
MATLAB®
Fuzzy Logic

Toolbox
J.-S. Roger Jang
Ned Gulley

C o m p u ta tio n

V is u a liz a t io n

P ro g ra m m in g

User’s Guide
Version 1

How to Contact The MathWorks:

□
508-647-7000

508-647-7001

The M athW orks, Inc.
24 Prim e Park Way
Natick, MA 01760-1500

h t t p : / / w w w . m a t h w o r k s . c o m

f t p . m a t h w o r k s . c o m

c o m p . s o f t - s y s . m a t l a b

s u p p o r t @ m a th w o r k s . c o m

s u g g e s t @mat hwor ks. com

b u g s @ m a th w o rk s .c o m

doc@mat hwor ks . c o m

s u b s c r i b e @ m a t h w o r k s . c o m

s e r v i c e @ m a t h w o r k s . c o m

in f o @ m a t h w o r k s . c o m

Phone

Fax

Mail

Web
Anonymous FTP server
Newsgroup

Technical support
Product enhancement suggestions
Bug reports
Documentation error reports
Subscribing user registration
Order status, license renewals, passcodes
Sales, pricing, and general inform ation

Fuzzy Log ic Toolbox User ’s G u id e

© C O P Y R IG H T 1984 - 1997 by T he M a th W o rk s , Inc. A l l R ig h ts Reserved.
The softw are described in th is document is fu rn ished under a license agreem ent. The software may be used
or copied on ly under the te rm s of the license agreem ent. No part of th is m anual may be photocopied or repro­
duced in any fo rm w ith o u t p rio r w ritte n consent from The M athW orks, Inc.

U.S. G O V E R N M E N T : I f Licensee is acqu iring th e software on behalf of any u n it or agency of th e U. S.
G overnm ent, th e fo llow in g sha ll apply:

(a) for u n its of the D epartm ent of Defense:
RESTR ICTED R IG H TS LE G E N D : Use, dup lica tion , or disclosure by the Governm ent is subject to re s tric ­
tio n s as set fo rth in subparagraph (c)(1)(ii) of the R ights in Technical Data and Com puter Softw are Clause
at DFARS 252.227-7013.
(b) for any other u n it or agency:
N O TICE - N o tw iths tand in g any other lease or license agreement th a t may pe rta in to, or accompany the
de live ry of, th e com puter software and accompanying docum entation, the r ig h ts of the Governm ent
regard ing its use, reproduction and disclosure are as set fo rth in C lause 52.227-19(c)(2) of the FAR.
C ontrac to r/m anu fac tu re r is The M a thW orks Inc., 24 P rim e Park W ay, N a tick , M A 01760-1500.

M A T L A B , S im u lin k , H and le G raphics, and Real-Tim e W orkshop are registered tra dem arks and S tate flow
and Target Language C om piler are tra dem arks of The M athW orks, Inc.

O ther product or brand names are tra dem arks or registered tra dem arks of th e ir respective holders.

P r in t in g H is to ry : J a n u a ry 1995 F i rs t p r in t in g
A p r i l 1997 Second p r in t in g (for M A T L A B 5)

http://www.mathworks.com
ftp://ftp.mathworks.com
mailto:support@mathworks.com
mailto:bugs@mathworks.com
mailto:subscribe@mathworks.com
mailto:service@mathworks.com
mailto:info@mathworks.com

Forward
The past few years have witnessed a rapid growth in the number and varie ty
of applications of fuzzy logic. The applications range from consumer products
such as cameras, camcorders, washing machines, and microwave ovens to
industria l process control, medical ins trum enta tion , decision-support systems,
and portfo lio selection.

To understand the reasons for the growing use of fuzzy logic it is necessary,
firs t, to c la rify what is meant by fuzzy logic.

Fuzzy logic has tw o d ifferent meanings. In a narrow sense, fuzzy logic is a
logical system, which is an extension of m ultiva lued logic. But in a w ider
sense—which is in predominant use today— fuzzy logic (FL) is almost
synonymous w ith the theory of fuzzy sets, a theory which relates to classes of
objects w ith unsharp boundaries in which membership is a m atter of degree.
In th is perspective, fuzzy logic in its narrow sense is a branch of FL. W hat is
im portant to recognize is tha t, even in its narrow sense, the agenda of fuzzy
logic is very d ifferent both in sp irit and substance from the agendas of
trad itiona l m ultiva lued logical systems.

In the Fuzzy Logic Toolbox, fuzzy logic should be interpreted as FL, tha t is,
fuzzy logic in its w ide sense. The basic ideas underlying FL are explained very
clearly and ins igh tfu lly in the Introduction. W hat m ight be added is tha t the
basic concept underly ing FL is tha t of a lin g u is tic variable, tha t is, a variab le
whose values are words rather than numbers. In effect, much of FL may be
viewed as a methodology for computing w ith words rather than numbers.
A lthough words are inherently less precise than numbers, th e ir use is closer to
human in tu ition . Furtherm ore, computing w ith words exploits the tolerance
for imprecision and thereby lowers the cost of solution.

Another basic concept in FL, which plays a central role in most of its
applications, is tha t of a fuzzy if-then ru le or, sim ply, fuzzy rule. A lthough
rule-based systems have a long h istory of use in A I, what is m issing in such
systems is a machinery for dealing w ith fuzzy consequents and/or fuzzy
antecedents. In fuzzy logic, th is machinery is provided by what is called the
calculus of fuzzy rules. The calculus of fuzzy rules serves as a basis for what
m ight be called the Fuzzy Dependency and Command Language (FDCL).
A lthough FDCL is not used exp lic itly in Fuzzy Logic Toolbox, it is effectively
one of its principal constituents. In th is connection, what is im portant to

Forward

recognize is tha t in most of the applications of fuzzy logic, a fuzzy logic solution
is in rea lity a transla tion of a human solution in to FDCL.

What makes the Fuzzy Logic Toolbox so powerful is the fact tha t most of
human reasoning and concept form ation is linked to the use of fuzzy rules. By
providing a system atic fram ework for computing w ith fuzzy rules, the Fuzzy
Logic Toolbox greatly am plifies the power of human reasoning. Further
am plification results from the use of M ATLAB and graphical user interfaces -
areas in which The M athW orks has unparalle led expertise.

A trend which is growing in v is ib ility relates to the use of fuzzy logic in
combination w ith neurocomputing and genetic algorithm s. More generally,
fuzzy logic, neurocomputing, and genetic a lgorithm s may be viewed as the
principal constituents of what m ight be called soft computing. U n like the
trad itiona l, hard computing, soft computing is aimed at an accommodation
w ith the pervasive imprecision of the real world. The guid ing p rinc ip le of soft
computing is: Exploit the tolerance for imprecision, uncerta inty, and partia l
tru th to achieve tra c ta b ility , robustness, and low solution cost. In coming
years, soft computing is like ly to play an increasingly im portant role in the
conception and design of systems whose M IQ (Machine IQ) is much higher than
tha t of systems designed by conventional methods.

Among various combinations of methodologies in soft computing, the one
which has highest v is ib ility at th is junc tu re is tha t of fuzzy logic and
neurocomputing, leading to so-called neuro-fuzzy systems. W ith in fuzzy logic,
such systems play a pa rticu la rly im portant role in the induction of rules from
observations. An effective method developed by Dr. Roger Jang for th is
purpose is called A N FIS (Adaptive Neuro-Fuzzy Inference System). Th is
method is an im portant component of the Fuzzy Logic Toolbox.

The Fuzzy Logic Toolbox is h igh ly impressive in all respects. It makes fuzzy
logic an effective tool for the conception and design of in te lligen t systems. The
Fuzzy Logic Toolbox is easy to master and convenient to use. And last, but not
least im portant, it provides a reader-friendly and up-to-date introduction to the
methodology of fuzzy logic and its w ide-ranging applications.

Lotfi A. Zadeh
Berkeley, CA
January 10, 1995

Contents

Before You Begin

W hat Is the Fuzzy Logic Toolbox? ... 2
How to Use This Guide ... 3
Insta lla tion ... 3
Typographical Conventions .. 4

In troduct ion

1 1---

W hat Is Fuzzy L o g ic ? ... 1-4
W hy Use Fuzzy Logic?... 1-5
When Not to Use Fuzzy L o g ic .. 1-6

W hat Can th e Fuzzy L o g ic T o o lb o x D o ? 1-7

An In tro d u c to ry E xam p le : Fuzzy vs. N on-Fuzzy 1-8
The Non-Fuzzy Approach .. 1-8
The Fuzzy Approach ... 1-12
Some Observations ... 1-13

Tutor ia l

2 ---
The Big P icture .. 2-2

F o u n d a tio n s o f Fuzzy L o g ic .. 2-4
Fuzzy Sets ... 2-4
Membership Functions ... 2-8

Membership Functions in the Fuzzy Logic Toolbox 2-9
Summ ary of Membership Functions 2-12

i

Logical O p e ra tio n s ... 2-12
Additional Fuzzy Operators ... 2-14

If-Then Rules .. 2-16
Summary of If-Then Rules ... 2-18

Fuzzy In fe re n c e System s .. 2-19
D inner for Two, R eprise ...2-19

Step 1. Fuzzify In p u ts .. 2-20
Step 2. Apply Fuzzy O p e ra to r... 2-21

Step 3. Apply Im plication Method2-22
Step 4. Aggregate A ll O utputs ...2-23

Step 5. Defuzzify ... 2-24
The Fuzzy Inference D ia g ra m ... 2-25
Customization2-26

B u ild in g System s w ith th e Fuzzy L o g ic T o o lb o x 2-28
D inner for Two, from the Top ... 2-28
G etting Started .. 2-31
The Membership Function Editor ... 2-35
The Rule Editor .. 2-38
The Rule V ie w e r ..2-40
The Surface Viewer ... 2-42
Two-inputs One-output, or W hat About the Food? 2-43
Im porting and Exporting from the GUI Tools 2-46
Custom izing Your Fuzzy System ... 2-46

W o rk in g fro m th e C om m and L in e 2-48
System D isplay Functions2-50
B u ild ing a System from Scratch2-52
FIS Evaluation2-53

M -F ile or M EX-File? ...2-54
The FIS M a trix 2-54

FIS Files on Disk2-57

S ugeno -S ty le Fuzzy In fe r e n c e ... 2-59
An Example: Two Lines ... 2-62
Conclusion ... 2-63

ii Contents

W o rk in g w ith S im u lin k ...2-65
An Example: W ater Level Control ... 2-65
B u ild ing Your Own S im u la tio n s ... 2-68

A N F IS .. 2-69
Some Constraints .. 2-69
An Example ... 2-69
More on A N FIS .. 2-75
T ra in ing Data .. 2-75

Input FIS M a trix ... 2-76
T ra in ing Options ... 2-76
Display Options ... 2-77
Checking Data .. 2-77

Output FIS M a tr ix for T ra in ing Data2-78
T ra in ing E rror .. 2-78
Step Size ... 2-78

Output FIS M a tr ix for Checking D a ta2-78
Checking Error ... 2-78

Reference ... 2-78

Fuzzy C lu s te r in g ..2-79
Fuzzy C-Means C lustering ..2-79

An Example: 2-D Clusters .. 2-80
Subtractive C lustering ... 2-81

An Example: Suburban Commuting .. 2-82
O verfitting .. 2-85

References ... 2-86

S ta n d -A lo n e Code .. 2-87

A p p lic a tio n s and Dem os .. 2-89
Ball Juggling .. 2-89
Inverse K inem atics of Two-Joint Robot A rm 2-91
Adaptive Noise Cancellation .. 2-94
Chaotic Tim e Series P re d ic tio n ... 2-97
Fuzzy C-Means C lustering Demos .. 2-101
Truck Backer-Upper (S im ulink o n ly) ..2-102
Inverted Pendulum (S im ulink o n ly) .. 2-104
Ball and Beam (S im ulink o n ly) ... 2-106

ii i

G lo s s a ry ..2-108

R e fe rences ...2-110

Fuzzy M u s in g s .. 2-112

Reference

3 I---
GUI T o o ls ... 3-2

Membership Functions ... 3-2
FIS Data S tructu re Management ...3-3
Advanced Techniques ... 3-4

S im u link Blocks .. 3-4
Demos .. 3-5

Fuzzy In fe re n c e Q u ick R e fe re n c e ...3-6

iv Contents

Before You Begin

Before You Begin

This section describes how to use the Fuzzy Logic Toolbox. It explains how to
use th is guide and points you to additional books for toolbox insta lla tion
inform ation.

W hat Is the Fuzzy Logic Toolbox?
The Fuzzy Logic Toolbox is a collection of functions bu ilt on the M ATLAB®
num eric computing environment. It provides tools for you to create and edit
fuzzy inference systems w ith in the fram ework of M ATLAB, or i f you prefer you
can in tegrate your fuzzy systems in to s im ulations w ith S im ulink® , or you can
even build stand-alone C programs tha t call on fuzzy systems you build w ith
M ATLAB. This toolbox relies heavily on graphical user interface (GUI) tools to
help you accomplish your work, although you can work entire ly from the
command line if you prefer.

The toolbox provides three categories of tools:

• Command line functions

• Graphical, in teractive tools

• S im u link blocks and examples

The firs t category of tools is made up of functions tha t you can call from the
command line or from your own applications. Many of these functions are
M ATLAB M-files, series of M ATLAB statements tha t implement specialized
fuzzy logic algorithm s. You can view the M ATLAB code for these functions
using the statement

type function_nam e

You can change the way any toolbox function w orks by copying and renaming
the M-file, then m odifying your copy. You can also extend the toolbox by adding
your own M-files.

Secondly, the toolbox provides a number of in teractive tools tha t let you access
many of the functions through a GUI. Together, the GUI - based tools provide
an environment for fuzzy inference system design, analysis, and
im plem entation.

The th ird category of tools is a set of blocks for use w ith the S im ulink
sim ulation software. These are specifically designed for high speed fuzzy logic
inference in the S im u link environment.

2

How to Use This Guide
I f you are new to fuzzy log ic, begin w ith Chapter 1, “ In troduction .” This
chapter introduces the m otivation behind fuzzy logic and leads you smoothly
in to the tu to ria l.

I f you are an experienced fuzzy log ic user, you may want to start at the
beginning of Chapter 2, “T u to ria l,” to make sure you are comfortable w ith the
fuzzy logic term inology as used by the Fuzzy Logic Toolbox. I f you jus t want an
overview of each graphical tool and examples of specific fuzzy system tasks,
tu rn d irectly to the section in Chapter 2 entitled “B u ild ing Systems w ith the
Fuzzy Logic Toolbox.”

I f y o u ju s t w an t to s ta rt as soon as possib le and experiment, you can open an
example system righ t away by typ ing

fuzzy t ip p e r

This brings up the Fuzzy Inference System (FIS) editor for an example problem
that has to do w ith tipp ing . I f you like you can refer to the one page summary
of the fuzzy inference process shown at the beginning of Chapter 3, “Reference.”

A ll toolbox users should use Chapter 3, “Reference,” for in form ation on specific
tools. Reference descriptions include a synopsis of the function ’s syntax, as well
as a complete explanation of options and operation. Many reference
descriptions also include helpful examples, a description of the function ’s
algorithm , and references to additional reading m ateria l. For GUI-based tools,
the descriptions include options for invoking the tool.

Insta l la t ion
To insta ll th is toolbox on a workstation or a large machine, see the Insta lla tion
Guide for U N IX . To insta ll the toolbox on a PC or Macintosh, see the
Insta lla tion Guide for PC and Macintosh.

To determ ine if the Fuzzy Logic Toolbox is already installed on your system,
check for a subdirectory names fuzzy w ith in the main toolbox d irectory or
folder.

3

Before You Begin

Typograph ica l Conventions

To Indicate This Guide Uses Example

Example code Monospace type To assign the value 5 to A,
enter

A = 5

M ATLAB output Monospace type M ATLAB responds w ith
A =

5

Function names Monospace type The cos function finds the
cosine of each array ele­
ment.

New term s Ita lics An array is an ordered col­
lection of in form ation.

Keys Boldface w ith an
in itia l capital le tter

Press the R eturn key.

Menu names,
items, and GUI con­
tro ls

Boldface w ith an
in itia l capital le tter

Chose the F ile menu.

Mathematical
expressions

Variables in italics.
Functions, opera­
tors, and constants
in standard type.

This vector represents the
polynomial

p = x2+2x+3.

4

1

Introduction

1-4 W hat Is Fuzzy Log ic?
1-5 W hy Use Fuzzy Logic?
1-6 When Not to Use Fuzzy Logic

1-7 W hat Can th e Fuzzy L o g ic T o o lb o x Do?

1-8 An In t ro d u c to ry E xam p le : Fuzzy vs. N on-Fuzzy
1-8 The Non-Fuzzy Approach

1-12 The Fuzzy Approach
1-13 Some Observations

1 Introduction

Fuzzy logic is all about the re la tive importance of precision: How im portant is
it to be exactly righ t when a rough answer w ill do? A ll books on fuzzy logic
begin w ith a few good quotes on th is very topic, and th is is no exception. Here
is what some clever people have said in the past:

Precision is not tru th .

— Henri Matisse

Sometimes the more measurable drives out the most im portant.

— Rene Dubos

Vagueness is no more to be done away w ith in the world of logic than fric tion in
mechanics.

— Charles Sanders Peirce

I believe that nothing is uncond itiona lly true, and hence I am opposed to every
statement of positive tru th and every man who makes it.

— H. L. Mencken

So fa r as the laws of mathematics refer to reality, they are not certain. And so
fa r as they are certain, they do not refer to reality.

—A lbert Einstein

As complexity rises, precise statements lose meaning and meaningful
statements lose precision.

— Lotfi Zadeh

There are also some pearls of fo lk wisdom tha t echo these thoughts:

Don’t lose sight of the forest for the trees.

Don’t be penny wise and pound foolish.

The Fuzzy Logic Toolbox for use w ith M ATLAB is a tool for solving problems
w ith fuzzy logic. Fuzzy logic is a fascinating area of research because it does a
good job of trad ing off between significance and precision—something tha t
humans have been managing for a very long time.

Fuzzy logic sometimes appears exotic or in tim ida ting to those un fam ilia r w ith
it, but once you become acquainted w ith it, it seems almost surpris ing tha t no
one attempted it sooner. In th is sense fuzzy logic is both old and new because,

1-2

although the modern and methodical science of fuzzy logic is s till young, the
concepts of fuzzy logic reach righ t down to our bones.

Precision and S ign ificance in the Real W orld

A 1500 kg mass
is approaching
your head at
45.3 m/sec.

L I
Precision

LOOK
OUT!!

LA
Sign ificance

1-3

1 Introduction

W hat Is Fuzzy Logic?
Fuzzy logic is a convenient way to map an input space to an output space. This
is the s ta rting point for everything else, and the great emphasis here is on the
word “convenient.”

What do I mean by mapping input space to output space? Here are a few
examples: You te ll me how good your service was at a restaurant, and I ’ll te ll
you what the t ip should be. You te ll me how hot you want the water, and I ’ll
adjust the faucet valve to the righ t setting. You te ll me how far away the
subject of your photograph is, and I ’ll focus the lens for you. You te ll me how
fast the car is going and how hard the motor is working, and I ’ll sh ift the gears
for you. A graphical example of an input-output map is shown below.

I t ’s all jus t a m atter of mapping inputs to the appropria te outputs. Between the
input and the output we’ll put a black box tha t does the work. W hat could go in
the black box? Any number of th ings: fuzzy systems, linear systems, expert
systems, neural networks, d iffe rentia l equations, interpolated
m ulti-d im ensional lookup tables, or monkeys w ith typew rite rs jus t to name a
few of the possible options. C learly the list could go on and on.

Of the dozens of ways to make the black box work, it tu rn s out tha t fuzzy is
often the very best way. W hy should tha t be? As Lotfi Zadeh, who is considered
to be the fa ther of fuzzy logic, once remarked: “ In almost every case you can
build the same product w ithou t fuzzy logic, but fuzzy is faster and cheaper.”

In p u t Space
(all possible service

quality ratings)

O u tp u t Space
(all possible tips)

An input-output map for the tipping problem:
Given the quality of service, how much should I tip? ’

1-4

What Is Fuzzy Logic?

W hy Use Fuzzy Logic?
Here is a list of general observations about fuzzy logic.

• Fuzzy logic is conceptually easy to understand.

The m athematical concepts behind fuzzy reasoning are very simple. W hat
makes fuzzy nice is the “naturalness” of its approach and not its far-reaching
complexity.

• Fuzzy logic is flexible.

W ith any given system, i t ’s easy to massage it or layer more functiona lity on
top of it w ithou t s ta rting again from scratch.

• Fuzzy logic is to lerant of imprecise data.

Everyth ing is imprecise if you look closely enough, but more than tha t, most
th ings are imprecise even on careful inspection. Fuzzy reasoning builds th is
understanding in to the process rather than tacking it onto the end.

• Fuzzy logic can model nonlinear functions of a rb itra ry complexity.

You can create a fuzzy system to match any set of input-output data. This
process is made pa rticu la rly easy by adaptive techniques like A N F IS (Adap­
tive Neuro-Fuzzy Inference Systems) which are available in the Fuzzy Logic
Toolbox.

• Fuzzy logic can be bu ilt on top of the experience of experts.

In direct contrast to neural networks, which take tra in in g data and generate
opaque, im penetrable models, fuzzy logic lets you stand on the shoulders of
people who already understand your system.

• Fuzzy logic can be blended w ith conventional control techniques.

Fuzzy systems don’t necessarily replace conventional control methods. In
many cases fuzzy systems augment them and s im p lify the ir im plem entation.

• Fuzzy logic is based on natura l language.

The basis for fuzzy logic is the basis for human communication. Th is obser­
vation underpins many of the other statem ents about fuzzy logic.

The last statement is perhaps the most im portant one and deserves more
discussion. N atura l language, tha t which is used by ord inary people on a da ily
basis, has been shaped by thousands of years of human h istory to be convenient
and efficient. Sentences w ritten in ord inary language represent a trium ph of
efficient communication. We are generally unaware of th is because ord inary
language is, of course, something we use every day. But since fuzzy logic is bu ilt

1-5

1 Introduction

atop the structures of everyday language, it not only makes it easy for us to use
it (since fuzzy logic more closely “speaks our language”) but it also takes
advantage of the long history of natural language. In other words, language is
a fuzzy logic tool the human race has spent a hundred generations developing.

Clear language is about getting at the big picture. Fuzzy logic keeps you from
bogging down in unnecessary deta il. I t ’s all a m atter of perspective. L ife is
complicated enough already.

P rec is ion C ity 1.62533741 x 101 miles

F u z z y v ille About 20 miles

When Not to Use Fuzzy Logic
Fuzzy logic is not a cure-all. When should you not use fuzzy logic? The safest
statement is the firs t one made in th is in troduction : fuzzy logic is a convenient
way to map an input space to an output space. I f you find i t ’s not convenient,
t ry something else. I f a sim pler solution already exists, use it. Fuzzy logic is the
codification of common sense— use common sense when you implement it and
you w ill probably make the righ t decision. Many controllers, for example, do a
fine job w ithou t being tweaked by fuzzy logic. But if you take the tim e to
become fam ilia r w ith fuzzy logic, you’ll see it can be a very powerful tool for
dealing qu ickly and e ffic iently w ith imprecision and non linearity . N on linearity
is everywhere, and if you don’t go and find it, it w ill eventually come and find
you.

1-6

What Can the Fuzzy Logic Toolbox Do?

W hat Can the Fuzzy Logic Toolbox Do?
The Fuzzy Logic Toolbox allows you to do several th ings, but the most
im portant th ing it lets you do is create and edit fuzzy inference systems. You
can create these systems by hand, using graphical tools or command-line
functions, or you can generate them autom atica lly using e ither clustering or
adaptive neuro-fuzzy techniques.

I f you have access to S imulink®, the sim ulation tool tha t runs alongside
M ATLAB, you can easily test your fuzzy system in a block diagram sim ulation
environm ent. I f you have Real-Time Workshop® capabilities available, you can
generate rea ltim e or non-realtim e code from the S im u link environment.

The toolbox also lets you run your own stand-alone С programs directly,
w ithou t the need for S im u link. This is made possible by a stand-alone Fuzzy
Inference Engine tha t reads the fuzzy systems saved from a M ATLAB session
(the stand-alone code, uni ike tha t generated by the Real-Time Workshop, does
not run in real tim e). You can customize the stand-alone engine to build fuzzy
inference in to your own code. A ll provided code is ANSI compliant.

Because of the integrated nature of M A T LA B ’s environment, you can create
your own tools to customize the Fuzzy Logic Tool box or harness it w ith another
toolbox, such astheC ontro l System, Neural Network, or O ptim ization Toolbox,
to mention only a few of the possibilities.

1-7

1 Introduction

An Introductory Example: Fuzzy vs. Non-Fuzzy
A specific example would be helpful at th is point. To illu s tra te the value of
fuzzy logic, w e’ll show tw o d ifferent approaches to the same problem: linear
and fuzzy. F irs t we w ill work through th is problem the conventional
(non-fuzzy) way, w r it in g M ATLAB commands tha t spell out linear and
piecewise-linear relations. Then we’ll take a quick look at the same system
using fuzzy logic.

Consider the tipp ing problem: what is the “ r ig h t” amount to t ip your
waitperson? Here is a clear statement of the problem.

The Basic Tipping Roblem. Given a number between 0 and 10 tha t represents the
qua lity of service at a restaurant (where 10 is excellent), what should the tip
be?

C u ltu ra l footnote: This problem is based on tipp ing as it is typ ica lly practiced
in the United States. An average t ip for a meal in the U.S. is 15%, though the
actual amount may vary depending on the qua lity of the service provided.

The Non-Fuzzy Approach
So le t’s s tart w ith the simplest possible re lationship. We can say tha t the tip
always equals 15% of the tota l b ill. So

t i p = 0.15

0.251--------------- .---------------.---------------.---------------.---------------1

0.2 - -

0 .1 5 --

0.1 - -

0.05 - -

0l--------------- ,---------------,---------------,---------------,---------------
0 2 4 6 8 10

service

But th is doesn’t really take in to account the qua lity of the service, so we need
to add a new term to the equation. Since service is rated on a scale of zero to

1-8

An Introductory Example: Fuzzy vs. Non-Fuzzy

ten, then we m ight have the tip go linearly from 5% if the service is bad to 25%
if the service is excellent. Now our relation looks like th is:

tip = 0 .2 0 /1 0 *s e rv ic e + 0 .0 5

service

So far so good. The form ula does what we want it to do, and i t ’s pretty
stra ightforw ard. But we may want the t ip to reflect the qua lity of the food as
well. Th is extension of the problem is defined as follows:

The Extended Tipping Problem. Given numbers between 0 and 10 (where 10 is
excellent) tha t represent the qua lity of the service and the qua lity of the food,
respectively, at a restaurant, what should the tip be?

How w ill our form ula be affected now tha t we’ve added another variable?
Here’s one attem pt:

t i p = 0 .2 0 /2 0 *(se rv ice + fo o d)+ 0 .0 5 ;

0.25

0.2

0 .1 5

0.1

0.05
10

1-9

1 Introduction

W ell, th a t ’s one way to do it, and the p icture is pretty, but when I look at it
closely, it doesn’t seem qu ite righ t. I want the service to be a more im portant
factor than the food qua lity . Le t’s say tha t I want the service to account for 80%
of the overall tipp ing “grade” and I ’ll let the food make up the other 20%. So let
me try :

se rvR atio=0 .8 ;
t ip = s e rv R a tio * (0 .2 0 /1 0 *s e rv ic e + 0 .0 5) + . . .

(1 -s e rv R a tio)* (0 .2 0 /1 0 * fo o d + 0 .0 5);

025

0.2- ^

£ 0 .1 5 . A t

01

0.05 J< - ^ 0 ?
10

5

food

But s till the response is somehow too linear all the way around. I want more of
a fla t response in the middle; in other words, I want to give a 15% tip in general,
and I w ill depart from th is plateau only i f the service is exceptionally good or
bad. This, in tu rn , means my pleasant linear re lations go out the window. But
we can s till salvage th ings by using a piecewise linear construction. Le t’s
return to the one-dimensional problem of jus t considering the service. I can
s tring together a sim ple conditional statement using breakpoints like th is:

i f service<3,
t ip = (0 .1 0 /3)*s e rv ic e + 0 .0 5 ;

e ls e i f service<7,
tip = 0 .1 5 ;

e ls e i f service<=10,
t ip = (0 .1 0 /3)* (s e rv ic e -7)+ 0 .1 5 ;

end

0 0

5

service

10

1-10

An Introductory Example: Fuzzy vs. Non-Fuzzy

And the plot looks like th is.

service

I f we extend th is back out to tw o dimensions, where we take food in to account
again, something like th is results:

se rvR atio=0 .8 ;
i f serv ice<3,

t ip = ((0 .1 0 /3)* s e rv ic e + 0 .0 5)* s e rv R a t io + . . .
(1 -s e rv R a tio)* (0 .2 0 /1 0 * fo o d + 0 .0 5);

e ls e i f service<7,
t ip = (0 .1 5)* s e rv R a t io + . . .

(1 -s e rv R a tio)* (0 .2 0 /1 0 * fo o d + 0 .0 5);
e lse,

t ip = ((0 .1 0 /3)* (s e rv ic e -7)+ 0 .1 5) * s e rv R a t io + . . .
(1 -s e rv R a tio)* (0 .2 0 /1 0 * fo o d + 0 .0 5);

end

0.25

0.2

£ 0 .1 5

0.1

0.05
10

1-11

1 Introduction

Wow! The plot looks good, but the function is su rpris ing ly complicated
considering its hum ble start. How did we end up here? It was a li t t le tr ic ky to
code th is correctly, and i t ’s de fin ite ly not easy to modify in the fu ture. It works,
but i t ’s not easy to troubleshoot. It has hard-coded numbers going through the
whole th ing . I t ’s even less apparent how the a lgorithm works to someone who
d idn ’t w itness the original design process.

The Fuzzy Approach
It would be nice i f we could just capture the essentials of th is problem, leaving
aside all the factors tha t could be a rb itra ry . I f we make a list of what really
m atters in th is problem, we m ight end up w ith th is:

1. if service is poor then tip is cheap

2. if service is good then t ip is average

3. if service is excellent then tip is generous

The order in which the rules are presented here is a rb itra ry . It doesn’t m atter
which rules come firs t. I f we wanted to include the food’s effect on the tip , we
m ight add the fo llow ing tw o rules:

4. if food is rancid then tip is cheap

5. if food is delicious then tip is generous

In fact, we can combine the tw o different lis ts of rules in to one tig h t list of three
rules like so:

1. if service is poor or the food is rancid then tip is cheap

2. if service is good then t ip is average

3. if service is excellent or food is delicious then t ip is generous

These three rules are the core of our solution. And coincidentally, we’ve just
defined the rules for a fuzzy logic system. Now if we give mathematical
meaning to the lin g u is tic variables (what is an “average” tip , for example?) we

1-12

An Introductory Example: Fuzzy vs. Non-Fuzzy

would have a complete fuzzy inference system. Of course, the re ’s a lot left to
the methodology of fuzzy logic tha t we’re not m entioning righ t now, th ings like:

• How are the rules all combined? or

• How do I define m athem atically what an “average” t ip is?

These are all questions we’ll provide detailed answers to in the next few
chapters. But the deta ils of the method don’t really change much from problem
to problem—the mechanics of fuzzy logic aren’t te rr ib ly complex. W hat m atters
is what we’ve shown in th is p re lim inary exposition: fuzzy is adaptable, simple,
and easily applied.

0.25

0.2

£ 0 .1 5

0.1

0.05
10

Here is the p icture associated w ith the fuzzy system tha t solves th is problem.
The p icture above was generated by the three rules above. The mechanics of
how fuzzy inference works w ill be thoroughly explained in the next two
sections. In the “B u ild ing Systems w ith the Fuzzy Logic Toolbox” section after
tha t the entire tipp ing problem w ill be worked through using the graphical
tools in the Fuzzy Logic Toolbox.

Some O bserva t ions
Here are some observations about the example so far. We found a piecewise
linear relation tha t solved the problem. It worked, but it was something of a
nuisance to derive, and once we w rote it down as code it wasn’t very easy to
in terpre t. On the other hand, the fuzzy system is based on some “common
sense” statements. Also, we were able to add tw o more rules to the bottom of
the lis t tha t massaged the shape of the overall output w ithou t needing to hack
in to what had already been done. In other words, the subsequent modification
was pre tty easy.

1-13

1 Introduction

Moreover, by using fuzzy logic rules, the maintenance of the a lgorithm
decouples along fa ir ly clean lines. My notion of an average tip m ight change
from day to day, city to city, country to country. But the underly ing logic is the
same: i f the service is good, the tip should be average. I don’t have to change
tha t part, no m atter where in the world I travel. I can recalibrate the method
qu ickly by sim ply sh ifting the fuzzy set tha t defines average w ithou t rew riting
my rule.

You can do th is sort of th ing w ith lis ts of piecewise linear functions, but the
medium is w ork ing against you. You’re more like ly to get tangled up in w ires
than you are to recalibrate the problem quickly. You can also buttress the
piecewise linear solution by including many helpful comments. However, even
if we lig h tly pass over the fact tha t the vast m ajority of code is woefully
uncommented, i t ’s s till tru e tha t as code gets revised and updated, the
comments can qu ickly slip in to uselessness, or worse, they can actua lly provide
m isinform ation.

1-14

An Introductory Example: Fuzzy vs. Non-Fuzzy

Let me illu s tra te what I mean. Here is the piecewise linear tipp ing problem
s ligh tly rew ritten to make it more generic. It performs the same function as
before, only now the constants can be easily changed.

% E s ta b lis h constan ts
lowTip=0.05; averT ip=0.15; h ighT ip=0.25;
tipR ange=h ighT ip -low T ip ;
badService=0; okayService=3;
goodService=7; greatServ ice=10;
serv iceR ange=greatS erv ice-badS ervice ;
badFood=0; greatFood=10;
foodRange=greatFood-badFood;

%o I f s e rv ic e is poor or food is ranc id , t i p is cheap
i f serv ice<okayS erv ice ,

t ip = (((a v e rT ip - lo w T ip) /(o k a y S e rv ic e -b a d S e rv ic e)) . . .
*s e rv ic e + lo w T ip)*s e rv R a tio + . . .
(1 -se rvR a tio)*(tip R a n g e /fo o d R a n g e *fo o d + lo w T ip);

%o I f s e rv ic e is good, t i p is average
e ls e if serv ice<goodService,

t ip = a v e rT ip *s e rv R a tio + (1 -s e rv R a tio)* . . .
(tipR ange/foodR ange*food+ low T ip);

%o I f s e rv ic e is e x c e lle n t or food is d e lic io u s , t i p is generous
e lse,

t ip = (((h ig h T ip -a v e rT ip) / . . .
(g re a tS e rv ic e -g o o d S e rv ic e))* . . .
(s e rv ic e -g o o d S e rv ic e)+ a v e rT ip)*s e rv R a tio + . . .
(1 -se rvR a tio)*(tip R a n g e /fo o d R a n g e *fo o d + lo w T ip);

end

Notice the tendency here, as w ith all code, for creeping generality to render the
a lgorithm more and more opaque, th reaten ing eventually to obscure it
completely. W hat we’re doing here isn ’t (shouldn’t be!) tha t complicated. True,
we can figh t th is tendency to be obscure by adding s till more comments, or
perhaps by try in g to rew rite it in s ligh tly more self-evident ways. But the
medium is not on our side.

1-15

1 Introduction

And the tru ly fascinating th ing to notice is tha t if we remove everything except
for th ree comments, what remain are exactly the fuzzy rules we w rote down
before:

% I f se rv ic e is poor or food is ranc id , t i p is cheap
% I f se rv ic e is good, t i p is average
% I f se rv ic e is e x c e lle n t or food is d e lic io u s , t i p is generous

If, as w ith a fuzzy system, the comment is identical w ith the code, th in k how
much more like ly your code is to have comments! Fuzzy logic lets the language
th a t ’s clearest to you, high level comments, also have meaning to the machine,
which is why i t ’s a very successful technique for bridging the gap between
people and machines.

Or th in k of it th is way: by making the equations as sim ple as possible (linear)
we make th ings sim pler for the machine but more complicated for us. But
really the lim ita tion is no longer the computer— i t ’s our mental model of what
the computer is doing. We all know tha t computers have the a b ility to make
th ings hopelessly complex; fuzzy logic is rea lly about reclaim ing the m iddle
ground and le tting the machine work w ith our preferences ra ther than the
other way around. I t ’s about tim e.

1-16

2

Tutorial

2-4 F o u n d a tio n s o f Fuzzy L o g ic

2-19 Fuzzy In fe re n c e S ystem s

2-28 B u ild in g System s w ith th e Fuzzy L o g ic T o o lb o x

2-48 W o rk in g fro m th e C om m and L in e

2-59 S ugeno -s ty le Fuzzy In fe re n c e

2-65 W o rk in g w ith S im u lin k

2-69 A N F IS

2-79 Fuzzy C lu s te r in g

2-87 S ta n d -a lo n e C ode

2-89 A p p lic a t io n s and Dem os

2-108 G lossary

2-110 R e fe rences

2-112 Fuzzy M u s in g s

2 Tutorial

This section is designed to guide you through the fuzzy logic process step by
step. The firs t several sections are meant to provide an introduction to the
theory and practice of fuzzy logic.

The firs t th ree sections of th is chapter are the most im portan t—they move
from general to specific, firs t in troducing underlying ideas and then discussing
implem entation deta ils specific to the toolbox. These three areas are

• F ounda tio ns of fuzzy log ic, which is an introduction to the general con­
cepts. I f you’re already fam ilia r w ith fuzzy logic, you may want to skip th is
section.

• Fuzzy in fe rence systems, which explains the specific methods of fuzzy
inference used in the Fuzzy Logic Toolbox. Since the fie ld of fuzzy logic uses
many term s tha t do not yet have standard in terpretations, you should con­
sider reading th is section just to become fam ilia r w ith the fuzzy inference
process as it is employed here.

• B u ild in g systems w ith the Fuzzy Log ic Toolbox, which goes in to detail
about how you build and edit a fuzzy system using th is toolbox. This in tro ­
duces the graphical user interface tools available in the Fuzzy Logic Toolbox
and guides you through the construction of a complete fuzzy inference
system from start to fin ish . I f you just want to get up to speed as qu ickly as
possible, s tart here.

A fte r th is there are sections tha t touch on a varie ty of topics, such as S im ulink
use, autom atic ru le generation, and demonstrations. But from the point of view
of getting to know the toolbox, these firs t th ree sections are the most crucial.

The Big Picture
We’ll s ta rt w ith a l i t t le motivation for where we are headed in th is chapter. The
point of fuzzy logic is to map an input space to an output space, and the prim ary
mechanism for doing th is is a list of if-then statements called rules. A ll rules
are evaluated in paralle l, and the order of the rules is un im portan t. The rules
themselves are useful because they refer to variables and the adjectives tha t
describe those variables. Before we can build a system tha t in te rp re ts rules, we
have to define all the term s we plan on using and the adjectives tha t describe
them. I f we want to ta lk about how hot the water is, we need to define the range
tha t the w a te r’s tem perature can be expected to vary over as well as what we
mean by the word hot. These are all th ings we’ll be discussing in the next
several sections of the manual. The diagram below is something like a roadmap

2-2

for the fuzzy inference process. It shows the general description of a fuzzy
system on the left and a specific fuzzy system (the tipp ing example from the
Introduction) on the right.

The G e n e ra l Case.

Inpu t O u tp u t

Rules

/ \
Inpu t
te rm s
(in te r p r e t)

O u tp u t
t e rm s

A Spec if ic E xa m p le .

Л
t ip

i f s e rv
i f s e rv
i f s e rv

s p o o r th e n t ip is c h e a p
s g o o d th e n t ip is a v e r a g e
s e x c e l le n t th e n t ip is g e n e r o u s

/ \
serv ice

is interpreted as

{ p o o r ,
g o o d ,

e x c e l le n t }

t ip
is assigned to be

{c h e a p ,
a v e r a g e ,

g e n e r o u s }

The whole idea behind fuzzy inference is to in terpre t the values in the input
vector and, based on some set of rules, assign values to the output vector. And
th a t ’s rea lly all there is to it.

2-3

2 Tutorial

Foundations of Fuzzy Logic
Everything is vague to a degree you do not realize t i l l you have tried to make it
precise. — Bertrand Russell

Fuzzy Sets
Fuzzy logic s ta rts w ith the concept of a fuzzy set. A fuzzy set is a set w ithou t a
crisp, clearly defined boundary. It can contain elements w ith only a partia l
degree of membership.

To understand what a fuzzy set is, firs t consider what is meant by what we
m ight call a classical set. A classical set is a container tha t w ho lly includes or
w ho lly excludes any given element. For example, the set of days of the week
unquestionably includes Monday, Thursday, and Saturday. It jus t as
unquestionably excludes butter, liberty , and dorsal fins, and so on.

e r t y

D o r s a l
F ins

Days of the week

We call th is set a classical set because i t ’s been around for such a long tim e. It
was A ris to tle who firs t form ulated the Law of the Excluded M iddle, which says
X must e ither be in set A or in set not-A. Another version runs like th is:

Of any subject, one th ing must be e ither asserted or denied.

Here is a restatement of the law w ith annotations: “O f any subject (say
Monday), one th ing (being a day of the week) must be either asserted or denied
(I assert tha t Monday is a day of the week).” Th is law demands tha t opposites,
the tw o categories A and not-A, should between them contain the entire
universe. Everyth ing fa lls in to either one group or the other. There is no th ing
tha t is both a day of the week and not a day of the week.

S h o e
P o l is h

B u t t e r

2-4

Foundations of Fuzzy Logic

Now consider the set of days tha t make up the weekend. The diagram below is
one attem pt at classifying the weekend days.

S h o e
P o l is h

M o n d a y

B u t te r

Most would agree tha t Saturday and Sunday belong, but what about Friday?
It “ feels” like a part of the weekend, but somehow it seems like it should be
technically excluded. So in the diagram above Friday tr ie s its best to sit on the
fence. Classical or “norm al” sets w ouldn ’t to lerate th is kind of th ing . E ither
you’re in or you’re out. Human experience suggests something d ifferent,
though: fence s ittin g is a part of life.

Of course we’re on tr ic ky ground here, because we’re s ta rting to take indiv idua l
perceptions and cu ltu ra l background in to account when we define what
constitutes the weekend. But th is is exactly the point. Even the d ic tionary is
imprecise, defin ing the weekend as “the period from Friday n ight or Saturday
to Monday m orning.” We’re entering the realm where sharp edged yes-no logic
stops being helpful. Fuzzy reasoning becomes valuable exactly when we’re
ta lk ing about how people rea lly perceive the concept “weekend” as opposed to
a simple-m inded classification useful for accounting purposes only. More than
anyth ing else, the fo llow ing statement lays the foundations for fuzzy logic:

In fuzzy logic, the tru th of any statement becomes a matter of degree.

Any statement can be fuzzy. The tool tha t fuzzy reasoning gives is the ab ility
to reply to a yes-no question w ith a not-quite-yes-or-no answer. Th is is the kind
of th ing tha t humans do all the tim e (th ink how rarely you get a stra ight
answer to a seemingly sim ple question) but i t ’s a rather new tr ic k for
computers.

How does it work? Reasoning in fuzzy logic is jus t a m atter of generalizing the
fam ilia r yes-no (boolean) logic. I f we give “tru e ” the numerical value of 1 and

L ib e r t y

F r id a y T h u r s d a y

D o r s a l
F ins

Days of the weekend

2-5

1

w
ee

ke
nd

-n
es

s

2 Tutorial

“false” the numerical value of 0, we’re saying tha t fuzzy logic also perm its
in-between values like 0.2 and 0.7453. For instance:

Q: Is Saturday a weekend day?

A: 1 (yes, or true)

Q: Is Tuesday a weekend day?

A: 0 (no, or false)

Q: Is Friday a weekend day?

A: 0.8 (for the most part yes, but not completely)

Q: Is Sunday a weekend day?

A: 0.95 (yes, but not qu ite as much as Saturday).

Below on the left is a plot tha t shows the tru th values for “weekend-ness” if we
are forced to respond w ith an absolute yes or no response. On the r igh t is a plot
tha t shows the tru th value for weekend-ness if we are allowed to respond w ith
fuzzy in-between values.

1.0

0 .0 □
Days of the weekend two-valued membership

T h u rs d a y F r id a y S a tu rd a y S u n d a y M o n d a y

Days of the weekend multivalued membership

Technically, the representation on the righ t is from the domain of m ultiva lued
logic (or m ultiva len t logic). I f I ask the question “ Is X a member of set A ? ’ the
answer m ight be yes, no, or any one of a thousand in term ediate values in
between. In other words, X m ight have partia l membership in A. M ultiva lued
logic stands in direct contrast to the more fa m ilia r concept of two-valued (or
bivalent yes-no) logic. Two-valued logic has played a central role in the h istory
of science since A ris to tle firs t codified it, but the tim e has come for it to share
the stage.

To re turn to our example, now consider a continuous scale tim e plot of
weekend-ness shown below.

2-6

w
ee

ke
nd

-n
es

s

Foundations of Fuzzy Logic

Days of the weekend two-valued membership Days o f the weekend multivalued membership

By making the plot continuous, we’re defin ing the degree to which any given
instant belongs in the weekend rather than an entire day. In the plot on the
left, notice tha t at m idnight on Friday, jus t as the second hand sweeps past 12,
the weekend-ness tru th value jum ps discontinuously from 0 to 1. Th is is one
way to define the weekend, and w h ile it may be useful to an accountant, it
doesn’t really connect w ith our real-world experience of weekend-ness.

The plot on the righ t shows a smoothly varying curve tha t accounts for the fact
tha t all of F riday and parts of Thursday to a small degree partake of the qua lity
of weekend-ness and thus deserve partia l membership in the fuzzy set of
weekend moments. The curve tha t defines the weekend-ness of any instant in
tim e is a function tha t maps the input space (tim e of the week) to the output
space (weekend-ness). Specifically it is known as a membership function. We’ll
discuss th is in greater detail in the next section.

As another example of fuzzy sets, consider the question of seasons. What
season is it righ t now? In the northern hemisphere, summer o ffic ia lly begins at
the exact moment in the ea rth ’s orbit when the north pole is pointed most
d irectly toward the sun. It occurs exactly once a year, in late June. Using the
astronomical defin itions for the season, we get sharp boundaries as shown on
the left in the figure on the next page. But what we experience as the seasons
varies more or less continuously as shown on the righ t below (in tem perate
northern hemisphere climates).

2-7

2 Tutorial

Time of the year Time of the year

Mem bersh ip Functions
A membership function (MF) is a curve tha t defines how each point in the input
space is mapped to a membership value (or degree of membership) between 0
and 1. The input space is sometimes referred to as the universe of discourse, a
fancy name for a sim ple concept.

One of the most commonly used examples of a fuzzy set is the set of ta ll people.
In th is case the universe of discourse is all potential heights, say from 3 feet to
9 feet, and the word “ta l l ” would correspond to a curve tha t defines the degree
to which any person is ta ll. I f the set of ta ll people is given the well-defined
(crisp) boundary of a classical set, we m ight say all people ta lle r than six feet
are o ffic ia lly considered ta ll. But such a d istinction is clearly absurd. It may
make sense to consider the set of all real numbers greater than six because
numbers belong on an abstract plane, but when we want to ta lk about real
people, it is unreasonable to call one person short and another one ta ll when
they d iffe r in height by the w id th of a hair.

You m ust
be ta lle r

than th is
line to be

considered
TALL

But if the kind of d istinction shown above is unworkable, then what is the right
way to define the set of ta ll people? Much as w ith our plot of weekend days, the

2-8

Foundations of Fuzzy Logic

figure below shows a smoothly varying curve tha t passes from not-ta ll to ta ll.
The output-axis is a number known as the membership value between 0 and 1.
The curve is known as a membership function and is often given the
designation of ц. Th is curve defines the trans ition from not ta ll to ta ll. Both
people are ta ll to some degree, but one is s ign ifican tly less ta ll than the other.

1.0

degree of
membership, p

0.0

1.0

degree of
membership, p

0.0

sharp-edged
membership
function for

TALL

height

continuous *
membership

function for
TALL

height

ta l l (m = 1 .0)

no t ta l l (m = 0 .0)

d e f in i te ly a ta l l
pe rson (m = 0 .9 5)

rea l ly no t ve ry
ta l l at a ll (m = 0 .3 0)

Subjective in te rp re ta tions and appropria te un its are bu ilt righ t in to fuzzy sets.
I f I say “She’s ta ll, ” the membership function “ta l l” should already take in to
account whether I ’m referring to a six-year-old or a grown woman. S im ila rly ,
the un its are included in the curve. C erta in ly it makes no sense to say “ Is she
ta ll in inches or in meters?”

Membership Functions in the Fuzzy Logic Toolbox
The only condition a membership function must rea lly satisfy is tha t it must
vary between 0 and 1. The function itse lf can be an a rb itra ry curve whose

2-9

2 Tutorial

shape we can define as a function tha t su its us from the point of view of
s im p lic ity , convenience, speed, and efficiency.

A classical set m ight be expressed as

A = {x | x > 6}

A fuzzy set is an extension of a classical set. I f X is the universe of discourse
and its elements are denoted by x, then a fuzzy set A in X is defined as a set of
ordered pairs:

A = {x, ha(X) I x e X}

iaA(x) is called the membership function (or MF) of x in A. The membership
function maps each element of X to a membership value between 0 and 1.

The Fuzzy Logic Toolbox includes 11 bu ilt-in membership function types.
These 11 functions are, in tu rn , bu ilt from several basic functions: piecewise
linear functions, the Gaussian d is tribu tion function, the sigmoid curve, and
quadra tic and cubic polynomial curves. For detailed inform ation on any of the
membership functions mentioned below, tu rn to Chapter 3, Reference. By
convention, all membership functions have the le tters mf at the end of the ir
names.

The simplest membership functions are formed using stra ight lines. Of these,
the simplest is the tr ia n g u la r membership function, and it has the function
name C o d e tr im f. I t ’s nothing more than a collection of th ree points form ing a
triang le . The trapezoidal membership function, tra p m f, has a fla t top and
really is jus t a truncated tr iang le curve. These stra igh t line membership
functions have the advantage of s im plic ity .

trimf, P = [3 6 8] trapmf, P = [1 5 7 8]

trimf trapmf

Two membership functions are bu ilt on the Gaussian d is tribu tion curve: a
sim ple Gaussian curve and a two-sided composite of tw o different Gaussian
curves. The tw o functions are gaussmf and gauss2mf.

2-10

Foundations of Fuzzy Logic

The generalized bell membership function is specified by three parameters and
has the function name g b e llm f. The bell membership function has one more
parameter than the Gaussian membership function, so it can approach a
non-fuzzy set if the free parameter is tuned. Because of the ir smoothness and
concise notation, Gaussian and bell membership functions are popular
methods for specifying fuzzy sets. Both of these curves have the advantage of
being smooth and nonzero at all points.

aaussmf. P = [2 51 aauss2mf. P = [1 3 3 4] abellmf. P = [2 4 6]

gaussmf gauss2mf gbellmf

Although the Gaussian membership functions and bell membership functions
achieve smoothness, they are unable to specify asym m etric membership
functions, which are im portant in certain applications. Next we define the
sigmoidal membership function, which is e ither open left or righ t. Asym m etric
and closed (i.e. not open to the left or righ t) membership functions can be
synthesized using tw o sigmoidal functions, so in addition to the basic s ig m f, we
also have the difference between tw o sigmoidal functions, ds igm f, and the
product of tw o sigmoidal functions ps igm f.

sigmf

dsiamf. P = [5 2 5 7]

dsigmf

psiamf. P = [2 3 -5 8]

psigmf

siamf. P = [2 4]

Polynomial based curves account for several of the membership functions in
the toolbox. Three related membership functions are the Z, S, and Pi curves, all
named because of the ir shape. The function zmf is the asymmetrical
polynomial curve open to the left, smf is the m irror-im age function tha t opens
to the righ t, and pimf is zero on both extremes w ith a rise in the middle.

2-11

2 Tutorial

zmf, P = [3 71 pimf, P = [1 4 5 101 smf, P = [1 81

zmf pimf smf

There’s a very w ide selection to choose from when you’re selecting your favorite
membership function. And the Fuzzy Logic Toolbox also allows you to create
your own membership functions if you find th is lis t too restrictive. On the other
hand, if th is list seems bewildering, jus t remember tha t you could probably get
along very well w ith jus t one or tw o types of membership functions, for example
the tr iang le and trapezoid functions. The selection is w ide for those who want
to explore the possibilities, but exotic membership functions are by no means
required for perfectly good fuzzy inference systems. F ina lly , remember tha t
more deta ils are available on all these functions in the reference section, which
makes up the second ha lf of th is manual.

Summary of Membership Functions

• Fuzzy sets describe vague concepts (fast runner, hot weather, weekend days)

• A fuzzy set adm its the possib ility of partia l membership in it (Friday is sort
of a weekend day, the weather is rather hot)

• The degree an object belongs to a fuzzy set is denoted by a membership value
between 0 and 1. (Friday is a weekend day to the degree 0.8)

• A membership function associated w ith a given fuzzy set maps an input
value to its appropria te membership value

Logical O pera t ions
We now know w h a t’s fuzzy about fuzzy logic, but what about the logic?

The most im portant th ing to realize about fuzzy logical reasoning is the fact
tha t it is a superset of standard boolean logic. In other words, if we keep the
fuzzy values to the extremes of 1 (completely true) and 0 (completely false),

2-12

Foundations of Fuzzy Logic

standard logical operations w ill hold. As an example, consider the standard
tru th tables below:

A B A and B

0 0 0
0 1 0
1 0 1 0
1 1 1

AN D

A B A or B

0 0 0
0 1 1
1 0 1 1
1 1 1

OR

A not A

0 1
1 0

NOT

Now remembering tha t in fuzzy logic the tru th of any statement is a m atter of
degree, how w ill these tru th tables be altered? The input values can be real
numbers between 0 and 1. W hat function w ill preserve the results of the AND
tru th tab le (for example) and also extend to all real numbers between 0 and 1?

One answer is the min operation. That is, resolve the statement A AND B,
where A and B are lim ited to the range (0,1), by using the function m in(A,B).
Using the same reasoning, we can replace the OR operation w ith the max
function, so tha t A OR B becomes equivalent to max(A,B). F ina lly , the
operation NOT A becomes equivalent to the operation 1-A. Notice how the
tru th tab le above is completely unchanged by th is substitu tion .

A B min(A,B)

00 0
0 1 0
1 0 1 0
1 1 1

AN D

A B max(A,B)

0 0 0
0 1 1
1 0 1 1
1 1 1

OR

A 1 - A

0 1
1 0

NOT

Moreover, since there is a function behind the tru th table rather than just the
tru th tab le itself, we can now go on to consider values other than 1 and 0.

The next figure uses a graph to show the same inform ation. We’ve converted
the tru th tab le to a plot of tw o fuzzy sets applied together to create one fuzzy
set. The upper part of the figure displays plots corresponding to the two-valued

2-13

2 Tutorial

tru th tables above, w h ile the lower part of the figure displays how the
operations work over a continuously varying range of tru th values A and B
according to the fuzzy operations we’ve defined.

two-valued
logic

multivalued
logic

Given these three functions, we can resolve any construction using fuzzy sets
and the fuzzy logical operation AND, OR, and NOT.

Additional Fuzzy Operators
We’ve only defined here one particu la r correspondence between two-valued
and m ultiva lued logical operations for AND, OR, and NOT. But th is
correspondence is by no means unique.

In more general terms, we’re defin ing what are known as the fuzzy intersection
or conjunction (AND), fuzzy union or disjunction (OR), and fuzzy complement
(NOT). We have defined above what we’ll call the classical operators for these
functions: AND = m in, OR = max, and NOT = add itive complement. Typically
most fuzzy logic applications make use of these operations and leave it at tha t.
In general, however, these functions are a rb itra ry to a surpris ing degree. The
Fuzzy Logic Toolbox uses the classical operator for the fuzzy complement as
shown above, but the AND and OR operators can be easily customized if
desired.

The intersection of tw o fuzzy sets A and B is specified in general by a function
T which aggregates tw o membership grades as follows

^An B(x) = T(na (x), Ц,b (x)) = Ha (x) ® Ц.B(x)

A

B

J A o r B

A

B

A and B

A B

A and B

m in (A ,B) m a x (A ,B) (1-A)

2-14

Foundations of Fuzzy Logic

where ® is a b inary operator for the function T. These fuzzy intersection
operators, which are usually referred to as T-norm (T riangu lar norm)
operators, meet the fo llow ing basic requirements.

A T-norm operator is a two-place function T(.,.) satisfying

boundary: T(0, 0) = 0, T(a, 1) = T(1, a) = a

monotonicity: T(a, b) <= T(c, d) if a <= c and b <= d

com m utativ ity: T(a, b) = T(b, a)

associativity: T(a, T(b, c)) = T(T(a, b), c)

The firs t requirement imposes the correct generalization to crisp sets. The
second requirement im plies tha t a decrease in the membership values in A or
B cannot produce an increase in the membership value in A intersection B. The
th ird requirement indicates tha t the operator is ind ifferent to the order of the
fuzzy sets to be combined. F ina lly , the fourth requirement allows us to take the
intersection of any number of sets in any order of pairw ise groupings.

L ike fuzzy intersection, the fuzzy union operator is specified in general by a
function S:

M-Aub (x) = S(ha(x), Ц.b (x)) = M x) © (Ib (x)

where © is a b inary operator for the function S. These fuzzy union operators,
which are often referred to as T-conorm (or S-norm) operators, satisfy the
fo llow ing basic requirements.

A T-conorm (or S-norm) operator is a two-place function S(.,.) satisfying

boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a

monotonicity: S(a, b) <= S(c, d) if a <= c and b <= d

com m utativ ity: S(a, b) = S(b, a)

associativity: S(a, S(b, c)) = S(S(a, b), c)

The jus tifica tion of these basic requirem ents is s im ila r to tha t of the
requirem ents for the T-norm operators.

Several parameterized T-norm s and dual T-conorms have been proposed in the
past, such as those of Yager [Yag80], Dubois and Prade [Dub80], Schweizer and
Sklar [Sch63], and Sugeno [Sug77]. Each of these provides a way to vary the
“ga in” on the function so tha t it can be very restric tive or very permissive.

2-15

2 Tutorial

If-Then Rules
Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. But in
order to say anyth ing useful we need to make complete sentences. Conditional
statements, if-then rules, are the th ings tha t make fuzzy logic useful.

A single fuzzy if-then ru le assumes the form

if x is A then y is B

where A and B are lingu is tic values defined by fuzzy sets on the ranges
(universes of discourse) X and Y, respectively. The if-part of the ru le “x is A ” is
called the antecedent or premise, w h ile the then-part of the ru le “y is B” is
called the consequent or conclusion. An example of such a ru le m ight be

if service is good then tip is average

Note tha t the antecedent is an in terpre ta tion tha t re tu rns a single number
between 0 and 1, whereas the consequent is an assignment tha t assigns the
entire fuzzy set B to the output variab le y. So the word “ is” gets used in two
entire ly d ifferent ways depending on w hether it appears in the antecedent or
the consequent. In M ATLAB terms, th is is the d istinction between a relational
test using “==” and a variab le assignment using the “=” symbol. A less
confusing way of w r it in g the ru le would be

if service == good then tip = average

So the input to an if-then ru le is the current value for the input variab le
(service) and the output is an entire fuzzy set (average).

In te rp re ting an if-then ru le involves d istinct parts: firs t evaluating the
antecedent (which involves fuzzify ing the input and applying any necessary
fuzzy operators) and second applying tha t result to the consequent (known as
im plication). In the case of two-valued or b inary logic, if-then rules don’t
present much d ifficu lty . I f the premise is true, then the conclusion is true. But
if we relax the restrictions of two-valued logic and let the antecedent be a fuzzy
statement, how does th is reflect on the conclusion? The answer is a sim ple one:
if the antecedent is tru e to some degree of membership, then the consequent is
also tru e to tha t same degree. In other words

in binary logic: p ^ q (p and q are e ither tru e or false)

in fuzzy logic: 0.5 p ^ 0.5 q (partia l antecedents im ply pa rtia lly)

The antecedent of a ru le can have m u ltip le parts:

if sky is gray and w ind is strong and barometer is fa lling , then ...

2-16

Foundations of Fuzzy Logic

in which case all parts of the antecedent are calculated sim ultaneously and
resolved to a single number using the logical operators discussed in the
preceding section. The consequent of a ru le can also have m u ltip le parts:

if temperature is cold then hot water valve is open and cold water valve is shut

in which case all consequents are affected equally by the result of the
antecedent. But how is the consequent affected by the antecedent? The
consequent specifies a fuzzy set be assigned to the output. The im plication
function then modifies tha t fuzzy set to the degree specified by the antecedent.
The most common ways to modify the output fuzzy set are truncation using the
min function (where the fuzzy set is “chopped off” as shown below) or scaling
using the prod function (where the output fuzzy set is “squashed”). Both are
supported by the Fuzzy Logic Toolbox, but we w ill be using truncation for the
examples in th is section.

1. Fuzzify
inputs

2. A pp ly
O r operator

(max)

3. A pp ly
Im plication

operator (min)

A n te ce d e n t C onse que n t

If se rv ice is e x c e lle n t or fo o d is d e lic io u s then tip = g e n e ro u s

(̂service==excellent) - 0 .0 V(food--delicious) - 0 .7

If (0 .0 or 0 .7)

0.7 -

Г0.0

then tip = g e n e ro u s

'0
max(0.0, 0.7) - 0.7

(0 .7) then tip = g e n e ro u s

0.7 -Д
g e n e ro u s

min(0.7, generous) tip (fuzzy)

f

2-17

2 Tutorial

Summary of If-Then Rules
In te rp re ting if-then rules is a th ree part process.

1 Fuzzify inputs

Resolve all fuzzy statements in the antecedent to a degree of membership
between 0 and 1. I f there is only one part to the antecedent, th is is the degree
of support for the rule.

2 Apply fuzzy operator

I f there are m u ltip le parts to the antecedent, apply fuzzy logic operators and
resolve the antecedent to a single number between 0 and 1. Th is is the
degree of support for the rule.

3 Apply im plication method

Use the degree of support for the entire ru le to shape the output fuzzy set.
The consequent of a fuzzy ru le assigns an entire fuzzy set to the output. If
the antecedent is only p a rtia lly true, then the output fuzzy set is truncated
according to the im plication method.

In general, one ru le by itse lf doesn’t do much good. W hat’s needed are tw o or
more rules tha t can play off one another. The output of each ru le is a fuzzy set,
but in general we want the output for an entire collection of rules to be a single
number. How are all these fuzzy sets d is tilled in to a single crisp result for the
output variable? F irs t the output fuzzy sets for each ru le are aggregated in to a
single output fuzzy set. Then the resu lting set is defuzzified, or resolved to a
single number. The next section shows how whole process w orks from
beginning to end.

2-18

Fuzzy Inference Systems

Fuzzy Inference Systems
Fuzzy inference is the actual process of mapping from a given input to an
output using fuzzy logic. The process involves all the pieces tha t we have
discussed in the previous sections: membership functions, fuzzy logic
operators, and if-then rules.

Fuzzy inference systems have been successfully applied in fie lds such as
autom atic control, data classification, decision analysis, expert systems, and
computer vision. Because of its m u lti-d isc ip lina ry nature, the fuzzy inference
system is known by a number of names, such as fuzzy-rule-based system, fuzzy
expert system, fuzzy model, fuzzy associative memory, fuzzy logic controller,
and sim ply (and ambiguously) fuzzy system. Since the term s used to describe
the various parts of the fuzzy inference process are far from standard, we w ill
try to be as clear as possible about the d ifferent term s introduced in th is
section.

Dinner fo r Two, Reprise
In th is section, we’ll see how everyth ing fits together using the same two-input
one-output th ree-ru le t ipp ing problem tha t we saw in the introduction . Only
th is tim e we won’t skip over any details. The basic s tructu re of th is example is
shown in the diagram below.

Inform ation flows from left to righ t, from tw o inputs to a single output. The
parallel na ture of the rules is one of the more im portant aspects of fuzzy logic

Dinner for two
a 2 input, 1 output, 3 rule system

The inputs are crisp
(non-fuzzy) numbers
lim ited to a specific
range

A il rules are
evaluated in parallel
using fuzzy
reasoning

The results o f the rules
are combined and
distilled (defuzzified)

The result is a crisp
(non-fuzzy) number

2-19

2 Tutorial

systems. Instead of sharp sw itching between modes based on breakpoints, we
w ill g lide smoothly from regions where the system’s behavior is dominated now
by th is rule, now by tha t one.

In the Fuzzy Logic Toolbox, there are five parts of the fuzzy inference process:
fuzzification of the input variables, application of the fuzzy operator (AND or
OR) in the antecedent, im plication from the antecedent to the consequent,
aggregation of the consequents across the rules, and defuzzification. These
sometimes cryp tic and odd names have very specific meaning tha t we’ll define
carefully as we step through each of them in more detail below.

Step 1. Fuzzify Inputs
The firs t step is to take the inputs and determ ine the degree to which they
belong to each of the appropria te fuzzy sets via membership functions. The
input is always a crisp numerical value lim ited to the universe of discourse of
the input variab le (in th is case the in terva l between 0 and 10) and the output
is a fuzzy degree of membership (always the in terva l between 0 and 1). So
fuzzification rea lly doesn’t amount to anyth ing more than tab le lookup or
function evaluation.

The example we’re using in th is section is bu ilt on th ree rules, and each of the
rules depends on resolving the inputs in to a number of d ifferent fuzzy lingu is tic
sets: service is poor, service is good, food is rancid, food is delicious and so on.
Before the rules can be evaluated, the inputs must be fuzzified against these
lingu is tic sets. For example, to what extent is the food rea lly delicious? The
figure below shows how well the food at our hypothetical restaurant (rated on
a scale of 0 to 10) fits the lingu is tic variab le “delicious” . In th is case, we rated
the food as an 8, which, given our graphical defin ition of delicious, corresponds
to ц = 0.7.

1. Fuzz ify
in p u ts

food is delicious

fo o d = 8

input

Г I 0 7 1

delicious resu lt o f
fuzz ifica tion

2-20

Fuzzy Inference Systems

(The compliment to the chef would be “your food is delicious to the degree 0.7.”)
In th is manner, each input is fuzzified over all the membership functions
required by the rules.

Step 2. Apply Fuzzy Operator
Once the inputs have been fuzzified, we know the degree to which each part of
the antecedent has been satisfied for each rule. I f the antecedent of a given ru le
has more than one part, the fuzzy operator is applied to obtain one number tha t
represents the result of the antecedent for tha t rule. Th is number w ill then be
applied to the output function. The input to the fuzzy operator is tw o or more
membership values from fuzzified input variables. The output is a single tru th
value.

As described in the section on fuzzy logical operations, any number of
well-defined methods can f il l in for the AND operation or the OR operation. In
the Fuzzy Logic Toolbox, tw o bu ilt-in AND methods are supported: min
(m inim um) and prod (product). Two bu ilt-in OR methods are also supported:
max (maximum), and the probab ilis tic OR method probor. The probab ilis tic OR
method (also known as the algebraic sum) is calculated according to the
equation

probor(a,b) = a + b - ab
In addition to these bu ilt-in methods, you can create your own methods for
AND and OR by w rit in g any function and setting tha t to be your method of
choice. There w ill be more inform ation on how to do th is later.

Shown below is an example of the OR operator max at work. We’re evaluating
the antecedent of the ru le 3 for the tipp ing calculation. The tw o different pieces
of the antecedent (service is excellent and food is delicious) yielded the fuzzy
membership values 0.0 and 0.7 respectively. The fuzzy OR operator sim ply
selects the maximum of the tw o values, 0.7, and the fuzzy operation for ru le 3

2-21

2 Tutorial

is complete. I f we were using the probab ilis tic OR method, the result would s till
be 0.7 in th is case.

1. Fuzzify
inputs

" ’ 1 + 0

o.o I resu lt o f
J fuzzy o p e ra to r

service is excellent or food is delicious

se rv ice = 3 fo o d = 8

input 1 input 2

Step 3. Apply Implication Method
Before applying the im plication method, we must take care of the ru le ’s weight.
Every ru le has a weight (a number between 0 and 1), which is applied to the
number given by the antecedent. Generally th is weight is 1 (as it is for th is
example) and so it has no effect at all on the im plication process. But from tim e
to tim e you may want to weight one ru le re la tive to the others by changing its
weight value to something other than 1.

The im plication method is defined as the shaping of the consequent (a fuzzy
set) based on the antecedent (a single number). The input for the im plication
process is a single number given by the antecedent, and the output is a fuzzy
set. Im plication occurs for each rule. Two bu ilt-in methods are supported, and
they are the same functions tha t are used by the AND method: min (m inim um)

excellent

J o " delicious ш

2. A p p ly
O r o p e ra to r (m a x)

2-22

Fuzzy Inference Systems

which truncates the output fuzzy set, and prod (product) which scales the
output fuzzy set.

A n te c e d e n t C o n s e q u e n t

1. Fuzzify 2. A pp ly 3 A P P ly
inputs O r operator (max) Im p lic a t io n

o p e ra to r (m in)

excellent _

I generous
delicious I

If service is excellent or food is delicious then tip = generous re s u lt o f
im p lic a tio n

s e rv ic e = 3

input 1

fo o d = 8

input 2

Step 4. Aggregate All Outputs
Aggregation is when we un ify the outputs of each ru le by jo in ing the parallel
threads. I t ’s jus t a m atter of tak ing all the fuzzy sets tha t represent the output
of each ru le and combining them in to a single fuzzy set in preparation for the
fifth and fina l step, defuzzification. Aggregation only occurs once for each
output variable. The input of the aggregation process is the list of truncated
output functions returned by the im plication process for each rule. The output
of the aggregation process is one fuzzy set for each output variable.

Notice tha t as long as the aggregation method is com m utative (which it always
should be), then the order in which the rules are executed is un im portan t.
Three bu ilt-in methods are supported: max (maximum), probor (probabilis tic
or), and sum (simply the sum of each ru le ’s output set).

2-23

2 Tutorial

In the diagram below, all th ree rules have been placed together to show how
the output of each ru le is combined, or aggregated, in to a single fuzzy set for
the overall output.

1. fuzzify inputs

1 .

2. apply
fuzzy
operation

3. apply
implication
method (min)

poor rancid

(or = max)

1
cheap

service is poor or food is rancid then tip = cheap

If service is excellent or food is delicious then tip = generous

s e rv ic e = 3

input 1

fo o d = 8

input 2

4. a p p ly
a gg re ga tio n
m ethod (m ax)

re s u lt o f
a g g re g a tio n

Step 5. Defuzzify
The input for the defuzzification process is a fuzzy set (the aggregate output
fuzzy set) and the output is a single num ber— crispness recovered from
fuzziness at last. As much as fuzziness helps the ru le evaluation during the
interm ediate steps, the fina l output for each variab le is generally a single crisp
number. So, given a fuzzy set tha t encompasses a range of output values, we
need to return one number, thereby moving from a fuzzy set to a crisp output.

Perhaps the most popular defuzzification method is the centroid calculation,
which re tu rns the center of area under the curve. There are five bu ilt-in
methods supported: centroid, bisector, m iddle of maximum (the average of the

2-24

Fuzzy Inference Systems

maximum value of the output set), largest of m aximum, and smallest of
maximum.

5. d e fu z z i fy th e
a g g r e g a te o u tp u t
(c e n tro id)

t ip = 1 6 .7 %

resu l t o f
d e fu z z i f ic a t io n

The Fuzzy Inference D iagram
The fuzzy inference diagram is the composite of all the sm aller diagram s we’ve
been looking at so far in th is section. It s im ultaneously displays all parts of the
fuzzy inference process we’ve examined. Inform ation flows through the fuzzy
inference diagram as shown below.

Interpreting the
Fuzzy Inference

Diagram

Notice how the flow proceeds up from the inputs in the lower left, then across
each row, or rule, and then down the ru le outputs to fin ish in the lower right.
Th is is a very compact way of showing everyth ing at once, from lingu is tic
variab le fuzzification all the way through defuzzification of the aggregate
output.

Shown below is the real fu ll-s ize fuzzy inference diagram. There’s a lot to see
in a fuzzy inference diagram, but once you become accustomed to it, you can
learn a lot about a system very quickly. For instance, from th is diagram w ith
these particu la r inputs, we can easily te ll tha t the im plication method is

2-25

2 Tutorial

truncation w ith the min function. The max function is being used for the fuzzy
OR operation. Rule 3 (the bottom-most row in the diagram shown opposite) is
having the strongest influence on the output. And so on. The Inference Viewer,
described in the next section, is a M ATLAB implem entation of the fuzzy
inference diagram.

1. fuzzify inputs

1 . poor rancid

• • • v

service is poor or food is rancid

2. apply
fuzzy
operation
(or = max)

3. apply
implication
melhod (min)

cheap

I
. good

- >
rule 2 has
no dependency
on input 2 .1averageJ_ ► - 4 -

If service is good then tip = average

excellent

• - ►
delicious 1 _r► • • • } •J\

If service is exce llen t or food is delic ious then

s e rv ic e = 3 fo o d = 8

input 1 input 2

tip = generous

r ~

l l

t ip = 16.7%

output

Customization
The Fuzzy Logic Toolbox is designed to give you as much freedom as possible,
w ith in the basic constra ints of the process described here, to customize the
fuzzy inference process for your application. For example, you can substitu te
your own M ATLAB functions for any of the default functions used in the five
steps detailed above: you make your own membership functions, AND
methods, OR methods, im plication methods, aggregation methods, and
defuzzification methods. An open and easily modified system is one of the

2-26

Fuzzy Inference Systems

prim ary goals of the Fuzzy Logic Toolbox.The next section w ill detail exactly
how to make th is system work using the tools provided.

2-27

2 Tutorial

Building Systems w ith the Fuzzy Logic Toolbox

Dinner fo r Two, from the Top
Now we’re going to work through the exact same tipp ing example, only th is
tim e we’ll be bu ild ing it using the graphical user interface (GUI) tools provided
by the Fuzzy Logic Toolbox. A lthough i t ’s possible to use the Fuzzy Logic
Toolbox by w ork ing s tr ic tly from the command line, in general i t ’s much easier
to build a system up graphically. There are five prim ary GUI tools for build ing,
editing, and observing fuzzy inference systems in the Fuzzy Logic Toolbox: the
Fuzzy Inference System or FIS Editor, the Membership Function Editor, the
Rule Editor, the Rule Viewer, and the Surface Viewer. These d ifferent G UIs
are all effectively s iblings in tha t you can have any or all of them open for any
given system.

2-28

Building Systems with the Fuzzy Logic Toolbox

FIS Editor

Rule Edito r
M em b ersh ip

Function Editor

Vf
I Ir
к

Fuzzy
n fe re n c
S ys tem

e
J.

Read-only
tools

Rule V ie w e r S urface V ie w e r

The FIS Editor handles the high level issues for the system: How many input
and output variables? W hat are the ir names? The Membership Function
Editor is used to define the shapes of all the membership functions associated
w ith each variable. The Rule E ditor is for editing the lis t of rules tha t defines
the behavior of the system. The last tw o G UIs are used for looking at, as
opposed to editing, the FIS. They are s tr ic tly read-only tools. The Rule Viewer
is a MATLAB-based display of the fuzzy inference diagram shown at the end of
the last section. Used as a diagnostic, it can show (for example) which rules are
active, or how ind iv idua l membership function shapes are influencing the
results. I t ’s a very powerful w indow fu ll of in form ation. The last of the five GUI
sib lings is the Surface Viewer. Th is tool can display how one of the outputs
depends on any one or tw o of the inputs—tha t is, it generates and plots an

2-29

2 Tutorial

output surface map for the system. Some of the GUI tools have the potential to
influence the others. For example, if you add a rule, you can expect to see the
output surface change.

This chapter began w ith an illus tra tion s im ila r to the one below describing the
main parts of a fuzzy inference system. Shown below is how the three Editors
f it together. The tw o Viewers examine the behavior of the en tire system.

The G eneral Case.

Input O utpu t

Rules

/ \
Input O utpu t
te rm s te rm s

A Specific Exam ple.

tip

i f s e rv
i f s e rv
i f s e rv

s p o o r th e n t ip is c h e a p
s g o o d th e n t ip is a v e r a g e
s e x c e l le n t th e n t ip is g e n e r o u s

/ \
tip

{ p o o r ,
g o o d ,

e x c e l le n t }

{c h e a p ,
a v e r a g e ,

g e n e r o u s }

The GUI Editor.

The FIS Editor

The Rule Editor

/ \
The M em bersh ip

Function Editor(in te r p r e t)

The five principal GUI editors all exchange inform ation, if appropriate. Any
one of them can read and w r ite both to the workspace and to the disk. For any
fuzzy inference system, any or all of these five editors may be open. If more
than one of these editors is open for a single system, the various GUI w indows
are aware of the existence of the others, and w ill, if necessary, update related
windows. Thus if the names of the membership functions are changed using
the Membership Function Editor, those changes are reflected in the rules
shown in the Rule Editor. The editors for any number of d ifferent FIS systems
may be open simultaneously.

Notice tha t the FIS Editor, the Membership Function Editor and the Rule
Editor can all read and modify the FIS data, but the Rules Viewer and the
Surface Viewer do not modify the FIS data in any way.

2-30

Building Systems with the Fuzzy Logic Toolbox

Getting Started
We’ll s tart from scratch again w ith a basic description of the problem (noting
that it is based on tipp ing as practiced in the U.S.)

The Basic Tipping Problem. Given a number between 0 and 10 tha t represents the
qua lity of service at a restaurant (where 10 is excellent), what should the tip be?

The s ta rting point is to w rite down the three golden rules of tipp ing , based on
years of personal experience in restaurants.

1. if the service is poor then tip is cheap
2. if the service is good then tip is average
3. if the service is excellent then tip is generous

We’ll assume tha t an average t ip is 15%, a generous t ip is 25%, and a cheap tip
is 5%. I t ’s also useful to have a vague idea of what the tipp ing function should
look like.

service service

Obviously the numbers and the shape of the curve are subject to local
trad itions, cu ltu ra l bias, and so on, but the three rules are pre tty universal. So
we know the rules, and we have an idea of what the output should look like.
Now we can begin w ork ing w ith the GUI tools.

2-31

2 Tutorial

The FIS Editor

The menu items allow you
to save, open, and edit a
fuzzy system using any of
the five basic GUI tools.

The name o f the system
is displayed here. It can
be changed using one of
the Save as... menu
options.

These pop-up menus are
used to adjust the fuzzy
inference functions, such
as the defuzzification
method.

This status line describes
the most recent
operation.

Double-click on an input Double-click on the
variab le icon and you can system d iagram and you
immediately jum p to the can immediately jum p to
Membership Function the Rule Editor.
Editor.

Double-click on an output
variab le icon and you can
immediately jum p to the
Membership Function
Editor.

This edit fie ld is used to
name and edit the names
o f the input and output
variables.

The H e lp button gives
some inform ation about
how the FIS Editor w orks
and the C lo se button
dismisses the window.

When creating a new fuzzy inference system from scratch, the place to s ta rt is
the FIS Editor. To do tha t, type

fuzzy

This w ill call up a w indow tha t acts as the high-level (or “big p ic ture”) view of
a FIS. A t the top of the figure, the re ’s a diagram tha t shows inputs on the left
and outputs on the righ t. The system tha t is displayed is a default “s ta rt-up ”
system, since we d idn ’t specify any particu la r system.

The purpose of th is section of the manual is to build a new system from scratch.
But if you want to save tim e and follow along quickly, you can load the already
bu ilt system by typ ing

fuzzy t i p p e r l

2-32

Building Systems with the Fuzzy Logic Toolbox

This w ill load the fuzzy inference system associated w ith the f ile t i p p e r l . f i s
(the f i s is im plied) and launch the FIS Editor. More on loading and saving
later.

The FIS Editor displays general in form ation about a fuzzy inference system.
There’s a sim ple diagram at the top tha t shows the names of each input
variab le and each output variable. The sample membership functions shown in
the boxes are just icons and do not represent the shapes of the actual
membership functions.

Below the diagram is the name of the system and the type of inference used.
The default, M am dani-style inference, is what we’ve been describing so far and
what we’ll continue to use for th is example. There is another s ligh tly d ifferent
type of inference, called Sugeno-style inference, tha t is explained in the next
section. Below the name, on the left side of the figure, are the pop-up menus
that allow you to modify the various pieces of the inference process. On the
righ t side at the bottom of the figure is the area tha t displays the names of the
input and output variables. Below tha t are the Help and Close buttons tha t
call up on-line help and dism iss the window, respectively, and fina lly , at the
bottom is a status line that relays inform ation about the system from tim e to
time.

The firs t th ing to notice from the diagram at the top of the figure is tha t the
default system already has one input and one output. That su its us well, since
our one input is service and our one output is tip . We’d like to change the names
to reflect tha t, though.

1 C lick once on the left-hand (yellow) box marked input1 (the box w ill be high­
lighted in red).

2 In the w h ite edit fie ld on the righ t, change input1 to service and press
R e tu rn .

3 C lick once on the right-hand (blue) box marked output1.

4 In the w h ite edit fie ld on the righ t, change output1 to tip .

2-33

2 Tutorial

5 From the F ile menu select Save to w orkspace as...

6 Enter the variab le name tipper and click on OK.

You should see the diagram updated to reflect the new names of the input and
output variables. There is now a new variab le in the workspace called t i ppe r
tha t contains all the inform ation about th is system. By saving to the workspace
w ith a new name, you also rename the entire system. Your w indow should look
something like th is .

-] ________________________________ FIS Editor:

File Edit View

Ж tipper

(mamdani)
■.................... Ж

service tip

FIS Name: tipper F IS Type : mamdani

And method min Current Variable

Or method max Name up

Implication min T ype output

Aggregation max -1
Range [0 1]

Defuzzification centroid Help Close

Renamed FIS to "tipper"

We’ll leave the inference options in the lower left in th e ir default positions for
now. So we’ve entered all the inform ation we need to in th is particu la r GUI.
The next th ing to do is define the membership functions associated w ith each
of the variables. To do th is , we need to open up the Membership Function
Editor by pu lling down the V iew menu item and selecting E d it M em bership
Functions....

2-34

Building Systems with the Fuzzy Logic Toolbox

The Mem bersh ip Function Editor

The menu items allow you
to save, open, and edit a
fuzzy system using any of
the five basic GUI tools.

These text fie lds display
the name and type of the
current variable.

This edit fie ld lets you set
the range o f the current
variable.

This edit fie ld lets you set
the display range of the
current plot.

This status line describes
the most recent
operation.

This is the “ Variable Palette’
area. C lick on a variable
here to make it current and
edit its membership

C lick on a line to select it
and you can change any of
its attributes including
name, type and numerical
parameters.

This edit fie ld lets you
change the name of the
current membership
function.

This pop-up menu lets you
change the type o f the
current membership
function.

This edit field lets you
change the numerical
parameters for the
current membership
function.

The H e lp button gives
some inform ation about
how the Membership
Function Editor works,
and the C lo se button
dismisses the window.

The Membership Function Editor shares some features w ith the FIS Editor. In
fact, all of the five basic GUI tools have s im ila r menu options, sta tus lines, and
Help and Close buttons. The Membership Function Editor is the tool tha t lets
you display and edit all of the membership functions for the entire fuzzy
inference system, including both input and output variables.

There are no membership functions to start off w ith . On the left side of the
graph area is a “Variab le Palette” tha t lets you set the current variable. The
membership functions from the current variab le are displayed in the main
graph. Below the Variab le Palette is some inform ation about the type and
name of the current variable. There is one text fie ld tha t lets you change the
lim its of the current variab le ’s range (universe of discourse) and another tha t
lets you set the lim its of the current plot (which has no real effect on the

2-35

2 Tutorial

system). In the lower righ t of the w indow are the controls tha t let you change
the name, position, and shape of the cu rren tly selected membership function.

1 Make sure the input variab le is selected in the Variab le Palette. Set the
Range to vector [0 10].

2 Select Add MFs... from the E d it menu and add three Gaussian curves to the
input variab le service.

3 C lick once d irectly on the leftmost curve. Change the name of the curve to
poor. Change the parameters lis ting to [1.5 0].

4 Name the m iddle curve good and the rightm ost curve excellent and change
the firs t parameters to 1.5.

Next we need to create the membership functions for the output variable, tip .
We already know the names for these membership functions: cheap, average,
and generous. To display the output variab le membership functions, use the
Variab le Palette on the left. The input range was a ra ting scale of 0 to 10, but
the output scale is going to be a t ip between 5 and 25 percent.

We’ll use tr ia n g u la r membership function types for the output. F irs t, set the
Range (not the Display Range) to [0 30]. The cheap membership function w ill
have the parameters [0 5 10], the average membership function w ill be [10 15
20] and the generous membership function w ill be [20 25 30]. So each of these

2-36

Building Systems with the Fuzzy Logic Toolbox

is a fuzzy set centered on the typical number. Your system should look
something like th is.

0 5 10 15 20 25 30
output variable "tip"

Current Variable

Name tip

Type output

Range | [0 30]

Current Membership Function
Name | generous

Type trimf
Params f[20 25 30]

Display Range | [0 30] Help | Close

Ready

Now tha t the variables have been named, and the membership functions have
appropria te shapes and names, we’re ready to w rite down the rules. To call up
the ru le editor, go to the V iew menu and select E d it rules....

2-37

2 Tutorial

The Rule Editor

The menu items allow you
to save, open, and edit a
fuzzy system using any of
the five basic GUI tools.

This pop-up menu lets
you choose the style in
wh ich the rules are
displayed.

This status line describes
the most recent
operation.

The rules are entered,
displayed, and edited in
th is editab le text field. After
editing, use C trl-re turn to
parse.

The H e lp button gives
some in form ation about
how the Rule Editor
works, and the C lo se
button dismisses the
w indow .

The Rule Editor contains a large editable text fie ld for displaying and editing
rules. It also has some by now fam ilia r landm arks s im ila r to those in the FIS
Editor and the Membership Function Editor, including the menu bar and the
status line. A format pop-up menu is the only w indow specific control—th is is
used to set the format for the display.

In the main (white) text area, type the fo llow ing rules and then press
C tr l-R e tu rn .

if service is crum m y then tip is cheap
if service is good then tip is average
if service is excellent then tip is generous

It gets returned as

i f service is crum m y then tip is cheap
1. I f (service is good) then (tip is average) (1)
2. I f (service is excellent) then (tip is generous) (1)

There should be a message in the status w indow at the bottom of the figure tha t
reads “There is no MF called crum m y for the input variab le service.” The #
symbol is inserted at the beginning of the firs t line to indicate there was a
problem parsing tha t rule. Every tim e you press C tr l-R e tu rn , the Rule Editor
tr ie s to parse every rule. Any rules tha t confuse the parser are marked w ith the

2-38

Building Systems with the Fuzzy Logic Toolbox

symbol. Change the word “crum m y” to “poor” and press C tr l-R e tu rn so the
editor can in te rp re t the ru le properly.

1. I f (service is poor) then (tip is cheap) (1)
2. I f (service is good) then (tip is average) (1)
3. I f (service is excellent) then (tip is generous) (1)

The numbers in the parentheses represent weights tha t can be applied to each
ru le if desired. I f you do not specify them, they are assumed to be one. The Rule
Form at pop-up menu in the lower left indicates tha t you’re looking at the
verbose form of the rules. T ry changing it to symbolic. You should see

1. (service==poor) => (tip=cheap) (1)
2. (service==good) => (tip=average) (1)
3. (service==excellent) => (tip=generous) (1)

Not much difference in the display really, but i t ’s s ligh tly more language
neutral, since it doesn’t depend on term s like “ i f ” and “then .” I f you change the
format to indexed, you’ll see an extremely compressed version of the rules tha t
has squeezed all the language out.

1, 1 (1) : 1
2, 2 (1) : 1
3, 3 (1) : 1

This is the version tha t the machine deals w ith . The firs t column in the m a trix
corresponds to the input variable, the second column corresponds to the output
variable, the th ird column displays the weight applied to each rule, and the
fourth column is shorthand tha t indicates whether th is is an OR (2) ru le or an
AND (1) rule. The numbers in the firs t tw o columns refer to the index number
of the membership function. So a lite ra l in terpre ta tion of ru le 1 is: “ if input 1
is MF1 (the firs t membership function associated w ith input 1) then output 1
should be MF1 (the firs t membership function associated w ith output 1) w ith
the weight 1.” Since there is only one input for th is system, the AND connective
im plied by the 1 in the last column is im m ateria l.

So the symbolic form at doesn’t bother w ith the term s if, then, and so on. But
the indexed format doesn’t even bother w ith the names of your variables.
Obviously the functiona lity of your system doesn’t depend on how beautifu lly
you named your variables and membership functions (if it did, it would be
called fuzzy poetry instead of fuzzy logic). The whole point of naming variables
descriptively is, as always, making the system easier to in terpret.

2-39

2 Tutorial

Now the system has been completely defined: we’ve got the variables,
membership functions, and rules necessary to calculate tips. It would be nice,
at th is point, to look at a fuzzy inference diagram like the one presented at the
end of the previous section and verify tha t everything is behaving the way we
th in k it should. Th is is exactly the purpose of the Rule Viewer, the next of the
GUI tools we’ll look at. From the V iew menu, select V iew rules....

The Rule V ie w e r

The menu items allow you
to save, open, and edit a
fuzzy system using any o f
the five basic GUI too ls

Each row of plots
represents one rule (here
there are 3). C lick on a
rule to display it in the
status bar.

This edit field allow s you
to set the input explicitly.

This status line describes
the most recent
operation.

This column (yellow)
of plots shows how
the input variab le is
used in the rules.

This column (blue) of
plots shows how the
output variab le is
used in the rules.

The bottom-right plot
shows how the output of
each rule is combined to
make an aggregate
output and then
defuzzified.

The H e lp button gives
some inform ation about
how the Rule Viewer
works, and the C lose
button dismisses the
w indow.

The Rule Viewer displays a roadmap of the whole fuzzy inference process. I t ’s
based on the fuzzy inference diagram described in the previous section. You’ll
see a single figure w indow w ith seven small plots nested in it. In addition there
are the now fam ilia r items like the status line and the menu bar. In the lower
righ t there is a text fie ld where you can enter a specific input value, if desired.

The tw o small plots across the top of the figure represent the antecedent and
consequent of the firs t rule. Each ru le is a row of plots, and each column is a
variable. So the firs t column of plots (the three yellow plots) shows the
membership functions referenced by the antecedent, or if-part, of each rule.
The second column of plots (the three blue plots) shows the membership

2-40

Building Systems with the FUzzy Logic Toolbox

functions referenced by the consequent, or then-part of each rule. I f you click
once on a ru le number, the corresponding ru le w ill be displayed at the bottom
of the figure.

There is a yellow index line across the input variab le plots tha t you can move
left and righ t by clicking and dragging w ith the mouse. Th is changes the input
value. When you release the line, a new calculation is performed, and you can
see the whole fuzzy inference process take place before your eyes. Where the
index line representing service crosses the membership function line “service
is poor” in the upper left plot w ill determ ine the degree to which ru le one is
activated. A yellow patch of color under the actual membership function curve
is used to make the fuzzy membership value v isua lly apparent. I f we follow
ru le 1 across the top of the diagram, we can see the consequent “t ip is cheap”
has been truncated to exactly the same degree as the antecedent—th is is the
im plication process in action. F ina lly the aggregation occurs down the second
column, and the resultant aggregate plot is shown in the single plot to be found
in the lower righ t corner of the plot field. The defuzzified output value is shown
by the th ick line passing through the aggregate fuzzy set.

The Rule Viewer presents a busy scene, and in te rp re ting it can take some
getting used to, but once you become fa m ilia r w ith it, you can take in the whole
fuzzy inference process in one sweeping view. The Rule Viewer is very good, for
example, at showing how the shape of certain membership functions is
in fluencing the overall result. Since it plots every part of every rule, it can
become unw ieldy for pa rticu la rly large systems, but in general it performs well
(depending on how much screen space you devote to it) w ith up to 30 rules and
as many as 6 or 7 variables.

The Rule Viewer shows one calculation at a tim e and in great detail. In th is
sense, it presents a sort of m icro view of the fuzzy inference system. I f you want
to see the entire output surface of your system, tha t is the entire span of the
output set based on the entire span of the input set, you need to open up the
Surface Viewer. Th is is the last of our five basic GUI tools in the Fuzzy Logic
Toolbox, and not surpris ing ly, you open it by selecting V iew surface... from the
V iew menu.

2-41

2 Tutorial

The Surface V ie w e r

The menu items allow you
to save, open, and edit a
fuzzy system using any of
the five basic GUI tools»

These pop-up menus let
you specify the one or
two displayed input
variab les

These edit fie lds let you
determine how densely
to grid the input space.

This edit fie ld lets you set
the input explicitly for
unspecified inputs.

This status line describes
the most recent
operation.

This plot shows the
output surface fo r any
output o f the system
versus any one or two
inputs to the system.

This pop-up menu lets
you specify the displayed
output variable.

Fush th is button when
you 're ready to calculate
and plot.

The H e lp button gives
some inform ation about
how the Surface Viewer
works, and the C lose
button dismisses the
window.

Upon opening the Surface Viewer, we are presented w ith a tw o dimensional
curve tha t represents the mapping from service qua lity to t ip amount. Since
th is is a one-input one-output case, we can see the entire mapping in one plot.
Two-input one-output systems also w ork well, as they generate
three-dimensional plots tha t M ATLAB can adeptly manage. But when we
move beyond three dimensions overall, we start to encounter troub le
d isplaying the results. Accordingly, the Surface Viewer is equipped w ith
pop-up menus tha t let you select any tw o inputs and any one output for
p lotting. Just below the pop-up menus are tw o text input fie lds tha t let you
determ ine how many X-axis and Y-axis grid lines you want to include. This
allows you to keep the calculation tim e reasonable for complex problems.
Pushing the E va lua te button in itia tes the calculation, and the plot comes up
soon after the calculation is complete.

The Surface Viewer has a special capability tha t is very helpful in cases w ith
tw o (or more) inpu ts and one output: you can actually grab the axes and
reposition them to get a d ifferent three-dimensional view on the data. The
Reference Input fie ld is used in s itua tions when there are more inputs required
by the system than are cu rren tly being varied. Suppose you have a four-input

2-42

Building Systems with the FUzzy Logic Toolbox

one-output system and would like to see the output surface. The Surface
Viewer can generate a three-dimensional output surface where any tw o of the
inputs vary, but tw o of the inputs must be held constant since our m onitors
sim ply cannot display a five-dimensional shape. In such a case the Reference
Input would be a four element vector w ith NaNs holding the place of the
varying inputs w h ile numerical values would indicate those values that remain
fixed.

This concludes the quick w a lkthrough of each of the main GUI tools. Notice
that for the tipp ing problem, the output of the fuzzy system nicely matches our
orig inal idea for what the shape of the fuzzy mapping from service to tip . If,
after all th is work, th is were the only value we got from the fuzzy system, we
m ight be tempted to say “Why bother? I could have just drawn a quick lookup
table and been done an hour ago!” But one of the beauties of fuzzy logic is the
ease w ith which a system can be qu ickly modified, extended, and massaged.

Two- inputs One-output , or W ha t A bou t the Food?
Now we might say: “Th is is all well and good, but I th in k the food qua lity should
be reflected in the t ip as w e ll.” We’ve looked at th is problem in earlier sections,
but for the sake of c la rity , we w ill restate the extended tipp ing problem.

The Extended Tipping Problem: Given numbers between 0 and 10 (where 10 is
excellent) tha t represent the qua lity of the service and the qua lity of the food,
respectively, at a restaurant, what should the tip be?

The th ing we need to do righ t away is add another input variable, and to do
tha t, we need to get back to the FIS Editor.

1 Return to the FIS Ed ito r and from the E d it menu, select Add i npu t v a r i ­
able.

2 Name the new variab le food.

3 Return to the Membership Function Editor and add tw o trapezoidal mem­
bership functions.

4 Change the Range to [0 10].

5 Name the leftmost membership function rancid and give it the parameters
[-2 0 1 3]. Name the rightm ost membership function delicious and give it the
parameters [7 9 10 12].

2-43

2 Tutorial

I f you re turn to the FIS Editor at th is point, you should see something like th is.

Now we need to update the rules appropriately. Add tw o new rules to the
bottom of the list:

4. i f food is rancid then tip is cheap
5. i f food is delicious then tip is generous

2-44

Building Systems with the Fuzzy Logic Toolbox

In fact, because of the parallel na ture in which the rules get evaluated, it
makes no difference whether these tw o rules are added to the bottom of the ru le
list, or the three existing rules are modified like so

1. if service is poor or food is rancid then tip is low
2. if service is good then tip is average
3. if service is excellent or food is delicious then t ip is generous

Rule Editor: tipper

File Edit View Options

1, If (service is poor) or (food is rancid) then (tip is cheap) (1)
2, If (service is good) then (tip is average) (1)
3, If (service is excellent) or (food is delicious) then (tip is generous) (1)

Rule Format verbose —«| Info | Close

FIS Name: tipper

F ina lly re turn to the Surface V iewer— here is where we see the real value of
fuzzy logic. We o rig ina lly bu ilt a system tha t was effectively doing a simple
one-dimensional table lookup. But by adding only tw o new rules, we’ve
generated a complex surface tha t nevertheless conforms to our desires for the

2-45

2 Tutorial

tipp ing a lgorithm . Fuzzy logic systems are easily modified and sculpted to suit
the needs of the problem.

Im port ing and Export ing from the GUI Tools
When you save a fuzzy system to disk, you’re saving an ASCII text FIS file
representation of tha t system w ith the file su ffix . f i s . Th is text file can be
edited and modified and is sim ple to understand. When you save your fuzzy
system to the M ATLAB workspace, you’re creating a variab le (whose name you
choose) tha t w ill act as a FIS m a trix for the system. FIS files and FIS matrices
can represent the same system, but they ’re extremely d ifferent from one
another.

Customizing Your Fuzzy System
I f you want to include customized functions as part of your use of the Fuzzy
Logic Toolbox, there are a few guidelines you need to follow. The AND method,
OR method, aggregation method, and defuzzification method functions you
provide need to work in a s im ila r way to max, m n, or prod in M ATLAB. That is,
they must be able to operate down the columns of a m atrix . The im plication

2-46

Building Systems with the Fuzzy Logic Toolbox

method does an element by element m a trix operation, also like the min
function, as in

a=[1 2; 3 4];
b=[2 2; 2 2];
mn (a , b)
ans =

1 2
2 2

The only lim ita tion on customized membership functions is tha t they cannot
use more than four parameters.

2-47

2 Tutorial

W ork ing from the Command Line
The tipp ing example system is one of many example fuzzy inference systems
provided w ith the Fuzzy Logic Toolbox. To load th is system (rather than
bothering w ith creating it from scratch), type

a = r e a d f i s (' t i p p e r . f i s ') ;

I f you look at the text file t i p p e r . f i s by entering

t ype t i p p e r . f i s

you’ll see tha t th is fuzzy system is stored as ASCII text in a fa ir ly
s tra igh tfo rw ard way. The function r e a d f i s takes all the inform ation in th is
text file and puts it in to a big m atrix , in th is case, a. The m a trix a is known as
a FIS (Fuzzy Inference System) m atrix . Th is m a trix is sim ply a bookkeeping
mechanism tha t keeps object-like in form ation in a two-dimensional m a trix of
floa ting point numbers. Th is m a trix is always cast as a an array of numbers,
even though much of it is ASCII text. In fact, i t ’s almost never convenient to
look at it as a raw variable. Because of th is , specialized access functions exist
to s im p lify the process of dealing w ith the F IS m atrix . To learn more about it,
type

g e t f i s (a)

This re tu rns some fa ir ly generic in form ation about the fuzzy inference system,
such as its name, the number of input variables, output variables, and so on.
You can use g e t f i s to learn more about any fuzzy inference system. T ry the
following:

g e t f i s (a , ' n a n e ')
g e t f i s (a , ' i n p u t ' , 1)
g e t f i s (a , ' o u t p u t ' , 1)
g e t f i s (a , ' i n p u t ' , 1 , ' m f ' , 1)

The function g e t f i s is loosely modeled on the Handle Graphics™ function g e t .
There is a function called s e t f i s tha t acts as the reciprocal to g e t f i s . It allows
you to change any property of a FIS. For example, if you wanted to change the
name of th is system, you could type

a = s e t f i s (a , ' n a m e ' , ' g r a t u i t y ')

2-48

Working from the Command Line

Now the FIS m a trix a has been changed to reflect the new name. I f you want a
lit t le more insight in to th is big FIS m atrix , try

showf i s(a)

This re tu rns a long p rin tou t lis ting all the rows of a and what they store. Th is
function is intended more for debugging than anyth ing else, but it shows all the
inform ation recorded in the FIS m a trix row by row. As a rule, you w ill never
have to w orry about what in form ation goes on which line in the FIS m atrix.
You need only keep stra ight which variab le is associated w ith which system.

Since a designates the fuzzy tipp ing system, we can call up any of the G UIs for
the tipp ing system d irectly from the command line. Any of the fo llow ing w ill
bring up the tipp ing system w ith the desired GUI.

• fuzzy(a) FIS Editor
• mfed i t (a) Membership Function Editor
• r u l e e d i t (a) Rule Editor
• r u l ev i ew(a) Inference Viewer
• sur f v i ew(a) Surface Viewer

And once any of these G UIs has been opened, you can jum p to any of the other
GUIs using the pull-down menu rather than the command line.

2-49

2 Tutorial

System Display Functions
There are three functions designed to give you a high-level view of your fuzzy
inference system from the command line: p l o t f i s , p l o t m f , and gensur f . The
firs t of these displays the whole system as a block diagram much as it would
appear on the F IS Editor.

p l o t f i s (a)

2-50

Working from the Command Line

The function plotmf w ill plot all the membership functions associated w ith a
given variable.

p l o t m f (a , ' i n p u t ' , 1)

service

p l o t m f (a , ' o u t p u t ' , 1)

0 5 10 15 20 25 30
tip

2-51

2 Tutorial

F ina lly , the function gensurf w ill plot any one or tw o inputs versus any one
output of a given system. The result is e ither a line or a three-dimensional
surface.

gensur f (a)

25

20

tip15

10

5
10

Build ing a System from Scratch
It is possible to use the Fuzzy Logic Toolbox w ithou t bothering w ith the GUI
tools at all. For instance, to build the tipp ing system entire ly from the
command line, you would use the commands newf is, addvar, addmf, and
addrule.

Probably the trick ies t part of th is process is learning the shorthand tha t the
fuzzy inference systems use for bu ild ing rules. Each variable, input or output,
has an index number, and each membership function has an index number.
The rules are bu ilt from statements like th is

if in p u tl is MF1 or input2 is MF3 then o u tp u tl is MF2 (weight = 0.5)

This ru le is turned in to a m a trix according to the follow ing logic: I f there are m
inputs to a system and n outputs, then the firs t m columns of the ru le m a trix
correspond to inputs 1 through m. The entry in column 1 is the index number
for the membership function associated w ith input 1. The entry in column 2 is
the index number for the membership function associated w ith input 2. And so
on. The next n columns work the same way for the outputs. Column m + n + 1
is the weight associated w ith tha t ru le (typ ica lly 1) and column m + n + 2

2-52

Working from the Command Line

specifies the connective used (where AND = 1 and OR = 2). So the ru le m a trix
associated w ith the ru le shown above is

1 3 2 0.5 2

Here is how you would build the en tire tipp ing system from the command line.

a = n e w f i s (' t i p p e r ') ;

a = a d d v a r (a , ' i n p u t ' , ' s e r v i c e ' , [0 10]) ;

a = a d d m f (a , ' i n p u t ' , 1 , ' p o o r ' , ' g a u s s m f ' , [1 . 5 0]) ;
a = a d d m f (a , ' i n p u t ' , 1 , ' g o o d ' , ' g a u s s m f ' , [1 . 5 5]) ;
a = a d d m f (a , ' i n p u t ' , 1 , ' e x c e l l e n t ' , ' g a u s s m f ' , [1 . 5 10]) ;

a = a d d v a r (a , ' i n p u t ' , ' f o o d ' , [0 10]) ;
a = a d d m f (a , ' i n p u t ' , 2 , ' r a n c i d ' , ' t r a p m f ' , [- 2 0 1 3]) ;
a = a d d m f (a , ' i n p u t ' , 2 , ' d e l i c i o u s ' , ' t r a p m f ' , [7 9 10 12]) ;

a = a d d v a r (a , ' o u t p u t ' , ' t i p ' , [0 30]) ;
a = a d d m f (a , ' o u t p u t ' , 1 , ' c h e a p ' , ' t r i m f ' , [0 5 10]) ;
a = a d d m f (a , ' o u t p u t ' , 1 , ' a v e r a g e ' , ' t r i m f ' , [1 0 15 20]) ;
a = a d d m f (a , ' o u t p u t ' , 1 , ' g e n e r o u s ' , ' t r i m f ' , [2 0 25 30]) ;

r u l eL i s t = [. . .
1 1 1 1 2
2 0 2 1 1
3 2 3 1 2];
a = a d d r u l e (a , r u l eL i s t) ;

FIS Evaluat ion
To evaluate the output of a fuzzy system for a given input, use the function
e v a l f i s .

a = r e a d f i s (' t i p p e r ')
e v a l f i s ([1 2], a)
ans =

5.5586

2-53

2 Tutorial

This function can also be used for m u ltip le collections of inputs, so each row of
the input m a trix is a d ifferent input vector. By doing m u ltip le evaluations at
once, you get a tremendous boost in speed.

e v a l f i s ([3 5; 2 7], a)
ans =

12.2184
7.7885

M-File or MEX-File?
There are tw o d ifferent functions (e v a l f i s . m and eva l f i s .mex) tha t can do the
actual fuzzy inference for a given set of inputs, though only one of them is used
at any given tim e. One is an M -file and the other is a M EX-file, and they return
exactly the same result. The M EX -file is much much faster, but if you are
curious about how the a lgorithm s are implemented, you may want to inspect
or even modify the M-file. As long as it is on the M ATLAB path, eva l f i s .mex
w ill be used pre ferentia lly to e v a l f i s . m Every tim e eva l f i s . mex is called it
builds a data s truc tu re in memory, performs the FIS evaluation, and destroys
the data structure. You cannot access th is data s truc tu re directly.

The FIS Matr ix
The FIS m a trix is the M ATLAB object tha t contains all the fuzzy inference
system inform ation. Th is m a trix is stored inside each GUI tool. Access
functions such as g e t f i s and s e t f i s make it easy to examine and modify its
structure. The access functions are also im portant because they protect you
from any changes to the data s tructu re in fu tu re versions of the toolbox. The
data s tructu re may change, but the access functions w ill continue to work as
before.

A ll the inform ation for a given fuzzy inference system is contained in the FIS
m atrix , including variab le names, membership function defin itions, and so on.

2-54

Working from the Command Line

This object can itse lf be thought of as a hierarchy of other objects, as shown in
the diagram below:

FIS
Name
Type
Numlnputs
NumOutputs
NumlnputMFs
NumOutputMFs
AndMethod
OrMethod
AggMethod
DefuzzMethod
InLabels
OutLabels
lnRange
OutRange
lnMFLabels
OutMFLabels
lnMFTypes
OutMFTypes
lnMFParams
OutMFParams
RuleList

Variable
Name
Range
MFLabels
MFTypes
MFParams

Variable
Name
Range
MFLabels
MFTypes
MFParams

MF
Name
Type
Params

MF
Name
Type
Params

MF
Name
Type
Params

Since M ATLAB deals only w ith matrices of double precision floa ting point
numbers, the FIS m a trix is exactly tha t. The inform ation is arranged in it as
shown below (the follow ing lis t is actually jus t the output of the showf i s
command).

showf i s(a)
1. Name t i ppe r
2. Type mamdani
3. I nputs /Outputs [2 1]
4. NumInputMFs [3 2]
5. NumCutputMFs 3
6. NumRules 3
7. AndMethod min
8. OrMfethod max
9. ImpMethod min
10. AggMethod max
11. DefuzzlVfethod cen t r o i d
12. InLabels serv i ce
13. food
14. OutLabels t i p
15. InRange [0 10]
16. [0 10]

2-55

2 Tutorial

17. OutRange [0 30]
18. InMFLabels poor
19. good
20. excel l ent
21. ranc id
22. d e l i c i ou s
23. OutMFLabels cheap
24. average
25. generous
26. InMFTypes gaussmf
27. gaussmf
28. gaussmf
29. t rapmf
30. t rapmf
31. OutMFTypes t r i m f
32. t r i m f
33. t r i m f
34. InMFParame [1 . 5 0 0 0]
35. [1 . 5 5 0 0]
36. [1 . 5 10 0 0]
37. [0 0 1 3]
38. [7 9 10 10]
39. OutMFParams [0 5 10 0]
40. [10 15 20 0]
41. [20 25 30 0]
42. RuleList [1 1 1 1 2]
43. [2 0 2 1 1]
44. [3 2 3 1 2]

Access functions for dealing w ith th is m a trix include g e t f i s , s e t f i s , showf is,
addvar, addmf , addrule, rmvar , and rmmf. These are the only functions tha t
interact d irectly w ith the elements of the FIS m atrix . O ther functions may use
the inform ation provided in the FIS m atrix , but they w ill do so by means of one
of these functions. See Chapter 3, Reference, for more inform ation.

Since the m a trix is necessarily rectangular, zeros are used to f il l out each row
to the required length. These matrices can therefore be saved as sparse
matrices if memory savings are desired.

2-56

Working from the Command Line

FIS Files on Disk
There is also a specialized text file format tha t is used for saving fuzzy
inference systems to disk. The functions r ead f i s and w r i t e f i s are used for
reading and w rit in g these files.

If you prefer, you can interact w ith the fuzzy inference system by editing its
f i s text file rather than using any of the GUIs. Th is is occasionally the most

convenient way to edit a fuzzy inference system. You should be aware,
however, tha t changing one entry may obligate you to change another. For
example if you add a ru le to the ru le list you must also increment the NumRules
variab le or the system w ill not load properly. Also notice tha t the rules are in
“ indexed” form at. Here is the file t i p p e r . f i s .

[System]
№me=' t i pper '
Type='mamdani'
Num1nputs=2
NumCutputs=1
NumRules=3
AndMethod='min'
CrMethod='max'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='cent roid'

[I npu t1]
Name='service'
Range=[0 10]
NumMFs=3
M F1= ' p oo r ' : ' g aus smf ' , [1 . 5 0]
MF2= ' good ' : ' gaussmf ' , [1 . 5 5]
M F 3 = ' e x c e l l e n t ' : ' g a u s s m f ' , [1 . 5 10]

[I npu t2]
Name='food'
Range=[0 10]
NumMFs=2
M F 1 = ' r a n c i d ' : ' t r a p m f ' , [0 0 1 3]
M F 2 = ' d e l i c i o u s ' : ' t r a p m f ' , [7 9 10 10]

2-57

2 Tutorial

[Output1]
Name=' t ip'
Range=[0 30]
NumMFs=3
M F 1 = ' c h e a p ' : ' t r i m f ' , [0 5 10]
M F 2 = ' a v e r a g e ' : ' t r i m f ' , [1 0 15 20]
M F 3 = ' g e n e r o u s ' : ' t r i m f ' , [2 0 25 30]

[Rules]
1 1, 1 (1) 2
2 0, 2 (1) 1
3 2, 3 (1) 2

2-58

Sugeno-style Fuzzy Inference

Sugeno-style Fuzzy Inference
The fuzzy inference process we’ve been referring to so far is known as
M am dani’s fuzzy inference method. I t ’s the most commonly seen fuzzy
methodology. M am dani’s method was among the firs t control systems bu ilt
using fuzzy set theory. It was proposed in 1975 by Ebrahim Mamdani [Mam75]
as an attem pt to control a steam engine and boiler combination by synthesizing
a set of lingu is tic control rules obtained from experienced human operators.
M am dani’s effort was based on Lotfi Zadeh’s 1973 paper on fuzzy a lgorithm s
for complex systems and decision processes [Zad73]. A lthough the inference
process we have described in previous sections d iffe rs somewhat from the
methods described in the original paper, the basic idea is much the same.

M am dani-style inference, as we have defined it for the Fuzzy Logic Toolbox,
expects the output membership functions to be fuzzy sets. A fte r the
aggregation process, there is a fuzzy set for each output variab le tha t needs
defuzzification. I t ’s possible, and in many cases much more efficient, to use a
single spike as the output membership function rather than a d istribu ted fuzzy
set. Th is is sometimes known as a singleton output membership function, and
it can be thought of as a pre-defuzzified fuzzy set. It enhances the efficiency of
the defuzzification process because it greatly s im plifies the computation
required to find the centroid of a two-dimensional shape. Rather than
in tegra ting across a continuously varying two-dimensional shape to find the
centroid, we can just find the weighted average of a few data points. Sugeno
systems support th is kind of behavior.

In th is section we w ill discuss the so-called Sugeno, or Takagi-Sugeno-Kang
method of fuzzy inference firs t introduced in 1985 [Sug85]. It is s im ila r to the
Mamdani method in many respects. In fact the firs t tw o parts of the fuzzy
inference process, fuzzify ing the inpu ts and applying the fuzzy operator, are
exactly the same.

A typical fuzzy ru le in a zero-order Sugeno fuzzy model has the form

if x is A and y is В then z = k
where A and В are fuzzy sets in the antecedent, w h ile k is a crisply defined
constant in the consequent. When the output of each ru le is a constant like th is,
the s im ila r ity w ith M am dani’s method is s trik ing . The only d is tinctions are the
fact tha t all output membership functions are singleton spikes, and the
im plication and aggregation methods are fixed and can not be edited. The
im plication method is sim ply m u ltip lica tion , and the aggregation operator just
includes all of the singletons.

2-59

2 Tutorial

1. fuzzify inputs
3. implication

If service is poor or food is rancid then tip = cheap

4. aggregation

5. defuzzify
(weighted
average)

The figure above shows the fuzzy tipp ing model developed in previous sections
of th is manual adapted for use as a zero-order Sugeno system. Fortunate ly it
is frequently the case tha t singleton output functions are completely sufficient
for a given problem ’s needs. As an example, the system t i p p e r s g . f i s is the
Sugeno-style representation of the now-fam iliar tipp ing model. I f you load the

2-60

Sugeno-style Fuzzy Inference

system and plot its output surface, you w ill see it is almost exactly the same as
the Mamdani system we’ve been looking at.

a = r e a d f i s (' t i p p e r s g ')
gensur f (a)

The more general first-order Sugeno fuzzy model has rules of the form

if x is A and y is В then z = p*x + q*y + r
where A and В are fuzzy sets in the antecedent, w h ile p, q, and r are all
constants. The easiest way to visualize the firs t-order system is to th in k of each
ru le as defin ing the location of a “moving singleton.” That is, the singleton
output spikes can w alk around the output space, depending on what the input
is. Th is also tends to make the system notation very compact and efficient.
H igher order Sugeno fuzzy models are possible, but they introduce significant
complexity w ith l i t t le obvious m erit. Sugeno fuzzy models of greater than firs t
order are not supported by the Fuzzy Logic Toolbox.

Because of the linear dependence of each ru le on the system’s input variables,
the Sugeno method is ideal for acting as an in te rpo la tive supervisor of m u ltip le
linear controllers tha t apply in d ifferent operating conditions of a dynam ic
nonlinear system. For example, the performance of an a ircra ft may change
dram atica lly w ith a ltitude and Mach number. Linear controllers, though easy
to compute and well-suited to any given fligh t condition, must be updated
regularly and smoothly to keep up w ith the changing state of the fligh t vehicle.
A Sugeno fuzzy inference system is extremely well suited to the task of
smoothly in terpo la ting linear gains across the input space; i t ’s a natura l and

2-61

2 Tutorial

efficient gain scheduler. A Sugeno system is also suited for modeling nonlinear
systems by in terpo la ting m u ltip le linear models.

An Example: Two Lines
To see a specific example of a system w ith linear output membership functions,
consider the one input one output system stored in sugeno l . f i s .

f i smat = r ead f i s (' sugeno1 ') ;
g e t f i s (f i s m a t , ' o u t p u t ' , 1)

Name = output
NumMFs = 2
MFLabels =

l i ne1
l i ne2

Range = [0 1]

So the output variab le has tw o membership functions

g e t f i s (f i s m a t , ' o u t p u t ' , 1 , ' m f ' , 1)
Name = l i ne1
Type = l i nea r
Params =

-1 -1
g e t f i s (f i s m a t , ' o u t p u t ' , 1 , ' m f ' , 2)

Name = l i ne2
Type = l i nea r
Params =

1 -1

Further, these membership functions are linear functions of the input variable.
The membership function lin e l is defined by the equation

output = (-1)* input + (-1)

and the membership function line2 is defined by the equation

output = (1)* input + (-1)

2-62

Sugeno-style Fuzzy Inference

The input membership functions and rules define which of these output
functions w ill be expressed and when.

showrul e(f i smat)
ans =
1. I f (i nput i s low) then (output i s l i n e l) (1)
2. I f (i nput i s high) then (output i s l i ne2) (1)

The function plotmf shows us tha t the membership function low generally
refers to input values less than zero, w h ile high refers to values greater than
zero. The function gensurf shows how the overall fuzzy system output switches
smoothly from the line called lin e l to the line called line2.

s ubp l o t (2 , 1 , 1) , p l o t m f (f i s m a t , ' i n p u t ' , 1)
s ubp l o t (2 , 1 , 2) , gensur f (f i smat)

input

input

This is jus t one example of how a Sugeno-style system gives you the freedom to
incorporate linear systems in to your fuzzy systems. By extension, we could
build a fuzzy system tha t switches between several optimal linear controllers
as a very nonlinear system moves around in its operating space.

Conclusion
Any one Sugeno ru le can be more expressive than a ru le in a Mamdani system.
Because it is a more compact and com putationally efficient representation than
a Mamdani system, the Sugeno system lends itse lf to adaptive techniques.
These adaptive techniques in tu rn open up a whole new world by creating the
entire fuzzy system for you.

2-63

2 Tutorial

Here are some fina l considerations about the tw o d ifferent methods.

Advantages of Sugeno's m ethod:

• Computational efficiency
• W orks well w ith linear techniques (e.g. PID control, etc.)
• W orks well w ith optim ization and adaptive techniques
• Guaranteed continu ity of the output surface
• Better suited to mathematical analysis

Advantages of M am dan i's m ethod:

• More in tu itive
• Widespread acceptance
• Better suited to human input

2-64

Working with Simulink

W ork ing w ith Simulink
The Fuzzy Logic Toolbox is designed to work seamlessly w ith S im u link, the
sim ulation software available from The MathW orks. Once you’ve created your
fuzzy system using the GUI tools or some other method, you’re ready to embed
your system d irectly in to a sim ulation.

An Example: W ater Level Control
The example we’ll look at is one of water level control. P icture a tank w ith a
pipe flow ing in and a pipe flow ing out. We can change the valve contro lling the
water tha t flows in, but the outflow rate depends on the diameter of the outflow
pipe (which is constant) and the pressure in the tank (which varies w ith the
water level). The system has some very nonlinear characteristics.

So a controller for the water level in the tank needs to know the current water
level, and it needs to be able to set the valve. Our contro lle r’s input w ill be the
current error (desired water level m inus actual water level) and its output w ill
be the rate at which the valve is opening or closing. A firs t pass at w r it in g a
fuzzy controller for th is system m ight be the following.

1. I f (level is okay) then (valve is no_change) (1)
2. I f (level is low) then (valve is open_fast) (1)
3. I f (level is high) then (valve is close_fast) (1)

One of the great advantages of the Fuzzy Logic Toolbox is the ab ility to take
fuzzy systems d irectly in to S im u link and test them out in a sim ulation

2-65

2 Tutorial

environment. A S im u link block diagram for th is system is shown below. The
S im u link block diagram for th is system is s l t ank . Typing

s l t ank

at the command line, causes the system to appear.

A t the same tim e, the file t a n k . f i s is loaded in to the FIS m a trix tank. Some
experimentation shows tha t these three rules are not very good by themselves,
since the water level tends to oscillate around the desired level.

We need to add another input, the water level’s rate of change, to slow down
the valve when we get close to the righ t level.

4. I f (level is good) and (rate is negative) then (valve is close_slow) (1)
5. I f (level is good) and (rate is positive) then (valve is open_slow) (1)

2-66

Working with Simulink

W ith all five rules in operations, the step response looks like th is

2

1

0
0 1 0 20 30 40 50 60 70 80 90 100

Time (second)

One interesting feature of the water tank system is tha t the tank empties much
more slowly than it f i l ls up because of the specific value of the outflow diameter
pipe. We can deal w ith th is by setting the close_slow valve membership
function to be s ligh tly d ifferent from the open_slow setting. Notice tha t a PID
controller would not have th is la titude. The error, error-change, valve
command surface looks like th is . I f you look closely, you can see a slight
asymmetry to the plot.

Because the M ATLAB technical computing environment supports so many
tools (like the Control System Toolbox, the Neural Network Toolbox, the
Nonlinear Control Design Toolbox, and so on), you can, for example, qu ickly do
a fa ir comparison of a fuzzy controller versus a linear controller versus a neural
network controller.

2-67

2 Tutorial

To load the system from the disk, type

a = r e a d f i s (' t a n k . f i s ') ;

You can look at the five rules in th is system from the command line by typ ing

showrule(a)

Or i f you want to use the standard GUI tool for review ing them

r u l e e d i t (a)

The command showrule is the function tha t is called by r u l eed i t when it
displays the rules.

Build ing Your O w n S imula t ions
To build your own S im u link systems tha t use fuzzy logic, s im ply copy the Fuzzy
Logic Contro ller block out of th is system (or any of the other demo S im u link
systems available w ith the toolbox) and place it in your own block diagram. You
can also open the S im u link system called fuzb l ock , which contains the Fuzzy
Logic Contro ller block all by itself. Make sure tha t the fuzzy inference system
(FIS) m a trix corresponding to your fuzzy system is both in the M ATLAB
workspace and referred to by name in the dialog box associated w ith the Fuzzy
Logic Contro ller block.

The Fuzzy Logic Contro ller block is a masked S im u link block based on the
S-function s f f i s . ms x . Th is function is itse lf based on the same a lgorithm s as
the function e v a l f i s , but it has been ta ilored to work optim a lly w ith in the
S im u link environment.

2-68

ANFIS

ANFIS
A N FIS stands for Adaptive Neuro-Fuzzy Inference System. Fundam entally,
A N F IS is about tak ing a fuzzy inference system (FIS) and tun ing it w ith a
backpropagation a lgorithm based on some collection of input-output data. Th is
allows your fuzzy systems to learn.

A network s tructu re fac ilita tes the computation of the gradient vector for
parameters in a fuzzy inference system. Once the gradient vector is obtained,
we can apply a number of optim ization routines to reduce an error measure
(usually defined by the sum of the squared difference between actual and
desired outputs). Th is process is called learning by example in the neural
network lite ra tu re .

Some Constra ints
Since A N F IS is much more complex than the fuzzy inference systems discussed
so far, you are not able to use all the available fuzzy inference system options.
Specifically, A N F IS only supports Sugeno systems subject to the follow ing
constraints:

• F irs t order Sugeno-type systems
• Single output derived by weighted average defuzzification
• U n ity weight for each ru le

An error occurs if your FIS m a trix for A N F IS learning does not comply w ith
these constraints.

Moreover, A N F IS is h igh ly specialized for speed and cannot accept all the
customization options tha t basic fuzzy inference allows, tha t is, you cannot
make your own membership functions and defuzzification functions; you’ll
have to make do w ith the ones provided.

An Example
To start A N F IS learning, firs t you need to have a tra in in g data set tha t
contains desired input/ou tput data pairs of the target system to be modeled.
Sometimes you also want to have an optional checking data set tha t can check
the generalization capability of the resulting fuzzy inference system. Usually
these data sets are collected based on observations of the target system and

2-69

2 Tutorial

then stored in separate files. Suppose the data sets are generated via the
fo llow ing M ATLAB commands:

% Number of t o t a l data pa i r s
numPts = 51;
x = l i nspace (- 1 , 1 , numPt s) ' ;
y = 0 . 6 * s i n (p i * x) + 0 . 3 * s i n (3 * p i * x) + 0 . 1 * s i n (5 * p i * x) ;
data = [x y] ; %> t o t a l data set
t r nData = da ta (1 :2 : numPts , :) ; %> t r a i n i n g data set
chkData = da ta (2 :2 : numPts , :) ; %> checking data set

Now plot the data set.

p l o t (t r n D a t a (: , 1) , t r n D a t a (: , 2) , ' o ' , . . .
c h k D a t a (: , 1) , c h k D a t a (: , 2) , ' x ')

Data Sets

X o ХО
• О X о >

о X
x * о о

° х о х о х о * '

о X

► X <

X о
о tra in ing data

- Х 0 Х 0 Х 0 Х 0 х checking data .
О О X X

X о
. X О х о

о о X

•0 .81------------- 1-------------1------------- 1-------------1-------------1-------------1-------------1-------------1-------------1-------------1
-1 - 0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1

X

You s till need to specify a fuzzy inference system for tra in ing . I f you have
preferable membership functions w ith specific parameters or shapes, use
fuzzy to create a fuzzy inference system and store it as a FIS m a trix in the
workspace. On the other hand, if you do not have any ideas of what the in itia l
membership functions should look like, use the command genf i s1 instead.
This command w ill examine the tra in in g data set and then generate a FIS

2-70

ANFIS

m a trix based on the given numbers and types of membership functions. For
example

numMFs = 5; % number of MFs
mfType = ' g b e l l m f ' ; %> MF t ype i s genera l i zed bel l
fisimat = genf i s1(t rnData,numMFs,mfType) ;

This generates a FIS m a trix called f i s imat . To view the membership functions,
type

[x , m f] = p l o t m f (f i s m a t , ' i n p u t ' , 1) ;
p l o t (x , m f)
t i t l e (' I n i t i a l Membership Funct i ons ')

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1

You can see that g e n f i s l places these in itia l membership functions so they are
equally spaced w ith enough overlap w ith in the input range. To start the
tra in in g for 40 epochs, invoke the M EX -file an f i s .

numEpochs = 40;
[f i s i mBt 1 , t r nEr r , ss , f i s i ma t 2 , chkEr r] = . . .

anf i s (t rnData, f i smBt ,numEpochs,NaN,chkData) ;

Note tha t there is a NaN (the IEEE symbol for “ not a num ber”) in the input
arguments; it s im ply acts as a place holder for the display options. When it sees
a NaN, an f i s w ill take default values for the display options. A fte r you type
the above command, in form ation appears in the M ATLAB command windows.

2-71

2 Tutorial

A fte r the 40 epochs of batch learning, we can use e v a l f i s to verify the learning
results:

t rnCut = e v a l f i s (t r n D a t a (: , 1) , f i s m a t 1) ;
trnRMSE = norm (trnCut - t r n D a t a (: , 2)) / s q r t (l e n g t h (t r n C u t)) ;

Th is RMSE (root mean squared error) for tra in in g data should match the
number appeared on screen after the an f i s command. Note tha t the output
argum ents f i s m a t l and f i smat2 are the FIS matrices corresponding to
m inim al tra in in g and checking errors, respectively. To plot error curves, type

epoch = 1:numEpochs;
p l o t (e p o c h , t r n E r r , ' o ' , e p o c h , c h k E r r , ' x ')
hold on; p l o t (e p o c h , [t r n E r r chkEr r]) ; hold of f

Error C urves

epochs

2-72

ANFIS

To plot step size, type

p l o t (e p o c h , s s , ' - ' , e p o c h , s s , ' x ')
x l ab e l (' e p o c h s ') , y l a b e l (' s s ') , t i t l e (' S t e p S i zes ')

Step Sizes

Note tha t the step size is updated according to the fo llow ing heuris tic
guidelines:

• I f the error measure undergoes four consecutive reductions, increase the step
size by m u ltip ly ing it w ith a constant (ssinc) greater than one.

• I f the error measure undergoes tw o consecutive combinations of one increase
and one reduction, decrease the step size by m u ltip ly ing it w ith a constant
(ssdec) less than one.

The default value for the in itia l step size is 0.01; the default values for ss inc
and ssdec are 1.1 and 0.9, respectively. A ll the default values can be changed
via the tra in in g option of an f i s .

2-73

2 Tutorial

To plot the final membership functions, type

[x , m f] = p l o t m f (f i s m a t 1 , ' i n p u t ' , 1) ;
p l o t (x , mf)
t i t l e (' F i n a l Membership Func t i ons ') ;

1

0.8

0.6

0.4

0.2

0

-1 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1

Compare these membership functions w ith those before tra in in g and you w ill
see how the final membership functions are try in g to catch the local features of
the tra in in g data set.

2-74

ANFIS

To plot the fuzzy inference system outputs, type

an f i s_y = e v a l f i s (x , f i s m a t 1) ;
p l o t (t r n D a t a (: , 1) , t r n D a t a (: , 2) , ' o ' , . . .

c h k D a t a (: , 1) , c h k D a t a (: , 2) , ' x ' , . . .
x , a n f i s _ y , ' - ') ;

The fina l result is a good fit for the original data.

More on ANFIS
The command an f i s takes at least tw o and at most five input arguments. The
general format is

[f i s m a t 1 , t r n E r r o r , s s , f i s m a t 2 , c h k E r r o r] = . . .
an f i s (t r nDa t a , f i sma t , t r n Cp t , c l i s pCp t , chkDa t a) ;

where t r n C p t , CispCpt , and chkData are optional. A ll the output arguments
are also optional.

Training Data
The tra in in g data t rnDat is a required argument to an f i s . Each row of t r nData
is a desired input/ou tput pair of the target system to be modeled; it s ta rts w ith
an input vector and is followed by an output value. Therefore the number of
rows of t r nData is equal to the number of tra in in g data pairs, and the number
of columns is equal to the number of inputs plus one.

2-75

2 Tutorial

Input FIS Matrix
The input FIS m a trix f i smat can be obtained either from the FIS E ditor (where
you have to specify all the details) or g e n f i s l (where you only need to give
numbers and types of membership functions). Th is FIS m a trix contains both
the s truc tu re (which specifies number of rules in the FIS, number of
membership functions for each input, etc.) and parameters (which specify the
shapes of membership functions). Remember tha t A N F IS learning employs the
gradient descent for updating membership function parameters, so the
learning process w ill drop in to a local m in im um if it finds one. Therefore the
more the in itia l membership functions resemble the optimal ones, the more
like ly the tra in in g w ill converge to the optimal point in the parameter space.
Human expertise about the target system to be modeled can help when setting
up these in itia l membership function parameters in the FIS m atrix .

Note tha t g e n f i s l produces a FIS m a trix w ith a grid pa rtition and it causes an
explosion of the number of rules when the number of input is moderately large,
tha t is, more than four or five. Th is curse of d im ensiona lity is inherent to all
fuzzy inference systems w ith a grid pa rtition . To get around th is , an
a lte rna tive is to generate a FIS m a trix w ith a scatter pa rtition . This can be
done using the clustering a lgorithm discussed in the next chapter.

A N F IS applies the least-squares method to identify the consequent parameters
(the coefficients of the output equations of each rules) at each epoch, so the
in itia l values of consequent parameters in f i smat are not used in the learning
process at all.

Training Options
T ra in ing option trnC pt is a vector tha t specifies the stopping crite ria and the
step-size adaptation strategy:

• t r n C p t (l) : epoch number, default 10.
• t r nCp t (2) : error goal, default 0.
• t r n C p t (3) : in itia l step size, default 0.01.
• t r n C p t (4) : step-size decrease rate, default 0.9.
• t r n C p t (5) : step-size increase rate, default 1.1.

I f any element of t rnCpt is NaN (Not a Number) or missing, then the default
value is taken. The tra in in g process stops if the designated epoch number is
reached or the error goal is achieved, whichever comes firs t.

2-76

ANFIS

The step-size update strategy was touched on in the early part of th is section.
Usually we want the step-size profile to be a curve which goes uph ill in it ia lly ,
reaches some maximum, and then goes dow nhill t i l l the end of tra in ing . This
ideal step-size pro file is achieved by adjusting the in itia l step-size and the
increase and decrease rates (trn C p t(3) to trn C p t(5)) . The default values are
set as the best guess to deal w ith a w ide range of learning tasks. For any
specific application, you are encouraged to modify these step-size options in
order to find th e ir optimal values.

Display Options
Display option CispCpt is a vector of e ither ones or zeros tha t specifies what
in form ation to display before, during, and after the tra in in g process:

• C isp C p t(1): A N F IS inform ation, default 1.
• C isp C p t(2): error measure, default 1.
• C ispC pt(3): step-size, default 1.
• C isp C p t(4): fina l results, default 1.

The default mode is verbose, tha t is, all available inform ation w ill be displayed.
I f any element of CispCpt is NaN (not a number) or missing, the default value
w ill be taken.

Checking Data
The checking data chkData is used for testing the generalization capability of
the fuzzy inference system at each epoch. The checking data has the same
format as that of the tra in in g data, and its elements are usually d is tinct from
those of the tra in in g data.

The checking data is im portant for learning tasks where the input number is
large and/or the data itse lf is noisy. In general we are not looking for a fuzzy
inference system tha t can best f it the tra in in g data. Instead, we are looking for
a fuzzy inference system tra ined on the tra in in g data tha t can respond to the
checking data in a satisfactory manner. Th is cross-validation gives an
unbiased estim ate of the m inim al error measure tha t can be achieved in the
tra in ing .

The parameter tha t corresponds to the m inim al checking error is returned in
the output argument f i smat2. Th is is the output FIS m a trix tha t should be
used if the checking data is supplied for the learning.

2-77

2 Tutorial

Output FIS Matrix for Training Data
f i s m a t l is t he output F IS m a trix for m inim al tra in in g error. Th is is the FIS
m a trix tha t should be used for fu rth e r calculation if there is no checking data
used for cross validation.

Training Error
The tra in in g error t r n E r r o r records the RMSE (root mean squared error) for
the tra in in g data set at each epoch. f i s m a t l is the snapshot of the FIS m a trix
when the tra in in g error measure is at its m inim um .

Step Size
The step-size array ss records the step-size during the tra in ing . P lotting ss
gives the step-size profile, which serves as a reference for adjusting the in itia l
step size and the corresponding decrease and increase rates.

Output FIS Matrix for Checking Data
f i smat2 is t he output F IS m a trix for m inim al checking error. Th is is the FIS
m a trix tha t should be used for fu rthe r calculation if there is a checking data
used for cross validation.

Checking Error
The checking error chkError records the RMSE (root mean squared error) for
the checking data at each epoch. f i smat2 is the snapshot of the FIS m a trix
when the checking error is at its m in im um .

Reference
For a detailed discussion of A N F IS architecture, its learning rules and other
related issues, you may want to read the paper [Jan93] listed in the
“References” section at the end of th is chapter.

2-78

Fuzzy Clustering

Fuzzy Clustering
Clustering of numerical data forms the basis of many classification and system
modeling algorithm s. The purpose of clustering is to d is till natura l groupings
of data from a large data set, producing concise representation of a system’s
behavior. The Fuzzy Logic Toolbox is equipped w ith some tools tha t allow you
to find clusters in input-output tra in in g data. You can use the cluster
in form ation to generate a Sugeno-style fuzzy inference system tha t models the
data behavior.

Fuzzy C-Means Cluster ing
Fuzzy cm eans (FCM) is a data clustering technique where each data point
belongs to a cluster to a degree specified by a membership grade. This
technique was o rig ina lly introduced by Jim Bezdek in 1981 [Bez81] as an
improvement on earlier clustering methods. The idea is fa ir ly simple: how do
you lum p together data points tha t populate some m ultid im ensional space in to
a specific number of d ifferent clusters?

We start w ith the concept of cluster centers tha t mark the mean location of each
cluster. In it ia lly these cluster centers are very inaccurately placed.
A dd itiona lly , every data point has a membership grade for each cluster. By
ite ra tive ly updating the cluster centers and the membership grades for each
data point, we can watch the cluster centers move to the “ r ig h t” location. This
iteration is based on m in im iz ing an objective function tha t represents the
distance from any given data point to a cluster center weighted by tha t data
po in t’s membership grade.

The fina l output of fuzzy c-means is not a fuzzy inference system but rather a
list of cluster centers and several membership grades for each data point. You
can use the inform ation returned by the fuzzy c-means routine to help you
build a fuzzy inference system.

2-79

2 Tutorial

An Example: 2-D Clusters
Le t’s use some quasi-random two-dimensional data to illu s tra te how fuzzy
c-means clustering works. Load a data set and take a look at it.

load fcmdata.dat
p l o t (f c m d a t a (: , 1) , f c m d a t a (: , 2) , ' o ')

Now we invoke the fcm function and ask it to find tw o clusters in th is data set

[cen te r ,U,ob j Fcn] = f cmj f cmdata,2) ;
I t e r a t i o n count = 1, obj . f cn = 8.941176
I t e r a t i o n count = 2, obj . f cn = 7.277177

and so on un til the objective function is no longer decreasing much at all.

The variab le center contains the tw o cluster centers, U contains the
membership grades for each of the data points, and objFcn contains a history
of the objective function across the iterations.

The fcm function is actua lly an iteration loop bu ilt on top of several other
routines, namely i n i t f c m which in itia lizes the problem; d i s t f c m which is
used for distance calculations; and s t ep f cm which steps through one iteration.

2-80

Fuzzy Clustering

P lotting the objective function shows the progress of the clustering.

p l o t (ob j Fcn)

ob jective function values

F ina lly here is a plot displaying the tw o separate clusters as classified by the
fcm routine. C luster centers are shown by the large characters.

Subt rac t i ve Cluster ing
Suppose we don’t even have a clear idea how many clusters there should be for
a given set of data. Subtractive clustering is a fast, one- pass a lgorithm for
estim ating the number of clusters and the cluster centers in a set of data. The
cluster estimates obtained from the subclust function can be used to in itia lize

2-81

2 Tutorial

ite ra tive optim ization-based clustering methods (like fuzzy c-means) and
model identification methods (like ANFIS). The subclust function finds the
clusters by using the subtractive clustering method.

The genf i s2 function builds upon the subclust function to provide a fast,
one-pass method to take input-output tra in in g data and generate a
Sugeno-style fuzzy inference system tha t models the data behavior.

An Example: Suburban Commuting
In th is example we apply the genf i s2 function to model the re lationship
between the number of automobile tr ip s generated from an area and the area’s
demographics. Demographic and t r i p data are from 100 tra ff ic analysis zones
in New Castle County, Delaware. F ive demographic factors are considered:
population, number of dwelling units, vehicle ownership, median household
income, and tota l employment. Hence the model has five input variables and
one output variable.

Load the data by typ ing

t r i p d a t a
s ubp l o t (2 , 1 , 1) , p l o t (d a t i n)
s ubp l o t (2 , 1 , 2) , p l o t (d a t o u t)

Several vectors now exist in the workspace. Of the orig inal 100 data points, we
w ill use 75 as tra in in g data (dat i n and da tou t) and 25 as checking data
(chkdat in and chkdatout). The genf i s2 function generates a model from data
by c lustering and requires you to specify a cluster radius. The cluster radius
indicates the range of influence of a cluster when you consider the data space

2-82

Fuzzy Clustering

as a un it hypercube. A small cluster radius w ill usually lead to find ing many
small clusters in the data (resulting in many rules); a large cluster radius w ill
usually lead to find ing a few large clusters in the data (resulting in fewer
rules). Here we use a cluster radius of 0.5 and run the genf i s2 function.

f i s m a t = g e n f i s 2 (da t i n , d a t o u t , 0 . 5) ;

genf i s2 is a fast, one-pass method tha t does not perform any ite ra tive
optim ization. A FIS m a trix is returned; the model in the FIS m a trix is a firs t
order Sugeno model w ith th ree rules. We can use e v a l f i s to verify the model.

f u z o u t = e v a l f i s (d a t i n , f i s m a t) ;
t r nRMSE=nor m(f uzou t - da t ou t) / sq r t (l eng t h (f uzou t))
trnRMSE =

0.5276

The variab le trnRMSE is the root mean square error of the system generated by
the tra in in g data. To check the model, we use the checking data.

c h k f u z o u t = e v a l f i s (c h k d a t i n , f i s m a t) ;
chkRMSE=norm(chkfuzout -chkdatout) / sqr t (l ength(chkfuzout))
chkRMSE =

0.6170

2-83

2 Tutorial

Not surpris ing ly, the model doesn’t do qu ite as good a job on the checking data.
A plot of the checking data reveals the difference.

p l o t (chkda t ou t)
hold on
p l o t (c h k f u z o u t , ' o ')
hold of f

A t th is point, we can use the optim ization capability of AN F IS to improve the
model.

f i s m a t 2 = a n f i s ([d a t i n d a t o u t] , f i s m a t , [5 0 0 0 . 1]) ;

Messages go by as the tra in in g progresses, after which we can type

f u z o u t 2 = e v a l f i s (d a t i n , f i s m a t 2) ;
t r nRM3E2=normj f uzou t 2 - da t ou t) / sq r t (l eng t h (f uzou t 2))
trnRMSE2 =

0.3407
c hk f uz ou t 2 =ev a l f i s (c hk da t i n , f i sma t 2) ;
chkRM3E2=normjchkfuzout2-chkdatout) / sqr t (l ength(chkfuzout2))
chkRMSE2 =

0.5827

2-84

Fuzzy Clustering

So the model has improved a lot w ith respect to the tra in in g data, and a l i t t le
w ith respect to the checking data. Here is a plot of the improved checking data.

p l o t (chkda t ou t)
hold on
p l o t (c h k f u z o u t 2 , ' o ')
hold of f

Here we see tha t genf i s2 can be used as a stand-alone, fast method for
generating a fuzzy model from data, or as a pre-processor to A N F IS for
determ in ing the in itia l rules. An im portant advantage of using a clustering
method to find rules is tha t the resultant rules form a good “scatter” partition
of the input space, in contrast to a grid pa rtition of the input space. This
overcomes the problem w ith combinatorial explosion of rules when the input
data has high dimension (the dreaded curse of d im ensionality).

Overfitting
Now le t’s go on to consider what happens if we continue to exhaustively tra in
th is system using the A N F IS algorithm .

[f i s m a t 3 , t r n E r r , s t e p S i z e , f i s m a t 4 , c h k E r r] = . . .
a n f i s ([d a t i n d a t ou t] , f i s m a t 2 , [2 0 0 0

0 . 1] , [] , . . .
[chkda t i n chkdatou t]) ;

The long lis t of output arguments re tu rns a h istory of the step sizes, the RMS
error versus tra in in g data, and the RMS error versus checking data associated
w ith each tra in in g epoch.

2-85

2 Tutorial

ANFIS t r a i n i n g completed at epoch 200.
Minimal t r a i n i n g RMSE = 0.326566
Minimal checking RMSE = 0.582545

This looks like good news. The error w ith the tra in in g data is the lowest we’ve
seen, and the error w ith the checking data is also lower than before, though not
by much at all. Th is suggests tha t maybe we had gotten about as close as
possible w ith th is system already. Maybe we have even gone so far as to overfit
the system to the tra in in g data. O verfitting occurs when we fit the fuzzy
system to the tra in in g data so well tha t it no longer does a very good job of
fit t in g the checking data. The result is a loss of generality. A look at the error
history against both the tra in in g data and the checking data reveals much.

This is indeed a case of overfitting . The smallest error against the checking
data occurs at epoch 52 after which the checking data error trends upward even
as A N F IS keeps w ork ing to m in im ize the error against the tra in in g data all the
way to epoch 200.

References
The fuzzy c-means a lgorithm is described in [Bez81], w h ile a fu ll description of
the subclust a lgorithm and the underlying c lustering method can be found in
the paper by Chiu [Chi94]. Both are listed in the “ References” section at the end
of th is chapter.

2-86

Stand-Alone Code

Stand-Alone Code
In the f uzzy / f uzzy d irectory of the toolbox, you can find tw o C files, f i sma i n . c
and f i s c , which are provided as the source codes for a stand-alone fuzzy
inference engine. The stand-alone fuzzy inference engine can read a FIS file
and an input data f ile to perform fuzzy inference directly, or it can be embedded
in other external applications.

To compile the stand-alone fuzzy inference engine on a UNI X system, type

% cc -O -o f i sma i n f i s m a i n . c - l m

(You do not have to type f i s c exp lic itly since it is included in f i sma i n . c .)
Upon successful compilation, type the executable command to see how it works:

%o f i sma i n

It responds w ith the fo llow ing message:

%o Usage: f i sma i n d a t a _ f i l e f i s _f i l e

This means tha t f i sma i n needs tw o files to do its w ork: a data file containing
rows of input vectors, and a F IS file tha t specifies the fuzzy inference system
under consideration.

For tu to ria l purposes, consider the F IS file mam21.f is. We can prepare the
input data file using M ATLAB:

[x , y] = meshgr id(-5:5, - 5 : 5) ;
i nput _da ta = [x (:) y (:)] ;
save f i s _ i n i nput _da ta - asc i i

Th is saves all the input data as a 121-by-2 m a trix in the ASCII file f i s _ i n ,
where each row of the m a trix represents an input vector.

Now we can call the stand-alone:

%o f i sma i n f i s _ i n mam21.f is

This w ill generate 121 outputs on your screen. You can direct the outputs to
another file:

%o f i sma i n f i s _ i n mam21.f is > f i s _ou t

Now the file f i s _ou t contains a 121-by-1 m atrix . In general, each row of the
output m a trix represents an output vector. The syntax of f i sma i n is s im ila r to

2-87

2 Tutorial

its M E X -file counterpart e v a l f i s . m except tha t all m atrices are replaced w ith
files.

To compare the results from the M ATLAB M EX-file and the stand-alone
executable, type the follow ing w ith in M ATLAB:

f i smat = r ead f i s (' man21 ') ;
matlab_out = e v a l f i s (i n p u t _ d a t a , f i smat) ;
load f i s_ou t
max(max(mBtlab_out - f i s _ o u t))
ans =

4.9583e-13

This t in y difference comes from the lim ited length p rin tou t in the file f i s _ o u t .
There are several th ings you should know about th is stand-alone executable:

• It is compatible w ith both ANSI and K & R standards, as long a s__STDC__
is defined in ANSI compilers.

• Customized functions are not allowed in the stand-alone executable. So you
are lim ited to the 11 membership functions tha t come w ith the toolbox, as
well as other factory settings for AND, OR, IM P and AGG functions.

• f i s ma i n . c contains only the main() function and it is heavily documented
for easy adaptation to other applications.

• To add a new membership function or new reasoning mechanism in to the
stand-alone, you need to change the file f i s c , which contains all the neces­
sary functions to perform fuzzy inference process.

• For the Mac, the compiled command f i sma i n tr ie s to find f i s m a i n . i n and
f i s m a i n . f i s as input data and FIS description file, respectively. The output
is stored in a file f i sma i n . ou t . These file names are defined w ith in Mac-spe­
c ific #define symbols in f i s ma i n . c and can be changed if necessary.

2-88

Applications and Demos

Applicat ions and Demos
A ll the demos described in th is section can be launched w ith the help of the
demo gateway program fuzdemos.

Ball Jugg l ing
Ball jugg ling is an interesting discrete control problem. In th is system, a ball
follows a ba llis tic curve in a two-dimensional plane, w h ile a fla t board at
ground tries to bounce the ball in order to control the next location of impact.
The control goal is to bring the ball to a desired location such tha t it bounces
ve rtica lly at the center of the board. We assume tha t there is no loss of energy
in the system; the ball follows a perfect ba llis tic curve in the a ir and the
collision w ith the board is elastic. The state equation for th is system is

x k +1 = x k + д sin (2 0 k + 4 uk)

0k +1 = 0k + 2 u k

where

k : count of impact

x : horizontal location of impact

0 : angle of ball tra jectory w .r.t. horizontal axis at tim e of impact

u : angle of board w .r.t. to horizontal axis, th is is the control input

g : acceleration of g rav ity

v : ball velocity at impact

2-89

2 Tutorial

This demo does not require S im u link. To bring up the anim ation w indow, type

j ugg l e r

You w ill see an anim ation window, w ith a blue ball jum p ing up and down, a
yellow board where the ball bounces, and a small red triang le ind icating the
target position. A fte r every eight or nine bounces, the target position w ill move
to a random location autom atically, so you can constantly see how the board is
contro lling the ball. I f you want to change the target position d irectly, you can
do so by clicking the small red tr iang le and drag it to anywhere you like.

It is obvious tha t the ball can usually reach the target position at the firs t
bounce and the board’s angle w ill become zero righ t from the second bounce.
However, if the target is too far away, the ball may bounce several tim es before
h ittin g the target.

This demo provides an option for a human controller. To t ry it, set the
C o n tro lle r pop-up menu to Human.

Now you can control the t i l t angle of the board by clicking at the li t t le steering
arrow at the upper righ t corner. The t i l t angle is restricted to any angle
between -45 and 45 degrees. I f the t i l t angle is not set correctly such tha t the
rebounding ball has a negative project angle, then you w ill see a message like
th is:

Bouncing f r o m the ground, pro ject angle = 1.450950e+02

2-90

Applications and Demos

This im plies tha t the ball has a negative project angle after h ittin g the board
and it is bouncing upwards because it also h its the ground.

Inverse K inem a t ic s of Two-Jo in t Robot Arm

End effector

A two-jo in t p lanar robot arm, as shown above, is fu lly specified when the jo in t
angles 01 and 0 2 are known. In particu la r, the Cartesian position (x, y) of the
end effector (“ hand”) can be derived from the jo in t angles by the follow ing
equations:

X = 11 cos01 + 12cos(01 + 02)

y = l 1sin 01 + l2sin (01 + 0 2)

where l1 and l2 are the lengths of the rig id arms, respectively. However, in
robotic applications, we often face the opposite problem, tha t is, given the
desired position of the end effector, find the corresponding jo in t angles. Th is is
the so-called inverse kinematics problem. This demo w ill use the adaptive
neuro-fuzzy inference system (ANFIS) to solve th is k ind of problem.

The forward kinem atics from the jo in t angles 01 and 0 2 to the end-point
Cartesian position (x, y) are qu ite stra igh tfo rw ard , as shown in the above
equations. However, the inverse mappings from (x, y) to (01, 02) are not too
clear. In th is particu la r case, it is possible to solve the inverse mappings
algebraically. However, here we assume the solutions are not available and we
w ill tra in tw o fuzzy inference systems to approxim ate these tw o mappings. In
other words, we want to design tw o fuzzy systems FIS 1 and FIS 2 such tha t

2-91

2 Tutorial

the overall composite function of the fo llow ing block diagram is an iden tity
mapping.

Suppose tha t l1 is 10, l2 is 7, and the value of 0 2 is restricted to [0, n]. The
fo llow ing figure demonstrates the mapping surfaces from (01, 02) to (x, y) (the
firs t row) and from (x, y) to (01, 02) (the second row). These four plots are
created by the M ATLAB command i n v s u r f .

x x

y y

7 2 2x + y is greater than l1+ l2 or less than | l 1-l2| , there is no
corresponding (01, 0 2) and the corresponding regions are called unreachable
workspace. For 01 and 0 2 in the unreachable workspace, the ir values are
assigned to NaNs; the effect is shown clearly in the second row of the above
plots.

To fu rthe r s im p lify our discussion, we assume the end-point position is lim ited
to the firs t quadrant of the x-y plane. From the firs t quadrant, we collect 229
tra in in g data pairs of the form at (x, y: 01, 0 2), respectively, for the tra in in g of
tw o fuzzy inference systems. We use three membership functions on each
input; thus the number of rules is nine and the number of parameters is 45 for
each FIS. A fte r 50 epochs of tra in ing , the results are stored in tw o FIS files

2-92

Applications and Demos

i n v 1 . f i s and i n v 2 . f i s . To see anim ation of how well these tw o fuzzy
inference systems work, type

i nvk i ne

J ShowTails | Clear Tails

158 Stop | Continue | Step Info Close

In the anim ation w indow, an ellipse is chosen as the reference path and the
dashed line shows how the end-point follows the desired path based on the
inverse mappings. The 229 crosses indicate the locations of the tra in in g data.
You can even move the ellipse by clicking inside it and dragging it to a new
location. As long as the ellipse is inside the region covered by tra in in g data, the
end-point can follow the path satisfactorily . However, if part or all of the ellipse
is out of the region, the end-point w ill sometimes take a w ild trajectory.

This example is only used to demonstrate the concept; the results are not
necessarily optim ized. Better performance can be obtained through either
extensive tra in in g or a denser data set. Note tha t th is example corresponds to
a case of off-line design of open-loop control; other design approaches can force
the end-point to follow the desired tra jectory more closely if closed loop control
is perm itted.

2-93

2 Tutorial

A d a p t i v e No ise Cance l la t ion

prim ary
input

• —
measured

signal
reference

input nonlinear
characteristics

D

N

Adaptive noise cancellation is one interesting application of ANFIS . The basic
situation for adaptive noise cancellation is shown above, where the inform ation
signal I comes from the p rim ary input, w h ile the noise source N comes from the
reference input. A t the receiving end, the measured signal M is equal to the
sum of I and D, where D is a distorted version of N due to some nonlinear
characteristics f. In symbols,

M(k) = I (k) + D(k) = I (k) + f(N(k), N((k-1), ...))

Our task is to e lim inate D from M and recover the orig inal in form ation signal I.

I f the nonlinear characteristic f is known exactly, it would be easy to recover
the orig inal in form ation signal by subtracting D from M. However, f is usually
unknown in advance and it could be tim e-vary ing due to changes in external
environments. Moreover, the spectrum of D m ight overlap tha t of I, which
invalidates the use of f ilte r in g techniques in frequency domain.

To estim ate the distorted noise signal D, we need to model the nonlinear
characteristic f. We use A N F IS to model th is nonlinear function. Before
tra in in g ANFIS , we need to collect tra in in g data pairs, but the desired output
D is not available since it is combined add itive ly in to the measured signal M.
Fortunately, we can take M as a contaminated version (which is contaminated
by the inform ation signal I) of the desired output and proceed tra in in g as usual;
the difference between M and D (that is, the inform ation signal I) w ill hopefully

2-94

Applications and Demos

average out during the tra in in g process. Therefore for th is scheme to work, the
fo llow ing conditions must hold:

• The noise source N must be available and free of the inform ation signal I.
• The inform ation signal I must be zero-mean and uncorrelated e ither linearly

or nonlinearly w ith the noise source N.
• The order of the passage characteristics must be known. Th is determ ines the

number of inputs for ANFIS.

Note tha t if the passage characteristic is linear, then we can use a linear model
instead and the whole setting is the linear adaptive noise canceling proposed
by W idrow [WidS85].

Now we can return to the M ATLAB demo. To start the demo, type

sshow noisedm

and push the S ta rt button when the w indow opens.

In th is demo, we assume the channel characteristic is

D(k) = f(N(k), N(k-1)) = 4*sin(N (k))*N (k-1)/(1+N 2(k-1))

2-95

2 Tutorial

Here is the measured signal M

M easured Signal
3 i----------------------1---------------------- 1---------------------- 1---------------------- 1—

2 -

1

E 0 -

- 3 I---------------------- 1---------------------- 1---------------------- 1---------------------- 1---------------------- 1---------------------- 1
0 1 2 3 4 5 6

time

And we use a 4-ru le AN F IS for tra in in g 10 epochs on 601 tra in in g data pairs.
W ithout extensive tra in ing , the A N F IS can already do a fa ir ly good job; the
orig inal in form ation signal and the recovered one by A N FIS are shown side by
side in the figure below.

1 I 1 1 1 1 1 :

__ 0.5 - -

I
§ 0 - -

t - 0 .5 - -

-1l______,______ ,______ ,______ ,______ ,______:
0 1 2 3 4 5 6

1 f 1 1 1 1 1 1

X 0.5 - -

0 - -
E
£ -0 .5 - -

-1t___ ,____,____,____,____,___ :
0 1 2 3 4 5 6

2-96

Applications and Demos

Chaot i c Time Series Predic t ion
The demo mgtsdemo shows how to tra in an A N FIS for predicting a tim e series
defined by the Mackey-Glass (MG) tim e-delay d iffe rentia l equation:

X (t) = 0 • 2 T) - 0.1 x (t)
1 + x 10(t - t)

Th is tu rn s out to be a chaotic tim e series w ithou t a clearly defined period; it
w ill not converge or diverge, and it is very sensitive to in itia l conditions. This
is a benchmark problem in the neural network and fuzzy modeling research
communities.

To obtain the tim e series value at integer points, we applied the fourth-order
Runge-Kutta method to find the numerical solution to the above MG equation;
the result was saved in the file mgdata.dat . Here we assume x(0) = 1.2, x = 17,
and x(t) = 0 for t < 0. To plot the MG tim e series, type

load mgdata.dat
t = mgdata(: , 1) x = mgdata(: , 2)) ; p l o t (t , x)

M ackey-G lass chaotic tim e series

tim e (sec)

The task of tim e series prediction is to use known values of the tim e series up
to the point x = t to predict the value at some point in the fu tu re x = t+P. The
standard method for th is type of prediction is to create a mapping from D
points spaced Д apart, tha t is, (x(t-(D-1)A,..., x(t-A), x(t)), to a predicted fu tu re
value x(t+P). Following the conventional settings for predicting the MG tim e

0 200 400 600 800 1000 1200

2-97

2 Tutorial

series, we set D = 4 and Д = P = 6. In other words, the tra in in g data for AN F IS
is of the fo llow ing form at:

[x (t - 1 8) x (t - 12) x (t - 6) x (t) x (t +6)]

From t = 118 to 1117, we can extract 1000 data pairs of the above form at. We
use the firs t 500 data pairs for tra in in g ANFIS , w h ile the others are used for
va lida ting the identified fuzzy model. Th is results in tw o data matrices,
t r nData and chkData; both are 500-by-5 matrices.

To start A N F IS tra in ing , we need a F IS m a trix tha t specifies the s tructu re and
in itia l parameters of the FIS for learning. This is the task of g e n f i s l :

f i smat = g e n f i s l (t r n D a t a) ;

Since we did not specify numbers and types of membership functions used in
the FIS, default values are assumed and we have tw o generalized bell
membership functions on each input. The generated FIS m a trix contains 24 =
16 fuzzy rules w ith 104 parameters, includ ing 80 linear parameters and 24
nonlinear parameters. In order to achieve good generalization capability, it is
im portant to have the number of tra in in g data points be several tim es larger
than the number of f it t in g parameters. In th is case, the ra tio between data and
parameters is about five (500/104). The function g e n f i s l also tries to generate
in itia l membership functions tha t are equally spaced and cover the whole input
space; these in itia l membership functions are shown below.

2-98

Applications and Demos

To start the tra in ing , type

[f i s m a t 1 , e r r o r 1 , s s , f i s m a t 2 , e r r o r 2] = . . .
a n f i s (t r n D a t a , f i s i m a t , [] , [] , c h k D a t a) ;

Th is takes about four m inutes on a Sun SPARCstation 2 for 10 epochs of
tra in ing . The membership functions after tra in ing , as shown below, do not
change drastica lly. From th is , we can guess most of the fit t in g is done w ith the
linear parameters, w h ile the nonlinear parameters are mostly for fine tun ing .

To plot the error curves, type

p l o t ([e r r o r 1 ; e r r o r 2]) ;

where er ror1 and e r r o r 2 are root mean squared error for tra in in g and
checking data, respectively.

2-99

2 Tutorial

To compare the orig inal MG tim e series and A N F IS prediction side by side, try

anf i s_output = e v a l f i s ([t r n D a t a ; chkData] , f i s m a t l) ;
index = 125:1124;
subplot (211) , p l o t (t i me (i n d e x) , [x (i ndex) a n f i s _ o u t p u t]) ;
subplot (212) , p l o t (t i me (i n d e x) , x (i ndex) - an f i s_ou t pu t) ;

1

200 300 400 500 600 700 800 900 1000 1100

5

0

200 300 400 500 600 700 800 900 1000 1100

Note tha t the difference between the original MG tim e series and the A N FIS
prediction is very small; tha t is why you can only see one curve in the firs t plot.
The prediction error of A N FIS is shown in the second plot w ith a much finer
scale. Note tha t we have tra ined the A N F IS only for 10 epochs; better
performance is expected if we apply more extensive tra in ing .

Com parative study shows tha t because of its sparing use of param eterization,
A N F IS has better generalization capability on th is problem when compared to
auto-regressive models, cascade-correlation neural networks,
back-propagation neural networks, radial basis function networks, and other
polynomial prediction methods. More deta ils on th is respect can be found in
Jang’s paper listed in the “References” section at the end of th is chapter.
[Jan93].

x 10 Prediction Errors

MG T im e Serise and AN FIS Prediction

2-100

Applications and Demos

Fuzzy C-Means Cluster ing Demos
Fuzzy c-means (FCM) is a data c lustering technique where each data point
belongs to a cluster to a degree specified by a membership grade. To try out
FCM w ith 2-D data, type

fcmdemD

This brings up a w indow on screen, w ith a scatter plot of the data set to be
clustered and qu ite a few GUI controls. The default data set obviously fa lls in to
th ree clusters; by clicking Star t , you see how the three cluster centers move to
the “ r ig h t” positions.

A fte r the clustering process is done, you can click C lear Traj to clear the
tra jectories and get a better view of the cluster centers. You can now click S ta rt
again to see the repeatab ility of FCM.

If you set Label Data, each data point w ill have the same color as its cluster
center (defined as the cluster w ith highest membership grade). I f Label Data
is set before the c lustering process, you see how clusters are moving and
settling; the effect is most pronounced when FCM is applied to data set 4 w ith
four clusters.

Label Data can only let you see the results due to maximal membership
grades. To view the membership grade of a cluster, select a cluster (by clicking
mouse near a cluster center) and then press MF Plot . M ATLAB uses the
command g r i dda t a to construct a MF surface on a grid base.

2-101

2 Tutorial

You can select other data sets w ith d ifferent numbers of clusters. Other
parameters for FCM includes

Expo.: exponent for membership grades

I terat . : m aximum number of ite rations

Improv. : m in im um amount of improvement between tw o iterations

The clustering process stops when the maximum number of ite ra tions is
reached, or when the m in im um amount of improvement cannot be achieved.

This demo provides a sim ple and easy way to try out FCM for 2-D data. For
data of higher dimensions, usually i t ’s harder to visualize the clustering
process. Another sim ple program tha t deals w ith higher-dimensional data is
i r i s f c i r , which uses FCM to cluster the IRIS data. By typ ing

irisfcm

at the command line, you can see how the cluster centers move on projected 2-D
surfaces.

Note: The rem aining demos make use of S im u link. I f you do not have access to
S im u link, you can s till load the f i s files associated w ith these demos and
examine the systems using the standard GUI tools, but the anim ations and
sim ula tions illus tra ted below w ill not run.

Truck B a cke r - U p p e r (S imu l ink on ly)
The truck backer-upper (TBU) problem has become a standard problem in the
fuzzy logic fie ld. The problem is to design a controller (driver) tha t can back up
a truck in to a loading dock from any in itia l position tha t has enough clearance
from the back w all. The front wheels of the truck can reach any angles between
-45 and 45 degrees, but only backing up is allowed; there is no going forward.

To bring up the S im u link w indow for th is demo, try

s l t bu

2-102

Applications and Demos

A S im u link w indow w ill appear on your screen.

S tart the sim ulation by choosing S ta rt from the S im u la tion menu. You w ill see
an anim ation w indow for the TBU problem, which contains the top view of a
small truck , the loading dock indicated as three small circles, a steering handle
at the lower righ t corner, and several UI controls.

_ l sltbuTruck Backer Upper Animation

■ H i ■ шт

m

1 И = Н 1 1
W ShowTails | Clear Tails Controller: Fuzzy

1 Time: 7,10 Start Simulation... Info Close

You should now see the truck (driven by a fuzzy controller) backing up to the
loading dock. The sim ulation stops whenever the rear end of the truck touches
the back w all. To move the truck, click the mouse inside the truck and drag ti l l
it reaches a desired location. To rotate the truck, click at any corners of the
truck and drag t i l l it has a desired orientation. If you want to revert to the
in itia l conditions for th is demo, click the Variab le In itia liza tion block in the

2-103

2 Tutorial

S im u link w indow. Now you can start the sim ulation from the S im u link w indow
as before, or just click the S ta rt button in the anim ation window.

The default controller is a fuzzy controller. However, you can try to back the
truck yourself to see how well you do compared to the fuzzy controller. To do
th is , set the Contro ller pop-up menu to Human. Move the truck to a desired
in itia l condition and start the sim ulation as before. Now you can control the
front steering wheel by clicking the mouse on the lit t le steering handle at the
lower righ t corner of the anim ation window. This type of “human contro l” is
usually not easy at the firs t shot and requires some practice.

Other UI controls include:

• Show Tra i l s to select e ither to show the tra ils or not.
• C lear Tra i l s to clear anim ation tra ils .

Inver ted Pendu lum (S imul ink on ly)
Another standard problem in neuro-fuzzy lite ra tu re is the inverted pendulum
control, also known as the cart-pole (CP) problem. The system under control
consists of a rig id pole hinged to a cart through a free jo in t w ith one degree of
freedom. The cart can be moved to its righ t or left depending on the force
exerted on it. Our task is to design a control tha t generates appropria te force
on the cart such tha t we can move the cart to a desired position w h ile keeping
the pole balanced.

To try the demo, type

s l cp

(Fuzzy Log ic C on tro lle r)

2-104

Applications and Demos

This brings up the S im u link w indow for th is demo. S tart the sim ulation by
choosing S ta rt from the S im u la tion menu. Now you can see how the cart is
fo llow ing a desired position of a square wave by a fuzzy controller. The arrow
on the cart indicate the m agnitude and direction of the exerted force; the
triang le is the desired cart position.

This demo actua lly lets you have five choices for the desired cart position:
sinusoid wave, square wave, saw wave, random signal, and mouse driven
signal. To change the signal for the target cart position, click the Target
Position pop-up menu in the anim ation w indow and select the one you are
interested in. You can pause the sim ulation by clicking the Pause button, after
which you can either continue (C on tinue button) or single-step (Step button)
through the sim ulation. Note tha t both Cont i nue and Step buttons are hidden
under the Pause button, which means you w ill not be able to do single-stepping
of the s im ulation un til you pause it firs t.

Other UI controls include:

• Show t ra i l s to show tra ils of anim ation.
• C lear t r a i l s to clear tra ils .
The FIS m a trix for the fuzzy controller of th is demo is specified in the file
s l c p . f i s .

2-105

2 Tutorial

Ball and Beam (S imul ink on ly)
The ball-beam (BB) system consists of a ball ro lling fric tion lessly on a beam; a
motor generates a torque to t i l t the beam in order to send the ball to a desired
location. A fuzzy controller is designed to generate an appropria te torque to
achieve the control goal.

To start the demo, type

slbb

Fuzzy Inference System
(Fuzzy Logic Controller)

This brings up the S im u link w indow for th is demo. S tart the sim ulation by
choosing S ta rt from the S im u la tion menu. Now you can see how the ball is
fo llow ing a desired position of a square wave by a fuzzy controller. The arrow
on the tip s of the beam indicates the magnitude and direction of the exerted
torque; the small hollow triang le is the desired ball position.

_ | ShowTails | Clear Tails Target Position: Square Wave ■

Time: 7,60 Stop | Continue | Step Info Close

2-106

Applications and Demos

The GUI layout of the anim ation w indow is almost the same as tha t of the
cart-pole demo. Again we have five signals for desired cart positions. I f the
desired position is mouse-driven, you can click mouse inside the small triang le
and drag it to a desired location. The sim ulation controls for th is demo are very
s im ila r to the ones used in the Inverted Pendulum demo.

The FIS m a trix for the fuzzy controller of th is demo is specified in the file
s l b b . f i s .

2-107

2 Tutorial

Glossary
This section is designed to brie fly explain some of the specialized term s tha t
appear when discussing fuzzy logic.

aggregation - the combination of the consequents of each ru le in a Mamdani
fuzzy inference system in preparation for defuzzification.

ANFI S - (Adaptive Neuro-Fuzzy Inference System) a technique for
autom atica lly tun ing Sugeno-type inference systems based on tra in in g data.

antecedent - the in itia l (or “ i f ”) part of a fuzzy rule.

consequent - the fina l (or “then”) part of a fuzzy rule.

d e fu zz ifica tio n - the process of transform ing a fuzzy output of a fuzzy
inference system in to a crisp output.

degree of m em bership - the output of a membership function, th is value is
always lim ited to between 0 and 1. Also known as a membership value or
membership grade.

degree of f u l f i l l ment - see f i r i ng s treng th .

f i r i ng s treng th - the degree to which the antecedent part of a fuzzy ru le is
satisfied. The fir in g strength may be the result of an AND or OR operation, and
it shapes the output function for the rule. Also known as degree of fu lfillm e n t.

fu z z ifica tio n - the process of generating membership values for a fuzzy
variab le using membership functions.

fuzzy c-means c lu s te rin g - a data clustering technique where each data point
belongs to a cluster to a degree specified by a membership grade.

fuzzy inference system (FIS) - the overall name for a system that uses fuzzy
reasoning to map an input space to an output space.

fuzzy operators - AND, OR, and NOT operators. These are also known as
logical connectives.

fuzzy set - a set which can contain elements w ith only a partia l degree of
membership.

fuzzy s ing le ton - a fuzzy set w ith a membership function tha t is un ity at a one
particu la r point and zero everywhere else.

2-108

Glossary

impl i cat i on - the process of shaping the fuzzy set in the consequent based on
the results of the antecedent in a M am dani-style FIS.

M am dan i-s ty le i nference - a type of fuzzy inference in which the fuzzy sets
from the consequent of each ru le are combined through the aggregation
operator and the resu lting fuzzy set is defuzzified to yield the output of the
system.

m em bership f unct i on (MF) - a function tha t specifies the degree to which a
given input belongs to a set or is related to a concept.

s ing le ton ou tp u t func t i on - an output function tha t is given by a spike at a
single number rather than a continuous curve. In the Fuzzy Logic Toolbox it is
only supported as part of a zero-order Sugeno model.

subt rac t i ve c lu s te rin g - a technique for autom atica lly generating fuzzy
inference systems by detecting clusters in input-output tra in in g data.

Sugeno-style inference - a type of fuzzy inference in which the consequent of
each rule is a linear combination of the inputs. The output is a weighted linear
combination of the consequents.

T-conorm - (also known as S-norm) a tw o-input function tha t describes a
superset of fuzzy union (OR) operators, including maximum, algebraic sum,
and any of several parameterized T-conorms.

T-norm - a tw o-input function tha t describes a superset of fuzzy intersection
(AND) operators, including m inim um , algebraic product, and any of several
parameterized T-norms.

2-109

2 Tutorial

References
[Bez81] Bezdek, J.C., Pattern Recognition w ith Fuzzy Objective Function
A lgorithm s, Plenum Press, New York, 1981.

[Chi94] Chiu, S., “Fuzzy Model Identification Based on C luster Estim ation,”
Journal of Inte lligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

[Dub80] Dubois, D. and H. Prade, Fuzzy Sets and Systems: Theory and
Applications, Academic Press, New York, 1980.

[Jan91] Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks
and Kalman F ilte r A lgo rithm ,” Proc. of the N in th National Conf. on A rtif ic ia l
Intelligence (AAAI-91), pp. 762-767, Ju ly 1991.

[Jan93] Jang, J.-S. R., “ANFIS : Adaptive-Network-based Fuzzy Inference
Systems,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No.
3, pp. 665-685, May 1993.

[Jan94] Jang, J.-S. R. and N. Gulley, “Gain scheduling based fuzzy controller
design,” Proc. of the International Jo in t Conference of the North American
Fuzzy In form ation Processing Society B iannual Conference, the Industria l
Fuzzy Control and Inte lligent Systems Conference, and the NASA Joint
Technology Workshop on Neural Networks and Fuzzy Logic, San Antonio,
Texas, Dec. 1994.

[Jan95] Jang, J.-S. R. and C.-T. Sun, “Neuro-fuzzy modeling and control,”
Proceedings of the IEEE, March 1995.

[Jan95] Jang, J.-S. R. and C.-T. Sun, “Neuro-Fuzzy and Soft Com puting,” 1995,
(submitted for publication).

[Kau85] Kaufmann, A. and M.M. Gupta, “ Introduction to Fuzzy A rith m e tic ,”
V.N. Reinhold, 1985.

[Lee90] Lee, C.-C., “Fuzzy logic in control systems: fuzzy logic contro ller-part 1
and 2,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 20, No. 2,
pp 404-435, 1990.

[Mam75] Mamdani, E.H. and S. Assilian, “An experiment in lingu is tic
synthesis w ith a fuzzy logic contro ller,” International Journal of Man-M achine
Studies, Vol. 7, No. 1, pp. 1-13, 1975.

2-110

References

[Mam76] M amdani, E.H., “Advances in the lingu is tic synthesis of fuzzy
controllers,” In ternational Journal of M an-M achine Studies, Vol. 8, pp.
669-678, 1976.

[Mam77] Mamdani, E.H., “Applications of fuzzy logic to approxim ate reasoning
using lingu is tic synthesis,” IEEE Transactions on Computers, Vol. 26, No. 12,
pp. 1182-1191, 1977.

[Sch63] Schweizer, B. and A. Sklar, “Associative functions and abstract
semi-groups,” Publ. Math Debrecen, 10:69-81, 1963.

[Sug77] Sugeno, M., “Fuzzy measures and fuzzy integrals: a survey,” (M.M.
Gupta, G. N. Saridis, and B.R. Gaines, editors) Fuzzy Autom ata and Decision
Processes, pp. 89-102, North-H olland, New York, 1977.

[Sug85] Sugeno, M., Industria l applications of fuzzy control, Elsevier Science
Pub. Co., 1985.

[Wan94] Wang, L.-X., Adaptive fuzzy systems and control:design and s tab ility
analysis, Prentice H a ll, 1994.

[WidS85] W idrow, B. and D. Stearns, Adaptive Signal Processing, Prentice
H all, 1985.

[Yag80] Yager, R., “On a general class of fuzzy connectives,” Fuzzy Sets and
Systems, 4:235-242, 1980.

[Yag94] Yager, R. and D. Filev, “Generation of Fuzzy Rules by Mountain
C lustering ,” Journal of Inte lligent & Fuzzy Systems, Vol.2, No. 3, pp. 209-219,
1994.

[Zad65] Zadeh, L.A., “Fuzzy sets,” Inform ation and Control, Vol. 8, pp. 338-353,
1965.

[Zad73] Zadeh, L.A., “O u tline of a new approach to the analysis of complex
systems and decision processes,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 3, No. 1, pp. 28-44, Jan. 1973.

[Zad75] Zadeh, L.A., “The concept of a lingu is tic variab le and its application to
approxim ate reasoning, Parts 1, 2, and 3,” Inform ation Sciences, 1975,
8:199-249, 8:301-357, 9:43-80

[Zad88] Zadeh, L.A., “Fuzzy Logic,” Computer, Vol 1, No. 4, pp. 83-93, 1988.

[Zad89] Zadeh, L.A., “Knowledge representation in fuzzy logic,” IEEE
Transactions on Knowledge and Data Engineering, Vol. 1, pp. 89-100, 1989.

2-111

2 Tutorial

Fuzzy Musings
“ It was the best of times, it was the worst of tim es...”

— from A Ta le of Two C ities by Charles Dickens.

Dickens’ famous story about the French revolution begins w ith enough
contradictions to make a logician weep. How can great lite ra tu re fly so rashly
in the face of A ris to tle? L e t’s rephrase the firs t statement in a more
mathematical format to make the inconsistency as g laring as possible. Dickens
is describing a setting in which

(times == best) and (times == worst)
That is, the book begins at the intersection of tw o m utua lly exclusive sets. Can
such a long book be devoted entire ly to the empty set? The resolution must lie
somewhere else. Dickens is using words that can be construed by a rig id
lite ra lis t as quasi-m athematical in meaning, but obviously it would be foolish
to do so. He’s not referring to the realm of P latonic forms, he’s referring to the
real world, fu ll of d irt, sweat, and vagueness. And yet, these words do bear
some re la tionship to the ir s tric te r mathematical cousins. They must, else
where would the mathematical term s have come from? So w h a t’s going on
here?

If we approach our lexical analysis of the firs t sentence w ith fuzzy reasoning in
mind, suddenly we find there is room for a book after a ll. The intersection of
good tim es and bad tim es is not necessarily empty. On the other hand, if
Dickens had t ru l y been using two-valued logic, the result would have been
empty and the book would have gone unw ritten . In other words, fuzzy logic
perm itted the novel to exist!

Th is may all sound like facile word play, but there is a serious point to be made
here. I f we really want to analyze m athem atically the language tha t we use
every day, the language tha t lets us grapple w ith complexity and the fu ll range
of human experience, we can be sure tha t two-valued A ris to te lian logic w ill let
us down. Syllogisms like “A ll fish swim, salmon are fish, therefore salmon
sw im ” w ill only get you so far. Fuzzy logic brings more of human experience to
bear, and therefore is more useful in trans la ting what we know about the world
in to useful engineering.

2-112

3
Reference

3-2 GUI Tools
3-2 Membership Functions
3-3 FIS Data S tructu re Management
3-4 Advanced Techniques
3-4 S im u link Blocks
3-5 Demos

3-6 Fuzzy I n f e r ence Qu i ck R e fe rence

3 Rfeference

This section contains detailed descriptions of all the functions in the Fuzzy
Logic Toolbox. The fo llow ing tables contain the functions listed by topic.

GUI Tools

Function Purpose

fuzzy Basic FIS editor.

mfedi t Membership function editor.

r u l eed i t Rule editor and parser.

r u l ev i ew Rule viewer and fuzzy inference diagram.

s u r f v i ew O utput surface viewer.

M e m b e r s h ip Funct ions

Function Purpose

dsigmf Difference of tw o sigmoid membership functions.

gauss2mf Two-sided Gaussian curve membership function.

gaussmf Gaussian curve membership function.

gbel lmf Generalized bell curve membership function.

pimf Pi-shaped curve membership function.

psigmf Product of tw o sigmoid membership functions.

smf S-shaped curve membership function.

sigmf Sigmoid curve membership function.

t rapmf Trapezoidal membership function.

t r i m f T riangu la r membership function.

zmf Z-shaped curve membership function.

3-2

FIS Data St ructure M a n a g e m e n t

Function Purpose

addmf Add membership function to FIS.

addrule Add ru le to FIS.

addvar Add variab le to FIS.

defuzz Defuzzify membership function.

e v a l f i s Perform fuzzy inference calculation.

evalmf Generic membership function evaluation.

gensurf Generate FIS output surface.

g e t f i s Get fuzzy system properties.

mf2mf Transla te parameters between functions.

newf is Create new FIS.

pars ru l e Parse fuzzy rules.

p l o t f i s Display FIS input-output diagram.

plotmf Display all membership functions for one variable.

r ead f i s Load FIS from disk.

rim f Remove membership function from FIS.

rmvar Remove variab le from FIS.

s e t f i s Set fuzzy system properties.

showf is Display annotated FIS.

showrule Display FIS rules.

w r i t e f i s Save FIS to disk.

3-3

3 Reference

Ad v a n c e d Techniques

Function Purpose

an f i s T ra in ing routine for Sugeno-type FIS (MEX only).

fcm Find clusters w ith fuzzy c-means clustering.

g e n f i s l Generate FIS m a trix using generic method.

genf i s2 Generate FIS m a trix using subtractive clustering.

subclust Find cluster centers w ith subtractive clustering.

Simu l ink B locks

Function Purpose

fuzb l ock Fuzzy logic controller block.

s f f i s Fuzzy inference S-function.

3-4

Demos

Function Purpose

defuzzdm Defuzzification methods.

fcmdemo Fuzzy c-means clustering demo (2-D).

fuzdemos List of all Fuzzy Logic Toolbox demos.

i nvk i ne Inverse kinem atics of a robot arm.

i r i s f c m Fuzzy c-means clustering demo (4-D).

noisedm Adaptive noise cancellation.

s lbb Ball and beam control (S im ulink only).

s l cp Inverted pendulum control (S im ulink only).

s l t ank Water level control (S im ulink only).

s l t bu Truck backer-upper (S im ulink only).

3-5

3 Reference

Fuzzy Inference Quick Reference
1. fuzzify inputs 2. apply

fuzzy
operation
(or = max)(or = max)

. poor rancid I cheap

___________________ ____________________ J __ ____________________
If s e rv ic e is p o o r or fo o d is ra n c id then t ip = c h e a p

rule 2 has
no dependency
on input 2

average□L
If s e rv ic e is g o o d then t ip = a v e ra g e

If s e rv ic e is e x c e lle n t or fo o d is d e lic io u s then t ip = g e n e ro u s

service = 3

input 1

food = 8

input 2

The point o f all fuzzy inference systems is to map an input space to an output
space. The prim ary vehicle for doing th is is a list o f if-then statements (such
as " i f service is good then tip is average"). All rules are evaluated in parallel.
Shown above is the basic structure of a fuzzy inference system. There are five
distinct parts to the process

1. F u z z ify th e in p u ts . (s e rv ic e is g o o d)
Fuzzification is the process of assgning a degree of truth (between 0 = FALSE
and 1 = TRUE) to statements about the input variables (all those statements in
the IF part, or antecedent, o f the rule). The mem ber^iip functions associated
w ith the input variables determine this degree o f truth. Any statement in the
antecedent evaluates to a number between 0 and 1.

2 . A p p ly th e fu z z y o p e ra to r (s e rv ic e is p o o r o r fo o d is ra n c id)
If the antecedent is made up of multiple statements jo ined by connectives
(AND or OR|, then the fuzzy operator resolves the overall antecedent based
on the connective used. The fuzzy operator always resolves a multiple
statement antecedent into a number between 0 and 1.

t ip = 16.7%

output

3 . A p p ly th e im p lic a t io n o p e ra to r (th e n t ip = c h e a p)
The consequent, or T H ^ part of the rule, is a shape defined by the area
under the output variable mem ber^iip function curve. W hereas the
antecedent statement is a mapping from a single input value to a single truth
value, the consequent statement is the assignment o f an entire fuzzy set to the
output variable. The value (between 0 and 1) of the antecedent truncates or
shapes the fuzzy set specified in the consequent by means o f the implication
operator.

4. A g g re g a te th e o u tp u t a c ro s s a l l ru le s
Steps 1, 2, and 3 occur fo r all rules so each rule has a fuzzy set to contribute
to each output. Joining all these sets into a ang le output membership function
is known as aggregation and it is mediated by the aggregation operator.

5 . D e fu z z ify th e a g g re g a te o u tp u t fu z z y se t
The aggregate membership function for each output variable must be reduced
to a single value. The defuzzification function returns this value given the
sometimes oddly shaped aggregate.

3-6

a d d m f

Purpose

Synops is

Descrip tion

E xam ples

See Also

Add membership function to FIS.

a = addi7f(a,varType,varIndex,irfName,mfType,iTfParaimB)

A membership function can only be added to a variab le tha t is already part of
the system. You cannot add a membership function to input variab le number
tw o of a system if only one input has been defined. Membership functions are
given indices in the order in which they are added, so the firs t membership
function added to a variab le w ill always be known as membership function
number one for tha t variable.

The function requires s ix input arguments. Here is an example of how it m ight
be used:

a = n e w f i s (' t i p p e r ') ;
a = a d d v a r (a , ' i n p u t ' , ' s e r v i c e ' , [0 10]) ;
a = a d d T f (a , ' i n p u t ' , 1 , ' p o o r ' , ' g a u s s m f ' , [1 . 5 0]) ;
a = a d d T f (a , ' i n p u t ' , 1 , ' g o o d ' , ' g a u s s m f ' , [1 . 5 5]) ;
a = a d d m f (a , ' i n p u t ' , 1 , ' e x c e l l e n t ' , ' g a u s s m f ' , [1 . 5 10]) ;
p l o t m f (a , ' i n p u t ' , 1)

service

addrule, addvar, p l o t m f , rmmf, rmvar

3-7

addru le

Purpose

Synops is

Descrip tion

E xam ples

See Also

Add ru le to FIS.

a = a d d r u l e (a , r u l e l i s t)

The variab le r u l e l i s t can be a list of one or more rows, each of which
represents a given rule. The form at tha t the ru le list must take is very specific.
I f there are m inputs to a system and n outputs, there must be exactly m + n +
2 columns to the ru le list.

The firs t m columns refer to the inpu ts of the system. Each column contains a
number tha t refers to the index of the membership function for tha t variable.

The next n columns refer to the outputs of the system. Each column contains a
number tha t refers to the index of the membership function for tha t variable.

The m + n + 1 column contains the weight tha t is to be applied to the rule. The
weight must be a number between zero and one, and is generally left as one.

The m + n + 2 column contains a 1 if the fuzzy operator for the ru le ’s antecedent
is AND. It contains a 2 if the fuzzy operator is OR.

r u l eL i s t = [
1 1 1 1 1
1 2 2 1 1];

a = a d d r u l e (a , r u l e L i s t) ;

I f the above system a has tw o inpu ts and one output, the firs t ru le can be
interpreted as: “ I f input 1 is MF 1 and input 2 is MF 1, then output 1 is MF 1.”

addmf , addvar, r mmf, r mvar, par sr ul e, showr ul e

3-8

a d d va r

Purpose

Synops is

Descrip tion

E xam ples

See Also

Add variab le to FIS.

a = addvar(a,varType,varName,varBounds)

Variables are given indices in the order in which they are added, so the firs t
input variab le added to a system w ill always be known as input variab le
number one for tha t system. Input and output variables are numbered
independently.

a = n e w f i s (' t i p p e r ') ;
a = a d d v a r (a , ' i n p u t ' , ' s e r v i c e ' , [0 10]) ;
g e t f i s (a , ' i n p u t ' , 1)

M ATLAB replies

Name = se r v i ce
NumMFs = 0
MFLabels =
Range = [0 10]

addmf , addrule, rmmf, rmvar

3-9

anf is

Purpose

Synops is

Descrip tion

Tra in ing routine for Sugeno-type FIS (MEX only).

[f i s m a t , e r r o r 1 , s t e p s i z e] = an f i s (t r nDa t a)
[f i s m a t , e r r o r 1 , s t e p s i z e] = a n f i s (t r n D a t a , f i s m a t)
[f i s m a t 1 , e r r o r 1 , s t e p s i z e] = . . .

a n f i s (t r n D a t a , f i s m B t , t r n C p t , d i sp C p t)
[f i sm a t 1 , e r r o r 1 , s t e p s i z e , f i s i T B t 2 , e r r o r 2] = . . .

an f i s (t r nDa t a , t r nCp t , d i spCp t , chkDa t a)

This is the major tra in in g routine for Sugeno-type fuzzy inference systems.
an f i s uses a hybrid learn ing a lgorithm to identify parameters of Sugeno-type
fuzzy inference systems; it applies the least-squares method and the
backpropagation gradient descent for linear and nonlinear parameters,
respectively.

I f no checking data is involved, an f i s can be invoked w ith from one to four
input argum ents and it re tu rns th ree output arguments:

[f i s m a t 1 , e r r o r , s t e p s i z e] = . . .
a n f i s (t r n D a t a , f i s m a t , t r n C p t , d i s p C p t)

t r nData is a tra in in g data m atrix , where each row is a desired input-output
data pair, w ith output at the last column.

f i smat is a FIS m a trix tha t specifies the s tructu re and in itia l parameters for
tra in ing . Th is FIS m a trix can be generated from data d irectly using the
command g e n f i s 1 . I f f i smat is a single number or a vector, it is taken as the
number of membership functions. Then both t r nData and f i smat are passed to
genf i s1 to generate a valid FIS m a trix before s ta rting the tra in in g process.

t rnCpt is a tra in in g option vector which specifies various options during
tra in ing :

t r n C p t (1) : tra in in g epoch number (default: 10)
t r n C p t (2) : tra in in g error goal (default: 0)
t r n C p t (3) : in it ia l step size (default: 0.01)
t r n C p t (4) : step-size decrease rate (default: 0.9)
t r n C p t (5) : step-size increase rate (default: 1.1)

3-10

anf is

I f any element of t rnCpt is NaN (not a number), then the default value is used.
Default values can be changed d irectly by m odifying th is file. If t rnCpt itse lf is
missing, a null m atrix , or a NaN, then it takes the default values.

The tra in in g process stops whenever the designated epoch number is reached
or the tra in in g error goal is achieved.

The step size is decreased (by m u ltip ly ing it w ith the decrease rate) if the error
measure undergoes tw o consecutive combinations of an increase followed by a
decrease. The step size is increased (by m u ltip ly ing it w ith the increase rate) if
the error measure undergoes four consecutive decreases.

dispCpt is a display options vector which specifies what message to display in
the M ATLAB command window during tra in ing :

d i s p C p t (l) : A N F IS inform ation, such as numbers of linear and nonlinear
parameters, and so on (default: 1)
d i sp C p t (2) : error measure (default: 1)
d i sp C p t (3) : step size at each parameter update (default: 1)
d i sp C p t (4) : fina l results (default: 1)

The parsing ru le of dispCpt is the same as t r n C p t .

f i smat 1 is the FIS m atrix , which corresponds to the m in im um tra in in g error.
e r ror is an array of root mean squared errors. s t eps i ze is an array of step
sizes.

I f checking data is involved in the tra in in g process, then a n f i s should be
invoked w ith five input arguments and it re tu rns five output arguments:

[f i s m a t 1 , e r r o r 1 , s t e p s i z e , f i s m a t 2 , e r r o r 2] = . . .
a n f i s (t r n D a t a , f i s m a t , t r n Cp t , d i sp Cp t , c h k Da t a]

Here none of f i s m a t , t rnCpt and dispCpt can be om itted. I f the default values
of t rnCpt and/or dispCpt are taken, they should be specified either as NaNs or
empty matrices. The additional input argument chkData specifies the checking
data m atrix ; its form at is the same as t rnData.

f i s m a t l is the FIS m a trix tha t corresponds to the m in im um tra in in g error.
e r r o r l is an array of root mean squared tra in in g errors. s t eps i ze is an array
of step sizes. f i smat2 is the FIS m a trix tha t corresponds to the m in im um
checking error. e r r o r 2 is an array of root mean squared checking errors.

3-11

anf is

E xam ples

See Also

References

x = (0 : 0 . 1 : 1 0) ' ;
y = s i n (2 * x) . / e x p (x / 5) ;
t r nData = [x y] ;
numMFs = 5;
mfType = ' g b e l l m f ' ;
epoch_n = 20;
i n_ f i smat = genf i s(t rnData,numMFs,mfType) ;
out_f i smBt = a n f i s (t r n D a t a , i n _ f i s m a t , 2 0) ;
p l o t (x , y , x , e v a l f i s (x , o u t _ f i s m a t)) ;
l egend (' T r a i n i ng Data ' , 'ANFIS Cutpu t ') ;

g e n f i s 1 , an f i s

Jang, J.-S. R., “Fuzzy Modeling Using Generalized Neural Networks and
Kalman F ilte r A lgo rithm ,” Proc. of the N in th National Conf. on A rtif ic ia l
Intelligence (AAAI-91), pp. 762-767, Ju ly 1991.

Jang, J.-S. R., “ANFIS : Adaptive-Network-based Fuzzy Inference Systems,”
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp.
665-685, May 1993.

3-12

de fuzz

Purpose

Synops is

Descrip tion

E xam ples

Defuzzify membership function.

out = de fuzz (x ,mf , t ype)

de fuzz (x ,mf , t ype) re tu rns a defuzzified value of mf positioned at x, using
d ifferent defuzzification strategies. The variab le type can be one of the
following.

• cen t r o i d : centroid of area method.
• b i sec t o r : bisector of area method.
• mom mean of maximum method.
• som smallest of maximum method.
• lom largest of m aximum method.

I f t ype is not one of the above, it is assumed to be a user-defined function. x and
mf are passed to th is function to generate the defuzzified output.

x = -10:0 .1 :10;
mf = t r a p m f (x , [- 1 0 -8 -4 7]) ;
xx = d e f u z z (x , m f , ' c e n t r o i d ') ;

3-13

d s ig m f

Purpose

Synops is

Descrip tion

E xam ples

See Also

Difference of tw o sigmoid membership functions.

y = dsigi r f (x,paramB)
y = ds i gmf (x , [a1 cl a2 c2])

The sigmoid curve depends on tw o parameters a and c given by

f (x = т+e^
This function is s im ply the difference between tw o such curves

f-i(x; a1, c-|) - f2(x; a2, c2)

The parameters are listed in the order: [a1 c1 a2 c2].

x=0:0.1:10;
y=ds i gmf (x , [5 2 5 7]) ;
p l o t (x , y)
x l a b e l (' ds i gm f , P=[5 2 5 7] ')

dsigmf, P = Г5 2 5 71

gaussmf, gauss2mf, gbel lmf , evalmf, mf2mf, pimf, psigmf, sigmf , smf, t rapmf ,
t r i m f , zmf

3-14

eval f is

Purpose

Synops is

Descrip tion

E xam p le

See Also

Perform fuzzy inference calculation.

output = e v a l f i s (i n p u t , f i s m a t)

This function computes the output vector output of the fuzzy inference system
specified by the FIS m a trix f i s m a t . The function e v a l f i s exists as both an
M -file and a M EX-file. The M EX-file version is always used pre ferentia lly (if
available) because of its speed advantage.

If input is an M-by-N m atrix , where N is number of input variables, then
e v a l f i s takes each row of input as an input vector and re tu rns the M-by-L
m a trix o u t p u t , where each row is a output vector and L is the number of output
variables.

f i smat = r e a d f i s (' t i p p e r ') ;
out = e v a l f i s ([2 1; 4 9] , f i s m a t)

which generates the response

out =
7.0169
19.6810

rulev iew, gensurf

3-15

e v a lm f

Purpose

Synops is

Descrip tion

E xam ples

See Also

Generic membership function evaluation.

y = evalimf(x,mfParaimB,mfType)

As long as mfType is a legal membership function, and irfParairs are
appropria te parameters for tha t function, eva l r f w ill evaluate any
membership function.

I f you want to create your own custom membership function, eva l r f w ill s till
work, because it w ill “eval ” the name of any membership function it doesn’t
recognize.

x=0:0.1:10;
mfparams = [2 4 6];
mf type = ' g b e l l m f ' ;
y=eval imf(x,mfparaimB,mftype);
p l o t (x , y)
x l a b e l (' g b e l l m f , P=[2 4 6] ')

gbellmf, P = Г2 4 61

ds i gmf , gaussmf, gauss2mf, g b e l l r f , mf2mf, p i r f , p s i g r f , s i g r f , s r f , t rapmf ,
t r i m f , zmf

3-16

fcm

Purpose

Synops is

Descr ipt ion

Exam p le

Fuzzy c-means clustering.

[c e n t e r , U , o b j _ f cn] = f c n (d a t a , c l us t e r _n)

[center , U, ob j _ f cn] = fcm(data, c l us t e r _n) applies the fuzzy c-means
clustering method to a given data set. Input and output arguments of this
function are

data: data set to be clustered; each row is a sample data point
c l us te r _n : number of clusters (greater than one)
ce n t e r : fina l cluster centers, where each row is a center
U: fina l fuzzy partition m a trix (or membership function m atrix)
obj _ f cn: values of the objective function during ite ra tions

f c n (d a t a , c l u s t e r _ n , o p t i o n s) uses an additional argument opt i ons to
control clustering parameters, stopping crite ria , and/or iteration inform ation
display:

o p t i o n s (1) : exponent for the pa rtition m a trix U (default: 2.0)
o p t i o n s (2) : maximum number of ite ra tions (default: 100)
o p t i o n s (3) : m in im um amount of improvement (default: 1e-5)
o p t i o n s (4) : in fo display during iteration (default: 1)

If any entry of opt i ons is NaN (not a number), the default value for tha t option
is used instead. The clustering process stops when the maximum number of
iteration is reached, or when the objective function improvement between two
consecutive iteration is less than the m in im um amount of improvement
specified.

data = rand(100, 2);
[c e n t e r , U , ob j _ f cn] = fcm(data, 2);
p l o t (d a t a (: , 1) , d a t a (: , 2) , ' o ') ;
maxU = max(U);
index1 = f i n d (U (1 , :) == maxU);
index2 = f i nd(U(2, :) == maxU);
l i ne (da t a (i n d e x 1 , 1) , d a t a (i n d e x 1 , 2) , . . .

' l i n e s t y l e ' , ' * ' , ' c o l o r ' , ' g ') ;
l i ne (da t a (i n d e x 2 , 1) , d a t a (i n d e x 2 , 2) , . . .

' l i n e s t y l e ' , ' * ' , ' c o l o r ' , ' r ') ;

3-17

fuzblock

Purpose

Synops is

Descr ipt ion

See Also

S im ulink fuzzy logic controller block.

fuzb l ock

This command brings up a S im u link system tha t contains exactly one block,
the fuzzy logic controller. The dialog box associated w ith th is block (found by
double-clicking on the block) should contain the name of the FIS m a trix in the
workspace tha t corresponds to the desired fuzzy system.

If the fuzzy inference system has m u ltip le inputs, these inputs should be
m ultip lexed together before feeding them in to the fuzzy controller block.
S im ila rly , i f the system has m u ltip le outputs, these signals w ill be passed out
of the block on one m ultip lexed line.

Fuzzy Logic Controller

s f f i s

3-18

fuzdemos

Purpose

Synops is

Descr ipt ion

List of all Fuzzy Logic Toolbox demos.

fuzdemos

This function brings up a GUI tha t allows you to choose between any of the
several Fuzzy Logic Toolbox demos, including the pole and cart demo, the truck
backing demo, and others. The demos are all described in detail in Chapter 2,
Tu toria l.

3-19

fuzzy

Purpose

Synops is

The D iagram

Basic FIS editor.

f uzzy
fuzzy(f i s imat)
April
1997

M FIS Editor: tipper N r i
I File Edit View ________ 1

FIS Name: tipper FIS Type: mamdani

And method min Current Variable

Or method max Name | service

Implication min

Aggregation max

Type input
Range [0 10]

Defuzzification centroid —< Help Close

System "tipper": 2 inputs, 1 output, and 3 rules

This GUI tool allows you to edit the highest level features of the fuzzy inference
system, such as the number of input and output variables, the defuzzification
method used, and so on. Refer to Chapter 2, Tu to ria l, for more inform ation
about how to use f u z z y .

The FIS Editor is the high level display for any fuzzy logic inference system. It
allows you to call the various other editors to operate on the system. This
interface allows convenient access to all other editors w ith an emphasis on
maximum fle x ib ility for interaction w ith the fuzzy system.

The diagram displayed at the top of the w indow shows the inputs, outputs, and
a central fuzzy ru le processor. C lick on one of the variab le boxes to make the
selected box the current variable. You should see the box highlighted in red.
Double-click on one of the variables to bring up the Membership Function
Editor. Double-click on the fuzzy ru le processor to bring up the Rule Editor. If
a variab le exists but is not mentioned in the ru le base, it is connected to the
ru le processor block w ith a dashed rather than a solid line.

3-20

fu zzy

M e n u I t e m s The FIS Editor displays a menu bar, which allows you to open related GUI
tools, open and save systems, and so on.

• Fi le
New Mamdani FIS... Opens a new M am dani-style system w ith no variables
and no rules called Un t i t l ed .
New Sugeno FIS... Opens a new Sugeno-style system w ith no variables and
no rules called Un t i t l ed .
Open f rom disk... Loads a system from a specified . f i s file on disk.
Save to disk Saves the current system to a f i s file on disk.
Save to d isk as... Saves the current system to disk w ith the option to rename
or relocate the file.
Open f rom w orkspace... Load a system from a specified FIS m a trix variab le
in the workspace.
Save to workspace... Saves the system to the cu rren tly named FIS m a trix
variab le in the workspace.
Save to workspace as... Saves the system to a specified FIS m a trix variable
in the workspace.
Close w i ndow.

• Edi t
Add i nput Add another input to the current system.
Add output Add another output to the current system.
Remove var i ab l e Delete the current variable.
Undo Undo the most recent change.

• V iew

Edi t MFs... Invoke the Membership Function Editor.
Edi t ru les... Invoke the Rule Editor.
V iew rules... Invoke the Rule Viewer.
V iew output surface... Invoke the Surface Viewer.

3-21

fuzzy

In ference
M e th o d Pop
M enus

See Also

Five pop-up menus are provided to change the func tiona lity of the five basic
u p steps in the fuzzy im plication process.

And m ethod Choose m in, prod, or a custom operation.
Or m ethod Choose max, probor (probab ilis tic or), or a custom operation.
Impl i ca t i on method Choose m in, prod, or a custom operation. Th is selection
is not available for Sugeno-style fuzzy inference.
A ggrega tion method Choose max, sum, probor, or a custom operation. Th is
selection is not available for Sugeno-style fuzzy inference.
D e fuzz ifica tion method For M am dani-style inference, choose centroid, b i­
sector, mom (m iddle of maximum), som (smallest of maximum), lom (largest
of maximum), or a custom operation. For Sugeno-style inference, choose be­
tween w taver (weighted average) or w tsum (weighted sum).

m f e d i t , r u l eed i t , r u l ev iew, s u r f v i ew

3-22

g a u s s 2 m f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Two-sided Gaussian curve membership function.

y = gauss2mf(x,paraimB)
y = gauss2mf (x , [s i g1 cl s i g2 c2])

The gaussian curve depends on tw o parameters sig and c as given by

- (X - С)2
f (x;s, c) = e 2s2

The function gauss2mf is jus t a combination of tw o such curves. The firs t curve
should be the leftmost curve. The region between c1 and c2 is constrained to be
equal to 1. The parameters are listed in the order:

[sigl, cl, sig2, c2], c l < c2.

x=0:0.1:10;
y=gauss2mf(x, [1 3 3 4]) ;
p l o t (x , y)
x l abe l (' gauss2mf , P=[1 3 3 4] ')

gauss2mf, P = [1 3 3 41

dsigmf, gauss2mf, gbel lmf , evalmf, mf2mf, pimf, psigmf, sigmf, smf, t rapmf ,
t r i m f , zmf

3-23

gaussmf

Purpose

Synops is

Descr ipt ion

Examples

See Also

Gaussian curve membership function.

y = gaussi7 f(x,para irs)
y = gaussmf (x , [s i g c])

The gaussian curve depends on tw o parameters sig and c as given by

- (X - C)2

f (x;s, c) = e 2 s 2

The parameters are listed in the order: [sig, c].

x=0:0.1:10;
y=gaussmf (x, [2 5]) ;
p l o t (x , y)
x l abe l (' gauss7 f , P=[2 5] ')

gaussmf, P = [2 51

ds i gmf , gaussmf, g b e l l m f , evalmf, mf2mf, p i mf , psigmf, sigmf , smf, t rapmf ,
t r i m f , zmf

3-24

g b e l lm f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Generalized bell curve membership function.

y = gbel l i 7f (x ,parai rs)
y = g b e l l m f (x , [a b c])

The generalized bell curve depends on three param ters a, b, and c as given by

1
f (x; a, b, c) =

1 + x - c
a

2 b

where the parameter b is usually positive. The parameter c locates the center
of the curve.

x=0:0.1:10;
y= g b e l l m f (x , [2 4 6]) ;
p l o t (x , y)
x l a b e l (' g b e l l m f , P=[2 4 6] ')

gbellmf, P = [2 4 6]

dsigmf, gaussmf, gauss2mf, eva lmf , mf2mf, pimf, psigmf, sigmf, smf, t rapmf ,
t r i m f , zmf

3-25

genfis1

Purpose

Synops is

Descr ipt ion

Examples

See Also

Generate FIS m a trix using generic method.

f i smat = g e n f i s l (d a t a)
f i smat = genf is1(data,numMFs,mfType)

genf i s1(data,numMFs,mfType) generates a FIS m a trix from tra in in g data
data, using grid partition style. numMFs is a vector specifying the number of
membership functions on all inputs. mfType is a s tring array where each row
specifies the membership function type of an input variable.

I f numMFs is a number and/or mfType is a single string, they w ill be used for all
inputs. Default value for numMFs is 2; default s tring for mfType is ' gbe l l mf '.

data = [rand(10 ,1) 10* rand(10,1) -5 r and(10,1)] ;
numMFs = [3 7];
mfType = s t r 2 m B t (' p i m f ' , ' t r i m f ') ;
f i smat = genf is1(data,numMFs,mfType);
[x ,mf] = p l o t m f (f i s m a t , ' i n p u t ' , 1) ;
subp l o t (2 , 1 , 1) , p l o t (x , m f) ;
x l a b e l (' i n p u t 1 (p i m f) ') ;
[x ,mf] = p l o t m f (f i s m a t , ' i n p u t ' , 2) ;
subp l o t (2 , 1 , 2) , p l o t (x , m f) ;
x l a b e l (' i n p u t 2 (t r i m f) ') ;

input 2 (trimf)

an f i s

3-26

genfis2

Purpose

Synops is

Descr ipt ion

Examples

Generate FIS m a trix using subtractive clustering.

f i smat = g e n f i s 2 (X i n , Xou t , r ad i i , x Bounds , o p t i ons)

Given a set of input and output data, th is function extracts a set of rules tha t
models the data behavior. The ru le extraction method firs t uses the subclust
function to determ ine the number of rules and antecedent membership
functions and then uses linear least squares estimation to determ ine each
ru le ’s consequent equations. This function re tu rns a FIS m a trix tha t contains
the resultant fuzzy rulebase. X in is a m a trix in which each row contains the
input values of a data point. Xout is a m a trix in which each row contains the
output values of a data point. rad i i is a vector tha t specifies a cluster center’s
range of influence in each of the data dimensions, assuming the data fa lls
w ith in a un it hyperbox.

For example, if the data dimension is 3 (e.g., X in has 2 columns and Xout has
1 column), rad i i = [0.5 0.4 0.3] specifies tha t the ranges of influence in the firs t,
second, and th ird data dimensions (i.e., the firs t column of Xin, the second
column of Xin, and the column of Xout) are 0.5, 0.4, and 0.3 tim es the w id th of
the data space, respectively. I f rad i i is a scalar, then the scalar value is
applied to all data dimensions, i.e., each cluster center w ill have a spherical
neighborhood of influence w ith the given radius. xBounds is a 2xN m a trix tha t
specifies how to map the data in X in and Xout in to a un it hyperbox, where N is
the data dimension. The firs t row contains the m in im um axis range values and
the second row contains the m aximum axis range values for scaling the data in
each dimension.

For example, xBounds = [-10 0 -1; 10 50 1] specifies tha t data values in the firs t
data dimension are to be scaled from the range [-10 +10] in to values in the
range [0 1]; data values in the second data dimension are to be scaled from the
range [0 50]; and data values in the th ird data dimension are to be scaled from
the range [-1 +1]. I f xBounds is an empty m a trix or not provided, then xBounds
defaults to the m in im um and maximum data values found in each data
dimension. opt i ons is an optional vector for specifying a lgorithm parameters
to override the default values. These parameters are explained in the help text
for the subclust function.

f i smat = gen f i s 2 (X i n , Xou t , 0 . 5)

3-27

genfis2

See Also

This is the m in im um number of arguments needed to use th is function. Here a
range of influence of 0.5 is specified for all data dimensions.

f i smat = g e n f i s 2 (X i n , X o u t , [0 . 5 0.25 0.3])

This assumes the combined data dimension is 3. Suppose X in has tw o columns
and Xout has one column, then 0.5 and 0.25 are the ranges of influence for each
of the X in data dimensions, and 0.3 is the range of influence for the Xout data
dimension.

f i smat = g e n f i s 2 (X i n , X o u t , 0 . 5 , [- 1 0 -5 0; 10 5 20])

This specifies how to norm alize the data in X in and Xout in to values in the
range [0 1] for processing. Suppose X in has tw o columns and Xout has one
column, then the data in the firs t column of X in are scaled from [-10 +10], the
data in the second column of X in are scaled from [-5 +5], and the data in Xout
are scaled from [0 20].

subclust

3-28

gensur f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Generate FIS output surface.

g e n s u r f (f i s)
g e n s u r f (f i s , i n p u t s , o u t p u t)
g e n s u r f (f i s , i n p u t s , o u t p u t , g r i d s , r e f i n p u t)

g e n s u r f (f i s) w ill generate a plot of the output surface of a fuzzy system using
the firs t tw o inpu ts and the firs t output.

g e n s u r f (f i s , i n p u t s , o u t p u t) w ill generate a plot using the inputs (one or
two) and output (only one is allowed) given by the vector i nputs and the scalar
ou t p u t .

g e n s u r f (f i s , i n p u t s , o u t p u t , g r i d s) allows you to specify the number of grids
in the X and Y directions. I f g r i ds is a two element vector, the grids in the X
and Y directions can be set independently.

g e n s u r f (f i s , i n p u t s , o u t p u t , g r i d s , r e f i n p u t) can be used i f there are more
than tw o outputs. r e f i npu t then specifies the nonvarying inputs to the system.

[x , y , z] = g e n s u r f (. . .) re tu rns the variables tha t define the output surface
and suppresses autom atic p lotting.

e v a l f i s , s u r f v i e w

3-29

getf is

Purpose

Synops is

Descr ipt ion

Examples

Get fuzzy system properties.

g e t f i s (a)
g e t f i s (a , ' f i s p r o p ')
g e t f i s (a , ' v a r t y p e ' , v a r i n d e x , ' va rp rop ')
g e t f i s (a , ' v a r t y p e ' , v a r i n d e x , ' 7 f ' , 7 f i n d e x)
g e t f i s (a , ' v a r t y p e ' , v a r i n d e x , ' 7 f ' , 7 f i n d e x , ' n f p r op ')

Th is is the fundam ental access function for the FIS m atrix . W ith th is one
function you can learn about every part of the fuzzy inference system.

One input argument (output is the empty set)

a = r e a d f i s (' t i p p e r ') ;
g e t f i s (a)

Name = t i ppe r
Type = mamdani
Numlnputs = 2
InLabels =

serv i ce
food

NumCutputs = 1
CutLabels =

t i p
NumRules = 3
AndMfethod = min
CrMethod = max
ImpMfethod = min
AggMfethod = max
DefuzzMethod = c en t r o i d

Two input arguments

g e t f i s (a , ' t y p e ')
ans =
mamdani

3-30

getf is

See Also

Three input arguments (output is the empty set)

g e t f i s (a , ' i n p u t ' , 1)
Name = se r v i ce
NumMFs = 3
MFLabels =

poor
good
excel l ent

Range = [0 10]

Four input arguments

g e t f i s (a , ' i n p u t ' , 1 , ' n a m e ')
ans =
serv i ce

Five input arguments

g e t f i s (a , ' i n p u t ' , 1 , ' m f ' , 2)
Name = good
Type = gaussmf
Params =

1.5000 5.0000

Six input arguments

g e t f i s (a , ' i n p u t ' , 1 , ' m f ' , 2 , ' n a m e ')
ans =
good

s e t f i s , showf i s

3-31

m f 2 m f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Translate parameters between functions.

outParams = m ^ m f ^ n P a r a T s i n T y p e ^ u t T y p e)

This function does its best to trans la te parameters among the various
membership function types. Occasionally th is transla tion w ill result in lost
in form ation, so tha t if the output parameters are translated back in to the
original membership function type, the transform ed membership function w ill
not look the same as it did orig ina lly .

The function tr ie s to match the ц = 0.5 crossover points for both the new and
old membership functions.

x=0:0.1:5;
mfpl = [1 2 3];
mfp2 = 7 f 2 7 f (7 f p 1 , ' g b e l l 7 f ' , ' t r i 7 f ') ;
p l o t (x , g b e l l 7 f (x , 7 f p 1) , x , t r i 7 f (x , 7 f p 2))

dsigmf , gaussmf , gauss2mf, gbel lmf , eva l mf , pimf , ps i gmf , s i gmf , smf ,
t rapmf , t r i m f , zmf

3-32

mfedi t

Purpose

Synops is

Descr ipt ion

The D iagram

Menu I tems

Membership function editor.

mfedi t (a)

The Membership Function Editor allows you to inspect and modify all the
membership functions in your fuzzy system. For each membership function you
can change the name, the type, and the parameters. Eleven basic membership
functions are provided for you to choose from, although of course you can
always create your own specialized versions. Refer to Chapter 2, Tu to ria l, for
more inform ation about how to use mf e d i t .

Select the current variab le w ith the Variab le Palette on the left side of the
diagram (under the heading “F IS Variables”). Select membership functions by
clicking once on them or th e ir labels.

On the Membership Function Editor, there is a menu bar tha t allows you to
open related GUI tools, open and save systems, and so on. The F ile menu for

3-33

mfedi t

M em b ersh ip
Function
Pop-up Menu

See Also

the Membership Function Editor is the same as the one found on the FIS
Editor. Refer to the Reference entry fuzzy for more inform ation.

• Edi t
Add MF... Add membership functions to the current variable.
Add custom MF... Add a customized membership function to the current
variable.
Remove cur ren t MF Delete the current membership function.
Remove all MFs Delete all membership functions of the current variable.
Undo Undo the most recent change.

• V iew
Edi t FIS p roperties ... Invoke the FIS Editor.
Edi t ru les... Invoke the Rule Editor.
V iew ru les... Invoke the Rule Viewer.
V iew o u tp u t surface... Invoke the Surface Viewer.

There are 11 bu ilt-in membership functions to choose from, and you also have
the option of ins ta lling a customized membership function. In general, any
membership function can be converted to any other. Customized membership
functions, however, can never be converted.

f u z z y , r u l e e d i t , ru l ev iew, s u r f v i e w

3-34

newf is

Purpose

Synops is

Descr ipt ion

Examples

See Also

Create new FIS.

a=newf i s(f i sName, f i sType,andMethod,orMethod, impMethod, . . .
agglVkthod,defuzzlVethod)

This function creates new FIS matrices. newf is has up to seven input
arguments, and the output argument is a F IS m atrix . The seven input
arguments correspond to: name, type, AND method, OR method, im plication
method, aggregation method, and defuzzification method.

The fo llow ing example shows what the defaults are for each of the methods:

>> a=newf i s (' newsys ') ;
>> g e t f i s (a)

Name = newsys
Type = mamdani
Numlnputs = 0
InLabels =
NumCutputs = 0
OutLabels =
NumRules 0
AndMethod min
CrMethod max
ImpMethod min
AggMethod max
DefuzzMethod c en t r o i d

ans =

r ead f i s , w r i t e f i s

3-35

parsru le

Purpose

Synops is

Descr ipt ion

Examples

See Also

Parse fuzzy rules.

f i s 2 = p a r s r u l e (f i s , t x t R u l e L i s t , r u l e F o r m a t)

This function parses the text tha t defines the rules for a fuzzy system and
re tu rns a FIS m a trix w ith the appropria te ru le list in place. I f the original
input m a trix f i s has any rules in itia lly , they are replaced in the new m a trix
f i s 2 . Three different ru le form ats are supported: verbose, symbolic, and
indexed.

a = r e a d f i s (' t i p p e r ') ;
ru leTxt = ' i f se r v i ce i s poor then t i p i s generous' ;
a2 = p a r s r u l e (a , r u l e T x t , ' v e r b o s e ') ;
showrule(a2)
ans =

1. I f (s e r v i c e i s poor) then (t i p i s generous) (1)

addrule, r u l e e d i t , showrule

3-36

p im f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Pi-shaped curve membership function.

y = p i i r f (x ,parai rs)
y = p i m f (x , [a b c d])

This spline-based curve is so named because of its shape. The parameters a and
d locate the “feet” of the curve, w h ile b and c locate its “shoulders.”

x=0:0.1:10;
y=p i mf (x , [1 4 5 10]) ;
p l o t (x , y)
x l a b e l (' p i m f , P=[1 4 5 10] ')

pimf, P = Г1 4 5 101

dsigmf, gaussmf, gauss2mf, gbel lmf , evalmf , mf2mf, psigmf, sigmf , smf,
t rapmf , t r i m f , zmf

3-37

plot f is

Purpose

Synops is

Descr ipt ion

Examples

See Also

Plot fuzzy inference system.

p l o t f i s (f i s m a t)

This function displays a high level diagram of a fuzzy inference system. Inputs
and the ir membership functions are shown on the left and outputs and the ir
membership functions are shown on the righ t.

a = r e a d f i s (' t i p p e r ')
p l o t f i s (a)

p l o t f i s , evalmf

3-38

p lo tm f

Purpose

Synops is

Descr ipt ion

Examples

Plot membership functions for a variable.

p l o tmf (f i sma t , va r Type , va r I ndex)

This function plots all of the membership functions associated w ith a given
variable.

a = r e a d f i s (' t i p p e r ')
p l o t m f (a , ' i n p u t ' , 1)

See Also evalmf , p l o t f i s

3-39

ps igmf

Purpose

Synops is

Descr ipt ion

Examples

See Also

Product of tw o sigmoid curves membership functions.

y = psigi r f (x,paramB)
y = ps i gmf (x , [a1 cl a2 c2])

The sigmoid curve depends on tw o parameters a and c as given by

f (x- ac) = T T i W

This function is s im ply the product or tw o such curves

f-i(x; a1, c-|) * f2(x; a2, c2)

The parameters are listed in the order: [a1 c1 a2 c2].

x=0:0.1:10;
y=ps i gmf (x , [2 3 -5 8]) ;
p l o t (x , y)
x l ab e l (' ps i gm f , P=[2 3 -5 8] ')

psigmf, P = [2 3 -5 81

dsigmf, gaussmf, gauss2mf, gbel lmf , evalmf, mf2mf, pimf, sigmf , smf, t rapmf ,
t r i m f , zmf

3-40

readf is

Purpose

Synops is

Descr ipt ion

Examples

See Also

Load FIS from disk.

f i smat = r e a d f i s (' f i l e n a m e ')

Read a fuzzy inference system from a . f i s file on disk and bring the resulting
file into the workspace.

f i smat = r ead f i s (no input arguments) brings up a u i g e t f i l e dialog box to
assist w ith the name and directory location of the file.

The extension . f i s is assumed for f i l ename if it is not already present.

f i smat = r e a d f i s (' t i p p e r ') ;
g e t f i s (f i s m a t)

re turns

Name = t i ppe r
Type = mamdani
NumInputs = 2
InLabels =

ser v i ce
food

NumCutputs = 1
CutLabels =

t i p
NumRules = 3
AndMethod = min
CrMfethod = max
ImpMethod = min
AggMethod = max
DefuzzMethod = cen t r o i d

w r i t e f i s

3-41

r m m f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Remove membership function from FIS.

a = r mmf (a , ' va r Type ' , va r I ndex , ' i 7 f ' , i 7 f I ndex)

For removing membership functions. You cannot remove a membership
function cu rren tly in use in the ru le list.

a = newf i s (' mysys ') ;
a = a d d v a r (a , ' i n p u t ' , ' t e m p e r a t u r e ' , [0 100]) ;
a = a d d m f (a , ' i n p u t ' , 1 , ' c o l d ' , ' t r i m f ' , [0 30 60]) ;
g e t f i s (a , ' i n p u t ' , 1)

Name = temperature
NumMFs = 1
MFLabels =

cold
Range = [0 100]

b = r m m f (a , ' i n p u t ' , 1 , ' m f ' , 1) ;
g e t f i s (b , ' i n p u t ' , 1)

Name = temperature
NumMFs = 0
MFLabels =
Range = [0 100]

addmf , addrule, addvar, rmvar

3-42

rm va r

Purpose

Synops is

Descr ipt ion

Examples

See Also

Remove variab le from FIS.

r i r va r (a , ' va r Ty pe ' , va r I ndex)

For removing fuzzy variables. You cannot remove a fuzzy variab le cu rren tly in
use in the ru le list. Th is command w ill autom atica lly a lter the ru le lis t to keep
its size consistent w ith the current number of variables.

a = newf i s (' mysys ') ;
a = a d d v a r (a , ' i n p u t ' , ' t e m p e r a t u r e ' , [0 100]);
g e t f i s (a)

Name = mysys
Type = mamdani
Nunlnputs = 1
InLabels =

temperature
NumCutputs = 0
OutLabels =
NumRules = 0

b = r m v a r (a , ' i n p u t ' , 1) ;
g e t f i s (b)

Name = mysys
Type = mamdani
Numnputs = 0
InLabels =
NumCutputs = 0
OutLabels =
NumRules = 0

addmf , addrule, addvar, rmmf

3-43

ruleedi t

Purpose

Synops is

Descr ipt ion

Menu I tems

Rule editor and parser.

r u l e e d i t (a)

The Rule Editor, like the Membership Function Editor, is used to modify the
FIS m atrix . It can also be used sim ply to inspect the current rules being used
by a system. In general, you sim ply type your rules in to the text field, and when
you’re ready to parse the rules press C t r l - Re t u r n . Refer to Chapter 2, Tu to ria l,
for more inform ation about how to use r u l eed i t .

On the Rule Editor, there is a menu bar tha t allows you to open related GUI
tools, open and save systems, and so on. The F ile menu for the Rule Ed itor is
the same as the one found on the FIS Editor. Refer to the Reference entry fuzzy
for more inform ation.

• Edi t
Undo Undo the most recent change.

• V iew
Edi t FIS p roperties ... Invoke the FIS Editor.
Edi t m em bership func tions ... Invoke the Membership Function Editor.
V iew ru les... Invoke the Rule Viewer.
V iew o u tp u t surface... Invoke the Surface Viewer.

3-44

ru leedi t

Rule Formats
Pop-up Menu

See Also

There is a pop-up menu in the Rule Editor tha t allows you to choose which ru le
display form at you prefer. Three different form ats are available:

• verbose, which uses the words “ i f ” and “then” and so on to create actual sen­
tences.

• sym bo lic , which s im ply substitu tes some symbols for the words described
above. For example, “ if A and B then C” becomes
“A & B => C.”

• indexed, which is the simplest of the three formats. Aside from some punc­
tuation used to ease in terpre ta tion , th is form at exactly m irro rs how the ru le
is stored in the FIS m atrix .

See the addrule and showrule commands for more inform ation about the
composition of rules.

addrule, fuzzy, m f e d i t , parsru l e , r u l ev iew, showrule, s u r f v i ew

3-45

ruleview

Purpose

Synops is

Descr ip t ion

Menu I tems

Rule viewer and fuzzy inference diagram.

ru l ev i ew(a)

The Rule Viewer is a “ liv in g ” version of the fuzzy inference diagram. Much like
the Surface Viewer, it is a read-only tool. It is used to view the entire
im plication process from beginning to end. You can move around the line
indices tha t correspond to the inputs and then watch the system readjust and
compute the new output. Refer to Chapter 2, Tu to ria l, for more inform ation
about how to use rulev iew.

On the Rule Viewer, there is a menu bar tha t allows you to open related GUI
tools, open and save systems, and so on. The F ile menu for the Rule Viewer is

3-46

ru lev iew

See Also

the same as the one found on the FIS Editor. Refer to the Reference entry fuzzy
for more inform ation.

• E d it
No options under Edi t .

• V iew
E d it F IS p roperties ... Invoke the FIS Editor.
E d it ru les... Invoke the Rule Editor.
V iew o u tp u t surface... Invoke the Surface Viewer.

• Opt i ons
Rule d isp lay f o rmat If you click on the ru le numbers on the left side of the
fuzzy inference diagram, the ru le associated w ith tha t number w ill appear in
the Status Bar at the bottom of the Rule Viewer. Th is menu item allows you
to set the format in which the ru le appears.

fuzzy, m f e d i t , r u l eed i t , s u r f v i ew

3-47

setfis

Purpose

Synops is

Descr ipt ion

Examples

Set fuzzy system properties.

a = se t f i s (a , ' p r opname ' , newpr op)
a = s e t f i s (a , ' v a r t y p e ' , v a r i n d e x , ' p r op n a me ' , n e w p r op)
a = s e t f i s (a , ' v a r t y p e ' , v a r i n d e x , ' i 7 f ' , i 7 f i n d e x , . . .

propname' ,newprop);

The command s e t f i s can be called w ith three, five, or seven input arguments,
depending on whether you want to set a property of the entire FIS m atrix , a
particu la r variab le belonging to tha t FIS m atrix , or a particu la r membership
function belonging to one of those variables.

Called w ith th ree arguments

a = r e a d f i s (' t i p p e r ') ;
a2 = s e t f i s (a , ' n u m n p u t s ' , 3) ;
g e t f i s (a 2 , ' n u m n p u t s ')
ans =

3

The fo llow ing properties of any fuzzy system can be altered w ith a three
argument call to s e t f i s : name, type, numnputs, numoutputs, numrules,
andmethod, ormethod, impmethod, aggmethod, defuzzmethod

If used w ith five arguments, s e t f i s w ill update any of several variab le
properties.

a2 = s e t f i s (a , ' i n p u t ' , 1 , ' n a m e ' , ' h e l p ') ;
g e t f i s (a 2 , ' i n p u t ' , 1 , ' n a m e ')
ans =

help

The fo llow ing properties of any fuzzy system can be altered w ith a five
argument call to s e t f i s : name, bounds

3-48

setfis

I f used w ith seven arguments, s e t f i s w ill update any of several membership
function properties.

a2 = s e t f i s (a , ' i n p u t ' , 1 , ' i T f ' , 2 , ' n a m e ' , ' w r e t c h e d ') ;
g e t f i s (a 2 , ' i n p u t ' , 1 , ' i T f ' , 2 , ' n a m e ')
ans =

wretched

The fo llow ing properties of any fuzzy system can be altered w ith a seven
argument call to s e t f i s : name, type, params

See Also g e t f i s

3-49

sffis

Purpose

Synops is

Descr ipt ion

See Also

Fuzzy inference S-function for S im u link.

output = s f f i s (t , x , u , f l a g , f i s m a t)

This M EX -file is used by S im u link to do the calculation norm ally performed by
e v a l f i s . It has been optim ized to work in the S im u link environm ent. This
means, among other th ings, tha t s f f i s builds a data s tructu re in memory
during the in itia liza tion phase of the sim ulation which it then continues to use
un til the sim ulation is complete.

The input to the fuzzy system comes in through the argument u. If, for example,
there are tw o inputs to f i smat then u w ill be a tw o element vector.

e v a l f i s , f uzb l ock

3-50

show f is

Purpose

Synops is

Descr ip t ion

Examples

Display annotated FIS.

showf i s (f i smat)

showf i s (f i smat) p rin ts a version of the variab le f i smat annotated row by row,
allow ing you to see the significance and contents of each row.

a = r e a d f i s (' t i p p e r ') ;
showf i s(a)

3-51

show f is

re turns

1. Name t i ppe r
2. Type mamdani
3. I nputs /Outputs [2 1]
4. NumlnputMFs [3 2]
5. NumCutputVFs 3
6. NumRules 3
7. AndMethod min
8. CrIVethod max
9. ImpMethod min
10. AggVethod max
11. DefuzzVethod c en t r o i d
12. InLabels serv i ce
13. food
14. CutLabels t i p
15. InRange [0 10]
16. [0 10]
17. CutRange [0 30]
18. InVFLabels poor
19. good
20. excel l ent
21. ranc id
22. d e l i c i ou s
23. CutVFLabels cheap
24. average
25. generous
26. InVFTypes gaussmf
27. gaussmf
28. gaussmf
29. t rapmf
30. t rapmf
31. CutVFTypes t r i m f
32. t r i m f
33. t r i m f
34. InVFParams [1 . 5 0 0 0]
35. [1 . 5 5 0 0]
36. [1 . 5 10 0 0]
37. [0 0 1 3]
38. [7 9 10 10]

3-52

show f is

See Also

39. CutlVFParaiTB
40.
41.
42. RuleList
43.
44.

get f i s

[0 5 10 0]
[10 15 20 0]
[20 25 30 0]
[1 1 1 1 2]
[2 0 2 1 1]
[3 2 3 1 2]

3-53

showru le

Purpose

Synops is

Descr ip t ion

Examples

See Also

Display FIS rules.

s howr u l e (a , i ndex L i s t , f o r ma t)

This command is used to display the rules associated w ith a given system. It
can re turn the ru le in any of th ree d ifferent formats: verbose (the default),
symbolic, and membership function index referencing. The firs t argument is
the FIS m atrix , the second argument is the ru le number, and the th ird
argument, if supplied, is the return form at. One ru le or a vector of rules can be
provided to th is function.

a = r e a d f i s (' t i p p e r ') ;
showrule(a,1)
ans =
1. I f (se r v i ce i s poor) or (food i s rancid) then (t i p i s cheap) (1)

showrule(a,2)
ans =
2. I f (s e r v i c e i s good) then (t i p i s average) (1)

showr u l e (a , [3 1] , ' s y m b o l i c ')
ans =
3. (se r v i ce==exce l l en t) | (f ood==de l i c i ous) => (t i p=generous) (1)
1. (serv i ce==poor) | (f ood==ranc id) => (t i p=cheap) (1)

s h o wr u l e (a , 1 : 3 , ' i ndex ed ')
ans =
1 1, 1 (1) : 2
2 0, 2 (1) : 1
3 2, 3 (1) : 2

parsru le , r u l eed i t

3-54

s i gmf

Purpose

Synops is

Descr ipt ion

Examples

See Also

Sigmoid curve membership function.

y = sigi7f (x,params)
y = s i g m f (x , [a c])

The sigmoid curve depends on tw o parameters a and c as given by

f (x-a c) =

Depending on the sign of the parameter a, a sigmoidal membership function is
inherently open righ t or left and thus is appropria te for representing concepts
such as “very large” or “very negative.” More conventional-looking membership
functions can be bu ilt by tak ing e ither the product or difference of tw o different
sigmoidal membership functions. You can find more on th is in the entries for
dsigmf and ps igmf .

x=0:0.1:10;
y=s i gmf (x , [2 4]) ;
p l o t (x , y)
x l a b e l (' s i g m f , P=[2 4] ')

sigmf, P = [2 41

ds igmf , gaussmf, gauss2mf, g b e l l m f , evalmf , mf2mf, pimf, psigmf, smf,
t r a p mf , t r i m f , zmf

3-55

smf

Purpose

Synops is

Descr ipt ion

Examples

See Also

S-curve membership function.

y = smf(x,paramB)
y = smf (x , [a b])

This spline-based curve is so named because of its shape. The parameters a and
b locate the extremes of the sloped portion of the curve.

x=0:0.1:10;
y=smf (x , [1 8]) ;
p l o t (x , y)
x l ab e l (' sm f , P=[1 8] ')

smf, P = Г1 81

dsigmf, gaussmf, gauss2mf, gbel lmf , eva lmf , mf2mf, pimf, psigmf, sigmf,
t r a p mf , t r i m f , zmf

3-56

subclust

Purpose

Synops is

Descr ipt ion

Find cluster centers w ith subtractive clustering.

[C,S] = subc l us t (X , r ad i i , xBounds , op t i ons)

This function estimates the cluster centers in a set of data by using the
subtractive c lustering method. The subtractive c lustering method assumes
each data point is a potential cluster center and calculates a measure of the
potential for each data point based on the density of surrounding data points.
The a lgorithm selects the data point w ith the highest potential as the firs t
cluster center and then destroys the potential of data points near the firs t
cluster center. The a lgorithm then selects the data point w ith the highest
rem aining potential as the next cluster center and destroys the potential of
data points near th is new cluster center. Th is process of acquiring a new
cluster center and destroying the potential of surrounding data points repeats
un til the potential of all data points fa lls below a threshold. The subtractive
clustering method is an extension of the M ountain clustering method proposed
by R. Yager [Yag92].

The m a trix X contains the data to be clustered; each row of X is a data point.
The variab le rad i i is a vector tha t specifies a cluster center's range of influence
in each of the data dimensions, assuming the data fa lls w ith in a un it hyperbox.
Small r ad i i values generally result in find ing a few large clusters. Good values
for r ad i i are usually between 0.2 and 0.5.

For example, if the data dimension is tw o (X has tw o columns),
rad i i = [0.5 0.25] specifies tha t the range of influence in the firs t data
dimension is ha lf the w id th of the data space and the range of influence in the
second data dimension is one quarter the w id th of the data space. I f rad i i is a
scalar, then the scalar value is applied to all data dimensions, i.e., each cluster
center w ill have a spherical neighborhood of influence w ith the given radius.
xBounds is a 2xN m a trix tha t specifies how to map the data in X in to a unit
hyperbox, where N is the data dimension.

The firs t row contains the m in im um axis range values and the second row
contains the m axim um axis range values for scaling the data in each
dimension. For example, xBounds = [-10 -5; 10 5] specifies tha t data values in
the firs t data dimension are to be scaled from the range [-10 +10] in to values
in the range [0 1]; data values in the second data dimension are to be scaled
from the range [-5 +5] in to values in the range [0 1]. I f xBounds is an empty

3-57

subclust

Examples

m atrix or not provided, then xBounds defaults to the m in im um and maximum
data values found in each data dimension.

The opt i ons vector can be used for specifying c lustering a lgorithm parameters
to override the default values. These parameters are:

• op t i ons(1) = squashFactor: Th is is used to m u ltip ly the radii values to de­
te rm ine the neighborhood of a cluster center w ith in which the existence of
other cluster centers are to be discouraged. (default: 1.25)

• op t i ons(2) = acceptRat io: Th is sets the potentia l, as a fraction of the po­
ten tia l of the firs t cluster center, above which another data point w ill be ac­
cepted as a cluster center. (default: 0.5)

• op t i ons(3) = r e j ec t Ra t i o : Th is sets the potentia l, as a fraction of the po­
ten tia l of the firs t cluster center, below which a data point w ill be rejected as
a cluster center. (default: 0.15)

• op t i ons(4) = verbose: I f th is term is not zero, then progress inform ation
w ill be printed as the c lustering process proceeds. (default: 0)

The function re tu rns the cluster centers in the m a trix C; each row of C contains
the position of a cluster center. The returned S vector contains the sigma values
tha t specify the range of influence of a cluster center in each of the data
dimensions. A ll cluster centers share the same set of sigma values.

[C,S] = subc l us t (X , 0 . 5)

This is the m in im um number of arguments needed to use th is function. A range
of influence of 0.5 has been specified for all data dimensions.

[C,S] = s u b c l us t (X , [0 . 5 0.25 0 . 3] , [] , [2 . 0 0.8 0 .7])

This assumes the data dimension is 3 (X has 3 columns) and uses a range of
influence of 0.5, 0.25, and 0.3 for the firs t, second and th ird data dimension,
respectively. The scaling factors for mapping the data in to a un it hyperbox w ill
be obtained from the m in im um and maxim um data values. The squashFactor
is set to 2.0, ind icating tha t we only want to find clusters tha t are far from each
other. The acceptRat i o is set to 0.8, ind icating tha t we w ill only accept data
points tha t have very strong potential of being cluster centers. The
r e j ec t Ra t i o is set to 0.7, ind icating tha t we want to reject all data points
w ithou t a strong potentia l.

3-58

subclust

See Also

References

genf i s2

Chiu, S., “ Fuzzy Model Identification Based on C luster Estim ation ,” Journal of
Inte lligent & Fuzzy Systems, Vol. 2, No. 3, Sept. 1994.

Yager, R. and D. Filev, “Generation of Fuzzy Rules by M ountain C lustering ,”
Journal of In te lligent & Fuzzy Systems, Vol.2, No. 3, pp. 209-219, 1994.

3-59

surfv iew

Purpose

Synops is

Descr ipt ion

Menu I tems

O utput surface viewer.

sur f v i ew(a)

The Surface Viewer is a GUI tool tha t lets you examine the output surface of a
fuzzy inference system for any one or tw o inputs. Since it does not a lter the
fuzzy system or its associated FIS m a trix in any way, it is a read-only editor.
Using the pop-up menus, you select which input variables you want to form the
tw o input axes (X and Y) as well the output variab le tha t you want to form the
output (or Z) axis. Then push the E va lua te button to perform the calculation
and plot the output surface.

By clicking on the plot axes and dragging the mouse, you can actually
m anipulate the surface so tha t you can view it from different angles.

I f there are more than tw o inpu ts to your system, you must supply, in the
reference input section the constant values associated w ith any unspecified
inputs.

Refer to the Tuto ria l section for more inform ation about how to use sur f v i ew.

On the Surface Viewer, there is a menu bar tha t allows you to open related GUI
tools, open and save systems, and so on. The F ile menu for the Surface Viewer

3-60

sur fv i ew

See Also

is the same as the one found on the FIS Editor. Refer to the Reference entry
f uzzy for more inform ation.

• E d it
No options under Edit.

• V iew
E d it F IS p roperties ... Invoke the FIS Editor.
E d it m em bership func tions... Invoke the Membership Function Editor.
E d it ru les... Invoke the Rule Editor.
V iew rules... Invoke the Rule Viewer.

• Opt i ons
P lo t Choose among eight d ifferent kinds of plot styles.
Color Map Choose among several d ifferent color schemes.
A lw ays eva luate Check th is menu item if you want to autom atica lly evalu­
ate and plot a new surface every tim e you make a change tha t affects the plot
(like changing the number of grid points).

fuzzy, g ensur f , m f ed i t , r u l eed i t , r u l ev i ew

3-61

t r a p m f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Trapezoidal membership function.

y = t rapmf(x,paraimB)
y = t r a p m f (x , [a b c d])

The trapezoidal curve depends on four parameters as given by

0, x < a
x - a a < x < b

f (x; a, b, c, d) =
b - a ’
1, b < x < c
d - x

c < x < d
d - c

0, d < x

or more compactly by

x _a d _x
f (x; a, b, c, d) = m a x (m in (^ -= ,1, ̂ ^ - ^) , 0)

b _ a d _ c

The parameters a and d locate the “feet” of the trapezoid and the parameters b
and c locate the “shoulders.”

x=0:0.1:10;
y= t r apmf (x , [1 5 7 8]) ;
p l o t (x , y)
x l a b e l (' t r a p m f , P=[1 5 7 8]

trapmf, P = Г1 5 7 81

dsigmf, gaussmf, gauss2mf, gbel lmf , evalmf, mf2mf, pimf, psigmf, sigmf , smf,
t r i m f , zmf

3-62

t r i m f

P u rp o s e

S y n o p s is

D e s c r ip t io n

E x a m p l e s

See A l s o

Triangu la r membership function.

y = t r i i 7 f (x ,paramB)
y = t r i m f (x , [a b c])

The tr ia n g u la r curve depends on three parameters as given by

0, x < a
x - a

f (x; a, b, c) = b - a ’
c - x

a < x < b

b < x < c
c - b ’

0, c < x

or more compactly by

f (x; a, b, c) = m ax(m in(x a , ——-),0)
b - a c - b

The parameters a and c locate the “feet” of the tr iang le and the parameter c
locates the peak.

x=0:0.1:10;
y = t r i m f (x , [3 6 8]) ;
p l o t (x , y)
x l a b e l (' t r i T f , P=[3 6 8] ')

trimf, P = Г3 6 81

dsigmf, gaussmf, gauss2mf, g b e l l m f , evalmf, mf2mf, pimf, psigmf, sigmf , smf,
t rapmf

3-63

w r i te f is

Purpose

Synops is

Descr ipt ion

Examples

See Also

Save FIS to disk.

w r i t e f i s (f i s m a t)
w r i t e f i s (f i s m a t , f i l ename)
w r i t e f i s (f i s m a t , f i l e n a m e , ' d i a l o g '

Save fuzzy inference system as a f i s file on disk. w r i t e f i s (f i s m a t) brings
up a u i p u t f i l e dialog box to assist w ith the naming and directory location of
the file.

w r i t e f i s (f i s m a t , f i l ename) w rites a f i s file corresponding to the FIS
m a trix f i smat to a disk file called f i l ename. No dialog box is used and the file
is saved to the current directory.

w r i t e f i s (f i s m a t , f i l e n a m e , ' d i a l o g '
the default name f i l ename supplied.

brings up a u i p u t f i l e dialog box w ith

The extension f i s is added to f i l ename if it is not already present.

a =
a = n e w f i s (' t i p p e r ') ;

i n p u t ' ,
npu t ' , 1
npu t ' , 1
npu t ' , 1

m y _ f i l e ')

addvar(a,
addmf(a, '
addmf(a, '
addmf(a, '

w r i t e f i s (a

a =
a =
a =

s e r v i c e ' , [0 10]) ;
' p o o r ' , ' g a u s s m f ' , [1 . 5 0]) ;
' g o o d ' , ' g a u s s m f ' , [1 . 5 5]) ;
' e x c e l l e n t ' , ' g a u s s m f ' , [1 . 5 10]) ;

r ead f i s

3-64

zm f

Purpose

Synops is

Descr ipt ion

Examples

See Also

Z-shaped membership function.

y = zmf (x.parans)
y = z m f (x , [a b])

This spline-based function is so named because of its shape. The parameters a
and b locate the extremes of the sloped portion of the curve.

x=0:0.1:10;
y = t r i m f (x , [3 7]) ;
p l o t (x , y)
x l ab e l (' zm f , P=[3 7] ')

zmf, P = Г3 7]

dsigmf, gaussmf, gauss2mf, g b e l l m f , evalmf, mf2mf, pimf, psigmf, sigmf , smf,
t r a p mf , t r i m f

3-65

zm f

3-66

Index

A
ad a p tive noise cance lla tion 2-94
addmf 2-53, 2-56, 3-7
a d d ru le 2-53, 2-56, 3-8
addvar 2-53, 2-56, 3-9
aggregation 2-108
A N F IS 2-69, 2-94, 2-108
a n f is 3-10
antecedent 2-108

B
ball and beam system 2-106

C
chao tic t im e series 2-97
c lu s te rin g a lg o rith m s 2-109
consequent 2-108

D
d e fuzz 3-13
de fuzz ifica tion 2-108
degree of be lie f 2-108
degree of fu lf i l lm e n t 2-108
dsigm f 2-11, 3-14

E
e v a l f i s 2-53, 3-15
eva lm f 3-16

F
f c m 3-17
fir ing strength 2-108

F IS 2-108
file s 2-57
m a tr ix 2-54

f u z b l o c k 2-68
fuzdemos 3-19
fuzdems 3-18
fu zz ifica tio n 2-108
fuzzy c lu s te rin g 2-79
fuzzy c-m eans 2-79
fuzzy c-m eans c lu s te rin g 2-108, 3-17
fuzzy in fe rence system 2-108
fuzzy opera tors 2-108
fuzzy set 2-108
fuzzy s ing le ton 2-108

G
gauss2mf 2-10
gauss ian 2-10
gaussmf 2-10, 3-24
gbe l l mf 2-11, 3-25
gen f i s1 3-26
g e n f i s 2 3-27
g e nsu rf 2-52, 3-29
g e t f i s 2-56, 3-30
g lossary 2-108

I
im p lica tio n 2-109
in ve rte d pendu lum problem 2-104

J
juggling problem 2-89

I-1

Index

L
logical operations 2-12

M
Mamdani's method 2-59
Mamdani-style inference 2-59, 2-109
membership function 2-109
mf2mf 3-32

N
neuro-fuzzy inference 2-69
newf i s 2-53, 3-35

P
p a r s r u l e 3-36
pimf 2-11
p l o t f i s 2-50
p l o t mf 2-51, 3-38, 3-39
probabilistic OR 2-21
psigm f 2-11, 3-40

R
r e a d f i s 3-41
rmmf 2-56, 3-42
rmvar 2-56, 3-43
robot arm 2-91
rule formats 3-45
r u l e e d i t 3-44
r u l e v i e w 3-46

s howf i s 2-56, 3-51
showru l e 3-54
sigmf 2-11, 3-55
Simulink, working w ith 2-65
singleton 2-59, 2-109
smf 2-11, 3-56
stand-alone fuzzy inference engine 2-87
subc l us t 3-57
subtractive clustering 2-81
Sugeno-style fuzzy inference 2-59
Sugeno-style inference 2-109
s u r f v i e w 3-60

T
T-conorm 2-109
T-norm 2-109
trapezoidal 2-10
t r apmf 2-10, 3-62
t r i m f 3-63, 3-65
truck backer-upper problem 2-102

W
w r i t e f i s 3-64

Z
zmf 2-11, 3-65

S
s e t f i s 2-56, 3-48
s f f i s 2-68, 3-50

I-2

