys');
a addvar(a,'input','temperature’,[0 100]);
a = addmf(a,'input',1,'cold',"trimf',[0 30 60]);
getfis(a,'input',1)
Name = temperature
NumMFs = 1
MFLabels =
cold
Range = [0 100]
b = rmmf(a,'input',1,'mf',1);
getfis(b,'input',1)
Name = temperature
NumMFs = O
MFLabels =
Range = [0 100]

See Also addmf , addrule, addvar, rmvar

3-42

rmvar

Purpose Remove variable from FIS.
Synopsis rirvar(a,'varType',varindex)
Description For removing fuzzy variables. You cannot remove a fuzzy variable currently in

use in the rule list. This command will automatically alter the rule list to keep
its size consistent with the current number of variables.

Examples a = newfis('mysys');
a = addvar(a,'input','temperature’,[0 100]);
getfis(a)
Name = mysys

Type = mamdani
Nunlnputs = 1

InLabels =
temperature

NumCutputs = 0

OutLabels =

NumRules = 0

b = rmvar(a,'input’,1);

getfis(b)
Name mysys
Type = mamdani
Numnputs = 0
InLabels =
NumCutputs = 0
OutLabels =
NumRules = 0

See Also addmf , addrule, addvar, rmmf

3-43

ruleedit

Purpose

Synopsis

Description

Menu

3-44

Iltems

Rule editor and parser.

ruleedit(a)

The Rule Editor, like the Membership Function Editor, is used to modify the
FIS matrix. It can also be used simply to inspect the current rules being used
by a system. In general, you simply type your rules into the text field, and when
you're ready to parse the rules press Ctrl-Return. Refer to Chapter 2, Tutorial,
for more information about how to use ruleedit.

On the Rule Editor, there is a menu bar that allows you to open related GUI
tools, open and save systems, and so on. The File menu for the Rule Editor is
the same asthe onefound onthe FIS Editor. Refer to the Reference entry fuzzy
for more information.
« Edit
Undo Undo the most recent change.
* View
Edit FIS properties... Invoke the FIS Editor.
Edit membership functions... Invoke the Membership Function Editor.
View rules... Invoke the Rule Viewer.

View output surface... Invoke the Surface Viewer.

ruleedit

Rule Formats There is a pop-up menu in the Rule Editor that allows you to choose which rule
Pop-up Menu display format you prefer. Three different formats are available:

* verbose, which usesthe words “if” and “then” and so on to create actual sen-
tences.

 symbolic, which simply substitutes some symbols for the words described
above. For example, “if A and B then C” becomes
“A& B=>C.

* indexed, which is the simplest of the three formats. Aside from some punc-
tuation used to ease interpretation, this format exactly mirrors how the rule
is stored in the FIS matrix.

See the addrule and showrule commands for more information about the
composition of rules.

See Also addrule, fuzzy, mfedit, parsrule, ruleview, showrule, surfview

3-45

ruleview

Purpose

Synopsis

Description

Menu

3-46

Items

Rule viewer and fuzzy inference diagram.

ruleview(a)

The Rule Viewer is a“living” version ofthe fuzzy inference diagram. Much like
the Surface Viewer, it is a read-only tool. It is used to view the entire
implication process from beginning to end. You can move around the line
indices that correspond to the inputs and then watch the system readjust and
compute the new output. Refer to Chapter 2, Tutorial, for more information
about how to use ruleview.

On the Rule Viewer, there is a menu bar that allows you to open related GUI
tools, open and save systems, and so on. The File menu for the Rule Viewer is

ruleview

the same asthe one found on the FIS Editor. Refer to the Reference entry fuzzy
for more information.
« Edit
No options under Edit.
* View
Edit FIS properties... Invoke the FIS Editor.
Edit rules... Invoke the Rule Editor.
View output surface... Invoke the Surface Viewer.
e Options
Rule display format If you click on the rule numbers on the left side of the
fuzzy inference diagram, the rule associated with that number will appear in

the Status Bar at the bottom ofthe Rule Viewer. This menu item allows you
to set the format in which the rule appears.

See Also fuzzy, mfedit, ruleedit ,surfview

3-47

setfis

Purpose

Synopsis

Description

Examples

3-48

Set fuzzy system properties.

a = setfis(a,'propname’',newprop)
a = setfis(a,'vartype',varindex,'propname’',newprop)
a = setfis(a,' vartype',varindex,'i7f',i7findex,

propname',newprop);

The command setfis can be called with three, five, or seven input arguments,
depending on whether you want to set a property ofthe entire FIS matrix, a
particular variable belonging to that FIS matrix, or a particular membership
function belonging to one of those variables.

Called with three arguments

a = readfis('tipper');
a2 = setfis(a,'numnputs’, 3);
getfis(a2,'numnputs’)
ans =
3

The following properties of any fuzzy system can be altered with athree
argument call to setfis: name, type, numnputs, numoutputs, numrules,
andmethod, ormethod, impmethod, aggmethod, defuzzmethod

If used with five arguments, setfis will update any of several variable
properties.

a2 = setfis(a,'input',1,'name’,"help’);
getfis(a2,'input',1,'name’)
ans =

help

The following properties of any fuzzy system can be altered with a five
argument call to setfis: name, bounds

See Also

setfis

If used with seven arguments, setfis will update any of several membership
function properties.

a2 = setfis(a,'input',1,'iTf',2,'name','wretched");
getfis(a2,'input',1,'iTf',2,'name")
ans =

wretched

The following properties of any fuzzy system can be altered with a seven
argument call to setfis: name, type, params

getfis

3-49

sffis

Purpose
Synopsis

Description

See Also

3-50

Fuzzy inference S-function for Simulink.
output = sffis(t,x,u,flag,fismat)

This MEX-file is used by Simulink to dothe calculation normally performed by
evalfis. It has been optimized to work in the Simulink environment. This
means, among other things, that sffis builds a data structure in memory
during the initialization phase ofthe simulation which it then continues to use
until the simulation is complete.

The input to the fuzzy system comes in through the argument u. If, for example,
there are two inputs to fismat then uwill be atwo element vector.

evalfis, fuzblock

showfis

Purpose Display annotated FIS.
Synopsis showfis(fismat)
Description showfis(fismat) prints aversion ofthe variable fismat annotated row by row,

allowing you to see the significance and contents of each row.

Examples a = readfis('tipper’);
showfis(a)

3-51

showfis

3-52

returns

-

© 0N kA wN

W W ww WWWWNNNNNNNNNNRPRLRRERPR,RL,RLRR R
90.\I.C”.U".gw!\)!‘Q.@PON.@S“P@N!—‘.O@PON@@PWNH.O

Name

Type
Inputs/Outputs
NuminputMFs
NumCutputVFs
NumRules
AndMethod
CrlVethod
ImpMethod
AggVethod
DefuzzVethod
InLabels

CutLabels
InRange

CutRange
InVFLabels

CutVFLabels

INVFTypes

CutVFTypes

InVFParams

tipper
mamdani

(2 1

3 2]

3

3

min

max

min

max
centroid
service
food

tip

[0 10]

[0 10]

[0 30]

poor

good
excellent
rancid
delicious
cheap
average
generous
gaussmf
gaussmf
gaussmf
trapmf
trapmf
trimf

trimf

trimf

[1.5 0 0 Q]
[1.5 5 0 Q]
[1.5 10 0 Q]
[0 0 13
[7 9 10 1Q]

See Also

39.
40.
41.
42.
43.

getfi s

CutlVFParaiTB

RulelList

[0 5 10 O]

[10 15 20 0]
[20 25 30 0]
[1 1112
[2 0211
[3 2312

showfis

3-53

showrule

Purpose
Synopsis

Description

Examples

See Also

3-54

Display FIS rules.
showrule(a,indexList,format)

This command is used to display the rules associated with a given system. It
can return the rule in any of three different formats: verbose (the default),
symbolic, and membership function index referencing. The first argument is
the FIS matrix, the second argument is the rule number, and the third
argument, if supplied, isthe return format. One rule or a vector of rules can be
provided to this function.

a = readfis('tipper');

showrule(a,1)

ans =

1 If (service is poor) or (food is rancid) then (tip is cheap) (1)

showrule(a,2)
ans =
2. If (service is good) then (tip is average) (1)

showrule(a,[3 1],'symbolic")

ans =

3. (service==excellent) | (food==delicious) => (tip=generous) (1)
1 (service==poor) | (food==rancid) => (tip=cheap) (1)

showrule(a,1:3,'indexed")

ans =

11 1(1) : 2
20 2() : 1
32 3() : 2

parsrule, ruleedit

sigmf

Purpose Sigmoid curve membership function.
Synopsis y = sigi7f(x,params)
y = sigmf(x,[a c])
Description The sigmoid curve depends on two parameters a and c as given by
f(x-ac)=

Depending on the sign ofthe parameter a, a sigmoidal membership function is
inherently open right or left and thus is appropriate for representing concepts
such as “very large” or “very negative.” More conventional-looking membership
functions can be built by taking either the product or difference oftwo different
sigmoidal membership functions. You can find more on this in the entries for
dsigmf and psigmf.

Examples x=0:0.1:10;
y=sigmf(x,[2 4]);
plot(x,y)
xlabel('sigmf, P=[2 4]")

sigmf, P = [241

See Also dsigmf, gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, psigmf, smf,
trapmf,trimf, zmf

3-55

smf

Purpose S-curve membership function.
Synopsis y = smf(x,paramB)
y = smf(x,[a b])

Description This spline-based curve is so named because of its shape. The parameters a and
b locate the extremes of the sloped portion of the curve.

Examples x=0:0.1:10;
y=smf(x,[1 8]);

plot(x,y)
xlabel('smf, P=[1 8]")

smf, P=T18L

See Also dsigmf, gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, psigmf, sigmf,
trapmf,trimf , zmf

3-56

Purpose
Synopsis

Description

subclust

Find cluster centers with subtractive clustering.
[C,S] = subclust(X,radii,xBounds,options)

This function estimates the cluster centers in a set of data by using the
subtractive clustering method. The subtractive clustering method assumes
each data point is a potential cluster center and calculates a measure of the
potential for each data point based on the density of surrounding data points.
The algorithm selects the data point with the highest potential as the first
cluster center and then destroys the potential of data points near the first
cluster center. The algorithm then selects the data point with the highest
remaining potential as the next cluster center and destroys the potential of
data points near this new cluster center. This process of acquiring a new
cluster center and destroying the potential of surrounding data points repeats
until the potential of all data points falls below a threshold. The subtractive
clustering method is an extension ofthe Mountain clustering method proposed
by R. Yager [Yag92].

The matrix X contains the data to be clustered; each row of X is a data point.
The variable radii is avector that specifies a cluster center's range of influence
in each ofthe data dimensions, assuming the data falls within a unit hyperbox.
Small radii values generally result in finding afew large clusters. Good values
for radii are usually between 0.2 and 0.5.

For example, if the data dimension is two (X has two columns),

radii = [0.5 0.25] specifies that the range of influence in the first data
dimension is half the width ofthe data space and the range of influence in the
second data dimension is one quarter the width ofthe data space. If radii is a
scalar, then the scalar value is applied to all data dimensions, i.e., each cluster
center will have a spherical neighborhood of influence with the given radius.
xBounds is a 2xN matrix that specifies how to map the data in X into a unit
hyperbox, where N is the data dimension.

The first row contains the minimum axis range values and the second row
contains the maximum axis range values for scaling the data in each
dimension. For example, xBounds = [-10 -5; 10 5] specifies that data values in
the first data dimension are to be scaled from the range [-10 +10] into values
in the range [0 1]; data values in the second data dimension are to be scaled
from the range [-5 +5] into values in the range [0 1]. If xBounds is an empty

3-57

subclust

Examples

3-58

matrix or not provided, then xBounds defaults to the minimum and maximum
data values found in each data dimension.

The options vector can be used for specifying clustering algorithm parameters
to override the default values. These parameters are:

e options(1l) = squashFactor: This is used to multiply the radii values to de-
termine the neighborhood of a cluster center within which the existence of
other cluster centers are to be discouraged. (default: 1.25)

« options(2) = acceptRatio: This sets the potential, as a fraction ofthe po-
tential of the first cluster center, above which another data point will be ac-
cepted as a cluster center. (default: 0.5)

« options(3) = rejectRatio: This sets the potential, as a fraction ofthe po-
tential ofthe first cluster center, below which a data point will be rejected as
a cluster center. (default: 0.15)

e options(4) = verbose: Ifthis term is not zero, then progress information
will be printed asthe clustering process proceeds. (default: 0)

The function returns the cluster centers in the matrix C each row of Ccontains
the position of a cluster center. The returned Svector contains the sigma values
that specify the range of influence of a cluster center in each of the data
dimensions. All cluster centers share the same set of sigma values.

[C,S] = subclust(X,0.5)

This isthe minimum number of arguments needed to usethis function. A range
of influence of 0.5 has been specified for all data dimensions.

[C,S] = subclust(X,[0.5 0.25 0.3],[].[2.0 0.8 0.7])

This assumes the data dimension is 3 (X has 3 columns) and uses a range of
influence of 0.5, 0.25, and 0.3 for the first, second and third data dimension,
respectively. The scaling factors for mapping the data into a unit hyperbox will
be obtained from the minimum and maximum data values. The squashFactor
is set to 2.0, indicating that we only want to find clusters that are far from each
other. The acceptRatio is set to 0.8, indicating that we will only accept data
points that have very strong potential of being cluster centers. The
rejectRatio is set to 0.7, indicating that we want to reject all data points
without a strong potential.

subclust

See Also genfis2

References Chiu, S., “Fuzzy Model Identification Based on Cluster Estimation,” Journal of
Intelligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

Yager, R. and D. Filev, “Generation of Fuzzy Rules by Mountain Clustering,”
Journal of Intelligent & Fuzzy Systems, Vol.2, No. 3, pp. 209-219, 1994.

3-59

surfview

Purpose

Synopsis

Description

Menu

3-60

Items

Output surface viewer.

surfview(a)

The Surface Viewer is a GUI tool that lets you examine the output surface of a
fuzzy inference system for any one or two inputs. Since it does not alter the
fuzzy system or its associated FIS matrix in any way, it is a read-only editor.
Using the pop-up menus, you select which input variables you want to form the
two input axes (X and Y) as well the output variable that you want to form the
output (or Z) axis. Then push the Evaluate button to perform the calculation
and plot the output surface.

By clicking on the plot axes and dragging the mouse, you can actually
manipulate the surface sothat you can view it from different angles.

If there are more than two inputs to your system, you must supply, in the
reference input section the constant values associated with any unspecified
inputs.

Refer to the Tutorial section for more information about how to use surfview.

On the Surface Viewer, there is a menu bar that allows you to open related GUI
tools, open and save systems, and so on. The File menu for the Surface Viewer

See Also

surfview

is the same as the one found on the FIS Editor. Refer to the Reference entry
fuzzy for more information.
« Edit
No options under Edit.
* View
Edit FIS properties... Invoke the FIS Editor.
Edit membership functions... Invoke the Membership Function Editor.
Edit rules... Invoke the Rule Editor.
View rules... Invoke the Rule Viewer.
» Options
Plot Choose among eight different kinds of plot styles.
Color Map Choose among several different color schemes.

Always evaluate Check this menu item if you want to automatically evalu-
ate and plot a new surface every time you make a change that affects the plot
(like changing the number of grid points).

fuzzy, gensurf, mfedit, ruleedit ,ruleview

3-61

trapmf

Purpose Trapezoidal membership function.
Synopsis y = trapmf(x,paraimB)
y = trapmf(x,[a b ¢ d])
Description The trapezoidal curve depends on four parameters as given by
0, Xx<a
X-a
a<x<b
b- a’
f(x;a,bcd)= 1 b<x<c
d-x
c<x<d
d-c
0, d<x

or more compactly by

X a d_x
f(x;a,b,c,d)=max(min(~-=,1,"7-7), 0)
b_a C

The parameters a and d locate the “feet” ofthe trapezoid and the parameters b
and c locate the “shoulders.”

Examples x=0:0.1:10;
y=trapmf(x,[1 5 7 8]);

plot(x,y)
xlabel(‘'trapmf, P=[1 5 7 8]

trapmf, P=T57 8l

See Also dsigmf, gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, psigmf, sigmf, smf,
trimf , zmf

3-62

Purpose

Synopsis

Description

Examples

See Also

trimf

Triangular membership function.

y = trii7f(x,paramB)
y =trimf(x,[a b c])

The triangular curve depends on three parameters as given by

0, Xx<a
X- a
7 a<x<b
f(xabe= D-2
b<x<c
c-b’
0, c<X

or more compactly by

f(x;a,b,c) = i —=),
(x;a,b,c) max(mln(é_aa _b)O)

The parameters a and c locate the “feet” of the triangle and the parameter ¢
locates the peak.

x=0:0.1:10;

y=trimf(x,[3 6 8]);
plot(x,y)

xlabel('triTf, P=[3 6 8]")

trimf, P =136 8L

dsigmf, gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, psigmf, sigmf, smf,
trapmf

3-63

writefis

Purpose

Synopsis

Description

Examples

See Also

3-64

Save FIS to disk.

writefis(fismat)
writefis(fismat, filename)
writefis(fismat, filename,'dialog’

Save fuzzy inference system as a fis file on disk. writefis(fismat) brings
up auiputfile dialog box to assist with the naming and directory location of
the file.

writefis(fismat, filename) writes a fis file corresponding to the FIS
matrix fismat to a disk file called filename. No dialog box is used and the file
is saved to the current directory.

writefis(fismat, filename,'dialog' bringsupauiputfile dialog boxwith
the default name filename supplied.

The extension fis is added to filename if it is not already present.

= newfis('tipper');

= addvar(a, input', service',[0 10]);

= addmf(a," nput',1 ‘'poor','gaussmf',[1.5 0]);

= addmf(a," nput',1 'good','gaussmf’',[1.5 5]);

= addmf(a," nput',1 'excellent’,'"gaussmf',[1.5 10]);
ritefis(a my_file'")

S oo o0

readfis

Purpose

Synopsis

Description

Examples

See Also

Z-shaped membership function.

y = zmf(x.parans)
y zmf(x,[a b])

This spline-based function is so named because of its shape. The parameters a
and b locate the extremes of the sloped portion of the curve.

x=0:0.1:10;
y=trimf(x,[3 7]);
plot(x,y)

xlabel('zmf, P=[3 7]")

zmf, P=1T137]

dsigmf, gaussmf, gauss2mf, gbellmf, evalmf, mf2mf, pimf, psigmf, sigmf, smf,
trapmf,trimf

3-65

3-66

A

adaptive noise cancellation 2-94
addmf 2-53, 2-56, 3-7

addrule 2-53, 2-56, 3-8

addvar 2-53, 2-56, 3-9
aggregation 2-108

ANFIS 2-69, 2-94, 2-108

anfis 3-10

antecedent 2-108

B

ball and beam system 2-106

C

chaotic time series 2-97
clustering algorithms 2-109
consequent 2-108

D

defuzz 3-13
defuzzification 2-108
degree of belief 2-108
degree of fulfillment 2-108
dsigmf 2-11, 3-14

E

evalfis 2-53, 3-15
evalmf 3-16

F

fc m3-17
firing strength 2-108

Index

FIS 2-108
files 2-57
matrix 2-54
fuzblock 2-68
fuzdemos 3-19
fuzdems 3-18
fuzzification 2-108
fuzzy clustering 2-79
fuzzy c-means 2-79
fuzzy c-means clustering 2-108, 3-17
fuzzy inference system 2-108
fuzzy operators 2-108
fuzzy set 2-108
fuzzy singleton 2-108

G

gauss2mf 2-10
gaussian 2-10
gaussmf 2-10, 3-24
gbellmf 2-11, 3-25
genfisl 3-26
genfis2 3-27
gensurf 2-52, 3-29
getfis 2-56, 3-30
glossary 2-108

I
implication 2-109
inverted pendulum problem 2-104

J
juggling problem 2-89

Index

L

logical operations 2-12

M
Mamdani's method 2-59

Mamdani-style inference 2-59, 2-109
membership function 2-109
mf2mf 3-32

N
neuro-fuzzy inference 2-69
newfis 2-53, 3-35

P
parsrule 3-36

pimf 2-11

plotfis 2-50

plotmf 2-51, 3-38, 3-39
probabilistic OR 2-21
psigmf 2-11, 3-40

R
readfis 3-41

rmmf 2-56, 3-42
rmvar 2-56, 3-43
robot arm 2-91
rule formats 3-45
ruleedit 3-44
ruleview 3-46

S

setfis 2-56, 3-48
sffis 2-68, 3-50

showfis 2-56, 3-51

showrule 3-54

sigmf 2-11, 3-55

Simulink, working with 2-65
singleton 2-59, 2-109

smf 2-11, 3-56

stand-alone fuzzy inference engine 2-87
subclust 3-57

subtractive clustering 2-81
Sugeno-style fuzzy inference 2-59
Sugeno-style inference 2-109
surfview 3-60

T
T-conorm 2-109

T-norm 2-109

trapezoidal 2-10

trapmf 2-10, 3-62

trimf 3-63, 3-65

truck backer-upper problem 2-102

w

writefis 3-64

Z

zmf 2-11, 3-65

